High Pressure Angle Gears: Comparison to Typical Gear Designs
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zabrajsek, Andrew J.
2010-01-01
A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).
Double Helical Gear Performance Results in High Speed Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles
2009-01-01
The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.
Double Helical Gear Performance Results in High Speed Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles
2010-01-01
The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.
A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability
NASA Technical Reports Server (NTRS)
Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.
2011-01-01
A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.
Actively Controlled Landing Gear for Aircraft Vibration Reduction
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.
1999-01-01
Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.
Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.
1999-01-01
Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.
Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan
2014-01-01
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.
Experimental testing of prototype face gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Handschuh, R.; Lewicki, D.; Bossler, R.
1992-01-01
An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.
Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.
2004-01-01
A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.
The NASA landing gear test airplane
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.
1995-01-01
A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.
Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo
2011-01-01
An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.
Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Gargano, Lucas J.
2014-01-01
Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had five thermocouples installed at different locations on the gear tooth and web. The data from these two types of measurements provided important information as to the thermal environment during the loss-of-lubrication event. This data is necessary to validate on-going modeling efforts.
Evaluation of Carburized and Ground Face Gears
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Heath, Gregory F.; Sheth, Vijay
1999-01-01
Experimental durability tests were performed on carburized and ground AIS19310 steel face gears. The tests were in support of a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) to enhance face-gear technology. The tests were conducted in the NASA Glenn spiral-bevel-gear/face-gear test facility. Tests were run at 2300 rpm face gear speed and at loads of 64, 76, 88, 100, and 112-percent of the design torque of 377 N-m (3340 in-lb). The carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Proper installation was critical for the successful operation of the spur pinions and face gears. A large amount of backlash produced tooth contact patterns that approached the inner-diameter edge of the face-gear tooth. Low backlash produced tooth contact patterns that approached the outer-diameter edge of the face-gear tooth. Measured backlashes in the range of 0.178 to 0.254 mm (0.007 to 0.010 in) produced acceptable tooth contact patterns.
Langley Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.
1987-01-01
The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.
Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bibel, George D.
1999-01-01
An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.
Experimental and Analytical Determinations of Spiral Bevel Gear-Tooth Bending Stress Compared
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2000-01-01
Spiral bevel gears are currently used in all main-rotor drive systems for rotorcraft produced in the United States. Applications such as these need spiral bevel gears to turn the corner from the horizontal gas turbine engine to the vertical rotor shaft. These gears must typically operate at extremely high rotational speeds and carry high power levels. With these difficult operating conditions, an improved analytical capability is paramount to increasing aircraft safety and reliability. Also, literature on the analysis and testing of spiral bevel gears has been very sparse in comparison to that for parallel axis gears. This is due to the complex geometry of this type of gear and to the specialized test equipment necessary to test these components. To develop an analytical model of spiral bevel gears, researchers use differential geometry methods to model the manufacturing kinematics. A three-dimensional spiral bevel gear modeling method was developed that uses finite elements for the structural analysis. This method was used to analyze the three-dimensional contact pattern between the test pinion and gear used in the Spiral Bevel Gear Test Facility at the NASA Glenn Research Center at Lewis Field. Results of this analysis are illustrated in the preceding figure. The development of the analytical method was a joint endeavor between NASA Glenn, the U.S. Army Research Laboratory, and the University of North Dakota.
Cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Vogler, William A.
1989-01-01
Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0 deg to 12 deg. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0 deg to 4 deg under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.
Hybrid Gear Performance Under Loss-of-Lubrication Conditions
NASA Technical Reports Server (NTRS)
Laberge, Kelsen E.; Berkebile, Stephen P.; Handschuh, Robert F.; Roberts, Gary D.
2017-01-01
Hybrid composite gear technology is being investigated to increase power density in rotorcraft drive systems. These gears differ from conventional steel gears in that the structural web material is replaced with a lightweight carbon fiber composite. Past studies have focused on performance of this technology under normal operating conditions, however, for this technology to be viable it must also withstand adverse conditions. The study presented here evaluates the performance of hybrid gears under loss-of-lubrication conditions in NASA Glenn Research Centers Contact Fatigue Test Facility. Two experiments are presented using small-scale 3.5 inch (8.9 cm) pitch diameter hybrid gears and compared to a baseline steel gear pair. Results of these tests show that there are limitations to the use of a hexagonal interlock pattern between the steel and composite. There is also evidence that the presence of polymer in the gear during an oil out event has a potential to increase time to failure. Further studies are planned to expand on these initial findings.
ERIC Educational Resources Information Center
Donovan, Phillip Raymond
2009-01-01
This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…
NASA Technical Reports Server (NTRS)
Handschuh, R.; Kilmain, D.; Ehinger, R.; Sinusas, E.
2013-01-01
The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.
NASA Technical Reports Server (NTRS)
Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.
2013-01-01
The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.
Experimental Comparison of Face-Milled and Face-Hobbed Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Nanlawala, Michael; Hawkins, John M.; Mahan, Danny
2001-01-01
An experimental comparison of face-milled and face-hobbed spiral bevel gears was accomplished. The two differently manufactured spiral bevel gear types were tested in a closed-loop facility at NASA Glenn Research Center. Strain, vibration, and noise testing were completed at various levels of rotational speed and load. Tests were conducted from static (slow-roll) to 12600 rpm and up to 269 N-m (2380 in.-lb) pinion speed and load conditions. The tests indicated that the maximum stress recorded at the root locations had nearly the same values, however the stress distribution was different from the toe to the heel. Also, the alternating stress measured was higher for the face-milled pinion than that attained for the face-hobbed pinion (larger minimum stress). The noise and vibration results indicated that the levels measured for the face-hobbed components were less than those attained for the face-milled gears tested.
NASA Technical Reports Server (NTRS)
Mason, Angela J.
1999-01-01
An experimental investigation was performed on damaged arresting gear tapes at the Langley Aircraft Landing Dynamics Facility. The arrestment system uses five pairs of tapes to bring the test carriage to a halt. The procedure used to determine when to replace the tapes consists of a close evaluation of each of the 10 tapes after each run. During this evaluation, each tape is examined thoroughly and any damage observed on the tape is recorded. If the damaged tape does not pass the inspection, the tape is replaced with a new one. For the past 13 years, the most commonly seen damage types are edge fray damage and transverse damage. Tests were conducted to determine the maximum tensile strength of a damaged arresting gear tape specimen. The data indicate that tapes exhibiting transverse damage can withstand higher loads than tapes with edge fray damage.
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.
1987-01-01
An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.
Prediction of Landing Gear Noise Reduction and Comparison to Measurements
NASA Technical Reports Server (NTRS)
Lopes, Leonard V.
2010-01-01
Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.
NASA Langley's Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.
1993-01-01
The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.
Crash Testing and Simulation of a Cessna 172 Aircraft: Hard Landing Onto Concrete
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2016-01-01
A full-scale crash test of a Cessna 172 aircraft was conducted at the Landing and Impact Research Facility at NASA Langley Research Center during the summer of 2015. The purpose of the test was to evaluate the performance of Emergency Locator Transmitters (ELTs) that were mounted at various locations in the aircraft and to generate impact test data for model validation. A finite element model of the aircraft was developed for execution in LSDYNA to simulate the test. Measured impact conditions were 722.4-in/s forward velocity and 276-in/s vertical velocity with a 1.5deg pitch (nose up) attitude. These conditions were intended to represent a survivable hard landing. The impact surface was concrete. During the test, the nose gear tire impacted the concrete, followed closely by impact of the main gear tires. The main landing gear spread outward, as the nose gear stroked vertically. The only fuselage contact with the impact surface was a slight impact of the rearmost portion of the lower tail. Thus, capturing the behavior of the nose and main landing gear was essential to accurately predict the response. This paper describes the model development and presents test-analysis comparisons in three categories: inertial properties, time sequence of events, and acceleration and velocity time-histories.
2017-09-26
iss053e047057 (Sept. 26, 2017) --- Flight Engineer Joe Acaba installs botany gear for the Veggie facility to demonstrate plant growth in space for the Veg-03 experiment. The botany study uses the Veggie plant growth facility to cultivate cabbage, lettuce and mizuna, which are harvested on-orbit with samples returned to Earth for testing.
Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.
2014-01-01
Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
2006-01-11
KENNEDY SPACE CENTER, FLA. - In the Thermal Protection System Facility, Tim Wright, engineering manager with United Space Alliance, tests a new tile, called "Boeing replacement insulation" or "BRI-18." The new tiles will gradually replace older tiles around main landing gear doors, external tank doors and nose landing gear doors. Currently, 10 tiles have been processed inside the facility. Discovery will receive the first BRI-18 tiles. Technicians inside the Orbiter Processing Facility are performing fit checks and will begin bonding the tiles to the vehicle this month. The raw material is manufactured by The Boeing Company in Huntington Beach, Calif. Replacing older tile with the BRI-18 tile in strategic areas is one of the Columbia Accident Investigation Board's recommendations to strengthen the orbiters. The tiles are more impact resistant than previous designs, enhancing the crew’s safety.
Aircraft Landing Dynamics Facility - A unique facility with new capabilities
NASA Technical Reports Server (NTRS)
Davis, P. A.; Stubbs, S. M.; Tanner, J. A.
1985-01-01
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
A Computational Investigation of Gear Windage
NASA Technical Reports Server (NTRS)
Hill, Matthew J.; Kunz, Robert F.
2012-01-01
A CFD method has been developed for application to gear windage aerodynamics. The goals of this research are to develop and validate numerical and modeling approaches for these systems, to develop physical understanding of the aerodynamics of gear windage loss, including the physics of loss mitigation strategies, and to propose and evaluate new approaches for minimizing loss. Absolute and relative frame CFD simulation, overset gridding, multiphase flow analysis, and sub-layer resolved turbulence modeling were brought to bear in achieving these goals. Several spur gear geometries were studied for which experimental data are available. Various shrouding configurations and free-spinning (no shroud) cases were studied. Comparisons are made with experimental data from the open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility. The results show good agreement with experiment. Interrogation of the validative and exploratory CFD results have led, for the first time, to a detailed understanding of the physical mechanisms of gear windage loss, and have led to newly proposed mitigation strategies whose effectiveness is computationally explored.
The infrared spectrograph during the SIRTF pre-definition phase
NASA Technical Reports Server (NTRS)
Houck, James R.
1988-01-01
A test facility was set up to evaluate back-illuminated impurity band detectors constructed for an infrared spectrograph to be used on the Space Infrared Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the detector development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the detector evaluation facility.
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Testing of YUH-61A helicopter transmission in NASA Lewis 2240-kW (3000-hp facility
NASA Technical Reports Server (NTRS)
Mitchell, A. M.; Oswald, F. B.; Schuller, F. T.
1986-01-01
A helicopter transmission that was being considered for the Army's Utility Tactical Transport Attack System (UTTAS) was tested in the NASA Lewis 2240-kW (3000-hp) test facility to obtain the transmission's operational data. The results will form a vibration and efficiency data base for evaluation similar-class helicopter transmissions. The transmission's mechanical efficiency was determined to be 98.7 percent at its rated power level of 2080 kW (2792 hp). At power levels up to 113 percent of rated the transmission displayed 56 percent higher vibration acceleration levels on the right input than on the left input. Both vibration signature analysis and final visual inspection indicated that the right input spiral-bevel gear had poor contact patterns. The highest vibration meter level was 52 g's rms at the accessory gear, which had free-wheeling gearsets. At 113 percent power and 100 percent rated speed the vibration meter levels generally ranged from 3 to 25 g's rms.
Human Factors and Safety Evaluation of the Automatic Test and Repair System (AN/MSM-105(V)1)
1984-07-01
box and the main breaker box In both the ETF and ERF did not conform to military standards In that they consisted of black letters on a gold ...transportable test and repair system for electronic equipment that consists of an electronic test facility ( ETF ) and an electronic repair facility (ERF...personal gear in both the ETF and the ERF, and in the ETF there was not nearly enough room for the storage of the interconnect devices, tapes and manuals
A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas
2009-01-01
A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.
Mechanical Systems Technology Branch Research Summary, 1985-1992
1993-09-01
the author or co-author of over 20 technical papers describing experimental and analytical research in the fields of gear and transmission dynamics ...Conference, Scottsdale, AZ, Sept. 13-16, 1992. Kahraman A., Ozguven, H.N., Houser D.R., and Zakrajsek, JJ.: Dynamic Analysis of Geared Rotors by Finite...18 Gear Noise Rig-Facility Design and Installation .................................. 20 Gear Dynamics
A method for landing gear modeling and simulation with experimental validation
NASA Technical Reports Server (NTRS)
Daniels, James N.
1996-01-01
This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.
The Multistage Compressor Facility
NASA Technical Reports Server (NTRS)
Flegel, Ashlie
2004-01-01
Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent anyone from getting hurt in the gears I designed a chain guard. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
1977-01-01
The design and testing of high bypass geared turbofan engines with nacelles forming the propulsion systems for short haul passenger aircraft are considered. The test results demonstrate the technology required for externally blown flap aircraft for introduction into passenger service in the 1980's. The equipment tested is described along with the test facility and instrumentation. A chronological history of the test and a summary of results are given.
Topics in landing gear dynamics research at NASA Langley
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.; Tanner, J. A.
1986-01-01
Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.
Magnetorheological fluids and applications to adaptive landing gear for a lightweight helicopter
NASA Astrophysics Data System (ADS)
Ahure-Powell, Louise A.
During hard landing or crash events of a helicopter there are impact loads that can be injurious to crew and other occupants as well as damaging to the helicopter structure. Landing gear systems are the first in line to protect crew and passengers from detrimental crash loads. The main focus of this research is to improve landing gear systems of a lightweight helicopter. Magnetorheological fluids (MRFs) provide potential solutions to several engineering challenges in a broad range of applications. One application that has been considered recently is the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such application, the adaptive landing gear systems have to continuously adjust their stroking load in response to various operating conditions. In order to support this rotorcraft application, there is a necessity to validate that MRFs are qualified for landing gear applications. First, MRF composites, synthesized utilizing three hydraulic oils certified for use in landing gear systems, two average diameters of spherical magnetic particles, and a lecithin surfactant, are formulated to investigate their performance for potential use in a helicopter landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR damper for a range of magnetic field strengths and velocities using a free-flight drop tower facility. The performance of these MR fluids was analyzed, and their behavior was compared to standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the carrier fluids to make suitable MR fluids. Another objective of this research is to satisfy the requirement of a helicopter landing gear damper to enable adaptive shock mitigation performance over a desired sink rate range. It was intended to maintain a constant stroking force of 17 793 N (4000 lbf) over a sink rate range of 1.8-7.9 m/s (6-26 ft/s), which is a substantial increase of the high-end of the sink rate range from 3.7 m/s (12 ft/s), in prior related work, to 7.9 m/s (26 ft/s). To achieve this increase in the high-end of the sink rate range, a spiral wave spring-assisted passive valve MR landing gear damper was developed. Drop tests were first conducted using a single MR landing gear damper. In order to maintain the peak stroking load constant over the desired sink rate range, a bang-bang current control algorithm was formulated using a force feedback signal. The controlled stroking loads were experimentally evaluated using a single drop damper test setup. To emulate the landing gear system of a lightweight helicopter, an iron bird drop test apparatus with four spiral wave spring-assisted relief valves MR landing gear dampers, was fabricated and successfully tested. The effectiveness of the proposed adaptive MR landing gear damper was theoretically and experimentally verified. The bang-bang current control algorithm successfully regulated the stroking load at 4000 lbf over a sink rate range of 6-22 ft/s in the iron bird tests, which significantly exceeds the sink rate range of the previous study (6-12 ft/s). The effectiveness of the proposed adaptive MR landing gear damper with a spiral wave spring-assisted passive valve is theoretically and experimentally verified.
Cornering and wear behavior of the Space Shuttle Orbiter main gear tire
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1987-01-01
One of the factors needed to describe the handling characteristics of the Space Shuttle Orbiter during the landing rollout is the response of the vehicle's tires to variations in load and yaw angle. An experimental investigation of the cornering characteristics of the Orbiter main gear tires was conducted at the NASA Langley Research Center Aircraft Landing Dynamics Facility. This investigation compliments earlier work done to define the Orbiter nose tire cornering characteristics. In the investigation, the effects of load and yaw angle were evaluated by measuring parameters such as side load and drag load, and obtaining measurements of aligning torque. Because the tire must operate on an extremely rough runway at the Shuttle Landing Facility at Kennedy Space Center (KSC), tests were also conducted to describe the wear behavior of the tire under various conditions on a simulated KSC runway surface. Mathematical models for both the cornering and the wear behavior are discussed.
NASA Technical Reports Server (NTRS)
Dursch, Harry; Spear, Steve
1992-01-01
A wide variety of mechanisms were flown on the Long Duration Exposure Facility (LDEF). These include canisters, valves, gears, drive train assemblies, and motors. This report will provide the status of the Systems SIG effort into documenting, integrating, and developing 'lessons learned' for the variety of mechanisms flown on the LDEF. Results will include both testing data developed by the various experimenters and data acquired by testing of hardware at Boeing.
Noise Spectra and Directivity For a Scale-Model Landing Gear
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.
2007-01-01
An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.
Evaluation of Standard Gear Metrics in Helicopter Flight Operation
NASA Technical Reports Server (NTRS)
Mosher, M.; Pryor, A. H.; Huff, E. M.
2002-01-01
Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the sense that the rpm, torque and forces on the gear have been held steady. For gears used in a dynamic environment such as that occurring in aircraft, the rpm, torque and forces on the gear are constantly changing. The authors have measured significant variation in rpm and torque in the transmissions of helicopters in controlled steady flight conditions flown by highly proficient test pilots. Statistical analyses of the data taken in flight show significant nonstationarity in the vibration measurements. These deviations from stationarity may increase false alarms in gear monitoring during aircraft flight. In the proposed paper, the authors will study vibration measurements made in flight on an AH- 1 Cobra and an OH-58C Kiowa helicopters. The primary focus will be the development of a methodology to assess the impact of nonstationarity on false alarms. Issues to be addressed include how time synchronous averages are constructed from raw data as well as how lack of stationarity effects the behavior of single value metrics. Emphasis will be placed on the occurrence of false alarms with the use of standard metrics. In order to maintain an acceptable level of false alarms in the flight environment, this study will also address the determination of appropriate threshold levels, which may need to be higher than for test rigs.
The effect of runway surface and braking on Shuttle Orbiter main gear tire wear
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1992-01-01
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.
Towards development of a fiber optic-based transmission monitoring system
NASA Astrophysics Data System (ADS)
Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.
2011-06-01
There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, the nose landing gear on Space Shuttle Atlantis is retracted under the supervision of United Space Alliance technicians Terry Williams (left) and Ron Delaney. Compression measurements are being taken of the newly installed nose landing gear thermal barrier seal with the gear in position in its wheel well and the landing gear doors closed. Atlantis is being processed for launch on the second Return to Flight mission, STS-121, which is scheduled to fly in July.
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet
2002-01-01
In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.
Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation
NASA Technical Reports Server (NTRS)
Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.
2010-01-01
Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.
Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee
2012-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.
Effect of lubricant extreme-pressure additives on surface fatigue life of AISI 9310 spur gears
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Townsend, D. P.; Aron, P. R.
1984-01-01
Surface fatigue tests were conducted with AISI 9310 spur gears using a formulated synthetic tetraester oil (conforming to MIL-L-23699 specifications) as the lubricant containing either sulfur or phosphorus as the EP additive. Four groups of gears were tested. One group of gears tested without an additive in the lubricant acted as the reference oil. In the other three groups either a 0.1 wt % sulfur or phosphorus additive was added to the tetraester oil to enhance gear surface fatigue life. Test conditions included a gear temperature of 334 K (160 F), a maximum Hertz stress of 1.71 GPa (248 000 psi), and a speed of 10,000 rpm. The gears tested with a 0.1 wt % phosphorus additive showed pitting fatigue life 2.6 times the life of gears tested with the reference tetraester based oil. Although fatigue lives of two groups of gears tested with the sulfur additive in the oil showed improvement over the control group gear life, the results, unlike those obtained with the phosphorus oil, were not considered to be statistically significant.
Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah
2014-01-01
Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.
Injection molded plastic helical gear filled with carbon powder made from rice hull
NASA Astrophysics Data System (ADS)
Chen, Yen Chu; Itagaki, Takayoshi; Takahashi, Hideo; Takahashi, Mikio
2017-07-01
Natural materials are focused on the ecological responsibility, all over the world. The rice-hull contains natural silica about 20 wt.%. Therefore, a carbonized rice-hull; Rice-Hull-Silica-Carbon (RHSC) is focused as effective utilization of the discarded rice hull. In this study, test plastic helical gears were made form polyacetal copolymer filled with RHSC powder by injection molding. Test helical gears were operated on endurance test. The bulk temperature and noise of test gears were measured during gears operation. Then, the tooth damage of test gears were investigated by using optical microscope. It is clarified that difference of tooth damage by kind of test gears. Moreover, the transition of gear bulk temperature and noise during operation are investigated. Based on these results, the effect of RHSC powder is discussed. From the discussions, it seems reasonable to conclude : (1) The heat resistance of plastic gear is improved by adding the RHSC powder. (2) The fatigue life of plastic gear is improved by adding suitable amount of the RHSC powder. (3) The sound pressure level of plastic gear is reduced by adding the smaller median grain diameter of RHSC powder.
Detecting gear tooth fracture in a high contact ratio face gear mesh
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Handschuh, Robert F.; Lewicki, David G.; Decker, Harry J.
1995-01-01
This paper summarized the results of a study in which three different vibration diagnostic methods were used to detect gear tooth fracture in a high contact ratio face gear mesh. The NASA spiral bevel gear fatigue test rig was used to produce unseeded fault, natural failures of four face gear specimens. During the fatigue tests, which were run to determine load capacity and primary failure mechanisms for face gears, vibration signals were monitored and recorded for gear diagnostic purposes. Gear tooth bending fatigue and surface pitting were the primary failure modes found in the tests. The damage ranged from partial tooth fracture on a single tooth in one test to heavy wear, severe pitting, and complete tooth fracture of several teeth on another test. Three gear fault detection techniques, FM4, NA4*, and NB4, were applied to the experimental data. These methods use the signal average in both the time and frequency domain. Method NA4* was able to conclusively detect the gear tooth fractures in three out of the four fatigue tests, along with gear tooth surface pitting and heavy wear. For multiple tooth fractures, all of the methods gave a clear indication of the damage. It was also found that due to the high contact ratio of the face gear mesh, single tooth fractures did not significantly affect the vibration signal, making this type of failure difficult to detect.
RDS-21 Face-Gear Surface Durability Tests
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason
2007-01-01
Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.
Computational Modeling Develops Ultra-Hard Steel
NASA Technical Reports Server (NTRS)
2007-01-01
Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.
The design and analysis of single flank transmission error testor for loaded gears
NASA Technical Reports Server (NTRS)
Houser, D. R.; Bassett, D. E.
1985-01-01
Due to geometrical imperfections in gears and finite tooth stiffnesses, the motion transmitted from an input gear shaft to an output gear shaft will not have conjugate action. In order to strengthen the understanding of transmission error and to verify mathematical models of gear transmission error, a test stand that will measure the transmission error of a gear pair at operating loads, but at reduced speeds would be desirable. This document describes the design and development of a loaded transmission error tester. For a gear box with a gear ratio of one, few tooth meshing combinations will occur during a single test. In order to observe the effects of different tooth mesh combinations and to increase the ability to load test gear pairs with higher gear ratios, the system was designed around a gear box with a gear ratio of two.
Generation of noncircular gears for variable motion of the crank-slider mechanism
NASA Astrophysics Data System (ADS)
Niculescu, M.; Andrei, L.; Cristescu, A.
2016-08-01
The paper proposes a modified kinematics for the crank-slider mechanism of a nails machine. The variable rotational motion of the driven gear allows to slow down the velocity of the slider in the head forming phase and increases the period for the forming forces to be applied, improving the quality of the final product. The noncircular gears are designed based on a hybrid function for the gear transmission ratio whose parameters enable multiple variations of the noncircular driven gears and crack-slider mechanism kinematics, respectively. The AutoCAD graphical and programming facilities are used (i) to analyse and optimize the slider-crank mechanism output functions, in correlation with the predefined noncircular gears transmission ratio, (ii) to generate the noncircular centrodes using the kinematics hypothesis, (iii) to generate the variable geometry of the gear teeth profiles, based on the rolling method, and (iv) to produce the gears solid virtual models. The study highlights the benefits/limits that the noncircular gears transmission ratio defining hybrid functions have on both crank-slider mechanism kinematics and gears geometry.
Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Lewicki, David G.
1996-01-01
Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.
Advanced Face Gear Surface Durability Evaluations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Heath, Gregory F.
2016-01-01
The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.
Increased Surface Fatigue Lives of Spur Gears by Application of a Coating
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Cooper, Clark V.; Townsend, Dennis P.; Hansen, Bruce D.
2003-01-01
Hard coatings have potential for increasing gear surface fatigue lives. Experiments were conducted using gears both with and without a metal-containing, carbonbased coating. The gears were case-carburized AISI 9310 steel spur gears. Some gears were provided with the coating by magnetron sputtering. Lives were evaluated by accelerated life tests. For uncoated gears, all of fifteen tests resulted in fatigue failure before completing 275 million revolutions. For coated gears, eleven of the fourteen tests were suspended with no fatigue failure after 275 million revolutions. The improved life owing to the coating, approximately a six-fold increase, was a statistically significant result.
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...
Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1985-01-01
Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Orbiter Atlantis in NASAs Orbiter Processing Facility, bay 1, a retract link assembly (upper and lower white rods) is on the left-hand main landing gear. Last week a small crack was found on the right-hand assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, workers prepare a replacement retract link for installation on orbiter Atlantis right-hand main landing gear. A small crack was found recently on the retract link assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility at NASAs Kennedy Space Center, workers prepare a replacement retract link for installation on orbiter Atlantis right-hand main landing gear. A small crack was found recently on the retract link assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.
Service Test of the Airfield Specialized Trailer System
1966-10-31
universal trailer is a lightweight, air-transportable, four- wheel trailer. It is capable of transferring loads to compatible main- tenance and storage...transverse beams). The suspension sys- tem is a specially designed, three-point system which protects loads from excessive wheel displacement when...lightweight steel and can accommodate hoist and lift facilities. Sockets are provided to permit attachment of several accessory kits (running gear caster
Tire/runway friction interface
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1990-01-01
An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.
Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel
NASA Technical Reports Server (NTRS)
Krantz, Timothy; Tufts, Brian
2007-01-01
The power density of a gearbox is an important consideration for many applications and is especially important for gearboxes used on aircraft. One approach to improving power density of gearing is to improve the steel properties by design of the alloy. The alloy tested in this work was designed to be case-carburized with surface hardness of Rockwell C66 after hardening. Test gear performance was evaluated using surface fatigue tests and single-tooth bending fatigue tests. The performance of gears made from the new alloy was compared to the performance of gears made from two alloys currently used for aviation gearing. The new alloy exhibited significantly better performance in surface fatigue testing, demonstrating the value of the improved properties in the case layer. However, the alloy exhibited lesser performance in single-tooth bending fatigue testing. The fracture toughness of the tested gears was insufficient for use in aircraft applications as judged by the behavior exhibited during the single tooth bending tests. This study quantified the performance of the new alloy and has provided guidance for the design and development of next generation gear steels.
NASA Astrophysics Data System (ADS)
Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas
2017-04-01
The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.
29 CFR 1919.14 - Initial tests of cargo gear and tests after alterations, renewals or repairs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Initial tests of cargo gear and tests after alterations, renewals or repairs. 1919.14 Section 1919.14 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.14 Initial tests...
29 CFR 1919.14 - Initial tests of cargo gear and tests after alterations, renewals or repairs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Initial tests of cargo gear and tests after alterations, renewals or repairs. 1919.14 Section 1919.14 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.14 Initial tests...
29 CFR 1919.14 - Initial tests of cargo gear and tests after alterations, renewals or repairs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Initial tests of cargo gear and tests after alterations, renewals or repairs. 1919.14 Section 1919.14 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.14 Initial tests...
29 CFR 1919.14 - Initial tests of cargo gear and tests after alterations, renewals or repairs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Initial tests of cargo gear and tests after alterations, renewals or repairs. 1919.14 Section 1919.14 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.14 Initial tests...
Gear Performance Improved by Coating
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2004-01-01
Gears, bearings, and other mechanical elements transmit loads through contacting surfaces. Even if properly designed, manufactured, installed, and maintained, gears and bearings will eventually fail because of the fatigue of the working surfaces. Economical means for extending the fatigue lives of gears and bearings are highly desired, and coatings offer the opportunity to engineer surfaces to extend the fatigue lives of mechanical components. A tungsten-containing diamondlike-carbon coating exhibiting high hardness, low friction, and good toughness was evaluated for application to spur gears. Fatigue testing was done at the NASA Glenn Research Center on both uncoated and coated spur gears. The results showed that the coating extended the surface fatigue lives of the gears by a factor of about 5 relative to the uncoated gears. For the experiments, a lot of spur test gears made from AISI 9310 gear steel were case-carburized and ground to aerospace specifications. The geometries of the 28-tooth, 8-pitch gears were verified as meeting American Gear Manufacturing Association (AGMA) quality class 12. One-half of the gears were randomly selected for coating. The method of coating was selected to achieve desired adherence, toughness, hardness, and low-friction characteristics. First the gears to be coated were prepared by blasting (vapor honing) with Al2O3 particles and cleaning. Then, the gears were provided with a thin adhesion layer of elemental chromium followed by magnetron sputtering of the outer coating consisting of carbon (70 at.%), hydrogen (15 at.%), tungsten (12 at.%), and nickel (3 at.%) (atomic percent at the surface). In total, the coating thickness was about 2.5 to 3 microns. As compared with the steel substrate, the coated surface was harder by a factor of about 2 and had a smaller elastic modulus. All gears were tested using a 5-centistoke synthetic oil, a 10,000-rpm rotation speed, and a hertzian contact stress of at least 1.7 GPa (250 ksi). Tests were run until either surface fatigue occurred or 300 million stress cycles were completed. Tests were run using either a pair of uncoated gears or a pair of coated gears (coated gears mated with uncoated gears were not evaluated). The fatigue test results, shown on Weibull coordinates in the graph, demonstrate that the coating provided substantially longer fatigue lives even though some of the coated gears endured larger stresses. The increase in fatigue life was a factor of about 5 and the statistical confidence for the improvement is high (greater than 99 percent). Examination of the tested gears revealed substantial reductions of total wear for coated gears in comparison to uncoated gears. The coated gear surface topography changed with running, with localized areas of the tooth surface becoming smoother with running. Theories explaining how coatings can extend gear fatigue lives are research topics for coating, tribology, and fatigue specialists. This work was done as a partnership between NASA, the U.S. Army Research Laboratory, United Technologies Research Corporation, and Sikorsky Aircraft.
Performance Investigation of a Full-Scale Hybrid Composite Bull Gear
NASA Technical Reports Server (NTRS)
Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott
2016-01-01
Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.
Performance Investigation of a Full-Scale Hybrid Composite Bull Gear
NASA Technical Reports Server (NTRS)
LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott
2016-01-01
Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2015-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2014-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.
2012-01-01
Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.
Drop and Flight Tests on NY-2 Landing Gears Including Measurements of Vertical Velocities at Landing
NASA Technical Reports Server (NTRS)
Peck, W D; Beard, A P
1933-01-01
This investigation was conducted to obtain quantitative information on the effectiveness of three landing gears for the NY-2 (consolidated training) airplane. The investigation consisted of static, drop, and flight tests on landing gears of the oleo-rubber-disk and the mercury rubber-chord types, and flight tests only on a landing gear of the conventional split-axle rubber-cord type. The results show that the oleo gear is the most effective of the three landing gears in minimizing impact forces and in dissipating the energy taken.
Crash tests of four identical high-wing single-engine airplanes
NASA Technical Reports Server (NTRS)
Vaughan, V. L., Jr.; Hayduk, R. J.
1980-01-01
Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.
Shuttle Rudder/Speed Brake Power Drive Unit (PDU) Gear Scuffing Tests With Flight Gears
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Oswald, Fred B.; Krants, Timothy L.
2005-01-01
Scuffing-like damage has been found on the tooth surfaces of gears 5 and 6 of the NASA space shuttle rudder/speed brake power drive unit (PDU) number 2 after the occurrence of a transient back-driving event in flight. Tests were conducted using a pair of unused spare flight gears in a bench test at operating conditions up to 2866 rpm and 1144 in.-lb at the input ring gear and 14,000 rpm and 234 in.-lb at the output pinion gear, corresponding to a power level of 52 hp. This test condition exceeds the maximum estimated conditions expected in a backdriving event thought to produce the scuffing damage. Some wear marks were produced, but they were much less severe than the scuffing damaged produced during shuttle flight. Failure to produce scuff damage like that found on the shuttle may be due to geometrical variations between the scuffed gears and the gears tested herein, more severe operating conditions during the flight that produced the scuff than estimated, the order of the test procedures, the use of new hydraulic oil, differences between the dynamic response of the flight gearbox and the bench-test gearbox, or a combination of these. This report documents the test gears, apparatus, and procedures, summarizes the test results, and includes a discussion of the findings, conclusions, and recommendations.
Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2015-01-01
Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).
Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2015-01-01
Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 Hz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take date during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 rpm).
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Orbiter Atlantis in NASAs Orbiter Processing Facility, bay 1, Scott Minnick, lead inspector for micro inspection team, inspects the area where the retract link assembly would be installed on the right-hand main landing gear. Last week a small crack was found on the right-hand assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.
Gear Fault Diagnosis Based on BP Neural Network
NASA Astrophysics Data System (ADS)
Huang, Yongsheng; Huang, Ruoshi
2018-03-01
Gear transmission is more complex, widely used in machinery fields, which form of fault has some nonlinear characteristics. This paper uses BP neural network to train the gear of four typical failure modes, and achieves satisfactory results. Tested by using test data, test results have an agreement with the actual results. The results show that the BP neural network can effectively solve the complex state of gear fault in the gear fault diagnosis.
29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Unit proof tests-cranes and gear accessory thereto. 1919.28... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.28 Unit proof tests—cranes and gear accessory thereto...
Face Gear Technology for Aerospace Power Transmission Progresses
NASA Technical Reports Server (NTRS)
2005-01-01
The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate the effects of manufacturing process improvements on the operating characteristics of face gears. The program is being conducted with McDonnell Douglas Helicopter Co., Lucas Western Inc., the University of Illinois at Chicago, and a NASA/U.S. Army team. The goal of the project is develop the grinding process, experimentally verify the improvement in face gear fatigue life, and conduct a full-scale helicopter transmission test. The theory and methodology to grind face gears has been completed, and manufacture of the test hardware is ongoing. Experimental verification on test hardware is scheduled to begin in fiscal 1996.
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
Surface Fatigue Tests Of M50NiL Gears And Bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1994-01-01
Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1980-01-01
Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.
NASA Technical Reports Server (NTRS)
Mathis, K. (Principal Investigator); Cato, J. C.; Degner, P. D.; Landrum, P. D.; Prochaska, F. J.
1978-01-01
The author has identified the following significant results. Seven major counties were examined: Escambia, Bay, Gulf, Franklin, Wakulla, Nassau, and Duval. Population and economic activity were reviewed, along with commercial fishing and port facilities. Recommendations for five northwest Florida counties were based on interpretation of aerial photographs, satellite imagery, an aerial survey site visit, and published data. Major needs in Pensacola included docking, ice supply, and net and engine repair services. Costs for additional docks, an ice plant, and gear storage were estimated at $3,658,600. Port users in Panama City identified additional docking and gear storage as primary needs, along with gear repair and a marine railway. Estimated costs for dock and gear storage were $2,860,000. Added docking, gear storage, and ice supply, as well as gear electronics and diesel repair were needed in Port St. Joe. Costs were calculated at $1,231,500. Franklin County has three ports (Apalachicola - $1,107,000 for docks and gear storage, Eastpoint - $420,000 for additional docks, and Carrabella - $2,824,100 for docks, gear storage, and ice plant).
Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Patel, P. R.
1988-01-01
Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Special Cargo Gear and Container Spreader Test Requirements.... I Appendix I to Part 1917—Special Cargo Gear and Container Spreader Test Requirements (Mandatory... 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to initial use...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On Orbiter Atlantis in NASAs Orbiter Processing Facility, bay 1, the retract link assembly on the right-hand main landing gear has been removed and will be replaced. Performing boroscope inspection are Charles Wassen, orbiter inspector, and Scott Minnick, lead inspector for micro inspection team. Last week a small crack was found on the right- hand assembly. To lower the main landing gear, a mechanical linkage released by each gear actuates the doors to the open position. The landing gear reach the full-down and extended position with 10 seconds and are locked in the down position by spring-loaded downlock bungees Atlantis is scheduled to launch in September 2005 on the second Return to Flight mission, STS-121.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2015-01-01
This is the final of three reports published on the results of this project. In the first report, results were presented on nineteen tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig on spiral bevel gear sets designed to simulate helicopter fielded failures. In the second report, fielded helicopter HUMS data from forty helicopters were processed with the same techniques that were applied to spiral bevel rig test data. Twenty of the forty helicopters experienced damage to the spiral bevel gears, while the other twenty helicopters had no known anomalies within the time frame of the datasets. In this report, results from the rig and helicopter data analysis will be compared for differences and similarities in condition indicator (CI) response. Observations and findings using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented. In the helicopter, gear health monitoring data was measured when damage occurred and after the gear sets were replaced at two helicopter regimes. For the helicopters or tails, data was taken in the flat pitch ground 101 rotor speed (FPG101) regime. For nine tails, data was also taken at 120 knots true airspeed (120KTA) regime. In the test rig, gear sets were tested until damage initiated and progressed while gear health monitoring data and operational parameters were measured and tooth damage progression documented. For the rig tests, the gear speed was maintained at 3500RPM, a one hour run-in was performed at 4000 in-lb gear torque, than the torque was increased to 8000 in-lbs. The HUMS gear condition indicator data evaluated included Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1(DA1), + 3 Sideband Index (SI3) and + 1 Sideband Index (SI1). These were selected based on their sensitivity in detecting contact fatigue damage modes from analytical, experimental and historical helicopter data. For this report, the helicopter dataset was reduced to fourteen tails and the test rig data set was reduced to eight tested gear sets. The damage modes compared were separated into three cases. For case one, both the gear and pinion showed signs of contact fatigue or scuffing damage. For case two, only the pinion showed signs of contact fatigue damage or scuffing. Case three was limited to the gear tests when scuffing occurred immediately after the gear run-in. Results of this investigation highlighted the importance of understanding the complete monitored systems, for both the helicopter and test rig, before interpreting health monitoring data. Further work is required to better define these two systems that include better state awareness of the fielded systems, new sensing technologies, new experimental methods or models that quantify the effect of system design on CI response and new methods for setting thresholds that take into consideration the variance of each system.
Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)
NASA Technical Reports Server (NTRS)
Krantz, Timothy Lewis
2013-01-01
The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.
The surface fatigue life of contour induction hardened AISI 1552 gears
NASA Astrophysics Data System (ADS)
Townsend, Dennis P.; Turza, Alan; Chaplin, Mike
1995-07-01
Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.
The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Turza, Alan; Chaplin, Mike
1995-01-01
Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.
The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results
NASA Technical Reports Server (NTRS)
Delgado, I. R.; Hurrell, M. J.
2017-01-01
Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.
The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results
NASA Technical Reports Server (NTRS)
Delgado, I. R.; Hurrell, M. J.
2017-01-01
Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.
James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis
NASA Technical Reports Server (NTRS)
Tran, Ahn N.
2016-01-01
A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.
Vertical Drop Testing and Analysis of the Wasp Helicopter Skid Gear
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fuchs, Yvonne T.
2007-01-01
This report describes an experimental program to assess the impact performance of a skid gear for use on the Wasp kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. In total, five vertical drop tests were performed. The test article consisted of a skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The test article also included ballast weights to ensure the correct position of the Center-of-Gravity (CG). Twenty-six channels of acceleration data were collected per test at 50,000 samples per second. The five drop tests were conducted on two different gear configurations. The details of these test programs are presented, as well as an occupant injury assessment. Finally, a finite element model of the skid gear test article was developed for execution in LS-DYNA, an explicit nonlinear transient dynamic code, for predicting the skid gear and occupant dynamic responses due to impact.
NASA Technical Reports Server (NTRS)
Callini, Gianluca
2016-01-01
With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.
Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1991-01-01
Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2014-01-01
This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were calculated between each CI, component, damage state and torque. Results found test rig and gear design, type of fault and data acquisition can affect CI performance. Results found FM4, SI1 and SI3 can be used to detect macro pitting on two more gear or pinion teeth as long as it is detected prior to progressing to other components or transitioning to another failure mode. The sensitivity of RMS to system and operational conditions limit its reliability for systems that are not maintained at steady state. Failure modes that occurred due to scuffing or fretting were challenging to detect with current gear diagnostic tools, since the damage is distributed across all the gear and pinion teeth, smearing the impacting signatures typically used to differentiate between a healthy and damaged tooth contact. This is one of three final reports published on the results of this project. In the second report, damage modes experienced in the field will be mapped to the failure modes created in the test rig. The helicopter CI data will then be re-processed with the same analysis techniques applied to spiral bevel rig test data. In the third report, results from the rig and helicopter data analysis will be correlated. Observations, findings and lessons learned using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented.
Torque Splitting by a Concentric Face Gear Transmission
NASA Technical Reports Server (NTRS)
Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.
2002-01-01
Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.
Close up view of the Orbiter Discovery in the Orbiter ...
Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1986-01-01
Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.
Face-gear drives: Design, analysis, and testing for helicopter transmission applications
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.
1992-01-01
The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions.
Investigation on wear characteristic of biopolymer gear
NASA Astrophysics Data System (ADS)
Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir
2017-10-01
Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.
STS-69 Main Gear Touch Down at Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1995-01-01
STS-69 Mission Commander David M. Walker guides the orbiter Endeavour to an end-of-mission landing on Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown at 7:37:56 a.m. EDT marked the 25th end-of-mission landing at Kennedy. The fifth Space Shuttle flight of 1995 was a multifaceted one. For the first time, two spacecraft -- the Wake Shield Facility-2 and the Spartan-201-3 -- were deployed and later retrieved on the same flight. An extravehicular activity, or spacewalk, was conducted and the crew oversaw a variety of experiments located in both the orbiter payload bay and middeck. Besides Walker, the crew included Pilot Kenneth D. Cockrell; Payload Commander James S. Voss; and Mission Specialists Michael L. Gernhardt and James H. Newman.
Low-noise, high-strength, spiral-bevel gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.
1993-01-01
Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Large rotorcraft transmission technology development program
NASA Technical Reports Server (NTRS)
Mack, J. C.
1983-01-01
Testing of a U.S. Army XCH-62 HLH aft rotor transmission under NASA Contract NAS 3-22143 was successfully completed. This test establishes the feasibility of large, high power rotorcraft transmissions as well as demonstrating the resolution of deficiencies identified during the HLH advanced technology programs and reported by USAAMRDLTR-77-38. Over 100 hours of testing was conducted. At the 100% design power rating of 10,620 horsepower, the power transferred through a single spiral bevel gear mesh is more than twice that of current helicopter bevel gearing. In the original design of these gears, industry-wide design methods were employed and failures were experienced which identified problem areas unique to gear size. To remedy this technology shortfall, a program was developed to predict gear stresses using finite element analysis for complete and accurate representation of the gear tooth and supporting structure. To validate the finite element methodology gear strain data from the existing U.S. Army HLH aft transmission was acquired, and existing data from smaller gears were made available.
Wear of Spur Gears Having a Dithering Motion and Lubricated with a Perfluorinated Polyether Grease
NASA Technical Reports Server (NTRS)
Krantz, Timothy; Oswald, Fred; Handschuh, Robert
2007-01-01
Gear contact surface wear is one of the important failure modes for gear systems. Dedicated experiments are required to enable precise evaluations of gear wear for a particular application. The application of interest for this study required evaluation of wear of gears lubricated with a grade 2 perfluorinated polyether grease and having a dithering (rotation reversal) motion. Experiments were conducted using spur gears made from AISI 9310 steel. Wear was measured using a profilometer at test intervals encompassing 10,000 to 80,000 cycles of dithering motion. The test load level was 1.1 GPa maximum Hertz contact stress at the pitch-line. The trend of total wear as a function of test cycles was linear, and the wear depth rate was approximately 1.2 nm maximum wear depth per gear dithering cycle. The observed wear rate was about 600 times greater than the wear rate for the same gears operated at high speed and lubricated with oil.
Effect of shot peening on surface fatigue life of carburized and hardened AISI 9310 spur gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1982-01-01
Surface fatigue tests were conducted on two groups of AISI 9310 spur gears. Both groups were manufactured with standard ground tooth surfaces, with the second group subjected to an additional shot peening process on the gear tooth flanks. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a gear temperature of 350 K (170 F), a maximum Hertz stress of 1.71 billion N/sq m (248,000 psi), and a speed of 10,000 rpm. The shot peened gears exhibited pitting fatigue lives 1.6 times the life of standard gears without shot peening. Residual stress measurements and analysis indicate that the longer fatigue life is the result of the higher compressive stress produced by the shot peening. The life for the shot peened gear was calculated to be 1.5 times that for the plain gear by using the measured residual stress difference for the standard and shot peened gears. The measured residual stress for the shot peened gears was much higher than that for the standard gears.
Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems
NASA Astrophysics Data System (ADS)
van Dyke, Melissa
2004-02-01
Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.
Validation of an Active Gear, Flexible Aircraft Take-off and Landing analysis (AGFATL)
NASA Technical Reports Server (NTRS)
Mcgehee, J. R.
1984-01-01
The results of an analytical investigation using a computer program for active gear, flexible aircraft take off and landing analysis (AGFATL) are compared with experimental data from shaker tests, drop tests, and simulated landing tests to validate the AGFATL computer program. Comparison of experimental and analytical responses for both passive and active gears indicates good agreement for shaker tests and drop tests. For the simulated landing tests, the passive and active gears were influenced by large strut binding friction forces. The inclusion of these undefined forces in the analytical simulations was difficult, and consequently only fair to good agreement was obtained. An assessment of the results from the investigation indicates that the AGFATL computer program is a valid tool for the study and initial design of series hydraulic active control landing gear systems.
NASA Technical Reports Server (NTRS)
Mark, W. D.
1982-01-01
A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.
A Study of Spur Gears Lubricated With Grease-Observations From Seven Experiments
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Handschuh, Robert F.
2005-01-01
To improve understanding of gears operating with a perfluoro type space-qualified grease, seven spur gear experiments were performed. Test conditions were selected to study the influences of torque, lubricant type, and atmosphere. Two testing torques provided nominal pitch-line Hertz stresses greater and lesser than the contact stress limit as recommended by the grease manufacturer. As was expected, all tests resulted in some gear tooth wear. Discoloration of the perfluoro type grease occurred for all tests. Tests in dry nitrogen produced some dark-grey colored perfluoro type grease. Testing in either ambient or dry air produced red debris after short test duration, and for tests of longer duration large amounts of red debris, red grease, and wear were evident. Tests using higher torques produced more debris. The first indications of discoloration occurred more quickly with higher test torques. Total amounts of wear were quite significant, up to four times the profile tolerance for AGMA Class 10 gears.
Managing Inventory At A Transitional Facility
NASA Technical Reports Server (NTRS)
Hutchins, Henry A.
1993-01-01
Kennedy Inventory Management System, KIMS, geared to needs of facility in transition from research and development to manufacturing. Operated jointly by several contractors at Kennedy Space Center, KIMS designed to reduce cost and increase efficiency of fabrication and maintenance of spaceflight hardware.
Optimal CV-22 Centralized Intermediate Repair Facility Locations and Parts Repair
2009-06-01
and Reorder Point for TEWS ............................ 36 Table 8. Excel Model for Safety Stock and Reorder Point for FADEC ...Digital Engine Control ( FADEC ) Main Wheel Assembly Blade Fold System Landing Gear Control Panel Drive System Interface Unit Main Landing Gear...Radar 4 Forward Looking Infrared System (FLIR) 4 Tactical Electronic Warfare System (TEWS) 1 Full Authority Digital Engine Control ( FADEC ) 2 Blade
Analysis of Landing-Gear Behavior
NASA Technical Reports Server (NTRS)
Milwitzky, Benjamin; Cook, Francis E
1953-01-01
This report presents a theoretical study of the behavior of the conventional type of oleo-pneumatic landing gear during the process of landing impact. The basic analysis is presented in a general form and treats the motions of the landing gear prior to and subsequent to the beginning of shock-strut deflection. The applicability of the analysis to actual landing gears has been investigated for the particular case of a vertical landing gear in the absence of drag loads by comparing calculated results with experimental drop-test data for impacts with and without tire bottoming. The calculated behavior of the landing gear was found to be in good agreement with the drop-test data.
46 CFR 35.20-10 - Steering gear test-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Steering gear test-T/ALL. 35.20-10 Section 35.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-10 Steering gear test—T/ALL. On all tankships making voyages of more than 48 hours' duration, the entire steering gear, the whistle, the means of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Special Cargo Gear and Container Spreader Test Requirements... REGULATIONS FOR LONGSHORING Pt. 1918, App. IV Appendix IV to Part 1918—Special Cargo Gear and Container... structural damage repair 3. Intermodal container spreaders not part of vessel's cargo handling gear Prior to...
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2009-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and Experimental Vibration Analysis of a Faulty Gear System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-01-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
X-38 Landing Gear Skid Test Report
NASA Technical Reports Server (NTRS)
Gafka, George K.; Daugherty, Robert H.
2000-01-01
NASA incorporates skid-equipped landing gear on its series of X-38 flight test vehicles. The X-38 test program is the proving ground for the Crew Return Vehicle (CRV) a gliding parafoil-equipped vehicle designed to land at relatively low speeds. The skid-equipped landing gear is designed to attenuate the vertical landing energy of the vehicle at touchdown using crushable materials within the struts themselves. The vehicle then slides out as the vehicle horizontal energy is dissipated through the skids. A series of tests was conducted at Edwards Airforce Base (EAFB) in an attempt to quantify the drag force produced while "dragging" various X-38 landing gear skids across lakebed regions of varying surface properties. These data were then used to calculate coefficients of friction for each condition. Coefficient of friction information is critical for landing analyses as well as for landing gear load and interface load analysis. The skid specimens included full- and sub-scale V201 (space test vehicle) nose and main gear designs, a V131/V 132 (atmospheric flight test vehicles) main gear skid (actual flight hardware), and a newly modified, full-scale V201 nose -ear skid with substantially increased edge curvature as compared to its original design. Results of the testing are discussed along with comments on the relative importance of various parameters that influence skid stability and other dynamic behavior.
Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael
2017-01-01
Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it to be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not contain experimental test data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.
NASA Astrophysics Data System (ADS)
Chi, X. F.
2017-10-01
This article investigated laser re-manufacturing technology application in mining industry. The research focused on green re-manufacturing of failure spur. Leave the main gear body stay intact after the dirty, rust, fatigue and injured part were removed completely before the green re-manufacturing procedure begin. The optimized laser operating parameters paved the road for excellent mechanical properties and comparatively neat shape which often means less post processing. The laser re-manufactured gear surface was systematically examined, including microstructure observation, and dry wear test at room temperature. The test results were compared with new gear surface and used but not broken gear surface. Finally, it proved that the green re-manufactured gear surface displayed best comprehensive mechanical properties, followed the new gear surface. The resistance of dry wear properties of used but not broken gear surface was the worst.
46 CFR 167.65-25 - Steering gear tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Steering gear tests. 167.65-25 Section 167.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the...
46 CFR 167.65-25 - Steering gear tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear tests. 167.65-25 Section 167.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for lifeboat and rescue boat release gear? 150.511 Section 150.511 Navigation and Navigable Waters... operational testing requirements for lifeboat and rescue boat release gear? (a) Lifeboat and rescue boat... rescue boat when loaded with its full complement of persons and equipment. (b) The test must be conducted...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for lifeboat and rescue boat release gear? 150.511 Section 150.511 Navigation and Navigable Waters... operational testing requirements for lifeboat and rescue boat release gear? (a) Lifeboat and rescue boat... rescue boat when loaded with its full complement of persons and equipment. (b) The test must be conducted...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for lifeboat and rescue boat release gear? 150.511 Section 150.511 Navigation and Navigable Waters... operational testing requirements for lifeboat and rescue boat release gear? (a) Lifeboat and rescue boat... rescue boat when loaded with its full complement of persons and equipment. (b) The test must be conducted...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for lifeboat and rescue boat release gear? 150.511 Section 150.511 Navigation and Navigable Waters... operational testing requirements for lifeboat and rescue boat release gear? (a) Lifeboat and rescue boat... rescue boat when loaded with its full complement of persons and equipment. (b) The test must be conducted...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for lifeboat and rescue boat release gear? 150.511 Section 150.511 Navigation and Navigable Waters... operational testing requirements for lifeboat and rescue boat release gear? (a) Lifeboat and rescue boat... rescue boat when loaded with its full complement of persons and equipment. (b) The test must be conducted...
Dynamic Capacity and Surface Fatigue Life for Spur and Helical Gears
NASA Technical Reports Server (NTRS)
Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.
1975-01-01
A mathematical model for surface fatigue life of gear, pinion, or entire meshing gear train is given. The theory is based on a previous statistical approach for rolling-element bearings. Equations are presented which give the dynamic capacity of the gear set. The dynamic capacity is the transmitted tangential load which gives a 90 percent probability of survival of the gear set for one million pinion revolutions. The analytical results are compared with test data for a set of AISI 9310 spur gears operating at a maximum Hertz stress of 1.71 billion N/sq m and 10,000 rpm. The theoretical life predictions are shown to be good when material constants obtained from rolling-element bearing tests were used in the gear life model.
Detail View looking at the protected structure and landing gear ...
Detail View looking at the protected structure and landing gear housing in the void created by the removal of the Forward Reaction Control System Module from the forward section of the Orbiter Discovery. This view was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Precise low cost chain gears for heliostats
NASA Astrophysics Data System (ADS)
Liedke, Phillip; Lewandowski, Arkadiusz; Pfahl, Andreas; Hölle, Erwin
2016-05-01
This work investigates the potential of chain gears as precise and low cost driving systems for rim drive heliostats. After explaining chain gear basics the polygon effect and chain lengthening are investigated. The polygon effect could be measured by a heliostat with chain rim gear and the chain lengthening with an accordant test set up. Two gear stages are scope of this work: a rim gear and an intermediate gear. Dimensioning, pretensioning and designing for both stages are explained.
Application of fault detection techniques to spiral bevel gear fatigue data
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.
1994-01-01
Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.
Development of Face Gear Technology for Industrial and Aerospace Power Transmission
NASA Technical Reports Server (NTRS)
Heath, Gregory F.; Filler, Robert R.; Tan, Jie
2002-01-01
Tests of a 250 horsepower proof-of-concept (POC) split torque face gear transmission were completed by The Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) This report provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA Design, manufacture and testing of the scaled-power TRP split torque gearbox followed preliminary evaluations of the concept performed early in the program The testing demonstrated the theory of operation for the concentric, tapered face gear assembly The results showed that the use of floating pinions in a concentric face gear arrangement produces a nearly even torque split The POC split torque tests determined that, with some improvements, face gears can be applied effectively in a split torque configuration which yields significant weight, cost and reliability improvements over conventional designs.
NASA Astrophysics Data System (ADS)
Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao
2017-07-01
Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.
Investigations of Shuttle Main Landing Gear Door Environmental Seals
NASA Technical Reports Server (NTRS)
Finkbeiner, Joshua; Dunlap, Pat; Steinetz, Bruce; DeMango, Jeff; Newswander, Daniel
2005-01-01
The environmental seals for the main landing gear doors of the Shuttle Orbiters were raised by the Columbia Accident Investigation Board as a potential safety concern. Inspections of seals installed on the Shuttle Discovery revealed that they were permanently deformed and no longer met certified seal compression requirements. Replacement of the seals led to the inability to fully close the main landing gear doors. Johnson Space Center requested that Glenn Research Center conduct tests on the main landing gear door environmental seals to assist in installing the seals in a manner to allow the main landing gear doors to fully close. Further testing was conducted to fill out the seal performance database. Results from the testing indicated that the method of bonding the seals was important in reducing seal loads on the main landing gear doors. Also, the replacement seals installed in Shuttle Discovery were found to have leakage performance sufficient to meet the certification requirements.
Effect of five lubricants on life of AISI 9310 spur gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1985-01-01
Spur-gear surface fatigue tests were conducted with five lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The lot of gears was divided into five groups, each of which was tested with a different lubricant. The test lubricants are classified as either a synthetic hydrocarbon, mineral oil, or ester-based lubricant. All five lubricants have imilar viscosity and pressure-viscosity coefficients. A pentaerythritol base stock without sufficient antiwear additives produced a surface fatigue life pproximately 22 percent that of the same base stock with chlorine and phosphorus type additives. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears tested. No statistical difference in the 10-percent surface fatigue life was produced with four of the five lubricants.
NASA Astrophysics Data System (ADS)
Van Dyke, Melissa; Martin, James
2005-02-01
The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
Multi-mesh gear dynamics program evaluation and enhancements
NASA Technical Reports Server (NTRS)
Boyd, L. S.; Pike, J.
1985-01-01
A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Dave Sanborn (left) conducts a bond verification test on Thermal Protection System tiles installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis
NASA Astrophysics Data System (ADS)
Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.
2017-09-01
Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable and accurate for monitoring gear wear deterioration.
Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.
1992-01-01
A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.
29 CFR 1919.14 - Initial tests of cargo gear and tests after alterations, renewals or repairs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... components, a test as required in paragraph (a)(1) of this section shall be carried out. (d) If the operation in which cargo gear is engaged never utilizes more than a fraction of the safe working load rating, the owner may, at his option, have said gear certificated for, and limited in operation to, a lesser...
Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi
1991-01-01
Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.
Gear tooth stress measurements of two helicopter planetary stages
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
1992-01-01
Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at NASA Lewis. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through mesh are illustrated. At the tooth root location of the thin rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three planet, nonsequential design as compared to that of a four planet, sequential design. The reported results enhance the data base for gear stress levels and provide data for the validation of analytical methods.
Evaluation of CBS 600 carburized steel as a gear material
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Parker, R. J.; Zaretsky, E. V.
1979-01-01
Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employee Harrell Watts (right) installs Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.
2003-01-01
A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Steering gear, controls, and communication system tests. 185.320 Section 185.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.320 Steering gear, controls, and communication system...
Improvement in surface fatigue life of hardened gears by high-intensity shot peening
NASA Astrophysics Data System (ADS)
Townsend, Dennis P.
1992-04-01
Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.
Improvement in surface fatigue life of hardened gears by high-intensity shot peening
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.
1992-01-01
Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.
Study of novel concepts of power transmission gears
NASA Technical Reports Server (NTRS)
Rivin, Eugene I.
1991-01-01
Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.
Automated acoustic intensity measurements and the effect of gear tooth profile on noise
NASA Technical Reports Server (NTRS)
Atherton, William J.; Pintz, Adam; Lewicki, David G.
1987-01-01
Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.
14 CFR 25.723 - Shock absorption tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... absorption tests. (a) The analytical representation of the landing gear dynamic characteristics that is used... previous tests conducted on the same basic landing gear system that has similar energy absorption...
Engagement of Metal Debris into Gear Mesh
NASA Technical Reports Server (NTRS)
handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
STS-112 Atlantis landing at KSC's shuttle landing facility
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis approaches the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
A calibration loop to test hot-wire response under supercritical conditions
NASA Astrophysics Data System (ADS)
Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.
2004-11-01
A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.
Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Martin, James
2004-01-01
The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.
50 CFR Figure 7 to Part 679 - Location of Trawl Gear Test Areas in the GOA and the BSAI
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Location of Trawl Gear Test Areas in the GOA and the BSAI 7 Figure 7 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 7 Figure 7 to Part 679—Location of Trawl Gear Test Areas in...
Gear tooth stress measurements on the UH-60A helicopter transmission
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
1987-01-01
The U.S. Army UH-60A (Black Hawk) 2200-kW (3000-hp) class twin-engine helicopter transmission was tested at the NASA Lewis Research Center. Results from these experimental (strain-gage) stress tests will enhance the data base for gear stress levels in transmissions of a similar power level. Strain-gage measurements were performed on the transmission's spiral-bevel combining pinions, the planetary Sun gear, and ring gear. Tests were performed at rated speed and at torque levels 25 to 100 percent that of rated. One measurement series was also taken at a 90 percent speed level. The largest stress found was 760 MPa (110 ksi) on the combining pinion fillet. This is 230 percent greater than the AGMA index stress. Corresponding mean and alternating stresses were 300 and 430 MPa (48 and 62 ksi). These values are within the range of successful test experience reported for other transmissions. On the fillet of the ring gear, the largest stress found was 410 MPa (59 ksi). The ring-gear peak stress was found to be 11 percent less than an analytical (computer simulation) value and it is 24 percent greater than the AGMA index stress. A peak compressive stress of 650 MPa (94 ksi) was found at the center of the Sun gear tooth root.
The design and analysis of single flank transmission error tester for loaded gears
NASA Technical Reports Server (NTRS)
Bassett, Duane E.; Houser, Donald R.
1987-01-01
To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.
Initial piloted simulation study of geared flap control for tilt-wing V/STOL aircraft
NASA Technical Reports Server (NTRS)
Guerrero, Lourdes M.; Corliss, Lloyd D.
1991-01-01
A simulation study of a representative tilt wing transport aircraft was conducted in 1990 on the Ames Vertical Motion Simulator. This simulation is in response to renewed interest in the tilt wing concept for use in future military and civil applications. For past tilt wing concepts, pitch control in hover and low-speed flight has required a tail rotor or reaction jets at the tail. Use of mono cyclic propellers or a geared flap have also been proposed as alternate methods for providing pitch control at low speed. The geared flap is a subject of this current study. This report describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, the pilots' evaluation tasks and procedures, and the results obtained from the simulation experiment. The pilot evaluations and comments are also documented in the report appendix.
Improving applied roughness measurement of involute helical gears
NASA Astrophysics Data System (ADS)
Koulin, G.; Zhang, J.; Frazer, R. C.; Wilson, S. J.; Shaw, B. A.
2017-12-01
With improving gear design and manufacturing technology, improvement in metrology is necessary to provide reliable feedback to the designer and manufacturer. A recommended gear roughness measurement method is applied to a micropitting contact fatigue test gear. The development of wear and micropitting is reliably characterised at the sub-micron roughness level. Changes to the features of the localised surface texture are revealed and are related to key gear meshing positions. The application of the recommended methodology is shown to provide informative feedback to the gear designer in reference to the fundamental gear coordinate system, which is used in gear performance simulations such as tooth contact analysis.
Roller-gear drives for robotic manipulators design, fabrication and test
NASA Technical Reports Server (NTRS)
Anderson, William J.; Shipitalo, William
1991-01-01
Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel. The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.
STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at KSC SLF
1990-11-20
STS038-S-041 (20 Nov 1990) --- STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The main landing gear (MLG) has just touched down on the runway surface as the nose landing gear (NLG) glides above it. The Department of Defense (DOD)-devoted mission came to an end (with complete wheel stop) at 4:43:37 pm (Eastern Standard Time (EST)).
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael J.
2017-01-01
Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss
NASA Technical Reports Server (NTRS)
Delgado, Irebert; Hurrell, Michael
2017-01-01
Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss.
NASA Technical Reports Server (NTRS)
1994-01-01
A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA). The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
46 CFR 35.20-10 - Steering gear test-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Steering gear test-T/ALL. 35.20-10 Section 35.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-10 Steering gear test—T/ALL. On all tankships making voyages of more than 48 hours' duration, the entire...
46 CFR 35.20-10 - Steering gear test-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Steering gear test-T/ALL. 35.20-10 Section 35.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-10 Steering gear test—T/ALL. On all tankships making voyages of more than 48 hours' duration, the entire...
29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Unit proof tests-cranes and gear accessory thereto. 1919.28... Loads; Heat Treatment; Competent Persons § 1919.28 Unit proof tests—cranes and gear accessory thereto. (a) Except as noted in paragraph (e) of this section, cranes and other hoisting machines, together...
Lubricant and additive effects on spur gear fatigue life
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.; Scibbe, H. W.
1985-01-01
Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricant was divided into four batches each of which had a different additive content. Lubricants tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwear additives. Gears tested with a 0.1 wt % sulfur and 0.1 wt % phosphorus EP additives in the lubricant had reactive films that were 200 to 400 (0.8 to 1.6 microns) thick.
Summary of NASA landing-gear research
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Sleeper, R. K.; Stubbs, S. M.
1978-01-01
This paper presents a brief summary of the airplane landing gear research underway at NASA. The technology areas include: ground handling simulator, antiskid braking systems, space shuttle nose-gear shimmy, active control landing gear, wire brush skid landing gear, air cushion landing systems, tire/surface friction characteristics, tire mechanical properties, tire-tread materials, powered wheels for taxiing, and crosswind landing gear. This paper deals mainly with the programs on tire-tread materials, powered wheel taxiing, air cushion landing systems, and crosswind landing gear research with particular emphasis on previously unreported results of recently completed flight tests. Work in the remaining areas is only mentioned.
ERIC Educational Resources Information Center
Purvis, Johnny; And Others
1986-01-01
Presents two scenarios to illustrate the difference between liability and negligence. Also presents highlights of four actual cases related to laboratory security, appropriate facilities, proper instructions, and protective gear. (JN)
An investigation of gear mesh failure prediction techniques. M.S. Thesis - Cleveland State Univ.
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.
1989-01-01
A study was performed in which several gear failure prediction methods were investigated and applied to experimental data from a gear fatigue test apparatus. The primary objective was to provide a baseline understanding of the prediction methods and to evaluate their diagnostic capabilities. The methods investigated use the signal average in both the time and frequency domain to detect gear failure. Data from eleven gear fatigue tests were recorded at periodic time intervals as the gears were run from initiation to failure. Four major failure modes, consisting of heavy wear, tooth breakage, single pits, and distributed pitting were observed among the failed gears. Results show that the prediction methods were able to detect only those gear failures which involved heavy wear or distributed pitting. None of the methods could predict fatigue cracks, which resulted in tooth breakage, or single pits. It is suspected that the fatigue cracks were not detected because of limitations in data acquisition rather than in methodology. Additionally, the frequency response between the gear shaft and the transducer was found to significantly affect the vibration signal. The specific frequencies affected were filtered out of the signal average prior to application of the methods.
Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.
43. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...
43. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), DETAIL OF EXPLOSION-PROOF ELECTRICAL SWITCH BOX (SWITCH GEAR INSIDE BOX SUBMERGED IN OIL TO QUENCH SPARKS), SWITCH EQUIPMENT MADE BY GENERAL ELECTRIC. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
NASA Astrophysics Data System (ADS)
Yousef, Samy; Osman, T. A.; Abdalla, Abdelrahman H.; Zohdy, Gamal A.
2015-12-01
Although the applications of nanotechnologies are increasing, there remains a significant barrier between nanotechnology and machine element applications. This work aims to remove this barrier by blending carbon nanotubes (CNT) with common types of acetal polymer gears (spur, helical, bevel and worm). This was done by using adhesive oil (paraffin) during injection molding to synthesize a flange and short bars containing 0.02% CNT by weight. The flanges and short bars were machined using hobbing and milling machines to produce nanocomposite polymer gears. Some defects that surfaced in previous work, such as the appearance of bubbles and unmelted pellets during the injection process, were avoided to produce an excellent dispersion of CNT in the acetal. The wear resistances of the gears were measured by using a TS universal test rig using constant parameters for all of the gears that were fabricated. The tests were run at a speed of 1420 rpm and a torque of 4 Nm. The results showed that the wear resistances of the CNT/acetal gears were increased due to the addition of CNT, especially the helical, bevel and worm gears.
46 CFR 61.20-1 - Steering gear.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Steering gear. 61.20-1 Section 61.20-1 Shipping COAST... Periodic Tests of Machinery and Equipment § 61.20-1 Steering gear. (a) The marine inspector must inspect the steering gear at each inspection for certification for vessels whose Certificate of Inspections...
Gear Tooth Wear Detection Algorithm
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.
2015-01-01
Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.
Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program
NASA Technical Reports Server (NTRS)
Misel, O. W.
1977-01-01
Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% speed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22,300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation.
Engagement of Metal Debris into a Gear Mesh
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
Investigation of Sideband Index Response to Prototype Gear Tooth Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2013-01-01
The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes
Full-scale transmission testing to evaluate advanced lubricants
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Decker, Harry J.; Shimski, John T.
1992-01-01
Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500 hp helicopter transmission test stand. The testing was part of a lubrication program. The objectives are to develop and show a separate lubricant for gearboxes with improved performance in life and load carrying capacity. The goal was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 based reference oil and then to run identical tests with improved lubricants and show improved performance. The tests were directed at parts that failed due to marginal lubrication from Navy field experience. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hrs of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.
On the Correlation of Specific Film Thickness and Gear Pitting Life
NASA Technical Reports Server (NTRS)
Krantz, Timothy Lewis
2014-01-01
The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive dataset. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures. This study includes previously reported data, results of an additional 50 tests, and detailed information from lab notes and tested gears. The dataset comprised 258 tests covering specific film values [0.47 to 5.2]. The experimentally determined surface fatigue lives, quantified as 10-percent life estimates, ranged from 8.7 to 86.8 million cycles. The trend is one of increasing life for increasing specific film. The trend is nonlinear. The observed trends were found to be in good agreement with data and recommended practice for gears and bearings. The results obtained will perhaps allow for the specific film parameter to be used with more confidence and precision to assess gear surface fatigue for purpose of design, rating, and technology development.
On the Correlation of Specific Film Thickness and Gear Pitting Life
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2015-01-01
The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive dataset. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures. This study includes previously reported data, results of an additional 50 tests, and detailed information from lab notes and tested gears. The dataset comprised 258 tests covering specific film values (0.47 to 5.2). The experimentally determined surface fatigue lives, quantified as 10-percent life estimates, ranged from 8.7 to 86.8 million cycles. The trend is one of increasing life for increasing specific film. The trend is nonlinear. The observed trends were found to be in good agreement with data and recommended practice for gears and bearings. The results obtained will perhaps allow for the specific film parameter to be used with more confidence and precision to assess gear surface fatigue for purpose of design, rating, and technology development.
Improved Clothing for Firefighters
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1982-01-01
Application of space technology should reduce incidence of injuries, heat exhaustion, and fatigue in firefighters. Using advanced materials and design concepts of aerospace technology, protective gear was fabricated and tested for the heat, face, torso, hand and foot. In tests, it was found that new gear protects better than conventional firefighter gear, weighs 40 percent less, and reduces wearer's energy expenditure by 25 percent.
Effects on Diagnostic Parameters After Removing Additional Synchronous Gear Meshes
NASA Technical Reports Server (NTRS)
Decker, Harry J.
2003-01-01
Gear cracks are typically difficult to diagnose with sufficient time before catastrophic damage occurs. Significant damage must be present before algorithms appear to be able to detect the damage. Frequently there are multiple gear meshes on a single shaft. Since they are all synchronous with the shaft frequency, the commonly used synchronous averaging technique is ineffective in removing other gear mesh effects. Carefully applying a filter to these extraneous gear mesh frequencies can reduce the overall vibration signal and increase the accuracy of commonly used vibration metrics. The vibration signals from three seeded fault tests were analyzed using this filtering procedure. Both the filtered and unfiltered vibration signals were then analyzed using commonly used fault detection metrics and compared. The tests were conducted on aerospace quality spur gears in a test rig. The tests were conducted at speeds ranging from 2500 to 5000 revolutions per minute and torques from 184 to 228 percent of design load. The inability to detect these cracks with high confidence results from the high loading which is causing fast fracture as opposed to stable crack growth. The results indicate that these techniques do not currently produce an indication of damage that significantly exceeds experimental scatter.
Fishing gear-related injury in California marine wildlife.
Dau, Brynie Kaplan; Gilardi, Kirsten V K; Gulland, Frances M; Higgins, Ali; Holcomb, Jay B; Leger, Judy St; Ziccardi, Michael H
2009-04-01
We reviewed medical records from select wildlife rehabilitation facilities in California to determine the prevalence of injury in California Brown Pelicans (Pelecanus occidentalis), gulls (Larus spp.), and pinniped species (Zalophus californianus, Mirounga angustirostris, and Phoca vitulina) due to fishing gear entanglement and ingestion from 2001 to 2006. Of 9,668 Brown Pelican, gull, and pinniped cases described during the 6-yr study period (2001-06), 1,090 (11.3%) were fishing gear-related. Pelican injuries caused by fishing gear were most common in the Monterey Bay region, where 59.6% of the pelicans rescued in this area and admitted to a rehabilitation center were injured by fishing gear over the 6-yr period. The highest prevalence of fishing gear-related injury in gulls was documented in the Los Angeles/Orange County region (16.1%), whereas the highest prevalences in pinnipeds were seen in the San Diego region (3.7%). Despite these higher prevalences of gull and pinniped fishing gear-related injuries in these specific regions, there was no statistical significance in these trends. Juvenile gulls and pinnipeds were more commonly injured by fishing gear than adults (gulls: P = 0.03, odds ratio = 1.29; pinnipeds: P = 0.01, odds ratio = 2.07). Male pinnipeds were twice as likely to be injured by fishing gear as females (P < 0.01, odds ratio = 2.19). The proportion of fishing gear-related injury cases that were successfully rehabilitated and released (percentage of cases successfully rehabilitated to the point of release out of the total number of fishing gear-related injury cases) was high in all three species groups (pelicans: 63%; gulls: 54%; pinnipeds: 70%). Fishing gear-related injuries in Brown Pelicans and gulls were highest in the fall, but there was only a significant difference between seasons for fishing gear-related injuries in pelicans. Fishing gear-related injuries in pinnipeds most commonly occurred in summer; however, a statistical difference was not detected between seasons for pinnipeds. Derelict fishing gear-lost, abandoned or discarded sport and commercial line, nets, traps, etc.-in the marine environment is a significant cause of injury in California coastal marine wildlife. We evaluated data for stranded animals only; our results may underestimate the true number of coastal marine animals injured by lost or discarded fishing gear in California.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Dave Sanborn, Butch Lato, and Bill Brooks conduct a bond verification test on Thermal Protection System tiles newly installed on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
Conductive ink print on PA66 gear for manufacturing condition monitoring sensors
NASA Astrophysics Data System (ADS)
Futagawa, Shintaro; Iba, Daisuke; Kamimoto, Takahiro; Nakamura, Morimasa; Miura, Nanako; Iizuka, Takashi; Masuda, Arata; Sone, Akira; Moriwaki, Ichiro
2018-03-01
Failures detection of rotating machine elements, such as gears, is an important issue. The purpose of this study was to try to solve this issue by printing conductive ink on gears to manufacture condition-monitoring sensors. In this work, three types of crack detection sensor were designed and the sprayed conductive ink was directly sintered on polyimide (PI) - coated polyamide (PA) 66 gears by laser. The result showed that it was possible to produce narrow circuit lines of the conductive ink including Ag by laser sintering technique and the complex shape sensors on the lateral side of the PA66 gears, module 1.0 mm and tooth number 48. A preliminary operation test was carried out for investigation of the function of the sensors. As a result of the test, the sensors printed in this work should be effective for detecting cracks at tooth root of the gears and will allow for the development of better equipment and detection techniques for health monitoring of gears.
NASA Technical Reports Server (NTRS)
Newman, Wyatt S.; Anderson, William J.; Shipitalo, William; Rohn, Douglas
1992-01-01
The design philosophy and measurements performed on a new roller-gear transmission prototype for a robotic manipulator are described. The design incorporates smooth rollers in a planetary configuration integrated with conventional toothed gears. The rollers were designed to handle low torque with low backlash and friction while the complementary gears support higher torques and prevent accumulated creep or slip of the rollers. The introduction of gears with finite numbers of teeth to function in parallel with the rollers imposes severe limits on available designs. Solutions for two-planet row designs are discussed. A two-planet row, four-planet design was conceived, fabricated, and tested. Detailed calculations of cluster geometry, gear stresses, and gear geometry are given. Measurement data reported here include transmission linearity, static and dynamic friction, inertia, backlash, stiffness, and forward and reverse efficiency. Initial test results are reported describing performance of the transmission in a servomechanism with torque feedback.
NASA Technical Reports Server (NTRS)
Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.
2015-01-01
The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.
Astronaut Curtis Brown suspended by simulated parachute gear during training
1994-06-28
S94-37516 (28 June 1994) --- Astronaut Curtis L. Brown is suspended by a simulated parachute gear during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
Experimental and analytical investigation of active loads control for aircraft landing gear
NASA Technical Reports Server (NTRS)
Morris, D. L.; Mcgehee, J. R.
1983-01-01
A series hydraulic, active loads control main landing gear from a light, twin-engine civil aircraft was investigated. Tests included landing impact and traversal of simulated runway roughness. It is shown that the active gear is feasible and very effective in reducing the force transmitted to the airframe. Preliminary validation of a multidegree of freedom active gear flexible airframe takeoff and landing analysis computer program, which may be used as a design tool for active gear systems, is accomplished by comparing experimental and computed data for the passive and active gears.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
Landing Gear Components Noise Study - PIV and Hot-Wire Measurements
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.
2010-01-01
PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.
2004-03-08
KENNEDY SPACE CENTER, FLA. - One of four rudder speed brake actuators arrives at Cape Canaveral Air Force Station. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
2004-03-08
KENNEDY SPACE CENTER, FLA. - A rudder speed brake actuator sits on an air-bearing pallet to undergo X-raying. Four actuators to be installed on the orbiter Discovery are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
STS-112 Atlantis landing at KSC's shuttle landing facility
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis stirs up dust as it touches down on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .
STS-112 Atlantis landing at KSC's shuttle landing facility
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis casts a needle-shaped shadow as it drops to the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program.
Instabilities of geared couplings: Theory and practice
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Mondy, R. E.; Murphy, R. C.
1982-01-01
The use of couplings for high speed turbocompressors or pumps is essential to transmit power from the driver. Typical couplings are either of the lubricated gear or dry diaphragm type design. Gear couplings have been the standard design for many years and recent advances in power and speed requirements have pushed the standard design criteria to the limit. Recent test stand and field data on continuous lube gear type couplings have forced a closer examination of design tolerances and concepts to avoid operational instabilities. Two types of mechanical instabilities are reviewed in this paper: (1) entrapped fluid, and (2) gear mesh instability resulting in spacer throw-out onset. Test stand results of these types of instabilities and other directly related problems are presented together with criteria for proper coupling design to avoid these conditions. An additional test case discussed shows the importance of proper material selection and processing and what can happen to an otherwise good design.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
2006-07-17
KENNEDY SPACE CENTER, FLA. - Under tow by a diesel-powered tractor, the orbiter Discovery rolls past the Vehicle Assembly Building as it travels along the two-mile tow-way to the Orbiter Processing Facility from NASA's Shuttle Landing Facility. Umbilical lines for coolant and purge air are still attached. Discovery landed at the SLF at 9:14 a.m. EDT, completing mission STS-121. Discovery traveled 5.3 million miles, landing on orbit 202. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. Main gear touchdown occurred on time at 9:14:43 EDT. Wheel stop was at 9:15:49 EDT. During the mission, the STS-121 crew tested new equipment and procedures to improve shuttle safety, and delivered supplies and made repairs to the International Space Station. Photo credit: NASA/Jim Grossmann
46 CFR 78.17-15 - Steering gear, whistle, and means of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Steering gear, whistle, and means of communication. 78... VESSELS OPERATIONS Tests, Drills, and Inspections § 78.17-15 Steering gear, whistle, and means of communication. (a) On all vessels making a voyage of more than 48 hours' duration, the entire steering gear, the...
46 CFR 196.15-3 - Steering gear, whistle, and means of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear, whistle, and means of communication. 196... RESEARCH VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-3 Steering gear, whistle, and means of communication. (a) On all vessels making a voyage of more than 48 hours duration, the entire steering gear, the...
2011-01-25
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis goes through a routine landing gear test in Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Technicians are checking to make sure the shuttle's wheels, brakes, elevons and body flap function properly. Seen here, an elevon is tested. Elevons are located on the trailing edge of each wing and help control pitch of the shuttle as it comes in for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
2011-01-25
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis goes through a routine landing gear test in Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Technicians are checking to make sure the shuttle's wheels, brakes, elevons and body flap function properly. Seen here, an elevon is tested. Elevons are located on the trailing edge of each wing and help control pitch of the shuttle as it comes in for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Lynn Wozniak, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
2003-04-11
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Lynn Wozniak, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Harrell Watts, Mike Cote, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) John Kuhn, Mike Cote, and Tom Baggitt discuss the installation of Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, United Space Alliance employees (from left) Mike Cote, Tom Baggitt, and Jason Levandusky install Thermal Protection System tiles on a main landing gear door of Space Shuttle orbiter Enterprise (OV-101). Sections of Enterprise were borrowed from the Smithsonian Institution's Air and Space Museum where the orbiter is being stored at the Washington Dulles International Airport. Enterprise was the first orbiter built in the Shuttle fleet and was used to conduct the Approach and Landing Test Program before the first powered Shuttle flight. After the tile installation is complete, the sections will be transferred to the Southwest Research Institute for testing requested by the Columbia Accident Investigation Board.
Disaster Preparedness Planning and Facility Contingency Operations for Public Works
1993-01-01
Forces Reporting Disaster Preparedness and Logistical Support 20-37 General Concept Manpower Planning, Protection and Support Personal Protection...their military mission, economical importance, geographical location, and personal and public safety. The organization, preparedness plans and facility...for emergency medical support). (5) Issue personal protective gear and equipment, if necessary. (6) Determine existi- g contract outcome. All
Advanced Rotorcraft Transmission (ART) program status
NASA Technical Reports Server (NTRS)
Bossler, Robert; Heath, Gregory
1991-01-01
Reported herein is work done on the Advanced Rotorcraft Transmission by McDonnell Douglas Helicopter Company under Army/NASA contract. The novel concept pursued includes the use of face gears for power transmission and a torque splitting arrangement. The design reduces the size and weight of the corner-turning hardware and the next reduction stage. New methods of analyzing face gears have increased confidence in their usefulness. Test gears have been designed and manufactured for power transmission testing on the NASA-Lewis spiral bevel test rig. Transmission design effort has included finite element modeling of the split torque paths to assure equal deflection under load. A finite element model of the Apache main transmission has been completed to substantiate noise prediction methods. A positive engagement overrunning clutch design is described. Test spur gears have been made by near-net-shape forging from five different materials. Three housing materials have been procured for evaluation testing.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert R.
2013-01-01
The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Six gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert, R.
2013-01-01
The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Three gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.
Development of a full-scale transmission testing procedure to evaluate advanced lubricants
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Decker, Harry J.; Shimski, John T.
1992-01-01
Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500-hp Helicopter Transmission Test Stand. The testing was part of a joint Navy/NASA/Army lubrication program. The objective of the program was to develop a separate lubricant for gearboxes and demonstrate an improved performance in life and load-carrying capacity. The goal of the experiments was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 base reference oil, then run identical tests with improved lubricants and demonstrate performance. The tests were directed at failing components that the Navy has had problems with due to marginal lubrication. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hours of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.
Empirical Prediction of Aircraft Landing Gear Noise
NASA Technical Reports Server (NTRS)
Golub, Robert A. (Technical Monitor); Guo, Yue-Ping
2005-01-01
This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.
A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.
1975-01-01
Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.
Testing of Face-milled Spiral Bevel Gears at High-speed and Load
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2001-01-01
Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.
Global dynamic modeling of a transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.
1993-01-01
The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... test (UT) inspection of the tail gearbox output bevel gear (gear) for a crack. If you find a crack... gear cracking incidents, one of which resulted in the tail rotor separating from the helicopter. The actions specified by this AD are intended to detect a crack in the gear to prevent a tail rotor separating...
Worm Gear With Hydrostatic Engagement
NASA Technical Reports Server (NTRS)
Chaiko, Lev I.
1994-01-01
In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.
NASA Technical Reports Server (NTRS)
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
This paper will present a process for increasing the stiffness of harmonic gear assemblies and recommend a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
2004-03-08
KENNEDY SPACE CENTER, FLA. - Workers at Cape Canaveral Air Force Station place one of four rudder speed brake actuators onto a pallet for X-ray. The actuators, to be installed on the orbiter Discovery, are being X-rayed at the Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.
Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility
NASA Astrophysics Data System (ADS)
Injun, Song
2015-04-01
The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI s), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1976-01-01
Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.
Airframe Noise Results from the QTD II Flight Test Program
NASA Technical Reports Server (NTRS)
Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.
2007-01-01
With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise reduction at selective frequencies (1500 to 3000 Hz) but are otherwise in general agreement with the far-field spectra results (within measurement uncertainty).
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, rolls along concrete runway 22 at Edwards Air Force Base (EAFB), California, after nose landing gear (NLG) and main landing gear (MLG) touchdown. This view looks down OV-103's port side from the space shuttle main engines (SSMEs) to the nose section. The SSMEs are gimbaled to their descent position and the rudder/speedbrake is deployed on the vertical stabilizer. Wheel stop occurred at 6:51 am (Pacific Daylight Time (PDT)). In the distance EAFB facilities are visible.
Closeup view of the underside of the forward fuselage of ...
Close-up view of the underside of the forward fuselage of the Orbiter Discovery looking at the nose landing-gear and into the landing-gear well. The vehicle is elevated and supported by jack stands attached to the hoist attach points and the rear External Tank attach points on the propellant disconnect plate assemblies. This photo was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.
1987-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.; Coy, John J.
1988-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Overview of Glenn Mechanical Components Branch Research
NASA Astrophysics Data System (ADS)
Zakrajsek, James
2002-09-01
Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.
Gear crack propagation investigations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Ballarini, Roberto
1996-01-01
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.
NASA Technical Reports Server (NTRS)
Weick, Fred E
1931-01-01
This report presents the results of full-scale tests made on a 10-foot 5-inch propeller on a geared J-5 engine and also on a similar 8-foot 11-inch propeller on a direct-drive J-5 engine. Each propeller was tested at two different pitch settings, and with a large and a small fuselage. The investigation was made in such a manner that the propeller-body interference factors were isolated, and it was found that, considering this interference only, the geared propellers had an appreciable advantage in propulsive efficiency, partially due to the larger diameter of the propellers with respect to the bodies, and partially because the geared propellers were located farther ahead of the engines and bodies.
Comparisons of modified Vasco X-2 and AISI 9310 gear steels
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1980-01-01
Endurance tests were conducted with four groups of spur gears manufactured from three heats of consumable electrode vacuum melted (CVM) modified Vasco X-2. Endurance tests were also conducted with gears manufactured from CVM AISI 9310. Bench type rolling element fatigue tests were conducted with both materials. Hardness measurements were made to 811 K. There was no statistically significant life difference between the two materials. Life differences between the different heats of modified Vasco X-2 can be attributed to heat treat variation and resultant hardness. Carburization of gear flanks only can eliminate tooth fracture as a primary failure mode for modified Vasco X-2. However, a tooth surface fatigue spall can act as a nucleus of a tooth fracture failure for the modified Vasco X-2.
Surface Fatigue Lives of Case-Carburized Gears With an Improved Surface Finish
NASA Technical Reports Server (NTRS)
Krantz, T. L.; Alanou, M. P.; Evans, H. P.; Snidle, R. W.; Krantz, T. L. (Technical Monitor)
2000-01-01
Previous research provides qualitative evidence that an improved surface finish can increase the surface fatigue lives of gears. To quantify the influence of surface roughness on life, a set of AISI 93 10 steel gears was provided with a nearmirror finish by superfinishing. The effects of the superfinishing on the quality of the gear tooth surfaces were determined using data from metrology, profilometry, and interferometric microscope inspections. The superfinishing reduced the roughness average by about a factor of 5. The superfinished gears were subjected to surface fatigue testing at 1.71 -GPa (248-ksi) Hertz contact stress, and the data were compared with the NASA Glenn gear fatigue data base. The lives of gears with superfinished teeth were about four times greater compared with the lives of gears with ground teeth but with otherwise similar quality.
29 CFR 1919.90 - Documentation.
Code of Federal Regulations, 2010 CFR
2010-07-01
...(b), .21 Testing .14, .15 Welding .19 Certificate Issuance, Accredited Persons .10(c) Certification... Loads .13(b), .21 Testing .14, .15 Welding .19 Gear, Loose: Examinations .31(c) Heat Treatment .80(a...: Examinations .30(d), (e); .32(c) Testing .32(a) Braking Devices: Cargo Gear .22 Certification .22 Bulk Cargo...
29 CFR 1919.27 - Unit proof tests-winches, derricks and gear accessory thereto.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., goosenecks, eye plates, eye bolts, or other attachments), shall be tested with a proof load which shall..., a qualified technical office of an accredited gear certification agency, with the recognition that...
Analysis of 3D printing parameters of gears for hybrid manufacturing
NASA Astrophysics Data System (ADS)
Budzik, Grzegorz; Przeszlowski, Łukasz; Wieczorowski, Michal; Rzucidlo, Arkadiusz; Gapinski, Bartosz; Krolczyk, Grzegorz
2018-05-01
The paper deals with analysis and selection of parameters of rapid prototyping of gears by selective sintering of metal powders. Presented results show wide spectrum of application of RP systems in manufacturing processes of machine elements, basing on analysis of market in term of application of additive manufacturing technology in different sectors of industry. Considerable growth of these methods over the past years can be observed. The characteristic errors of printed model with respect to ideal one for each technique were pointed out. Special attention was paid to the method of preparation of numerical data CAD/STL/RP. Moreover the analysis of manufacturing processes of gear type elements was presented. The tested gears were modeled with different allowances for final machining and made by DMLS. Metallographic analysis and strength tests on prepared specimens were performed. The above mentioned analysis and tests were used to compare the real properties of material with the nominal ones. To improve the quality of surface after sintering the gears were subjected to final machining. The analysis of geometry of gears after hybrid manufacturing method was performed (fig.1). The manufacturing process was defined in a traditional way as well as with the aid of modern manufacturing techniques. Methodology and obtained results can be used for other machine elements than gears and constitutes the general theory of production processes in rapid prototyping methods as well as in designing and implementation of production.
[Feasibility Study on Digital Signal Processor and Gear Pump of Uroflowmeter Calibration Device].
Yuan, Qing; Ji, Jun; Gao, Jiashuo; Wang, Lixin; Xiao, Hong
2016-08-01
It will cause hidden trouble on clinical application if the uroflowmeter is out of control.This paper introduces a scheme of uroflowmeter calibration device based on digital signal processor(DSP)and gear pump and shows studies of its feasibility.According to the research plan,we analyzed its stability,repeatability and linearity by building a testing system and carried out experiments on it.The flow test system is composed of DSP,gear pump and other components.The test results showed that the system could produce a stable water flow with high precision of repeated measurement and different flow rate.The test system can calibrate the urine flow rate well within the range of 9~50mL/s which has clinical significance,and the flow error is less than 1%,which meets the technical requirements of the calibration apparatus.The research scheme of uroflowmeter calibration device on DSP and gear pump is feasible.
Testing of UH-60A helicopter transmission in NASA Lewis 2240-kW (3000-hp) facility
NASA Technical Reports Server (NTRS)
Mitchell, A. M.; Oswald, F. B.; Coe, H. H.
1986-01-01
The U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission was tested at the NASA Lewis Research Center. The vibration and efficiency test results will be used to enhance the data base for similar-class helicopters. Most of the data were obtained for a matrix of test conditions of 50 to 100 percent of rated rotor speed and 20 to 100 percent of rated input power. The transmission's mechanical efficiency at 100 percent of rated power was 97.3 and 97.5 percent with its inlet oil maintained at 355 and 372 K (180 and 210 F), respectively. The highest vibration reading was 72 g's rms at the upper housing side wall. Other vibration levels measured near the gear meshes are reported.
Spur-Gear-System Efficiency at Part and Full Load
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.
Analytical and experimental study of vibrations in a gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.
1991-01-01
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.
Surface Fatigue Life of High Temperature Gear Materials
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.
1994-01-01
Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.
Lubrication and cooling for high speed gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1985-01-01
The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2011 CFR
2011-07-01
... remote steering gear control system. (ii) Each steering position located on the navigating bridge. (iii) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle indicator in relation to the actual position of the rudder. (v) Each remote steering gear control system...
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2010 CFR
2010-07-01
... remote steering gear control system. (ii) Each steering position located on the navigating bridge. (iii) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle indicator in relation to the actual position of the rudder. (v) Each remote steering gear control system...
29 CFR 1919.31 - Proof tests-loose gear.
Code of Federal Regulations, 2013 CFR
2013-07-01
... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...
29 CFR 1919.31 - Proof tests-loose gear.
Code of Federal Regulations, 2011 CFR
2011-07-01
... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...
29 CFR 1919.31 - Proof tests-loose gear.
Code of Federal Regulations, 2014 CFR
2014-07-01
... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...
29 CFR 1919.31 - Proof tests-loose gear.
Code of Federal Regulations, 2010 CFR
2010-07-01
... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...
29 CFR 1919.31 - Proof tests-loose gear.
Code of Federal Regulations, 2012 CFR
2012-07-01
... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...
A windowing and mapping strategy for gear tooth fault detection of a planetary gearbox
NASA Astrophysics Data System (ADS)
Liang, Xihui; Zuo, Ming J.; Liu, Libin
2016-12-01
When there is a single cracked tooth in a planet gear, the cracked tooth is enmeshed for very short time duration in comparison to the total time of a full revolution of the planet gear. The fault symptom generated by the single cracked tooth may be very weak. This study aims to develop a windowing and mapping strategy to interpret the vibration signal of a planetary gear at the tooth level. The fault symptoms generated by a single cracked tooth of the planet gear of interest can be extracted. The health condition of the planet gear can be assessed by comparing the differences among the signals of all teeth of the planet gear. The proposed windowing and mapping strategy is tested with both simulated vibration signals and experimental vibration signals. The tooth signals can be successfully decomposed and a single tooth fault on a planet gear can be effectively detected.
Effect of interaction on landing-gear behavior and dynamic loads in a flexible airplane structure
NASA Technical Reports Server (NTRS)
Cook, Francis E; Milwitzky, Benjamin
1956-01-01
The effects of interaction between a landing gear and a flexible airplane structure on the behavior of the landing gear and the loads in the structure have been studied by treating the equations of motion of the airplane and the landing gear as a coupled system. The landing gear is considered to have nonlinear characteristics typical of conventional gears, namely, velocity-squared damping, polytropic air-compression springing, and exponential tire force-deflection characteristics. For the case where only two modes of the structure are considered, an equivalent three-mass system is derived for representing the airplane and landing-gear combination, which may be used to simulate the effects of structural flexibility in jig drop tests of landing gears. As examples to illustrate the effects of interaction, numerical calculations, based on the structural properties of two large airplanes having considerably different mass and flexibility characteristics, are presented.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Hurrell, Michael James
2017-01-01
Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not cite data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.
QCSEE UTW engine powered-lift acoustic performance
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.
1980-01-01
Powered-lift acoustic test of the Quiet Clean Short Haul Experimental Engine (QCSEE) under the wing (UTW) engine are reported. Propulsion systems for two powered-lift concepts were designed, fabricated, and tested. In addition to low noise features, the designs included composite structures, gear-driven fans, digital control, and a variable pitch fan (UTW). The UTW engine was tested in a static ground test facility with wing and flap segments to simulate installation on a short haul transport aircraft of the future. Powered-lift acoustic performance of the UTW engine is compared with that of the previously tested and reported QCSEE over-the-wing (OTW) engine. Both engines were slightly above the noise goal but were significantly below current FAA and modern wide-body jet transport levels. The UTW system in the powered-lift mode was penalized by reflected engine noise from the wing and flap system, while the OTW system was benefitted by a wing noise shielding effect.
NASA Technical Reports Server (NTRS)
Drago, Raymond J.; Lenski, Joseph W., Jr.; Spencer, Robert H.; Valco, Mark; Oswald, Fred B.
1993-01-01
The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. This paper describes the design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
Vibration and noise analysis of a gear transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.
1993-01-01
This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.
Australian DefenceScience. Volume 15, Number 4, Summer
2007-01-01
components, the magnesium alloy gear box case and numerous connectors in the avionics systems, that are susceptible. “When considering ways to alleviate...with associated structural properties . The elements are linked to each other by mathematical equations that determine the response to ANZACS...intellectual property , secondment of industry staff to the JDSSC and ways of making network connections with industry facilities. The facility is
Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas
2008-01-01
The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.
Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.;
2013-01-01
NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.
2004-03-08
KENNEDY SPACE CENTER, FLA. - An X-ray machine is in place to take images of four rudder speed brake actuators to be installed on the orbiter Discovery. The actuators are being X-rayed at the Cape Canaveral Air Force Station’s Radiographic High-Energy X-ray Facility to determine if the gears were installed correctly. Discovery has been assigned to the first Return to Flight mission, STS-114, a logistics flight to the International Space Station.
Effect of tooth profile modification on wear in internal gears
NASA Astrophysics Data System (ADS)
Tunalioglu, M. S.; Tuc, B.
2018-05-01
Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.
Vibration Signature Analysis of a Faulted Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
Subsynchronous instability of a geared centrifugal compressor of overhung design
NASA Technical Reports Server (NTRS)
Hudson, J. H.; Wittman, L. J.
1980-01-01
The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.
The Effects of Soldier Gear Encumbrance on Restraints in a Frontal Crash Environment
2015-08-31
their gear poses a challenge in restraint system design that is not typical in the automotive world. •The weight of the gear encumbrance may have a...Distribution Statement A. Approved for public release. TEST METHODOLOGY •A modified rigid steel seat similar to the type used for ECE R16 compliance testing...structure were non-deformable. 6 Shoulder Restraints Steel Non Deformable D-Rings 5th Point Restraint 5th Point Exiting Through the Seat
NASA Technical Reports Server (NTRS)
Handschuh, R.; Kilmain, C.
2005-01-01
An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as speed, load, and lubricant flow rate were varied. Temperature test data from a helical gear train at varying speeds and loads (to 5000 hp and 15000 rpm) was collected using thermocouple rakes and axial arrays. The instrumentation was able to capture the radial and axial expelled lubricant-air environment (fling-off lubricant) that is expelled during the gear meshing process. Effects of operational characteristics are presented.
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.725 Limit drop test. The... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in... to be absorbed by it. (d) When an effective mass is used in showing compliance with paragraph (b) of...
Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set
NASA Technical Reports Server (NTRS)
Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso
2007-01-01
Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.
Analytical and Experimental Vibration Analysis of a Faulty Gear System.
1994-10-01
Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Danny H.
2012-01-01
In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
46 CFR 109.201 - Steering gear, whistles, general alarm, and means of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Steering gear, whistles, general alarm, and means of communication. 109.201 Section 109.201 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.201 Steering gear...
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Wade, Daniel R.; Antolick, Lance J.; Thomas, Josiah
2014-01-01
This report presents the analysis of gear condition indicator data collected on a helicopter when damage occurred in spiral bevel gears. The purpose of the data analysis was to use existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a Case Study, to better understand the differences between HUMS data response in a helicopter and a component test rig, the NASA Glenn Spiral Bevel Gear Fatigue Rig. The reason spiral bevel gear sets were chosen to demonstrate differences in response between both systems was the availability of the helicopter data and the availability of a test rig that was capable of testing spiral bevel gear sets to failure. The objective of the analysis presented in this paper was to re-process helicopter HUMS data with the same analysis techniques applied to the spiral bevel rig test data. The damage modes experienced in the field were mapped to the failure modes created in the test rig. A total of forty helicopters were evaluated. Twenty helicopters, or tails, experienced damage to the spiral bevel gears in the nose gearbox. Vibration based gear condition indicators data was available before and after replacement. The other twenty tails had no known anomalies in the nose gearbox within the time frame of the datasets. These twenty tails were considered the baseline dataset. The HUMS gear condition indicators evaluated included gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1 (DA1) and +/- 3 Sideband Index (SI3). Three additional condition indicators, not currently calculated on-board, were calculated from the archived data. These three indicators were +/- 1 Sideband Index (SI1), the DA1 of the difference signal (DiffDA1) and the peak-to-peak of the difference signal (DP2P). Results found the CI DP2P, not currently available in the on-board HUMS, performed the best, responding to varying levels of damage on thirteen of the fourteen helicopters evaluated. Two additional CIs also not in the on-board system, DiffDA1and SI1, also performed well responding to twelve and ten of the fourteen helicopters evaluated respectively. Of the three CIs currently available in the MSPU, DA1, FM4 and SI3, SI3, responded to eight, DA1 responded to six and FM4 responded to four of the fourteen helicopters evaluated. FM4, the poorest performing CI, was not as responsive to damage as the other five CIs. Conversely, when compared to the other two, it was the only CI that responded to damage on two helicopters. CI response could not be correlated to specific failure modes due to limited pictures and subjective descriptions found within the TDA. Flight regime did affect CI response to some gear faults. Due to the range of operating conditions for each regime, more studies are required to determine their sensitivity to regimes.
Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet
NASA Technical Reports Server (NTRS)
Antolick, Lance J.; Branning, Jeremy S.; Wade, Daniel R.; Dempsey, Paula J.
2010-01-01
The U.S. Army is currently expanding its fleet of Health Usage Monitoring Systems (HUMS) equipped aircraft at significant rates, to now include over 1,000 rotorcraft. Two different on-board HUMS, the Honeywell Modern Signal Processing Unit (MSPU) and the Goodrich Integrated Vehicle Health Management System (IVHMS), are collecting vibration health data on aircraft that include the Apache, Blackhawk, Chinook, and Kiowa Warrior. The objective of this paper is to recommend the most effective gear condition indicators for fleet use based on both a theoretical foundation and field data. Gear diagnostics with better performance will be recommended based on both a theoretical foundation and results of in-fleet use. In order to evaluate the gear condition indicator performance on rotorcraft fleets, results of more than five years of health monitoring for gear faults in the entire HUMS equipped Army helicopter fleet will be presented. More than ten examples of gear faults indicated by the gear CI have been compiled and each reviewed for accuracy. False alarms indications will also be discussed. Performance data from test rigs and seeded fault tests will also be presented. The results of the fleet analysis will be discussed, and a performance metric assigned to each of the competing algorithms. Gear fault diagnostic algorithms that are compliant with ADS-79A will be recommended for future use and development. The performance of gear algorithms used in the commercial units and the effectiveness of the gear CI as a fault identifier will be assessed using the criteria outlined in the standards in ADS-79A-HDBK, an Army handbook that outlines the conversion from Reliability Centered Maintenance to the On-Condition status of Condition Based Maintenance.
NASA Technical Reports Server (NTRS)
Mcgehee, J. R.; Carden, H. D.; Edson, R.
1978-01-01
A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.
2002-04-19
KENNEDY SPACE CENTER, FLA. - STS-110 Mission Specialists Jerry Ross (left) and Steven Smith (right) are happy to be back on Earth after a successful mission to the International Space Station. Atlantis landed on KSC's Shuttle Landing Facility after 171 orbits, completing a 10-day, 19-hour, 4.5-million mile journey. Main gear touchdown was 12:26:57 p.m. EDT, nose gear touchdown was 12:27:09 p.m. and wheel stop was 12:28:07 p.m. The crew delivered and installed the S0 truss, which will support cooling and power systems essential for the addition of future international laboratories, on the Station
Closeup view of the nose and landing gear on the ...
Close-up view of the nose and landing gear on the forward section of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The Orbiter is being supported by jack stands in the left and right portion of the view. The jack stands attach to the Orbiter at the four hoist attach points, two located on the forward fuselage and two on the aft fuselage. Note the access platforms that surround and nearly touch the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
PBF Reactor Building (PER620) basement. Workers wearing protective gear work ...
PBF Reactor Building (PER-620) basement. Workers wearing protective gear work inside cubicle 13 on the fission product detection system. Man on left is atop shielded box shown in previous photo. Posture of second man illustrates waist-high height of shielding box. His hand rests on the access panel, which has been filled with lead bricks and which has been slid shut to enclose detection instruments within box. Photographer: John Capek. Date: January 24, 1983. INEEL negative no. 83-41-3-5 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Landing of STS-63 Discovery at KSC
NASA Technical Reports Server (NTRS)
1995-01-01
The main gear of the Space Shuttle Discovery touches down on Runway 15 at the Kennedy Space Center's (KSC) Shuttle Landing Facility to complete an eight day mission. Touchdown occurred at 6:50:19 a.m. (EST), February 11, 1995.
An Assessment of Flap and Main Landing Gear Noise Abatement Concepts
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.
2015-01-01
A detailed assessment of the acoustic performance of several noise reduction concepts for aircraft flaps and landing gear is presented. Consideration is given to the best performing concepts within the suite of technologies that were evaluated in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel using an 18 percent scale, semi-span, high-fidelity Gulfstream aircraft model as a test bed. Microphone array measurements were obtained with the model in a landing configuration (flap deflected 39 degrees and the main landing gear deployed or retracted). The effectiveness of each concept over the range of pitch angles, speeds, and directivity angles tested is presented. Comparison of the acoustic spectra, obtained from integration of the beamform maps between the untreated baseline and treated configurations, clearly demonstrates that the flap and gear concepts maintain noise reduction benefits over the entire range of the directivity angles tested.
STS-94 Columbia Landing at KSC (before main gear touchdown)
NASA Technical Reports Server (NTRS)
1997-01-01
The Space Shuttle orbiter Columbia glides in for a touchdown on Runway 33 at KSCs Shuttle Landing Facility at approximately 6:46 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
1992-05-27
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), is serviced on the ramp at NASA's Dryden Flight Research Center, Edwards, California, before a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
The Drag of Airplane Wheels, Wheel Fairings, and Landing Gears - I
NASA Technical Reports Server (NTRS)
Herrnstein, William H; Biermann, David
1935-01-01
This report presents the results of tests made in the 7-by 10-foot wind tunnel and in the 20-foot tunnel of the National Advisory Committee for Aeronautics to determine the drag of a number of airplane wheels, wheel fairings, and landing gears designed or selected for an airplane of 3,000 pounds gross weight. All tests were made on full-size models; those in the 7-by 10-foot tunnel were made at air speeds up to 80 miles per hour and those in the 20-foot tunnel were made at air speeds up to 100 miles per hour. Although most of the landing-gear tests were made in conjunction with a fuselage and at 0 degree pitch angle, some of the tests were made in conjunction with fuselage plus wings and a radial air-cooled engine and at pitch angles from -5 degrees to 6 degrees to obtain an indication of the general effect of these various items on landing-gear drag. All tests were made in the absence of propeller slipstream.
Gear sound levels with various tooth contact ratios and forms
NASA Technical Reports Server (NTRS)
Lenski, Joseph W., Jr.; Spencer, Robert H.; Drago, Raymond J.; Valco, Mark J.; Oswald, Fred B.
1993-01-01
The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. The design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry are described. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use.
An experimental simulation study of four crosswind landing gear concepts
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Byrdsong, T. A.; Sleeper, R. K.
1975-01-01
An experimental investigation was conducted in order to evaluate several crosswind landing-gear concepts which have a potential application to tricycle-gear-configured, short take-off and landing (STOL) aircraft landing at crab or heading angles up to 30 deg. In this investigation, the landing gears were installed on a dynamic model which had a scaled mass distribution and gear spacing but no aerodynamic similarities when compared with a typical STOL aircraft. The model was operated as a free body with radio-control steering and was launched onto a runway sloped laterally in order to provide a simulated crosswind side force. During the landing rollout, the gear forces and the model trajectory were measured and the various concepts were compared with each other. Within the test limitations, the landing gear system, in which the gears were alined by the pilot and locked in the direction of motion prior to touchdown, gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing runout.
NASA Astrophysics Data System (ADS)
Mehat, N. M.; Kamaruddin, S.
2017-10-01
An increase in demand for industrial gears has instigated the escalating uses of plastic-matrix composites, particularly carbon or glass fibre reinforced plastics as gear material to enhance the properties and limitation in plastic gears. However, the production of large quantity of these synthetic fibres reinforced composites has posed serious threat to ecosystem. Therefore, this work is conducted to study the applicability and practical ability of using bamboo fillers particularly in plastic gear manufacturing as opposed to synthetic fibres via the Taguchi optimization method. The results showed that no failure mechanism such as gear tooth root cracking and severe tooth wear were observed in gear tested made of 5-30 wt% of bamboo fillers in comparing with the unfilled PP gear. These results indicated that bamboo can be practically and economically used as an alternative filler in plastic material reinforcement as well as in minimizing the cost of raw material in general.
Analysis of Wear Behavior of Graphene OXIDE — Polyamide Gears for Engineering Applications
NASA Astrophysics Data System (ADS)
Rajamani, Geetha; Paulraj, Jawahar; Krishnan, Kanny
Recent advances in polymer nanocomposites open a wide range of applications in various industrial sectors. Due to their high potential properties, these materials are replacing the usage of metals for many heavier components in automobile industries. In this experimental work, the tribological performance of Graphene oxide (GO) — Polyamide is investigated against pristine polyamide by fabricating gears for the usage in engineering applications. A gear test rig was developed in-house for analysis to study the specific wear rate and temperature gradient at different conditions of load and speeds. The wear resistance of the polyamide gears with the addition of 0.03wt.% of graphene oxide is better than the pristine polyamide gears and the specific wear rate is reduced significantly. The reduced specific wear rate of these polymer nanocomposite gears is attributed to the superior properties of graphene oxide such as High specific surface area, good adhesion properties and enhanced glass transition temperatures. The GO nanocomposite gear seems to be a potential alternative against conventional gears for engineering applications. Finally, the wear mechanisms and the potential of GO-based polyamide nanocomposite gears were proposed tentatively in the development of transmission gears for engineering applications.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2009-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
Gear distortion analysis due to heat treatment process
NASA Astrophysics Data System (ADS)
Guterres, Natalino F. D. S.; Rusnaldy, Widodo, Achmad
2017-01-01
One way to extend the life time of the gear is minimizing the distortion during the manufacturing process. One of the most important processes in manufacturing to produce gears is heat treatment process. The purpose of this study is to analyze the distortion of the gear after heat treatment process. The material of gear is AISI 1045, and it was designed with the module (m) 1.75, and a number of teeth (z) 29. Gear was heat-treated in the furnace at a temperature of 800°C, holding time of 30 minutes, and then quenched in water. Furthermore, surface hardening process was also performed on gear teeth at a temperature of 820°C and holding time of 35 seconds and the similar procedure of analysis was conducted. The hardness of gear after heat treatment average 63.2 HRC and the teeth surface hardness after gear to induction hardening was 64.9 HRC at the case depth 1 mm. The microstructure of tested gear are martensitic and pearlite. The highest distortion on tooth thickness to upper than 0.063 can cause high precision at the tooth contact is not appropriate. Besides the shrinkage of tooth thickness will also affect to contact angle because the size of gear tolerance was not standardized.
Computerized Design and Generation of Low-Noise Gears with Localized Bearing Contact
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Chen, Ningxin; Chen, Jui-Sheng; Lu, Jian; Handschuh, Robert F.
1995-01-01
The results of research projects directed at the reduction of noise caused by misalignment of the following gear drives: double-circular arc helical gears, modified involute helical gears, face-milled spiral bevel gears, and face-milled formate cut hypoid gears are presented. Misalignment in these types of gear drives causes periodic, almost linear discontinuous functions of transmission errors. The period of such functions is the cycle of meshing when one pair of teeth is changed for the next. Due to the discontinuity of such functions of transmission errors high vibration and noise are inevitable. A predesigned parabolic function of transmission errors that is able to absorb linear discontinuous functions of transmission errors and change the resulting function of transmission errors into a continuous one is proposed. The proposed idea was successfully tested using spiral bevel gears and the noise was reduced a substantial amount in comparison with the existing design. The idea of a predesigned parabolic function is applied for the reduction of noise of helical and hypoid gears. The effectiveness of the proposed approach has been investigated by developed TCA (tooth contact analysis) programs. The bearing contact for the mentioned gears is localized. Conditions that avoid edge contact for the gear drives have been determined. Manufacturing of helical gears with new topology by hobs and grinding worms has been investigated.
NASA Technical Reports Server (NTRS)
Dawson, C. R.; Omar, E.
1977-01-01
Wind tunnel test data are analysed to determine ground effects and the effectiveness of the aerodynamic control surfaces to provide a technology base for a Navy type A V/STOL airplane. Three 14CM (5.5 inch) turbopowered simulators were used to power the model which was tested primarily in the following configurations: (1) VTOL with flaps deployed, gear down, and engines tilted to 80 deg, 90 deg, and 95 deg, (2) STOL with flap and gear down and engines tilted to 50 deg; and (3) Loiter with flaps and gear up and L/C nacelles off. Data acquired during the tests are included as an appendix.
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear, controls, and communication system tests. 185.320 Section 185.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.320 Steering...
14 CFR 27.725 - Limit drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Each landing gear unit must be tested in the attitude simulating the landing condition that is most... rotorcraft in the most critical attitude. A rational method may be used in computing a main gear static... with the rotorcraft in the maximum nose-up attitude considered in the nose-up landing conditions. h...
Conceptualization and design of a variable-gravity research facility
NASA Technical Reports Server (NTRS)
1987-01-01
The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.
Detecting Tooth Damage in Geared Drive Trains
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1997-01-01
This paper describes a method that was developed to detect gear tooth damage that does not require a priori knowledge of the frequency characteristic of the fault. The basic idea of the method is that a few damaged teeth will cause transient load fluctuations unlike the normal tooth load fluctuations. The method attempts to measure the energy in the lower side bands of the modulated signal caused by the transient load fluctuations. The method monitors the energy in the frequency interval which excludes the frequency of the lowest dominant normal tooth load fluctuation and all frequencies above it. The method reacted significantly to the tooth fracture damage results documented in the Lewis data sets which were obtained from tests of the OH-58A transmission and tests of high contact ratio spiral bevel gears. The method detected gear tooth fractures in all four of the high contact ratio spiral bevel gear runs. Published results indicate other detection methods were only able to detect faults for three out of four runs.
Acoustic Measurements of a Large Civil Transport Main Landing Gear Model
NASA Technical Reports Server (NTRS)
Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.
2016-01-01
Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.
Method of testing gear wheels in impact bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov, A.K.; Palagin, Y.M.
1995-05-01
Chemicothermal treatment processes are widely used in engineering to improve the working lives of important components, of which the most common is nitrocementation. That process has been applied at the Volga Automobile Plant mainly to sprockets in gear transmissions, which need high hardness and wear resistance in the surfaces with relatively ductile cores. Although various forms of chemicothermal treatment are widely used, there has been no universal method of evaluating the strengths of gear wheels. Standard methods of estimating strength ({sigma}{sub u}, {sigma}{sub t}, {sigma}{sub b}, and hardness) have a major shortcoming: They can determine only the characteristics of themore » cores for case-hardened materials. Here we consider a method of impact bending test, which enables one to evaluate the actual strength of gear teeth.« less
NASA Astrophysics Data System (ADS)
Urbahs, A.; Urbaha, M.; Carjova, K.
2017-10-01
The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.
ERIC Educational Resources Information Center
Hoover, William Brian; French, Brian F.; Field, William E.; Tormoehlen, Roger L.
2012-01-01
Minimum passing scores for the Gearing Up for Safety: Production Agriculture Safety Training for Youth curriculum (Gearing Up for Safety) were set in 2006 with widely used and established procedures by efforts of subject matter experts (French, Breidenbach et al., 2007; French, Field, and Tormoehlen, 2006, 2007). While providing a research-based…
Experimental and analytical assessment of the thermal behavior of spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Kicher, Thomas P.
1995-01-01
An experimental and analytical study of spiral bevel gears operating in an aerospace environment has been performed. Tests were conducted within a closed loop test stand at NASA Lewis Research Center. Tests were conducted to 537 kW (720 hp) at 14,400 rpm. The effects of various operating conditions on spiral bevel gear steady state and transient temperature are presented. Also, a three-dimensional analysis of the thermal behavior was conducted using a nonlinear finite element analysis computer code. The analysis was compared to the experimental results attained in this study. The results agreed well with each other for the cases compared and were no more than 10 percent different in magnitude.
Progress on S53 for Rotary Gear Actuators
2008-02-01
materials MP35N Ni alloy rods HP-9-4-30 or 4340 high strength steel gears (Cd plated) 17 - 4PH stainless bushings Ti wing spar Bad galvanic couples...Bushings: 17 - 4PH in Ti spar MP35N in gear 6 Galvanic corrosion of current system 7 Extent of the problem This is a problem with all F-18 lugs Matter...Titanium plate with 17 - 4PH bush – also refurbished from previous trials • Gears made from HP9-4-30 or S53 with MP35N bushes STREAMLINED CORROSION TESTING
NASA Technical Reports Server (NTRS)
Coy, J. J.; Chao, C. H. C.
1981-01-01
A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classical Hertzian solution for deflection. The results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.
2011-06-01
CAPE CANAVERAL, Fla. -- In the early morning hours after landing, space shuttle Endeavour's "towback" vehicle slowly pulls it from the Shuttle Landing Facility to Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Endeavour's aft end. Once inside the processing facility, Endeavour will be prepared for future public display. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. Endeavour and its crew delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Jack Pfaller
2011-06-01
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls shuttle Endeavour from the Shuttle Landing Facility to Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Endeavour's aft end. In the background is the massive Vehicle Assembly Building. Once inside the processing facility, Endeavour will be prepared for future public display. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. Endeavour and its crew delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Jack Pfaller
2011-06-01
CAPE CANAVERAL, Fla. -- In the early morning hours after landing, space shuttle Endeavour's "towback" vehicle slowly pulls it from the Shuttle Landing Facility to Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Endeavour's aft end. Once inside the processing facility, Endeavour will be prepared for future public display. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. Endeavour and its crew delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Jack Pfaller
2011-06-01
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls shuttle Endeavour from the Shuttle Landing Facility to Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Endeavour's aft end. Once inside the processing facility, Endeavour will be prepared for future public display. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. Endeavour and its crew delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Jack Pfaller
Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth
NASA Astrophysics Data System (ADS)
Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.
2013-11-01
The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].
Analysis of the Effects of Surface Pitting and Wear on the Vibrations of a Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Polyshchuk, V.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure to simulate and analyze the vibrations in a gear transmission system with surface pitting, 'wear' and partial tooth fracture of the gear teeth is presented. An analytical model was developed where the effects of surface pitting and wear of the gear tooth were simulated by phase and magnitude changes in the gear mesh stiffness. Changes in the gear mesh stiffness were incorporated into each gear-shaft model during the global dynamic simulation of the system. The overall dynamics of the system were evaluated by solving for the transient dynamics of each shaft system simultaneously with the vibration of the gearbox structure. In order to reduce the number of degrees-of-freedom in the system, a modal synthesis procedure was used in the global transient dynamic analysis of the overall transmission system. An FFT procedure was used to transform the averaged time signal into the frequency domain for signature analysis. In addition, the Wigner-Ville distribution was also introduced to examine the gear vibration in the joint time frequency domain for vibration pattern recognition. Experimental results obtained from a gear fatigue test rig at NASA Lewis Research Center were used to evaluate the analytical model.
Hardness and microstructure analysis of damaged gear caused by adhesive wear
NASA Astrophysics Data System (ADS)
Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky
2018-03-01
This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.
STS-65 Columbia, OV-102, with drag chute deployed lands at KSC SLF
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Columbia, Orbiter Vehicle (OV) 102, its drag chute fully deployed, completes a record duration mission as it lands on Runway 33 at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). A helicopter flying overhead observes as OV-102's nose landing gear (NLG) and main landing gear (MLG) roll along the runway. Landing occurred at 6:38 am (Eastern Daylight Time (EDT)). STS-65 mission duration was 14 days 17 hours and 56 minutes. Onboard were six NASA astronauts and a Japanese payload specialist who conducted experiments in support of the International Microgravity Laboratory 2 (IML-2) during the mission.
NASA Technical Reports Server (NTRS)
Morris, R. N.
1973-01-01
In order to improve the performance capability of the Extendable Stiff Arm Manipulator (ESAM) it was necessary to increase the overall gear ratio by a factor of approximately four. This is accomplished with minimum effect to existing hardware by the interposition of a planetary gear transmission between the respective drive motors and the harmonic drive transmissions. The engineering analysis in support of this design approach and the subsequent no-load test results are reported.
Landing Gear Noise Prediction and Analysis for Tube-and-Wing and Hybrid-Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
Improvements and extensions to landing gear noise prediction methods are developed. New features include installation effects such as reflection from the aircraft, gear truck angle effect, local flow calculation at the landing gear locations, gear size effect, and directivity for various gear designs. These new features have not only significantly improved the accuracy and robustness of the prediction tools, but also have enabled applications to unconventional aircraft designs and installations. Systematic validations of the improved prediction capability are then presented, including parametric validations in functional trends as well as validations in absolute amplitudes, covering a wide variety of landing gear designs, sizes, and testing conditions. The new method is then applied to selected concept aircraft configurations in the portfolio of the NASA Environmentally Responsible Aviation Project envisioned for the timeframe of 2025. The landing gear noise levels are on the order of 2 to 4 dB higher than previously reported predictions due to increased fidelity in accounting for installation effects and gear design details. With the new method, it is now possible to reveal and assess the unique noise characteristics of landing gear systems for each type of aircraft. To address the inevitable uncertainties in predictions of landing gear noise models for future aircraft, an uncertainty analysis is given, using the method of Monte Carlo simulation. The standard deviation of the uncertainty in predicting the absolute level of landing gear noise is quantified and determined to be 1.4 EPNL dB.
Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.
2010-01-01
Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.
1977-01-01
An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.
Modal simulation of gearbox vibration with experimental correlation
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.
1992-01-01
A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2010-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.
2015-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.
2007-09-28
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, members of the STS-122 crew get a close look at the landing gear on space shuttle Atlantis. From left are Mission Specialist Hans Schlegel, Pilot Alan Poindexter, Mission Specialists Rex Walheim and Leland Melvin and Commander Stephen Frick. Schlegel represents the European Space Agency. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
Testing Aerospace Gears for Bending Fatigue, Pitting, and Scuffing
NASA Technical Reports Server (NTRS)
Krantz, Timothy; Anderson, Cody; Shareef, Iqbal; Fetty, Jason
2017-01-01
This work was motivated by the goal to increase the power to weight ratio of rotorcraft drive systems. Experiments were conducted to establish the performance of gears made from an aerospace alloy used in production aircraft. Bending fatigue, pitting, and scuffing test procedures and results are documented. The data establishes a baseline for evaluation of new technologies. Recommendations are made to improve test procedures for future work.
Ouyang, Wen; Tchida, Colin
2017-05-02
Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.
NASA Technical Reports Server (NTRS)
Macgregor, C.; Csomor, A.
1974-01-01
Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.
Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear
NASA Technical Reports Server (NTRS)
Fuchs, Yvonne T.; Jackson, Karen E.
2008-01-01
Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program's Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.
Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear
NASA Technical Reports Server (NTRS)
Fuchs, Yvonne T.; Jackson, Karen E.
2008-01-01
Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program s Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.
Design criteria monograph on turbopump gears
NASA Technical Reports Server (NTRS)
1975-01-01
Turbopump power gears were brought to acceptable levels of usefulness and reliability through refinements in interdependent areas of design, materials, processing, and quality control combined with extensive development testing that explored problem areas and evaluated potential solutions.
NASA Astrophysics Data System (ADS)
Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki
High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.
An Experimental Investigation of the Influence of the Lubricant Viscosity and Additives on Gear Wear
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Kahraman, Ahmet
2005-01-01
The influence of lubricant viscosity and additives on the average wear rate of spur gear pairs was investigated experimentally. The gear specimens of a comprehensive gear durability test program that made use of seven lubricants covering a range of viscosities were examined to measure gear tooth wear. The measured wear was related to the as-manufactured surface roughness, the elastohydrodynamic film thickness, and the experimentally determined contact fatigue lives of the same specimens. In general, the wear rate was found to be inversely proportional to the viscosity of the lubricant and to the lambda ratio (also sometimes called the specific film thickness). The data also show an exponential trend between the average wear rates and the surface fatigue lives. Lubricants with similar viscosities but differing additives and compositions had somewhat differing gear surface fatigue lives and wear rates.
Innovative Anti Crash Absorber for a Crashworthy Landing Gear
NASA Astrophysics Data System (ADS)
Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano
2014-06-01
This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.
Analysis of the relationship between errors in manufacture of slot connections and gear drive noises
NASA Technical Reports Server (NTRS)
Bodronosov, M. K.
1973-01-01
On the basis of experimental research, an analysis was carried out of the effect of certain errors in manufacture of straight-barrel slots on the noise characteristics of gear drives. In carrying out the experiments, the gear crowns of the test wheels were held immovable, and only the geometric dimensions of the slots and the mutual locations of the individual elements were varied. The investigation of the effect of each factor was carried out under otherwise equal conditions, on 34:56 cog ratio gear pairs (m = 2mm), made of 40 C steel, with a gear crown accuracy of 7 X, machining fineness 7, at a speed v = 7.1 m/sec. The number of slots was 6. The clearance in slot pairs in dimension D, equal to 0.015, 0.05, 0.08 and 0.110 mm, was obtained by change in the outer diameter of the spindle by means of polishing. The results of the tests of the experimental wheels showed that their noise level increases with increase in clearance.
Modelling of teeth of a gear transmission for modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.
2017-08-01
The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.
New Gear Transmission Error Measurement System Designed
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2001-01-01
The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.
76 FR 70420 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... United States Coast Guard will hold a Commercial Fishing Gear Stowage Workshop to consider actions... Fisheries Training Center, 5200 East Hospital Road, Buzzards Bay, MA 02542. The public must preregister for this workshop to facilitate entrance to this secure facility, see supplementary information for details...
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the wheel bay to stow Atlantis’ landing gear in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility finish Hurricane preparations on the payload bay doors of Atlantis. Preparing for the expected impact of Hurricane Frances on Saturday, workers also powered down the Space Shuttle orbiters, and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the orbiter Atlantis and related equipment for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ payload bay doors are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker checks out part of Atlantis after payload bay doors were closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
NASA Technical Reports Server (NTRS)
Johnson, Michael R.; Gehling, Russ; Head, Ray
2006-01-01
The Mars Reconnaissance Orbiter (MRO) spacecraft has three two-axis gimbal assemblies that support and move the High Gain Antenna and two solar array wings. The gimbal assemblies are required to move almost continuously throughout the mission's seven-year lifetime, requiring a large number of output revolutions for each actuator in the gimbal assemblies. The actuator for each of the six axes consists of a two-phase brushless dc motor with a direct drive to the wave generator of a size-32 cup-type harmonic gear. During life testing of an actuator assembly, the harmonic gear teeth failed completely, leaving the size-32 harmonic gear with a maximum output torque capability less than 10% of its design capability. The investigation that followed the failure revealed limitations of the heritage material choices that were made for the harmonic gear components that had passed similar life requirements on several previous programs. Additionally, the methods used to increase the stiffness of a standard harmonic gear component set, while accepted practice for harmonic gears, is limited in its range. The stiffness of harmonic gear assemblies can be increased up to a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
46 CFR 189.35-90 - Weight handling gear manufactured prior to March 1, 1968.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Weight Handling Gear § 189.35-90 Weight handling..., will be accepted on the basis of appropriate tests and examinations should plans or other technical...
An Experimental Study of Fretting of Gear Teeth
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2008-01-01
Experiments were conducted to study fretting of gears. The gears were made from case-carburized AISI 9310 alloy to match the material of a flight actuator gearbox of interest. The objective of the testing was to produce damage representative of that observed on flight hardware. The following correlations and observations were noted. The amplitude of dithering motion very strongly influenced the type and magnitude of damage. Sliding amounts on the order of 30% of the width of the line contact were judged to most readily produce fretting damage. There was observed an incubation period on the order of tens-of-thousands of cycles, and the incubation period was influenced by surface roughness, torque, and the motion extent. Fretting damage could be produced for any of the torques tested, and the severity of damage increased slightly with torque. Gear teeth having surface roughness of 0.7-0.8 micrometer were somewhat more resistant to fretting than were smoother surfaces.
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II
2017-01-13
value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 29.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 29.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
14 CFR 27.501 - Ground loading conditions: landing gear with skids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... exceed those obtained in a drop test of the gear with— (i) A drop height of 1.5 times that specified in § 27.725; and (ii) An assumed rotor lift of not more than 1.5 times that used in the limit drop tests...) The ground reactions rationally distributed along the bottom of the skid tube. (b) Vertical reactions...
Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test
NASA Technical Reports Server (NTRS)
Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.
2007-01-01
In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.
Feed-forward control of gear mesh vibration using piezoelectric actuators
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin
1994-01-01
This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.
Hazardous Waste Cleanup: GE Industrial of Puerto Rico, LLC in Vieques, Puerto Rico
GE is an approximately 4-acre facility involved in the manufacture of power fuses, auxiliary relays, and switch gear accessories. The site is located near the north coast of Vieques at the intersection of Rd 200 and Rd 201 in the Barrio Martino section of
Astronaut Sidney Gutierrez suspended by parachute during bailout training
1993-12-22
S93-50718 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, is suspended by his parachute gear during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Martin, James
2005-01-01
The EFF-TF provides a facility to experimentally evaluate thermal hydraulic issues through the use of highly effective non-nuclear testing. These techniques provide a rapid, more cost effective method of evaluating designs and support development risk mitigation when concerns are associated with non-nuclear aspects of space nuclear systems. For many systems, electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004. Initial evaluation of the SAFE-100a (19 module stainless steel/sodium heat pipe reactor with integral gas neat exchanger) was performed with tests up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium SAFE-100 heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37-fuel pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to field a near term space nuclear system. Efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
2009-09-23
STS095-S-010 (7 Nov. 1998) --- The space shuttle Discovery's main landing gear is just about to touch down on Runway 33 at the Shuttle Landing Facility at the Kennedy Space Center (KSC). Main gear touchdown was at 12:04 p.m. (EST), landing on orbit 135. Discovery returned to Earth with its crew of five astronauts and two payload specialists to successfully complete the nine-day mission. Onboard were astronauts Curtis L. Brown Jr., Steven W. Lindsey, Scott F. Parazynski, Stephen K. Robinson, Pedro Duque and payload specialists Chiaki Naito-Mukai and United States Senator John H. Glenn Jr. Duque represents the European Space Agency (ESA) and Mukai is with Japan's National Space Development Agency (NASDA). Photo credit: NASA
2009-09-23
STS095-S-012 (7 Nov. 1998) --- The space shuttle Discovery is about to lower its nose wheel following main gear touchdown on Runway 33 at the Shuttle Landing Facility at the Kennedy Space Center (KSC). Main gear touchdown was at 12:04 p.m. (EST), landing on orbit 135. Discovery returned to Earth with its crew of five astronauts and two payload specialists to successfully complete the nine-day mission. Onboard were astronauts Curtis L. Brown Jr., Steven W. Lindsey, Scott F. Parazynski, Stephen K. Robinson, Pedro Duque and payload specialists Chiaki Naito-Mukai and United States Senator John H. Glenn Jr. Duque represents the European Space Agency (ESA) and Mukai is with Japan's National Space Development Agency (NASDA). Photo credit: NASA
Prevention of Freezing and other Cold Weather Problems at Wastewater Treatment Facilities.
1985-07-01
an Archimedes screw conveyor is used to lift grit out of the sub- merged hopper. Initially, the conveyor was exposed and froze completely every...particular facility includes two primary clarifiers (in paral- lel), Archimedes screw pumps to lift wastewater to the top of the trickling filter...gal. of oil each and it takes much time to drain these gear boxes. At the headworks, an Archimedes screw is used to [if t the grit out of a submerged
29 CFR 1919.90 - Documentation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...(f) Test Supervision .10(b) Annual Examinations: (see Examinations). Assistant Secretary .2(d) Blocks...). Cargo Gear: Braking Devices .22 Chains .25 Damaged Components .20 Definition .2(b) Derrick Attachment...: (see Gear Certification). Shore-Based Materials Handling Devices .70(a) Chains, Limitations .25...
29 CFR 1919.90 - Documentation.
Code of Federal Regulations, 2012 CFR
2012-07-01
...(f) Test Supervision .10(b) Annual Examinations: (see Examinations). Assistant Secretary .2(d) Blocks...). Cargo Gear: Braking Devices .22 Chains .25 Damaged Components .20 Definition .2(b) Derrick Attachment...: (see Gear Certification). Shore-Based Materials Handling Devices .70(a) Chains, Limitations .25...
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
Study on Warm Forging Prosess of 45 Steel Asymmetric Gear
NASA Astrophysics Data System (ADS)
Qi, Yushi; Du, Zhiming; Sun, Hongsheng; Chen, Lihua; Wang, Changshun
2017-09-01
Asymmetric gear has complex structure, so using plastic forming technology to process the gear has problems of large forming load, short die life, bad tooth filling, and so on. To solve these problems, this paper presents a radial warm extrusion process of asymmetric gear to reduce the forming load and improve the filling in the toothed corner portion. Using the new mold and No. 45 steel to conducting forming experiments under the optimal forming parameters: billet temperature is 800°C, mold temperature is 250°C, the forming speed is 30mm/s, and the friction coefficient is 0.15, we can obtain the complete asymmetric gear with better surface and tooth filling. Asymmetric gears’ microstructure analysis and mechanical testing showed that the small grain evenly distributed in the region near the addendum circle with high strength; the area near the central portion of the gear had a coarse grain size, uneven distribution and low strength. Significant metal flow lines at the corner part of the gear indicated that a large number of late-forming metal flowed into the tooth cavity filling the corner portion.
Local meshing plane analysis as a source of information about the gear quality
NASA Astrophysics Data System (ADS)
Mączak, Jędrzej
2013-07-01
In the paper the application of the local meshing plane concept is discussed and applied for detecting of tooth degradation due to fatigue, and for overall gear quality assessment. Knowing the kinematic properties of the machine (i.e. gear tooth numbers) it is possible to modify the diagnostic signal in such a manner that its fragments will be linked to different rotating parts. This allows for presentation of either raw or processed gearbox signal in a form of three dimensional map on the plane "pinion teeth×gear teeth", called local meshing plane. The meshing plane in Cartesian coordinates z1×z2 allows for precise location and assessment of gear faults in terms of meshing quality of consecutive tooth pairs. Although the method was applied to simulated signals generated by the gearbox model, similar results were obtained for the measurement signals recorded during the back-to-back test stand experiment. The described method could be used for assessing the manufacturing quality of gears, the assembly quality as well as for the gear failure evaluation during normal exploitation.
Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction
NASA Technical Reports Server (NTRS)
Lewicki, David G.
2001-01-01
The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.
Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen
2012-01-01
The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile
1996-01-01
A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.
Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant
NASA Technical Reports Server (NTRS)
George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.
2014-01-01
A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.
2012-01-01
In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.
Characterization and Modeling of a Control Moment Gyroscope
2015-03-26
parallel, and angular directions [16]. The rotor is powered by a brushless DC motor rated to 557.9 mN-m (4.938 in-lbf) [4]. The motor has Hall effect ...mass balance installed on rotor housing Gimbal Balancing Test Procedures. To evaluate the effectiveness of the mass balance, the gimbal was tested...in which the rotor is running The vehicle-level model test (Section 4.9) predicts the effects of CMG gear lash on overall vehicle performance. Gear
CONOCOPHILLIPS FUEL EFFICIENT HIGH-PERFORMANCE(FEHP) SAE 75W90 REAR AXLE GEAR LUBRICANT
This report is on the Environmental Verification Test of a ConocoPhillips real axle gear lubricant to determine whether it could save vehicle fuel. It determined that a verifyable fuel savings could be measured.
The impact of various distance between axes of worm gear on torque value. Worm gear test stand
NASA Astrophysics Data System (ADS)
Sobek, M.; Baier, A.; Grabowski, Ł.
2017-08-01
Transferring both rotational and translational movements in systems used in the automotive industry is a very important and complex issue. In addition, the situation becomes much more difficult and complicated when the design of the transition system requires a high precision of operation as well as a well definite and long operating life. Such requirements are imposed on all components of today’s motor vehicles. However, particular attention is paid to the elements that directly or indirectly affect the safety of persons traveling in the vehicle. Such components are undoubtedly components included as parts of the steering system of the vehicle. Power steering systems have been present in motor vehicles for more than a century. They go through continuous metamorphosis and they are getting better and better. Current power steering systems are based on an electric motor and some kind of transmission. Depending on the position of the drive relative to the steering column, different configurations of the transmission are used. This article will cover issues related to tests of power steering gearing using a worm drive. The worm drive is a very specific example of a propulsion system that uses twisted axles. Normally, in this type of transition you can find two gear units with the axis mounted with a 90° angle between. The components of the worm drive are a worm and a worm gear, also called a worm wheel. In terms of the geometrical form, the worm resembles a helical spur gear. The shape of the worm is similar to the shape of a screw with a trapezoidal thread. A correct matching of these two components ensures proper operation of the entire transmission. Incorrect positioning of the components in relation to each other can significantly reduce the lifetime of the drive unit, and also lead to abnormal work, eg by raising the noise level. This article describes a test method of finding the appropriate distance between the axles of both worm drive units by testing the torque change during gear operation.
Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Morales, Wilfredo
2001-01-01
Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the friction between the contacting gear surfaces. The level of load affects the onset of this mechanism: the higher the load, the sooner coking takes place. Future work will investigate several other factors that could improve the already promising results that have been attained.
Performance determinants of fixed gear cycling during criteriums.
Babault, Nicolas; Poisson, Maxime; Cimadoro, Guiseppe; Cometti, Carole; Païzis, Christos
2018-06-17
Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO 2max , maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO 2max and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered.
Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program
NASA Technical Reports Server (NTRS)
Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason
2011-01-01
U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.
An Overview of Landing Gear Dynamics
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.
1999-01-01
One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility unwrap plastic for use in covering equipment as part of preparations for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
NASA Astrophysics Data System (ADS)
Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani
2018-01-01
The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.
Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS
Kuai, Moshen; Cheng, Gang; Li, Yong
2018-01-01
For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569
Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.
Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong
2018-03-05
For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.
A mathematical model of an active control landing gear for load control during impact and roll-out
NASA Technical Reports Server (NTRS)
Mcgehee, J. R.; Carden, H. D.
1976-01-01
A mathematical model of an active control landing gear (ACOLAG) was developed and programmed for operation on a digital computer. The mathematical model includes theoretical subsonic aerodynamics; first-mode wing bending and torsional characteristics; oleo-pneumatic shock strut with fit and binding friction; closed-loop, series-hydraulic control; empirical tire force-deflection characteristics; antiskid braking; and sinusoidal or random runway roughness. The mathematical model was used to compute the loads and motions for a simulated vertical drop test and a simulated landing impact of a conventional (passive) main landing gear designed for a 2268-kg (5000-lbm) class airplane. Computations were also made for a simply modified version of the passive gear including a series-hydraulic active control system. Comparison of computed results for the passive gear with experimental data shows that the active control landing gear analysis is valid for predicting the loads and motions of an airplane during a symmetrical landing. Computed results for the series-hydraulic active control in conjunction with the simply modified passive gear show that 20- to 30-percent reductions in wing force, relative to those occurring with the modified passive gear, can be obtained during the impact phase of the landing. These reductions in wing force could result in substantial increases in fatigue life of the structure.
Detection of Damage in Hydraulic Components by Acoustic Emission Techniques.
1984-04-01
49 ".-4.- Vane Pumps 50 Piston Pumps 61 Gear Pumps 66 VI FIELD TESTS (GEAR PUMPS) 108 Pump Cavitation 108 Internal Mechanical Damage Test Procedure...with Bad Bearing 60 5.6 a Frequency Spectrum (0-100 KHz) of Piston Pump. Cavitation Test, Inlet Pressure =1.55 atm (Normal) 63 5.6 b Frequency Spectrum...0-100 KHz) of Piston Pump. Cavitation Test, Inlet Pressure =1.38 atm (Incipient) 64. vi i . .e 0" S.. j~ * .’ *"-.i’.-..N.?.. .. ° .,LIST OF FIGURES
Evaluation of tissue interactions with mechanical elements of a transscleral drug delivery device.
Cohen, Sarah J; Chan, Robison V Paul; Keegan, Mark; Andreoli, Christopher M; Borenstein, Jeffrey T; Miller, Joan W; Gragoudas, Evangelos S
2012-03-12
The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device-one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.
International Space Station (ISS)
2000-05-01
This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.
The shock-absorbed system of the airplane landing gear
NASA Technical Reports Server (NTRS)
Callerio, Pietro
1940-01-01
A discussion is given of the behavior of the shock-absorbing system, consisting of elastic struts and tires, under landing, take-off, and taxying conditions, and a general formula derived for obtaining the minimum stroke required to satisfy the conditions imposed on the landing gear. Finally, the operation of some typical shock-absorbing systems are examined and the necessity brought out for taking into account, in dynamic landing-gear tests, the effect of the wing lift at the instant of contact with the ground.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
..., gears, pulleys, oil coolers, water pumps, cable, motors, thermostats, electrical components, wiring... merchandise is shipped from the facility and entered for U.S. consumption. Subzone status would further allow Cummins to realize logistical benefits through the use of weekly customs entry procedures. The application...
Norway's Day-Care Initiative: A Municipal Approach
ERIC Educational Resources Information Center
Nemeth, Beate; Lokken, Gisle
2012-01-01
Norway is gearing up to provide places in day care centres for all children aged between one and six and the need for more facilities has therefore increased substantially in recent years. In Tromso, the municipality has become closely involved in child-care pedagogics and architecture; a design competition it launched has brought rewarding…
2011-06-01
CAPE CANAVERAL, Fla. -- The crew members of space shuttle Endeavour's STS-134 mission undergo brief medical checks in the Crew Transport Vehicle before talking to media gathered on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Endeavour's final return from space completed the 16-day, 6.5-million-mile STS-134 mission. Main gear touchdown on the Shuttle Landing Facility's Runway 15 was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Kim Shiflett
Contact and Bending Durability Calculation for Spiral-Bevel Gears
NASA Technical Reports Server (NTRS)
Vijayakar, Sandeep
2016-01-01
The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.
Full-Scale Crash Test of an MD-500 Helicopter
NASA Technical Reports Server (NTRS)
Littell, Justin
2011-01-01
A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.
Design and reliability of a MEMS thermal rotary actuator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Michael Sean; Corwin, Alex David
2007-09-01
A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation direction to increase the available output force. This new design was tested and shown to operate in one case out to greater than 360 million cycles without any skipping, after which the test was stopped without failure. The output force was also measured as a function of input voltage (Figure 4), and shown to be higher than the previous design. The maximum force shown in the figure is a limit of the gauge used, not the actuator itself. Continued work for this design will focus on understanding the actuator performance while driving a load, as all current tests were performed with no load on the output gear.« less
NASA Technical Reports Server (NTRS)
Csomor, A.
1974-01-01
Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.
Zhang, Xiaodong; Hou, Chenggang
2017-01-01
The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes. PMID:29258164
Experimental and analytical transonic flutter characteristics of a geared-elevator configuration
NASA Technical Reports Server (NTRS)
Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.
1980-01-01
The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.
Niu, Hang; Zhang, Xiaodong; Hou, Chenggang
2017-12-16
The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.
NASA Technical Reports Server (NTRS)
1995-01-01
From 1993 to 1995, in conjunction with other NASA centers, NASA Dryden Flight Research Center, Edwards, California, used a Convair CV-990 airplane as a Landing Systems Research Aircraft (LSRA) to perform Space Shuttle tire tests. The results provided the Space Shuttle Program with data to support its flight rules and enabled it to resurface a grooved runway at Kennedy Space Center that had added unnecessary wear to the Space Shuttle tires. Tests were done using a unique fixture mounted in the center of the CV-990 fuselage, between the main landing gear. Landing gear systems from other aircraft could be attached to the test fixture, which lowered them to the runway surface during actual landings. The LSRA had the ability to reproduce the loads and speeds of the other aircraft, as well as simulate crosswind landing conditions in a safe, controlled environment. The video clip shows a landing on the concrete runway at Edwards, California on August 11, 1995, which concluded the Space Shuttle gear research program. As the Space Shuttle tire was lowered onto the surface, it was destroyed almost instantly. The rim scraped on the concrete, and stopped rolling as it became flat. It heated up and left a flaming trail of hot rubber and aluminum alloy particles. Notice how the fire quickly went out as the test gear was raised, indicating a safer condition than prevailed in a lakebed landing.
Spin-up studies of the Space Shuttle Orbiter main gear tire
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1988-01-01
One of the factors needed to describe the wear behavior of the Space Shuttle Orbiter main gear tires is their behavior during the spin-up process. An experimental investigation of tire spin-up processes was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility. During the investigation, the influence of various parameters such as forward speed and sink speed on tire spin-up forces were evaluated. A mathematical model was developed to estimate drag forces and spin-up times and is presented. The effect of prerotation was explored and is discussed. Also included is a means of determining the sink speed of the orbiter at touchdown based upon the appearance of the rubber deposits left on the runway during spinup.
Diaz Pauli, B; Wiech, M; Heino, M; Utne-Palm, A C
2015-03-01
This study assessed whether fishing gear was selective on behavioural traits, such as boldness and activity, and how this was related with a productivity trait, growth. Female guppies Poecilia reticulata were screened for their behaviour on the shy-bold axis and activity, and then tested whether they were captured differently by passive and active fishing gear, here represented by a trap and a trawl. Both gears were selective on boldness; bold individuals were caught faster by the trap, but escaped the trawl more often. Boldness and gear vulnerability showed weak correlations with activity and growth. The results draw attention to the importance of the behavioural dimension of fishing: selective fishing on behavioural traits will change the trait composition of the population, and might eventually affect resilience and fishery productivity. © 2015 The Fisheries Society of the British Isles.
Swornowski, Pawel J
2012-01-01
Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.
New procedure for gear fault detection and diagnosis using instantaneous angular speed
NASA Astrophysics Data System (ADS)
Li, Bing; Zhang, Xining; Wu, Jili
2017-02-01
Besides the extreme complexity of gear dynamics, the fault diagnosis results in terms of vibration signal are sometimes easily misled and even distorted by the interference of transmission channel or other components like bearings, bars. Recently, the research field of Instantaneous Angular Speed (IAS) has attracted significant attentions due to its own advantages over conventional vibration analysis. On the basis of IAS signal's advantages, this paper presents a new feature extraction method by combining the Empirical Mode Decomposition (EMD) and Autocorrelation Local Cepstrum (ALC) for fault diagnosis of sophisticated multistage gearbox. Firstly, as a pre-processing step, signal reconstruction is employed to address the oversampled issue caused by the high resolution of the angular sensor and the test speed. Then the adaptive EMD is used to acquire a number of Intrinsic Mode Functions (IMFs). Nevertheless, not all the IMFs are needed for the further analysis since different IMFs have different sensitivities to fault. Hence, the cosine similarity metric is introduced to select the most sensitive IMF. Even though, the sensitive IMF is still insufficient for the gear fault diagnosis due to the weakness of the fault component related to the gear fault. Therefore, as the final step, ALC is used for the purpose of signal de-noising and feature extraction. The effectiveness and robustness of the new approach has been validated experimentally on the basis of two gear test rigs with gears under different working conditions. Diagnosis results show that the new approach is capable of effectively handling the gear fault diagnosis i.e., the highlighted quefrency and its rahmonics corresponding to the rotary period and its multiple are displayed clearly in the cepstrum record of the proposed method.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann
2015-01-01
A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed in these preliminary tests. Based upon these results, self-mated 60NiTi gear teeth utilizing solid lubrication, is a reasonable approach for the target application.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Thomas, Fransua; Leak, Olivia Ann
2015-01-01
A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9N, 2.7ms) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via a secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed in these preliminary tests. Based upon these results, self-mated 60NiTi gear teeth utilizing solid lubrication, is a reasonable approach for the target application.
Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.
2017-01-01
A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.
Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.
2013-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.
NASA Technical Reports Server (NTRS)
1982-01-01
Philadelphia Gear Corporation used two COSMIC computer programs; one dealing with shrink fit analysis and the other with rotor dynamics problems in computerized design and test work. The programs were used to verify existing in-house programs to insure design accuracy by checking its company-developed computer methods against procedures developed by other organizations. Its specialty is in custom units for unique applications, such as Coast Guard ice breaking ships, steel mill drives, coal crusher, sewage treatment equipment and electricity.
Simulated Single Tooth Bending of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Handschuh, Robert, F.; Burke, Christopher
2012-01-01
Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.
A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab
2015-01-01
The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.
Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-11-01
Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.
Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission
NASA Astrophysics Data System (ADS)
Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui
2018-01-01
Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.
Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures
NASA Technical Reports Server (NTRS)
Choy, F. K.; Veillette, R. J.; Polyshchuk, V.; Braun, M. J.; Hendricks, R. C.
1996-01-01
This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system.
Gear comparison for sampling age-0 Mountain Whitefish in the Madison River, Montana
Boyer, Jan K.; Guy, Christopher S.; Webb, Molly A.H.; Horton, Travis B.; McMahon, Thomas E.
2017-01-01
The efficacy of various sampling gears for age-0 Mountain Whitefish Prosopium williamsoni is largely unknown, which makes it difficult to investigate recruitment and early life history dynamics for the species. We compared four gears: seine, backpack electrofisher, minnow trap, and lighted minnow trap. Gears were tested in backwaters, large channels, and small channels in the Madison River, Montana. No age-0 Mountain Whitefish were captured in minnow traps or lighted minnow traps. Mean CPUE of age-0 Mountain Whitefish was higher for seining (0.18 fish/m2; SD, 0.39) than for electrofishing (0.01 fish/m2; SD, 0.03), and the CV was lower for seining. A broader length distribution was sampled by seining (17–41 mm) than with electrofishing (21–36 mm). Age-0 Mountain Whitefish CPUE in seines was highest in backwaters. In channel sites, Mountain Whitefish presence was associated with areas of still or slow water ≥2 m2. Relative to the other sampling gears we evaluated, seining was the most efficient gear for sampling age-0 Mountain Whitefish in a lotic ecosystem.
2011-07-21
CAPE CANAVERAL, Fla. -- Workers measured and marked in bright green the letters "NLG" at the spot where space shuttle Atlantis' nose landing gear came to a stop after the vehicle's final return from space. Securing the space shuttle fleet's place in history on the STS-135 mission, Atlantis safely and successfully rounded out NASA's Space Shuttle Program on the Shuttle Landing Facility's Runway 15 at Kennedy Space Center in Florida. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-06-01
CAPE CANAVERAL, Fla. -- Streams of smoke trail from the main landing gear tires as space shuttle Endeavour touches down on the Shuttle Landing Facility's Runway 15 at NASA's Kennedy Space Center in Florida for the final time. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. On board are STS-134 Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Mike Fincke, Drew Feustel, Greg Chamitoff and the European Space Agency's Roberto Vittori. STS-134 delivered the Alpha Magnetic Spectrometer-2 (AMS) and the Express Logistics Carrier-3 (ELC-3) to the International Space Station. AMS will help researchers understand the origin of the universe and search for evidence of dark matter, strange matter and antimatter from the station. ELC-3 carried spare parts that will sustain station operations once the shuttles are retired from service. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Photo credit: NASA/Tony Gray
2011-07-21
CAPE CANAVERAL, Fla. -- Workers measured and marked in bright red the letters "MLG" at the spot where space shuttle Atlantis' main landing gear came to a stop after the vehicle's final return from space. Securing the space shuttle fleet's place in history on the STS-135 mission, Atlantis safely and successfully rounded out NASA's Space Shuttle Program on the Shuttle Landing Facility's Runway 15 at Kennedy Space Center in Florida. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, modules and equipment are being covered in plastic in preparation for the expected impact of Hurricane Frances on Saturday. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
Testing of Two-Speed Transmission Configurations for Use in Rotorcraft
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Stevens, Mark A.
2015-01-01
Large civil tiltrotors have been identified to replace regional airliners over medium ranges to alleviate next-generation air traffic. Variable rotor speed for these vehicles is required for efficient high-speed operation. Two-speed drive system research has been performed to support these advanced rotorcraft applications. Experimental tests were performed on two promising two-speed transmission configurations. The offset compound gear (OCG) transmission and the dual star/idler (DSI) planetary transmission were tested in the NASA Glenn Research Center variable-speed transmission test facility. Both configurations were inline devices with concentric input and output shafts and designed to provide 1:1 and 2:1 output speed reduction ratios. Both were designed for 200 hp and 15,000 rpm input speed and had a dry shift clutch configuration. Shift tests were performed on the transmissions at input speeds of 5,000, 8,000, 10,000, 12,500, and 15,000 rpm. Both the OCG and DSI configurations successfully perform speed shifts at full rated 15,000 rpm input speed. The transient shifting behavior of the OCG and DSI configurations were very similar. The shift clutch had more of an effect on shifting dynamics than the reduction gearing configuration itself since the same shift clutch was used in both configurations. For both OCG and DSI configurations, low-to-high speed shifts were limited in applied torque levels in order to prevent overloads on the transmission due to transient torque spikes. It is believed that the relative lack of appreciable slippage of the dry shifting clutch at operating conditions and pressure profiles tested was a major cause of the transient torque spikes. For the low-to-high speed shifts, the output speed ramp-up time slightly decreased and the peak out torque slightly increased as the clutch pressure ramp-down rate increased. This was caused by slightly less clutch slippage as the clutch pressure ramp-down rate increased.
29 CFR 1919.36 - Heat treatment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...
Code of Federal Regulations, 2010 CFR
2010-01-01
... main landing-gear system must be designed so that if it fails due to overloads during takeoff and... runway with any one or more landing-gear legs not extended without sustaining a structural component... with the provisions of this section may be shown by analysis or tests, or both. [Amdt. 23-34, 52 FR...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Landing Gear § 25.721 General. (a) The main... one or more landing gear legs not extended without sustaining a structural component failure that is... provisions of this section may be shown by analysis or tests, or both. [Amdt. 25-32, 37 FR 3969, Feb. 24...
29 CFR 1919.36 - Heat treatment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...
29 CFR 1919.36 - Heat treatment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...
29 CFR 1919.36 - Heat treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...
29 CFR 1919.36 - Heat treatment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emergency lighting and power systems in vessel control and propulsion machinery spaces. (5) Main propulsion...) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle... power failure alarm. (vi) Each remote steering gear power unit failure alarm. (vii) The full movement of...
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emergency lighting and power systems in vessel control and propulsion machinery spaces. (5) Main propulsion...) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle... power failure alarm. (vi) Each remote steering gear power unit failure alarm. (vii) The full movement of...
CV-990 Landing Systems Research Aircraft (LSRA) during Space Shuttle tire test
1995-08-02
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), lands on the Edwards AFB main runway in test of the space shuttle landing gear system. In this case, the shuttle tire failed, bursting into flame during the rollout. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. The CV-990 used as the LSRA was built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.
Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device
Cohen, Sarah J.; Chan, Robison V. Paul; Keegan, Mark; Andreoli, Christopher M.; Borenstein, Jeffrey T.; Miller, Joan W.; Gragoudas, Evangelos S.
2012-01-01
The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation. PMID:24300189
Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.
Campbell, Stuart J; Edgar, Graham J; Stuart-Smith, Rick D; Soler, German; Bates, Amanda E
2018-04-01
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing-gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no-take, hook-and-line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no-take zones) most benefited community- and family-level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community-level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing-gear types that affect biomass of a diverse set of reef fish families. © 2017 Society for Conservation Biology.
Stuck in gear: age-related loss of variable gearing in skeletal muscle.
Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel
2016-04-01
Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.
Advanced Gear Alloys for Ultra High Strength Applications
NASA Technical Reports Server (NTRS)
Shen, Tony; Krantz, Timothy; Sebastian, Jason
2011-01-01
Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.
Allied Forces. 1st Airborne Task Force. Field Order Number 1
1944-08-05
will install and operate radio set SCR- 284 in a directed net. KfCS Div Arty station when installed. Initially 460th F.A. Bn will control. principal...oilly will be used. Food will be consumed from original containers and mess kits’will not be used until prop er mess gear washing facilities are
Astronaut Stephen Oswald during emergency bailout training
NASA Technical Reports Server (NTRS)
1994-01-01
Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).
Energy Systems Integration Facility News | Energy Systems Integration
, 2018 News Release: NREL Taps Young to Oversee Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of geothermal energy as a renewable power source
Air resistance measurements on actual airplane parts
NASA Technical Reports Server (NTRS)
Weiselsberger, C
1923-01-01
For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.
Measurement of Gear Tooth Dynamic Friction
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
Testing a Wheeled Landing Gear System for the TH-57 Helicopter
1992-12-01
initial comparison was done using a structural analysis program, GIFTS , to simultaneously analyze an~i compare the gear systems. Experimental data was used...15 B. GIFTS PROGRAM RESULTS ............................ 15 1. Model...Element Total System ( GIFTS ) structural analysis program, which is resident oin the Aeiunauimia Euginme1ing Department computer system, an analysis
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2011 CFR
2011-01-01
....), equal to the static reaction on the particular unit with the rotorcraft in the most critical attitude. A rational method may be used in computing a main gear static reaction, taking into consideration the moment arm between the main wheel reaction and the rotorcraft center of gravity. W=W N for nose gear units...
14 CFR 29.725 - Limit drop test.
Code of Federal Regulations, 2010 CFR
2010-01-01
....), equal to the static reaction on the particular unit with the rotorcraft in the most critical attitude. A rational method may be used in computing a main gear static reaction, taking into consideration the moment arm between the main wheel reaction and the rotorcraft center of gravity. W=W N for nose gear units...
The design of a small flow optical sensor of particle counter
NASA Astrophysics Data System (ADS)
Zhan, Yongbo; zhang, Jianwei; Zeng, Jianxiong; Li, Bin; Chen, Lu
2018-01-01
Based on the principle of Mie scattering, we design a small flow optical sensor of particle counter. Firstly, laser illumination system was simulated and designed by ZEMAX optical design software, and the uniform light intensity of photosensitive area was obtained. The gas circuit structure was also designed according to the related theory of fluid mechanics. Then, the method of combining with MIST scattering calculation software and geometric modeling was firstly used to design spherical reflection system, on the basis of the formula of object-image distance. Finally, the test was conducted after the optical sensor placed in self-designed pre-amplification and high-speed processing circuit. The test results show that the counting efficiency of 0.3 μm gear is above 70%, 0.5 μm gear and 1.0 μm gear are both reached more than 90%, and the dispersion coefficient of each gear is very nearly the same, compared with the standard machine of Kanomax 3886 under the particle spraying flow of 2.5SCFH, 3.0SCFH, 3.5SCFH.
NASA Astrophysics Data System (ADS)
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
2002-10-18
KENNEDY SPACE CENTER, FLA. - A fire rescue truck stands by for safety reasons as Space Shuttle Atlantis slows to a stop on Runway 33 at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. .
2007-09-28
KENNEDY SPACE CENTER, FLA. -- From a lower level in the Orbiter Processing Facility, members of the STS-122 crew check out the landing gear on space shuttle Atlantis, overhead. Dressed in their blue suits are Mission Specialist Leland Melvin, Commander Stephen Frick, European Space Agency astronaut Leopold Eyharts and Pilot Alan Poindexter. Eyharts will be traveling to the International Space Station to join the Expedition 16 crew as a flight engineer. The crew is at Kennedy to take part in a crew equipment interface test, or CEIT, which helps familiarize them with equipment and payloads for the mission. Among the activities standard to a CEIT are harness training, inspection of the thermal protection system and camera operation for planned extravehicular activities, or EVAs. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
Automated inspection and precision grinding of spiral bevel gears
NASA Technical Reports Server (NTRS)
Frint, Harold
1987-01-01
The results are presented of a four phase MM&T program to define, develop, and evaluate an improved inspection system for spiral bevel gears. The improved method utilizes a multi-axis coordinate measuring machine which maps the working flank of the tooth and compares it to nominal reference values stored in the machine's computer. A unique feature of the system is that corrective grinding machine settings can be automatically calculated and printed out when necessary to correct an errant tooth profile. This new method eliminates most of the subjective decision making involved in the present method, which compares contact patterns obtained when the gear set is run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.
Enhanced automated spiral bevel gear inspection
NASA Technical Reports Server (NTRS)
Frint, Harold K.; Glasow, Warren
1992-01-01
Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.
Numerical Simulations for Landing Gear Noise Generation and Radiation
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Long, Lyle N.
2002-01-01
Aerodynamic noise from a landing gear in a uniform flow is computed using the Ffowcs Williams -Hawkings (FW-H) equation. The time accurate flow data on the surface is obtained using a finite volume flow solver on an unstructured and. The Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing gear surface and over a permeable surface away from the landing gear. Two geometric configurations are tested in order to assess the impact of two lateral struts on the sound level and directivity in the far-field. Predictions from the Ffowcs Williams-Hawkings code are compared with direct calculations by the flow solver at several observer locations inside the computational domain. The permeable Ffowcs Williams-Hawkings surface predictions match those of the flow solver in the near-field. Far-field noise calculations coincide for both integration surfaces. The increase in drag observed between the two landing gear configurations is reflected in the sound pressure level and directivity mainly in the streamwise direction.
Oil-air mist lubrication for helicopter gearing
NASA Technical Reports Server (NTRS)
Mcgrogan, F.
1976-01-01
The applicability of a once-through oil mist system to the lubrication of helicopter spur gears was investigated and compared to conventional jet spray lubrication. In the mist lubrication mode, cooling air was supplied at 366K (200 F) to the out of mesh location of the gear sets. The mist air was also supplied at 366K (200 F) to the radial position mist nozzle at a constant rate of 0.0632 mol/s (3 SCFM) per nozzle. The lubricant contained in the mist air varied between 32 - 44 cc/hour. In the recirculating jet spray mode, the flow rate was varied between 1893 - 2650 cc/hour. Visual inspection revealed the jet spray mode produced a superior surface finish on the gear teeth but a thermal energy survey showed a 15 - 20% increase in heat generated. The gear tooth condition in the mist lubrication mode system could be improved if the cooling air and lubricant/air flow ratio were increased. The test gearbox and the procedure used are described.
Gear Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2001-01-01
The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.