Science.gov

Sample records for gef efficient industrial

  1. Brief introduction of GEF efficient industrial boiler project in China

    SciTech Connect

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  2. Benchmarks for industrial energy efficiency

    SciTech Connect

    Amarnath, K.R.; Kumana, J.D.; Shah, J.V.

    1996-12-31

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  3. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  4. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  5. GEF small grants programme - overview

    SciTech Connect

    1997-12-01

    This paper describes the GEF small grants program which seeks to enhance the role of households and communities in conserving global biodiversity, mitigating global climate change, and protecting international waters. Grants up to $50k have been granted for projects in 33 countries, with plans for 12 other countries. The author describes the framework that the program works under, and the methodology followed in developing and planning projects. The approach to climate change concerns is to emphasize the development of non-carbon energy development activities to provide energy sources and economic development.

  6. [Eco-efficiency of Jiaozuo industry sectors].

    PubMed

    Du, Yan-chun; Jiang, Pan; Mao, Jian-su; Xu, Lin-yu

    2011-05-01

    Jiaozuo city was taken as a representative industry city and its industry energy consumption and industry emissions such as wastewater,solid waste, SO2, dust and so on were selected as corresponding environmental loads. The contribution rate to the environmental loads and eco-efficiencies of Jiaozuo industry sectors were analyzed quantitatively. The results show that, the industry sector with the highest energy eco-efficiency is Mining and Processing of Ferrous Metal Ores (FMM), 43.19 x 10(4) yuan x tce(-1), and its contribution rate is 0.003%; the one with the highest wastewater-related eco-efficiency is Manufacture of Transport Equipment (TRM), 3.58 x 10(4) yuan x t(-1), and its contribution rate is 0.0001%; the one with the highest solid waste-related eco-efficiency is Manufacture of Special Purpose Machinery( SMM), 323.22 x 10(4) yuan x t(-1), and its contribution rate is 0.005%; the one with the highest SO2 emission-related eco-efficiency is Manufacture of Special Purpose Machinery (SMM), 19.74 x 10(4) yuan x kg(-1), and its contribution rate is 0.0001%; the one with the highest dust emission-related eco-efficiency is Manufacture of Rubber (RUM), 6.75 x 10(4) yuan x kg(-1), and its contribution rate is 0.001%. It can be seen that the industry sector with high value of eco-efficiency always contributes less to its environmental load, which results that the industry sectors with high eco-efficiencies only play a weak role in leading the overall industry eco-efficiency. A succinct distance index (SDI) was proposed to estimate the differences between Jiaozuo and China average for their eco-efficiency of every industrial sector. The values of SDI range from -1 to 63.45, and the absolute value of SDI with positive value is much greater than that with negative value, which indicates that the values of eco-efficiencies for the advanced industry sectors of Jiaozuo city are much higher than those for China's industry sectors average.

  7. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  8. Recovering waste industrial heat efficiently

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  9. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  10. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  11. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  12. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  13. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  14. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  15. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal

    2014-05-01

    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is

  16. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  17. Synaptic Plasticity, a Symphony in GEF

    PubMed Central

    2010-01-01

    Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review, we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density and, thus, positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity. PMID:20543890

  18. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  19. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  20. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  1. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  2. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  3. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth.

    PubMed

    Greene, J R; Brown, N H; DiDomenico, B J; Kaplan, J; Eide, D J

    1993-12-01

    We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1- mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1- mutants. Fe(II) transporter activity and regulation is normal in gef1- mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1- deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1- cells and by mitochondrial fractions isolated from gef1- mutants was reduced 25-50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.

  4. 77 FR 20615 - DAU Industry Day: “Affordability, Efficiency, and the Industrial Base”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... of the Secretary DAU Industry Day: ``Affordability, Efficiency, and the Industrial Base'' AGENCY..., efficiency, and the industrial base. After a variety of presenters, the session will conclude with Mr. Frank... maintaining a healthy industrial base. Following the plenary session, each company will have the...

  5. [Eco-efficiency of industry sectors for China].

    PubMed

    Mao, Jian-Su; Zeng, Run; Du, Yan-Chun; Jiang, Pan

    2010-11-01

    Industry is the main source of resource consumption and environmental emissions of China, and the analyzing of eco-efficiencies for industrial sectors may provide essential information for the restructure of industrial system and the improvement of environmental quality of China. The industry composition was analyzed and the relationship between the industry and its environment was established. The energy consumption and the main environmental emissions such as wastewater, solid waste, industry SO2, smog, dust were chosen as the environmental impact categories, the corresponding eco-efficiencies of industry were defined and estimated for China in 2007. The results are as follows: the energy efficiency is 615.5 x 10(4) yuan x ktce(-1), the wastewater and solid waste related eco-efficiencies are 54.3 x 10(4) yuan x kt(-1) and 1.9 x 10(4) yuan x t(-1), respectively; industry SO2, smog, dust related eco-efficiencies are 59.6 x 10(4), 169.2 x 10(4) and 184.6 x 10(4) yuan x t(-1), respectively. The eco-efficiencies of 39 industry sectors were analyzed extensively and the results showed that, the distribution of industrial sectors in above eco-efficiencies is uneven, and the order of industrial sector in industry will vary with industry sector and eco-efficiency category. Meanwhile, for the same category of eco-efficiency, the values for different industry sectors may change from centuplicate to several thousand folds, therefore a great possibility for the improvement of industry eco-efficiency is exist in the restructure of industry system.

  6. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  7. Maximizing industrial infrastructure efficiency in Iceland

    NASA Astrophysics Data System (ADS)

    Ingason, Helgi Thor; Sigfusson, Thorsteinn I.

    2010-08-01

    As a consequence of the increasing aluminum production in Iceland, local processing of aluminum skimmings has become a feasible business opportunity. A recycling plant for this purpose was built in Helguvik on the Reykjanes peninsula in 2003. The case of the recycling plant reflects increased concern regarding environmental aspects of the industry. An interesting characteristic of this plant is the fact that it is run in the same facilities as a large fishmeal production installation. It is operated by the same personnel and uses—partly—the same equipment and infrastructure. This paper reviews the grounds for these decisions and the experience of this merger of a traditional fish melting industry and a more recent aluminum melting industry after 6 years of operation. The paper is written by the original entrepreneurs behind the company, who provide observations on how the aluminum industry in Iceland has evolved since the starting of Alur’s operation and what might be expected in the near future.

  8. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  9. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  10. Assessing global resource utilization efficiency in the industrial sector.

    PubMed

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy.

  11. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF.

    PubMed

    Yoshida, Tatsushi; Tsujioka, Masatsune; Honda, Shinya; Tanaka, Masato; Shimizu, Shigeomi

    2016-06-01

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1. PMID:27120804

  12. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF.

    PubMed

    Yoshida, Tatsushi; Tsujioka, Masatsune; Honda, Shinya; Tanaka, Masato; Shimizu, Shigeomi

    2016-06-01

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1.

  13. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF

    PubMed Central

    Tanaka, Masato; Shimizu, Shigeomi

    2016-01-01

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1. PMID:27120804

  14. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  15. Determinants of eco-efficiency in the Chinese industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2013-12-01

    This study measures productive inefficiency within the context of multi-environmental pollution (eco-efficiency) in the Chinese industrial sector. The weighted Russell directional distance model is applied to measure eco-efficiency using production technology. The objective is to clarify how external factors affect eco-efficiency. The major findings are that both foreign direct investment and investment for pollution abatement improve eco-efficiency as measured by air pollutant substances. A levy system for wastewater discharge improves eco-efficiency as measured by wastewater pollutant substances. However, an air pollutant levy does not significantly affect eco-efficiency as measured by air pollutants.

  16. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  17. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.

    1981-03-01

    A laboratory prototype burner which is compatible with a FM (frequency modulation) combustion control system where temperature control is accomplished by regulating the ratio of burner on-time to burner off-time was developed. This multifuel (natural gas and No. 2 fuel oil) high velocity burner is capable of repeated pulse ignition at maximum rated capability (1 million Btu-hour) with preheated air (from ambient to 1100F). A digital control in the FM mode was developed. Experimental data from tests in a laboratory furnace indicated that when applied to a batch type thermal process where appreciable turndown is presently obtained by excess air operation, the FM combustion system provides improvements in process fuel efficiency and gains in productivity.

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  20. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  1. What works for energy efficiency in large industry

    SciTech Connect

    Peach, H.G.; Bonnyman, C.E.; Ghislain, J.C.

    1997-07-01

    In recent years it has become clear that various groups interested in energy efficiency, including state energy agencies, utilities, and advocacy groups do not know how energy efficiency efforts are conceived and carried out within global industrial corporations. There are vast energy efficiency efforts underway of which almost no one knows, except those directly involved. Nevertheless, the criteria employed, the viewpoint on efficiency, the constraints, and the methods of evaluation are all either somewhat or even quite different in an industrial setting. This paper reports on work underway at Ford Motor Company. Ford Motor Company has demonstrated a major commitment to energy efficiency. This paper illustrates the ways energy efficiency is approached, explains something of how the internal process works. and provides examples of the types of projects recently completed and underway. This paper first reviews certain organizational features of large industrial Demand Side Management (DSM). Second, it explores the model provided by ISO 14001. Third, specific experience of Ford Motor Company, General Motors, and Chrysler in working cooperatively with the Detroit Edison electric utility is reported. Finally, the broader scope of energy efficiency at Ford is indicated, and the ethical nature of energy efficiency is asserted.

  2. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... efficiency of commercial and industrial pumps. (76 FR 34192, June 13, 2011). DOE subsequently published a notice of public meeting and availability of the Framework Document in the Federal Register (78 FR...

  3. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect

    Amelie Goldberg; Taylor, Robert P.; Hedman, Bruce

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  4. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  5. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  6. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  7. Energy efficiency programs and policies in the industrial sector in industrialized countries

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  8. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  9. Energy Matters: An invitation to Chat About Industrial Efficiency

    ScienceCinema

    Hogan, Kathleen

    2016-07-12

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  10. Energy Matters: An invitation to Chat About Industrial Efficiency

    SciTech Connect

    Hogan, Kathleen

    2011-01-01

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  11. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  12. Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2)

    PubMed Central

    Gomez-Cambronero, Julian

    2012-01-01

    PLD2 plays a key role in cell membrane lipid reorganization and as a key cell signaling protein in leukocyte chemotaxis and phagocytosis. Adding to the large role for a lipase in cellular functions, recently, our lab has identified a PLD2-Rac2 binding through two CRIB domains in PLD2 and has defined PLD2 as having a new function, that of a GEF for Rac2. PLD2 joins other major GEFs, such as P-Rex1 and Vav, which operate mainly in leukocytes. We explain the biochemical and cellular implications of a lipase-GEF duality. Under normal conditions, GEFs are not constitutively active; instead, their activation is highly regulated. Activation of PLD2 leads to its localization at the plasma membrane, where it can access its substrate GTPases. We propose that PLD2 can act as a “scaffold” protein to increase efficiency of signaling and compartmentalization at a phagocytic cup or the leading edge of a leukocyte lamellipodium. This new concept will help our understanding of leukocyte crucial functions, such as cell migration and adhesion, and how their deregulation impacts chronic inflammation. PMID:22750546

  13. Occupational safety regulation and economic efficiency: the railroad industry

    SciTech Connect

    French, M.T.

    1986-01-01

    This thesis develops a cost-benefit model for the railroad industry to estimate the efficient level of disabling injuries across class 1 carriers. The neoclassical cost function and the hedonic wage function serve as the estimating equations for the cost and benefit estimation, respectively. The cost function is fitted to a sample of thirty-five class 1 railroads in 1980. The hedonic wage function is fitted to a sample of 481 railroad industry employees for the same year. The efficient level of 1980 disabling injuries for each railroad is determined by setting the marginal cost (MC) of injury reduction equal to its marginal benefit (MB). In addition, the cost savings accruing to efficient regulatory reform are calculated for each firm as well as the entire industry. A second-best cost-minimizing regulatory policy is also introduced. The cost-minimizing level of injuries and resulting cost savings for individual firms and the total industry are estimated. The results support the prior hypothesis that MC exceeds MB for the vast majority of firms. Substantial cost savings are possible under reformed regulatory policy.

  14. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  15. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent. PMID:26301849

  16. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  17. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  18. Coevolution of RAC Small GTPases and their Regulators GEF Proteins

    PubMed Central

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions. PMID:27226705

  19. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  20. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  1. Haiti: energy efficiency in the sugar and manufacturing industries

    SciTech Connect

    Streicher, A.

    1985-03-28

    A review of energy use in Haiti, aimed at identifying possible projects to complement current A.I.D. support for institution building and energy planning within the Ministry of Mines and Energy Resources (MMRE), is presented. Key findings are that: (1) the sugar and manufacturing industries rely heavily on biomass fuels - wood, charcoal, and bagasse (sugar cane residue); and (2) demand for commercial energy and for electricity is growing rapidly despite supply constraints. The report calls for A.I.D. to: initiate a program to reduce biomass consumption (which is causing severe soil erosion and deforestation), especially in the small distilleries called guildives; collaborate with MMRE and the World Bank to develop a detailed workplan to promote energy efficiency in the guildives, focusing on technology development; help MMRE and the private sector to project Haiti's industrial energy and electricity needs through the year 2000; and sponsor a program of energy audits and efficiency improvements in the manufacturing sector.

  2. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  3. Technical Efficiency of Automotive Industry Cluster in Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-07-01

    Chennai is also called as Detroit of India due to its automotive industry presence producing over 40 % of the India's vehicle and components. During 2001-2002, diagnostic study was conducted on the Automotive Component Industries (ACI) in Ambattur Industrial Estate, Chennai and in SWOT analysis it was found that it had faced problems on infrastructure, technology, procurement, production and marketing. In the year 2004-2005 under the cluster development approach (CDA), they formed Chennai auto cluster, under public private partnership concept, received grant from Government of India, Government of Tamil Nadu, Ambattur Municipality, bank loans and stake holders. This results development in infrastructure, technology, procurement, production and marketing interrelationships among ACI. The objective is to determine the correlation coefficient, regression equation, technical efficiency, peer weights, slack variables and return to scale of cluster before and after the CDA. The methodology adopted is collection of primary data from ACI and analyzing using data envelopment analysis (DEA) of input oriented Banker-Charnes-Cooper model. There is significant increase in correlation coefficient and the regression analysis reveals that for one percent increase in employment and net worth, the gross output increases significantly after the CDA. The DEA solver gives the technical efficiency of ACI by taking shift, employment, net worth as input data and quality, gross output and export ratio as output data. From the technical score and ranking of ACI, it is found that there is significant increase in technical efficiency of ACI when compared to CDA. The slack variables obtained clearly reveals the excess employment and net worth and no shortage of gross output. To conclude there is increase in technical efficiency of not only Chennai auto cluster in general but also Chennai auto components industries in particular.

  4. Power losses and the efficiency of industrially used gearboxes

    NASA Astrophysics Data System (ADS)

    Čarnogurská, Mária; Příhoda, Miroslav; Širillová, Ľubomíra

    2014-08-01

    This article gives the methodology for stating power losses and the efficiency of a gearbox working in natural cooling using dimensional analysis. The methodology reflects experimental research which investigated the effect of a change in revolutions and loading the gearbox on power losses. At the same time, it describes the conditions under which the proposed method may be applied for industrial, helical bevel geared motors.

  5. Industrialization, energy efficiency and environmental protection in Asian industrializing countries: The role of technological change

    SciTech Connect

    Chen, X.

    1995-06-01

    Rapid industrialization in many Asian developing countries has caused an explosive growth in energy consumption and an unsustainable environmental pressure: local water and atmospheric pollution are compromising the results of economic growth with health and ecological destruction, whereas increasing emission of greenhouse gases contributes to the global climate change. The key question is how to orient this industrialization process toward a more energy efficient and environmentally sound direction in order to avoid the errors made by the present day developed countries during their industrialization period. Rapid uptake of technological innovation, fostered by a high turnover of the capital stock and a strong trade orientation, and advantages as latecomers in the industrialization process may help these countries to adopt the latest available technologies in the form of clean process innovations, thus ``leap-frogging`` some of the problems associated with industrialization and avoiding many of the more serious environmental impacts of old technologies. This paper focuses its analysis on the role of technologic change in the greening of industrialization processes of Asian developing countries. After analyzing the technological causes of energy and environmental problems created by the rapid industrialization process in these Asian countries, the paper suggests that not only should the ``end-of-the-pipe`` cleaning technologies be widely promoted, but also the clean process innovations be encouraged, thus tackling the pollution problems in their roots.

  6. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect

    Morrow, William; CreskoEngineering, Joe; Carpenter, Alberta; Masanet, Eric; Nimbalkar, Sachin U; Shehabi, Arman

    2013-01-01

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  7. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  8. Restructuring, ownership and efficiency in the electricity industry

    NASA Astrophysics Data System (ADS)

    Shanefelter, Jennifer Kaiser

    The first chapter considers improvements in productive efficiency that can result from a movement from a regulated framework to one that allows for market-based incentives for industry participants. Specifically, I look at the case of restructuring in the electricity generation industry. Using data from the electricity industry, this analysis considers the total effect of restructuring on one input to the production process, labor, as reflected in employment levels, payroll per employee and aggregate establishment payroll. Using concurrent payroll and employment data from non-utility ("merchant") and utility generators in both restructured and nonrestructured states, I estimate the effect of market liberalization, comprising both new entry and state-level legislation, on employment and payroll in this industry. I find that merchant owners of divested generation assets employ significantly fewer people, but that the payroll per employee is not significantly different from what workers at utility-owned plants are paid. As a result, the new merchant owners of these plants have significantly lower aggregate payroll expenses. Decomposing the effect into a merchant effect and a divestiture effect, I find that merchant ownership is the primary driver of these results. As documented in Chapter 1, merchant power plants have lower overall payroll costs than plants owned by utilities. Employment at merchant power plants is characterized by reduced staffing levels but higher average payroll per employee. A hypothesis set forth in that paper is that merchant generators employ fewer workers at the lower end of the wage distribution, resulting in a higher average payroll per employee. The second chapter of this paper examines whether employment at nonutility power plants, that is, those that are either divested or native merchant power plants, is skewed towards more skilled labor. This chapter also considers the extent to which the difference in employment levels is the result of

  9. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  10. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Burridge, Keith

    2016-01-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF. PMID:26985018

  11. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  12. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  13. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  14. Developing an energy efficiency service industry in Shanghai

    SciTech Connect

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10

    The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years

  15. Restructuring, ownership and efficiency in the electricity industry

    NASA Astrophysics Data System (ADS)

    Shanefelter, Jennifer Kaiser

    The first chapter considers improvements in productive efficiency that can result from a movement from a regulated framework to one that allows for market-based incentives for industry participants. Specifically, I look at the case of restructuring in the electricity generation industry. Using data from the electricity industry, this analysis considers the total effect of restructuring on one input to the production process, labor, as reflected in employment levels, payroll per employee and aggregate establishment payroll. Using concurrent payroll and employment data from non-utility ("merchant") and utility generators in both restructured and nonrestructured states, I estimate the effect of market liberalization, comprising both new entry and state-level legislation, on employment and payroll in this industry. I find that merchant owners of divested generation assets employ significantly fewer people, but that the payroll per employee is not significantly different from what workers at utility-owned plants are paid. As a result, the new merchant owners of these plants have significantly lower aggregate payroll expenses. Decomposing the effect into a merchant effect and a divestiture effect, I find that merchant ownership is the primary driver of these results. As documented in Chapter 1, merchant power plants have lower overall payroll costs than plants owned by utilities. Employment at merchant power plants is characterized by reduced staffing levels but higher average payroll per employee. A hypothesis set forth in that paper is that merchant generators employ fewer workers at the lower end of the wage distribution, resulting in a higher average payroll per employee. The second chapter of this paper examines whether employment at nonutility power plants, that is, those that are either divested or native merchant power plants, is skewed towards more skilled labor. This chapter also considers the extent to which the difference in employment levels is the result of

  16. GUIDE TO INDUSTRIAL ASSESSMENTS FOR POLLUTION PREVENTION AND ENERGY EFFICIENCY

    EPA Science Inventory

    This document presents an overview of industrial assessments and the general framework for conducting an assessment. It describes combined assessments for pollution prevention and energy, "industrial assessments," providing guidance to those performing assessments at industrial o...

  17. Gef1p, a New Guanine Nucleotide Exchange Factor for Cdc42p, Regulates Polarity in Schizosaccharomyces pombe

    PubMed Central

    Coll, Pedro M.; Trillo, Yadira; Ametzazurra, Amagoia; Perez, Pilar

    2003-01-01

    Schizosaccharomyces pombe cdc42+ regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1+ increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1+ causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1+ deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1Δ scd1Δ is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1+ or scd1+ causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed. PMID:12529446

  18. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  19. Two essays on efficiency in the electric power industry: Measurement of technical and allocative efficiency

    NASA Astrophysics Data System (ADS)

    Gardiner, John Corby

    The electric power industry market structure has changed over the last twenty years since the passage of the Public Utility Regulatory Policies Act (PURPA). These changes include the entry by unregulated generator plants and, more recently, the deregulation of entry and price in the retail generation market. Such changes have introduced and expanded competitive forces on the incumbent electric power plants. Proponents of this deregulation argued that the enhanced competition would lead to a more efficient allocation of resources. Previous studies of power plant technical and allocative efficiency have failed to measure technical and allocative efficiency at the plant level. In contrast, this study uses panel data on 35 power plants over 59 years to estimate technical and allocative efficiency of each plant. By using a flexible functional form, which is not constrained by the assumption that regulation is constant over the 59 years sampled, the estimation procedure accounts for changes in both state and national regulatory/energy policies that may have occurred over the sample period. The empirical evidence presented shows that most of the power plants examined have operated more efficiently since the passage of PURPA and the resultant increase of competitive forces. Chapter 2 extends the model used in Chapter 1 and clarifies some issues in the efficiency literature by addressing the case where homogeneity does not hold. A more general model is developed for estimating both input and output inefficiency simultaneously. This approach reveals more information about firm inefficiency than the single estimation approach that has previously been used in the literature. Using the more general model, estimates are provided on the type of inefficiency that occurs as well as the cost of inefficiency by type of inefficiency. In previous studies, the ranking of firms by inefficiency has been difficult because of the cardinal and ordinal differences between different types of

  20. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  1. GEF climate change operational strategy: Whither UNDP?

    SciTech Connect

    Hosier, R.

    1996-12-31

    The paper discusses aspects of the implementation of the program for climatic change which has been come about as part of the U.N. Framework Convention on Climate Change. Initial effort has focused on providing strategic information and help to countries, on achieving offsets in greenhouse gas emissions by energy conservation or carbon sinking, and an emphasis on development of renewable energy supplies. The U.N. Development Agency has limited funding to help support startup on projects submitted. Specific examples are discussed in the areas of energy conservation and energy efficiency, adoption of renewable energy sources, and reducing the long-term costs of low greenhouse gas-emitting energy technologies.

  2. A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF

    PubMed Central

    Ray, Pampa; Duarte, Lionel V.; Delprato, Anna; Zeghouf, Mahel; Antonny, Bruno; Campanacci, Valérie; Roy, Craig R.; Cherfils, Jacqueline

    2013-01-01

    The intracellular bacterial pathogen Legionella pneumophila (Lp) evades destruction in macrophages by camouflaging in a specialized organelle, the Legionella-containing vacuole (LCV), where it replicates. The LCV maturates by incorporating ER vesicles, which are diverted by effectors that Lp injects to take control of host cell membrane transport processes. One of these effectors, RalF, recruits the trafficking small GTPase Arf1 to the LCV. LpRalF has a Sec7 domain related to host ArfGEFs, followed by a capping domain that intimately associates with the Sec7 domain to inhibit GEF activity. How RalF is activated to function as a LCV-specific ArfGEF is unknown. We combined the reconstitution of Arf activation on artificial membranes with cellular expression and Lp infection assays, to analyze how auto-inhibition is relieved for LpRalF to function in vivo. We find that membranes activate LpRalF by about 1000 fold, and identify the membrane-binding region as the region that inhibits the Sec7 active site. It is enriched in aromatic and positively charged residues, which establish a membrane sensor to control the GEF activity in accordance with specific lipid environments. A similar mechanism of activation is found in RalF from Rickettsia prowazekii (Rp), with a different aromatic/charged residues ratio that results in divergent membrane preferences. The membrane sensor is the primary determinant of the localization of LpRalF on the LCV, and drives the timing of Arf activation during infection. Finally, we identify a conserved motif in the capping domain, remote from the membrane sensor, which is critical for RalF activity presumably by organizing its active conformation. These data demonstrate that RalF proteins are regulated by a membrane sensor that functions as a binary switch to derepress ArfGEF activity when RalF encounters a favorable lipid environment, thus establishing a regulatory paradigm to ensure that Arf GTPases are efficiently activated at specific

  3. Rab3-GEF Controls Active Zone Development at the Drosophila Neuromuscular Junction1,2,3

    PubMed Central

    Bae, Haneui; Chen, Shirui; Roche, John P.; Ai, Minrong; Wu, Chunlai

    2016-01-01

    Abstract Synaptic signaling involves the release of neurotransmitter from presynaptic active zones (AZs). Proteins that regulate vesicle exocytosis cluster at AZs, composing the cytomatrix at the active zone (CAZ). At the Drosophila neuromuscular junction (NMJ), the small GTPase Rab3 controls the distribution of CAZ proteins across release sites, thereby regulating the efficacy of individual AZs. Here we identify Rab3-GEF as a second protein that acts in conjunction with Rab3 to control AZ protein composition. At rab3-GEF mutant NMJs, Bruchpilot (Brp) and Ca2+ channels are enriched at a subset of AZs, leaving the remaining sites devoid of key CAZ components in a manner that is indistinguishable from rab3 mutant NMJs. As the Drosophila homologue of mammalian DENN/MADD and Caenorhabditis elegans AEX-3, Rab3-GEF is a guanine nucleotide exchange factor (GEF) for Rab3 that stimulates GDP to GTP exchange. Mechanistic studies reveal that although Rab3 and Rab3-GEF act within the same mechanism to control AZ development, Rab3-GEF is involved in multiple roles. We show that Rab3-GEF is required for transport of Rab3. However, the synaptic phenotype in the rab3-GEF mutant cannot be fully explained by defective transport and loss of GEF activity. A transgenically expressed GTP-locked variant of Rab3 accumulates at the NMJ at wild-type levels and fully rescues the rab3 mutant but is unable to rescue the rab3-GEF mutant. Our results suggest that although Rab3-GEF acts upstream of Rab3 to control Rab3 localization and likely GTP-binding, it also acts downstream to regulate CAZ development, potentially as a Rab3 effector at the synapse. PMID:27022630

  4. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect

    1997-09-01

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  5. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  6. Microtubules regulate GEF-H1 in response to extracellular matrix stiffness

    PubMed Central

    Heck, Jessica N.; Ponik, Suzanne M.; Garcia-Mendoza, Maria G.; Pehlke, Carolyn A.; Inman, David R.; Eliceiri, Kevin W.; Keely, Patricia J.

    2012-01-01

    Breast epithelial cells sense the stiffness of the extracellular matrix through Rho-mediated contractility. In turn, matrix stiffness regulates RhoA activity. However, the upstream signaling mechanisms are poorly defined. Here we demonstrate that the Rho exchange factor GEF-H1 mediates RhoA activation in response to extracellular matrix stiffness. We demonstrate the novel finding that microtubule stability is diminished by a stiff three-dimensional (3D) extracellular matrix, which leads to the activation of GEF-H1. Surprisingly, activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway did not contribute to stiffness-induced GEF-H1 activation. Loss of GEF-H1 decreases cell contraction of and invasion through 3D matrices. These data support a model in which matrix stiffness regulates RhoA through microtubule destabilization and the subsequent release and activation of GEF-H1. PMID:22593214

  7. Leukemia-associated RhoGEF (LARG) is a novel RhoGEF in cytokinesis and required for the proper completion of abscission

    PubMed Central

    Martz, Matthew K.; Grabocka, Elda; Beeharry, Neil; Yen, Timothy J.; Wedegaertner, Philip B.

    2013-01-01

    Proper completion of mitosis requires the concerted effort of multiple RhoGEFs. Here we show that leukemia-associated RhoGEF (LARG), a RhoA-specific RGS-RhoGEF, is required for abscission, the final stage of cytokinesis, in which the intercellular membrane is cleaved between daughter cells. LARG colocalizes with α-tubulin at the spindle poles before localizing to the central spindle. During cytokinesis, LARG is condensed in the midbody, where it colocalizes with RhoA. HeLa cells depleted of LARG display apoptosis during cytokinesis with unresolved intercellular bridges, and rescue experiments show that expression of small interfering RNA–resistant LARG prevents this apoptosis. Moreover, live cell imaging of LARG-depleted cells reveals greatly delayed fission kinetics in abscission in which a population of cells with persistent bridges undergoes apoptosis; however, the delayed fission kinetics is rescued by Aurora-B inhibition. The formation of a Flemming body and thinning of microtubules in the intercellular bridge of cells depleted of LARG is consistent with a defect in late cytokinesis, just before the abscission event. In contrast to studies of other RhoGEFs, particularly Ect2 and GEF-H1, LARG depletion does not result in cytokinetic furrow regression nor does it affect internal mitotic timing. These results show that LARG is a novel and temporally distinct RhoGEF required for completion of abscission. PMID:23885121

  8. General Description of Fission Observables: GEF Model Code

    NASA Astrophysics Data System (ADS)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  9. Characteristic occurrence patterns of micropollutants and their removal efficiencies in industrial wastewater treatment plants.

    PubMed

    Lee, In-Seok; Sim, Won-Jin; Kim, Chang-Won; Chang, Yoon-Seok; Oh, Jeong-Eun

    2011-02-01

    The concentrations and removal efficiencies of various kinds of micropollutants were investigated and the relationships between the input sources of industrial wastewater and occurrence patterns of each micropollutant were identified at nine on-site industrial wastewater treatment plants (WWTPs). The distribution pattern of each compound varied according to the WWTP type and several micropollutants were significantly related with specific industries: chlorinated phenols (ClPhs) with paper and metal industries, polycyclic aromatic hydrocarbons (PAHs) with petrogenic- and pyrogenic-related industries, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with the paper industry, and chlorinated benzenes (ClBzs) with dye-related industries. The activated sludge (AS) process was very efficient in the removal of ClPhs and PAHs, and the filtration process in the removal of PCDD/Fs and 1,4-dioxane. Generally, the removal efficiencies of each micropollutant varied according to the WWTP type. PMID:21140016

  10. Impact of information technology on productivity and efficiency in Iranian manufacturing industries

    NASA Astrophysics Data System (ADS)

    Abri, Amir Gholam; Mahmoudzadeh, Mahmoud

    2015-12-01

    The aim of this paper is to assess the impact of information technology (IT) on the productivity and efficiency of manufacturing industries in Iran. So, the data will be collected from 23 Iranian manufacturing industries during "2002-2006" and the methods such as DEA and panel data used to study the subject. Results obtained by the above two methods represent that IT has a positive and statistically significant effect on the productivity of manufacturing industries. It will be more in high IT-intensive industries than the other industries. But, there is no significant difference between the growth of labor productivity in IT-producing and IT-using industries.

  11. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14– (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  12. Performance analysis of CO(2) emissions and energy efficiency of metal industries in China.

    PubMed

    Shao, Chaofeng; Guan, Yang; Wan, Zheng; Chu, Chunli; Ju, Meiting

    2014-02-15

    Nonferrous metal industries play an important role in China's national economy and are some of the country's largest energy consumers. To better understand the nature of CO(2) emissions from these industries and to further move towards low-carbon development in this industry sector, this study investigates the CO(2) emissions of 12 nonferrous metal industries from 2003 to 2010 based on their life-cycle assessments. It then classifies these industries into four "emission-efficiency" types through cluster analysis. The results show that (1) the industrial economy and energy consumption of China's nonferrous metal industries have grown rapidly, although their recent energy consumption rate shows a declining trend. (2) The copper, aluminum, zinc, lead, and magnesium industries, classified as high-emission industries, are the main contributors of CO(2) emissions. The results have implications for policy decisions that aim to enhance energy efficiency, particularly for promoting the transformation of low-efficiency industries to high-efficiency ones. The study also highlights the important role of policy development in technological innovations, optimization, and upgrades, the reduction of coal proportion in energy consumption, and the advancement of new energy sources.

  13. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    SciTech Connect

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltage unbalance.

  14. Feed Efficiency: An Assessment of Current Knowledge from a Voluntary Subsample of the Swine Industry

    ERIC Educational Resources Information Center

    Flohr, Josh R.; Tokach, Mike D.; DeRouchey, Joel M.; Goodband, Robert D.; Dritz, Steve S.; Nelssen, Jim L.; Patience, John F.

    2014-01-01

    A voluntary sample of pork producers and advisers to the swine industry were surveyed about feed efficiency. The questionnaire was designed to accomplish three objectives: (a) determine the level of knowledge related to feed efficiency topics, (b) identify production practices used that influence feed efficiency, and (c) identify information gaps…

  15. 78 FR 7306 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence Avenue SW... Part 431 RIN 1904-AC55 Energy Efficiency Program for Commercial and Industrial Equipment: Public...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public...

  16. 78 FR 7304 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW... Part 431 RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment:...

  17. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  18. Ultrasound in the meat industry: general applications and decontamination efficiency.

    PubMed

    Turantaş, Fulya; Kılıç, Gülden Başyiğit; Kılıç, Birol

    2015-04-01

    This review summarizes the findings of research focused on ultrasound as a "green", nonchemical technology in the meat industry to improve meat quality and safety. An overview of the importance of the decontamination in meat processing and microbial inactivation using ultrasound combined with some other applications is provided along with results of high power ultrasound studies which have been applied and adapted in the meat industry. The research results revealed that ultrasound by itself or in combination with other processing and/or preservation methods has a potential for improving the general quality, marination and tenderness of meat, preventing microbial growth and recontamination in meat and meat products as well as for the determination of defects in carcasses and cleaning process equipment. This review will provide an interpretation of ultrasound applications, an up-to-date summary of published articles, and an overview of the microbial inactivation in meat and poultry and their products by ultrasound. Since there is a need for not only a pathogen-free product but also a quality product; this review also can be accepted as a report on the results of research in the field of meat quality improvements with ultrasound applications.

  19. Ultrasound in the meat industry: general applications and decontamination efficiency.

    PubMed

    Turantaş, Fulya; Kılıç, Gülden Başyiğit; Kılıç, Birol

    2015-04-01

    This review summarizes the findings of research focused on ultrasound as a "green", nonchemical technology in the meat industry to improve meat quality and safety. An overview of the importance of the decontamination in meat processing and microbial inactivation using ultrasound combined with some other applications is provided along with results of high power ultrasound studies which have been applied and adapted in the meat industry. The research results revealed that ultrasound by itself or in combination with other processing and/or preservation methods has a potential for improving the general quality, marination and tenderness of meat, preventing microbial growth and recontamination in meat and meat products as well as for the determination of defects in carcasses and cleaning process equipment. This review will provide an interpretation of ultrasound applications, an up-to-date summary of published articles, and an overview of the microbial inactivation in meat and poultry and their products by ultrasound. Since there is a need for not only a pathogen-free product but also a quality product; this review also can be accepted as a report on the results of research in the field of meat quality improvements with ultrasound applications. PMID:25613122

  20. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    SciTech Connect

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  1. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  2. The impact of energy prices on industrial energy efficiency and productivity

    SciTech Connect

    Boyd, G.A.

    1993-11-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers.

  3. Nanocoatings for High-Efficiency Industrial and Tooling Systems

    SciTech Connect

    Blau, P; Qu, J.; Higdon, C.

    2011-02-01

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program industry call. It consisted of three phases in which ORNL participated. In addition to Eaton Corporation and ORNL (CRADA), the project team included Ames Laboratory, who developed the underlying concept for aluminum-magnesium-boron based nanocomposite coatings [1], and Greenleaf, a small tooling manufacturer in western Pennsylvania. This report focuses on the portion of this work that was conducted by ORNL in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared by Eaton Corporation. Phase I, “Proof of Concept” ran for one year (September 1, 2006 to September 30, 2007) during which the applicability of AlMgB14 single-phase and nanocomposite coatings on hydraulic material coupons and components as well as on tool inserts was demonstrated.. The coating processes used either plasma laser deposition (PLD) or physical vapor deposition (PVD). During Phase I, ORNL conducted laboratory-scale pin-on-disk and reciprocating pin-on-flat tests of coatings produced by PLD and PVD. Non-coated M2 tool steel was used as a baseline for comparison, and the material for the sliding counterface was Type 52100 bearing steel since it simulated the pump materials. Initial tests were run mainly in a commercial hydraulic fluid named Mobil DTE-24, but some tests were later run in a water-glycol mixture as well. A tribosystem analysis was conducted to define the operating conditions of pump components and to help develop simulative tests in Phase II. Phase II, “Coating Process Scale-up” was intended to use scaled-up process to generate prototype parts. This involved both PLD practices at Ames Lab, and a PVD scale-up study at Eaton using its production capable equipment. There was also a limited scale-up study at Greenleaf for the tooling application. ORNL continued to conduct friction and wear

  4. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: INFLUENCE OF GAS COMPOSITION

    EPA Science Inventory

    The report gives results of a pilot-scale evaluation of the efficiency of industrial flares. The work (1) evaluated the effects of additional gas mixtures on flare stability and efficiency with and without pilot assist and (2) correlated flame stability for the different gas mixt...

  5. Trends in energy use and fuel efficiency in the US commercial airline industry

    SciTech Connect

    Smith, J.B.

    1981-12-01

    The record of the US commercial airline industry in improving fuel efficiency from 1973 to 1980 is examined. The components of the efficiency changes and how much fuel they saved are identified. The analysis focused only on the transportion of passengers, excluding helicopter service, commuter service, and flights devoted solely to transporting cargo. (MHR)

  6. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  7. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  8. Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency

    SciTech Connect

    Brown, Dr. Marilyn Ann; Cox, Matthew; Jackson, Roderick K; Lapsa, Melissa Voss

    2011-01-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  9. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis.

    PubMed

    Wei, Bin; Hercyk, Brian S; Mattson, Nicholas; Mohammadi, Ahmad; Rich, Julie; DeBruyne, Erica; Clark, Mikayla M; Das, Maitreyi

    2016-04-15

    The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, andscd1Δcells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes. PMID:26941334

  10. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis

    PubMed Central

    Wei, Bin; Hercyk, Brian S.; Mattson, Nicholas; Mohammadi, Ahmad; Rich, Julie; DeBruyne, Erica; Clark, Mikayla M.; Das, Maitreyi

    2016-01-01

    The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, and scd1Δ cells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes. PMID:26941334

  11. RhoGEF Specificity Mutants Implicate RhoA as a Target for Dbs Transforming Activity

    PubMed Central

    Cheng, Li; Rossman, Kent L.; Mahon, Gwendolyn M.; Worthylake, David K.; Korus, Malgorzata; Sondek, John; Whitehead, Ian P.

    2002-01-01

    Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. Like many RhoGEFs, the in vitro catalytic activity of Dbs is not limited to a single substrate. It can catalyze the exchange of GDP for GTP on RhoA and Cdc42, both of which are expressed in most cell types. This lack of substrate specificity, which is relatively common among members of the RhoGEF family, complicates efforts to determine the molecular basis of their transforming activity. We have recently determined crystal structures of several RhoGEFs bound to their cognate GTPases and have used these complexes to predict structural determinants dictating the specificities of coupling between RhoGEFs and GTPases. Guided by this information, we mutated Dbs to alter significantly its relative exchange activity for RhoA versus Cdc42 and show that the transformation potential of Dbs correlates with exchange on RhoA but not Cdc42. Supporting this conclusion, oncogenic Dbs activates endogenous RhoA but not endogenous Cdc42 in NIH 3T3 cells. Similarly, a competitive inhibitor that blocks RhoA activation also blocks Dbs-mediated transformation. In conclusion, this study highlights the usefulness of specificity mutants of RhoGEFs as tools to genetically dissect the multiple signaling pathways potentially activated by overexpressed or oncogenic RhoGEFs. These ideas are exemplified for Dbs, which is strongly implicated in the transformation of NIH 3T3 cells via RhoA and not Cdc42. PMID:12215546

  12. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies

    SciTech Connect

    Not Available

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  14. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  15. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    SciTech Connect

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  16. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs

    PubMed Central

    Bai, Yanyang; Xiang, Xiaoliang; Liang, Chunmei

    2015-01-01

    Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system. PMID:25879033

  17. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    SciTech Connect

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  18. Economic efficiency in fish farming: hope for agro-allied industries in Niagara

    NASA Astrophysics Data System (ADS)

    Kareem, R. O.; Dipeolu, A. O.; Aromolaran, A. B.; Williams, S. B.

    2008-02-01

    The challenge to increase the efficiency in food production level in Nigeria appears to be more urgent now than it has ever been in the history of the country. This is in view of the rapidly increasing population, the imminent decline in international economic and food aid and the need to conserve foreign exchange earnings through the production of raw materials to feed the growing industrial sector calls for urgent attention. The study was carried out in Ogun State. The descriptive statistics was used to determine the socio-economic characteristics of the respondents. The stochastic frontiers production analysis was applied to estimate the technical, allocative efficiency and economic efficiency among the fish farmers in the state. The results of economic efficiency revealed that fish farming is economically efficient with a range of between 55% and 84% efficiency level suggesting a favourable hope for the agro-allied industry such as poultry and cottage industries etc in the state. The result of hypothesis of inefficiency sources models showed that years of experience of fish farmers is significant at 1% probability level indicating the factor contributing to the fish farming experience in the state. Thus, the efficiency is due to the fact that farmers are experienced and fairly educated. On the basis of findings, policy is suggested to be directed towards the encouragement of entrepreneurs in fish farming in the state by providing enabling environment like credit facilities, public enlightenment programme and provision of social amenities like feeder roads, pipe-born water etc and given the fact that an increase in the level of formal education variable leads to less inefficiency, government policy should be focused on adopting the best technology (e.g. fast growing species and equipment) so as to improve the level of efficiency and investment which shall eventually lead to growth in output of fish farming and a lead to the establishment of agro

  19. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    SciTech Connect

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  20. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  1. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  2. The Failure of Eco-Efficiency to Guarantee Sustainability: Future Challenges for Industrial Ecology

    SciTech Connect

    Huesemann, Michael H.

    2004-12-01

    Western industrialized societies are inherently unsustainable in their present form because they depend almost exclusively on a finite supply of non-renewable minerals and fossil fuels. In addition, the resulting wastes cause various environmental problems ranging from widespread ecosystem disruptions to global warming. The most common response to these problems has been to promote technological improvements in eco-efficiency, which may be defined as ''adding maximum value with minimum resource use and minimum pollution'' (Welford 1997). While constructive, improvements in eco-efficiency alone will not guarantee sustainability of industrialized societies because the limited supplies of non-renewable minerals cannot be extended indefinitely via recycling and substitution, and a transition to renewable and nuclear energy sources would result in significant negative environmental impacts, particularly if deployed on a large scale. In addition, according to the second law of thermodynamics, industrial production technologies have inherently unavoidable environmental impacts. Finally, any hard won improvements in eco-efficiency will soon be negated if growth in population and consumption is allowed to continue. Consequently, long-term industrial sustainability can only be achieved through a transition to a steady-state economy where the total throughput of matter-energy is kept at a constant and sustainable level. This requires not only improvements in eco-efficiency but also a reassessment of fundamental societal values that erroneously equate material consumption and economic growth with well-being and happiness.

  3. Competition policy and the transition to a low-carbon, efficient electricity industry

    SciTech Connect

    Moss, Diana L.; Kwoka, John E. Jr.

    2010-08-15

    U.S. industries are facing intense pressures to become more energy efficient. Two concerns are driving this transition. One is the need to lower the carbon footprints of energy-intensive sectors. A second concern is the need to achieve energy security by reducing this country's reliance on foreign sources of energy supplies. (author)

  4. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  5. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  6. Critical function of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in mouse spermatogenesis.

    PubMed

    Okada, Keisuke; Miyake, Hideaki; Yamaguchi, Kohei; Chiba, Koji; Maeta, Kazuhiro; Bilasy, Shymaa E; Edamatsu, Hironori; Kataoka, Tohru; Fujisawa, Masato

    2014-02-28

    Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2(-)(/)(-) and wild-type mice. However, the testes of RA-GEF-2(-)(/)(-) male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2(-)(/)(-) males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2(-)(/)(-) mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2(-)(/)(-) testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice. PMID:24491570

  7. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.

    PubMed

    Marshall, Christopher B; Meiri, David; Smith, Matthew J; Mazhab-Jafari, Mohammad T; Gasmi-Seabrook, Geneviève M C; Rottapel, Robert; Stambolic, Vuk; Ikura, Mitsuhiko

    2012-08-01

    The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.

  8. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    SciTech Connect

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly

  9. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  10. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  11. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    PubMed Central

    Tao, Feng; Li, Ling; Xia, X. H.

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  12. Evaluation on the efficiency of biomass power generation industry in china.

    PubMed

    Sun, Jingqi; Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  13. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  14. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  15. RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation via the RhoGEF GEF-H1

    PubMed Central

    Biondini, Marco; Duclos, Guillaume; Meyer-Schaller, Nathalie; Silberzan, Pascal; Camonis, Jacques; Carla Parrini, Maria

    2015-01-01

    RalA and RalB proteins are key mediators of oncogenic Ras signaling in human oncogenesis. Herein we investigated the mechanistic contribution of Ral proteins to invasion of lung cancer A549 cells after induction of epithelial-mesenchymal transition (EMT) with TGFβ. We show that TGFβ-induced EMT promotes dissemination of A549 cells in a 2/3D assay, independently of proteolysis, by activating the Rho/ROCK pathway which generates actomyosin-dependent contractility forces that actively remodel the extracellular matrix, as assessed by Traction Force microscopy. RalB, but not RalA, is required for matrix deformation and cell dissemination acting via the RhoGEF GEF-H1, which associates with the Exocyst complex, a major Ral effector. Indeed, uncoupling of the Exocyst subunit Sec5 from GEF-H1 impairs RhoA activation, generation of traction forces and cell dissemination. These results provide a novel molecular mechanism underlying the control of cell invasion by RalB via a cross-talk with the Rho pathway. PMID:26152517

  16. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  17. An examination of competition and efficiency for hospital industry in Turkey.

    PubMed

    Özgen Narcı, Hacer; Ozcan, Yasar A; Şahin, İsmet; Tarcan, Menderes; Narcı, Mustafa

    2015-12-01

    The two particular reforms that have been undertaken under the Health Transformation Program in Turkey are enhancing efficiency and increasing competition. However, there is a lack of information about the relationship between competition and hospital efficiency. The purpose of this paper is to analyze the effect of competition on technical efficiency for the hospital industry in Turkey. The target population included all public and private general hospitals that were open in 2010 in Turkey (n = 1,224). From these, 1,103 hospitals met the selection criteria and were included in the study. Data were obtained from the Turkish Statistical Institute, the Ministry of Health, and through a field survey. Technical efficiency of hospitals was estimated using Data Envelopment Analysis with five outputs and five inputs. The intensity of competition among hospitals was measured by objective and subjective measures. Objective competition was measured using the Hirschman-Herfindahl Index, and subjective competition was measured based on the perceptions of top level hospital managers. Multivariate Tobit regression was used to investigate the relationship between competition and efficiency while controlling the effects of demand and supply characteristics of the market and the hospital traits. Efficiency results showed that 17% of hospitals were technically efficient. Regression analyses portrayed that the degree of competition among general hospitals did not have a statistically significant relationship with hospitals' technical efficiency. To conclude, hospital efficiency in Turkey does not seem to be affected by the intensity of competition among hospitals.

  18. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  19. Rabin8 regulates neurite outgrowth in both GEF activity–dependent and –independent manners

    PubMed Central

    Homma, Yuta; Fukuda, Mitsunori

    2016-01-01

    Many aspects of membrane-trafficking events are regulated by Rab-family small GTPases. Neurite outgrowth requires massive addition of proteins and lipids to the tips of growing neurites by membrane trafficking, and although several Rabs, including Rab8, Rab10, and Rab11, have been implicated in this process, their regulatory mechanisms during neurite outgrowth are poorly understood. Here, we show that Rabin8, a Rab8-guanine nucleotide exchange factor (GEF), regulates nerve growth factor (NGF)–induced neurite outgrowth of PC12 cells. Knockdown of Rabin8 results in inhibition of neurite outgrowth, whereas overexpression promotes it. We also find that Rab10 is a novel substrate of Rabin8 and that both Rab8 and Rab10 function during neurite outgrowth downstream of Rabin8. Surprisingly, however, a GEF activity–deficient isoform of Rabin8 also promotes neurite outgrowth, indicating the existence of a GEF activity–independent role of Rabin8. The Arf6/Rab8-positive recycling endosomes (Arf6/Rab8-REs) and Rab10/Rab11-positive REs (Rab10/Rab11-REs) in NGF-stimulated PC12 cells are differently distributed. Rabin8 localizes on both RE populations and appears to activate Rab8 and Rab10 there. These localizations and functions of Rabin8 are Rab11 dependent. Thus Rabin8 regulates neurite outgrowth both by coordinating with Rab8, Rab10, and Rab11 and by a GEF activity–independent mechanism. PMID:27170183

  20. RabGEFs are a major determinant for specific Rab membrane targeting.

    PubMed

    Blümer, Julia; Rey, Juliana; Dehmelt, Leif; Mazel, Tomáš; Wu, Yao-Wen; Bastiaens, Philippe; Goody, Roger S; Itzen, Aymelt

    2013-02-01

    Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via posttranslationally attached geranylgeranyl lipids. Each member of the manifold Rab family localizes specifically to a distinct membrane, but it is unclear how this specific membrane recruitment is achieved. Here, we demonstrate that Rab-activating guanosine diphosphate/guanosine triphosphate exchange factors (GEFs) display the minimal targeting machinery for recruiting Rabs from the cytosol to the correct membrane using the Rab-GEF pairs Rab5A-Rabex-5, Rab1A-DrrA, and Rab8-Rabin8 as model systems. Specific mistargeting of Rabex-5/DrrA/Rabin8 to mitochondria led to catalytic recruitment of Rab5A/Rab1A/Rab8A in a time-dependent manner that required the catalytic activity of the GEF. Therefore, RabGEFs are major determinants for specific Rab membrane targeting.

  1. Improving the resource efficiency of the German steel industry using material flow analysis

    NASA Astrophysics Data System (ADS)

    Müller, J. I. R.; Mayer, W. A.

    2015-03-01

    This article deals with the utilization of residues from the German steel industry with focus on electric arc furnace (EAF) dust. Material flow analysis is used to illustrate the steel industry by specific output flows of residues over the process chain. The objective of the underlying study was to find further, more efficient connections between process chains. In Germany EAF dust is mainly processed in the Waelz process to recover the contained zinc (open-loop recycling). About 67 % of the world's EAF dust, however, is landfilled and thereby an amount corresponding to 1 to 10 % of the annual production of zinc is lost for production processes. In this article treatment operations for EAF dust are compared through utility analysis with regard to resource efficiency.

  2. Generalized epilepsy with febrile seizures plus (GEFS+) spectrum: clinical manifestations and SCN1A mutations in Indonesian patients.

    PubMed

    Herini, Elisabeth Siti; Gunadi; Harahap, Indra Sari Kusuma; Yusoff, Surini; Morikawa, Satoru; Patria, Suryono Yudha; Nishimura, Noriyuki; Sunartini; Sutaryo; Takada, Satoshi; Matsuo, Masafumi; Nishio, Hisahide

    2010-06-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is a childhood genetic epilepsy syndrome. GEFS+ includes a wide spectrum of clinical manifestations, and SCN1A mutations have frequently been reported among the GEFS+-related gene abnormalities. In this study, to clarify the distributions of the clinical subtypes, we analyzed 34 families with GEFS+ in Indonesia using the hospital records of the patients and questionnaires for the family members. The number of patients with febrile seizures plus (FS+), FS+ and afebrile generalized/partial seizures, borderline severe myoclonic epilepsy in infancy (SMEB) and severe myoclonic epilepsy in infancy (SMEI) were 9, 11, 7, and 7, respectively. Most patients had a family history of febrile seizures. Next, we performed molecular analyses to clarify the contributions of SCN1A mutations to the development of the GEFS+ subtypes. Only 3 of 34 probands showed SCN1A mutations. These mutations were two missense mutations, p.V1612I and p.C1756G, in two patients with SMEI and SMEB, and one silent mutation, p.G1762G, in a patient with FS+ and afebrile partial seizures. In conclusion, the majority of GEFS+ patients in Indonesia were not associated with SCN1A mutations. To detect the GEFS+-causing mutations, we must search and analyze other genes in these patients.

  3. Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases.

    PubMed

    Cabrera, Margarita; Ungermann, Christian

    2013-10-01

    Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.

  4. Efficiency in the United States electric industry: Transaction costs, deregulation, and governance structures

    NASA Astrophysics Data System (ADS)

    Peterson, Carl

    Transaction costs economics (TCE) posits that firms have an incentive to bypass the market mechanisms in situations where the cost of using the market is prohibitive. Vertical integration, among other governance mechanisms, can be used to minimize the transactions costs associated with the market mechanism. The study analyses different governance mechanisms, which range from complete vertical integration to the use of market mechanisms, for firms in the US electric sector. This sector has undergone tremendous change in the past decade including the introduction of retail competition in some jurisdictions. As a result of the push toward deregulation of the industry, vertically integration, while still significant in the sector, has steadily been replaced by alternative governance structures. Using a sample of 136 investor-owned electric utilities that reported data the US Federal Energy Regulatory Commission between 1996 and 2002, this study estimates firm level efficiency using Data Envelopment Analysis (DEA) and relates these estimates to governance structure and public policies. The analysis finds that vertical integration is positively related to firm efficiency, although in a non-linear fashion suggesting that hybrid governance structures tend to be associated with lower efficiency scores. In addition, while some evidence is found for negative short-term effects on firm efficiency from the choice to deregulate, this result is sensitive to DEA model choice. Further, competition in retail markets is found to be positively related to firm level efficiency, but the retreat from deregulation, which occurred after 2000, is negatively associated with firm-level efficiency. These results are important in the ongoing academic and public policy debates concerning deregulation of the electric section and indicate that vertical economies remain in the industry, but that competition has provided incentives for improving firm level efficiency.

  5. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few

  6. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  7. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  8. Identification of critical residues in G(alpha)13 for stimulation of p115RhoGEF activity and the structure of the G(alpha)13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex.

    PubMed

    Hajicek, Nicole; Kukimoto-Niino, Mutsuko; Mishima-Tsumagari, Chiemi; Chow, Christina R; Shirouzu, Mikako; Terada, Takaho; Patel, Maulik; Yokoyama, Shigeyuki; Kozasa, Tohru

    2011-06-10

    RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).

  9. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    PubMed

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (P<0.05) faster than that observed with synthetic wastewater (with similar CN concentration). A combined application of H(2)O(2)/O(3) was found to be the best option for maximum CN destruction. This treatment allows CN to reach the regional/international limit (of 0.02 mg/L) for safe industrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  10. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  11. Opportunities to improve energy efficiency in the U.S. pulp and paper industry

    SciTech Connect

    Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Krushch, Marta; Price, Lynn

    2001-02-02

    This paper analyzes the energy efficiency and carbon dioxide emissions reductions potential of the U.S. pulp and paper industry, one of the largest energy users in the U.S. manufacturing sector. We examined over 45 commercially available state-of-the-art technologies and measures. The measures were characterized, and then ordered on the basis of cost-effectiveness. The report indicates that there still exists significant potential for energy savings and carbon dioxide emissions reduction in this industry. The cost-effective potential for energy efficiency improvement is defined as having a simple pay-back period of three years or less. Not including increased recycling the study identifies a cost-effective savings potential of 16% of the primary energy use in 1994. Including increased recycling leads to a higher potential for energy savings, i.e. a range of cost-effective savings between 16% and 24% of primary energy use. Future work is needed to further elaborate on key energy efficiency measures identified in the report including barriers and opportunities for increased recycling of waste paper.

  12. Analyzing industrial furnace efficiency using comparative visualization in a virtual reality environment.

    SciTech Connect

    Freitag, L.; Urness, T.

    1999-02-10

    We describe an interactive toolkit used to perform comparative analysis of two or more data sets arising from numerical simulations. Several techniques have been incorporated into this toolkit, including (1) successive visualization of individual data sets, (2) data comparison techniques such as computation and visualization of the differences between data sets, and (3) image comparison methods such as scalar field height profiles plotted in a common coordinate system. We describe each technique in detail and show example usage in an industrial application aimed at designing an efficient, low-NOX burner for industrial furnaces. Critical insights are obtained by interactively adjusted color maps, data culling, and data manipulation. New paradigms for scaling small values in the data comparison technique are described. The display device used for this application was the CAVE virtual reality theater, and we describe the user interface to the visualization toolkit and the benefits of immersive 3D visualization for comparative analysis.

  13. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  14. The Productivity and Technical Efficiency of Textile Industry Clusters in India

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2013-09-01

    The Indian textile industry is one the largest and oldest sectors in the country and among the most important in the economy in terms of output, investment and employment (E). The sector employs nearly 35 million people and after agriculture, is the second-highest employer in the country. Its importance is underlined by the fact that it accounts for around 4 % of Gross Domestic Product, 14 % of industrial production, 9 % of excise collections, 18 % of E in the industrial sector, and 16 % of the country's total exports (Ex) earnings. For inclusive growth and sustainable development most of the Textile Manufacturers has adopted the Cluster Development Approach. The objective is to study the physical and financial performance, correlation, regression and Data Envelopment Analysis by measuring technical efficiency (Ø), peer weights (λi), input slacks (S-), output slacks (S+) and return to scale of four textile clusters (TCs) namely IchalKaranji Textile Cluster, Maharashtra; Ludhiana Textile Cluster, Punjab; Tirupur Textile Cluster, Tamilnadu and Panipat Textile Cluster, Haryana in India. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper Model by taking number of units (U) and number of E as inputs and sales (S) and Ex in crores as an outputs. The non-zero λi's represents the weights for efficient clusters. The S > 0 obtained for one TC reveals the excess U (S-) and E (S-) and shortage in sales (S+) and Ex (S+). To conclude, for inclusive growth and sustainable development, the inefficient TC should increase their S/turnover and Ex, as decrease in number of enterprises and E is practically not possible. Moreover for sustainable development, the TC should strengthen infrastructure interrelationships, technology interrelationships, procurement interrelationships, production interrelationships and marketing interrelationships to decrease cost, increase productivity and efficiency to compete in the world market.

  15. Mechanistic insight into GPCR-mediated activation of the microtubule-associated RhoA exchange factor GEF-H1.

    PubMed

    Meiri, David; Marshall, Christopher B; Mokady, Daphna; LaRose, Jose; Mullin, Michael; Gingras, Anne-Claude; Ikura, Mitsuhiko; Rottapel, Robert

    2014-01-01

    The RhoGEF GEF-H1 can be sequestered in an inactive state on polymerized microtubules by the dynein motor light-chain Tctex-1. Phosphorylation of GEF-H1 Ser885 by PKA or PAK kinases creates an inhibitory 14-3-3-binding site. Here we show a new mode of GEF-H1 activation in response to the G-protein-coupled receptor (GPCR) ligands lysophosphatidic acid (LPA) or thrombin that is independent of microtubule depolymerization. LPA/thrombin stimulates disassembly of the GEF-H1:dynein multi-protein complex through the concerted action of Gα and Gβγ. Gα binds directly to GEF-H1 and displaces it from Tctex-1, while Gβγ binds to Tctex-1 and disrupts its interaction with the dynein intermediate chain, resulting in the release of GEF-H1. Full activation of GEF-H1 requires dephosphorylation of Ser885 by PP2A, which is induced by thrombin. The coordinated displacement of GEF-H1 from microtubules by G-proteins and its dephosphorylation by PP2A demonstrate a multistep GEF-H1 activation and present a unique mechanism coupling GPCR signalling to Rho activation. PMID:25209408

  16. Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain.

    PubMed

    Chen, Zhe; Guo, Liang; Hadas, Jana; Gutowski, Stephen; Sprang, Stephen R; Sternweis, Paul C

    2012-07-20

    RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated Gα(13) in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of Gα(13) docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the α3b helix of DH reduces binding to activated Gα(13) and ablates the stimulation of p115 by Gα(13). Complementary mutations at the predicted DH-binding site in the αB-αC loop of the helical domain of Gα(13) also affect stimulation of p115 by Gα(13). Although the GAP activity of p115 is not required for stimulation by Gα(13), two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of Gα(13) to the RH domain facilitates direct association of Gα(13) to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.

  17. Novel Dictyostelium unconventional myosin, MyoM, has a putative RhoGEF domain.

    PubMed

    Oishi, N; Adachi, H; Sutoh, K

    2000-05-26

    We have cloned a novel unconventional myosin gene myoM in Dictyostelium. Phylogenetic analysis of the motor domain indicated that MyoM does not belong to any known subclass of the myosin superfamily. Following the motor domain, two calmodulin-binding IQ motifs, a putative coiled-coil region, and a Pro, Ser and Thr-rich domain, lies a combination of dbl homology and pleckstrin homology domains. These are conserved in Rho GDP/GTP exchange factors (RhoGEFs). We have identified for the first time the RhoGEF domain in the myosin sequences. The growth and terminal developmental phenotype of Dictyostelium cells were not affected by the myoM(-) mutation. Green fluorescent protein-tagged MyoM, however, accumulated at crown-shaped projections and membranes of phase lucent vesicles in growing cells, suggesting its possible roles in macropinocytosis. PMID:10828443

  18. A novel SCN1A mutation associated with severe GEFS+ in a large South American pedigree.

    PubMed

    Pineda-Trujillo, N; Carrizosa, J; Cornejo, W; Arias, W; Franco, C; Cabrera, D; Bedoya, G; Ruíz-Linares, A

    2005-03-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is an inherited epileptic syndrome with a marked clinical and genetic heterogeneity. Here we report the molecular characterization of a large pedigree with a severe clinical form of GEFS+. Genetic linkage analysis implied the involvement of the FEB3 in the disease phenotype of this family (parametric two-point lod-score of 2.2). Sequencing of the SCN1A gene revealed a novel aspartic acid for glycine substitution at position 1742 of this sodium channel subunit. The amino-acid replacement lies in the pore-forming region of domain IV of SCN1A. Our observations are consistent with the genotype-phenotype correlation studies suggesting that mutations in the pore-forming loop of SCN1A can lead to a clinically more severe epileptic syndrome. PMID:15694566

  19. GxcDD, a putative RacGEF, is involved in Dictyostelium development

    PubMed Central

    Mondal, Subhanjan; Neelamegan, Dhamodharan; Rivero, Francisco; Noegel, Angelika A

    2007-01-01

    Background Rho subfamily GTPases are implicated in a large number of actin-related processes. They shuttle from an inactive GDP-bound form to an active GTP-bound form. This reaction is catalysed by Guanine nucleotide exchange factor (GEFs). GTPase activating proteins (GAPs) help the GTPase return to the inactive GDP-bound form. The social amoeba Dictyostelium discoideum lacks a Rho or Cdc42 ortholog but has several Rac related GTPases. Compared to our understanding of the downstream effects of Racs our understanding of upstream mechanisms that activate Rac GTPases is relatively poor. Results We report on GxcDD (Guanine exchange factor for Rac GTPases), a Dictyostelium RacGEF. GxcDD is a 180-kDa multidomain protein containing a type 3 CH domain, two IQ motifs, three PH domains, a RhoGEF domain and an ArfGAP domain. Inactivation of the gene results in defective streaming during development under different conditions and a delay in developmental timing. The characterization of single domains revealed that the CH domain of GxcDD functions as a membrane association domain, the RhoGEF domain can physically interact with a subset of Rac GTPases, and the ArfGAP-PH tandem accumulates in cortical regions of the cell and on phagosomes. Our results also suggest that a conformational change may be required for activation of GxcDD, which would be important for its downstream signaling. Conclusion The data indicate that GxcDD is involved in proper streaming and development. We propose that GxcDD is not only a component of the Rac signaling pathway in Dictyostelium, but is also involved in integrating different signals. We provide evidence for a Calponin Homology domain acting as a membrane association domain. GxcDD can bind to several Rac GTPases, but its function as a nucleotide exchange factor needs to be studied further. PMID:17584488

  20. Improved Methods for Identifying, Applying, and Verifying Industrial Energy Efficiency Measures

    NASA Astrophysics Data System (ADS)

    Harding, Andrew Chase

    Energy efficiency is the least expensive source of additional energy capacity for today's global energy expansion. Energy efficiency offers additional benefits of cost savings for consumers, reduced environmental impacts, and enhanced energy security. The challenges of energy efficiency include identifying potential efficiency measures, quantifying savings, determining cost effectiveness, and verifying savings of installed measures. This thesis presents three separate chapters which address these challenges. The first is a paper presented at the 2014 industrial energy technology conference (IETC) that details a compressed air system project using the systems approach to identify cost effective measures, energy intensity to project savings, and proper measurement and verification (M&V) practices to prove that the savings were achieved. The second is a discussion of proper M&V techniques, how these apply to international M&V protocols, and how M&V professionals can improve the accuracy and efficacy of their M&V activities. The third is an energy intensity analysis of a poultry processing facility at a unit operations level, which details the M&V practices used to determine the intensities at each unit operation and compares these to previous works.

  1. ArhGEF18 regulated Rho signaling in vertebrate retina development

    PubMed Central

    Loosli, Felix

    2013-01-01

    Epithelia consisting of highly polarized columnar cells contribute to many organs during development, including the central nervous system. Epithelial organization is essential for proliferation and differentiation of progenitor cells and subsequent organ morphology and function. Small GTPases of the Rho family are important regulators of cellular morphology and polarity. We recently identified ArhGEF18 as a key regulator of RhoA-Rock2 signaling that is crucial for maintenance of polarity in the vertebrate retinal epithelium. ArhGEF18 is required to maintain apico-basal polarity, localization of tight junctions and cortical actin, thus shaping cellular morphology. Loss of ArhGEF18 activity results in increased proliferation and reduced cell cycle exit. Together, these perturbations result in a severely misshaped embryonic eye, where the stereotype arrangement of retinal cell types is randomized. Our findings reveal an important role for RhoA-Rock2 signaling to maintain apico-basal polarity in retinal progenitor cells, which is essential for subsequent cellular differentiation, morphology and eventually organ function. PMID:24231347

  2. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  3. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1.

    PubMed

    Evelyn, Chris R; Duan, Xin; Biesiada, Jacek; Seibel, William L; Meller, Jaroslaw; Zheng, Yi

    2014-12-18

    Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

  4. The regulation of RhoGEF Lfc by dynein light chain Tctex-1

    NASA Astrophysics Data System (ADS)

    Balan, Marc

    Lfc is a guanine nucleotide exchange factor (GEF) that activates the small GTPase RhoA, and its GEF activity is tightly regulated through protein-protein interactions, phosphorylation, and cellular localization. Lfc is anchored to microtubules through its interaction with the dynein light chain Tctex-1, which results in inhibition of Lfc's GEF activity. Here we present a crystallographic structure of Tctex-1 in complex with Lfc with residues 143-155 of Lfc bound at the Tctex-1 dimer interface. Structural alignment of our structure with Tctex-1 in complex with the dynein intermediate chain (DIC) shows the binding site of the DIC peptide and Lfc substantially overlap. Biochemical evidence, NMR perturbations assays and intrinsic fluorescence provide structural validation and support an extension of the Lfc binding site to the andalpha;-helices that may accommodate additional contact points with Tctex-1. We postulate a potential mechanism for Lfcandrsquo;s recruitment to the microtubules through a tripartite complex with Tctex-1 and DIC.

  5. miR-194 is a negative regulator of GEF-H1 pathway in melanoma.

    PubMed

    Guo, Bingyu; Hui, Qiang; Zhang, Yu; Chang, Peng; Tao, Kai

    2016-10-01

    The incidence and associated mortality of melanoma continues to increase worldwide. At present, there is no curative therapy for advanced stage of melanoma. It is necessary to find new indicators of prognosis and therapeutic targets. Increasing evidence shows that miRNA can provide potential candidate biomarkers for melanoma and therapeutic targets. GEF-H1, a regulator of RhoA, as oncogenic driver in melanoma, promotes the growth and invasion of melanoma. miR-194 is a tumor-suppressor gene in multiple tumors, such as bladder and non-small cell lung cancer, and clear cell renal cell carcinoma. In the present study, we demonstrated that GEF-H1 serves as target of miR-194. Overexpression of miR-194 downregulates the GEF-H1/RhoA pathway, inhibits melanoma cancer cell proliferation and metastasis. Furthermore, miR-194 expression is negatively associated with tumor-node-metastasis (TNM) stages. Briefly, our findings provided new theoretical basis for melanoma treatment. PMID:27573550

  6. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  7. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.

    2015-10-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  8. Energy efficiency in pumping systems: Experience and trends in pulp and paper industry

    SciTech Connect

    Tutterow, V.

    1999-07-01

    Approximately two-thirds of all US industrial electricity consumption is by electric motors. Pumping systems account for an estimated 27% of this electrical motor consumption. A recent study funded by the US Department of Energy estimates that optimizing the energy efficiency of these pumping systems could reduce consumption by over 20,000 GWh/year using existing, proven techniques and technologies. This study suggests that 22% of the pumping systems savings potential lies within the pulp and paper industry. Energy use analysis being conducted by the US Department of Energy is leading to identification and quantification of savings opportunities within pulp and paper mills. Additionally, Lawrence Berkeley National Laboratory efforts over the past two years have involved extensive contact with the pulp and paper community on motor systems-related issues for the US Department of Energy's Motor Challenge program. This experience has provided an understanding of mill opportunities for improvement through contact with a mill operating personnel throughout the US. This paper examines the applications of pumping systems in the pulp and paper industry, and identifies the most common energy optimization techniques implemented to data. Options such as adjustable speed drives, impeller trimming and multiple pumping arrangements are discussed.

  9. [Research practices of conversion efficiency of resources utilization model of castoff from Chinese material medica industrialization].

    PubMed

    Duan, Jin-Ao; Su, Shu-Lan; Guo, Sheng; Liu, Pei; Qian, Da-Wei; Jiang, Shu; Zhu, Hua-Xu; Tang, Yu-Ping; Wu, Qi-Nan

    2013-12-01

    The industrialization chains and their products, which were formed from the process of the production of medicinal materials-prepared drug in pieces and deep processed product of Chinese material medica (CMM) resources, have generated large benefits of social and economic. However, The large of herb-medicine castoff of "non-medicinal parts" and "rejected materials" produced inevitably during the process of Chinese medicinal resources produce and process, and the residues, waste water and waste gas were produced during the manufactured and deep processed product of CMM. These lead to the waste of resources and environmental pollution. Our previous researches had proposed the "three utilization strategies" and "three types of resources models" of herb-medicine castoff according to the different physicochemical property of resources constitutes, resources potential and utility value of herb-medicine castoff. This article focus on the conversion efficiency of resources model and analysis the ways, technologies, practices, and application in herb-medicine cast off of the conversion efficiency of resources model based on the recycling economy theory of resources and thoughts of resources chemistry of CMM. These data may be promote and resolve the key problems limited the industrialization of Chinese material medica for long time and promote the realization of herb-medicine castoff resources utilization.

  10. 18.5% efficient AlOx/SiNy rear passivated industrial multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Qiao, Qi; Lu, Hongyan; Ge, Jian; Xi, Xi; Chen, Rulong; Yang, Jian; Zhu, Jingbing; Shi, Zhengrong; Chu, Junhao

    2014-06-01

    Due to the trend toward thinner and higher efficient crystalline silicon solar cells, excellent rear surface passivation and internal optical reflectance have become more and more important. Aluminum oxide (AlOx) capped with silicon nitride (SiNy), which is considered as one of the most promising candidates to achieve superior rear passivation and internal reflectance, has to date been mostly used for the rear side of p-type monocrystalline silicon (mono-Si) solar cells. In this paper, we have optimized rear AlOx/SiNy stacks deposited by industrial plasma enhanced chemical vapor deposition (PECVD) for multicrystalline silicon (mc-Si) passivated emitter and rear cells (PERC). Sufficient passivation activation effect from industrial fast-firing process and SiNy deposition process have been demonstrated, so the samples were not subjected to additional thermal treatment process in the cell fabrication flow. For rear AlOx/SiNy stack, it is shown that when PECVD AlOx is thicker than 40 nm, apparent blisters in fired AlOx deteriorate the cell performance, and the appropriate SiNy capping is N-rich SiNy with thickness of at least 180 nm. After process optimization with the least additional process steps, independently confirmed efficiency of 18.5% for Pluto-PERC with PECVD AlOx/SiNy rear passivation on standard 156 mm × 156 mm p-type mc-Si wafers has been achieved.

  11. Bonneville Power Administration and the Industrial Technologies Program Leverage Support to Overcome Energy Efficiency Barriers in the Northwest

    SciTech Connect

    2010-06-18

    Through its Energy Smart Industrial program, BPA is informing and assisting utilities and industries to have a better understanding of the benefits that come from participating in energy-savings programs. Read about how BPA is encouraging energy efficiency projects through its utilities.

  12. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  13. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses.

    PubMed

    Fukaya, Masahiro; Kamata, Akifumi; Hara, Yoshinobu; Tamaki, Hideaki; Katsumata, Osamu; Ito, Naoki; Takeda, Shin'ichi; Hata, Yutaka; Suzuki, Tatsuo; Watanabe, Masahiko; Harvey, Robert J; Sakagami, Hiroyuki

    2011-03-01

    SynArfGEF, also known as BRAG3 or IQSEC3, is a member of the brefeldin A-resistant Arf-GEF/IQSEC family and was originally identified by screening for mRNA species associated with the post-synaptic density fraction. In this study, we demonstrate that synArfGEF activates Arf6, using Arf pull down and transferrin incorporation assays. Immunohistochemical analysis reveals that synArfGEF is present in somata and dendrites as puncta in close association with inhibitory synapses, whereas immunoelectron microscopic analysis reveals that synArfGEF localizes preferentially at post-synaptic specializations of symmetric synapses. Using yeast two-hybrid and pull down assays, we show that synArfGEF is able to bind utrophin/dystrophin and S-SCAM/MAGI-2 scaffolding proteins that localize at inhibitory synapses. Double immunostaining reveals that synArfGEF co-localizes with dystrophin and S-SCAM in cultured hippocampal neurons and cerebellar cortex, respectively. Both β-dystroglycan and S-SCAM were immunoprecipitated from brain lysates using anti-synArfGEF IgG. Taken together, these findings suggest that synArfGEF functions as a novel regulator of Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM.

  14. Extracellular signal regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase

    PubMed Central

    Waheed, Faiza; Speight, Pam; Kawai, Glenn; Dan, Qinghong; Kapus, András; Szászi, Katalin

    2011-01-01

    Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular [K+], the lipophilic cation tetraphenylphosphonium or L-alanine, which is taken up by electrogenic Na+-cotransport) all provoke robust phosphorylation of Extracellular Signal Regulated Kinase (ERK) in LLC-PK1 and MDCK cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified GEF-H1 as the ERK-regulated critical exchange factor, responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that a) depolarization activated GEF-H1, but not p115RhoGEF; b) siRNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway; c) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na+/K+ pump inhibitor ouabain also caused ERK, GEF-H1 and Rho activation, partially due to its depolarizing effect. Regarding functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells, and this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation-incompetent) MLC. Taken together, we propose, that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium. PMID:20237148

  15. Making industrial energy efficiency mainstream and profitable: Where public benefit and private interests intersect

    SciTech Connect

    McKane, Aimee T.; Tutterow, Vestal; Cockrill, Chris

    2001-05-31

    In 1996, the US Department of Energy s Office of Industrial Technologies (OIT) Motor Challenge program began a unique collaboration with industry called the Allied Partner program. Partnerships were sought with equipment suppliers and manufacturers, utilities, consultants, and state agencies that had extensive existing relationships with industrial customers. Partners were neither paid nor charged a fee for participation. The assumption was that these relationships could serve as the foundation for conveying a motor system efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. A substantial effort was made to engage industrial suppliers in delivering program information as part of their customer interactions. A recent independent evaluation of the Motor Challenge program attributes $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation.In 1997, the Compressed Air Challenge(R) (CAC) was developed as an outgrowth of the partnership concept. In this model, OIT is one of 15 sponsors who collaborated to create a national program of compressed air system training. The CAC has gone a step further by setting up a development and deployment model based on shared interests and shared costs among public, private, and not-for-profit organizations that serve industrial customers. Since the first CAC training session in 1999, approximately 3800 people have been trained by CAC qualified instructors--both end users and suppliers. More impressively, the entire compressed air market has begun to shift from a component-based to a system-based approach, largely as the result of collaboration. The typical leverage for OIT participation in a CAC training session is 10:1. During the past year, OIT has reorganized to integrate all of its near-term industrial offerings such as the Motor, Compressed Air, and Steam

  16. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  17. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  18. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    PubMed

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  19. Silo effect a prominence factor to decrease efficiency of pharmaceutical industry.

    PubMed

    Vatanpour, Hossein; Khorramnia, Atoosa; Forutan, Naghmeh

    2013-01-01

    To be sure, all the industries try to be involved in globalization with a constant trend to find out ways to increase productivity across different functions within an organization to maintain competitive advantage world. Pharmaceutical industries are not exceptional and further are based on fragmentation. So these kind of companies need to cope with several barriers such as silo mentality that may affect efficiency of their business activity. Due to eliminate a part of resources such as raw materials, new molecule developed, financial and human resources and so on, companies can gradually loss their competitive potentials in the market and increase their expenses. Furthermore, to avoid any business disturbances in financially connected companies due to silo effect, they should arrange their management to integrated organization form. Otherwise, actions taken by one business member of the chain can influence the profitability of all the other members in the chain. That is why recently supply chain has generated much interest in many business units. In this paper, it has been tried to investigate the different aspects of silo effect which can affect integrate supply chain. Finally, a fluent communication, high level of information exchange, fragmentation management, cross-functional control in a supply chain management format are needed to reduce or control silo effect within entire chain of the holding company by Supply chain management. PMID:24250690

  20. Energy-efficient membrane separations in the sweetener industry. Final report

    SciTech Connect

    Ray, R.J.

    1986-02-14

    Objective was to investigate the use of membrane processes as energy-efficient alternatives to certain conventional separation processes now in use in the corn-sweetener industry. Three applications of membranes were studied during the program: the concentration of corn steep water by reverse osmosis; the concentration of dilute wastes, called ''sweetwater,'' by a combination of reverse osmosis and countercurrent reverse osmosis; and the enrichment of corn syrup in fructose by a process involving selective complexation of fructose by membrane filtration. Laboratory experiments were conducted for all three applications, and the results were used to conduct technical and economic analyses of the process. Calculations indicate that the use of reverse osmosis in combination with conventional mechanical-vapor-recompression evaporation to concentrate steep water, offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used evaporation alone. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for evaporation, but operating costs would only be about one-half those of evaporation. For the fructose-enrichment scheme, preliminary results indicate that the savings in energy alone for the membrane process would be about $0.01/lb of sweetener produced by the process, or about $20 million annually, for the corn-sweetener industry.

  1. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  2. Efficient GO2/GH2 Injector Design: A NASA, Industry and University Cooperative Effort

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Klem, M. D.; Fisher, S. C.; Santoro, R. J.

    1997-01-01

    Developing new propulsion components in the face of shrinking budgets presents a significant challenge. The technical, schedule and funding issues common to any design/development program are complicated by the ramifications of the continuing decrease in funding for the aerospace industry. As a result, new working arrangements are evolving in the rocket industry. This paper documents a successful NASA, industry, and university cooperative effort to design efficient high performance GO2/GH2 rocket injector elements in the current budget environment. The NASA Reusable Launch Vehicle (RLV) Program initially consisted of three vehicle/engine concepts targeted at achieving single stage to orbit. One of the Rocketdyne propulsion concepts, the RS 2100 engine, used a full-flow staged-combustion cycle. Therefore, the RS 2100 main injector would combust GO2/GH 2 propellants. Early in the design phase, but after budget levels and contractual arrangements had been set the limitations of the current gas/gas injector database were identified. Most of the relevant information was at least twenty years old. Designing high performance injectors to meet the RS 2100 requirements would require the database to be updated and significantly enhanced. However, there was no funding available to address the need for more data. NASA proposed a teaming arrangement to acquire the updated information without additional funds from the RLV Program. A determination of the types and amounts of data needed was made along with test facilities with capabilities to meet the data requirements, budget constraints, and schedule. After several iterations a program was finalized and a team established to satisfy the program goals. The Gas/Gas Injector Technology (GGIT) Program had the overall goal of increasing the ability of the rocket engine community to design efficient high-performance, durable gas/gas injectors relevant to RLV requirements. First, the program would provide Rocketdyne with data on

  3. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    PubMed

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. PMID:27245952

  4. Adaptation to climate change in industry: improving resource efficiency through sustainable production applications.

    PubMed

    Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi

    2015-01-01

    The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.

  5. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  6. Modulation of Ki-67 expression and morphological changes induced by gef gene in MCF-7 human breast cancer cells.

    PubMed

    Boulaiz, H; Prados, J; Marchal, J A; Melguizo, C; Concha, A; Carrillo, E; Vélez, C; Martínez, A; Aránega, A

    2005-01-01

    New therapeutic strategies are required to overcome the limitations of conventional breast cancer treatment. Suicide gene therapy offers a potential approach to this type of tumour, since systems based on the use of prodrugs may present some drawbacks related to toxicity, drug release and bioavailability. The gef gene has cell-killing functions in Escherichia coli and does not depend on the use of a prodrug for its action, making it an attractive target for suicide gene therapy. We created a gef-overexpressing human breast cancer cell line (MCF-7TG) by transfecting the gef gene under the control of a pMAMneo promotor. Dexamethasone-induction of gef gene expression in MCF-7TG cells produced a significant decrease in Ki-67 expression, which is a known proliferation marker. In addition, annexin-V-FITC and propidium iodide assays showed the presence of apoptotic cell death, which was confirmed by scanning electron microscopy. The most significant finding was the presence of "craters" in the cell membrane, as previously described in other apoptotic breast cancer cells. These results demonstrate the ability of the gef gene to down regulate Ki-67 expression and induce apoptosis in a breast cancer cell line, suggesting its potential application as a new gene therapy strategy for this type of tumor. PMID:16171567

  7. Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF.

    PubMed

    Chen, Zhe; Singer, William D; Danesh, Shahab M; Sternweis, Paul C; Sprang, Stephen R

    2008-10-01

    G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward Galpha13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP*AlF (transition state) and GTPgammaS (Michaelis complex). PRG-rgRGS interacts extensively with the helical domain and the effector-binding sites on Galpha13 through contacts that are largely conserved in all three nucleotide-bound states, although PRG-rgRGS has highest affinity to the Michaelis complex. An acidic motif in the N terminus of PRG-rgRGS occupies the GAP binding site of Galpha13 and is flexible in the GDP*AlF complex but well ordered in the GTPgammaS complex. Replacement of key residues in this motif with their counterparts in p115RhoGEF confers GAP activity. PMID:18940608

  8. Recognition of the Activated States of G[alpha]13 by the rgRGS Domain of PDZRhoGEF

    SciTech Connect

    Chen, Zhe; Singer, William D.; Danesh, Shahab M.; Sternweis, Paul C.; Sprang, Stephen R.

    2009-12-01

    G12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward G{alpha}13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP {center_dot} AlF (transition state) and GTP{gamma}S (Michaelis complex). PRG-rgRGS interacts extensively with the helical domain and the effector-binding sites on G{alpha}13 through contacts that are largely conserved in all three nucleotide-bound states, although PRG-rgRGS has highest affinity to the Michaelis complex. An acidic motif in the N terminus of PRG-rgRGS occupies the GAP binding site of G{alpha}13 and is flexible in the GDP {center_dot} AlF complex but well ordered in the GTPS complex. Replacement of key residues in this motif with their counterparts in p115RhoGEF confers GAP activity.

  9. Crystal structure of hGEF-H1 PH domain provides insight into incapability in phosphoinositide binding.

    PubMed

    Jiang, Yan; Jiang, Heli; Zhou, Shaoyang; Meng, Bing; Liu, Zhi-Jie; Ouyang, Songying

    2016-03-18

    The guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2) is identified as a member of the Dbl family of GEFs. It regulates RhoA-dependent cell signaling pathways and plays important roles in biological processes. GEF-H1 contains an N-terminal zinc finger domain, a Dbl-homologous (DH) domain followed by a Pleckstrin homology (PH) domain, and a C-terminal domain. The specific roles of its PH domain are poorly understood. Here we report the crystal structure of human GEF-H1 PH domain to 2.45 Å resolution. A conserved surface is formed by β8, β9, β10, and it may mediate protein-protein interactions. Although the folding resembles other PH domains that have defined structures, superposition of different PH domains clearly shows that the loop between β6/β7 and the loop between β3/β4 are so close that they will prevent its binding with phosphoinositide due to steric hindrance, and this has been proved by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Our studies provide a structural framework for further work on the function of GEF-H1. PMID:26820534

  10. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity

    PubMed Central

    Ma, Gary S.; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Kalogriopoulos, Nicholas; Pedram, Shabnam; Midde, Krishna; Ciaraldi, Theodore P.; Henry, Robert R.; Ghosh, Pradipta

    2015-01-01

    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles. PMID:26378251

  11. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity.

    PubMed

    Ma, Gary S; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Kalogriopoulos, Nicholas; Pedram, Shabnam; Midde, Krishna; Ciaraldi, Theodore P; Henry, Robert R; Ghosh, Pradipta

    2015-11-15

    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles. PMID:26378251

  12. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  13. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel

  14. Metal casting industry of the future: An integrated approach to delivering energy efficiency products and services

    SciTech Connect

    1998-12-01

    The Industries of the Future process is driven by industry. Through technology roadmaps, industry participants set technology priorities, assess the progress of R and D, and ultimately lead the way in applying research results. This approach to private-public partnerships ensures the most strategic allocation possible of limited resources for the development of new technologies and the enhancement of industrial processes. Based on industry`s request, OIT`s role is to help facilitate the Industries of the Future strategy and to support the development and deployment of technologies that will shape the future of the metal casting industry. Part of this role is to encourage industry to undertake long-term, sector-wide technology planning and to selectively cost-share with OIT in collaborative R and D activities that match OIT`s mission. OIT metal casting research requires a dollar for dollar industry cost share.

  15. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion.

    PubMed

    Rennoll-Bankert, Kristen E; Rahman, M Sayeedur; Gillespie, Joseph J; Guillotte, Mark L; Kaur, Simran J; Lehman, Stephanie S; Beier-Sexton, Magda; Azad, Abdu F

    2015-08-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  16. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    PubMed Central

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  17. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic.

    PubMed

    Pathak, Ritu; Delorme-Walker, Violaine D; Howell, Michael C; Anselmo, Anthony N; White, Michael A; Bokoch, Gary M; Dermardirossian, Céline

    2012-08-14

    The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking.

  18. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast.

    PubMed

    Sasvari, Zsuzsanna; Kovalev, Nikolay; Nagy, Peter D

    2013-02-01

    Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.

  19. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary

    SciTech Connect

    1995-04-01

    This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

  20. Voluntary Agreements for Increasing Energy-Efficiency in Industry: Case Study of a Pilot Project with the Steel Industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  2. Efficient method for recycling silica materials from waste powder of the photonic industry.

    PubMed

    Lin, Liang-Yi; Bai, Hsunling

    2013-05-01

    An efficient and economic approach is proposed for the fast and direct recovery of silica materials from photonic waste powder. Unlike the conventional alkaline fusion method for the extraction of silica from waste materials, this method possesses advantages of a rapid and low-energy-consumed process with total recovery yield. The obtained mesoporous silica material, denoted as MCM-41(DU)-F, was recovered directly from photonic waste powder at room temperature with the assistance of cationic surfactant, hydrofluoric acid, and ammonia hydroxide. The recycled MCM-41(DU)-F with a high specific surface area (788 m(2)/g), ordered mesoporous structure (4.5 nm), and large pore volume (1.1 cm(3)/g) was used as support of tetraethylenepentamine (TEPA) for the capture of CO2 from a flue gas stream. The results demonstrated that TEPA-impregnated MCM-41(DU)-F had an adsorption capacity of 120 mg of CO2/g of adsorbent. This is higher than the amount adsorbed by TEPA-MCM-41(NaSi) made from pure chemicals (113 mg of CO2/g of adsorbent) and TEPA-MCM-41(AF) made from alkaline fusion (112 mg of CO2/g of adsorbent) under the same testing conditions. This novel recycling process, which can improve cost effectiveness for the mass production of valuable mesoporous silica materials from cheap and abundant resources through convenient preparation steps, is surely beneficial from the viewpoint of economical use of photonic industrial waste powder.

  3. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  4. Energy-efficient membrane separations in the sweetener industry. Final report for Phase I

    SciTech Connect

    Babcock, W.C.

    1984-02-14

    The objective of the program is to investigate the use of membrane processes as energy-efficient alternatives to conventional separation processes in current use in the corn sweetener industry. Two applications of membranes were studied during the program: (1) the concentration of corn steep water by reverse osmosis; and (2) the concentration of dilute wastes called sweetwater with a combination of reverse osmosis and a process known as countercurrent reverse osmosis. Laboratory experiments were conducted for both applications, and the results were used to conduct technical and economic analyses of the process. It was determined that the concentration of steep water by reverse osmosis plus triple-effect evaporation offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used triple-effect evaporation. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for triple-effect evaporation, but operating costs would be only about one-half those of triple-effect evaporation.

  5. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    PubMed

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively. PMID:19803329

  6. An Efficient and Improved Methodology for the Screening of Industrially Valuable Xylano-Pectino-Cellulolytic Microbes

    PubMed Central

    Singh, Avtar; Kaur, Amanjot; Dua, Anita; Mahajan, Ritu

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time. PMID:25692034

  7. Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9

    PubMed Central

    Shideler, Tess; Nickerson, Daniel P.; Merz, Alexey J.; Odorizzi, Greg

    2015-01-01

    Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization. PMID:25673804

  8. Regulation and function of P-Rex family Rac-GEFs

    PubMed Central

    Welch, Heidi CE

    2015-01-01

    The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions. PMID:25961466

  9. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  10. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  11. 76 FR 9329 - Efficiency Initiative Effort To Reduce Non-Value-Added Costs Imposed on Industry by Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Efficiency Initiative Effort To Reduce Non-Value-Added Costs Imposed on Industry by Department of Defense... overhead costs, but do not contribute to value added in systems and services delivered to the Department... information about some additional areas of non-value- added cost. Submissions should specifically...

  12. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    NASA Astrophysics Data System (ADS)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  13. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  14. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  15. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels

    SciTech Connect

    Not Available

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  17. 78 FR 26544 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension of public.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J.... Kathleen B. Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable......

  18. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    PubMed

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  19. The circumferential actomyosin belt in epithelial cells is regulated by the Lulu2-p114RhoGEF system

    PubMed Central

    Nakajima, Hiroyuki; Tanoue, Takuji

    2012-01-01

    In epithelial cells, myosin-II-dependent forces regulate many aspects of animal morphogenesis, such as apical constriction, cell intercalation, cell sorting, and the formation and maintenance of the adherens junction. These forces are mainly generated by the circumferential actomyosin belt, which is composed of F-actin–myosin II bundles located along apical cell–cell junctions. Although several of the molecular pathways regulating the belt have been identified, the precise mechanisms underlying its function are largely unknown. Our recent studies identified Lulu proteins (Lulu1 and Lulu2), FERM-domain-containing molecules, as the regulators of the belt. Lulus activate the circumferential actomyosin belt and thereby induce apical constriction in epithelial cells; conversely, RNAi-mediated Lulu-knockdown results in the severe disorganization of the circumferential actomyosin belt. We also showed that p114RhoGEF is a downstream molecule of Lulu2 in its regulation of the belt; Lulu2 enhances the catalytic activity of p114RhoGEF through a direct interaction and thereby activates the circumferential actomyosin belt. We further identified aPKC and Patj as regulators of Lulu2-p114RhoGEF. In this commentary, we discuss current knowledge of the circumferential actomyosin belt's regulation, focusing on the Lulu2-p114RhoGEF system. PMID:22790195

  20. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.

    PubMed

    Ye, Tao; Ip, Jacque P K; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex. PMID:25189171

  1. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.

    PubMed

    Ye, Tao; Ip, Jacque P K; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex.

  2. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  3. Dimensions of Effectiveness and Efficiency: A Case Study on Industry-School Partnerships

    ERIC Educational Resources Information Center

    Pillay, Hitendra; Watters, James J.; Hoff, Lutz; Flynn, Matthew

    2014-01-01

    Internationally, the delivery of vocational education and training is being challenged by increasing skills shortages in certain industries and/or rapidly changing skill requirements. To respond to this challenge, rigid and centralised state bureaucracies are increasingly adopting partnerships between schools and industry as a strategy to…

  4. The Putative Exchange Factor Gef3p Interacts with Rho3p GTPase and the Septin Ring during Cytokinesis in Fission Yeast*

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda

    2014-01-01

    The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517

  5. A mammalian Rho-specific guanine-nucleotide exchange factor (p164-RhoGEF) without a pleckstrin homology domain.

    PubMed Central

    Rümenapp, Ulrich; Freichel-Blomquist, Andrea; Wittinghofer, Burkhard; Jakobs, Karl H; Wieland, Thomas

    2002-01-01

    Rho GTPases, which are activated by specific guanine-nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a recently cloned human cDNA, namely KIAA0337, encoding a protein containing 1510 amino acids (p164). It contains a RhoGEF-specific Dbl homology (DH) domain but lacks their typical pleckstrin homology domain. The expression of the mRNA encoding p164 was found to be at least 4-fold higher in the heart than in other tissues. Recombinant p164 interacted with and induced GDP/GTP exchange at RhoA but not at Rac1 or Cdc42. p164-DeltaC and p164-DeltaN are p164 mutants that are truncated at the C- and N-termini respectively but contain the DH domain. In contrast with the full-length p164, expression of p164-DeltaC and p164-DeltaN strongly induced actin stress fibre formation and activated serum response factor-mediated and Rho-dependent gene transcription. Interestingly, p164-DeltaN2, a mutant containing the C-terminus but having a defective DH domain, bound to p164-DeltaC and suppressed the p164-DeltaC-induced gene transcription. Overexpression of the full-length p164 inhibited M(3) muscarinic receptor-induced gene transcription, whereas co-expression with Gbeta(1)gamma(2) dimers induced transcriptional activity. It is concluded that p164-RhoGEF is a Rho-specific GEF with novel structural and regulatory properties and predominant expression in the heart. Apparently, its N- and C-termini interact with each other, thereby inhibiting its GEF activity. PMID:12071859

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  7. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence Avenue SW.... Brenda Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AD01 Energy Efficiency Program for Commercial and...

  8. 75 FR 59657 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC28 Energy Efficiency Program for Certain Commercial and... Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy.......

  9. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    NASA Astrophysics Data System (ADS)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  10. Open Ocean Assessments for Management in the GEF Transboundary Waters Assessment Project (TWAP)

    NASA Astrophysics Data System (ADS)

    Fischer, A. S.; Alverson, K. D.

    2010-12-01

    A methodology for a thematic and scientifically-credible assessment of Open Ocean waters as a part of the Global Environment Facility (GEF) Transboundary Waters Assessment Project (TWAP) has been developed in the last 18 months by the Intergovernmental Oceanographic Commission of UNESCO, and is presented for feedback and comment. While developed to help the GEF International Waters focal area target investment to manage looming environmental threats in interlinked freshwater and marine systems (a very focused decision support system), the assessment methodology could contribute to other assessment and management efforts in the UN system and elsewhere. Building on a conceptual framework that describes the relationships between human systems and open ocean natural systems, and on mapping of the human impact on the marine environment, the assessment will evaluate and make projections on a thematic basis, identifying key metrics, indices, and indicators. These themes will include the threats on key ecosystem services of climate change through sea level rise, changed stratification, warming, and ocean acidification; vulnerabilities of ecosystems, habitats, and living marine resources; the impact and sustainability of fisheries; and pollution. Global-level governance arrangements will also be evaluated, with an eye to identifying scope for improved global-level management. The assessment will build on sustained ocean observing systems, model projections, and an assessment of scientific literature, as well as tools for combining knowledge to support identification of priority concerns and in developing scenarios for management. It will include an assessment of key research and observing needs as one way to deal with the scientific uncertainty inherent in such an exercise, and to better link policy and science agendas.

  11. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  12. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  13. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  14. Environmental regulation, productive efficiency and cost of pollution abatement: a case study of the sugar industry in India.

    PubMed

    Murty, M N; Kumar, Surender; Paul, Mahua

    2006-04-01

    In this paper the input distance function is estimated for the Indian Sugar industry under alternative assumptions of weak and strong disposability of bad outputs. The estimated distance function is used to make the estimates of environmental efficiency, Malmquist productivity index and shadow prices of pollutants. The technical efficiency measure estimated under the assumption of weak disposability of bad outputs is utilized to test the Porter hypothesis. Marginal costs of pollution abatement functions are estimated for different pollutants of water. Pollutant specific taxes are computed using the tax-standards method.

  15. Ratepayer-funded energy-efficiency programs in a restructuredelectri city industry: Issues and options for regulators andlegislators

    SciTech Connect

    Eto, Joseph; Goldman, Charles; Nadel, Stephen

    1998-05-01

    Electric industry restructuring requires state regulators and legislators to re-examine the purposes served by and the continuing need for ratepayer-funded energy-efficiency programs, as well as the mechanisms to collect funds for these programs and the institutions appropriate to administer them. This paper offers background to these issues and a series of recommendations based on analysis of recent state experiences. Our recommendations are summarized.

  16. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    SciTech Connect

    Worrell, Ernst; Price, Lynn

    2001-07-24

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

  17. Synthesizing Equivalence Indices for the Comparative Evaluation of Technoeconomic Efficiency of Industrial Processes at the Design/Re-engineering Level

    NASA Astrophysics Data System (ADS)

    Fotilas, P.; Batzias, A. F.

    2007-12-01

    The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications

  18. Assessing the relative efficiency of water companies in the English and Welsh water industry: a metafrontier approach.

    PubMed

    Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramon

    2015-11-01

    The assessment of relative efficiency of water companies is essential for managers and authorities. This is evident in the UK water sector where there are companies with different services such as water and sewerage companies (WaSCs) and water-only companies (WoCs). Therefore, it is a critical limitation to estimate a common production frontier for both types of companies, as it might lead to biased efficiency estimates. In this paper, a robust and reliable methodology, the metafrontier model, is applied to compare the efficiency of water companies providing different services. The results illustrate the superior performance of WaSCs compared to WoCs. It also confirms the presence of economies of scope in the UK water industry. The methodology and results of this study are of great interest for both regulators and water utility managers to make informed decisions.

  19. Assessing the relative efficiency of water companies in the English and Welsh water industry: a metafrontier approach.

    PubMed

    Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramon

    2015-11-01

    The assessment of relative efficiency of water companies is essential for managers and authorities. This is evident in the UK water sector where there are companies with different services such as water and sewerage companies (WaSCs) and water-only companies (WoCs). Therefore, it is a critical limitation to estimate a common production frontier for both types of companies, as it might lead to biased efficiency estimates. In this paper, a robust and reliable methodology, the metafrontier model, is applied to compare the efficiency of water companies providing different services. The results illustrate the superior performance of WaSCs compared to WoCs. It also confirms the presence of economies of scope in the UK water industry. The methodology and results of this study are of great interest for both regulators and water utility managers to make informed decisions. PMID:26122569

  20. 75 FR 71596 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... equipment classes on January 9, 2009. 74 FR 1091. Manufacturers of covered equipment, including commercial...-2004) for measuring refrigerated compartment volume. 71 FR 71370. These industry standards for... the DOE test procedure for commercial refrigeration equipment. 71 FR 71370; 10 CFR 431.63-431.64....

  1. An efficient process for producing economical and eco-friendly cotton textile composites for mobile industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mobile industry comprised of airplanes, automotives, and ships uses enormous quantities of various types of textiles. Just a few decades ago, most of these textile products and composites were made with woven or knitted fabrics that were mostly made with the then only available natural fibers, i...

  2. Efficiency, equity and the environment: Institutional challenges in the restructuring of the electric power industry

    SciTech Connect

    Haeri, M.H.

    1998-07-01

    In the electric power industry, fundamental changes are underway in Europe, America, Australia, New Zealand and, more recently, in Asia. Rooted in increased deregulation and competition, these changes are likely to radically alter the structure of the industry. Liberalization of electric power markets in the United Kingdom is, for the most part, complete. The generation market in the United States began opening to competition following the 1987 Public Utility Regulatory Policies Act (PURPA). The Energy Policy Act of 1992 set the stage for a much more dramatic change in the industry. The most far-reaching provision of the Act was its electricity title, which opened access to the electric transmission grid. With legal barriers now removed, the traditionally sheltered US electric utility market is becoming increasingly open to entry and competition. A number of important legislative, regulatory and governmental policy initiatives are underway in the Philippines that will have a profound effect on the electric power industry. In Thailand, the National Energy Planning Organization (NEPO) has undertaken a thorough investigation of industry restructuring. This paper summarizes recent international developments in the deregulation and liberalization of electricity markets in the U.K., U.S., Australia, and New Zealand. It focuses on the relevance of these experiences to development underway in the Philippines and Thailand, and presents alternative possible structures likely to emerge in these countries, drawing heavily on the authors' recent experiences in Thailand and the Philippines. The impact of these changes on the business environment for power generation and marketing will be discussed in detail, as will the opportunities these changes create for investment among private power producers.

  3. Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy

    SciTech Connect

    McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

    2003-05-18

    Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified

  4. Issues Affecting Education and Work in the Eighties: Efficiency versus Industrial Democracy, A Historical Perspective

    ERIC Educational Resources Information Center

    Wirth, Arthur G.

    1977-01-01

    The author examines the debate between John Dewey and the Social Efficiency philosophers in the early 1900's over vocational education to show that tensions today over that issue have antecedents dating from the beginning of the century. (MJB)

  5. The insurance and risk management industries: new players in thedelivery of energy-efficient and renewable energy products andservices

    SciTech Connect

    Mills, Evan

    2001-11-26

    The insurance industry is typically considered to have little concern about energy issues. However, the historical involvement by insurers and allied industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, shows that this industry has a tradition of utilizing technology to improve safety and otherwise reduce the likelihood of losses for which they would otherwise have to pay. Through an examination of the connection between risk management and energy efficiency, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer''loss-prevention'' benefits, and have mapped these opportunities onto the appropriate segments of the very diverse insurance sector (life, health,property, liability, business interruption, etc.). Some insurers and risk managers are beginning to recognize these previously un-noticed benefits.This paper presents the business case for insurer involvement in energy efficiency and documents case studies of insurer efforts along these lines. We review steps taken by 52 forward-looking insurers and reinsurers, 5 brokers, and 7 insurance organizations, and 13non-insurance organizations in the energy-efficiency arena. The approaches can be grouped into the categories of: information, education,and demonstration; financial incentives; specialized policies and products; direct investment to promote energy efficiency and renewables; value-added customer services and inspections; efficient codes,standards, and policies; research and development; and in-house energy management in insurer-owned properties. Specific examples include reduced premiums for architects and engineers who practice building commissioning(reduces risk of property loss and liability-related claims), insurer promotion of improved indoor air quality practices (mitigating life,health, and liability risks), and insurer promotion of

  6. Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles.

    PubMed

    Shonnard, David R; Kicherer, Andreas; Saling, Peter

    2003-12-01

    Life without chemicals would be inconceivable, but the potential risks and impacts to the environment associated with chemical production and chemical products are viewed critically. Eco-efficiency analysis considers the economic and life cycle environmental effects of a product or process, giving these equal weighting. The major elements of the environmental assessment include primary energy use, raw materials utilization, emissions to all media, toxicity, safety risk, and land use. The relevance of each environmental category and also for the economic versus the environmental impacts is evaluated using national emissions and economic data. The eco-efficiency analysis method of BASF is briefly presented, and results from three applications to chemical processes and products are summarized. Through these applications, the eco-efficiency analyses mostly confirm the 12 Principles listed in Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37(5), 94A), with the exception that, in one application, production systems based on bio-based feedstocks were not the most eco-efficient as compared to those based on fossil resources. Over 180 eco-efficiency analyses have been conducted at BASF, and their results have been used to support strategic decision-making, marketing, research and development, and communication with external parties. Eco-efficiency analysis, as one important strategy and success factor in sustainable development, will continue to be a very strong operational tool at BASF. PMID:14700318

  7. Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles.

    PubMed

    Shonnard, David R; Kicherer, Andreas; Saling, Peter

    2003-12-01

    Life without chemicals would be inconceivable, but the potential risks and impacts to the environment associated with chemical production and chemical products are viewed critically. Eco-efficiency analysis considers the economic and life cycle environmental effects of a product or process, giving these equal weighting. The major elements of the environmental assessment include primary energy use, raw materials utilization, emissions to all media, toxicity, safety risk, and land use. The relevance of each environmental category and also for the economic versus the environmental impacts is evaluated using national emissions and economic data. The eco-efficiency analysis method of BASF is briefly presented, and results from three applications to chemical processes and products are summarized. Through these applications, the eco-efficiency analyses mostly confirm the 12 Principles listed in Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37(5), 94A), with the exception that, in one application, production systems based on bio-based feedstocks were not the most eco-efficient as compared to those based on fossil resources. Over 180 eco-efficiency analyses have been conducted at BASF, and their results have been used to support strategic decision-making, marketing, research and development, and communication with external parties. Eco-efficiency analysis, as one important strategy and success factor in sustainable development, will continue to be a very strong operational tool at BASF.

  8. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila.

    PubMed

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila.

  9. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

    PubMed Central

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI: http://dx.doi.org/10.7554/eLife.06011.001 PMID:26512886

  10. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila

    PubMed Central

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it’s functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  11. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila.

    PubMed

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  12. Analysis of the Efficiency of the U.S. Ethanol Industry 2007

    SciTech Connect

    Wu, May

    2008-03-27

    In 2007, the Renewable Fuels Association (RFA) conducted a survey of US ethanol production plants to provide an assessment of the current US ethanol industry. The survey covers plant operations in both corn dry mills and wet mills. In particular, it includes plant type, ownership structure, capacity, feedstocks, production volumes, coproducts, process fuel and electricity usage, water consumption, and products transportation and distribution. This report includes a summary and analysis of these results.

  13. Improve Your Boiler's Combustion Efficiency: Office of Industrial Technologies (OIT) Steam Energy Tips No.4

    SciTech Connect

    Not Available

    2002-03-01

    Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve combustion efficiency. Combustion efficiency is a measure of how effectively the heat content of a fuel is transferred into usable heat. The stack temperature and flue gas oxygen (or carbon dioxide) concentrations are primary indicators of combustion efficiency. Given complete mixing, a precise or stoichiometric amount of air is required to completely react with a given quantity of fuel. In practice, combustion conditions are never ideal, and additional or ''excess'' air must be supplied to completely burn the fuel. The correct amount of excess air is determined from analyzing flue gas oxygen or carbon dioxide concentrations. Inadequate excess air results in unburned combustibles (fuel, soot, smoke, and carbon monoxide) while too much results in heat lost due to the increased flue gas flow--thus lowering the overall boiler fuel-to-steam efficiency. The table relates stack readings to boiler performance. On well-designed natural gas-fired systems, an excess air level of 10% is attainable. An often stated rule of thumb is that boiler efficiency can be increased by 1% for each 15% reduction in excess air or 40 F reduction in stack gas temperature.

  14. [Mental health of gas and gas-transport industry workers as an indispensable condition of their efficient occupational activity].

    PubMed

    Polozhiĭ, B S

    2013-01-01

    Mental health workers in industry is a major health and social resource of any developed country. Unfortunately, Russia's level of mental health workers is unfavorable level. We have conducted a survey of employees psychoprophylactic mass of the gas industry, which occupies a leading position in the economy. Found that the prevalence of mental disorders in this professional group is 187 per 1,000 workers. In this case, 99.3% of employees with mental health problems of mentally ill for a long time, they do not receive appropriate treatment. Leading position in the structure occupy disorder with anxious and depressive symptoms, about 75% of all cases. In the treatment of these patients showed the highest efficiency Luvox, which is one of the most appropriate products in a production environment.

  15. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network.

    PubMed

    McDonold, Caitlin M; Fromme, J Christopher

    2014-09-29

    Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi.

  16. Lulu2 regulates the circumferential actomyosin tensile system in epithelial cells through p114RhoGEF

    PubMed Central

    Nakajima, Hiroyuki

    2011-01-01

    Myosin II–driven mechanical forces control epithelial cell shape and morphogenesis. In particular, the circumferential actomyosin belt, which is located along apical cell–cell junctions, regulates many cellular processes. Despite its importance, the molecular mechanisms regulating the belt are not fully understood. In this paper, we characterize Lulu2, a FERM (4.1 protein, ezrin, radixin, moesin) domain–containing molecule homologous to Drosophila melanogaster Yurt, as an important regulator. In epithelial cells, Lulu2 is localized along apical cell–cell boundaries, and Lulu2 depletion by ribonucleic acid interference results in disorganization of the circumferential actomyosin belt. In its regulation of the belt, Lulu2 interacts with and activates p114RhoGEF, a Rho-specific guanine nucleotide exchanging factor (GEF), at apical cell–cell junctions. This interaction is negatively regulated via phosphorylation events in the FERM-adjacent domain of Lulu2 catalyzed by atypical protein kinase C. We further found that Patj, an apical cell polarity regulator, recruits p114RhoGEF to apical cell–cell boundaries via PDZ (PSD-95/Dlg/ZO-1) domain–mediated interaction. These findings therefore reveal a novel molecular system regulating the circumferential actomyosin belt in epithelial cells. PMID:22006950

  17. Autoinhibition of GEF activity in intersectin 1 is mediated by the short SH3-DH domain linker

    PubMed Central

    Kintscher, Carsten; Wuertenberger, Silvia; Eylenstein, Roy; Uhlendorf, Theresia; Groemping, Yvonne

    2010-01-01

    Intersectin 1L (ITSN1L) acts as a specific guanine nucleotide exchange factor (GEF) for the small guanine nucleotide binding protein Cdc42 via its C-terminal DH domain. Interestingly, constructs of ITSN1L that comprise additional domains, for instance the five SH3 domains amino-terminal of the DH domain, were shown to be inhibited in their exchange factor activity. Here, we investigate the inhibitory mechanism of ITSN1L in detail and identify a novel short amino acid motif which mediates autoinhibition. We found this motif to be located in the linker region between the SH3 domains and the DH domain, and we show that within this motif W1221 acts as key residue in establishing the inhibitory interaction. This assigns ITSN1L to a growing class of GEFs that are regulated by a short amino acid motif inhibiting GEF activity by an intramolecular interaction. Moreover, we quantify the interaction between the ITSN1L SH3 domains and the Cdc42 effector N-WASP using fluorescence anisotropy binding experiments. As the SH3 domains are not involved in autoinhibition, binding of N-WASP does not release inhibition of nucleotide exchange activity in kinetic experiments, in contrast to earlier observations. PMID:20842712

  18. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  19. Asian success stories in promoting energy efficiency in industry and building

    SciTech Connect

    Yang, Ming

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  20. 78 FR 17890 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... standards for packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  1. 78 FR 14024 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Federal Register on February 22, 2013 (78 FR 12252), concerning an announcement of a public meeting and... Equipment: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Correction AGENCY: Office of Energy Efficiency and Renewable...

  2. Energy Efficient Homes and Small Buildings. Vocational Education, Industrial Arts Curriculum Guide. Bulletin 1698.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide provides high school carpentry, construction, or drafting course teachers with material related to retrofitting a building for energy conservation. Section 1 discusses how design and construction methods affect energy use. Section 2 focuses on care and maintenance of energy efficient buildings. In addition to informative…

  3. 78 FR 28812 - Energy Efficiency Program for Industrial Equipment: Petition of UL Verification Services Inc. for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... national recognition of an energy efficiency certification program for ] electric motors. See 77 FR 26608... Star 86.972 Product evaluations were conducted by UL 95 Laboratory, testing and certification... are engineers. UL today is comprised of five businesses, Product Safety, Verification Services,...

  4. 3 CFR 13624 - Executive Order 13624 of August 30, 2012. Accelerating Investment in Industrial Energy Efficiency

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fuel in an on-site boiler to produce thermal energy and also purchasing electricity from the grid, a manufacturing facility can use a CHP system to provide both types of energy in one energy-efficient step... create jobs. Despite these benefits, independent studies have pointed to under-investment in...

  5. 78 FR 12251 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension of public... submit one signed paper original. Hand Delivery/Courier: Ms. Brenda Edwards, U.S. Department of Energy... and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW.,...

  6. 78 FR 57137 - Energy Efficiency Program for Industrial Equipment: Interim Determination Classifying UL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... administering a certification program, NEMA stated that UL operates an effective certification system for safety... nationally recognized certification program for electric motor efficiency. See 67 FR 79490 (December 27, 2002... Determination Classifying UL Verification Services Inc. as a Nationally Recognized Certification......

  7. Eco-efficiency improvements in industrial water-service systems: assessing options with stakeholders.

    PubMed

    Levidow, Les; Lindgaard-Jørgensen, Palle; Nilsson, Asa; Skenhall, Sara Alongi; Assimacopoulos, Dionysis

    2014-01-01

    The well-known eco-efficiency concept helps to assess the economic value and resource burdens of potential improvements by comparison with the baseline situation. But eco-efficiency assessments have generally focused on a specific site, while neglecting wider effects, for example, through interactions between water users and wastewater treatment (WWT) providers. To address the methodological gap, the EcoWater project has developed a method and online tools for meso-level analysis of the entire water-service value chain. This study investigated improvement options in two large manufacturing companies which have significant potential for eco-efficiency gains. They have been considering investment in extra processes which can lower resource burdens from inputs and wastewater, as well as internalising WWT processes. In developing its methodology, the EcoWater project obtained the necessary information from many agents, involved them in the meso-level assessment and facilitated their discussion on alternative options. Prior discussions with stakeholders stimulated their attendance at a workshop to discuss a comparative eco-efficiency assessment for whole-system improvement. Stakeholders expressed interest in jointly extending the EcoWater method to more options and in discussing investment strategies. In such ways, optimal solutions will depend on stakeholders overcoming fragmentation by sharing responsibility and knowledge.

  8. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    SciTech Connect

    Price, Lynn; Zhou, Nan; Lu, Hongyou; Sambeek, Emiel van; Yowargana, Ping; Shuang, Liu; Kejun, Jiang

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  10. The roles of energy and material efficiency in meeting steel industry CO2 targets.

    PubMed

    Milford, Rachel L; Pauliuk, Stefan; Allwood, Julian M; Müller, Daniel B

    2013-04-01

    Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

  11. Condensing economizers for efficiency improvement and emissions control in industrial boilers

    SciTech Connect

    Butcher, T.A.; Litzke, W.L.; Schulze, K.; Bailey, R.

    1996-06-01

    Condensing economizers recover sensible and latent heat from boiler flue gas, leading to marked improvements in thermal efficiency. This paper summarizes the current commercial status and continuing development efforts with one type of condensing economizer. In this design Teflon{reg_sign} covered tubes and enclosure walls are used to handle the corrosive condensate. Flue gas flows around the tubes and feed water, being heated, flows through the inside. In addition to improving thermal efficiency, condensing economizers can also be used to reduce particulate emissions primarily by inertial impaction of particles on tube surfaces, water droplets, and added impactors. Collected particles are then removed with condensate. Water sprays directly on the tubes can be used to enhance particle capture. With coal-firing, tests have shown particle removal efficiencies as high as 98%. To enhance the emissions control potential of condensing economizer technology a two-stage economizer system concept has been developed. Two heat exchanger modules are used. The first is a downflow design and recovers primarily sensible heat from the flue gas. The second is upflow and recovers mostly latent heat. Condensate is collected in a transition plenum between the two stages. This configuration, termed the Integrated Flue Gas Treatment System, provides great flexibility for implementing emissions reduction strategies. Particulate emissions can be reduced without impacting sensible heat recovery by recirculating collected condensate to spray nozzles at the top of the second stage heat exchanger. In tests at BNL with heavy oil firing, particulate reductions over 90% and final emission rates on the order of.005 lb/MMBtu are achieved. Adding sorbents to the recirculated condensate reduces sulfur dioxide emissions and SO{sub 2} removal efficiencies over 95% are achieved. Also, condensing economizers show great potential for the removal of certain air toxics such as mercury and nickel.

  12. Papermill industrial waste as a sustainable source for high efficiency absorbent production.

    PubMed

    Likon, M; Cernec, F; Svegl, F; Saarela, J; Zimmie, T F

    2011-06-01

    Papermill sludge (PMS) is generated during the wastewater treatment process of paper production. Its handling and disposal techniques are of great concern for the environment. It can be landfilled as a waste, or it can be recycled and converted into useful products of high value. It has a very promising application as an absorbing agent for the cleaning of water surfaces polluted with hydrophobic substances (vegetable, synthetic and mineral oils, animal fats, fuels, organic chemicals and even coal dust). Here, we present the pretreatment procedure (hydrophobation, mechanical and thermal treatments) of PMS that produces a lightweight absorbent material (HAWSC - high efficiency absorbent for water surface cleaning), which floats on the water surface and binds hydrophobic pollutants with considerably higher efficiency than commercially available mineral and synthetic absorbents. After its application, it can be incinerated, due to its high caloric value, to produce energy. The incineration residues can then be formed into granules that can be used as an efficient absorbent for fluids spilled onto solid surfaces.

  13. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei.

    PubMed

    Ouedraogo, Jean Paul; Arentshorst, Mark; Nikolaev, Igor; Barends, Sharief; Ram, Arthur F J

    2015-12-01

    Targeted integration of expression cassettes for enzyme production in industrial microorganisms is desirable especially when enzyme variants are screened for improved enzymatic properties. However, currently used methods for targeted integration are inefficient and result in low transformation frequencies. In this study, we expressed the Saccharomyces cerevisiae I-SceI meganuclease to generate double-strand breaks at a defined locus in the Trichoderma reesei genome. We showed that the double-strand DNA breaks mediated by I-SceI can be efficiently repaired when an exogenous DNA cassette flanked by regions homologous to the I-SceI landing locus was added during transformation. Transformation efficiencies increased approximately sixfold compared to control transformation. Analysis of the transformants obtained via I-SceI-mediated gene targeting showed that about two thirds of the transformants resulted from a homologous recombination event at the predetermined locus. Counter selection of the transformants for the loss of the pyrG marker upon integration of the DNA cassette showed that almost all of the clones contained the cassette at the predetermined locus. Analysis of independently obtained transformants using targeted integration of a glucoamylase expression cassette demonstrated that glucoamylase production among the transformants was high and showing limited variation. In conclusion, the gene targeting system developed in this study significantly increases transformation efficiency as well as homologous recombination efficiency and omits the use of Δku70 strains. It is also suitable for high-throughput screening of enzyme variants or gene libraries in T. reesei.

  14. Revitalize the US silicon/ferrosilicon industry through energy-efficient technology. Part 1, Final report

    SciTech Connect

    Larson, H.R.; Welborn, J.H.

    1995-02-01

    It is concluded that silicon metal and ferrosilicon can be very effectively produced in a DC submerged arc furnace. Specific energy consumption factors measured were favorable to the technology. Significant energy savings over conventional AC practice are likely. Hollow electrode feeding of the furnace does not appear feasible. Electrode consumption was 0.144 lbs/lb so silicon while making metal, much of which occurred above the burden pile. Silicon loss to fume averaged 19.5% of the silicon charge. In this furnace, 50% FeSi was more difficult to produce than silicon metal, and the furnace could not be run with full burden; it was operated successfully about 3/4 full. In the silicon metal portion, the furnace was operated in a fully submerged mode for several 3-day test campaigns. The industry must seriously consider the identified benefits of DC plasma arc technology for retrofit or new added silicon capacity.

  15. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater.

    PubMed

    Guan, Zheng-Bing; Shui, Yan; Song, Chen-Meng; Zhang, Ning; Cai, Yu-Jie; Liao, Xiang-Ru

    2015-06-01

    Fungal laccases are typically unstable at high pH and temperature conditions, which limit their application in the decolorization of textile wastewater. By contrast, the highly stable bacterial laccases can function within a wider pH range and at high temperatures, thus have significant potential in treatment for textile wastewater. In our previous work, a thermo-alkali-stable CotA-laccase gene was cloned from Bacillus pumilus W3 and overexpressed in Escherichia coli. In this study, the robust CotA-laccase achieved efficient secretory expression in Bacillus subtilis WB600 by screening a suitable signal peptide. A maximum CotA-laccase yield of 373.1 U/mL was obtained at optimum culture conditions in a 3-L fermentor. Furthermore, the decolorization and detoxification of textile industry effluent by the purified recombinant CotA-laccase in the presence and absence of redox mediators were investigated. Among the potential mediators that enhanced effluent decolorization, acetosyringone (ACS) was the most effective. The toxicity of the CotA-laccase-ACS-treated effluent was greatly reduced compared with that of the crude effluent. To the best of our knowledge, this study is the first to report on the heterologous expression of CotA-laccase in B. subtilis. The recombinant strain B. subtilis WB600-5 has a great potential in the industrial production of this bacterial enzyme, and the CotA-laccase-ACS system is a promising candidate for the biological treatment of industrial textile effluents.

  16. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm

    PubMed Central

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W.; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-01-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins. PMID:26136263

  17. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm.

    PubMed

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-10-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins. PMID:26136263

  18. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  19. Dynamic olfactometry and GC-TOFMS to monitor the efficiency of an industrial biofilter.

    PubMed

    Gutiérrez, M C; Martín, M A; Pagans, E; Vera, L; García-Olmo, J; Chica, A F

    2015-04-15

    Biofiltration is the most widely used technique for eliminating odours in waste treatment plants. Volatile organic compounds (VOCs) are among the odorous compounds emitted by waste management plants, and serve as variables to measure odour emissions depending on the type of aeration process used. In this work, we assess the performance of an industrial-scale biofilter where composting is the main source of VOCs and odour emissions. Dynamic olfactometry is the sensorial technique used to determine odour concentration, while gas chromatography-time of flight-mass spectrometry (GC-TOFMS) is used to perform the chemical characterization. This work examines a total of 82 compounds belonging to 15 odorous families of VOCs, particularly mercaptans, sulphur-containing compounds, alcohols and terpenes, among others. Principal component analysis (PCA) is used to assess the influence of each of these families of VOCs on the total variance of the measure with regard to both the input and output flow of the biofilter. Finally, partial least-squares (PLS) regression is used to estimate the odour concentration in each of the samples taken at the inlet and outlet of the biofilter in each of the samples based on the chemical information provided by chromatographic analysis. The study shows that there is an adequate correlation (r=0.9751) between real and estimated odour concentrations, both of which are expressed in European odour units per cubic metre (ou(E)·m(-3)).

  20. Soviet aerospace industry - Aerodynamic Institute aids effort to develop fuel-efficient transports

    SciTech Connect

    Not Available

    1989-06-01

    Two new turbofan-powered transports currently undergoing flight testing, the Il-96-300 and the Tu-204, are believed to substantially owe their excellent fuel efficiencies to the research work conducted by the Central Aero-Hydrodynamic Institute in Moscow. This institute is responsible for the bulk of the USSR's aerodynamic, stability and control, aeroelasticity, and airframe structural characteristics research. As a measure of the quality of aerodynamic design achievable on the basis of these research efforts, it has been claimed that the Il-96-300 has a L/D value of 19 at Mach 0.92. The primary shortcoming of the institute is its poor hardware resources for CFD; these are compensated by the intensive development of sophisticated computer programs.

  1. Using GEFS ensemble forecasts for decision making in reservoir management in California

    NASA Astrophysics Data System (ADS)

    Scheuerer, M.; Hamill, T.; Webb, R. S.

    2015-12-01

    Reservoirs such as Lake Mendocino in California's Russian River Basin provide flood control, water supply, recreation, and environmental stream flow regulation. Many of these reservoirs are operated by the U.S. Army Corps of Engineers (Corps) according to water control manuals that specify elevations for an upper volume of reservoir storage that must be kept available for capturing storm runoff and reducing flood risk, and a lower volume of storage that may be used for water supply. During extreme rainfall events, runoff is captured by these reservoirs and released as quickly as possible to create flood storage space for another potential storm. These flood control manuals are based on typical historical weather patterns - wet during the winter, dry otherwise - but are not informed directly by weather prediction. Alternative reservoir management approaches such as Forecast-Informed Reservoir Operations (FIRO), which seek to incorporate advances in weather prediction, are currently being explored as means to improve water supply availability while maintaining flood risk reduction and providing additional ecosystem benefits.We present results from a FIRO proof-of-concept study investigating the reliability of post-processed GEFS ensemble forecasts to predict the probability that day 6-to-10 precipitation accumulations in certain areas in California exceed a high threshold. Our results suggest that reliable forecast guidance can be provided, and the resulting probabilities could be used to inform decisions to release or hold water in the reservoirs. We illustrate the potential of these forecasts in a case study of extreme event probabilities for the Russian River Basin in California.

  2. Activated RhoA Binds to the Pleckstrin Homology (PH) Domain of PDZ-RhoGEF, a Potential Site for Autoregulation

    SciTech Connect

    Chen, Zhe; Medina, Frank; Liu, Mu-ya; Thomas, Celestine; Sprang, Stephen R.; Sternweis, Paul C.

    2010-07-19

    Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH {center_dot} PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA {center_dot} GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH {center_dot} PH-RhoA {center_dot} GTP{gamma}S (guanosine 5{prime}-O-[{gamma}-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH {center_dot} PH do not overlap, and a ternary complex of PRG-DH {center_dot} PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.

  3. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and ruffles in cervical cancer epithelial HeLa cells

    PubMed Central

    Ruiz-Lafuente, Natalia; Alcaraz-García, María-José; García-Serna, Azahara-María; Sebastián-Ruiz, Silvia; Moya-Quiles, María-Rosa; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Dock10 is one of the three members of the Dock-D family of Dock proteins, a class of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Its homologs Dock9 and Dock11 are Cdc42 GEFs. Dock10 is required for maintenance of rounded morphology and amoeboid-type movement. Full-length isoforms of Dock10 have been recently cloned. Here, we address GTPase specificity and GEF activity of Dock10. In order of decreasing intensity, Dock10 interacted with nucleotide-free Rac1, Cdc42, and Rac3, and more weakly with Rac2, RhoF, and RhoG. Inducible expression of Dock10 in HeLa epithelial cells promoted GEF activity on Cdc42 and Rac1, and a morphologic change in two-dimensional culture consisting in loss of cell elongation, increase of filopodia, and ruffles. Area in contact with the substrate of cells that spread with non-elongated morphology was larger in cells expressing Dock10. Inducible expression of constitutively active mutants of Cdc42 and Rac1 in HeLa cells also induced loss of elongation. However, Cdc42 induced filopodia and contraction, and Rac1 induced membrane ruffles and flattening. When co-expressed with Dock10, Cdc42 potentiated filopodia, and Rac1 potentiated ruffles. These results suggest that Dock10 functions as a dual GEF for Cdc42 and Rac1, affecting cell morphology, spreading and actin cytoskeleton protrusions of adherent HeLa cells. PMID:25862245

  4. A 400-kWe high-efficiency steam turbine for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. M.

    1982-01-01

    An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.

  5. Projections of atmospheric nitrous oxide under scenarios of improved agriculture and industrial efficiencies, diet modification, and representative concentration pathways (RCPs)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2011-12-01

    Atmospheric concentrations of nitrous oxide (N2O), now at about 325ppb, have been increasing since the Industrial Revolution, as livestock herds increased globally and as use of synthetic-N fertilizers increased after WWII. The agricultural sector produces 70-80% of anthropogenic N2O. Significantly reducing those emissions while also improving the diets of the growing global human population will be very challenging. Increases in atmospheric N2O since 1860 are consistent with emissions factors of 2.5% of annual fertilizer-N usage and 2.0% of annual manure-N production being converted to N2O. These factors include both direct and indirect emissions attributable to these sources. Here I present projections of N2O emissions for a variety of scenarios including: (1) FAO population/diet scenarios with no changes in emission factors; (2) per-capita protein consumption in the developed world declines to 1980 levels by 2030 and only half of that is obtained from animal products, thus cutting global manure production by about 20%; (3) improvements in N-use efficiency and manure management reduce the emission factors by 50% by 2050; (4) same as 3 but industrial and transportation emissions are similarly reduced by 50% by 2050; and (5) all mitigations together. These projections are then compared to the four representative concentration pathways (RCPs) developed for the IPCC-AR5. With no further mitigation, the projections are consistent with RCP8.5, with atmospheric N2O at 368 ppb in 2050. RCP8.5 is a reasonable representation of N2O concentrations with growing agricultural production to feed a growing and better-nourished population, without improvements in agricultural efficiencies or changes in developed world diets. Major reductions in per-capita meat consumption in the developed world reduce projected 2050 N2O to 256 ppb, which is in line with RCP6.0. Cutting emission factors in half but without diet change would also lower projected 2050 N2O to 252ppb. Adding 50

  6. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    PubMed

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification. PMID:26890799

  7. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    PubMed

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification.

  8. Insights into the molecular activation mechanism of the RhoA-specific guanine nucleotide exchange factor, PDZRhoGEF.

    PubMed

    Bielnicki, Jakub A; Shkumatov, Alexander V; Derewenda, Urszula; Somlyo, Avril V; Svergun, Dmitri I; Derewenda, Zygmunt S

    2011-10-01

    PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via Gα(12/13) and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory "activation box" and the "GEF switch," which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.

  9. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect

    Alkadi, Nasr E; Nimbalkar, Sachin U; De Fontaine, Mr. Andre; Schoeneborn, Fred C

    2013-01-01

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  10. Shielding anisotropy of H-bonded protons in Cs 2GeF 6·4HF

    NASA Astrophysics Data System (ADS)

    Moroz, N. K.; Panich, A. M.; Gabuda, S. P.

    The chemical shift anisotropy of H-bonded protons in polycrystalline Cs 2GeF 6·4HF was determined by the analysis of NMR continuous wave spectra narrowed by the HF molecular diffusion in the crystal lattice. High resolution of spectral components was achieved due to "selective averaging" of the intermolecular dipole interaction. The derived value of ΔσH = 39 ± 7 ppm is close to that for bifluoride ion in KHF 2. For 19F ΔσF = 86 ± 4 ppm was determined.

  11. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume I: Main report

    SciTech Connect

    Not Available

    1994-02-01

    Section 131(c) of the Energy Policy Act of 1992 (EPACT) (Public Law 102-486) requires the Department of Energy (DOE) to evaluate the costs and benefits of federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy-intensive industries. It also requires DOE to evaluate the role of reporting and targets in improving energy efficiency. Specifically, the legislation states: Not later than one year after the data of the enactment of this Act, the Secretary shall, in consultation with affected industries, evaluate and report to the Congress regarding the establishment of Federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy intensive industries. Such report shall include an evaluation of the costs and benefits of such reporting requirements and voluntary energy efficiency improvement targets, and recommendations regarding the role of such activities in improving energy efficiency in energy intensive industries. This report is DOE`s response to that directive. It is the culmination of a year-long study that included (1) analysis of documents pertaining to a previous reporting and targets effort, the industrial Energy Efficiency Improvements Program (or the CE-189 program, following the designation of the reporting form used to collect data in that program), administered by DOE from 1976 to 1985, as well as other important background information; (2) extensive consultations with government and industry officials regarding the CE-189 Program, experience with other programs that have reporting elements, and the attributes of possible alternative strategies for reporting and targets; and (3) analyses of the costs and benefits of the CE-189 Program and several alternatives to the CE-189 approach.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  13. Activation of p115-RhoGEF Requires Direct Association of G[alpha subscript 13] and the Dbl Homology Domain

    SciTech Connect

    Chen, Zhe; Guo, Liang; Hadas, Jana; Gutowski, Stephen; Sprang, Stephen R.; Sternweis, Paul C.

    2012-09-05

    RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G{sub 12} class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated {alpha} subunits of G{sub 12} and G{sub 13}. Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by G{alpha}{sub 13}, the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated G{alpha}{sub 13} in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of G{alpha}{sub 13} docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the {alpha}3b helix of DH reduces binding to activated G{alpha}{sub 13} and ablates the stimulation of p115 by G{alpha}{sub 13}. Complementary mutations at the predicted DH-binding site in the {alpha}B-{alpha}C loop of the helical domain of G{alpha}{sub 13} also affect stimulation of p115 by G{alpha}{sub 13}. Although the GAP activity of p115 is not required for stimulation by G{alpha}{sub 13}, two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of G{alpha}{sub 13} to the RH domain facilitates direct association of G{alpha}{sub 13} to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.

  14. The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2

    PubMed Central

    Warrington, Samantha J.; Strutt, Helen; Strutt, David

    2013-01-01

    Polarised tissue elongation during morphogenesis involves cells within epithelial sheets or tubes making and breaking intercellular contacts in an oriented manner. Growing evidence suggests that cell adhesion can be modulated by endocytic trafficking of E-cadherin (E-cad), but how this process can be polarised within individual cells is poorly understood. The Frizzled (Fz)-dependent core planar polarity pathway is a major regulator of polarised cell rearrangements in processes such as gastrulation, and has also been implicated in regulation of cell adhesion through trafficking of E-cad; however, it is not known how these functions are integrated. We report a novel role for the core planar polarity pathway in promoting cell intercalation during tracheal tube morphogenesis in Drosophila embryogenesis, and present evidence that this is due to regulation of turnover and levels of junctional E-cad by the guanine exchange factor RhoGEF2. Furthermore, we show that core pathway activity leads to planar-polarised recruitment of RhoGEF2 and E-cad turnover in the epidermis of both the embryonic germband and the pupal wing. We thus reveal a general mechanism by which the core planar polarity pathway can promote polarised cell rearrangements. PMID:23364328

  15. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119

    PubMed Central

    Zhang, Qing; Li, Yan; Zhang, Yuxia; Torres, Vicente E.; Harris, Peter C.; Ling, Kun; Hu, Jinghua

    2016-01-01

    Primary cilia are sensory organelles indispensable for organogenesis and tissue pattern formation. Ciliopathy small GTPase ARLs are proposed as prominent ciliary switches, which when disrupted result in dysfunctional cilia, yet how ARLs are activated remain elusive. Here, we discover a novel small GTPase functional module, which contains ARL-3, ARL-13, and UNC-119, localizes near the poorly understood inversin (InV)-like compartment in C. elegans. ARL-13 acts synergistically with UNC-119, but antagonistically with ARL-3, in regulating ciliogenesis. We demonstrate that ARL-3 is a unique small GTPase with unusual high intrinsic GDP release but low intrinsic GTP binding rate. Importantly, ARL-13 acts as a nucleotide exchange factor (GEF) of ARL-3, while UNC-119 can stabilize the GTP binding of ARL-3. We further show that excess inactivated ARL-3 compromises ciliogenesis. The findings reveal a novel mechanism that one ciliopathy GTPase ARL-13, as a GEF, coordinates with UNC-119, which may act as a GTP-binding stabilizing factor, to properly activate another GTPase ARL-3 in cilia, a regulatory process indispensable for ciliogenesis. PMID:27102355

  16. Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

    SciTech Connect

    Alessi, A. Girard, S.; Di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Reghioua, I.; Fanetti, M.; Martin-Samos, L.; Agnello, S.; Cannas, M.; Marcandella, C.; Richard, N.

    2015-08-28

    We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.

  17. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin

    PubMed Central

    Zhou, Jian; Kim, Hye Young; Wang, James H.-C.; Davidson, Lance A.

    2010-01-01

    During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues. PMID:20630946

  18. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    SciTech Connect

    Not Available

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  19. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  2. Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans.

    PubMed

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Strong, Michael J

    2010-01-01

    In the mouse, p190RhoGEF is a low molecular weight neurofilament (NFL) mRNA stability factor that is involved in NF aggregate formation in neurons. A human homologue of this protein has not been described. Our objective was to identify a human homologue of p190RhoGEF, and to determine its interaction with human NFL mRNA. We used sequence homology searches to predict a human homologue (RGNEF), and RT-PCR to determine the expression of mRNA in ALS and neuropathologically normal control tissues. Gel shift assays determined the interaction of RGNEF with human NFL mRNA in vitro, while IP-RT-PCR and gel shift assays were used to confirm the interaction in tissue lysates. We determined that RGNEF is a human homologue of p190RhoGEF, and that its RNA is expressed in both brain and spinal cord. While RGNEF and NFL mRNA interact directly in vitro, interestingly they only appear to interact in ALS lysates and not in controls. These data add another player to the family of NFL mRNA stability regulators, and raise the intriguing possibility that the mechanism by which p190RhoGEF contributes to murine neuronal NF aggregate formation may be important to human ALS NF aggregate formation.

  3. Transforming on-grid renewable energy markets. A review of UNDP-GEF support for feed-in tariffs and related price and market-access instruments

    SciTech Connect

    Glemarec, Yannick; Rickerson, Wilson; Waissbein, Oliver

    2012-11-15

    As a Global Environment Facility (GEF) founding implementing agency, UNDP has worked on over 230 GEF-supported clean energy projects in close to 100 developing countries since 1992. About 100 of these projects in 80 countries have focused on renewable energy, supported by approximately US $ 293 million in GEF funds and leveraging US $1.48 billion in associated co-financing from national governments, international organizations, the private sector and non-governmental organizations. As part of UNDP efforts to codify and share lessons learnt from these initiatives, this report addresses how scarce public resources can be used to catalyze larger private financial flows for renewable energy. It provides an overview of UNDP-GEF’s extensive work supporting development of national renewable energy policies such as feed-in tariffs. In these activities UNDP-GEF assists developing countries to assess key risks and barriers to technology diffusion and then to identify a mix of policy and financial de-risking measures to remove these barriers and drive investment. This approach is illustrated through three case studies in Uruguay, Mauritius and Kazakhstan. This report is complemented by a companion publication presenting an innovative UNDP financial modeling tool to assist policymakers in appraising different public instruments to promote clean energy.

  4. Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  5. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  6. Automatische Lokalisation und hämodynamische Charakterisierung von Gefäßstrukturen bei arteriovenösen Malformationen

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Handels, Heinz

    Im Beitrag werden Verfahren zur automatischen Detektion des Kerns der Arteriovenösen Malformation (AVM) sowie der zuleitenden (Feeder), ableitenden (Drainagevenen) und en passge" Blutgef äße präsentiert. Als Eingabe hierfür dienen hochaufgelöste 3D- sowie zeitlich-räumliche 4D-MRT-Bildsequenzen. Durch eine kombinierte Analyse der Intensität, der Geschwindigkeit und des relativen Einflusszeitpunktes des Blutes werden Gefäßstrukturen automatisch charakterisiert. Die vorgestellte Methode zur Detektion des Kerns wurde anhand von manuellen Segmentierungen validiert und ergab eine mittlere Volumen- übereinstimmung von ca. 88%. Drainagevenen und Feeder konnten mit einer Genauigkeit von 95% detektiert werden.

  7. Pilot plant investigations on cleaning efficiencies to reduce hazelnut cross-contamination in industrial manufacture of cookies.

    PubMed

    Röder, Martin; Ibach, Anja; Baltruweit, Iris; Gruyters, Helwig; Janise, Annabella; Suwelack, Carola; Matissek, Reinhard; Vieths, Stefan; Holzhauser, Thomas

    2008-11-01

    Shared equipment in industrial food manufacture has repeatedly been described as a potential source of unlabeled food allergens, i.e., hidden allergens. However, the impact of shared equipment on allergen cross-contamination is basically unknown. Therefore, we sought to investigate systematically the extent of hazelnut cross-contamination in fine bakery wares as a model. A product change from cookies with 10% hazelnut to cookies without hazelnuts was simulated on pilot plant equipment. The extent of hazelnut cross-contamination (HNCC) was analyzed by enzyme-linked immunosorbent assay (ELISA) for each production device (kneaders, rotary molder, wire cutting machine, and steel band oven) and various cleaning procedures used between products. The experiments were performed repeatedly with finely ground hazelnuts and with roughly chopped hazelnut kernels. Cross-contamination from chopped kernels was distributed statistically but not homogeneously, and sampling and analysis with the ELISA was therefore not reproducible. Further analysis concentrated on homogenously distributed HNCC from ground hazelnut. Apart from product changes without intermediate cleaning, the highest HNCC was found after mechanical scraping: Up to 100 mg/kg hazelnut protein was found in the follow-up product after processing by one machine. After additional cleaning with hot water, the HNCC decreased regardless of the processing device to levels at or below 1 mg/kg hazelnut protein. In our pilot plant study, the application of an appropriate wet cleaning procedure in combination with quantitative monitoring of the cleaning efficiency reduced the hazelnut protein cross-contamination to a level at which severe hazelnut-related allergic reactions are unlikely to occur.

  8. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. Development of a coal/water-slurry-fueled diesel engine for industrial cogeneration: Task 6. 0 Determination of accurate heat release diagrams and mechanical efficiency

    SciTech Connect

    Nydick, S.E.

    1987-02-01

    Purpose of the program was to foster the long-range development of a coal/water slurry fuel-fired, slow-speed, two-stroke diesel engine for efficient and economical power generation in the 8 to 30 MW range for use in industrial cogeneration applications. This report contains the results of Task 6 of the program, a detailed analysis of heat release diagrams and determination of the mechanical efficiency for a single-cylinder, slow-speed diesel test engine when operated on coal/water slurry and diesel fuels. A digitized technique was utilized to determine the cylinder pressure history. The results of the program showed that the averages of previously reported thermal efficiency values for operation on coal/water slurry fuels were very accurate determinations. In addition, the slight differences in thermal efficiency between diesel and slurry operation are most likely related to changes in the mechanical efficiency resulting from degradation of the piston ring/cylinder liner interface rather than changes in combustion efficiency. Our previous prediction that, at 50% water content, the efficiency of a coal/water slurry engine is comparable to a diesel engine, has been confirmed experimentally and explained analytically.

  11. Influence of chemical bond length changes on the crystal field strength and “ligand metal” charge transfer transitions in Cs2GeF6 doped with Mn4+ and Os4+ ions

    NASA Astrophysics Data System (ADS)

    Brik, M. G.

    2007-07-01

    Detailed study of dependence of the crystal field strength 10Dq and lowest charge transfer (CT) energies for different interionic distances in Cs2GeF6:Mn4+ and Cs2GeF6:Os4+crystals is presented. The calculations were performed using the first-principles discrete-variational Dirac Slater (DV-DS) method. As a result, the functional dependencies of 10Dq and lowest CT energy on the metal ligand distance R were obtained without any fitting or semiempirical parameters. It was shown that 10Dq depends on R as 1/Rn, with n=4.0612 and 4.3874 for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively. Two approximations (linear and quadratic) are obtained for the dependence of the lowest CT energy on R; CT energy decreases when R increases with dE(CT)/dR=-638 and -1080 cm-1/pm for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively, if the linear approximation is used. These values can be used for estimations of the lowest CT energies for Mn4+ and Os4+ ions in other hosts with fluorine ligands. Estimations of the electron-vibrational interaction (EVI) constants, Huang Rhys parameters, and Stokes shifts for all the above-mentioned crystals were performed using the obtained 10Dq and E(CT) functions.

  12. Comparing different energy partitions at scission used in prompt emission model codes GEF and Point-by-Point

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.; Visan, I.; Giubega, G.

    2015-08-01

    Different methods to partition the total excitation energy (TXE) of fully accelerated fragments, presently used in prompt emission calculations include different assumptions about what is happening at scission. In fact the energy partition takes place at scission or even before scission, depending on the physical assumptions supporting the models used in different methods of TXE partition. The paper discusses two TXE partition methods in which the amount of energy to be shared (at scission and before scission, respectively) is very different. These methods (based on different principles and physical considerations) are: A. The method used in the Point-by-Point (PbP) treatment of prompt emission in which the available excitation energy at scission is shared between complementary nascent fragments. The amount of energy to be shared is sufficiently high to consider the nascent fragments in the Fermi-gas regime of the level density. B. The method used in the GEF code, in which the intrinsic energy before scission is shared between pre-nascent fragments according to the "energy sorting mechanism". This sorting mechanism is based on the assumption of level densities in the constant temperature regime, only. This is supported by the low amount of the shared intrinsic energy in the case of thermal and low energy neutron induced fission. Taking into account that the principles and physical considerations of any TXE partition method are independent on the way to treat the prompt emission (i.e. deterministically as in the PbP model or probabilistically by Monte-Carlo as in the code GEF) the methods A and B are applied to the same fission fragment range (built as in the PbP treatment). Extreme hypotheses are made for the fragment level densities on which the partitions are based (only in the Fermi-gas regime or only in the constant temperature regime). The results are compared with the energy partition obtained with fragment level densities described by the composite Gilbert

  13. A new locus on chromosome 22q13.31 linked to recessive genetic epilepsy with febrile seizures plus (GEFS+) in a Tunisian consanguineous family

    PubMed Central

    2013-01-01

    Background Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with extremely variable expressivity. The aim of our study was to identify the responsible locus for GEFS+ syndrome in a consanguineous Tunisian family showing three affected members, by carrying out a genome-wide single nucleotide polymorphisms (SNPs) genotyping followed by a whole-exome sequencing. We hypothesized an autosomal recessive (AR) mode of inheritance. Results Parametric linkage analysis and haplotype reconstruction identified a new unique identical by descent (IBD) interval of 527 kb, flanking by two microsatellite markers, 18GTchr22 and 15ACchr22b, on human chromosome 22q13.31 with a maximum multipoint LOD score of 2.51. Our analysis was refined by the use of a set of microsatellite markers. We showed that one of them was homozygous for the same allele in all affected individuals and heterozygous in healthy members of this family. This microsatellite marker, we called 17ACchr22, is located in an intronic region of TBC1D22A gene, which encodes a GTPase activator activity. Whole-exome sequencing did not reveal any mutation on chromosome 22q13.31 at the genome wide level. Conclusions Our findings suggest that TBC1D22A is a new locus for GEFS+. PMID:24067191

  14. A non-typical sequence of phase transitions in (NH4)3GeF7: optical and structural characterization.

    PubMed

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Misyul, S V

    2016-03-28

    Single crystals of germanium double salt (NH4)3GeF7 = (NH4)2GeF6·NH4F = (NH4)3[GeF6]F were grown and studied by the methods of polarization optics and X-ray diffraction. The birefringence Δn = (no - ne), the rotation angle of the optical indicatrix ϕ(T) and unit cell parameters were measured in the temperature range 100-400 K. Three structural phase transitions were found at the temperatures: T1↓ = 279.2 K (T1↑ = 279.4 K), T2↑ = 270 K (T2↓ = 268.9 K), T3↓ = 218 K (T3↑ = 227 K). An unusual sequence of symmetry transformations with temperature change was established: P4/mbm (Z = 2) (G1) ↔ Pbam (Z = 4) (G2) ↔ P21/c (Z = 4) (G3) ↔ Pa3[combining macron] (Z = 8) (G4). The crystal structures of different phases were determined. The experimental data were additionally interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account the critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions. PMID:26903439

  15. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1.

    PubMed

    Babrzadeh, Farbod; Jalili, Roxana; Wang, Chunlin; Shokralla, Shadi; Pierce, Sarah; Robinson-Mosher, Avi; Nyren, Pål; Shafer, Robert W; Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Davis, Ronald W; Ronaghi, Mostafa; Gharizadeh, Baback; Stambuk, Boris U

    2012-06-01

    The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.

  16. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1.

    PubMed

    Babrzadeh, Farbod; Jalili, Roxana; Wang, Chunlin; Shokralla, Shadi; Pierce, Sarah; Robinson-Mosher, Avi; Nyren, Pål; Shafer, Robert W; Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Davis, Ronald W; Ronaghi, Mostafa; Gharizadeh, Baback; Stambuk, Boris U

    2012-06-01

    The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains. PMID:22562254

  17. The Applied and Industrial Mathematics Program with Example Project: Efficient Routing for Meals on Wheels in the Shenandoah Valley

    ERIC Educational Resources Information Center

    Axvig, Nathan; David, John; Falcetti, Alex

    2015-01-01

    The Applied and Industrial Mathematics program partners applied mathematics students with businesses, governments, laboratories, and agencies to solve real problems. We will discuss the logistics of the program and give advice on starting and running similar programs. We also give a detailed example of a specific project, namely our work with the…

  18. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    PubMed Central

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leverich, Leah S.; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a novel TrkB kinase-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus, but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid dendritic spine head growth and in CA3-CA1 theta burst stimulated (TBS) long-term potentiation (LTP) in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity. PMID:21880903

  19. The RhoA GEF, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration

    PubMed Central

    Lessey-Morillon, Elizabeth C.; Osborne, Lukas D.; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O’Brien, E. Timothy; Superfine, Richard; Burridge, Keith

    2014-01-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. While much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared to ICAM-1 clustering alone. We have identified that the RhoA GEF LARG/ARHGEF12 acts downstream of clustered ICAM-1 to increase RhoA activity and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. This is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes. PMID:24585879

  20. p114RhoGEF governs cell motility and lumen formation during tubulogenesis through a ROCK-myosin-II pathway.

    PubMed

    Kim, Minji; M Shewan, Annette; Ewald, Andrew J; Werb, Zena; Mostov, Keith E

    2015-12-01

    Tubulogenesis is fundamental to the development of many epithelial organs. Although lumen formation in cysts has received considerable attention, less is known about lumenogenesis in tubes. Here, we utilized tubulogenesis induced by hepatocyte growth factor (HGF) in MDCK cells, which form tubes enclosing a single lumen. We report the mechanism that controls tubular lumenogenesis and limits each tube to a single lumen. Knockdown of p114RhoGEF (also known as ARHGEF18), a guanine nucleotide exchange factor for RhoA, did not perturb the early stages of tubulogenesis induced by HGF. However, this knockdown impaired later stages of tubulogenesis, resulting in multiple lumens in a tube. Inhibition of Rho kinase (ROCK) or myosin IIA, which are downstream of RhoA, led to formation of multiple lumens. We studied lumen formation by live-cell imaging, which revealed that inhibition of this pathway blocked cell movement, suggesting that cell movement is necessary for consolidating multiple lumens into a single lumen. Lumen formation in tubules is mechanistically quite different from lumenogenesis in cysts. Thus, we demonstrate a new pathway that regulates directed cell migration and formation of a single lumen during epithelial tube morphogenesis.

  1. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    SciTech Connect

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  2. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    PubMed

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  3. Endothelin A receptor drives invadopodia function and cell motility through the β-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma.

    PubMed

    Semprucci, E; Tocci, P; Cianfrocca, R; Sestito, R; Caprara, V; Veglione, M; Castro, V Di; Spadaro, F; Ferrandina, G; Bagnato, A; Rosanò, L

    2016-06-30

    The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion. This is accomplished by the direct interaction of β-arr1 with PDZ-RhoGEF (postsynaptic density protein 95/disc-large/zonula occludens-RhoGEF). Interestingly, ETAR-mediated invasive properties are related to the regulation of invadopodia, as evaluated by colocalization of actin with cortactin, as well as with TKS5 and MT1-MMP (membrane type 1-matrix metalloproteinase) with areas of matrix degradation, and activation of cofilin pathway, which is crucial for regulating invadopodia activity. Depletion of PDZ-RhoGEF, or β-arr1, or RhoC, as well as the treatment with the dual ET-1 receptor antagonist macitentan, significantly impairs invadopodia function, MMP activity and invasion, demonstrating that β-arr1/PDZ-RhoGEF interaction mediates ETAR-driven ROCK-LIMK-cofilin pathway through the control of RhoC activity. In vivo, macitentan is able to inhibit metastatic dissemination and cofilin phosphorylation. Collectively, our data unveil a noncanonical activation of the RhoC/ROCK pathway through the β-arr1/PDZ-RhoGEF complex as a regulator of ETAR-induced motility and metastasis, establishing ET-1 axis as a novel regulator of invadopodia protrusions through the RhoC/ROCK/LIMK/cofilin pathway during the initial steps of EOC invasion.

  4. Integrating Efficiency of Industry Processes and Practices Alongside Technology Effectiveness in Space Transportation Cost Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2012-01-01

    This paper presents past and current work in dealing with indirect industry and NASA costs when providing cost estimation or analysis for NASA projects and programs. Indirect costs, when defined as those costs in a project removed from the actual hardware or software hands-on labor; makes up most of the costs of today's complex large scale NASA space/industry projects. This appears to be the case across phases from research into development into production and into the operation of the system. Space transportation is the case of interest here. Modeling and cost estimation as a process rather than a product will be emphasized. Analysis as a series of belief systems in play among decision makers and decision factors will also be emphasized to provide context.

  5. [Justifying genetic and immune markers of efficiency and sensitivity under combined exposure to risk factors in mining industry workers].

    PubMed

    Dolgikh, O V; Zaitseva, N V; Krivtsov, A V; Gorshkova, K G; Lanin, D V; Bubnova, O A; Dianova, D G; Lykhina, T S; Vdovina, N A

    2014-01-01

    The authors evaluated and justified immunologic and genetic markers under combined exposure to risk factors in mining industry workers. Analysis covered polymorphism features of 29 genes with variant alleles possibly participating in occupationally conditioned diseases formation and serving as sensitivity markers of these diseases risk. The genes association selected demonstrates reliably changed polymorphism vs. the reference group (SOD2 superoxidedismutase gene, ANKK1 dophamine receptor gene, SULT1A1 sulphtransaminase gene, MTHFR methylene tetrahydrofolate reductase gene, VEGF endothelial growth factor gene, TNF-alpha tumor necrosis factor gene). Under combined exposure to occupational hazards (sylvinite dust, noise) in mining industry, this association can serve as adequate marking complex of sensitivity to development of occupationally conditioned diseases. Increased-production of immune cytokine regulation markers: tumor necrosis factor and vascular endothelial growth factor. Genes SOD2, ANKK1, SULT1A1, VEGF, TNFalpha are recommended as sensitivity markers, and the coded cytokines (tumor necrosis factor and endothelial growth factor) are proposed as effect markers in evaluation of health risk for workers in mining industry.

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  7. Ratepayer-funded energy-efficiency programs in a restructured electricity industry: Issues, options, and unanswered questions

    SciTech Connect

    Eto, J.; Goldman, C.; Kito, S.

    1996-08-01

    Regulated utilities have, in the past, been responsible for {open_quotes}Public purpose{close_quotes} programs that contribute to the general social good, such as energy-efficiency programs. In several states, continuation of these programs has become a critical issue in forging the consensus required to proceed with restructuring. As a result of reviewing the restructuring process in several states, we expect this trend to continue, but do not believe a single, generic approach can or should be defined. Instead, we expect a variety of solutions based on considerations unique to individual states or regions. To help structure these discussions in states struggling with this issue, we pose a series of questions and describe a range of possible answers: (1) We encourage state public utility commissions and legislatures to provide clear guidance on goals. (2) Close attention to the primary objectives for energy efficiency is important because the objectives influence the choices of programs and activities to be supported. (3) We advocate that states adopt a pragmatic approach to resolving the potentially contentious issue of determining whether or not utilities should continue to have primary responsibility for program administration, management, and design. The approach we propose involves assessing a utility`s past performance, its cur-rent commitment to energy-efficiency activities, and the potential conflicts of interest presented, if the utility retains a central role in administering energy-efficiency programs after restructuring. (4) A state should first assess policy options to mitigate adverse incentives and conflicts of interest in the utility before examining the possibility of having a non-utility entity assume responsibility for designing and managing energy-efficiency activities. (5) If a state does pursue non-utility administration for ratepayer-funded energy-efficiency programs, explicit attention must be paid to governance and accountability issues.

  8. Technical and economic analysis of the decisions efficiency of system of water vapor condensate collecting and reusing organization in the industrial firm practice

    NASA Astrophysics Data System (ADS)

    Khamidullina, G. R.

    2016-06-01

    We consider the technical and economic aspects of power - and resource-recovery decisions on a steam condensate recycling and effective using of the (residual) afterheat containing in it basing on the specifics of the industrial enterprises. Below there are the results of the technical and economic analysis of the original innovative solution introduced in practice of the organization of system of collecting and recycling using of water vapor condensate in the conditions of high probability of its pollution by hydrocarbon joints and a non-return of condensate to the source. Also we showed here the high efficiency of the proposed solution.

  9. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    NASA Astrophysics Data System (ADS)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  10. 78 FR 79423 - Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... recognition of an energy efficiency certification program for electric motors. See 77 FR 26608, 26629... applicable regulatory authorities and government departments of noncompliant motors (i.e., serial number... than 5 basic model types are selected. High volume production motors are to be represented in the...

  11. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  12. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  13. A lesson from Japan: research and development efficiency is a key element of pharmaceutical industry consolidation process.

    PubMed

    Shimura, Hirohisa; Masuda, Sachiko; Kimura, Hiromichi

    2014-02-01

    Scholarly attention to pharmaceutical companies' ability to sustain research and development (R&D) productivity has increased as they increasingly handle business challenges. Furthermore, the deterioration of R&D productivity has long been considered a major cause of mergers and acquisitions (M&As). This study attempts to investigate quantitatively the possible causes of the deterioration and the relationship between the deterioration and M&As by examining the Japanese pharmaceutical industry. Japan from 1980 to 1997 is an ideal case because of the availability of official data, but more importantly the significant changes in its business environment at the time. Using the Malmquist Index and data envelopment analysis, we measured the deterioration of R&D productivity from 1980 to 1997 based on a sample of 15 Japanese companies. Two lessons can be learned from Japan's case. First, to sustain R&D productivity over the long term, companies should use licensing activities and focus on the dominant therapeutic franchises. Second, if a company fails significantly to catch up with the benchmark, it is likely to pursue an M&A or seek an alternative way to improve R&D productivity. These findings appear similar to the current situation of the global pharmaceutical industry, although Japan pursued more licensing activities than M&A to improve R&D productivity.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  15. Evaluation of the efficiency of respiratory protective equipment based on the biological monitoring of styrene in fibreglass reinforced plastics industries.

    PubMed

    Nakayama, Shoji; Nishide, Tadashi; Horike, Tokushi; Kishimoto, Takumi; Kira, Shohei

    2004-03-01

    The purpose of the present study was to determine the efficiency of respiratory protective equipment in a fibreglass reinforced plastic factory by comparing results of environmental and biological monitoring of exposure to styrene. Five factories including 39 workers were investigated. Three types of respiratory protective equipment were tested: one was a half-mask air-purifying respirator equipped with a cartridge for organic solvents, another was a disposable gauze respirator impregnated with charcoal filter, and the third was a dust-proof respirator. The frequency of cartridge exchange of a half-mask respirator was twice a day only at one factory, and that was less than once a month at other factories. The site concentrations exceeded 20 ppm at 10 of the 82 sampling points (12.2%), and 22 of the 39 workers' (56.4%) personal exposure exceeded 20 ppm which is the current occupational exposure limit recommended by the Japan Society for Occupational Health. The efficiency of disposable gauze respirators and dust-proof respirators was low or rather zero. The average efficiency of half-mask respirators in which cartridges were exchanged twice a day and once a month was 83.6% and 46.6%, respectively. There was a significant disparity in the efficiency of the respirator depending on the frequency of cartridge exchange (p<0.05). Overall this study showed that even though a half-mask respirator is used and its cartridge is exchanged every half a day, workers exposed to a styrene concentration at or over 122 ppm are expected to inhale more than 20 ppm of styrene. PMID:15090688

  16. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  17. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    NASA Astrophysics Data System (ADS)

    El-Tayeb, A.; El-Shazly, A. H.; Elkady, M. F.; Abdel-Rahman, A. B.

    2016-09-01

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O3 in air discharge, O3 in water, and H2O2) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

  18. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    SciTech Connect

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental energy use, identify

  19. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater.

  20. Rgnef (p190RhoGEF) Knockout Inhibits RhoA Activity, Focal Adhesion Establishment, and Cell Motility Downstream of Integrins

    PubMed Central

    Miller, Nichol L. G.; Lawson, Christine; Chen, Xiao Lei; Lim, Ssang-Taek; Schlaepfer, David D.

    2012-01-01

    Background Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. Principal Findings Rgnef exon 24 floxed mice (Rgnefflox) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous RgnefWT/flox (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnefflox/flox (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnefflox/flox (Cre+) (Rgnef−/−) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef−/− MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. Conclusions Rgnef−/− MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration. PMID:22649559

  1. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis

    PubMed Central

    Greenberg, Lina; Hatini, Victor

    2010-01-01

    The Drosophila leg imaginal disc consists of a peripheral region that contributes to adult body wall, and a central region that forms the leg proper. While the patterning signals and transcription factors that determine the identity of adult structures have been identified, the mechanisms that determine the shape of these structures remain largely unknown. The family of Rho GTPases, which consists of 7 members in flies, modulates cell adhesion, actomyosin contractility, protrusive membrane activity, and cell-matrix adhesion to generate mechanical forces that shape adult structures. The Rho GTPases are ubiquitously expressed and it remains unclear how they orchestrate morphogenetic events. The Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase activating proteins (RhoGAPs), which respectively activate and deactivate corresponding Rho GTPases, have been proposed to regulate the activity of Rho signaling cascades in specific spatiotemporal patterns to orchestrate morphogenetic events. Here we identify restricted expression of 12 of the 20 RhoGEFs and 10 of the 22 Rho RhoGAPs encoded in Drosophila during metamorphosis. Expression of a subset of each family of RhoGTPase regulators was restricted to motile cell populations including tendon, muscle, trachea, and peripodial stalk cells. A second subset was restricted either to all presumptive joints or only to presumptive tarsal joints. Depletion of individual RhoGEFs and RhoGAPs in the epithelium of the disc proper identified several joint-specific genes, which act downstream of segmental patterning signals to control epithelial morphogenesis. Our studies provide a framework with which to understand how Rho signaling cascades orchestrate complex morphogenetic events in multicellular organisms, and evidence that patterning signals regulate these cascades to control apical constriction and epithelial invagination at presumptive joints. PMID:20851182

  2. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants.

    PubMed

    Cano-Rodríguez, Claudia Teodora; Roa-Morales, Gabriela; Amaya-Chávez, Araceli; Valdés-Arias, Ricardo Antonio; Barrera-Díaz, Carlos Eduardo; Balderas-Hernández, Patricia

    2014-01-01

    The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

  3. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    SciTech Connect

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-03-15

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.

  4. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  5. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    SciTech Connect

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  6. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    SciTech Connect

    Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.; Parker, Graham B.

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  7. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A. J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-01

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for 234U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  8. Preclinical Development of Novel Rac1-GEF Signaling Inhibitors using a Rational Design Approach in Highly Aggressive Breast Cancer Cell Lines

    PubMed Central

    Cardama, Georgina A; Comin, Maria J; Hornos, Leandro; Gonzalez, Nazareno; Defelipe, Lucas; Turjanski, Adrian G; Alonso, Daniel F; Gomez, Daniel E; Menna, Pablo Lorenzano

    2014-01-01

    Rho GTPases play a key role in the regulation of multiple essential cellular processes, including actin dynamics, gene transcription and cell cycle progression. Aberrant activation of Rac1, a member of Rho family of small GTPases, is associated with tumorigenesis, cancer progression, invasion and metastasis. Particularly, Rac1 is overexpressed and hyperactivated in highly aggressive breast cancer. Thus, Rac1 appears to be a promising and relevant target for the development of novel anticancer drugs. We identified the novel Rac1 inhibitor ZINC69391 through a docking-based virtual library screening targeting Rac1 activation by GEFs. This compound was able to block Rac1 interaction with its GEF Tiam1, prevented EGF-induced Rac1 activation and inhibited cell proliferation, cell migration and cell cycle progression in highly aggressive breast cancer cell lines. Moreover, ZINC69391 showed an in vivo antimetastatic effect in a syngeneic animal model. We further developed the novel analog 1A-116 by rational design and showed to be specific and more potent than the parental compound in vitro and interfered Rac1-P-Rex1 interaction. We also showed an enhanced in vivo potency of 1A-116 analog. These results show that we have developed novel Rac1 inhibitors that may be used as a novel anticancer therapy. PMID:24066799

  9. Purification and crystallization of the catalytic PRONE domain of RopGEF8 and its complex with Rop4 from Arabidopsis thaliana

    SciTech Connect

    Thomas, Christoph; Weyand, Michael; Wittinghofer, Alfred; Berken, Antje

    2006-06-01

    Crystals of the catalytic PRONE domain of the guanine nucleotide exchange factor RopGEF8 and its complex with the Rho-family protein Rop4 from A. thaliana were obtained that diffract to 2.2 and 3.1 Å resolution, respectively. The PRONE domain of the guanine nucleotide exchange factor RopGEF8 (PRONE8) was purified and crystallized free and in complex with the Rho-family protein Rop4 using the hanging-drop vapour-diffusion method. PRONE8 crystals were obtained using NaCl as precipitating agent and belong to the hexagonal space group P6{sub 5}22. Native and anomalous data sets were collected using synchrotron radiation at 100 K to 2.2 and 2.8 Å resolution, respectively. Crystals of the Rop4–PRONE8 complex belonging to space group P6{sub 3} were obtained using Tacsimate and PEG 3350 as precipitating agents and diffracted to 3.1 Å resolution.

  10. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    SciTech Connect

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A.J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-15

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for {sup 234}U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  11. The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots.

    PubMed

    Mongiardini, Elías J; Parisi, Gustavo D; Quelas, Juan I; Lodeiro, Aníbal R

    2016-01-01

    Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide.

  12. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.

    PubMed

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah

    2013-01-01

    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3). PMID:23585164

  13. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.

    PubMed

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah

    2013-01-01

    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

  14. High efficiency electricity production in the sugar industry of the future: The Pacific International Center for High Technology Research Project (>6MW{sub e})

    SciTech Connect

    Trenka, A.R.

    1995-12-31

    The Pacific International Center for High Technology Research (PICHTR) is presently starting up a 100 tpd bagasse Renugas{reg_sign} gasifier which was developed under license from the Institute of Gas Technology (IGT). For thousands of years, mankind has used biomass for energy, burning it first in campfires. In more modem times, combustion boiler systems were developed such as those fueled by coal. Through inefficient, these systems answered an increasing need for energy brought on by the industrial revolution. Yesterday`s systems are being replaced with more efficient methods of energy conversion and extraction. Recognizing the untapped potential for biomass power to provide clean and efficient energy, the U.S. Department of Energy established the National Biomass Power Program in 1991. The State of Hawaii Department of Business, Economic Development & Tourism is collaborating in this national program to complement the development of its own sustainable resource program. As a key player in this program, PICHTR will design, construct, and operate a biomass gasification facility that will be the centerpiece of the nation`s biomass gasification technology.

  15. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Quarterly technical progress report No. 11, April 1, 1994--June 30, 1994

    SciTech Connect

    Patel, R.; Borio, R.; Scaroni, A.W.; Miller, B.G.; McGowan, J.G.

    1994-09-23

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the tenth quarter of the program. The four hundred hours ``Proof-of-Concept System Test`` under Task 3 was completed during this quarter. The primary objectives were to obtain steady state operation consistently on coal only and increase carbon conversion efficiency from {approximately}95% to the project goal of 98%. This was to be obtained without increasing NO{sub x} emission above the project goal level of 0.6 lbs/MBtu ({approximately}425 ppM). The testing was also designed to show that consistent, reliable operation could be achieved as another prerequisite to the demonstration. The data were gathered and analyzed for both economic and technical analysis prior to committing to the long term demonstration. The Economic Evaluation was completed and work started on commercialization plan. During this reporting period, activities included sample analysis, data reduction and interpretation from all the testing during March and April. Following preliminary conclusions are drawn based on results evaluated: coal handling/preparation system can be designed to meet technical requirements for retrofitting microfine coal combustion; boiler thermal performance met requirement; NO{sub x} Emission can meet target of 0.6 lb/MBtu; combustion efficiencies of 95% could be met on a daily average basis, somewhat below target of 98%; economic playback very sensitive to fuel differential cost, unit size, and annual operating hours; and continuous long term demonstration needed to quantify ash effect and how to best handle.

  16. Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic.

    PubMed

    Chen, Shuliang; Cai, Huaqing; Park, Sei-Kyoung; Menon, Shekar; Jackson, Catherine L; Ferro-Novick, Susan

    2011-10-01

    The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.

  17. A high efficiency industrial polysilicon solar cell with a honeycomb-like surface fabricated by wet etching using a photoresist mask

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Ding, Bin; Chen, Tianhang

    2016-11-01

    In this paper, an effective and low cost method of texturization was introduced into the fabrication process for industrial multicrystalline silicon solar cell production. The purpose of the method was to reduce reflectance by creating a honeycomb-like textured surface using a masked wet etching process. A negative photoresist film was selected as an etching mask. Although large surface roughness of wafer was considered to affect the adhesion and acid resistance of etching mask, a honeycomb-like textured surface with a pitch of 18 μm was fabricated successfully. The etched pits had a nearly smooth spherical segment surface, an average aperture of 15.1 μm, and a depth of 6.5 μm. This regular textured surface had a low light reflectivity of approximately 20.5% and greatly increased the carrier lifetime. Compared with multicrystalline silicon solar cells textured by conventional acid etching, the average short circuit current increased by 2.2% and the average efficiency increased from 17.41% to 17.75%, a net gain of 0.34%. And a high throughput above 2400 pieces per hour was obtained. This texturing technique is expected to promote the application of diamond-wire cut multicrystalline silicon wafers with the low saw-damage in the future.

  18. The human Rgr oncogene is overexpressed in T cell malignancies and induces transformation by acting as a GEF for Ras and Ral

    PubMed Central

    Osei-Sarfo, Kwame; Martello, Laura; Ibrahim, Sherif; Pellicer, Angel

    2011-01-01

    The Ras superfamily of GTPases is involved in the modification of many cellular processes including cellular motility, proliferation and differentiation. Our laboratory has previously identified the RalGDS related (Rgr) oncogene in a DMBA-induced rabbit squamous cell carcinoma and its human orthologue, hRgr. In the present study, we analyzed the expression levels of the human hRgr transcript in a panel of human hematopoietic malignancies and found that a truncated form (diseased-truncated; Dtr-hrgr) was significantly overexpressed in many T-cell derived neoplasms. Although the Rgr proto-oncogene belongs to the RalGDS family of guanine nucleotide exchange factors (GEFs), we show that upon the introduction of hRgr into fibroblast cell lines it is able to elicit the activation of both Ral and Ras GTPases. Moreover, in vitro guanine nucleotide exchange assays confirm that hRgr promotes Ral and Ras activation through GDP dissociation, which is a critical characteristic of GEF proteins. hRgr has guanine nucleotide exchange activity for both small GTPases and this activity was reduced when a point mutation within the catalytic domain (CDC25) of the protein, (cd) Dtr-hRgr, was utilized. These observations prompted the analysis of the biological effects of hRgr and (cd) hRgr expression in cultured cells. Here, we show that hRgr increases proliferation in low serum, increases invasion, reduces anchorage dependence, and promotes the progression into S phase of the cell cycle; properties that are abolished or severely reduced in the presence of the catalytic dead mutant. We conclude that the ability of hRgr to activate both Ral and Ras is responsible for its transformation-inducing phenotype and it could be an important contributor in the development of some T cell malignancies. PMID:21441953

  19. Agriculture--Industry of the Future

    SciTech Connect

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies' Agriculture Industry of the Future, a partnership between the Department of Energy and the agriculture industry established to increase industrial energy and cost efficiency.

  20. Petroleum--Industry of the Future

    SciTech Connect

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies' Petroleum Industry of The Future, a partnership between the Department of Energy and the petroleum refining industry established to increase industrial energy and cost efficiency.

  1. High Power Impulse Magnetron Sputtering (HIPIMS) of Ultra-Hard and Low-Friction Nanocomposite Coatings for Improved Energy Efficiency and Durability in Demanding Industrial Applications

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is to explore the effectiveness of a revolutionary technology in industrial scale deposition systems – HIPIMS – in achieving the highest possible levels of adhesion between superhard, nanocomposite coatings and their substrates as well as super tough and strong cohesion within the films so that they cannot delaminate or crack when used under the very harsh and cycling operating conditions of advanced manufacturing and other industrial operations.

  2. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.

    PubMed

    Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue

    2013-08-01

    In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM10 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10.

  3. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.

    PubMed

    Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue

    2013-08-01

    In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM10 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10. PMID:23707868

  4. Efficient Use of Energy

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Explains efficiency in terms of thermodynamics, and states specific ways in which energy efficiency can be increased in the following areas: automobiles, industrial processes, and indoor use in the home. (MLH)

  5. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  6. Loss of the obscurin-RhoGEF downregulates RhoA signaling and increases microtentacle formation and attachment of breast epithelial cells.

    PubMed

    Perry, Nicole A; Vitolo, Michele I; Martin, Stuart S; Kontrogianni-Konstantopoulos, Aikaterini

    2014-09-30

    Obscurins are RhoGEF-containing proteins whose downregulation has been implicated in the development and progression of breast cancer. Herein, we aim to elucidate the mechanism for increased motility of obscurin-deficient cells. We show that shRNA-mediated obscurin downregulation in MCF10A cells leads to >50% reduction in RhoA activity relative to scramble control (shCtrl), as well as decreased phosphorylation of RhoA effectors, including myosin light chain phosphatase, myosin light chain, lim kinase, and cofilin, in both attached and suspended cells. These alterations result in decreased actomyosin contractility, allowing suspended cells to escape detachment-induced apoptosis. Moreover, ~40% of shObsc-expressing cells, but only ~10% of shCtrl-expressing cells, extend microtentacles, tubulin-based projections that mediate the attachment of circulating tumor cells to endothelium. Indeed, we show that MCF10A cells expressing shObsc attach in vitro more readily than shCtrl cells, an advantage that persists following taxane exposure. Overall, our data suggest that loss of obscurins may represent a substantial selective advantage for breast epithelial cells during metastasis, and that treatment with paclitaxel may exacerbate this advantage by preferentially allowing obscurin-deficient, stem-like cells to attach to the endothelium of distant sites, a first step towards colonizing metastatic tumors.

  7. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  8. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  9. Fgd1, the Cdc42 GEF responsible for Faciogenital Dysplasia, directly interacts with cortactin and mAbp1 to modulate cell shape.

    PubMed

    Hou, Peng; Estrada, Lourdes; Kinley, Andrew W; Parsons, J Thomas; Vojtek, Anne B; Gorski, Jerome L

    2003-08-15

    FGD1 mutations result in Faciogenital Dysplasia (FGDY), an X-linked human disease that affects skeletal formation and embryonic morphogenesis. FGD1 and Fgd1, the mouse FGD1 ortholog, encode guanine nucleotide exchange factors (GEF) that specifically activate Cdc42, a Rho GTPase that controls the organization of the actin cytoskeleton. To further understand FGD1/Fgd1 signaling and begin to elucidate the molecular pathophysiology of FGDY, we demonstrate that Fgd1 directly interacts with cortactin and mouse actin-binding protein 1 (mAbp1), actin-binding proteins that regulate actin polymerization through the Arp2/3 complex. In yeast two-hybrid studies, cortactin and mAbp1 Src homology 3 (SH3) domains interact with a single Fgd1 SH3-binding domain (SH3-BD), and biochemical studies show that the Fgd1 SH3-BD directly binds to cortactin and mAbp1 in vitro. Immunoprecipitation studies show that Fgd1 interacts with cortactin and mAbp1 in vivo and that Fgd1 SH3-BD mutations disrupt binding. Immunocytochemical studies show that Fgd1 colocalizes with cortactin and mAbp1 in lamellipodia and membrane ruffles, and that Fgd1 subcellular targeting is dynamic. By using truncated cortactin proteins, immunocytochemical studies show that the cortactin SH3 domain targets Fgd1 to the subcortical actin cytoskeleton, and that abnormal Fgd1 localization results in actin cytoskeletal abnormalities and significant changes in cell shape and viability. Thus, this study provides novel in vitro and in vivo evidence that Fgd1 specifically and directly interacts with cortactin and mAbp1, and that these interactions play an important role in regulating the actin cytoskeleton and, subsequently, cell shape.

  10. CRB3A Controls the Morphology and Cohesion of Cancer Cells through Ehm2/p114RhoGEF-Dependent Signaling

    PubMed Central

    Loie, Elise; Charrier, Lucie E.; Sollier, Kévin; Masson, Jean-Yves

    2015-01-01

    The transmembrane protein CRB3A controls epithelial cell polarization. Elucidating the molecular mechanisms of CRB3A function is essential as this protein prevents the epithelial-to-mesenchymal transition (EMT), which contributes to tumor progression. To investigate the functional impact of altered CRB3A expression in cancer cells, we expressed CRB3A in HeLa cells, which are devoid of endogenous CRB3A. While control HeLa cells display a patchy F-actin distribution, CRB3A-expressing cells form a circumferential actomyosin belt. This reorganization of the cytoskeleton is accompanied by a transition from an ameboid cell shape to an epithelial-cell-like morphology. In addition, CRB3A increases the cohesion of HeLa cells. To perform these functions, CRB3A recruits p114RhoGEF and its activator Ehm2 to the cell periphery using both functional motifs of its cytoplasmic tail and increases RhoA activation levels. ROCK1 and ROCK2 (ROCK1/2), which are critical effectors of RhoA, are also essential to modulate the cytoskeleton and cell shape downstream of CRB3A. Overall, our study highlights novel roles for CRB3A and deciphers the signaling pathway conferring to CRB3A the ability to fulfill these functions. Thereby, our data will facilitate further investigation of CRB3A functions and increase our understanding of the cellular defects associated with the loss of CRB3A expression in cancer cells. PMID:26217016

  11. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  12. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  13. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  14. Studies on thio-substituted polyurethane foam (T-PUF) as a new efficient separation medium for the removal of inorganic/organic mercury from industrial effluents and solid wastes.

    PubMed

    Anjaneyulu, Y; Marayya, R; Rao, T H

    1993-01-01

    Novel thio-substituted flexible polyurethane foam (T-PUF) was synthesised by addition polymerisation of mercaptan with the precursors of an open-cell polyurethane foam, which can be used as a highly selective sorbent for inorganic and organic mercury from complex matrices. The percentage extraction of inorganic mercury was studied at different flow-rates, over a wide pH range at different concentrations ranging from 1 ppm, to 100 ppm. The break-through capacity and total capacity of unmodified and thio-foams were determined for inorganic and organic mercurials. The absorption efficiency of thio-foam was far superior to other sorbent media, such as activated carbon, polymeric ion-exchange resins and reagent-loaded polyurethane foams. It was observed that even at the 1000 ppm level, divalent ions like Cu, Mg, Ca, Zn do not appreciably influence the per cent extraction of inorganic mercury at the 10 ppm level. These matrix levels are the most concentrated ones which are likely to occur, both in local sewage and effluent waters. Further, the efficiency of this foam was sufficiently high at 10-100 ppm levels of Hg, even from 5-10 litres of effluent volumes using 50 g of thio-foam packed into different columns in series. Thio-foams were found to possess excellent abilities to remove and recover mercury even at low levels from industrial effluents and brine mud of chlor-alkali industry after pre-acid extraction. This makes it a highly efficient sorbent for possible application in effluent treatment. Model schemes for the removal and recovery of mercury from industrial effluents and municipal sewage (100-1000 litre) by a dynamic method are proposed and the costs incurred in a full-scale application method are indicated to show that the use of thio-foam could be commercially attractive.

  15. Isolation of a fission yeast mutant that is sensitive to valproic acid and defective in the gene encoding Ric1, a putative component of Ypt/Rab-specific GEF for Ryh1 GTPase.

    PubMed

    Ma, Yan; Sugiura, Reiko; Zhang, Lili; Zhou, Xin; Takeuchi, Mai; He, Yi; Kuno, Takayoshi

    2010-09-01

    Valproic acid (VPA) causes various therapeutic and biological effects, but the exact mechanisms underlying these effects, however, remain elusive. To gain insights into the molecular mechanisms of VPA action, we performed in fission yeast a genetic screen for mutants that show VPA hypersensitivity and have identified several membrane-trafficking mutants including vas1-1/vps45 and vas2-1/aps1. Here, we describe the isolation and characterization of vas3-1/ric1-v3, a mutant allele of the ric1 (+) gene encoding a fission yeast homolog of the budding yeast Ric1p, a component of Ypt/Rab-specific guanyl-nucleotide exchange factor (GEF). The Rab GTPase Ryh1 knockout (Deltaryh1) cells and Deltaric1 cells exhibited similar phenotypes. The double knockout Deltaric1Deltaryh1 cells did not display synthetic growth defects. These results are consistent with the notion that Ric1 may be a component of the GEF complex for Ryh1. Overexpression of wild-type Ryh1 and the constitutively active Ryh1Q70L only partially suppressed the phenotypes of ric1-v3 and Deltaric1 cells, and they failed to localize to the Golgi/endosomes in ric1-v3 and Deltaric1 cells. Furthermore, we isolated vps15 (+) gene, encoding a serine/threonine protein kinase, as a dosage-dependent suppressor of the temperature-sensitive phenotype of ric1-v3 mutant, but not that of Deltaric1 cells. Our results showed that the ric1-v3 mutant allele has some residual functional activity and suggest that Vps15 plays a role in the regulation of Ric1 function. In conclusion, Ric1 is a putative component of GEF for Ryh1 and might be regulated by Vps15. Further studies are needed to reveal the mechanism underlying the regulation.

  16. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  17. Improving boiler efficiency

    SciTech Connect

    Yost, L.

    1982-06-24

    Boilers and burners are designed to operate most efficiently at, or near, full load. This fact seems to indicate that on/off operation is more efficient; however, standby losses must be considered. This article examines various types of industrial boiler heat losses that reduce efficiency and discusses methods for improving operation.

  18. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  19. The Rationale for Industrial Technology/Industrial Arts in Texas.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    The goal of industrial technology for industrial arts education in Texas is the education of society to enable its members to function efficiently in the world of advancing technology. Policymakers in Texas have chosen to organize the industrial technology curriculum around three technology clusters: visual communication, production, and energy…

  20. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    SciTech Connect

    Jennings, P.; Borio, R.; McGowan, J.G.

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  1. Heat pumps for industry

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  2. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  3. ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1.

    PubMed

    Pasten, Consuelo; Cerda, Joaquín; Jausoro, Ignacio; Court, Felipe A; Cáceres, Alfredo; Marzolo, Maria-Paz

    2015-11-01

    ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration.

  4. Comparative Study of Multiplet Structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 Based on First-Principles Configuration-Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-02-01

    We performed first-principles configuration-interaction calculations of multiplet energies for Mn4+ in K2SiF6, K2GeF6, and K2TiF6 crystals. The results indicate that corrections based on a single-electron calculation are effective for the prediction of 4A2 → 4T2 and 4A2 → 4T1a transition energies, while such corrections are not necessary for the prediction of the 4A2 → 2E transition energy. The cluster size dependence of the multiplet energies is small. However, the 4A2 → 2E transition energy is slightly improved by using larger clusters including K ions. The theoretical multiplet energies are improved further by considering the lattice relaxation effect. As a result, the characteristic multiplet energy shifts depending on the host crystal are well reproduced without using any empirical parameters. Although K2GeF6 and K2TiF6 have lower symmetry than K2SiF6, the results indicate that the variation of the multiplet energy is mainly determined by the Mn-F bond length.

  5. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  6. The charge of ergonomics--a model according to the influence of ergonomic workplace design for economical and efficient indicators of the automotive industry.

    PubMed

    Neubert, Nicole; Bruder, Ralph; Toledo, Begoña

    2012-01-01

    The importance of ergonomic workplace design has been rising incredibly. The knowledge of the interaction with a view to many indicators (e.g. operators' health, quality, productivity etc.) in the automotive assembly shop pushed into another thinking of ergonomics and an increasing awareness of economic possibilities relating to benefits and cost savings aligned with ergonomics. The paper discusses exemplary the various indicators and factors which could be influenced by ergonomic workplace design. These factors are linked each other and support the statement of ergonomic efficiency. Thus, the aim of this paper is to present a model which describes that investments in ergonomic work placement acts with preventive measurements, minimization of losses (refinishing operations, compensation money etc.) and extensive economies on the whole company. PMID:22317394

  7. The charge of ergonomics--a model according to the influence of ergonomic workplace design for economical and efficient indicators of the automotive industry.

    PubMed

    Neubert, Nicole; Bruder, Ralph; Toledo, Begoña

    2012-01-01

    The importance of ergonomic workplace design has been rising incredibly. The knowledge of the interaction with a view to many indicators (e.g. operators' health, quality, productivity etc.) in the automotive assembly shop pushed into another thinking of ergonomics and an increasing awareness of economic possibilities relating to benefits and cost savings aligned with ergonomics. The paper discusses exemplary the various indicators and factors which could be influenced by ergonomic workplace design. These factors are linked each other and support the statement of ergonomic efficiency. Thus, the aim of this paper is to present a model which describes that investments in ergonomic work placement acts with preventive measurements, minimization of losses (refinishing operations, compensation money etc.) and extensive economies on the whole company.

  8. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  9. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  10. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  11. Industrial Waste Reduction Program

    SciTech Connect

    Not Available

    1991-10-24

    US industry generates over 12 billion tons of wastes each year. These wastes consist of undesirable by-products of industrial production that are discarded into our environment. Energy is an integral part of these wastes; it is found in the embodied energy of industrial feedstocks not optimally used, in the energy content of the wastes themselves, and in the energy needed to transport, treat, and dispose of wastes. Estimates of the potential energy savings from reducing industrial wastes range from three to four quadrillion Btu per year -- enough to meet the annual energy needs of 30 million American homes. This document presents a plan for the Industrial Waste Reduction Program, which has been designed to help achieve national goals for energy efficiency and waste minimization. The objective of the program is to improve the energy efficiency of industrial processes through cost-effective waste reduction. The initial program focus is on waste reduction opportunities in the production and use of chemicals, due to the significant amount of energy used in these activities and the large amounts of hazardous and toxic wastes they generate. The chemical industry will be the initial subject of a series of waste reduction opportunity assessments conducted as part of the program. Assessments of other industries and waste problems will follow.

  12. Industrial Assessment Center

    SciTech Connect

    J. Kelly Kissock; Becky Blust

    2007-04-17

    The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

  13. Analysis of industry-generated data. Part 2: Risk-based sampling plan for efficient self-control of aflatoxin M₁ contamination in raw milk.

    PubMed

    Farkas, Zsuzsa; Trevisani, Marcello; Horváth, Zsuzsanna; Serraino, Andrea; Szabó, István J; Kerekes, Kata; Szeitzné-Szabó, Mária; Ambrus, Arpád

    2014-01-01

    Aflatoxin M₁ (AFM1) contamination in 21,969 milk samples taken in Italy during 2005-08 and 2010 provided the basis for designing an early warning self-control plan. Additionally, 4148 AFM1 data points from the mycotoxin crisis (2003-04) represented the worst case. No parametric function provided a good fit for the skewed and scattered AFM1 concentrations. The acceptable reference values, reflecting the combined uncertainty of AFM1 measured in consignments consisting of milk from one to six farms, ranged from 40 to 16.7 ng kg(-1), respectively. Asymmetric control charts with these reference values, 40 and 50 ng kg(-1) warning and action limits are recommended to assess immediately the distribution of AFM1 concentration in incoming consignments. The moving window method, presented as a worked example including 5 days with five samples/day, enabled verification of compliance of production with the legal limit in 98% of the consignments at a 94% probability level. The sampling plan developed assumes consecutive analyses of samples taken from individual farms, which makes early detection of contamination possible and also immediate corrective actions if the AFM1 concentration in a consignment exceeds the reference value. In the latter case different control plans with increased sampling frequency should be applied depending on the level and frequency of contamination. As aflatoxin B₁ increases in feed at about the same time, therefore a coordinated sampling programme performed by the milk processing plants operating in a confined geographic area is more effective and economical then the individual ones. The applicability of the sample size calculation based on binomial theorem and the fast response rate resulting from the recommended sampling plan were verified by taking 1000-10,000 random samples with replacement from the experimental databases representing the normal, moderately and highly contaminated periods. The efficiency of the control plan could be

  14. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. PMID:27213673

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2004-01-01

    Part of the 2003 industrial minerals review. Supply and demand data for industrial diamond are provided. Topics discussed are consumption, prices, imports and exports, government stockpiles, and the outlook for 2004.

  16. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  17. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  18. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  19. Industrial Microbiology.

    ERIC Educational Resources Information Center

    Demain, Arnold L.; Solomon, Nadine A.

    1981-01-01

    Presents an overview of the field of industrial microbiology, providing historical backgrounds of scientific discoveries in the field and descriptions of industrially important microorganisms. Applied research in industry is also detailed, with mention of gene amplification, DNA recombination, pharmaceutical approaches, and detoxification and…

  20. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    This article illustrates projected employment change from an industry perspective over the 2008-2018 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment in which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  1. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Industry information. 1215.8 Section 1215.8... Industry information. Industry information means information and programs that will lead to the development of new markets, new marketing strategies, or increased efficiency for the popcorn industry,...

  2. 7 CFR 1260.125 - Industry information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Industry information. 1260.125 Section 1260.125... Promotion and Research Order Definitions § 1260.125 Industry information. Industry information means... efficiency, and activities to enhance the image of the cattle industry....

  3. 7 CFR 1260.125 - Industry information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Industry information. 1260.125 Section 1260.125... Promotion and Research Order Definitions § 1260.125 Industry information. Industry information means... efficiency, and activities to enhance the image of the cattle industry....

  4. 7 CFR 1260.125 - Industry information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Industry information. 1260.125 Section 1260.125... Promotion and Research Order Definitions § 1260.125 Industry information. Industry information means... efficiency, and activities to enhance the image of the cattle industry....

  5. 7 CFR 1260.125 - Industry information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Industry information. 1260.125 Section 1260.125... Promotion and Research Order Definitions § 1260.125 Industry information. Industry information means... efficiency, and activities to enhance the image of the cattle industry....

  6. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Industry information. 1215.8 Section 1215.8... Industry information. Industry information means information and programs that will lead to the development of new markets, new marketing strategies, or increased efficiency for the popcorn industry,...

  7. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Industry information. 1215.8 Section 1215.8... Industry information. Industry information means information and programs that will lead to the development of new markets, new marketing strategies, or increased efficiency for the popcorn industry,...

  8. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Industry information. 1215.8 Section 1215.8... Industry information. Industry information means information and programs that will lead to the development of new markets, new marketing strategies, or increased efficiency for the popcorn industry,...

  9. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  10. Working with Industry

    ERIC Educational Resources Information Center

    Ullman, Ellen

    2012-01-01

    As community colleges focus on becoming more efficient and preparing more students for success in a climate of reduced state and federal funding, many institutions are reaching out to neighbors in business and industry, forming partnerships and working together to achieve goals that require money and resources colleges are unlikely to raise on…

  11. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  12. Air stripping industrial wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1994-09-01

    Industrial wastewater can be quickly, efficiently and economically treated using air strippers. Air stripping removes a range of volatile and semi-volatile contaminants from water. And the performance of various types and sizes of tray-type air stripper for treating contaminated water now is highly predictable because of laboratory studies. Air stripping can be a fast, efficient and economical approach to treating industrial wastewater. However, since every industrial wastewater stream is unique, each must be evaluated to determine its constituents, its potentially adverse effects on treatability, and any pretreatment steps necessary to ensure desired results. The general principles of air stripping are simple. In an air stripper, the surfaces area of a film of contaminated water is maximized while air is directed across it. Contaminants at the air/water interface volatilize and are discharged to the atmosphere or to an off-gas treatment system.

  13. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  14. Supporting industries energy and environmental profile

    SciTech Connect

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  15. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Industrial Minerals.

    ERIC Educational Resources Information Center

    Brady, Lawrence L.

    1983-01-01

    Discusses trends in and factors related to the production of industrial minerals during 1982, indicating that, as 1981 marked a downturn in production of industrial minerals, 1982 continued the trend with temporary and permanent cutbacks in mine and plant production. Includes highlights of several conferences/conference papers in this field.…

  17. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  18. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  19. INDUSTRIAL ASSESSMENT CENTER PROGRAM

    SciTech Connect

    ASFAW BEYENE

    2008-09-29

    Since its establishment in 1990, San Diego State University’s Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IAC’s efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

  20. Industrial Lubricants

    NASA Astrophysics Data System (ADS)

    Kajdas, C.; Karpińska, A.; Kulczycki, A.

    'Industrial lubricant' gaseous, liquid and solid products cover many applications. A new systems analysis approach is used combining heterogeneous catalysis and tribochemistry. Bearing lubricant applications are discussed in terms of the bearing film thickness and tribological regimes, for liquid and solid lubricants. Compressor and vacuum pump lubricant applications are described. The various classes of hydraulic fluids for industrial applications are explained. The properties, applications and selection of various industrial lubricants for different gears are described. Steam and industrial gas turbine lubricant formulations are discussed and the effects of their degradation products, particularly for valves and filters, are presented. Metalworking lubricant applications are divided into cutting and forming operations and their actions are described. Speciality applications such as process, textile, food-grade, slideway, cylinder and wire rope lubricants are explained.

  1. Fermentation industry

    SciTech Connect

    Irvine, R.L.

    1980-06-01

    This article reviews current literature on the fermentation industry. The reuse, recycling and recovery of by-products previously discarded as waste are mentioned, including a Swedish brewery that hopes to reduce discharge of pollutants and the production of single cell protein from a variety of fermentation wastes. The treatment of wastes to produce food substitutes and fertilizers is mentioned together with treatment methods used in distilleries, wineries and in the pharmaceutical industry. (87 References)

  2. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (1999)

    SciTech Connect

    none,

    1999-04-01

    Combustion system users and manufacturers joined forces in 1999 to develop the Industrial Combustion Technology Roadmap. The roadmap outlines R&D priorities for developing advanced, highly efficient combustion systems that U.S. industry will require in the future.

  3. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  4. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  5. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  6. Do consumers buy energy efficiency?

    SciTech Connect

    Allen, D.R.

    1998-03-01

    After more than 30 years of energy efficiency regulations and standards, the USA still carries a heavier energy load per capita than any other industrialized country. However, consumers are buying more energy-efficient products for their homes and homes are more energy efficient. Besides a general overview, this article specifically discusses energy efficiency increases in cooling and heating systems and greater use of insulation. 2 tabs.

  7. Office of Industrial Technologies research in progress

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  8. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of natural and synthetic industrial diamond was about 648 million carats in 2006, with 79 percent of the production coming from Ireland, Japan, Russia, South Africa, and the U.S. U.S. consumption was was an estimated 602 million carats, imports were over 391 million carats, and exports were about 83 million carats. About 87 percent of the industrial diamonds market uses synthetic diamonds, which are expected to become less expensive as technology improves and competition from low-cost producers increases.

  9. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  10. Research Projects in Industrial Technology.

    SciTech Connect

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  11. Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Phaff, Herman J.

    1981-01-01

    Describes industrially important yeasts, molds, bacteria, and actinomycetes. Discussed in detail are microbial products, such as primary metabolites, secondary metabolites, enzymes, and capsular polysaccharides. Traces the historical background of human cell culture, mentioning recombinant DNA research and hybridization of normal mammalian cells…

  12. Learned Industriousness.

    ERIC Educational Resources Information Center

    Eisenberger, Robert

    1991-01-01

    Individual differences in industriousness are discussed. It is proposed that reinforcement for increased physical or cognitive performance, or the tolerance of aversive stimulation, gives a reward value to the sensation of high effort and reduces effort's aversiveness. Applications for self-control, moral development, and education are described.…

  13. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  14. Fermentation Industry.

    ERIC Educational Resources Information Center

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  15. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  16. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  17. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  18. Industrial Orientation.

    ERIC Educational Resources Information Center

    Rasor, Leslie; Brooks, Valerie

    These eight modules for an industrial orientation class were developed by a project to design an interdisciplinary program of basic skills training for disadvantaged students in a Construction Technology Program (see Note). The Drafting module overviews drafting career opportunities, job markets, salaries, educational requirements, and basic…

  19. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  20. Industrial Section Convenor's Report

    NASA Astrophysics Data System (ADS)

    Barone, M.; Riboni, P.

    2002-11-01

    Over the years this conference has gained a solid reputation as an appropriate rostrum for illustrating new concepts in the relations between industry and the scientific world and for introducing new technologies to a large assistance of junior and more experienced scientists. In fact, from the very beginning the founders of this endeavour announced: "The conference is aimed for promoting contacts among scientists involved in particle and fundamental physics, among experimental physicists in other fields and representatives from industry." Facilities at the Conference are designed to fulfil the task: space and general facilities are offered to industry representatives to display their products. This year a more accessible and luminous space arrangement was made available to the exhibitors. At the same time two plenary sessions have been dedicated to selected speakers to illustrate new trends in Technology Transfer, analysis of environment affecting our community, examples of historical successes in the merging of science and industry. We have identified in "GRID" and in "E-Publishing" two major promising areas where our Community will play a prime role as "User" and it was of the general interest to have them illustrated by two personalities directly involved in their development. The flow of knowledge is of course more massive from "Industry" to "Science" than vice-versa, but "Science" to "Industry" move offers an intensive added value. The technology transfer concept with the "Patents" as fund raising tool proved less glorious than expected. Trademark, licensing agreement and " Patents" can assure intellectual properties. But patent is an issue to be used cautiously. Evidence exists that much more efficient transfer of "Science" knowledge to "Economy" is achieved by venture capital move and start-up companies. These two facets of the Technology Transfer business have been covered by Routti's and Bourgeois's lectures.There are two examples of Companies who moved

  1. Industrial alliances

    SciTech Connect

    Adams, K.V.

    1993-09-13

    The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

  2. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  3. Mining Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  4. How utilizes can revitalize industry

    SciTech Connect

    De Vaul, D.; Bartsch, C.

    1993-12-31

    During the first weeks of his presidency, Bill Clinton asserted that the nation`s industries must modernize if Americans are to enjoy a rising standard of living. He noted that inadequate knowledge about new production technologies and inadequate capital for plant improvements were making it hard for manufacturers, particularly small and midsized firms, to improve their productivity and economic competitiveness. And though he said his administration would stress the benefits of government research, technology transfer, and financial assistance, President Clinton acknowledged that Washington needs new partners to help modernize U.S. industrial processes. Electric utilities are likely candidates. They have considerable technical expertise and access to large sums of capital that could help industry improve its productivity. Fortuitously, power companies also would benefit by such a partnership stimulating local economic activity and better managing electricity demands. Although many utilities pursue so-called demand-side management programs for their commercial and residential customers, most have not focused much attention on the industrial sector, in part because achieving industrial energy efficiency requires more specialized expertise than do routine energy audits to improve the insulation and lighting of homes and commercial buildings. Yet the reasons to target industry are compelling: Industrial firms consume more than 35 percent of the electricity in the United States, and investment in retooling manufacturing operations with energy-efficient and productive equipment could help spur economic revitalization.

  5. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  6. Industrial concerns

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Physics in industry is worth reporting, but deciding what counts can be a challenge "If a man can make a better mousetrap than his neighbour...the world will make a beaten path to his door." That quotation, which was apparently inspired by a comment that the American essayist Ralph Waldo Emerson made during a lecture in 1871, has long been used to illustrate the power of invention and innovation. While the lowly mousetrap may hardly seem the pinnacle of technology in today's world of iPhones and Blu-ray DVDs, an effective tool to kill mice was certainly a desirable object in Emerson's day (p52).

  7. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  8. Space Coatings for Industry

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Ball Aerospace developed entirely new space lubrication technologies. A new family of dry lubricants emerged from Apollo, specifically designed for long life in space, together with processes for applying them to spacecraft components in microscopically thin coatings. Lubricants worked successfully on seven Orbiting Solar Observatory flights over the span of a decade and attracted attention to other contractors which became Ball customers. The company has developed several hundred variations of the original OSO technology generally designed to improve the quality and useful life of a wide range of products or improve efficiency of the industrial processes by which such products are manufactured.

  9. Filtration in industrial hygiene.

    PubMed

    Brown, R C

    2001-01-01

    Filters used in industrial hygiene are of two basic types, corresponding with the two basic airborne hazards: particulate and vapor. They are as different in their construction as they are in their purpose, and each gives negligible protection against the other hazard. By use of the correct type, adequate filtration efficiency can usually be achieved. Most particulate filters are made from fibers, and finer fibers result in higher efficiency. Filters can capture particles much smaller than the fiber diameter, as a result of diffusional motion of the airborne particles and, in the case of filters that hold a permanent electric charge, electrostatic attraction. Most vapor filters are made from granules of activated carbon, which have an extremely large effective surface area, where molecules of contaminant are adsorbed. The performance of all filters tends to alter as the filter material becomes loaded. Electrically neutral particulate filters become more efficient but at the expense of increased resistance to airflow. Particulate filters that act by electric forces may become less efficient, and are often less inclined to clog. Vapor filters usually have a high initial efficiency, but the penetration of vapor increases as the filters become saturated with adsorbed vapor, and the performance of these filters is normally expressed in terms of their lifetime rather than their efficiency. It is important that the choice of a filter should be made with close reference to the situation in which it is to be used, and optimum respiratory protection should be sought, rather than maximum filtration efficiency. Special problems of filters are illustrated by some case histories, and finally the use of filters as size selectors for dust samplers is briefly described. PMID:11669390

  10. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  11. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Technical progress report No. 17, 18 and 19, September 30, 1991--December 31, 1996

    SciTech Connect

    Borio, R.W.; Patel, R.L.; Thornock, D.E.

    1996-07-29

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the last three quarters [seventeenth (October `95 through December `95), eighteenth (January `96 through March `96), and nineteenth (April `96 through June `96)] of the program.

  12. Distance collaborations with industry

    SciTech Connect

    Peskin, A.; Swyler, K.

    1998-06-01

    The college industry relationship has been identified as a key policy issue in Engineering Education. Collaborations between academic institutions and the industrial sector have a long history and a bright future. For Engineering and Engineering Technology programs in particular, industry has played a crucial role in many areas including advisement, financial support, and practical training of both faculty and students. Among the most important and intimate interactions are collaborative projects and formal cooperative education arrangements. Most recently, such collaborations have taken on a new dimension, as advances in technology have made possible meaningful technical collaboration at a distance. There are several obvious technology areas that have contributed significantly to this trend. Foremost is the ubiquitous presence of the Internet. Perhaps almost as important are advances in computer based imaging. Because visual images offer a compelling user experience, it affords greater knowledge transfer efficiency than other modes of delivery. Furthermore, the quality of the image appears to have a strongly correlated effect on insight. A good visualization facility offers both a means for communication and a shared information space for the subjects, which are among the essential features of both peer collaboration and distance learning.

  13. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.8... of new markets, new marketing strategies, or increased efficiency for the popcorn industry,...

  14. Printing and Publishing Industry Training Board

    ERIC Educational Resources Information Center

    Industrial Training International, 1974

    1974-01-01

    Accounted is the supervisory training program currently in operation in the printing and publishing industry. The purpose of the training program is to increase managerial efficiency and to better prepare new supervisors. (DS)

  15. The Resurgence of America's Auto Industry

    SciTech Connect

    Zimmer, Stephen; Cischke, Sue

    2012-01-01

    A look at how strategic investments and partnerships between the Energy Department and automakers have helped the American auto industry become a leader in advanced and fuel-efficient vehicles — creating jobs and boosting profits in the process.

  16. The Rise and Fall of Industrial Agriculture

    ERIC Educational Resources Information Center

    Geno, Larry M.

    1976-01-01

    This article analyzes the evolution of industrial agriculture in Canada. Population pressures and technology caused the development of industrial agriculture. Although total crop yields have increased, energy efficiency and nutritional quality have decreased. Also intensive agriculture has degraded the soil and lowered air and water qualities. (MR)

  17. Application of Core Theory to the Airline Industry

    NASA Technical Reports Server (NTRS)

    Raghavan, Sunder

    2003-01-01

    Competition in the airline industry has been fierce since the industry was deregulated in 1978. The proponents of deregulation believed that more competition would improve efficiency and reduce prices and bring overall benefits to the consumer. In this paper, a case is made based on core theory that under certain demand and cost conditions more competition can actually lead to harmful consequences for industries like the airline industry or cause an empty core problem. Practices like monopolies, cartels, price discrimination, which is considered inefficient allocation of resources in many other industries, can actually be beneficial in the case of the airline industry in bringing about an efficient equilibrium.

  18. Energy Efficiency Project Development

    SciTech Connect

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  19. Efficient Windows Collaborative

    SciTech Connect

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  20. Industrial Productivity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASTRAN is an offshoot of the computer-design technique used in construction of airplanes and spacecraft. [n this technique engineers create a mathematical model of the aeronautical or space vehicle and "fly" it on the ground by means of computer simulation. The technique enables them to study performance and structural behavior of a number of different designs before settling on the final configuration and proceeding with construction. From this base of aerospace experience, NASA-Goddard developed the NASTRAN general purpose computer program, which offers an exceptionally wide range of analytic capability with regard to structures. NASTRAN has been applied to autos, trucks, railroad cars, ships, nuclear power reactors, steam turbines, bridges, and office buildings. NASA-Langley provides program maintenance services regarded as vital by many NASTRAN users. NASTRAN is essentially a predictive tool. It takes an electronic look at a computerire$.dedgn and reports how the structure will react under a great many different conditions. It can, for example, note areas where high stress levels will occur-potential failure points that need strengthening. Conversely, it can identify over-designed areas where weight and material might be saved safely. NASTRAN can tell how pipes stand up under strong fluid flow, how metals are affected by high temperatures, how a building will fare in an earthquake or how powerful winds will cause a bridge to oscillate. NASTRAN analysis is quick and inexpensive. It minimizes trial-and-error in the design process and makes possible better, safe, lighter structures affording large-scale savings in development time and materials. Some examples of the broad utility NASTRAN is finding among industrial firms are shown on these pages.

  1. Change and progress in the HVAC industry

    SciTech Connect

    Smithart, E.

    1995-12-31

    Energy efficiency challenges presented to the Heating, Ventilating and Air-Conditioning (HVAC) industry and its customers in the 1970s became even greater when combined with environmental mandates in the 1980s. Despite the fact that HVAC machinery worldwide depended on chlorofluorocarbons (CFCs), a United Nations agreement called the Montreal Protocol, signed in 1987, mandated that CFCs would have to be phased out of production by January 1, 1996, because of indications that CFCs were damaging the stratospheric ozone layer. Thus the industry was forced to find alternative refrigerant chemicals while developing the new equipment that could use the alternatives in an efficient way. After development of two major alternatives, HCFC-123 and HFC-134a, the HVAC industry had to develop new large air conditioners, called chillers, that could efficiently use the alternative refrigerants. Today, new chiller designs, working in concert with efficient building cooling systems, result in energy efficiencies far greater than could be attained only a few years ago. The new reality of the CFC production phase-out and better-than-ever chiller efficiency offers new opportunities for HVAC customers to save money while protecting the environment by containing existing CFC stocks, converting selected existing chillers and replacing others with more efficient machinery. The HVAC industry, by facing the dual challenges of energy efficiency and environmental stewardship, has created opportunities for their customers. These opportunities underline the fact that being business-wise can also be earth-wise.

  2. Exploring the resilience of industrial ecosystems.

    PubMed

    Zhu, Junming; Ruth, Matthias

    2013-06-15

    Industrial ecosystems improve eco-efficiency at the system level through optimizing material and energy flows, which however raises a concern for system resilience because efficiency, as traditionally conceived, not necessarily promotes resilience. By drawing on the concept of resilience in ecological systems and in supply chains, resilience in industrial ecosystems is specified on the basis of a system's ability to maintain eco-efficient material and energy flows under disruptions. Using a network model that captures supply, asset, and organizational dependencies and propagation of disruptions among firms, the resilience, and particularly resistance as an important dimension of resilience, of two real industrial ecosystems and generalized specifications are examined. The results show that an industrial ecosystem is less resistant and less resilient with high inter-firm dependency, preferentially organized physical exchanges, and under disruptions targeted at highly connected firms. An industrial ecosystem with more firms and exchanges is less resistant, but has more eco-efficient flows and potentials, and therefore is less likely to lose its function of eco-efficiency. Taking these determinants for resilience into consideration improves the adaptability of an industrial ecosystem, which helps increase its resilience.

  3. Industry picture of US science policy

    SciTech Connect

    David, E.E. Jr.

    1986-05-23

    With regard to promoting the competitiveness of US industry, federal science policy is performing unevenly. Federally supported basic research is not well aligned with industrial needs, although the National Science Foundation's Engineering Research Centers and similar programs are improving matters. Large-scale federal undertakings in science and technology such as the Apollo program and now the Strategic Defense Initiative, actually tend to divert resources away from commercial research and development. Needed are federal and industrial leaders who will work together to serve the interest of both competitive industry and efficient government in the United States. 6 references.

  4. Industrial Assessment Center Program Impact Evaluation

    SciTech Connect

    Martin, M.A.

    2000-01-26

    This report presents the results of an evaluation of the U.S. Department of Energy's Industrial Assessment Center (IAC) Program. The purpose of this program is to conduct energy, waste, and productivity assessments for small to medium-sized industrial firms. Assessments are conducted by 30 university-based industrial assessment centers. The purpose of this project was to evaluate energy and cost savings attributable to the assessments, the trained alumni, and the Websites sponsored by this program. How IAC assessments, alumni, and Web-based information may influence industrial energy efficiency decision making was also studied. It is concluded that appreciable energy and cost savings may be attributed to the IAC Program and that the IAC Program has resulted in more active and improved energy-efficiency decision making by industrial firms.

  5. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  6. Computer Technology for Industry

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In this age of the computer, more and more business firms are automating their operations for increased efficiency in a great variety of jobs, from simple accounting to managing inventories, from precise machining to analyzing complex structures. In the interest of national productivity, NASA is providing assistance both to longtime computer users and newcomers to automated operations. Through a special technology utilization service, NASA saves industry time and money by making available already developed computer programs which have secondary utility. A computer program is essentially a set of instructions which tells the computer how to produce desired information or effect by drawing upon its stored input. Developing a new program from scratch can be costly and time-consuming. Very often, however, a program developed for one purpose can readily be adapted to a totally different application. To help industry take advantage of existing computer technology, NASA operates the Computer Software Management and Information Center (COSMIC)(registered TradeMark),located at the University of Georgia. COSMIC maintains a large library of computer programs developed for NASA, the Department of Defense, the Department of Energy and other technology-generating agencies of the government. The Center gets a continual flow of software packages, screens them for adaptability to private sector usage, stores them and informs potential customers of their availability.

  7. Chemicals Industry Vision

    SciTech Connect

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  8. Professors and Industry Meet

    ERIC Educational Resources Information Center

    Sheriff, Robert E.

    1974-01-01

    Describes backgrounds of geophysics graduates that are desired for employment by industry. Also listed are areas in which industry could help universities concerning the development of programs to meet the future manpower needs in industry. (BR)

  9. Energy Efficiency I: Automobiles

    SciTech Connect

    Martin, Peter M.

    2003-11-15

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  10. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  11. Batch efficiency

    NASA Astrophysics Data System (ADS)

    Schwickerath, Ulrich; Silva, Ricardo; Uria, Christian

    2010-04-01

    A frequent source of concern for resource providers is the efficient use of computing resources in their centers. This has a direct impact on requests for new resources. There are two different but strongly correlated aspects to be considered: while users are mostly interested in a good turn-around time for their jobs, resource providers are mostly interested in a high and efficient usage of their available resources. Both things, the box usage and the efficiency of individual user jobs, need to be closely monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon monitoring system is used for both purposes. Examples of such sources are poorly written user code, inefficient access to mass storage systems, and dedication of resources to specific user groups. As a first step for improvements CERN has launched a project to develop a scheduler add-on that allows careful overloading of worker nodes that run idle jobs.

  12. Industrial energy performance indicator reports

    SciTech Connect

    Munroe, V.

    1999-07-01

    The mandate for this work originated in December, 1996, when a joint meeting of federal and provincial Ministers of Energy and Environment, in addressing their responsibility to provide leadership on the Greenhouse Gases/Climate Change agenda, endorsed the following statement ({number{underscore}sign}13 of 45 initiatives launches at that time): Industrial establishments will be provided with a confidential benchmarking report on their energy efficiency progress, including how they compare to national and international averages for their sector. Information will also be provided on energy management best practices in their industries. The goal of the initiative is to use information provided on the state of energy practice to prompt, motivate, and induce companies to implement further energy efficiency measures. And one premise underlying it is that useful guidance on the state of energy practice in a company can be obtained from existing data sources, primarily the Industrial Consumption of Energy (ICE) survey and the Annual Survey of Manufacturers (ASM), both products of Statistics Canada. In addition, there are existing surveys which include energy consumption that are undertaken by associations such as the Canadian Portland Cement Association, the Canadian Chemical Producers Association, the Canadian Pulp and Paper Association, etc. Since the commitment was made, Natural Resources Canada staff have undertaken a large amount of investigative and developmental work which will be presented. Existing data from three sectors, pulp, cement and fluid milk, has been analyzed and will be delivered with draft context and energy efficiency guidance notes to the management of about 100 establishments. The author will also be able to report on how this information was received by these managers, and on the recommendations that will have been collected from industry on the more specific nature and frequency of industrial energy performance reporting desired.

  13. Driving Efficiency in Higher Education

    ERIC Educational Resources Information Center

    Walz, Dru Anne

    2003-01-01

    For many industries, the economic crunch of the past few years has brought about an increased focus on controlling expenses, gaining process efficiencies and finding a competitive advantage in an overcrowded market. While community colleges are not immune to these challenges, they are limited in how they are able to respond. Unlike other areas of…

  14. Building an efficient supply chain.

    PubMed

    Scalise, Dagmara

    2005-08-01

    Realizing at last that supply chain management can produce efficiencies and save costs, hospitals are beginning to adopt practices from other industries, such as the concept of extended supply chains, to improve product flow. They're also investing in enterprise planning resource software, radio frequency identification and other technologies, using quality data to drive standardization and streamlining processes.

  15. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  16. Conservation and the industry sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The following six highly energy intensive industries were studied as targets of energy conservation opportunity: food and kindred products, paper and allied products, chemicals and allied products, petroleum and coal products, stone, glass and clay products, and primary manufacturing. After studying conservation actions within each industry the actions were grouped under three broad categories: increased combustion efficiency, process improvement, and good housekeeping. Some of the results were: (1) approximately 2.18 quads could be saved in 1980 and 2.57 quads in 1985 by installing cogenerative facilities in 50% of the industries, (2) regenerative air-preheaters could result in a 10-15% increase in furnace efficiency representing a 15-25% fuel savings (2.3 to 3.9 quads in 1980 and 2.7 to 4.5 quads in 1985), (3) several major industries have potential for energy savings by recycling-aluminum (0.2 quads), steel (1 quad), glass (0.006 quads), paper and cement (0.08 quads).

  17. Efficiency Goals

    ERIC Educational Resources Information Center

    Graham, Donald

    2009-01-01

    The lighting of learning environments is an important focus in designing new schools and renovating older schools. Studies long have shown that appropriate lighting levels and daylighting improve learning; now, climbing energy budgets have spurred school administrators to seek more efficient use of lighting. Electricity rates are expected to rise…

  18. Industrial jet noise: Coanda nozzles

    NASA Astrophysics Data System (ADS)

    Li, P.; Halliwell, N. A.

    1985-04-01

    Within the U.K. manufacturing industries noise from industrial jets ranks third as a major contributor to industrial deafness. Noise control is hindered because use is made of the air once it has exuded from the nozzle exit. Important tasks include swarf removal, paint spreading, cooling, etc. Nozzles which employ the Coanda effect appear to offer the possibility of significant noise reduction whilst maintaining high thrust efficiency when compared with the commonly used simple open pipe or ordinary convergent nozzle. In this paper the performance of Coanda-type nozzles is examined in detail and an index rating for nozzle performance is introduced. Results show that far field stagnation pressure distributions are Gaussian and similar in all cases with a dispersion coefficient σ = 0·64. Noise reduction and thrust efficiency are shown to be closely related to the design geometry of the central body of the nozzle. Performance is based on four fundamental characteristics, these being the noise level at 1 m from the exit and at a 90° station to the nozzle axis, and the thrust on a chosen profile, the noise reduction and the thrust efficiency. Physically, performance is attributed to flow near field effects where, although all nozzles are choked, shock cell associated noise is absent.

  19. Making Industry Part of the Climate Solution

    SciTech Connect

    Lapsa, Melissa Voss; Brown, Dr. Marilyn Ann; Jackson, Roderick K; Cox, Matthew; Cortes, Rodrigo; Deitchman, Benjamin H

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  20. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  1. Cleanroom Energy Efficiency Workshop Proceedings

    SciTech Connect

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  2. China's industrial sector in an international context

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  3. Research and development in the textile industry

    SciTech Connect

    1987-06-01

    Included in the portfolio of IP's projects are the R and D activities for several advanced technologies targeted at the textile industry, one of the top ten energy intensive industries in the country. These R and D projects have primarily been aimed at improving the energy efficiency and productivity of textile production processes. Many projects in this area have been successfully completed, and some have resulted in the development and implementation of new technologies (e.g., foam processing) for various process steps. Other projects have produced technical results that have later been utilized by the industry in other capacities (e.g., hyperfiltration). Several projects at various stages of development are currently underway. This brochure describes the Office of Industrial Programs' R and D activities relevant to the textile industry. The brochure is comprised of the following: Industry Update, Energy Consumption in the Textile Industry, Energy Consumption in the Textile Industry, Potential Energy Savings in the Textile Industry, Office of Industrial Programs, R and D Efforts, and R and D Data Base.

  4. Has competition increased hospital technical efficiency?

    PubMed

    Lee, Keon-Hyung; Park, Jungwon; Lim, Seunghoo; Park, Sang-Chul

    2015-01-01

    Hospital competition and managed care have affected the hospital industry in various ways including technical efficiency. Hospital efficiency has become an important topic, and it is important to properly measure hospital efficiency in order to evaluate the impact of policies on the hospital industry. The primary independent variable is hospital competition. By using the 2001-2004 inpatient discharge data from Florida, we calculate the degree of hospital competition in Florida for 4 years. Hospital efficiency scores are developed using the Data Envelopment Analysis and by using the selected input and output variables from the American Hospital Association's Annual Survey of Hospitals for those acute care general hospitals in Florida. By using the hospital efficiency score as a dependent variable, we analyze the effects of hospital competition on hospital efficiency from 2001 to 2004 and find that when a hospital was located in a less competitive market in 2003, its technical efficiency score was lower than those in a more competitive market.

  5. Motor-operated gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  6. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting to..., Office of Energy and Environmental Technologies Industries (OEEI), International Trade Administration,...

  7. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...; ] DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency Advisory... Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a...: Ryan Mulholland, Office of Energy and Environmental Industries (OEEI), International...

  8. Industrial Waste Reduction Program. Program plan

    SciTech Connect

    Not Available

    1991-10-24

    US industry generates over 12 billion tons of wastes each year. These wastes consist of undesirable by-products of industrial production that are discarded into our environment. Energy is an integral part of these wastes; it is found in the embodied energy of industrial feedstocks not optimally used, in the energy content of the wastes themselves, and in the energy needed to transport, treat, and dispose of wastes. Estimates of the potential energy savings from reducing industrial wastes range from three to four quadrillion Btu per year -- enough to meet the annual energy needs of 30 million American homes. This document presents a plan for the Industrial Waste Reduction Program, which has been designed to help achieve national goals for energy efficiency and waste minimization. The objective of the program is to improve the energy efficiency of industrial processes through cost-effective waste reduction. The initial program focus is on waste reduction opportunities in the production and use of chemicals, due to the significant amount of energy used in these activities and the large amounts of hazardous and toxic wastes they generate. The chemical industry will be the initial subject of a series of waste reduction opportunity assessments conducted as part of the program. Assessments of other industries and waste problems will follow.

  9. Energy conservation in industry

    SciTech Connect

    Strub, A.S.; Ehringer, H.

    1984-01-01

    This book discusses combustion and heat recovery, engines and batteries, and applications and technologies. Some of the topics covered include: energy-saving technologies; heat exchangers, fluidized bed exchangers, industrial heat pumps; fluidized bed combustion; waste heat recovery; orc machines and cascading; engines and flywheels; new types of engines; advanced batteries; fuel cell; chemical industry and catalysis; metallurgy; textile industry; food industry; microwave applications; and cement and glass ceramic industry.

  10. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5.

    PubMed

    Mock, Ulrike; Machowicz, Rafał; Hauber, Ilona; Horn, Stefan; Abramowski, Pierre; Berdien, Belinda; Hauber, Joachim; Fehse, Boris

    2015-06-23

    Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method.

  11. The Canadian Beef Industry

    PubMed Central

    Fredeen, H.

    1980-01-01

    The cattle industry in Canada has changed greatly over the past several decades. Size of the national dairy herd has reduced steadily but this reduction has been more than offset by an increase in the beef herd. As the dairy herd has decreased, the role of the Holstein has increased. The genetic improvement of the Canadian Holstein, based on selection procedures emphasizing progeny performance and mediated through increasing use of artificial insemination, has earned the breed a strong international reputation. This is reflected by the increasing international demand for semen. The strongest growth of the national beef herd occurred during a period of brisk import activity. Several of the new nonBritish breeds are now well established. Their advent on the Canadian scene rekindled interest in crossbreeding and systematic crossbreeding programs designed to make controlled use of heterozygosity are in the process of development. The new breeds of major importance at this time combine rapid growth rate with desirable carcass characteristics, specifically lean content. This, coupled with the carcass grade standards inaugurated in 1972, has resulted in improved efficiency of lean meat production. Importation activity has waned and a review of the production credentials of breeds not yet in Canada suggests little likelihood that they will contribute meaningfully to Canadian production. The numerous beef breeds now in Canada are presently undergoing a process of applied evaluation and relatively few of them seem destined to make a lasting contribution. The future of the cattle industry will be determined largely by economic developments. However, the ability of the ruminant to utilize food materials that do not compete directly with human demands should ensure an enduring future. PMID:7363257

  12. Risk Assessment of Energy-Efficient Walls

    SciTech Connect

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  13. 10 CFR 431.17 - Determination of efficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of efficiency. 431.17 Section 431.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... § 431.17 Determination of efficiency. When a party determines the energy efficiency of an electric...

  14. Towards Efficient Supercomputing: Searching for the Right Efficiency Metric

    SciTech Connect

    Hsu, Chung-Hsing; Kuehn, Jeffery A; Poole, Stephen W

    2012-01-01

    The efficiency of supercomputing has traditionally been in the execution time. In early 2000 s, the concept of total cost of ownership was re-introduced, with the introduction of efficiency measure to include aspects such as energy and space. Yet the supercomputing community has never agreed upon a metric that can cover these aspects altogether and also provide a fair basis for comparison. This paper exam- ines the metrics that have been proposed in the past decade, and proposes a vector-valued metric for efficient supercom- puting. Using this metric, the paper presents a study of where the supercomputing industry has been and how it stands today with respect to efficient supercomputing.

  15. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  16. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  17. Boiler efficiency methodology for solar heat applications

    NASA Astrophysics Data System (ADS)

    Maples, D.; Conwell, J. C.; Pacheco, J. E.

    1992-08-01

    This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

  18. Efficient markets or efficient loads?: Impacts from electric utility restructuring

    SciTech Connect

    Warwick, W.M.

    1996-05-01

    Restructuring of the electric utility industry is underway. This is in response to many influences, including drives to deregulate the industry, new regulatory initiatives, changing power markets, and new technology. The changing utility industry will provide Federal power customers with new opportunities to reduce costs and increase service. However, the instability in the current environment is certain to reduce near-term opportunities to collaborate with local utilities on DSM and other efficiency projects as the economics of these projects are now uncertain. This paper discusses this instability and its impacts on demand side management and other efficiency projects. Historically, electricity services have been provided to consumers through integrated utilities that used their own generation and transmission to distribute power to captive customers as a regulated monopoly. There are municipal and other publicly owned utilities that own no generation or transmission and only distribute power. Similarly, there are publicly owned generation and transmission companies that wholesale power and have no retail customers. Nevertheless, most of the power used in the country is provided by integrated, regulated investor-owned utilities. Competition was introduced in the industry with the Public Utility Regulatory Policy Act of 1976 (PURPA). This legislation opened the door to the development of generation by third parties. The development of third-party generating facilities grew steadily until the mid- 1980s when it finally surpassed utility construction as the norm for new power supplies. The transformation of the power generation business is, in part, a spill over from deregulation of the airline and gas industries. The first resulted in more efficient turbines, which are used for both airplane engines and small generators, and the second resulted in lower natural gas prices, which made gas-fired generation the least cost generating option.

  19. The World Oil Industry

    ERIC Educational Resources Information Center

    Rand, Christopher T.

    1976-01-01

    America's domestic petroleum industry and the international industry have been dominated by seven major firms. Although production costs decreased, sale prices soared with developing political-corporate interrelationships. (MR)

  20. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.