Science.gov

Sample records for gef efficient industrial

  1. Brief introduction of GEF efficient industrial boiler project in China

    SciTech Connect

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  2. Rho GAPs and GEFs

    PubMed Central

    van Buul, Jaap D; Geerts, Dirk; Huveneers, Stephan

    2014-01-01

    Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease. PMID:24622613

  3. GEF1 is a ciliary Sec7 GEF of Tetrahymena thermophila.

    PubMed

    Bell, Aaron J; Guerra, Charles; Phung, Vincent; Nair, Saraswathy; Seetharam, Raviraja; Satir, Peter

    2009-08-01

    Ciliary guanine nucleotide exchange factors (GEFs) potentially activate G proteins in intraflagellar transport (IFT) cargo release. Several classes of GEFs have been localized to cilia or basal bodies and shown to be functionally important in the prevention of ciliopathies, but ciliary Arl-type Sec 7 related GEFs have not been well characterized. Nair et al. [ 1999] identified a Paramecium ciliary Sec7 GEF, PSec7. In Tetrahymena, Gef1p (GEF1), tentatively identified by PSec7 antibody, possesses ciliary and nuclear targeting sequences and like PSec7 localizes to cilia and macronuclei. Upregulation of GEF1 RNA followed deciliation and subsequent ciliary regrowth. Corresponding to similar Psec7 domains, GEF1domains contain IQ-like motifs and putative PH domains, in addition to GBF/BIG canonical motifs. Genomic analysis identified two additional Tetrahymena GBF/BIG Sec7 family GEFs (GEF2, GEF3), which do not possess ciliary targeting sequences. GEF1 and GEF2 were HA modified to determine cellular localization. Cells transformed to produce appropriately truncated GEF1-HA showed localization to somatic and oral cilia, but not to macronuclei. Subtle defects in ciliary stability and function were detected. GEF2-HA localized near basal bodies but not to cilia. These results indicate that GEF1 is the resident Tetrahymena ciliary protein orthologous to PSec7. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.

  4. GEF1 is a Ciliary Sec7 GEF of Tetrahymena thermophila

    PubMed Central

    Bell, Aaron J.; Guerra, Charles; Phung, Vincent; Nair, Saraswathy; Seetharam, Raviraja; Satir, Peter

    2009-01-01

    Ciliary guanine nucleotide exchange factors (GEFs) potentially activate G proteins in intraflagellar transport (IFT) cargo release. Several classes of GEFs have been localized to cilia or basal bodies and shown to be functionally important in the prevention of ciliopathies, but ciliary Arl-type Sec 7 related GEFs have not been well characterized. Nair et al. (1999) identified a Paramecium ciliary Sec7 GEF, PSec7. In Tetrahymena, Gef1p (GEF1), tentatively identified by PSec7 antibody, possesses ciliary and nuclear targeting sequences and like PSec7 localizes to cilia and macronuclei. Upregulation of GEF1 RNA followed deciliation and subsequent ciliary regrowth. Corresponding to similar Psec7 domains, GEF1domains contain IQ-like motifs and putative PH domains, in addition to GBF/BIG canonical motifs. Genomic analysis identified two additional Tetrahymena GBF/BIG Sec7 family GEFs (GEF2, GEF3), which do not possess ciliary targeting sequences. GEF1 and GEF2 were HA modified to determine cellular localization. Cells transformed to produce appropriately truncated GEF1-HA showed localization to somatic and oral cilia, but not to macronuclei. Subtle defects in ciliary stability and function were detected. GEF2-HA localized near basal bodies but not to cilia. These results indicate that GEF1 is the resident Tetrahymena ciliary protein orthologous to PSec7. PMID:19267341

  5. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  6. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  7. [Eco-efficiency of Jiaozuo industry sectors].

    PubMed

    Du, Yan-chun; Jiang, Pan; Mao, Jian-su; Xu, Lin-yu

    2011-05-01

    Jiaozuo city was taken as a representative industry city and its industry energy consumption and industry emissions such as wastewater,solid waste, SO2, dust and so on were selected as corresponding environmental loads. The contribution rate to the environmental loads and eco-efficiencies of Jiaozuo industry sectors were analyzed quantitatively. The results show that, the industry sector with the highest energy eco-efficiency is Mining and Processing of Ferrous Metal Ores (FMM), 43.19 x 10(4) yuan x tce(-1), and its contribution rate is 0.003%; the one with the highest wastewater-related eco-efficiency is Manufacture of Transport Equipment (TRM), 3.58 x 10(4) yuan x t(-1), and its contribution rate is 0.0001%; the one with the highest solid waste-related eco-efficiency is Manufacture of Special Purpose Machinery( SMM), 323.22 x 10(4) yuan x t(-1), and its contribution rate is 0.005%; the one with the highest SO2 emission-related eco-efficiency is Manufacture of Special Purpose Machinery (SMM), 19.74 x 10(4) yuan x kg(-1), and its contribution rate is 0.0001%; the one with the highest dust emission-related eco-efficiency is Manufacture of Rubber (RUM), 6.75 x 10(4) yuan x kg(-1), and its contribution rate is 0.001%. It can be seen that the industry sector with high value of eco-efficiency always contributes less to its environmental load, which results that the industry sectors with high eco-efficiencies only play a weak role in leading the overall industry eco-efficiency. A succinct distance index (SDI) was proposed to estimate the differences between Jiaozuo and China average for their eco-efficiency of every industrial sector. The values of SDI range from -1 to 63.45, and the absolute value of SDI with positive value is much greater than that with negative value, which indicates that the values of eco-efficiencies for the advanced industry sectors of Jiaozuo city are much higher than those for China's industry sectors average.

  8. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  9. Recovering waste industrial heat efficiently

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  10. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  11. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  12. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  13. GEF small grants programme - overview

    SciTech Connect

    1997-12-01

    This paper describes the GEF small grants program which seeks to enhance the role of households and communities in conserving global biodiversity, mitigating global climate change, and protecting international waters. Grants up to $50k have been granted for projects in 33 countries, with plans for 12 other countries. The author describes the framework that the program works under, and the methodology followed in developing and planning projects. The approach to climate change concerns is to emphasize the development of non-carbon energy development activities to provide energy sources and economic development.

  14. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  15. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  16. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  17. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  18. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal

    2014-05-01

    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is

  19. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  20. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  1. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  2. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  3. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  4. [Eco-efficiency of industry sectors for China].

    PubMed

    Mao, Jian-Su; Zeng, Run; Du, Yan-Chun; Jiang, Pan

    2010-11-01

    Industry is the main source of resource consumption and environmental emissions of China, and the analyzing of eco-efficiencies for industrial sectors may provide essential information for the restructure of industrial system and the improvement of environmental quality of China. The industry composition was analyzed and the relationship between the industry and its environment was established. The energy consumption and the main environmental emissions such as wastewater, solid waste, industry SO2, smog, dust were chosen as the environmental impact categories, the corresponding eco-efficiencies of industry were defined and estimated for China in 2007. The results are as follows: the energy efficiency is 615.5 x 10(4) yuan x ktce(-1), the wastewater and solid waste related eco-efficiencies are 54.3 x 10(4) yuan x kt(-1) and 1.9 x 10(4) yuan x t(-1), respectively; industry SO2, smog, dust related eco-efficiencies are 59.6 x 10(4), 169.2 x 10(4) and 184.6 x 10(4) yuan x t(-1), respectively. The eco-efficiencies of 39 industry sectors were analyzed extensively and the results showed that, the distribution of industrial sectors in above eco-efficiencies is uneven, and the order of industrial sector in industry will vary with industry sector and eco-efficiency category. Meanwhile, for the same category of eco-efficiency, the values for different industry sectors may change from centuplicate to several thousand folds, therefore a great possibility for the improvement of industry eco-efficiency is exist in the restructure of industry system.

  5. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  6. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    PubMed

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-02-14

    Attachment of active, GTP-bound small GTPases to membranes by post-translational lipid modifications is pivotal for their ability to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by GEFs and their termination by GAPs. Here we replaced the lipid modification by a histidine tag in eleven full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid containing membranes and characterize the kinetics of their activation by GEFs. Remarkably this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio towards RhoG by ≈30 fold and Rac1 by ≈10 fold, and uncovered a previously unknown broader specificity towards RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine tag strategy as a potent and simple means to mimic small GTPases lipidation, which opens broad perspectives of applications to uncover regulations brought about by membranes.

  7. Maximizing industrial infrastructure efficiency in Iceland

    NASA Astrophysics Data System (ADS)

    Ingason, Helgi Thor; Sigfusson, Thorsteinn I.

    2010-08-01

    As a consequence of the increasing aluminum production in Iceland, local processing of aluminum skimmings has become a feasible business opportunity. A recycling plant for this purpose was built in Helguvik on the Reykjanes peninsula in 2003. The case of the recycling plant reflects increased concern regarding environmental aspects of the industry. An interesting characteristic of this plant is the fact that it is run in the same facilities as a large fishmeal production installation. It is operated by the same personnel and uses—partly—the same equipment and infrastructure. This paper reviews the grounds for these decisions and the experience of this merger of a traditional fish melting industry and a more recent aluminum melting industry after 6 years of operation. The paper is written by the original entrepreneurs behind the company, who provide observations on how the aluminum industry in Iceland has evolved since the starting of Alur’s operation and what might be expected in the near future.

  8. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  9. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable...

  10. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  11. Assessing global resource utilization efficiency in the industrial sector.

    PubMed

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy.

  12. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis

    PubMed Central

    Zhu, Yi-Hua; Ye, Yanfang; Wu, Zhengrong; Wu, Jian-Qiu

    2013-01-01

    Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis. PMID:23966468

  13. Labor Factor Efficiency in the Agricultural Industry

    ERIC Educational Resources Information Center

    R?y, Inna U.; Shakulikova, Gulzada T.; Kozhakhmetova, Gulnar A.; Lashkareva, Olga V.; Bondarenko, Elena G.; Bermukhambetova, Botagoz B.; Baimagambetova, Zamzagul A.; Zhetessova, Mariyam T.; Beketova, Kamar N.; Anafiyaeva, Zhibek

    2016-01-01

    Agricultural problems associated with prospects of the rural population and agriculture in general have recently become an important factor in the modern economic policy development. The urgency of finding ways to improve the labor resource efficiency in agriculture pursuant to the state tasks is determined by the need to restore the agricultural…

  14. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  15. Determinants of eco-efficiency in the Chinese industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2013-12-01

    This study measures productive inefficiency within the context of multi-environmental pollution (eco-efficiency) in the Chinese industrial sector. The weighted Russell directional distance model is applied to measure eco-efficiency using production technology. The objective is to clarify how external factors affect eco-efficiency. The major findings are that both foreign direct investment and investment for pollution abatement improve eco-efficiency as measured by air pollutant substances. A levy system for wastewater discharge improves eco-efficiency as measured by wastewater pollutant substances. However, an air pollutant levy does not significantly affect eco-efficiency as measured by air pollutants.

  16. External research and energy efficiency in the process industries

    SciTech Connect

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  17. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  20. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF.

    PubMed

    Yoshida, Tatsushi; Tsujioka, Masatsune; Honda, Shinya; Tanaka, Masato; Shimizu, Shigeomi

    2016-06-07

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1.

  1. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  2. Hydrographic data from the GEF Patagonia cruises

    NASA Astrophysics Data System (ADS)

    Charo, M.; Piola, A. R.

    2014-06-01

    The hydrographic data reported here were collected within the framework of the Coastal Contamination, Prevention and Marine Management Project (Global Environment Facility (GEF) Patagonia), which was part of the scientific agenda of the United Nations Development Program (UNDP). The project goal was to strengthen efforts to improve sustainable management of marine biodiversity and reduce pollution of the Patagonia marine environment. The observational component of the project included three multidisciplinary oceanographic cruises designed to improve the knowledge base regarding the marine environment and to determine the seasonal variability of physical, biological and chemical properties of highly productive regions in the southwest South Atlantic continental shelf. The cruises were carried out on board R/V ARA Puerto Deseado, in October 2005 and March and September 2006. On each cruise, hydrographic stations were occupied along cross-shelf sections spanning the shelf from nearshore to the western boundary currents between 38° and 55° S. This paper reports the quasi-continuous vertical profiles (conductivity-temperature-depth (CTD) profiles) and underway surface temperature and salinity data collected during the GEF Patagonia cruises. These data sets are available at the National Oceanographic Data Center, NOAA, US, doi:10.7289/V5RN35S0.

  3. Hydrographic data from the GEF Patagonia cruises

    NASA Astrophysics Data System (ADS)

    Charo, M.; Piola, A. R.

    2014-02-01

    The hydrographic data reported here were collected within the framework of the Coastal Contamination, Prevention and Marine Management project (GEF Patagonia), which was part of the scientific agenda of the United Nations Development Program (UNDP). The project goal was to strengthen efforts to improve sustainable management of marine biodiversity and reduce pollution of the Patagonia marine environment. The observational component of the project included three multi-disciplinary oceanographic cruises designed to improve the knowledge base of the marine environment and to determine the seasonal variability of physical, biological and chemical properties of highly productive regions in the southwest South Atlantic continental shelf. The cruises were carried out on board R/V Ara Puerto Deseado, in October 2005 and March and September 2006. In each cruise, hydrographic stations were occupied along cross-shelf sections spanning the shelf from near-shore to the western boundary currents between 38° and 55° S. This paper reports the quasi-continuous vertical profiles (CTD) and underway surface temperature and salinity data collected during the GEF Patagonia cruises. These data sets are available at the National Oceanographic Data Center, NOAA. US, doi:10.7289/V5RN35S0.

  4. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect

    Amelie Goldberg; Taylor, Robert P.; Hedman, Bruce

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  5. What works for energy efficiency in large industry

    SciTech Connect

    Peach, H.G.; Bonnyman, C.E.; Ghislain, J.C.

    1997-07-01

    In recent years it has become clear that various groups interested in energy efficiency, including state energy agencies, utilities, and advocacy groups do not know how energy efficiency efforts are conceived and carried out within global industrial corporations. There are vast energy efficiency efforts underway of which almost no one knows, except those directly involved. Nevertheless, the criteria employed, the viewpoint on efficiency, the constraints, and the methods of evaluation are all either somewhat or even quite different in an industrial setting. This paper reports on work underway at Ford Motor Company. Ford Motor Company has demonstrated a major commitment to energy efficiency. This paper illustrates the ways energy efficiency is approached, explains something of how the internal process works. and provides examples of the types of projects recently completed and underway. This paper first reviews certain organizational features of large industrial Demand Side Management (DSM). Second, it explores the model provided by ISO 14001. Third, specific experience of Ford Motor Company, General Motors, and Chrysler in working cooperatively with the Detroit Edison electric utility is reported. Finally, the broader scope of energy efficiency at Ford is indicated, and the ethical nature of energy efficiency is asserted.

  6. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth.

    PubMed

    Huang, Guo-Qiang; Li, En; Ge, Fu-Rong; Li, Sha; Wang, Qun; Zhang, Chun-Qing; Zhang, Yan

    2013-12-01

    We investigated a genetic pathway in root hair development in Arabidopsis thaliana, involving the receptor-like kinase FERONIA (FER), two guanine nucleotide exchange factors for ROPs (RopGEF4 and RopGEF10), and the small GTPase Rho of plants (ROPs). Loss- and gain-of-function analyses demonstrated distinct roles of RopGEF4 and RopGEF10 such that RopGEF4 is only important for root hair elongation, while RopGEF10 mainly contributes to root hair initiation. Domain dissection by truncation and domain-swapping experiments indicated that their functional distinctions were mainly contributed by the noncatalytic domains. Using fluorescent ratio imaging, we showed that functional loss of RopGEF4 and RopGEF10 additively reduced reactive oxygen species (ROS) production. Bimolecular fluorescence complementation experiments demonstrated that RopGEF4 and RopGEF10 had the same interaction specificity as ROPs, suggesting common downstream components. We further showed that the promoting effects of environmental cues such as exogenous auxin and phosphate limitation on root hair development depended on FER. However, although functional loss of RopGEF4 and RopGEF10 largely abolished FER-induced ROS production, it did not compromise the responses to FER-mediated environmental cues on root hair development. Our results demonstrated that RopGEF4 and RopGEF10 are genetic components in FER-mediated, developmentally (but not environmentally) regulated, root hair growth.

  7. Energy efficiency programs and policies in the industrial sector in industrialized countries

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  8. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  9. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  10. Energy Matters: An invitation to Chat About Industrial Efficiency

    SciTech Connect

    Hogan, Kathleen

    2011-01-01

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  11. Energy Matters: An invitation to Chat About Industrial Efficiency

    ScienceCinema

    Hogan, Kathleen

    2016-07-12

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  12. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  13. Energy efficiency in industry and agriculture: Lessons from North Carolina

    SciTech Connect

    Elliott, R.N.

    1993-12-31

    The author presents lessons learned during 15 years of work on energy efficiency with North Carolina industry and agriculture. The paper includes examples of energy projects and recommendations for structuring programs that will best overcome institutional barriers. Based on a paper prepared for the 16th World Energy Engineering Congress.

  14. Signalling through the RhoGEF Pebble in Drosophila.

    PubMed

    Gregory, Stephen L; Lorensuhewa, Nirmal; Saint, Robert

    2010-04-01

    Small GTPase pathways of the Ras superfamily are implicated in a wide range of signalling processes in animal cells. Small GTPases control pathways by acting as molecular switches. They are converted from an inactive GDP-bound form to an active GTP-bound form by GTP exchange factors (GEFs). The spatial and temporal regulation of GEFs is a major component of the regulation of small GTPases. Here we review the role of the Drosophila RhoGEF, Pebble (the Drosophila ortholog of mammalian ECT2). We discuss its roles in cytokinesis and cell migration, highlighting the diversity with which Rho family signalling pathways operate in biological systems.

  15. Spectroscopic Constants and Potential Energy Curves for GeF

    NASA Astrophysics Data System (ADS)

    Liao, D. W.; Balasubramanian, K.

    1994-01-01

    The spectroscopic constants of the electronic states of GeF lying below the 60000 cm -1 region are obtained using the complete active space multiconfiguration self-consistent field followed by first- and second-order configuration interaction (FOCI. SOCI) methods which included up to a million configurations. The potential energy curves of the low-lying electronic states are also computed. The computed spectroscopic constants confirm the assignments of the X, A, a, C, C', and D' states of GeF. In addition the spectroscopic constants of several electronic states of GeF are predicted which are yet to be observed.

  16. Exergy efficiency in industry: where do we stand?

    PubMed

    Ayres, Robert U; Talens Peiró, Laura; Villalba Méndez, Gara

    2011-12-15

    Efficiency is a term generally used to determine how well a system performs. However, efficiency can have different meanings and, unaccompanied by a formal definition or taken out of context, can lead to serious misconceptions. In many official publications, efficiency is calculated as the ratio of useful output to energy input. This measure reflects the first law of thermodynamics (conservation of energy) but does not reflect the potential for improvement. A better measure, that also reflects the second law of thermodynamics, is the ratio of the potential useful (exergy) output to the potential useful (exergy) input. We estimate second law efficiencies for the inorganic and organic chemical industries to be 29% and 35% respectively. We also estimate the efficiency of the U.S. industry sector as a whole to be 37.6%, as compared to only 7.7% for the overall U.S. economy. These figures are far lower than the "first law" figures published by the U.S. Department of Energy (80% for industry and 42.5% overall) and they imply a significant potential for improvement.

  17. Efficient removal of mercury from aqueous solutions and industrial effluent.

    PubMed

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.

  18. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  19. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  20. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  1. Toward allocative efficiency in the prescription drug industry.

    PubMed

    Guell, R C; Fischbaum, M

    1995-01-01

    Traditionally, monopoly power in the pharmaceutical industry has been measured by profits. An alternative method estimates the deadweight loss of consumer surplus associated with the exercise of monopoly power. Although upper and lower bound estimates for this inefficiency are far apart, they at least suggest a dramatically greater welfare loss than measures of industry profitability would imply. A proposed system would have the U.S. government employing its power of eminent domain to "take" and distribute pharmaceutical patents, providing as "just compensation" the present value of the patent's expected future monopoly profits. Given the allocative inefficiency of raising taxes to pay for the program, the impact of the proposal on allocative efficiency would be at least as good at our lower bound estimate of monopoly costs while substantially improving efficiency at or near our upper bound estimate.

  2. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  3. Technologies and Policies to Improve Energy Efficiency in Industry

    NASA Astrophysics Data System (ADS)

    Price, Lynn

    2008-09-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  4. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  5. Technical Efficiency of Automotive Industry Cluster in Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-07-01

    Chennai is also called as Detroit of India due to its automotive industry presence producing over 40 % of the India's vehicle and components. During 2001-2002, diagnostic study was conducted on the Automotive Component Industries (ACI) in Ambattur Industrial Estate, Chennai and in SWOT analysis it was found that it had faced problems on infrastructure, technology, procurement, production and marketing. In the year 2004-2005 under the cluster development approach (CDA), they formed Chennai auto cluster, under public private partnership concept, received grant from Government of India, Government of Tamil Nadu, Ambattur Municipality, bank loans and stake holders. This results development in infrastructure, technology, procurement, production and marketing interrelationships among ACI. The objective is to determine the correlation coefficient, regression equation, technical efficiency, peer weights, slack variables and return to scale of cluster before and after the CDA. The methodology adopted is collection of primary data from ACI and analyzing using data envelopment analysis (DEA) of input oriented Banker-Charnes-Cooper model. There is significant increase in correlation coefficient and the regression analysis reveals that for one percent increase in employment and net worth, the gross output increases significantly after the CDA. The DEA solver gives the technical efficiency of ACI by taking shift, employment, net worth as input data and quality, gross output and export ratio as output data. From the technical score and ranking of ACI, it is found that there is significant increase in technical efficiency of ACI when compared to CDA. The slack variables obtained clearly reveals the excess employment and net worth and no shortage of gross output. To conclude there is increase in technical efficiency of not only Chennai auto cluster in general but also Chennai auto components industries in particular.

  6. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect

    Morrow, William; CreskoEngineering, Joe; Carpenter, Alberta; Masanet, Eric; Nimbalkar, Sachin U; Shehabi, Arman

    2013-01-01

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  7. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  8. Measuring the efficiency of large pharmaceutical companies: an industry analysis.

    PubMed

    Gascón, Fernando; Lozano, Jesús; Ponte, Borja; de la Fuente, David

    2016-06-25

    This paper evaluates the relative efficiency of a sample of 37 large pharmaceutical laboratories in the period 2008-2013 using a data envelopment analysis (DEA) approach. We describe in detail the procedure followed to select and construct relevant inputs and outputs that characterize the production and innovation activity of these pharmaceutical firms. Models are estimated with financial information from Datastream, including R&D investment, and the number of new drugs authorized by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) considering the time effect. The relative performances of these firms-taking into consideration the strategic importance of R&D-suggest that the pharmaceutical industry is a highly competitive sector given that there are many laboratories at the efficient frontier and many inefficient laboratories close to this border. Additionally, we use data from S&P Capital IQ to analyze 2071 financial transactions announced by our sample of laboratories as an alternative way to gain access to new drugs, and we link these transactions with R&D investment and DEA efficiency. We find that efficient laboratories make on average more financial transactions, and the relative size of each transaction is larger. However, pharmaceutical companies that simultaneously are more efficient and invest more internally in R&D announce smaller transactions relative to total assets.

  9. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  10. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies

    NASA Astrophysics Data System (ADS)

    1992-07-01

    To use slurries efficiently in a process, engineers must be able to determine the particle size distribution. A new particle size sensor is under development, based on ultrasonic spectroscopy and mathematical modeling. A field test prototype is being installed at a pilot facility for manufacturing pigments. The mathematical model has also been modified. The sensor is expected to enhance process control in the chemicals industry.

  11. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  12. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  13. Restructuring, ownership and efficiency in the electricity industry

    NASA Astrophysics Data System (ADS)

    Shanefelter, Jennifer Kaiser

    The first chapter considers improvements in productive efficiency that can result from a movement from a regulated framework to one that allows for market-based incentives for industry participants. Specifically, I look at the case of restructuring in the electricity generation industry. Using data from the electricity industry, this analysis considers the total effect of restructuring on one input to the production process, labor, as reflected in employment levels, payroll per employee and aggregate establishment payroll. Using concurrent payroll and employment data from non-utility ("merchant") and utility generators in both restructured and nonrestructured states, I estimate the effect of market liberalization, comprising both new entry and state-level legislation, on employment and payroll in this industry. I find that merchant owners of divested generation assets employ significantly fewer people, but that the payroll per employee is not significantly different from what workers at utility-owned plants are paid. As a result, the new merchant owners of these plants have significantly lower aggregate payroll expenses. Decomposing the effect into a merchant effect and a divestiture effect, I find that merchant ownership is the primary driver of these results. As documented in Chapter 1, merchant power plants have lower overall payroll costs than plants owned by utilities. Employment at merchant power plants is characterized by reduced staffing levels but higher average payroll per employee. A hypothesis set forth in that paper is that merchant generators employ fewer workers at the lower end of the wage distribution, resulting in a higher average payroll per employee. The second chapter of this paper examines whether employment at nonutility power plants, that is, those that are either divested or native merchant power plants, is skewed towards more skilled labor. This chapter also considers the extent to which the difference in employment levels is the result of

  14. Developing an energy efficiency service industry in Shanghai

    SciTech Connect

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10

    The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years

  15. GUIDE TO INDUSTRIAL ASSESSMENTS FOR POLLUTION PREVENTION AND ENERGY EFFICIENCY

    EPA Science Inventory

    This document presents an overview of industrial assessments and the general framework for conducting an assessment. It describes combined assessments for pollution prevention and energy, "industrial assessments," providing guidance to those performing assessments at industrial o...

  16. Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1

    DTIC Science & Technology

    2015-05-01

    Award Number: W81XWH-12-1-0014 TITLE: Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1 PRINCIPAL INVESTIGATOR... DNA breaks that are lethal to a cell if not repaired. In response to IR exposure a signal transduction cascade is initiated that activates cell...cycle checkpoints to cause cell cycle arrest, thereby allowing cells time to repair their damaged DNA (3). The ability of a cell to efficiently respond

  17. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF.

    PubMed

    Scott, David W; Tolbert, Caitlin E; Burridge, Keith

    2016-05-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell-cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein's role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.

  18. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Burridge, Keith

    2016-01-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF. PMID:26985018

  19. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  20. Superoxide Inhibits Guanine Nucleotide Exchange Factor (GEF) Action on Ras, but not on Rho, through Desensitization of Ras to GEF

    PubMed Central

    2015-01-01

    Ras and Rho GTPases are molecular switches for various vital cellular signaling pathways. Overactivation of these GTPases often causes development of cancer. Guanine nucleotide exchange factors (GEFs) and oxidants function to upregulate these GTPases through facilitation of guanine nucleotide exchange (GNE) of these GTPases. However, the effect of oxidants on GEF functions, or vice versa, has not been known. We show that, via targeting Ras Cys51, an oxidant inhibits the catalytic action of Cdc25—the catalytic domain of RasGEFs—on Ras. However, the enhancement of Ras GNE by an oxidant continues regardless of the presence of Cdc25. Limiting RasGEF action by an oxidant may function to prevent the pathophysiological overactivation of Ras in the presence of both RasGEFs and oxidants. The continuous exposure of Ras to nitric oxide and its derivatives can form S-nitrosated Ras (Ras-SNO). This study also shows that an oxidant not only inhibits the catalytic action of Cdc25 on Ras-SNO but also fails to enhance Ras-SNO GNE. This lack of enhancement then populates the biologically inactive Ras-SNO in cells, which may function to prevent the continued redox signaling of the Ras pathophysiological response. Finally, this study also demonstrates that, unlike the case with RasGEFs, an oxidant does not inhibit the catalytic action of RhoGEF—Vav or Dbs—on Rho GTPases such as Rac1, RhoA, RhoC, and Cdc42. This result explains the results of the previous study in which, despite the presence of an oxidant, the catalytic action of Dbs in cells continued to enhance RhoC GNE. PMID:24422478

  1. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  2. 3 CFR 13624 - Executive Order 13624 of August 30, 2012. Accelerating Investment in Industrial Energy Efficiency

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Accelerating Investment in Industrial Energy Efficiency 13624 Order 13624 Presidential Documents Executive... energy efficiency at industrial facilities, it is hereby ordered as follows: Section 1. Policy. The... energy efficiency and CHP as a result of numerous barriers. The Federal Government has limited...

  3. Spectroscopic constants and potential energy curves of GeF +

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Balasubramanian, K.

    1995-05-01

    Spectroscopic constants and potential energy curves of 27 electronic states of GeF + are computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods that included up to 1.6 million configurations. Our computed spectroscopic constants of the 1Σ+ electronic state fit well with the experimentally observed X ground state. Other yet to be observed properties of several excited electronic states are reported.

  4. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect

    1997-09-01

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  5. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... energy efficient over the past several decades, there is an opportunity to accelerate and expand these efforts with investments to reduce energy use through more efficient manufacturing processes and... can use a CHP system to provide both types of energy in one energy-efficient step. Accelerating...

  6. RhoGEFs in cell motility: Novel links between Rgnef and focal adhesion kinase

    PubMed Central

    Miller, Nichol L. G.; Kleinschmidt, Elizabeth G.; Schlaepfer, David D.

    2014-01-01

    Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family members. GEFs act as integrators from varied intra- and extracellular sources to promote spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive functions or specificity. We will focus on a unique interaction between Rgnef (also termed Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH) domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring GEF roles in cancer will yield fundamental new information on the molecular mechanisms promoting tumor spread and metastasis. PMID:24467206

  7. 78 FR 26544 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Part 430 RIN 1904-AC55 Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension of...

  8. 78 FR 12251 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Part 430 RIN 1904-AC55 Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension of...

  9. GEF climate change operational strategy: Whither UNDP?

    SciTech Connect

    Hosier, R.

    1996-12-31

    The paper discusses aspects of the implementation of the program for climatic change which has been come about as part of the U.N. Framework Convention on Climate Change. Initial effort has focused on providing strategic information and help to countries, on achieving offsets in greenhouse gas emissions by energy conservation or carbon sinking, and an emphasis on development of renewable energy supplies. The U.N. Development Agency has limited funding to help support startup on projects submitted. Specific examples are discussed in the areas of energy conservation and energy efficiency, adoption of renewable energy sources, and reducing the long-term costs of low greenhouse gas-emitting energy technologies.

  10. Study on eco-efficiency of industrial parks in China based on data envelopment analysis.

    PubMed

    Fan, Yupeng; Bai, Bingyang; Qiao, Qi; Kang, Peng; Zhang, Yue; Guo, Jing

    2017-05-01

    China's industrial parks have been playing a crucial role on driving regional economy development, but also been posing threats to local environment due to intensive resource consumption and waste emission. Chinese government facilitated eco-industrial development of industrial park, aiming to output more with less environmental burden. In our study, the eco-efficiency levels of 40 Chinese industrial parks in 2012 were assessed and ranked by Data Envelopment Analysis (DEA). This paper applied indicators relevant to resource, economy, and environment from industrial parks which can well reflect the characteristics of eco-efficiency conforming to the concept of sustainability. This paper introduced how to adjust less sustainable parks to be more sustainable according to the DEA results. The roles of industrial added value per capita, industrial structure, environmental policy and development scale as influence factors of eco-efficiency were discussed. The results show that large differences exist in the eco-efficiency of different industrial parks. It is shown that 20% of the parks are relatively efficient. 47% of the study parks being inefficient in terms of scale efficiency show decreasing returns to scale. Policy implementations for the management of industrial parks were also discussed based on the results.

  11. Impact of information technology on productivity and efficiency in Iranian manufacturing industries

    NASA Astrophysics Data System (ADS)

    Abri, Amir Gholam; Mahmoudzadeh, Mahmoud

    2015-12-01

    The aim of this paper is to assess the impact of information technology (IT) on the productivity and efficiency of manufacturing industries in Iran. So, the data will be collected from 23 Iranian manufacturing industries during "2002-2006" and the methods such as DEA and panel data used to study the subject. Results obtained by the above two methods represent that IT has a positive and statistically significant effect on the productivity of manufacturing industries. It will be more in high IT-intensive industries than the other industries. But, there is no significant difference between the growth of labor productivity in IT-producing and IT-using industries.

  12. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    SciTech Connect

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  13. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop degradation-resistant nano-coatings of AlMgB14 and AlMgB14– (titanium diboride) TiB2 that result in improved surface hardness and reduced friction for industrial hydraulic and tooling systems.

  14. Performance analysis of CO(2) emissions and energy efficiency of metal industries in China.

    PubMed

    Shao, Chaofeng; Guan, Yang; Wan, Zheng; Chu, Chunli; Ju, Meiting

    2014-02-15

    Nonferrous metal industries play an important role in China's national economy and are some of the country's largest energy consumers. To better understand the nature of CO(2) emissions from these industries and to further move towards low-carbon development in this industry sector, this study investigates the CO(2) emissions of 12 nonferrous metal industries from 2003 to 2010 based on their life-cycle assessments. It then classifies these industries into four "emission-efficiency" types through cluster analysis. The results show that (1) the industrial economy and energy consumption of China's nonferrous metal industries have grown rapidly, although their recent energy consumption rate shows a declining trend. (2) The copper, aluminum, zinc, lead, and magnesium industries, classified as high-emission industries, are the main contributors of CO(2) emissions. The results have implications for policy decisions that aim to enhance energy efficiency, particularly for promoting the transformation of low-efficiency industries to high-efficiency ones. The study also highlights the important role of policy development in technological innovations, optimization, and upgrades, the reduction of coal proportion in energy consumption, and the advancement of new energy sources.

  15. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    SciTech Connect

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltage unbalance.

  16. Assisting the Tooling and Machining Industry to Become Energy Efficient

    SciTech Connect

    Curry, Bennett

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  17. Feed Efficiency: An Assessment of Current Knowledge from a Voluntary Subsample of the Swine Industry

    ERIC Educational Resources Information Center

    Flohr, Josh R.; Tokach, Mike D.; DeRouchey, Joel M.; Goodband, Robert D.; Dritz, Steve S.; Nelssen, Jim L.; Patience, John F.

    2014-01-01

    A voluntary sample of pork producers and advisers to the swine industry were surveyed about feed efficiency. The questionnaire was designed to accomplish three objectives: (a) determine the level of knowledge related to feed efficiency topics, (b) identify production practices used that influence feed efficiency, and (c) identify information gaps…

  18. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis.

    PubMed

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R; Buchwald, Peter; Verde, Fulvia

    2015-10-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24-Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.

  19. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  20. A Search for New Therapeutic Targets: Using Yeast to Find the GEF for Rheb

    DTIC Science & Technology

    2008-07-01

    Using Yeast to Find the GEF for Rheb PRINCIPAL INVESTIGATOR: Janet Leatherwood, Ph.D. CONTRACTING ORGANIZATION: The Research Foundation...CONTRACT NUMBER A search for New Therapeutic Targets: Using Yeast to Find the GEF for Rheb 5b. GRANT NUMBER W81XWH-07-1-0358 5c. PROGRAM ELEMENT

  1. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  2. Establishment of epithelial polarity--GEF who's minding the GAP?

    PubMed

    Ngok, Siu P; Lin, Wan-Hsin; Anastasiadis, Panos Z

    2014-08-01

    Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.

  3. Functional consequences of Gα13 mutations that disrupt interaction with p115RhoGEF

    PubMed Central

    Grabocka, Elda; Wedegaertner, Philip B.

    2006-01-01

    The G-protein α subunit, α13, regulates cell growth and differentiation through the monomeric Rho GTPase. α13 activates Rho through direct stimulation of the guanine nucleotide exchange factor p115RhoGEF, which contains a regulator of G-protein signaling homology domain (RH) in its N-terminus. Through its RH domain p115RhoGEF also functions as a GAP for Gα13. The mechanism for the Gα13/p115RhoGEF interaction is not well understood. Here, we determined specific α13 residues important for its interaction with p115RhoGEF. GST-pull downs and co-immunoprecipitation assays revealed that individually mutating α13 residues Lys204, Glu229, or Arg232 to opposite charge residues disrupts the interaction of activated α13 with the RH domain of p115RhoGEF or full-length p115RhoGEF. We further demonstrate that mutation of Glu229, and to a lesser extent Lys204 or Arg232, disrupts the ability of activated α13 to induce the recruitment of p115RhoGEF to the plasma membrane (PM) and to activate Rho-mediated SRE-luciferase gene transcription. Interestingly, an α13 mutant where a conserved Gly was mutated to a Ser (G205S) retained its ability to bind to p115RhoGEF, induce p115RhoGEF recruitment to the PM, and activate Rho-dependent signaling, even though identical Gly to Ser mutations in other α disrupt their interaction with RGS proteins. These results demonstrate that whereas several features of a typical α/RGS interaction are preserved in the α13/p115RhoGEF interaction, there are also significant differences. PMID:15735747

  4. General Description of Fission Observables: GEF Model Code

    NASA Astrophysics Data System (ADS)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  5. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    SciTech Connect

    Johnson, Mark; Friedman, David

    2016-12-15

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  6. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    SciTech Connect

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  7. Industrial Energy Efficiency Practices in Indonesia: Lesson Learned from Astra Green Energy (AGen) Award

    NASA Astrophysics Data System (ADS)

    Telaga, A. S.; Hartanto, I. D.

    2017-03-01

    Many countries have used award system to promote energy efficiency practices in industry. The award system has been found to have significant impact to increase energy conservation and sustainability adoption in companies. Astra International (AI) as a holding company of more than 200 companies also organised Astra green energy (AGen) award to all affiliated companies (AFFCO) in Astra group. The event has been used to share energy efficiency best practices among AFFCO in Astra group. AFFCOs of Astra International are among the biggest and the leader in their industrial sectors Therefore, analyses from AFFO’s energy efficiency case studies represents current practices in Indonesia industrial sectors. Analyses are divided into industry, building, and renewable energy. The results from analyses found that AFFCOs already aware of energy conservation and have implemented projects to promote energy efficiency. However, the AFFCOs do not optimally use monitoring data for energy reduction.

  8. Industrial Assessment Center Helps Boost Efficiency for Small and Medium Manufacturers

    ScienceCinema

    Johnson, Mark; Friedman, David

    2017-01-06

    The Industrial Assessment Center program helps small and medium manufacturers boost efficiency and save energy. It pairs companies with universities as students perform energy assessments and provide recommendations to improve their facilities.

  9. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  10. Nanocoatings for High-Efficiency Industrial and Tooling Systems

    SciTech Connect

    Blau, P; Qu, J.; Higdon, C.

    2011-02-01

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program industry call. It consisted of three phases in which ORNL participated. In addition to Eaton Corporation and ORNL (CRADA), the project team included Ames Laboratory, who developed the underlying concept for aluminum-magnesium-boron based nanocomposite coatings [1], and Greenleaf, a small tooling manufacturer in western Pennsylvania. This report focuses on the portion of this work that was conducted by ORNL in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared by Eaton Corporation. Phase I, “Proof of Concept” ran for one year (September 1, 2006 to September 30, 2007) during which the applicability of AlMgB14 single-phase and nanocomposite coatings on hydraulic material coupons and components as well as on tool inserts was demonstrated.. The coating processes used either plasma laser deposition (PLD) or physical vapor deposition (PVD). During Phase I, ORNL conducted laboratory-scale pin-on-disk and reciprocating pin-on-flat tests of coatings produced by PLD and PVD. Non-coated M2 tool steel was used as a baseline for comparison, and the material for the sliding counterface was Type 52100 bearing steel since it simulated the pump materials. Initial tests were run mainly in a commercial hydraulic fluid named Mobil DTE-24, but some tests were later run in a water-glycol mixture as well. A tribosystem analysis was conducted to define the operating conditions of pump components and to help develop simulative tests in Phase II. Phase II, “Coating Process Scale-up” was intended to use scaled-up process to generate prototype parts. This involved both PLD practices at Ames Lab, and a PVD scale-up study at Eaton using its production capable equipment. There was also a limited scale-up study at Greenleaf for the tooling application. ORNL continued to conduct friction and wear

  11. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  12. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization

    PubMed Central

    van Unen, Jakobus; Reinhard, Nathalie R.; Yin, Taofei; Wu, Yi I.; Postma, Marten; Gadella, Theodorus W.J.; Goedhart, Joachim

    2015-01-01

    The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling. PMID:26435194

  13. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: INFLUENCE OF GAS COMPOSITION

    EPA Science Inventory

    The report gives results of a pilot-scale evaluation of the efficiency of industrial flares. The work (1) evaluated the effects of additional gas mixtures on flare stability and efficiency with and without pilot assist and (2) correlated flame stability for the different gas mixt...

  14. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  15. A Gα12-specific Binding Domain in AKAP-Lbc and p114RhoGEF

    PubMed Central

    Brawley, Douglas N.; Berkley, Carrie Y.; Smolski, William C.; Garcia, Ricardo D.; Towne, Autumn L.; Sims, Jonathan R.

    2016-01-01

    AKAP-Lbc is a Rho-activating guanine nucleotide exchange factor (RhoGEF) important in heart development and pro-fibrotic signaling in cardiomyocytes. Heterotrimeric G proteins of the G12/13 subfamily, comprising Gα12 and Gα13, are well characterized as stimulating a specialized group of RhoGEFs through interaction with their RGS-homology (RH) domain. Despite lacking an RH domain, AKAP-Lbc is bound by Gα12 through an unknown mechanism to activate Rho signaling. We identified a Gα12-binding region near the C-terminus of AKAP-Lbc, closely homologous to a region of p114RhoGEF that we also discovered to interact with Gα12. This binding mechanism is distinct from the well-studied interface between RH-RhoGEFs and G12/13 α subunits, as demonstrated by Gα12 mutants selectively impaired in binding either this AKAP-Lbc/p114RhoGEF region or RH-RhoGEFs. AKAP-Lbc and p114RhoGEF showed high specificity for binding Gα12 in comparison to Gα13, and experiments using chimeric G12/13 α subunits mapped determinants of this selectivity to the N-terminal region of Gα12. In cultured cells expressing constitutively GDP-bound Gα12 or Gα13, the Gα12 construct was more potent in exerting a dominant-negative effect on serum-mediated signaling to p114RhoGEF, demonstrating coupling of these signaling proteins in a cellular pathway. In addition, charge-reversal of conserved residues in AKAP-Lbc and p114RhoGEF disrupted Gα12 binding for both proteins, suggesting they harbor a common structural mechanism for interaction with this α subunit. Our results provide the first evidence of p114RhoGEF as a Gα12 signaling effector, and define a novel region conserved between AKAP-Lbc and p114RhoGEF that allows Gα12 signaling input to these non-RH RhoGEFs.

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies

    SciTech Connect

    Not Available

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  17. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  18. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  19. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    NASA Astrophysics Data System (ADS)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  20. Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater.

    PubMed

    Silva, Michele R; Coelho, Maria A Z; Cammarota, Magali C

    2008-01-31

    The objective of this work was to evaluate a potential method for improving the treatment efficiency of persistent contaminants in industrial wastewater. Adsorption with powdered activated carbon (PAC) was applied as pre-treatment and operational conditions as pH, temperature, carbon concentration and time were investigated in laboratory scale for different streams generated in a fine chemical industry. Chemical oxygen demand (COD) removal efficiencies of 63 and 50% were attained for two important industrial streams, Product C after acid treatment and precipitation and Influent, at pH 7, room temperature and with 5 and 15 g l(-1) of PAC, respectively. Biodegradation assays showed that PAC adsorption enhanced COD removal efficiency. PAC pre-treatment increased the COD removal of Product C after production stream from 15 to 80% and improved the biodegradability of the Influent stream by 50%.

  1. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    SciTech Connect

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  2. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    SciTech Connect

    Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn

    2012-11-01

    The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid- and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

  3. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases

    PubMed Central

    Birkenfeld, Jörg; Nalbant, Perihan; Bohl, Benjamin P.; Pertz, Olivier; Hahn, Klaus M.; Bokoch, Gary M.

    2007-01-01

    SUMMARY Formation of the mitotic cleavage furrow is dependent upon both microtubules and activity of the small GTPase RhoA. GEF-H1 is a microtubule-regulated exchange factor that couples microtubule dynamics to RhoA activation. GEF-H1 localized to the mitotic apparatus in HeLa cells, particularly at the tips of cortical microtubules and the midbody, and perturbation of GEF-H1 function induced mitotic aberrations, including asymmetric furrowing, membrane blebbing, and impaired cytokinesis. The mitotic kinases Aurora A/B and Cdk1/Cyclin B phosphorylate GEF-H1, thereby inhibiting GEF-H1 catalytic activity. Dephosphorylation of GEF-H1 occurs just prior to cytokinesis, accompanied by GEF-H1-dependent GTP-loading on RhoA. Using a live cell biosensor, we demonstrate distinct roles for GEF-H1 and Ect2 in regulating Rho activity in the cleavage furrow, with GEF-H1 catalyzing Rho activation in response to Ect2-dependent localization and initiation of cell cleavage. Our results identify a GEF-H1-dependent mechanism to modulate localized RhoA activation during cytokinesis under the control of mitotic kinases. PMID:17488622

  4. Functional characterization of the guanine nucleotide exchange factor (GEF) motif of GIV protein reveals a threshold effect in signaling.

    PubMed

    Garcia-Marcos, Mikel; Kietrsunthorn, Patrick S; Pavlova, Yelena; Adia, Michelle A; Ghosh, Pradipta; Farquhar, Marilyn G

    2012-02-07

    Heterotrimeric G proteins are critical signal-transducing molecules controlled by a complex network of regulators. GIV (a.k.a. Girdin) is a unique component of this network and a nonreceptor guanine nucleotide exchange factor (GEF) that functions via a signature motif. GIV's GEF motif is involved in the regulation of critical biological processes such as phosphoinositide 3 kinase (PI3K)-Akt signaling, actin cytoskeleton remodeling, cell migration, and cancer metastasis. Here we investigated how the GEF function of GIV affects the wiring of its signaling pathway to shape different biological responses. Using a structure-guided approach, we designed a battery of GIV mutants with different Gαi-binding and -activating properties and used it to dissect the specific impact of changes in GIV's GEF activity on several cellular responses. In vivo signaling assays revealed a threshold effect of GEF activity for the activation of Akt by GIV in different cell lines and by different stimuli. Akt signaling is minimal at low GEF activity and is sharply increased to reach a maximum above a threshold of GEF activity, suggesting that GIV is a critical signal amplifier and that activation of Akt is ultrasensitive to changes in GIV's GEF activity. A similar threshold dependence was observed for other biological functions promoted by GIV such as remodeling of the actin cytoskeleton and cell migration. This functional characterization of GIV's GEF motif provides insights into the molecular interactions between nonreceptor GEFs and G proteins and the mechanisms that govern this signal transduction pathway.

  5. The product of the gene GEF1 of Saccharomyces cerevisiae transports Cl- across the plasma membrane.

    PubMed

    López-Rodríguez, Angélica; Trejo, Alfonso Cárabez; Coyne, Leanne; Halliwell, Robert F; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2007-12-01

    Expression of GEF1 in Xenopus laevis oocytes and HEK-293 cells gave rise to a Cl- channel that remained permanently open and was blocked by nitro-2-(3-phenyl-propylamino) benzoic acid and niflumic acid. NPPB induced petite-like colonies, resembling the GEF1 knock-out. The fluorescent halide indicator SPQ was quenched in a wild-type strain, in contrast to both a GEF1 knock-out strain and yeast grown in the presence of NPPB. Immunogold and electron microscopy located Gef1p in the plasma membrane, vacuole, endoplasmic reticulum and Golgi apparatus. Eleven substitutions in five residues forming the ion channel of GEF1 were introduced; some of them (S186A, I188N, Y459D, Y459F, Y459V, I467A, I467N and F468N) did not rescue the pet phenotype, whereas F468A, A558F and A558Y formed normal colonies. All the pet mutants showed reduced O2 consumption, small mitochondria and mostly disrupted organelles. Finally, electron microscopy revealed that the plasma membrane of the mutants develop multiple foldings and highly ordered cylindrical protein-membrane complexes. All the experiments above suggest that Gef1p transports Cl- through the plasma membrane and reveal the importance of critical amino acids for the proper function of the protein as suggested by structural models. However, the mechanism of activation of the channel has yet to be defined.

  6. Economic efficiency in fish farming: hope for agro-allied industries in Niagara

    NASA Astrophysics Data System (ADS)

    Kareem, R. O.; Dipeolu, A. O.; Aromolaran, A. B.; Williams, S. B.

    2008-02-01

    The challenge to increase the efficiency in food production level in Nigeria appears to be more urgent now than it has ever been in the history of the country. This is in view of the rapidly increasing population, the imminent decline in international economic and food aid and the need to conserve foreign exchange earnings through the production of raw materials to feed the growing industrial sector calls for urgent attention. The study was carried out in Ogun State. The descriptive statistics was used to determine the socio-economic characteristics of the respondents. The stochastic frontiers production analysis was applied to estimate the technical, allocative efficiency and economic efficiency among the fish farmers in the state. The results of economic efficiency revealed that fish farming is economically efficient with a range of between 55% and 84% efficiency level suggesting a favourable hope for the agro-allied industry such as poultry and cottage industries etc in the state. The result of hypothesis of inefficiency sources models showed that years of experience of fish farmers is significant at 1% probability level indicating the factor contributing to the fish farming experience in the state. Thus, the efficiency is due to the fact that farmers are experienced and fairly educated. On the basis of findings, policy is suggested to be directed towards the encouragement of entrepreneurs in fish farming in the state by providing enabling environment like credit facilities, public enlightenment programme and provision of social amenities like feeder roads, pipe-born water etc and given the fact that an increase in the level of formal education variable leads to less inefficiency, government policy should be focused on adopting the best technology (e.g. fast growing species and equipment) so as to improve the level of efficiency and investment which shall eventually lead to growth in output of fish farming and a lead to the establishment of agro

  7. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    SciTech Connect

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  8. Technology transfer of energy efficient technologies in industry: A review of trends and policy issues

    SciTech Connect

    Worrell, Ernst; van Berkel, Rene; Fengqi, Zhou; Menke, Christoph; Schaeffer, Roberto; Williams, Robert O.

    2000-03-01

    In 1995, industry accounted for 41 percent of global energy use. Although the efficiency of industrial processes has increased greatly during the past decades, energy efficiency improvements remain the major opportunity to reduce CO2 emissions. Industrialization may affect the environment adversely, stressing the need for transfer of cleaner technologies to developing countries. A review of trends, barriers and opportunities for technology transfer is presented. Technology transfer is a process involving assessment, agreement, implementation, evaluation and adaptation, and repetition. Institutional barriers and policies influence the transaction process. Investments in industrial technology are dominated by the private sector. In industry, energy efficiency is often the result of investments in modern equipment, stressing the importance and need for environmentally sound and long-term investment policies. The interactive and dynamic character of technology transfer stresses the need for innovative and flexible approaches, through partnerships between various stakeholders. Adaptation of technology to local conditions is essential, but practices vary widely. Countries that spend on average more on adaptation, seem to be more successful in technology transfer, hence successful technology transfer depends on transfer of technological capabilities.

  9. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  10. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  11. [Evaluating efficiency of influenza vaccinal prevention among oil and gas industry workers].

    PubMed

    Bulanov, V E; Ivanov, A V; Shostak, G R

    2013-01-01

    Explore information about the incidence of employees of enterprises of the oil and gas industry with the influenza (SARS). The degree of influence of vaccination on the incidence of influenza, the number and structure of complications as a result of vaccination and their impact on efficiency. Evaluation of the cost-effectiveness of vaccination.

  12. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  13. Competition policy and the transition to a low-carbon, efficient electricity industry

    SciTech Connect

    Moss, Diana L.; Kwoka, John E. Jr.

    2010-08-15

    U.S. industries are facing intense pressures to become more energy efficient. Two concerns are driving this transition. One is the need to lower the carbon footprints of energy-intensive sectors. A second concern is the need to achieve energy security by reducing this country's reliance on foreign sources of energy supplies. (author)

  14. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  15. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    SciTech Connect

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are known and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly

  16. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  17. The Rho-GTPase RopGEF2-ROP7/ROP2 Pathway Activated by phyB suppresses Red Light-Induced Stomatal Opening.

    PubMed

    Wang, Wei; Liu, Zhao; Bao, Li-Juan; Zhang, Sha-Sha; Zhang, Chun-Guang; Li, Xin; Li, Hai-Xia; Zhang, Xiao-Lu; Bones, Atle Magnar; Yang, Zhenbiao; Chen, Yu-Ling

    2017-02-10

    Circadian rhythm of stomatal aperture is mainly regulated by light/darkness. Blue and red light induce stomatal opening through different mechanisms that are mediated by special receptors. ROP2, a member of Rho GTPase family in Arabidopsis (Arabidopsis Thaliana), has been found to negatively regulate light-induced stomatal opening. However, the upstream guanine nucleotide exchange factor (GEF) RopGEFs have not been revealed, and it is unclear which photoreceptor is required for the action of RopGEFs-ROPs. Here, we showed that RopGEF2 acted as a negative regulator in phytochrome B (phyB)-mediated red light-induced stomatal opening. Meanwhile, ROP7, another member of ROP family, acting redundantly with ROP2, was regulated by RopGEF2 in this process. RopGEF2 interacted with ROP7 and ROP2 and enhanced their intrinsic nucleotide exchange rates. Furthermore, the direct interactions between phyB and RopGEF2 were detected in vitro and in plants, and phyB enhanced the GEF activity of RopGEF2 toward both ROP7 and ROP2 under light. In addition, RopGEF4 functioned redundantly with RopGEF2 in red light-induced stomatal opening by activating both ROP7 and ROP2, and RopGEF2/RopGEF4 acted genetically downstream of phyB; however, the GEF activity of RopGEF4 was not directly enhanced by phyB. These results revealed that red light-activated phyB enhances the GEF activities of RopGEF2 and RopGEF4 directly or indirectly, and then activate both ROP7 and ROP2 in guard cells. The negative mechanism triggered by phyB prevents the excessive stomatal opening under red light.

  18. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  19. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis

    PubMed Central

    Wei, Bin; Hercyk, Brian S.; Mattson, Nicholas; Mohammadi, Ahmad; Rich, Julie; DeBruyne, Erica; Clark, Mikayla M.; Das, Maitreyi

    2016-01-01

    The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, and scd1Δ cells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes. PMID:26941334

  20. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  1. Evaluation on the efficiency of biomass power generation industry in china.

    PubMed

    Sun, Jingqi; Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  2. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  3. Energy efficiency and recovery of heat lost in the Industrial Systems

    NASA Astrophysics Data System (ADS)

    Mounkid, S.; Loukili, A.

    2017-03-01

    the economic importance of energy is manifested at all levels of farms, the demand for energy is today one of the major challenges of societies, it constitutes an indispensable element to any activity of production, it is for this, the industry has an interest to anticipate and invest in energy efficiency in order to gain competitiveness, this last represents a tremendous lever for performance and economy. The Energy diagnosis allows unveils the potential energy sinks and the discovery of the various sources of energy losses in a manufacturing process or in all system user of energy. Use with the effectiveness of the energy help the industry to meet the challenges of competitiveness.

  4. An examination of competition and efficiency for hospital industry in Turkey.

    PubMed

    Özgen Narcı, Hacer; Ozcan, Yasar A; Şahin, İsmet; Tarcan, Menderes; Narcı, Mustafa

    2015-12-01

    The two particular reforms that have been undertaken under the Health Transformation Program in Turkey are enhancing efficiency and increasing competition. However, there is a lack of information about the relationship between competition and hospital efficiency. The purpose of this paper is to analyze the effect of competition on technical efficiency for the hospital industry in Turkey. The target population included all public and private general hospitals that were open in 2010 in Turkey (n = 1,224). From these, 1,103 hospitals met the selection criteria and were included in the study. Data were obtained from the Turkish Statistical Institute, the Ministry of Health, and through a field survey. Technical efficiency of hospitals was estimated using Data Envelopment Analysis with five outputs and five inputs. The intensity of competition among hospitals was measured by objective and subjective measures. Objective competition was measured using the Hirschman-Herfindahl Index, and subjective competition was measured based on the perceptions of top level hospital managers. Multivariate Tobit regression was used to investigate the relationship between competition and efficiency while controlling the effects of demand and supply characteristics of the market and the hospital traits. Efficiency results showed that 17% of hospitals were technically efficient. Regression analyses portrayed that the degree of competition among general hospitals did not have a statistically significant relationship with hospitals' technical efficiency. To conclude, hospital efficiency in Turkey does not seem to be affected by the intensity of competition among hospitals.

  5. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  6. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    SciTech Connect

    Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn; Liu, Huanbin

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  7. GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment

    PubMed Central

    Huang, I-Husan; Hsiao, Cheng-Te; Wu, Jui-Chung; Liu, Ching-Yi; Wang, Yang-Kao; Chen, Yu-Chen; Huang, Chi-Ming; del álamo, Juan C.; Chang, Zee-Fen; Tang, Ming-Jer; Khoo, Kay-Hooi; Kuo, Jean-Cheng

    2014-01-01

    ABSTRACT Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment. PMID:25107365

  8. Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus.

    PubMed

    Guilluy, Christophe; Dubash, Adi D; García-Mata, Rafael

    2011-12-01

    We have recently shown that a fraction of the total cellular pool of the small GTPase RhoA resides in the nucleus, and that the nuclear guanine nucleotide exchange factor (GEF) Net1 has a role in the regulation of its activity. In this protocol, we describe a method to measure both the activities of the nuclear pools of RhoA and Rho GEFs. This process required the development of a nuclear isolation protocol that is both fast and virtually free of cytosolic and membrane contaminants, as well as a redesign of existing RhoA and Rho GEF activity assays so that they work in nuclear samples. This protocol can be also used for other Rho GTPases and Rho GEFs, which have also been found in the nucleus. Completion of the procedure, including nuclear isolation and RhoA or Rho GEF activity assay, takes 1 h 40 min. We also include details of how to perform a basic assay of whole-cell extracts.

  9. RhoGEF and positioning of rappaport-like furrows in the early Drosophila embryo.

    PubMed

    Crest, Justin; Concha-Moore, Kirsten; Sullivan, William

    2012-11-06

    Early Drosophila embryogenesis is characterized by shifting from astral microtubule-based to central spindle-based positioning of cleavage furrows. Before cellularization, astral microtubules determine metaphase furrow position by producing Rappaport-like furrows, which encompass rather than bisect the spindle. Their positioning is explained by our finding that the conserved central spindle components centralspindlin (mKLP1 and RacGAP50C), Polo, and Fascetto (Prc1) localize to the astral microtubule overlap region. These components and the chromosomal passenger complex localize to the central spindle, though no furrow forms there. We identify the maternally supplied RhoGEF2 as a key factor in metaphase furrow positioning. Unlike the zygotic, central spindle-localized RhoGEF (Pebble), RhoGEF2 localizes to metaphase furrows, a function distinct from RhoGEF/Pebble and likely due to the absence of a RacGAP50C binding domain. Accordingly, we find that ectopic activation of Rho GTPase generates furrows perpendicular to the central spindle during syncytial divisions. Whereas metaphase furrow formation is myosin independent, these ectopic furrows, like conventional furrows, require myosin as well as microtubules. These studies demonstrate that early Drosophila embryogenesis is primed to form furrows at either overlapping astral microtubules or the central spindle. We propose that the shift to the latter is driven by a corresponding shift from RhoGEF2 to Pebble in controlling furrow formation.

  10. Measuring efficiency of university-industry Ph.D. projects using best worst method.

    PubMed

    Salimi, Negin; Rezaei, Jafar

    2016-01-01

    A collaborative Ph.D. project, carried out by a doctoral candidate, is a type of collaboration between university and industry. Due to the importance of such projects, researchers have considered different ways to evaluate the success, with a focus on the outputs of these projects. However, what has been neglected is the other side of the coin-the inputs. The main aim of this study is to incorporate both the inputs and outputs of these projects into a more meaningful measure called efficiency. A ratio of the weighted sum of outputs over the weighted sum of inputs identifies the efficiency of a Ph.D.

  11. Efficiency measurement for regulatory market-structure regimes of the electric power industry

    NASA Astrophysics Data System (ADS)

    Briceno, Cecilia Maria

    This dissertation provides an empirical evaluation of market structure reforms that have been implemented in the Electric Power Industry between 1980 and 1999. The analysis is based on the experience of Latin American countries and to some extent of OECD countries. Market structure reforms pose certain tradeoffs. Economic theory suggests that such tradeoffs depend on parameters that can only be estimated econometrically. The tradeoffs arise in industries where vertical relationships between production layers result from the interaction between competitive markets and regulated markets. The implications of different structural arrangements can be clarified by empirical work. This comparative analysis of the recent international experience in the electric power industry addresses these implications. The results of this research support the claim that vertical separation between generation, transmission and distribution is the most efficient regulatory regime, and, as such, a central feature of reform processes in the electric power industry. The empirical analysis uses the distance function as an analytical tool to estimate relative efficiency for each market structure arrangement. For this purpose, the present study assembles a panel set covering 40 countries during a 20-year period.

  12. GEFs: structural basis for their activation of small GTP-binding proteins.

    PubMed

    Cherfils, J; Chardin, P

    1999-08-01

    Small GTP-binding proteins of the Ras superfamily function as molecular switches in fundamental events such as signal transduction, cytoskeleton dynamics and intracellular trafficking. Guanine-nucleotide-exchange factors (GEFs) positively regulate these GTP-binding proteins in response to a variety of signals. GEFs catalyze the dissociation of GDP from the inactive GTP-binding proteins. GTP can then bind and induce structural changes that allow interaction with effectors. Representative structures of four main classes of exchange factors have been described recently and, in two cases, structures of the GTP-binding protein-GEF complex have been solved. These structures, together with biochemical studies, have allowed a deeper understanding of the mechanisms of activation of Ras-like GTP-binding proteins and suggested how they might represent targets for therapeutic intervention.

  13. GEFs and Rac GTPases control directional specificity of neurite extension along the anterior–posterior axis

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2016-01-01

    Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases. PMID:27274054

  14. Efficiency in the United States electric industry: Transaction costs, deregulation, and governance structures

    NASA Astrophysics Data System (ADS)

    Peterson, Carl

    Transaction costs economics (TCE) posits that firms have an incentive to bypass the market mechanisms in situations where the cost of using the market is prohibitive. Vertical integration, among other governance mechanisms, can be used to minimize the transactions costs associated with the market mechanism. The study analyses different governance mechanisms, which range from complete vertical integration to the use of market mechanisms, for firms in the US electric sector. This sector has undergone tremendous change in the past decade including the introduction of retail competition in some jurisdictions. As a result of the push toward deregulation of the industry, vertically integration, while still significant in the sector, has steadily been replaced by alternative governance structures. Using a sample of 136 investor-owned electric utilities that reported data the US Federal Energy Regulatory Commission between 1996 and 2002, this study estimates firm level efficiency using Data Envelopment Analysis (DEA) and relates these estimates to governance structure and public policies. The analysis finds that vertical integration is positively related to firm efficiency, although in a non-linear fashion suggesting that hybrid governance structures tend to be associated with lower efficiency scores. In addition, while some evidence is found for negative short-term effects on firm efficiency from the choice to deregulate, this result is sensitive to DEA model choice. Further, competition in retail markets is found to be positively related to firm level efficiency, but the retreat from deregulation, which occurred after 2000, is negatively associated with firm-level efficiency. These results are important in the ongoing academic and public policy debates concerning deregulation of the electric section and indicate that vertical economies remain in the industry, but that competition has provided incentives for improving firm level efficiency.

  15. Critical function of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in mouse spermatogenesis.

    PubMed

    Okada, Keisuke; Miyake, Hideaki; Yamaguchi, Kohei; Chiba, Koji; Maeta, Kazuhiro; Bilasy, Shymaa E; Edamatsu, Hironori; Kataoka, Tohru; Fujisawa, Masato

    2014-02-28

    Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2(-)(/)(-) and wild-type mice. However, the testes of RA-GEF-2(-)(/)(-) male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2(-)(/)(-) males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2(-)(/)(-) mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2(-)(/)(-) testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice.

  16. DRhoGEF2 regulates cellular tension and cell pulsations in the Amnioserosa during Drosophila dorsal closure.

    PubMed

    Azevedo, Dulce; Antunes, Marco; Prag, Soren; Ma, Xiaoyan; Hacker, Udo; Brodland, G Wayne; Hutson, M Shane; Solon, Jerome; Jacinto, Antonio

    2011-01-01

    Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.

  17. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few

  18. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    SciTech Connect

    Morrow, III, William R.; Hasanbeigi, Ali; Xu, Tengfang

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  19. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton.

    PubMed

    Krendel, Mira; Zenke, Frank T; Bokoch, Gary M

    2002-04-01

    Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.

  20. Aerodynamical Probation Of Semi-Industrial Production Plant For Centrifugal Dust Collectors’ Efficiency Research

    NASA Astrophysics Data System (ADS)

    Buligin, Y. I.; Zharkova, M. G.; Alexeenko, L. N.

    2017-01-01

    In previous studies, experiments were carried out on the small-size models of cyclonic units, but now there completed the semi-industrial pilot plant ≪Cyclone≫, which would allow comparative testing of real samples of different shaped centrifugal dust-collectors and compare their efficiency. This original research plant is patented by authors. The aim of the study is to improve efficiency of exhaust gases collecting process, by creating improved designs of centrifugal dust collectors, providing for the possibility of regulation constructive parameters depending on the properties and characteristics of air-fuel field. The objectives of the study include identifying and studying the cyclonic apparatus association constructive parameters with their aerodynamic characteristics and dust-collecting efficiency. The article is very relevant, especially for future practical application of its results in dust removal technology.

  1. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  2. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  3. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  4. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell

    NASA Astrophysics Data System (ADS)

    Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad

    2016-11-01

    Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.

  5. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.

    PubMed

    Abe, Kenji; Kuroda, Akio; Takeshita, Ryo

    2017-03-01

    Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  6. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    PubMed

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (P<0.05) faster than that observed with synthetic wastewater (with similar CN concentration). A combined application of H(2)O(2)/O(3) was found to be the best option for maximum CN destruction. This treatment allows CN to reach the regional/international limit (of 0.02 mg/L) for safe industrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  7. Analyzing industrial furnace efficiency using comparative visualization in a virtual reality environment.

    SciTech Connect

    Freitag, L.; Urness, T.

    1999-02-10

    We describe an interactive toolkit used to perform comparative analysis of two or more data sets arising from numerical simulations. Several techniques have been incorporated into this toolkit, including (1) successive visualization of individual data sets, (2) data comparison techniques such as computation and visualization of the differences between data sets, and (3) image comparison methods such as scalar field height profiles plotted in a common coordinate system. We describe each technique in detail and show example usage in an industrial application aimed at designing an efficient, low-NOX burner for industrial furnaces. Critical insights are obtained by interactively adjusted color maps, data culling, and data manipulation. New paradigms for scaling small values in the data comparison technique are described. The display device used for this application was the CAVE virtual reality theater, and we describe the user interface to the visualization toolkit and the benefits of immersive 3D visualization for comparative analysis.

  8. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  9. The Productivity and Technical Efficiency of Textile Industry Clusters in India

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2013-09-01

    The Indian textile industry is one the largest and oldest sectors in the country and among the most important in the economy in terms of output, investment and employment (E). The sector employs nearly 35 million people and after agriculture, is the second-highest employer in the country. Its importance is underlined by the fact that it accounts for around 4 % of Gross Domestic Product, 14 % of industrial production, 9 % of excise collections, 18 % of E in the industrial sector, and 16 % of the country's total exports (Ex) earnings. For inclusive growth and sustainable development most of the Textile Manufacturers has adopted the Cluster Development Approach. The objective is to study the physical and financial performance, correlation, regression and Data Envelopment Analysis by measuring technical efficiency (Ø), peer weights (λi), input slacks (S-), output slacks (S+) and return to scale of four textile clusters (TCs) namely IchalKaranji Textile Cluster, Maharashtra; Ludhiana Textile Cluster, Punjab; Tirupur Textile Cluster, Tamilnadu and Panipat Textile Cluster, Haryana in India. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper Model by taking number of units (U) and number of E as inputs and sales (S) and Ex in crores as an outputs. The non-zero λi's represents the weights for efficient clusters. The S > 0 obtained for one TC reveals the excess U (S-) and E (S-) and shortage in sales (S+) and Ex (S+). To conclude, for inclusive growth and sustainable development, the inefficient TC should increase their S/turnover and Ex, as decrease in number of enterprises and E is practically not possible. Moreover for sustainable development, the TC should strengthen infrastructure interrelationships, technology interrelationships, procurement interrelationships, production interrelationships and marketing interrelationships to decrease cost, increase productivity and efficiency to compete in the world market.

  10. Regulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis

    PubMed Central

    Davidson, Reshma; Laporte, Damien; Wu, Jian-Qiu

    2015-01-01

    Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. art1∆ cells lyse during cell separation with a thinner and defective septum. As does Rgf3, Art1 concentrates to the contractile ring starting at early anaphase and spreads to the septum during and after ring constriction. Art1 localization depends on its C-terminus, and Art1 is important for maintaining Rgf3 protein levels. Biochemical experiments reveal that the Rgf3 C-terminus binds to Art1. Using an Rgf3 conditional mutant and mislocalization experiments, we found that Art1 and Rgf3 are interdependent for localization to the division site. As expected, active Rho1 levels at the division site are reduced in art1∆ and rgf3 mutant cells. Taken together, these data reveal that the arrestin family protein Art1 regulates the protein levels and localization of the Rho-GEF Rgf3, which in turn modulates active Rho1 levels during fission yeast cytokinesis. PMID:25473118

  11. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases.

    PubMed

    Mock, Ulrike; Hauber, Ilona; Fehse, Boris

    2016-03-01

    Genome editing using designer nucleases such as transcription activator-like effector nucleases (TALENs) or clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 nucleases is an emerging technology in basic and applied research. Whereas the application of editing tools, namely CRISPR-Cas9, has recently become very straightforward, quantification of resulting gene knockout rates still remains a bottleneck. This is particularly true if the product of a targeted gene is not easily detectable. To address this problem, we devised a novel gene-editing frequency digital PCR (GEF-dPCR) technique. GEF-dPCR exploits two differently labeled probes that are placed within one amplicon at the gene-editing target site to simultaneously detect wild-type and nonhomologous end-joining (NHEJ)-affected alleles. Taking advantage of the principle of dPCR, this enables concurrent quantification of edited and wild-type alleles in a given sample. We propose that our method is optimal for the monitoring of gene-edited cells in vivo, e.g., in clinical settings. Here we describe preparation, design of primers and probes, and setup and analysis of GEF-dPCR. The setup of GEF-dPCR requires up to 2 weeks (depending on the starting point); once the dPCR has been established, the protocol for sample analysis takes <1 d.

  12. Highly efficient treatment of industrial wastewater by solution plasma with low environmental load.

    PubMed

    Cai, Long-fei; Wu, Yun-ying; Wu, Yun-hai; Yamauti, Siro; Saito, Nagahiro

    2013-01-01

    Advanced oxidation techniques are efficient processes to dispose of organic contaminants in industrial wastewater with low secondary pollution. The solution plasma technique was featured as an advanced oxidation technique with low secondary pollution and high efficiency. However, the solution plasma technique reported previously could only treat wastewater of less than 200 mL owing to the limited plasma generated by only one pair of electrodes. In this work, multiple pairs of electrodes were installed at the bottom of the reaction vessel to generate plasma for decomposing methylene blue trihydrate (MB) and methyl orange (MO) solutions with a batch amount of 18 L/batch. The solution plasma technique was compared with direct ozonation in decomposition of MB and MO wastewater. A surprising phenomenon is that MO was more readily decomposed than MB by using direct ozonation, whereas the removal of MO was too low, and MB was more readily decomposed than MO by using the solution plasma technique.

  13. Energy efficient aeration of wastewaters from the pulp and paper industry.

    PubMed

    Sandberg, M

    2010-01-01

    More than 50% of the electrical power needed to treat pulp and paper industry effluents is used for aeration in biological treatment stages. A large share of the oxygen that passes through the wastewater is not consumed and will be found in the off-gas. Energy can be saved by aerating under conditions where the oxygen transfer is most efficient, for example at low concentrations of dissolved oxygen Consider the sludge as an energy source; electricity can be saved by avoiding sludge reduction through prolonged aeration. High oxygen transfer efficiency can be retained by using the oxygen consumption of biosolids. Quantified savings in the form of needed volumes of air while still achieving sufficient COD reduction are presented. The tests have been made in a bubble column with pulp mill process water and sludge from a biological treatment plant. These were supplemented with case studies at three pulp and paper mills.

  14. ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA

    SciTech Connect

    Fujishiro, Shuh-hei; Tanimura, Susumu; Mure, Shogo; Kashimoto, Yuji; Watanabe, Kazushi; Kohno, Michiaki

    2008-03-28

    Rho GTPases play an essential role in the regulation of many cellular processes. Although various guanine nucleotide exchange factors (GEFs) are involved in the activation of Rho GTPases, the precise mechanism regulating such activity remains unclear. We have examined whether ERK1/2 are involved in the phosphorylation of GEF-H1, a GEF toward RhoA, to modulate its activity. Expression of GEF-H1 in HT1080 cells with constitutive ERK1/2 activation induced its phosphorylation at Thr{sup 678}, which was totally abolished by treating the cells with PD184352, an ERK pathway inhibitor. Stimulation of HeLa S3 cells with 12-O-tetradecanoyl-phorbol-13-acetate induced the phosphorylation of GEF-H1 in an ERK-dependent manner. ERK1/2-mediated Thr{sup 678}-phosphorylation enhanced the guanine nucleotide exchange activity of GEF-H1 toward RhoA. These results suggest that the ERK pathway, by enhancing the GEF-H1 activity, contributes to the activation of RhoA to regulate the actin assembly, a necessary event for the induction of cellular responses including proliferation and motility.

  15. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  16. Improved Methods for Identifying, Applying, and Verifying Industrial Energy Efficiency Measures

    NASA Astrophysics Data System (ADS)

    Harding, Andrew Chase

    Energy efficiency is the least expensive source of additional energy capacity for today's global energy expansion. Energy efficiency offers additional benefits of cost savings for consumers, reduced environmental impacts, and enhanced energy security. The challenges of energy efficiency include identifying potential efficiency measures, quantifying savings, determining cost effectiveness, and verifying savings of installed measures. This thesis presents three separate chapters which address these challenges. The first is a paper presented at the 2014 industrial energy technology conference (IETC) that details a compressed air system project using the systems approach to identify cost effective measures, energy intensity to project savings, and proper measurement and verification (M&V) practices to prove that the savings were achieved. The second is a discussion of proper M&V techniques, how these apply to international M&V protocols, and how M&V professionals can improve the accuracy and efficacy of their M&V activities. The third is an energy intensity analysis of a poultry processing facility at a unit operations level, which details the M&V practices used to determine the intensities at each unit operation and compares these to previous works.

  17. [Research practices of conversion efficiency of resources utilization model of castoff from Chinese material medica industrialization].

    PubMed

    Duan, Jin-Ao; Su, Shu-Lan; Guo, Sheng; Liu, Pei; Qian, Da-Wei; Jiang, Shu; Zhu, Hua-Xu; Tang, Yu-Ping; Wu, Qi-Nan

    2013-12-01

    The industrialization chains and their products, which were formed from the process of the production of medicinal materials-prepared drug in pieces and deep processed product of Chinese material medica (CMM) resources, have generated large benefits of social and economic. However, The large of herb-medicine castoff of "non-medicinal parts" and "rejected materials" produced inevitably during the process of Chinese medicinal resources produce and process, and the residues, waste water and waste gas were produced during the manufactured and deep processed product of CMM. These lead to the waste of resources and environmental pollution. Our previous researches had proposed the "three utilization strategies" and "three types of resources models" of herb-medicine castoff according to the different physicochemical property of resources constitutes, resources potential and utility value of herb-medicine castoff. This article focus on the conversion efficiency of resources model and analysis the ways, technologies, practices, and application in herb-medicine cast off of the conversion efficiency of resources model based on the recycling economy theory of resources and thoughts of resources chemistry of CMM. These data may be promote and resolve the key problems limited the industrialization of Chinese material medica for long time and promote the realization of herb-medicine castoff resources utilization.

  18. 76 FR 9329 - Efficiency Initiative Effort To Reduce Non-Value-Added Costs Imposed on Industry by Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... practices encourage industry to adopt processes and make investments that increase costs, especially overhead costs, but do not contribute to value added in systems and services delivered to the Department... Efficiency Initiative Effort To Reduce Non-Value-Added Costs Imposed on Industry by Department of...

  19. Bonneville Power Administration and the Industrial Technologies Program Leverage Support to Overcome Energy Efficiency Barriers in the Northwest

    SciTech Connect

    2010-06-18

    Through its Energy Smart Industrial program, BPA is informing and assisting utilities and industries to have a better understanding of the benefits that come from participating in energy-savings programs. Read about how BPA is encouraging energy efficiency projects through its utilities.

  20. Regulated Localization Is Sufficient for Hormonal Control of Regulator of G Protein Signaling Homology Rho Guanine Nucleotide Exchange Factors (RH-RhoGEFs)*

    PubMed Central

    Carter, Angela M.; Gutowski, Stephen; Sternweis, Paul C.

    2014-01-01

    The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA. PMID:24855647

  1. Optimal design of Ig 5' primers for construction of diverse phage antibody library established to select anti-HAb18GEF and anti-DOTA-Y Fabs for hepatoma pretargeting RIT.

    PubMed

    Zhang, Sihe; Xing, Jinliang; Zhang, Qing; Song, Fei; Li, Yu; Yang, Xiangmin; Chen, Zhinan

    2006-05-01

    Phage antibody library yields antibodies with higher affinity against different antigens, if diverse IgV gene repertoires can be amplified. As the currently available Fab primer sets cannot guarantee efficient amplification with high diversity, and because rare cloning sites can be found in certain Ig genes, here, we present an optimal set of Ig 5' primers, compatible with Fd 5' clone site replaced pComb3 vector, for diverse Fab phage display library construction. These novel Fab primes designed based on the newly classified IgV families, not only have best match and highest coverage for IgV family with minimized N-terminal amino acid changes, but also present good amplification diversity and efficiency of Ig gene from mice immunized with different forms of antigens (HAb18GEF, KLH-DOTA-Y, and HAb18G/pcDNA3). A high quality immune phage library with good diversity was constructed based on the mixed Ig repertoire, and five high affinity Fab antibodies were selected to specifically bind to HAb18GEF, DOTA-Y and an irrelevant antigen gamma-sm, respectively. This novel Fab primers set can be applied to the construction of diverse phage antibody library and the anti-HAb18GEF and anti-DOTA-Y Fab antibodies lay a solid foundation for radioimmunotherapy of hepatoma.

  2. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  3. Identification of critical residues in G(alpha)13 for stimulation of p115RhoGEF activity and the structure of the G(alpha)13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex.

    PubMed

    Hajicek, Nicole; Kukimoto-Niino, Mutsuko; Mishima-Tsumagari, Chiemi; Chow, Christina R; Shirouzu, Mikako; Terada, Takaho; Patel, Maulik; Yokoyama, Shigeyuki; Kozasa, Tohru

    2011-06-10

    RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).

  4. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  5. M.A.N. heat pumps in industry and communities, and their efficiency

    NASA Astrophysics Data System (ADS)

    Griesbach, G.

    1984-06-01

    Heat pumps for refrigeration and heating are described. A gas motor heat pump is used. Large quantities of heat from the cooling water are available for the fabrication of capacitors. Buildings and industry halls are heated with the heat pump with an asynchronous motor/generator. This tandem system allows several combinations for energy supply. The energy concept consists of five, microprocessor controlled, functional units which can be used independently. Installation costs are recouped in 3 yr. The heating system of a school where a gas motor heat pump is combined with a natural gas fired boiler is also described. Division into a high and a low temperature system guarantees efficient operation. Energy saving of 58% compared to a boiler system is obtained. In the heating system of a hospital where a gas motor heat pump is combined with the existing boiler system, energy saving of 50% compared to the previous system is obtained.

  6. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  7. Potential for the increased efficiency in motors in the chemical and processing industries. Final report

    SciTech Connect

    Pillay, P.

    1996-08-01

    Refineries and chemical plants make up a large portion of the process industry in Louisiana. Detailed surveys of motors and motor loads were done for 2 refineries and 5 chemical plants. In addition, surveys of motor failures were done for 1 refinery and 4 chemical plants. Categories of < 20hp, 20hp--250hp, 250hp--500hp and > 500hp were used to reflect the horsepower ranges sued by utilities nationwide in DSM rebate programs. The 20hp--250hp range being a target for replacement or retrofit scenarios; this is also the horsepower range where users have a choice of energy efficient or standard efficient motors. The data are presented in different graphs to emphasize different characteristics. A raw motor count is given that is an actual count in every hp; this is then organized in the hp ranges listed above. The total horsepower in each category is also given to show the concentration of the plant`s installed hp. the loads are divided into pumps, fans, compressors and others in the case of refineries. in the case of chemical plants, additional categories had to be used, depending on the plant, like agitators, centrifuges etc. A realistic tariff structure is then used to determine the potential for efficiency improvements with the resultant energy, demand and cost savings. The results of metering of motors are then presented. Results of a 50hp motor driving a pump, a 200 hp motor driving a pump, a 100 hp motor driving a fan, and a 30hp motor driving an agitator are included. An examination of variable speed drive efficiency is included, using detailed models of the power electronic devices. 20 refs., 180 figs., 82 tabs.

  8. Heats of formation of GeH 4, GeF 4 and Ge(CH 3) 4

    NASA Astrophysics Data System (ADS)

    Koizumi, Hideya; Dávalos, Juan Z.; Baer, Tomas

    2006-05-01

    The heats of formation of GeH 4, GeF 4, and Ge(CH 3) 4 are computed at CCSD(T) level of theory at the complete basis set limit. Relativistic effects, core valence correlation, spin orbit effect, and zero point energy are explicitly calculated in this study. Relativistic recoveries for these molecules are investigated with different size of correlation space. An unusually large relativistic effect is observed in GeF 4. Our best calculated geometries for GeH 4 and GeF 4 are in excellent agreement with the high precision experiments. Anharmonic correction to the zero point energy is significant for Ge(CH 3) 4. Our best calculated values for the 298 K heats of formation of GeH 4, GeF 4, and Ge(CH 3) 4 are 82, -1194, and -123 kJ/mol, respectively.

  9. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    PubMed

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  10. Energy-efficient membrane separations in the sweetener industry. Final report

    SciTech Connect

    Ray, R.J.

    1986-02-14

    Objective was to investigate the use of membrane processes as energy-efficient alternatives to certain conventional separation processes now in use in the corn-sweetener industry. Three applications of membranes were studied during the program: the concentration of corn steep water by reverse osmosis; the concentration of dilute wastes, called ''sweetwater,'' by a combination of reverse osmosis and countercurrent reverse osmosis; and the enrichment of corn syrup in fructose by a process involving selective complexation of fructose by membrane filtration. Laboratory experiments were conducted for all three applications, and the results were used to conduct technical and economic analyses of the process. Calculations indicate that the use of reverse osmosis in combination with conventional mechanical-vapor-recompression evaporation to concentrate steep water, offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used evaporation alone. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for evaporation, but operating costs would only be about one-half those of evaporation. For the fructose-enrichment scheme, preliminary results indicate that the savings in energy alone for the membrane process would be about $0.01/lb of sweetener produced by the process, or about $20 million annually, for the corn-sweetener industry.

  11. Silo Effect a Prominence Factor to Decrease Efficiency of Pharmaceutical Industry

    PubMed Central

    Vatanpour, Hossein; Khorramnia, Atoosa; Forutan, Naghmeh

    2013-01-01

    To be sure, all the industries try to be involved in globalization with a constant trend to find out ways to increase productivity across different functions within an organization to maintain competitive advantage world. Pharmaceutical industries are not exceptional and further are based on fragmentation. So these kind of companies need to cope with several barriers such as silo mentality that may affect efficiency of their business activity. Due to eliminate a part of resources such as raw materials, new molecule developed, financial and human resources and so on, companies can gradually loss their competitive potentials in the market and increase their expenses. Furthermore, to avoid any business disturbances in financially connected companies due to silo effect, they should arrange their management to integrated organization form. Otherwise, actions taken by one business member of the chain can influence the profitability of all the other members in the chain. That is why recently supply chain has generated much interest in many business units. In this paper, it has been tried to investigate the different aspects of silo effect which can affect integrate supply chain. Finally, a fluent communication, high level of information exchange, fragmentation management, cross-functional control in a supply chain management format are needed to reduce or control silo effect within entire chain of the holding company by Supply chain management. PMID:24250690

  12. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  13. Efficient GO2/GH2 Injector Design: A NASA, Industry and University Cooperative Effort

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Klem, M. D.; Fisher, S. C.; Santoro, R. J.

    1997-01-01

    Developing new propulsion components in the face of shrinking budgets presents a significant challenge. The technical, schedule and funding issues common to any design/development program are complicated by the ramifications of the continuing decrease in funding for the aerospace industry. As a result, new working arrangements are evolving in the rocket industry. This paper documents a successful NASA, industry, and university cooperative effort to design efficient high performance GO2/GH2 rocket injector elements in the current budget environment. The NASA Reusable Launch Vehicle (RLV) Program initially consisted of three vehicle/engine concepts targeted at achieving single stage to orbit. One of the Rocketdyne propulsion concepts, the RS 2100 engine, used a full-flow staged-combustion cycle. Therefore, the RS 2100 main injector would combust GO2/GH 2 propellants. Early in the design phase, but after budget levels and contractual arrangements had been set the limitations of the current gas/gas injector database were identified. Most of the relevant information was at least twenty years old. Designing high performance injectors to meet the RS 2100 requirements would require the database to be updated and significantly enhanced. However, there was no funding available to address the need for more data. NASA proposed a teaming arrangement to acquire the updated information without additional funds from the RLV Program. A determination of the types and amounts of data needed was made along with test facilities with capabilities to meet the data requirements, budget constraints, and schedule. After several iterations a program was finalized and a team established to satisfy the program goals. The Gas/Gas Injector Technology (GGIT) Program had the overall goal of increasing the ability of the rocket engine community to design efficient high-performance, durable gas/gas injectors relevant to RLV requirements. First, the program would provide Rocketdyne with data on

  14. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    PubMed

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved.

  15. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  16. Adaptation to climate change in industry: improving resource efficiency through sustainable production applications.

    PubMed

    Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi

    2015-01-01

    The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.

  17. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  18. Investigating Statistical Downscaling Methods and Applications for the NCEP/GEFS Ensemble Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhu, Y.; Hou, D.

    2015-12-01

    Significant discrepancies exist when coarse resolution model precipitation forecast products on standard output grids are verified against high-resolution analyses, remaining a challenge for NWP model guidance products. To enhance the usefulness of the model products, tremendous efforts with various statistical post-processing techniques are being made to reduce those discrepancies and recover small scale features using observations and a long-term reforecast climatology as the baseline. Among them, downscaling ensemble using forecast analogs (Hamill et al., 2006) and multiplicative downscaling using Parameter-elevation Regressions on Independent Slopes Model (PRISM) Mountain Mapper by WPC show promising improvement in skill of forecasts. This work concentrates on these two commonly used statistical downscaling approaches along with the Frequency Matching Method (FMM, Zhu and Luo, 2015) developed at NCEP/EMC. In this work, these three approaches will be investigated when applied to the standard one degree NCEP Global Ensemble Forecast System (GEFS) ensemble precipitation forecasts based on the 5-km high resolution NCEP Climatology-Calibrated Precipitation Analysis (CCPA) and 18 years ensemble control only reforecast data from the latest version of GEFS (GEFS v11.0). We will explore the effectiveness and feasibility of these approaches and to discover their strengths and weaknesses, with a focus mainly on generation of much higher 5km NDGD grid GEFS ensemble precipitation forecasts over the CONUS. This work is also expected to identify factors that influence the performance for each approach, such as the choice of case matching methods, the sample size, weighting function, regime definition, etc. A summary of the investigations and outcomes will be shown. Suggestions for some possible directions to produce such a high resolution ensemble precipitation forecast products in the future will be provided.

  19. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel

  20. Kin5 knockdown in Tetrahymena thermophila using RNAi blocks cargo transport of Gef1.

    PubMed

    Awan, Aashir; Bell, Aaron J; Satir, Peter

    2009-01-01

    A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality.

  1. Assessing Tropical Cyclone Forecast Skill in the GEFS Reforecast Version 2

    NASA Astrophysics Data System (ADS)

    Wang, Z.; LI, W.; Peng, M.

    2015-12-01

    The prediction skill of tropical cyclone (TC) activity in the Global Ensemble Forecasting System (GEFS) Reforecast Version-2 is evaluated. The GEFS captures the seasonality of TC genesis (TCG) reasonably well over the Atlantic. The performance of the model varies over different basins, and quantitative errors are found in the spatial distribution of TCGs. The biases in TC tracks are largely attributed to the biases in the TCG and the the large-scale steering flows. Analyzing the genesis potential index (GPI) shows that the biases in the monsoon trough and subtropical high induce the TC biases in the western North Pacific, while the southward displacement of the ITCZ leads to errors in TCG over the eastern North Pacific. The over-prediction of TCGs near the West African coast is associated with the hyperactive tropical easterly waves over the African continent. The diabatic heating rate (Q1) field in the GEFS forecasts suggests a much deeper and stronger convection than in the ERA-Interim, which can be attributed to the deficiency of model cumulus scheme. The study suggests that the better prediction of the large-scale circulation and synoptic-scale waves can help improve the TC forecasts.

  2. Dynamic Control of Excitatory Synapse Development by a Rac1 GEF/GAP Regulatory Complex

    PubMed Central

    Um, Kyongmi; Niu, Sanyong; Duman, Joseph G.; Cheng, Jinxuan; Tu, Yen-Kuei; Schwechter, Brandon; Liu, Feng; Hiles, Laura; Narayanan, Anjana; Ash, Ryan T.; Mulherkar, Shalaka; Alpadi, Kannan; Smirnakis, Stelios M.; Tolias, Kimberley F.

    2014-01-01

    SUMMARY The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases. PMID:24960694

  3. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis

    PubMed Central

    Numaga-Tomita, Takuro; Kitajima, Naoyuki; Kuroda, Takuya; Nishimura, Akiyuki; Miyano, Kei; Yasuda, Satoshi; Kuwahara, Koichiro; Sato, Yoji; Ide, Tomomi; Birnbaumer, Lutz; Sumimoto, Hideki; Mori, Yasuo; Nishida, Motohiro

    2016-01-01

    Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation. PMID:27991560

  4. Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway.

    PubMed

    Greer, Elisabeth R; Chao, Anna T; Bejsovec, Amy

    2013-12-01

    Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene.

  5. Rab18 and a Rab18 GEF complex are required for normal ER structure

    PubMed Central

    Gerondopoulos, Andreas; Bastos, Ricardo Nunes; Yoshimura, Shin-ichiro; Anderson, Rachel; Carpanini, Sarah; Aligianis, Irene

    2014-01-01

    The ancestral Rab GTPase Rab18 and both subunits of the Rab3GAP complex are mutated in the human neurological and developmental disorder Warburg Micro syndrome. Here, we demonstrate that the Rab3GAP complex is a specific Rab18 guanine nucleotide exchange factor (GEF). The Rab3GAP complex localizes to the endoplasmic reticulum (ER) and is necessary for ER targeting of Rab18. It is also sufficient to promote membrane recruitment of Rab18. Disease-associated point mutations of conserved residues in either the Rab3GAP1 (T18P and E24V) or Rab3GAP2 (R426C) subunits result in loss of the Rab18 GEF and membrane-targeting activities. Supporting the view that Rab18 activity is important for ER structure, in the absence of either Rab3GAP subunit or Rab18 function, ER tubular networks marked by reticulon 4 were disrupted, and ER sheets defined by CLIMP-63 spread out into the cell periphery. Micro syndrome is therefore a disease characterized by direct loss of Rab18 function or loss of Rab18 activation at the ER by its GEF Rab3GAP. PMID:24891604

  6. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    SciTech Connect

    Morrow, William R.; Marano, John; Sathaye, Jayant; Hasanbeigi, Ali; Xu, Tengfang

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost

  7. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary

    SciTech Connect

    1995-04-01

    This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

  8. Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them

    SciTech Connect

    Not Available

    1993-11-01

    Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

  9. Voluntary Agreements for Increasing Energy-Efficiency in Industry: Case Study of a Pilot Project with the Steel Industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  11. Toxicity identification and high-efficiency treatment of aging chemical industrial wastewater from the Hangu Reservoir, China.

    PubMed

    Li, Wei; Hua, Tao; Zhou, Qixing; Zhang, Shuguang; Rong, Weiying

    2011-01-01

    The Hangu Reservoir, located in Binhai New Area, Tianjin, China, receives mixed wastewater from a chemical industrial park. The aging chemical industrial wastewater is less biodegradable and contains complex hazardous substances, thus having an adverse effect on local ecological service function of the reservoir and on local economic and social development. In this study, key toxicants in the aging chemical industrial wastewater from the Hangu Reservoir were systematically identified by the toxicity identification evaluations (TIEs), and the treatment efficiency of the aging chemical industrial wastewater was examined and optimized by a municipal wastewater treatment process simulated in a laboratory. According to the TIE results using and wheat seeds as tested organisms, Cl, Cu, Pb, and Zn were identified as key toxicants in the aging chemical industrial wastewater, with concentrations of 7349.11, 0.01, 0.07, and 0.07 mg L, respectively, which were confirmed by subsequent spiking approaches. Based on the TIE results, the aging chemical industrial wastewater could be classified as high-salinity wastewater. The co-treatment of the aging chemical industrial wastewater and municipal wastewater may be an effective and low-cost method. The treatment efficiency of the mixed wastewater increased with an increase in the volume ratio of municipal wastewater to aging chemical industrial wastewater. When the volume ratio was 10:1, the best removal efficiencies of chemical oxygen demand, total N, and total P were up to 85.1, 89.3, and 96.5%, respectively, whereas the toxicity unit of the treated wastewater was reduced to 0.50.

  12. Investigation of endogenous biomass efficiency in the treatment of unhairing effluents from the tanning industry.

    PubMed

    Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar

    2009-08-01

    The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.

  13. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  14. Energy-efficient membrane separations in the sweetener industry. Final report for Phase I

    SciTech Connect

    Babcock, W.C.

    1984-02-14

    The objective of the program is to investigate the use of membrane processes as energy-efficient alternatives to conventional separation processes in current use in the corn sweetener industry. Two applications of membranes were studied during the program: (1) the concentration of corn steep water by reverse osmosis; and (2) the concentration of dilute wastes called sweetwater with a combination of reverse osmosis and a process known as countercurrent reverse osmosis. Laboratory experiments were conducted for both applications, and the results were used to conduct technical and economic analyses of the process. It was determined that the concentration of steep water by reverse osmosis plus triple-effect evaporation offers savings of a factor of 2.5 in capital costs and a factor of 4.5 in operating costs over currently used triple-effect evaporation. In the concentration of sweetwater by reverse osmosis and countercurrent reverse osmosis, capital costs would be about the same as those for triple-effect evaporation, but operating costs would be only about one-half those of triple-effect evaporation.

  15. The efficiency of electrocoagulation in treating wastewater from a dairy industry, part I: iron electrodes.

    PubMed

    Valente, Gerson Freitas Silva; Santos Mendonça, Regina Célia; Pereira, José Antonio Marques; Felix, Leonardo Bonato

    2012-01-01

    Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A (.)(m-2) resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.

  16. An Efficient and Improved Methodology for the Screening of Industrially Valuable Xylano-Pectino-Cellulolytic Microbes

    PubMed Central

    Singh, Avtar; Kaur, Amanjot; Dua, Anita; Mahajan, Ritu

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time. PMID:25692034

  17. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  18. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  19. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  20. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    NASA Astrophysics Data System (ADS)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  1. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels

    SciTech Connect

    Not Available

    1992-07-01

    Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

  2. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  3. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  4. Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure.

    PubMed

    Wang, Ke; Zhang, Jieming; Wei, Yi-Ming

    2017-05-01

    The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational

  5. The RhoGEF Trio Functions in Sculpting Class Specific Dendrite Morphogenesis in Drosophila Sensory Neurons

    PubMed Central

    Iyer, Srividya Chandramouli; Wang, Dennis; Iyer, Eswar Prasad R.; Trunnell, Sarah A.; Meduri, Ramakrishna; Shinwari, Riaz; Sulkowski, Mikolaj J.; Cox, Daniel N.

    2012-01-01

    Background As the primary sites of synaptic or sensory input in the nervous system, dendrites play an essential role in processing neuronal and sensory information. Moreover, the specification of class specific dendrite arborization is critically important in establishing neural connectivity and the formation of functional networks. Cytoskeletal modulation provides a key mechanism for establishing, as well as reorganizing, dendritic morphology among distinct neuronal subtypes. While previous studies have established differential roles for the small GTPases Rac and Rho in mediating dendrite morphogenesis, little is known regarding the direct regulators of these genes in mediating distinct dendritic architectures. Methodology/Principal Findings Here we demonstrate that the RhoGEF Trio is required for the specification of class specific dendritic morphology in dendritic arborization (da) sensory neurons of the Drosophila peripheral nervous system (PNS). Trio is expressed in all da neuron subclasses and loss-of-function analyses indicate that Trio functions cell-autonomously in promoting dendritic branching, field coverage, and refining dendritic outgrowth in various da neuron subtypes. Moreover, overexpression studies demonstrate that Trio acts to promote higher order dendritic branching, including the formation of dendritic filopodia, through Trio GEF1-dependent interactions with Rac1, whereas Trio GEF-2-dependent interactions with Rho1 serve to restrict dendritic extension and higher order branching in da neurons. Finally, we show that de novo dendritic branching, induced by the homeodomain transcription factor Cut, requires Trio activity suggesting these molecules may act in a pathway to mediate dendrite morphogenesis. Conclusions/Significance Collectively, our analyses implicate Trio as an important regulator of class specific da neuron dendrite morphogenesis via interactions with Rac1 and Rho1 and indicate that Trio is required as downstream effector in Cut

  6. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  7. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    PubMed Central

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  8. Dimensions of Effectiveness and Efficiency: A Case Study on Industry-School Partnerships

    ERIC Educational Resources Information Center

    Pillay, Hitendra; Watters, James J.; Hoff, Lutz; Flynn, Matthew

    2014-01-01

    Internationally, the delivery of vocational education and training is being challenged by increasing skills shortages in certain industries and/or rapidly changing skill requirements. To respond to this challenge, rigid and centralised state bureaucracies are increasingly adopting partnerships between schools and industry as a strategy to…

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  10. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    NASA Astrophysics Data System (ADS)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  11. 75 FR 59657 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC28 Energy Efficiency Program for Certain Commercial and... Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  12. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    SciTech Connect

    Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlene

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  13. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  14. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  15. Rac signaling in breast cancer: a tale of GEFs and GAPs.

    PubMed

    Wertheimer, Eva; Gutierrez-Uzquiza, Alvaro; Rosemblit, Cinthia; Lopez-Haber, Cynthia; Sosa, Maria Soledad; Kazanietz, Marcelo G

    2012-02-01

    Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.

  16. Regulation and function of P-Rex family Rac-GEFs.

    PubMed

    Welch, Heidi C E

    2015-01-01

    The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.

  17. Ratepayer-funded energy-efficiency programs in a restructuredelectri city industry: Issues and options for regulators andlegislators

    SciTech Connect

    Eto, Joseph; Goldman, Charles; Nadel, Stephen

    1998-05-01

    Electric industry restructuring requires state regulators and legislators to re-examine the purposes served by and the continuing need for ratepayer-funded energy-efficiency programs, as well as the mechanisms to collect funds for these programs and the institutions appropriate to administer them. This paper offers background to these issues and a series of recommendations based on analysis of recent state experiences. Our recommendations are summarized.

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Arens, Marlene

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  19. Synthesizing Equivalence Indices for the Comparative Evaluation of Technoeconomic Efficiency of Industrial Processes at the Design/Re-engineering Level

    NASA Astrophysics Data System (ADS)

    Fotilas, P.; Batzias, A. F.

    2007-12-01

    The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications

  20. Assessing the relative efficiency of water companies in the English and Welsh water industry: a metafrontier approach.

    PubMed

    Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramon

    2015-11-01

    The assessment of relative efficiency of water companies is essential for managers and authorities. This is evident in the UK water sector where there are companies with different services such as water and sewerage companies (WaSCs) and water-only companies (WoCs). Therefore, it is a critical limitation to estimate a common production frontier for both types of companies, as it might lead to biased efficiency estimates. In this paper, a robust and reliable methodology, the metafrontier model, is applied to compare the efficiency of water companies providing different services. The results illustrate the superior performance of WaSCs compared to WoCs. It also confirms the presence of economies of scope in the UK water industry. The methodology and results of this study are of great interest for both regulators and water utility managers to make informed decisions.

  1. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    PubMed

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  2. An efficient process for producing economical and eco-friendly cotton textile composites for mobile industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mobile industry comprised of airplanes, automotives, and ships uses enormous quantities of various types of textiles. Just a few decades ago, most of these textile products and composites were made with woven or knitted fabrics that were mostly made with the then only available natural fibers, i...

  3. Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy

    SciTech Connect

    McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

    2003-05-18

    Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified

  4. Structural and energetic properties of haloacetonitrile - GeF4 complexes

    NASA Astrophysics Data System (ADS)

    Waller, Anna W.; Weiss, Nicole M.; Decato, Daniel A.; Phillips, James A.

    2017-02-01

    The 1:1 and 2:1 complexes of FCH2CN and ClCH2CN with GeF4 have been investigated by M06/aug-cc-pVTZ calculations, low-temperature, thin-film IR spectroscopy, and an x-ray structure has been obtained for (FCH2CN)2-GeF4. Theoretical structures and binding energies for FCH2CN-GeF4 and ClCH2CN-GeF4 demonstrate that halogen substitution significantly weakens the Ge-N dative bonds. The Ge-N distances for the F- and Cl-complexes (2.447 and 2.407 Å, respectively) are about 0.2 Å longer than in CH3CN-GeF4, and the binding energies (6.5 and 6.9 kcal/mol) are 2-3 kcal/mol less. Furthermore, the Ge-N potential curves are flatter for the halogenated complexes, exhibit a greater response to dielectric media, and thus these systems are more prone to structural change in condensed-phases. For the 2:1 complexes, experimental and theoretical structure and frequency data are consistent with differences in the (calculated) gas-phase and solid-state structures. For (FCH2CN)2-GeF4 the calculated gas-phase structure has Ge-N distances about 0.3 Å longer those in the x-ray structure (2.366 Å vs. 2.059 Å (ave)). Also, low-temperature IR spectra of CH3CN/GeF4, FCH2CN/GeF4, and ClCH2CN/GeF4 thin films are consistent with the presence of 2:1 nitrile:GeF4 complexes, and the splitting patterns of the GeF-stretching bands (∼700 cm-1) match predictions for the corresponding complexes, but are red-shifted relative to the gas-phase predictions, and reflect Ge-N bonds that are compressed in the solid-state, relative to predicted gas-phase structures.

  5. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency... collection process to consider amending the energy conservation standards for commercial packaged boilers... Technologies Office, Mailstop EE-2J, Framework Document for Commercial Packaged Boilers, Docket No....

  6. The insurance and risk management industries: new players in thedelivery of energy-efficient and renewable energy products andservices

    SciTech Connect

    Mills, Evan

    2001-11-26

    The insurance industry is typically considered to have little concern about energy issues. However, the historical involvement by insurers and allied industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, shows that this industry has a tradition of utilizing technology to improve safety and otherwise reduce the likelihood of losses for which they would otherwise have to pay. Through an examination of the connection between risk management and energy efficiency, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer''loss-prevention'' benefits, and have mapped these opportunities onto the appropriate segments of the very diverse insurance sector (life, health,property, liability, business interruption, etc.). Some insurers and risk managers are beginning to recognize these previously un-noticed benefits.This paper presents the business case for insurer involvement in energy efficiency and documents case studies of insurer efforts along these lines. We review steps taken by 52 forward-looking insurers and reinsurers, 5 brokers, and 7 insurance organizations, and 13non-insurance organizations in the energy-efficiency arena. The approaches can be grouped into the categories of: information, education,and demonstration; financial incentives; specialized policies and products; direct investment to promote energy efficiency and renewables; value-added customer services and inspections; efficient codes,standards, and policies; research and development; and in-house energy management in insurer-owned properties. Specific examples include reduced premiums for architects and engineers who practice building commissioning(reduces risk of property loss and liability-related claims), insurer promotion of improved indoor air quality practices (mitigating life,health, and liability risks), and insurer promotion of

  7. Drosophila RhoGEF4 encodes a novel RhoA-specific guanine exchange factor that is highly expressed in the embryonic central nervous system.

    PubMed

    Nahm, Minyeop; Lee, Mihye; Baek, Seung-Hak; Yoon, Jin-Ho; Kim, Hong-Hee; Lee, Zang Hee; Lee, Seungbok

    2006-12-15

    Rho family small GTPases act as molecular switches that regulate neuronal morphogenesis, including axon growth and guidance, dendritic spine formation, and synapse formation. These proteins are positively regulated by guanine nucleotide exchange factors (GEFs) of the Dbl family. This study describes the identification and characterization of Drosophila RhoGEF4 (DRhoGEF4), a novel Dbl family protein that is specifically expressed in the central nervous system during Drosophila embryogenesis. The predicted amino acid sequence of DRhoGEF4 contains a Dbl homology (DH) domain and an adjacent C-terminal pleckstrin homology (PH) domain, which are most closely related to those of mammalian frabins. In this study, the DH-PH motif is shown to enhance the dissociation of GDP from either RhoA or Rac1 but not from Cdc42 in vitro. In addition, p21-binding domain pull-down assays demonstrate that DRhoGEF4 activates RhoA, but neither Rac1 nor Cdc42 in HEK293 cells. Finally, overexpression of DRhoGEF4 is able to induce assembly of stress fibers in cultured NIH3T3 cells. Taken together, these findings suggest that DRhoGEF4 may participate in cytoskeleton-related cellular events by specifically activating RhoA in neuronal morphogenesis.

  8. The Putative Exchange Factor Gef3p Interacts with Rho3p GTPase and the Septin Ring during Cytokinesis in Fission Yeast*

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda

    2014-01-01

    The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517

  9. Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles.

    PubMed

    Shonnard, David R; Kicherer, Andreas; Saling, Peter

    2003-12-01

    Life without chemicals would be inconceivable, but the potential risks and impacts to the environment associated with chemical production and chemical products are viewed critically. Eco-efficiency analysis considers the economic and life cycle environmental effects of a product or process, giving these equal weighting. The major elements of the environmental assessment include primary energy use, raw materials utilization, emissions to all media, toxicity, safety risk, and land use. The relevance of each environmental category and also for the economic versus the environmental impacts is evaluated using national emissions and economic data. The eco-efficiency analysis method of BASF is briefly presented, and results from three applications to chemical processes and products are summarized. Through these applications, the eco-efficiency analyses mostly confirm the 12 Principles listed in Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37(5), 94A), with the exception that, in one application, production systems based on bio-based feedstocks were not the most eco-efficient as compared to those based on fossil resources. Over 180 eco-efficiency analyses have been conducted at BASF, and their results have been used to support strategic decision-making, marketing, research and development, and communication with external parties. Eco-efficiency analysis, as one important strategy and success factor in sustainable development, will continue to be a very strong operational tool at BASF.

  10. Analysis of the Efficiency of the U.S. Ethanol Industry 2007

    SciTech Connect

    Wu, May

    2008-03-27

    In 2007, the Renewable Fuels Association (RFA) conducted a survey of US ethanol production plants to provide an assessment of the current US ethanol industry. The survey covers plant operations in both corn dry mills and wet mills. In particular, it includes plant type, ownership structure, capacity, feedstocks, production volumes, coproducts, process fuel and electricity usage, water consumption, and products transportation and distribution. This report includes a summary and analysis of these results.

  11. A new approach to energy-efficient treatment of wastewater produced by the fish industry in Vietnam.

    PubMed

    Trautmann, N; Beier, M; Phan, L C; Rosenwinkel, K H

    2011-01-01

    Economic growth in Vietnam in the last few years has brought about an increasing demand for energy and has had a severe environmental impact. Fish processing is one of the fastest-growing industries that discharge organically-polluted wastewater. To counter these environmental problems, new technologies for energy-efficient treatment are needed. By coupling innovative nitrogen removal systems with anaerobic treatment processes, it is possible to realise such technologies. In the present project, a combined deammonification and anaerobic carbon removal system is presented. Special requirements to enable reliable treatment are discussed, taking industrial wastewater characteristics into consideration. To evaluate energetic efficiency, energy balance calculations based on data from a fish-processing factory are made. The determined specific energy consumption and production rates show that energy recovery is possible, even when COD and nitrogen removal efficiencies of over 90% are achieved. Depending on the pre-treatment employed, energy recovery rates ranging from 0.6 to 2.5 kWh/mt raw fish can be reached.

  12. [Mental health of gas and gas-transport industry workers as an indispensable condition of their efficient occupational activity].

    PubMed

    Polozhiĭ, B S

    2013-01-01

    Mental health workers in industry is a major health and social resource of any developed country. Unfortunately, Russia's level of mental health workers is unfavorable level. We have conducted a survey of employees psychoprophylactic mass of the gas industry, which occupies a leading position in the economy. Found that the prevalence of mental disorders in this professional group is 187 per 1,000 workers. In this case, 99.3% of employees with mental health problems of mentally ill for a long time, they do not receive appropriate treatment. Leading position in the structure occupy disorder with anxious and depressive symptoms, about 75% of all cases. In the treatment of these patients showed the highest efficiency Luvox, which is one of the most appropriate products in a production environment.

  13. The RanGEF Bj1 promotes Prospero nuclear export and neuroblast self-renewal

    PubMed Central

    Joy, Tasha; Hirono, Keiko

    2014-01-01

    Drosophila larval neuroblasts are a model system for studying stem cell self-renewal and differentiation. Here we report a novel role for the Drosophila gene Bj1 in promoting larval neuroblast self-renewal. Bj1 is the guanine-nucleotide exchange factor for Ran GTPase, which regulates nuclear import/export. Bj1 transcripts are highly enriched in larval brain neuroblasts (in both central brain and optic lobe), while Bj1 protein is detected in both neuroblasts and their neuronal progeny. Loss of Bj1 using both mutants or RNAi causes a progressive loss of larval neuroblasts, showing that Bj1 is required to maintain neuroblast numbers. Loss of Bj1 does not result in neuroblast apoptosis, but rather leads to abnormal nuclear accumulation of the differentiation factor Prospero, and premature neuroblast differentiation. We conclude that the Bj1 RanGEF promotes Prospero nuclear export and neuroblast self-renewal. PMID:25312250

  14. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  15. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    SciTech Connect

    Morrow, III, William R.; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang

    2012-12-03

    India’s 2010 annual crude steel production was 68 Mt which accounted for nearly five percent of the world’s annual steel production in the same year. In 2007, roughly 1600 PJ were consumed by India’s iron and steel industry to produce 53 Mt of steel. We identified and analyzed 25 energy efficiency technologies and measures applicable to the processes in the Indian iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative plant-level cost-effective electricity savings potential for the Indian iron and steel industry for 2010-2030 is estimated to be 66 TWh, and the cumulative plant-level technical electricity saving potential is only slightly greater than 66 TWh for the same period. The primary energy related CO2 emissions reduction associated with cost-effective electricity savings is 65 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 768 PJ with associated CO2 emission reduction of 67 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  16. Open Ocean Assessments for Management in the GEF Transboundary Waters Assessment Project (TWAP)

    NASA Astrophysics Data System (ADS)

    Fischer, A. S.; Alverson, K. D.

    2010-12-01

    A methodology for a thematic and scientifically-credible assessment of Open Ocean waters as a part of the Global Environment Facility (GEF) Transboundary Waters Assessment Project (TWAP) has been developed in the last 18 months by the Intergovernmental Oceanographic Commission of UNESCO, and is presented for feedback and comment. While developed to help the GEF International Waters focal area target investment to manage looming environmental threats in interlinked freshwater and marine systems (a very focused decision support system), the assessment methodology could contribute to other assessment and management efforts in the UN system and elsewhere. Building on a conceptual framework that describes the relationships between human systems and open ocean natural systems, and on mapping of the human impact on the marine environment, the assessment will evaluate and make projections on a thematic basis, identifying key metrics, indices, and indicators. These themes will include the threats on key ecosystem services of climate change through sea level rise, changed stratification, warming, and ocean acidification; vulnerabilities of ecosystems, habitats, and living marine resources; the impact and sustainability of fisheries; and pollution. Global-level governance arrangements will also be evaluated, with an eye to identifying scope for improved global-level management. The assessment will build on sustained ocean observing systems, model projections, and an assessment of scientific literature, as well as tools for combining knowledge to support identification of priority concerns and in developing scenarios for management. It will include an assessment of key research and observing needs as one way to deal with the scientific uncertainty inherent in such an exercise, and to better link policy and science agendas.

  17. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly

    PubMed Central

    Pengelly, Reuben J; Greville-Heygate, Stephanie; Schmidt, Susanne; Seaby, Eleanor G; Jabalameli, M Reza; Mehta, Sarju G; Parker, Michael J; Goudie, David; Fagotto-Kaufmann, Christine; Mercer, Catherine; Debant, Anne; Ennis, Sarah; Baralle, Diana

    2016-01-01

    Background Neurodevelopmental disorders have challenged clinical genetics for decades, with over 700 genes implicated and many whose function remains unknown. The application of whole-exome sequencing is proving pivotal in closing the genotype/phenotype gap through the discovery of new genes and variants that help to unravel the pathogenic mechanisms driving neuropathogenesis. One such discovery includes TRIO, a gene recently implicated in neurodevelopmental delay. Trio is a Dbl family guanine nucleotide exchange factor (GEF) and a major regulator of neuronal development, controlling actin cytoskeleton dynamics by activating the GTPase Rac1. Methods Whole-exome sequencing was undertaken on a family presenting with global developmental delay, microcephaly and mild dysmorphism. Father/daughter exome analysis was performed, followed by confirmatory Sanger sequencing and segregation analysis on four individuals. Three further patients were recruited through the deciphering developmental disorders (DDD) study. Functional studies were undertaken using patient-specific Trio protein mutations. Results We identified a frameshift deletion in TRIO that segregated autosomal dominantly. By scrutinising data from DDD, we further identified three unrelated children with a similar phenotype who harboured de novo missense mutations in TRIO. Biochemical studies demonstrated that in three out of four families, the Trio mutations led to a markedly reduced Rac1 activation. Conclusions We describe an inherited global developmental delay phenotype associated with a frameshift deletion in TRIO. Additionally, we identify pathogenic de novo missense mutations in TRIO associated with the same consistent phenotype, intellectual disability, microcephaly and dysmorphism with striking digital features. We further functionally validate the importance of the GEF domain in Trio protein function. Our study demonstrates how genomic technologies are yet again proving prolific in diagnosing and

  18. Asian success stories in promoting energy efficiency in industry and building

    SciTech Connect

    Yang, Ming

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  19. Efficient water use in industries: cases from the Indian agro-based pulp and paper mills.

    PubMed

    Tewari, P K; Batra, V S; Balakrishnan, M

    2009-01-01

    Agro-based pulp and paper mills in India are one of the most polluting industries; in addition, they are high consumers of raw water. Growing scarcity of high quality freshwater as well as stringent regulatory standards is compelling these units to explore appropriate water management options. Based on data obtained through a questionnaire survey and plant visits, this work provides an overview of the water use and effluent treatment status in Indian agro-residue and recycled pulp and paper mills. The challenges faced by this sector are reviewed and practices adopted by progressive units to minimize freshwater use are illustrated through case studies.

  20. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    SciTech Connect

    Price, Lynn; Zhou, Nan; Lu, Hongyou; Sambeek, Emiel van; Yowargana, Ping; Shuang, Liu; Kejun, Jiang

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  1. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review.

    PubMed

    Bilek, Seda Ersus; Turantaş, Fulya

    2013-08-16

    Decontamination of fresh fruits and vegetables is an important unsolved technological problem. The main focus of this review is to summarize and synthesize the results of studies and articles about ultrasonic processing which can be adapted to the wash water decontamination process for fruits and vegetables. This review will also provide an overview about the importance of an effective wash water decontamination process in fruits and vegetables, the increase of foodborne outbreaks caused by fresh fruits and vegetables, microbial inactivation using ultrasound, and an interpretation of the high power ultrasound results in the fruits and vegetable industry. In addition, the limitations of ultrasonic processing in commercial applications have also been introduced.

  2. 78 FR 41333 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Machines AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension... refrigerated beverage vending machines published on June 4, 2013, is extended to August 16, 2013. DATES: The... refrigerated beverage vending machines published June 4, 2013 (78 FR 33262) is extended to August 16,...

  3. 75 FR 71596 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... temperature. These test procedures will apply to commercial refrigerators, freezers, and refrigerator-freezers.... Rating Temperatures 6. Energy Efficiency Features B. Summary of the Test Procedure Revisions 1. Update... Application Product Temperature. IV. Regulatory Review A. Review Under Executive Order 12866 B. Review...

  4. Energy Efficient Homes and Small Buildings. Vocational Education, Industrial Arts Curriculum Guide. Bulletin 1698.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide provides high school carpentry, construction, or drafting course teachers with material related to retrofitting a building for energy conservation. Section 1 discusses how design and construction methods affect energy use. Section 2 focuses on care and maintenance of energy efficient buildings. In addition to informative…

  5. 78 FR 17890 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... standards for packaged terminal air conditioners (PTACs) and packaged terminal heat pumps (PTHPs). In...

  6. 78 FR 14024 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Equipment: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Correction AGENCY: Office of Energy Efficiency and Renewable Energy... terminal air conditioners and heat pumps. This document corrects the date of the public meeting....

  7. 78 FR 12252 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... conservation standards for packaged terminal air conditioners (PTACs) and packaged terminal heat pumps...

  8. 76 FR 18428 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Institute (ANSI)/ American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE...-Conditioning, Heating, and Refrigeration Institute (AHRI) and updated its test procedure to reflect changes in... that this leads consumers to believe that larger capacity machines are not as efficient, when in...

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  10. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    SciTech Connect

    DeCarli, J.P. II ); Carta, G. . Dept. of Chemical Engineering); Byers, C.H. )

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  11. The roles of energy and material efficiency in meeting steel industry CO2 targets.

    PubMed

    Milford, Rachel L; Pauliuk, Stefan; Allwood, Julian M; Müller, Daniel B

    2013-04-02

    Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

  12. Condensing economizers for efficiency improvement and emissions control in industrial boilers

    SciTech Connect

    Butcher, T.A.; Litzke, W.L.; Schulze, K.; Bailey, R.

    1996-06-01

    Condensing economizers recover sensible and latent heat from boiler flue gas, leading to marked improvements in thermal efficiency. This paper summarizes the current commercial status and continuing development efforts with one type of condensing economizer. In this design Teflon{reg_sign} covered tubes and enclosure walls are used to handle the corrosive condensate. Flue gas flows around the tubes and feed water, being heated, flows through the inside. In addition to improving thermal efficiency, condensing economizers can also be used to reduce particulate emissions primarily by inertial impaction of particles on tube surfaces, water droplets, and added impactors. Collected particles are then removed with condensate. Water sprays directly on the tubes can be used to enhance particle capture. With coal-firing, tests have shown particle removal efficiencies as high as 98%. To enhance the emissions control potential of condensing economizer technology a two-stage economizer system concept has been developed. Two heat exchanger modules are used. The first is a downflow design and recovers primarily sensible heat from the flue gas. The second is upflow and recovers mostly latent heat. Condensate is collected in a transition plenum between the two stages. This configuration, termed the Integrated Flue Gas Treatment System, provides great flexibility for implementing emissions reduction strategies. Particulate emissions can be reduced without impacting sensible heat recovery by recirculating collected condensate to spray nozzles at the top of the second stage heat exchanger. In tests at BNL with heavy oil firing, particulate reductions over 90% and final emission rates on the order of.005 lb/MMBtu are achieved. Adding sorbents to the recirculated condensate reduces sulfur dioxide emissions and SO{sub 2} removal efficiencies over 95% are achieved. Also, condensing economizers show great potential for the removal of certain air toxics such as mercury and nickel.

  13. Papermill industrial waste as a sustainable source for high efficiency absorbent production.

    PubMed

    Likon, M; Cernec, F; Svegl, F; Saarela, J; Zimmie, T F

    2011-06-01

    Papermill sludge (PMS) is generated during the wastewater treatment process of paper production. Its handling and disposal techniques are of great concern for the environment. It can be landfilled as a waste, or it can be recycled and converted into useful products of high value. It has a very promising application as an absorbing agent for the cleaning of water surfaces polluted with hydrophobic substances (vegetable, synthetic and mineral oils, animal fats, fuels, organic chemicals and even coal dust). Here, we present the pretreatment procedure (hydrophobation, mechanical and thermal treatments) of PMS that produces a lightweight absorbent material (HAWSC - high efficiency absorbent for water surface cleaning), which floats on the water surface and binds hydrophobic pollutants with considerably higher efficiency than commercially available mineral and synthetic absorbents. After its application, it can be incinerated, due to its high caloric value, to produce energy. The incineration residues can then be formed into granules that can be used as an efficient absorbent for fluids spilled onto solid surfaces.

  14. Revitalize the US silicon/ferrosilicon industry through energy-efficient technology. Part 1, Final report

    SciTech Connect

    Larson, H.R.; Welborn, J.H.

    1995-02-01

    It is concluded that silicon metal and ferrosilicon can be very effectively produced in a DC submerged arc furnace. Specific energy consumption factors measured were favorable to the technology. Significant energy savings over conventional AC practice are likely. Hollow electrode feeding of the furnace does not appear feasible. Electrode consumption was 0.144 lbs/lb so silicon while making metal, much of which occurred above the burden pile. Silicon loss to fume averaged 19.5% of the silicon charge. In this furnace, 50% FeSi was more difficult to produce than silicon metal, and the furnace could not be run with full burden; it was operated successfully about 3/4 full. In the silicon metal portion, the furnace was operated in a fully submerged mode for several 3-day test campaigns. The industry must seriously consider the identified benefits of DC plasma arc technology for retrofit or new added silicon capacity.

  15. [Cardiac deaths in hard coal-mining industry as an indicator of efficiency of occupational medicine services].

    PubMed

    Skowronek, Rafał; Chowaniec, Czesław; Kowalska, Anna

    2011-01-01

    Deaths in hard-coal mining industry can be divided into: accidental (usually of a single character) and non-accidental-intentional (homicide, suicide) and natural (with a pathological background, 'without external factors'). The main cause of natural deaths is myocardial infarction (MI). Its risk is increased by environmental factors in working place, unhealthy life style, cigarette smoking and alcohol drinking, which is often an attempt at coping with chronic stress, so proper prevention, qualification and periodic examination of workers is indispensable. The aim of the study is to analyze cases of miners' cardiac deaths investigated in Department of Forensic Medicine in Katowice and the number of natural deaths in hard-coal mines in the years 1999-2010. There were 298 accidental and 122 natural deaths, the latter showing an increasing tendency in the years 2002-2004, 2006, 2008 and 2010. Natural deaths--in 95% sudden cardiac deaths--constituted 29% of all deaths in hard-coal mining industry. Autopsies supplemented by histopathological investigations often revealed advanced atherosclerosis and coronary heart disease, which should disqualify a candidate from working underground. A high number of natural deaths in hard-coal mining industry and morphological post mortem assessment of victims indicate insufficiency of occupational medicine services. We propose an improvement of its quality and a higher frequency of periodic examinations of workers (especially in groups with the highest risk of MI), as well as courses of Basic Life Support (BLS). Forensic medicine may be socially useful in assessing the efficiency of occupational medicine services in mining industry.

  16. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations.

  17. Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments

    PubMed Central

    Frisvad, Jens C.; Yilmaz, Neriman; Thrane, Ulf; Rasmussen, Kasper Bøwig; Houbraken, Jos; Samson, Robert A.

    2013-01-01

    Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG–1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442 PMID:24367630

  18. Pilot-scale study of efficient vermicomposting of agro-industrial wastes.

    PubMed

    Kumar, Vaidyanathan Vinoth; Shanmugaprakash, M; Aravind, J; Namasivayam, S Karthick Raja

    2012-01-01

    Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost.

  19. Analysis of Parametric Effects on Efficiency of the Brown Stock Washer in Paper Industry Using MATLAB

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Kumar, Vivek; Singh, V. P.

    2009-07-01

    In the present paper, the effects of cake thickness and time on the efficiency of brown stock washer of the paper mill are studied by using mathematical model of pulp washing for the species of sodium and lignin ions. The mechanism of the diffusion- dispersion washing of the bed of the pulp fibers is mathematically modeled by the basic material balance and adsorption isotherm is used to describe the equilibrium between the concentration of the solute in the liquor and concentration of the solute on the fibers. To study the parametric effect, numerical solutions of the axial domain of the system governed by partial differential equations (transport and isotherm equations) for different boundary conditions are obtained by the "pdepe" solver in MATLAB source code. The effects of both the parameters are shown by three dimensional graphical representation as well as concentration profiles.

  20. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila.

    PubMed

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila.

  1. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila

    PubMed Central

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it’s functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  2. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc.

    PubMed

    Baisamy, Laurent; Jurisch, Nathalie; Diviani, Dario

    2005-04-15

    AKAP-Lbc is a novel member of the A-kinase anchoring protein (AKAPs) family, which functions as a cAMP-dependent protein kinase (PKA)-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We recently demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha-subunit of the heterotrimeric G protein G(12), whereas phosphorylation of AKAP-Lbc by the anchored PKA induces the recruitment of 14-3-3, which inhibits its GEF function. In the present report, using co-immunoprecipitation approaches, we demonstrated that AKAP-Lbc can form homo-oligomers inside cells. Mutagenesis studies revealed that oligomerization is mediated by two adjacent leucine zipper motifs located in the C-terminal region of the anchoring protein. Most interestingly, disruption of oligomerization resulted in a drastic increase in the ability of AKAP-Lbc to stimulate the formation of Rho-GTP in cells under basal conditions, suggesting that oligomerization maintains AKAP-Lbc in a basal-inactive state. Based on these results and on our previous findings showing that AKAP-Lbc is inactivated through the association with 14-3-3, we investigated the hypothesis that AKAP-Lbc oligomerization might be required for the regulatory action of 14-3-3. Most interestingly, we found that mutants of AKAP-Lbc impaired in their ability to undergo oligomerization were completely resistant to the inhibitory effect of PKA and 14-3-3. This suggests that 14-3-3 can negatively regulate the Rho-GEF activity of AKAP-Lbc only when the anchoring protein is in an oligomeric state. Altogether, these findings provide a novel mechanistic explanation of how oligomerization can regulate the activity of exchange factors of the Dbl family.

  3. Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1

    PubMed Central

    DeGeer, Jonathan; Kaplan, Andrew; Mattar, Pierre; Morabito, Morgane; Stochaj, Ursula; Kennedy, Timothy E.; Debant, Anne; Cayouette, Michel; Fournier, Alyson E.

    2015-01-01

    During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance. PMID:26323693

  4. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    PubMed

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  5. The ubiquitin-like protein LC3 regulates the Rho-GEF activity of AKAP-Lbc.

    PubMed

    Baisamy, Laurent; Cavin, Sabrina; Jurisch, Nathalie; Diviani, Dario

    2009-10-09

    AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.

  6. A 400-kWe high-efficiency steam turbine for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. M.

    1982-01-01

    An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.

  7. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    SciTech Connect

    Liu, Xu; Shen, Bo; Price, Lynn; Lu, Hongyou; Hasanbeigi, Ali

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  8. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    PubMed

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification.

  9. Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California

    SciTech Connect

    Vine, Edward L.

    2000-07-01

    The potential energy savings from emerging technologies (i.e., those technologies emerging from research and development) represent a significant resource to California and the US This paper describes how California's investor-owned utilities (IOUs) have been promoting emerging technologies over the last three years to increase energy efficiency in the buildings sector. During these years, the IOUs have experienced significant changes in their regulatory environment as part of the restructuring of the energy industry in California. These regulatory changes have impacted the way emerging technologies are treated by the regulatory community and the IOUs. After reviewing these changes, the paper concludes by discussing potential opportunities to improve the market penetration of emerging technologies.

  10. Projections of atmospheric nitrous oxide under scenarios of improved agriculture and industrial efficiencies, diet modification, and representative concentration pathways (RCPs)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2011-12-01

    Atmospheric concentrations of nitrous oxide (N2O), now at about 325ppb, have been increasing since the Industrial Revolution, as livestock herds increased globally and as use of synthetic-N fertilizers increased after WWII. The agricultural sector produces 70-80% of anthropogenic N2O. Significantly reducing those emissions while also improving the diets of the growing global human population will be very challenging. Increases in atmospheric N2O since 1860 are consistent with emissions factors of 2.5% of annual fertilizer-N usage and 2.0% of annual manure-N production being converted to N2O. These factors include both direct and indirect emissions attributable to these sources. Here I present projections of N2O emissions for a variety of scenarios including: (1) FAO population/diet scenarios with no changes in emission factors; (2) per-capita protein consumption in the developed world declines to 1980 levels by 2030 and only half of that is obtained from animal products, thus cutting global manure production by about 20%; (3) improvements in N-use efficiency and manure management reduce the emission factors by 50% by 2050; (4) same as 3 but industrial and transportation emissions are similarly reduced by 50% by 2050; and (5) all mitigations together. These projections are then compared to the four representative concentration pathways (RCPs) developed for the IPCC-AR5. With no further mitigation, the projections are consistent with RCP8.5, with atmospheric N2O at 368 ppb in 2050. RCP8.5 is a reasonable representation of N2O concentrations with growing agricultural production to feed a growing and better-nourished population, without improvements in agricultural efficiencies or changes in developed world diets. Major reductions in per-capita meat consumption in the developed world reduce projected 2050 N2O to 256 ppb, which is in line with RCP6.0. Cutting emission factors in half but without diet change would also lower projected 2050 N2O to 252ppb. Adding 50

  11. Reshaping the carcinogenic risk assessment of medicines: international harmonisation for drug safety, industry/regulator efficiency or both?

    PubMed

    Abraham, John; Reed, Tim

    2003-07-01

    The most significant institutional entity involved in the harmonisation of drug testing standards worldwide is the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), which comprises the three pharmaceutical industry associations and regulatory agencies of the EU, US and Japan. It is often claimed that such harmonisation will both accelerate the development and approval of new drugs and preserve safety standards, if not strengthen safety regimes. Drawing on extensive documentary research and interviews, this paper systematically examines whether the efforts by the ICH to improve industrial and regulatory efficiency by harmonising drug testing requirements is likely to raise, maintain or compromise safety standards in carcinogenic risk assessment of pharmaceuticals. The evidence suggests that, in the field of carcinogenicity testing, the ICH management of international harmonisation of medicines regulation is not achieving simultaneous improvements in safety standards and acceleration of drug development. Rather, the latter is being achieved at the expense of the former. Indeed, the ICH may be converting permissive regulatory practices of the past into new scientific standards for the future. These findings are significant as many expert scientific advisers to drug regulatory agencies seem to have accepted uncritically the conclusions reached by the ICH, which may affect a potential patient population of half a billion and tens of thousands of clinical trials.

  12. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume I: Main report

    SciTech Connect

    Not Available

    1994-02-01

    Section 131(c) of the Energy Policy Act of 1992 (EPACT) (Public Law 102-486) requires the Department of Energy (DOE) to evaluate the costs and benefits of federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy-intensive industries. It also requires DOE to evaluate the role of reporting and targets in improving energy efficiency. Specifically, the legislation states: Not later than one year after the data of the enactment of this Act, the Secretary shall, in consultation with affected industries, evaluate and report to the Congress regarding the establishment of Federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy intensive industries. Such report shall include an evaluation of the costs and benefits of such reporting requirements and voluntary energy efficiency improvement targets, and recommendations regarding the role of such activities in improving energy efficiency in energy intensive industries. This report is DOE`s response to that directive. It is the culmination of a year-long study that included (1) analysis of documents pertaining to a previous reporting and targets effort, the industrial Energy Efficiency Improvements Program (or the CE-189 program, following the designation of the reporting form used to collect data in that program), administered by DOE from 1976 to 1985, as well as other important background information; (2) extensive consultations with government and industry officials regarding the CE-189 Program, experience with other programs that have reporting elements, and the attributes of possible alternative strategies for reporting and targets; and (3) analyses of the costs and benefits of the CE-189 Program and several alternatives to the CE-189 approach.

  13. Trio, a Rho Family GEF, Interacts with the Presynaptic Active Zone Proteins Piccolo and Bassoon

    PubMed Central

    Terry-Lorenzo, Ryan T.; Torres, Viviana I.; Wagh, Dhananjay; Galaz, Jose; Swanson, Selene K.; Florens, Laurence; Washburn, Michael P.; Waites, Clarissa L.; Gundelfinger, Eckart D.; Reimer, Richard J.; Garner, Craig C.

    2016-01-01

    Synaptic vesicles (SVs) fuse with the plasma membrane at a precise location called the presynaptic active zone (AZ). This fusion is coordinated by proteins embedded within a cytoskeletal matrix assembled at the AZ (CAZ). In the present study, we have identified a novel binding partner for the CAZ proteins Piccolo and Bassoon. This interacting protein, Trio, is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) known to regulate the dynamic assembly of actin and growth factor dependent axon guidance and synaptic growth. Trio was found to interact with the C-terminal PBH 9/10 domains of Piccolo and Bassoon via its own N-terminal Spectrin repeats, a domain that is also critical for its localization to the CAZ. Moreover, our data suggest that regions within the C-terminus of Trio negatively regulate its interactions with Piccolo/Bassoon. These findings provide a mechanism for the presynaptic targeting of Trio and support a model in which Piccolo and Bassoon play a role in regulating neurotransmission through interactions with proteins, including Trio, that modulate the dynamic assembly of F-actin during cycles of synaptic vesicle exo- and endocytosis. PMID:27907191

  14. PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells

    PubMed Central

    Nicholas, Nicole S.; Pipili, Aikaterini; Lesjak, Michaela S.; Ameer, Simon M.; Geh, Jenny L. C.; Healy, Ciaran; Ross, Alistair D. MacKenzie; Parsons, Maddy; Nestle, Frank O.; Lacy, Katie E.; Wells, Claire M.

    2016-01-01

    Cancer cells are thought to use actin rich invadopodia to facilitate matrix degradation. Formation and maturation of invadopodia requires the co-ordained activity of Rho-GTPases, however the molecular mechanisms that underlie the invadopodia lifecycle are not fully elucidated. Previous work has suggested a formation and disassembly role for Rho family effector p-21 activated kinase 1 (PAK1) however, related family member PAK4 has not been explored. Systematic analysis of isoform specific depletion using in vitro and in vivo invasion assays revealed there are differential invadopodia-associated functions. We consolidated a role for PAK1 in the invadopodia formation phase and identified PAK4 as a novel invadopodia protein that is required for successful maturation. Furthermore, we find that PAK4 (but not PAK1) mediates invadopodia maturation likely via inhibition of PDZ-RhoGEF. Our work points to an essential role for both PAKs during melanoma invasion but provides a significant advance in our understanding of differential PAK function. PMID:27765920

  15. Trio, a Rho Family GEF, Interacts with the Presynaptic Active Zone Proteins Piccolo and Bassoon.

    PubMed

    Terry-Lorenzo, Ryan T; Torres, Viviana I; Wagh, Dhananjay; Galaz, Jose; Swanson, Selene K; Florens, Laurence; Washburn, Michael P; Waites, Clarissa L; Gundelfinger, Eckart D; Reimer, Richard J; Garner, Craig C

    2016-01-01

    Synaptic vesicles (SVs) fuse with the plasma membrane at a precise location called the presynaptic active zone (AZ). This fusion is coordinated by proteins embedded within a cytoskeletal matrix assembled at the AZ (CAZ). In the present study, we have identified a novel binding partner for the CAZ proteins Piccolo and Bassoon. This interacting protein, Trio, is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) known to regulate the dynamic assembly of actin and growth factor dependent axon guidance and synaptic growth. Trio was found to interact with the C-terminal PBH 9/10 domains of Piccolo and Bassoon via its own N-terminal Spectrin repeats, a domain that is also critical for its localization to the CAZ. Moreover, our data suggest that regions within the C-terminus of Trio negatively regulate its interactions with Piccolo/Bassoon. These findings provide a mechanism for the presynaptic targeting of Trio and support a model in which Piccolo and Bassoon play a role in regulating neurotransmission through interactions with proteins, including Trio, that modulate the dynamic assembly of F-actin during cycles of synaptic vesicle exo- and endocytosis.

  16. Tech: a RhoA GEF selectively expressed in hippocampal and cortical neurons.

    PubMed

    Marx, Ruth; Henderson, Jennifer; Wang, James; Baraban, Jay M

    2005-02-01

    Recent studies implicating the Rho family of small G proteins in the regulation of neuronal morphology have focused attention on identifying key components of Rho signaling pathways in neurons. To this end, we have conducted studies aimed at defining the localization and function of Tech, a Rho guanine nucleotide exchange factor (GEF) family member that is highly enriched in brain. We have found that Tech is selectively expressed in cortical and hippocampal neurons with prominent Tech immunostaining apparent in the cell bodies and dendrites of these cells. In vitro studies with prototypical members of the major Rho subfamilies, RhoA, Rac1 and Cdc42, indicate that Tech binds selectively to and activates RhoA. To assess whether Tech may be involved in the regulation of neuronal morphology, we examined the effects of Tech constructs on the morphology of cortical neurons grown in primary culture. We found that a constitutively active Tech construct, Tech 245DeltaC, decreases the number of dendritic processes present on these neurons. This reduction appears to be mediated by activation of RhoA as it is blocked by insertion of a point mutation into the DH domain of Tech which blocks its ability to activate RhoA or coexpression of a dominant negative RhoA construct. As Tech protein levels increase during post-natal development and remain at peak levels into adulthood, these results indicate that Tech regulates RhoA signaling pathways in developing and mature forebrain neurons.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  18. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    SciTech Connect

    Tseng, P.C.

    1998-07-01

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1) the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc.

  19. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm.

    PubMed

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-10-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins.

  20. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs.

    PubMed

    Li, Zixing; Waadt, Rainer; Schroeder, Julian I

    2016-05-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by "monomeric" PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA.

  1. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells.

    PubMed

    Tam, See-Ying; Lilla, Jennifer N; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

  2. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    SciTech Connect

    Not Available

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  3. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    SciTech Connect

    Hasanbeigi, Ali; Lobscheid, Agnes; Dai, Yue; Lu, Hongyou; Price, Lynn

    2012-11-01

    China’s cement industry accounted for more than half of the world’s total cement production in 2010. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and one of the key industrial contributors to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of industrial PM emissions and 27 percent of total national PM emissions. Although specific regulations and policies are needed to reduce the pollutant emissions from the cement industry, air pollution can also be reduced as a co-benefit of energy efficiency and climate-change mitigation policies and programs. Quantifying and accounting for these co-benefits when evaluating energy efficiency and climate-change mitigation programs reveals benefits beyond the programs’ energy and global warming impacts and adds to their cost effectiveness. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emissions reductions that result from energy-saving measures in China’s cement industry.

  4. Using GEFS ensemble forecasts for decision making in reservoir management in California

    NASA Astrophysics Data System (ADS)

    Scheuerer, M.; Hamill, T.; Webb, R. S.

    2015-12-01

    Reservoirs such as Lake Mendocino in California's Russian River Basin provide flood control, water supply, recreation, and environmental stream flow regulation. Many of these reservoirs are operated by the U.S. Army Corps of Engineers (Corps) according to water control manuals that specify elevations for an upper volume of reservoir storage that must be kept available for capturing storm runoff and reducing flood risk, and a lower volume of storage that may be used for water supply. During extreme rainfall events, runoff is captured by these reservoirs and released as quickly as possible to create flood storage space for another potential storm. These flood control manuals are based on typical historical weather patterns - wet during the winter, dry otherwise - but are not informed directly by weather prediction. Alternative reservoir management approaches such as Forecast-Informed Reservoir Operations (FIRO), which seek to incorporate advances in weather prediction, are currently being explored as means to improve water supply availability while maintaining flood risk reduction and providing additional ecosystem benefits.We present results from a FIRO proof-of-concept study investigating the reliability of post-processed GEFS ensemble forecasts to predict the probability that day 6-to-10 precipitation accumulations in certain areas in California exceed a high threshold. Our results suggest that reliable forecast guidance can be provided, and the resulting probabilities could be used to inform decisions to release or hold water in the reservoirs. We illustrate the potential of these forecasts in a case study of extreme event probabilities for the Russian River Basin in California.

  5. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.

    PubMed

    Kwan, Kristen M; Kirschner, Marc W

    2005-10-01

    During Xenopus development, convergent extension movements mediated by cell intercalation drive axial elongation. While many genes required for convergent extension have been identified, little is known of regulation of the cytoskeleton during these cell movements. Although microtubules are required for convergent extension, this applies only to initial stages of gastrulation, between stages 10 and 10.5. To examine the cytoskeleton more directly during convergent extension, we visualized actin and microtubules simultaneously in live explants using spinning disk confocal fluorescence microscopy. Microtubule depolymerization by nocodazole inhibits lamellipodial protrusions and cell-cell contact, thereby inhibiting convergent extension. However, neither taxol nor vinblastine, both of which block microtubule dynamics while stabilizing a polymer form of tubulin, inhibits lamellipodia or convergent extension. This suggests an unusual explanation: the mass of polymerized tubulin, not dynamics of the microtubule cytoskeleton, is crucial for convergent extension. Because microtubule depolymerization elicits striking effects on actin-based protrusions, the role of Rho-family GTPases was tested. The effects of nocodazole are partially rescued using dominant negative Rho, Rho-kinase inhibitor, or constitutively active Rac, suggesting that microtubules regulate small GTPases, possibly via a guanine-nucleotide exchange factor. We cloned full-length XLfc, a microtubule-binding Rho-GEF. Nucleotide exchange activity of XLfc is required for nocodazole-mediated inhibition of convergent extension; constitutively active XLfc recapitulates the effects of microtubule depolymerization. Morpholino knockdown of XLfc abrogates the ability of nocodazole to inhibit convergent extension. Therefore, we believe that XLfc is a crucial regulator of cell morphology during convergent extension, and microtubules limit its activity through binding to the lattice.

  6. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and ruffles in cervical cancer epithelial HeLa cells

    PubMed Central

    Ruiz-Lafuente, Natalia; Alcaraz-García, María-José; García-Serna, Azahara-María; Sebastián-Ruiz, Silvia; Moya-Quiles, María-Rosa; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Dock10 is one of the three members of the Dock-D family of Dock proteins, a class of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Its homologs Dock9 and Dock11 are Cdc42 GEFs. Dock10 is required for maintenance of rounded morphology and amoeboid-type movement. Full-length isoforms of Dock10 have been recently cloned. Here, we address GTPase specificity and GEF activity of Dock10. In order of decreasing intensity, Dock10 interacted with nucleotide-free Rac1, Cdc42, and Rac3, and more weakly with Rac2, RhoF, and RhoG. Inducible expression of Dock10 in HeLa epithelial cells promoted GEF activity on Cdc42 and Rac1, and a morphologic change in two-dimensional culture consisting in loss of cell elongation, increase of filopodia, and ruffles. Area in contact with the substrate of cells that spread with non-elongated morphology was larger in cells expressing Dock10. Inducible expression of constitutively active mutants of Cdc42 and Rac1 in HeLa cells also induced loss of elongation. However, Cdc42 induced filopodia and contraction, and Rac1 induced membrane ruffles and flattening. When co-expressed with Dock10, Cdc42 potentiated filopodia, and Rac1 potentiated ruffles. These results suggest that Dock10 functions as a dual GEF for Cdc42 and Rac1, affecting cell morphology, spreading and actin cytoskeleton protrusions of adherent HeLa cells. PMID:25862245

  7. Activated RhoA Binds to the Pleckstrin Homology (PH) Domain of PDZ-RhoGEF, a Potential Site for Autoregulation

    SciTech Connect

    Chen, Zhe; Medina, Frank; Liu, Mu-ya; Thomas, Celestine; Sprang, Stephen R.; Sternweis, Paul C.

    2010-07-19

    Guanine nucleotide exchange factors (GEFs) catalyze exchange of GDP for GTP by stabilizing the nucleotide-free state of the small GTPases through their Dbl homology/pleckstrin homology (DH {center_dot} PH) domains. Unconventionally, PDZ-RhoGEF (PRG), a member of the RGS-RhoGEFs, binds tightly to both nucleotide-free and activated RhoA (RhoA {center_dot} GTP). We have characterized the interaction between PRG and activated RhoA and determined the structure of the PRG-DH {center_dot} PH-RhoA {center_dot} GTP{gamma}S (guanosine 5{prime}-O-[{gamma}-thio]triphosphate) complex. The interface bears striking similarity to a GTPase-effector interface and involves the switch regions in RhoA and a hydrophobic patch in PRG-PH that is conserved among all Lbc RhoGEFs. The two surfaces that bind activated and nucleotide-free RhoA on PRG-DH {center_dot} PH do not overlap, and a ternary complex of PRG-DH {center_dot} PH bound to both forms of RhoA can be isolated by size-exclusion chromatography. This novel interaction between activated RhoA and PH could play a key role in regulation of RhoGEF activity in vivo.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  10. Two family 11 xylanases from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing industry.

    PubMed

    Zhao, Liang; Meng, Kun; Bai, Yingguo; Shi, Pengjun; Huang, Huoqing; Luo, Huiying; Wang, Yaru; Yang, Peilong; Song, Wei; Yao, Bin

    2013-07-17

    This study identified two family-11 xylanase genes (xynC81 and xynC83) in Achaetomium sp. Xz-8, a thermophilic strain from a desert area with substantial xylanase activity, and successfully expressed them in Pichia pastoris . Their deduced amino acid sequences showed the highest identity of ≤90% to known fungal xylanases and of ≤62% with each other. The purified recombinant xylanases showed optimal activities at pH 5.5 and 60-65 °C and exhibited stability over pH 5.0-10.0 and temperatures at 55 °C and below. XynC81 had high catalytic efficiency (6082 mL/s/mg), and XynC83 was favorable for xylooligosaccharide production. Under simulated mashing conditions, combination of XynC83 and a commercial β-glucanase improved the filtration rate by 34.76%, which is much better than that of Novozymes Ultraflo (20.71%). XynC81 and XynC83 had a synergistic effect on viscosity reduction (7.08%), which is comparable with that of Ultraflo (8.47%). Thus, XynC81 and XynC83 represent good candidates for application in the brewing industry.

  11. Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF

    SciTech Connect

    Bielnicki, Jakub A.; Shkumatov, Alexander V.; Derewenda, Urszula; Somlyo, Avril V.; Svergun, Dmitri I.; Derewenda, Zygmunt S.

    2012-10-09

    PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via G{alpha}{sub 12/13} and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory 'activation box' and the 'GEF switch,' which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.

  12. Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  13. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  14. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces.

    PubMed

    Yoo, Jeong-Hoon; Park, Jong-Ho; Cho, Sung-Hwan; Yoo, Soo-Cheul; Li, Jinjie; Zhang, Haitao; Kim, Kwang-Soo; Koh, Hee-Jong; Paek, Nam-Chon

    2011-12-01

    Development of specialized epidermal cells and structures plays a key role in plant tolerance to biotic and abiotic stresses. In the paddy field, the bright green leaf (bgl) mutants of rice (Oryza sativa) exhibit a luminous green color that is clearly distinguishable from the normal green of wild-type plants. Transmission and scanning electron microscopy revealed that small cuticular papillae (or small papillae; SP), nipple-like structures, are absent on the adaxial and abaxial leaf surfaces of bgl mutants, leading to more direct reflection and less diffusion of green light. Map-based cloning revealed that the bgl locus encodes OsRopGEF10, one of eleven OsRopGEFs in rice. RopGEFs (guanine nucleotide exchange factors for Rop) activate Rop/Rac GTPases, acting as molecular switches in eukaryotic signal transduction by replacing the bound GDP (inactive form) with GTP (active form) in response to external or internal cues. In agreement with the timing of SP initiation on the leaf epidermis, OsRopGEF10 is most strongly expressed in newly developing leaves before emergence from the leaf sheath. In yeast two-hybrid assays, OsRopGEF10 interacts with OsRac1, one of seven OsRac proteins; consistent with this, both proteins are localized in the plasma membrane. These results suggest that OsRopGEF10 activates OsRac1 to turn on the molecular signaling pathway for SP development. Together, our findings provide new insights into the molecular genetic mechanism of SP formation during early leaf morphogenesis.

  15. AKAP13 Rho-GEF and PKD-Binding Domain Deficient Mice Develop Normally but Have an Abnormal Response to β-Adrenergic-Induced Cardiac Hypertrophy

    PubMed Central

    Spindler, Matthew J.; Burmeister, Brian T.; Huang, Yu; Hsiao, Edward C.; Salomonis, Nathan; Scott, Mark J.; Srivastava, Deepak; Carnegie, Graeme K.; Conklin, Bruce R.

    2013-01-01

    Background A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. Methodology/Principal Findings To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. Conclusions These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy. PMID:23658642

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    SciTech Connect

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  17. Activation of p115-RhoGEF Requires Direct Association of G[alpha subscript 13] and the Dbl Homology Domain

    SciTech Connect

    Chen, Zhe; Guo, Liang; Hadas, Jana; Gutowski, Stephen; Sprang, Stephen R.; Sternweis, Paul C.

    2012-09-05

    RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G{sub 12} class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated {alpha} subunits of G{sub 12} and G{sub 13}. Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by G{alpha}{sub 13}, the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated G{alpha}{sub 13} in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of G{alpha}{sub 13} docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the {alpha}3b helix of DH reduces binding to activated G{alpha}{sub 13} and ablates the stimulation of p115 by G{alpha}{sub 13}. Complementary mutations at the predicted DH-binding site in the {alpha}B-{alpha}C loop of the helical domain of G{alpha}{sub 13} also affect stimulation of p115 by G{alpha}{sub 13}. Although the GAP activity of p115 is not required for stimulation by G{alpha}{sub 13}, two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of G{alpha}{sub 13} to the RH domain facilitates direct association of G{alpha}{sub 13} to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.

  18. Pilot plant investigations on cleaning efficiencies to reduce hazelnut cross-contamination in industrial manufacture of cookies.

    PubMed

    Röder, Martin; Ibach, Anja; Baltruweit, Iris; Gruyters, Helwig; Janise, Annabella; Suwelack, Carola; Matissek, Reinhard; Vieths, Stefan; Holzhauser, Thomas

    2008-11-01

    Shared equipment in industrial food manufacture has repeatedly been described as a potential source of unlabeled food allergens, i.e., hidden allergens. However, the impact of shared equipment on allergen cross-contamination is basically unknown. Therefore, we sought to investigate systematically the extent of hazelnut cross-contamination in fine bakery wares as a model. A product change from cookies with 10% hazelnut to cookies without hazelnuts was simulated on pilot plant equipment. The extent of hazelnut cross-contamination (HNCC) was analyzed by enzyme-linked immunosorbent assay (ELISA) for each production device (kneaders, rotary molder, wire cutting machine, and steel band oven) and various cleaning procedures used between products. The experiments were performed repeatedly with finely ground hazelnuts and with roughly chopped hazelnut kernels. Cross-contamination from chopped kernels was distributed statistically but not homogeneously, and sampling and analysis with the ELISA was therefore not reproducible. Further analysis concentrated on homogenously distributed HNCC from ground hazelnut. Apart from product changes without intermediate cleaning, the highest HNCC was found after mechanical scraping: Up to 100 mg/kg hazelnut protein was found in the follow-up product after processing by one machine. After additional cleaning with hot water, the HNCC decreased regardless of the processing device to levels at or below 1 mg/kg hazelnut protein. In our pilot plant study, the application of an appropriate wet cleaning procedure in combination with quantitative monitoring of the cleaning efficiency reduced the hazelnut protein cross-contamination to a level at which severe hazelnut-related allergic reactions are unlikely to occur.

  19. Gastrin-stimulated Gα13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells.

    PubMed

    Masià-Balagué, Miriam; Izquierdo, Ismael; Garrido, Georgina; Cordomí, Arnau; Pérez-Benito, Laura; Miller, Nichol L G; Schlaepfer, David D; Gigoux, Véronique; Aragay, Anna M

    2015-06-12

    The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279-1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.

  20. Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

    SciTech Connect

    Alessi, A. Girard, S.; Di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Reghioua, I.; Fanetti, M.; Martin-Samos, L.; Agnello, S.; Cannas, M.; Marcandella, C.; Richard, N.

    2015-08-28

    We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.

  1. Gastrin-stimulated Gα13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells*

    PubMed Central

    Masià-Balagué, Miriam; Izquierdo, Ismael; Garrido, Georgina; Cordomí, Arnau; Pérez-Benito, Laura; Miller, Nichol L. G.; Schlaepfer, David D.; Gigoux, Véronique; Aragay, Anna M.

    2015-01-01

    The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279–1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells. PMID:25922072

  2. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA

    PubMed Central

    Peränen, Johan; Schaible, Niccole; Cheng, Fang; Eriksson, John E.; Krishnan, Ramaswamy

    2017-01-01

    ABSTRACT The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous ‘unit length form’ vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells. PMID:28096473

  3. Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway.

    PubMed

    Ng, Wei Lun; Marinov, Georgi K; Liau, Ee Shan; Lam, Yi Lyn; Lim, Yat-Yuen; Ea, Chee-Kwee

    2016-09-01

    Circular RNAs (circRNAs) constitute a large class of RNA species formed by the back-splicing of co-linear exons, often within protein-coding transcripts. Despite much progress in the field, it remains elusive whether the majority of circRNAs are merely aberrant splicing by-products with unknown functions, or their production is spatially and temporally regulated to carry out specific biological functions. To date, the majority of circRNAs have been cataloged in resting cells. Here, we identify an LPS-inducible circRNA: mcircRasGEF1B, which is predominantly localized in cytoplasm, shows cell-type specific expression, and has a human homolog with similar properties, hcircRasGEF1B. We show that knockdown of the expression of mcircRasGEF1B reduces LPS-induced ICAM-1 expression. Additionally, we demonstrate that mcircRasGEF1B regulates the stability of mature ICAM-1 mRNAs. These findings expand the inventory of functionally characterized circRNAs with a novel RNA species that may play a critical role in fine-tuning immune responses and protecting cells against microbial infection.

  4. Transforming on-grid renewable energy markets. A review of UNDP-GEF support for feed-in tariffs and related price and market-access instruments

    SciTech Connect

    Glemarec, Yannick; Rickerson, Wilson; Waissbein, Oliver

    2012-11-15

    As a Global Environment Facility (GEF) founding implementing agency, UNDP has worked on over 230 GEF-supported clean energy projects in close to 100 developing countries since 1992. About 100 of these projects in 80 countries have focused on renewable energy, supported by approximately US $ 293 million in GEF funds and leveraging US $1.48 billion in associated co-financing from national governments, international organizations, the private sector and non-governmental organizations. As part of UNDP efforts to codify and share lessons learnt from these initiatives, this report addresses how scarce public resources can be used to catalyze larger private financial flows for renewable energy. It provides an overview of UNDP-GEF’s extensive work supporting development of national renewable energy policies such as feed-in tariffs. In these activities UNDP-GEF assists developing countries to assess key risks and barriers to technology diffusion and then to identify a mix of policy and financial de-risking measures to remove these barriers and drive investment. This approach is illustrated through three case studies in Uruguay, Mauritius and Kazakhstan. This report is complemented by a companion publication presenting an innovative UNDP financial modeling tool to assist policymakers in appraising different public instruments to promote clean energy.

  5. Anchoring of both PKA and 14-3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex.

    PubMed

    Diviani, Dario; Abuin, Liliane; Cotecchia, Susanna; Pansier, Laetitia

    2004-07-21

    A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.

  6. Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast.

    PubMed

    Mutoh, Tadashi; Nakano, Kentaro; Mabuchi, Issei

    2005-12-01

    The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wall synthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, and involved in contractile ring formation and/or maintenance and septation.

  7. A Computational Study of a Recreated G Protein-GEF Reaction Intermediate Competent for Nucleotide Exchange: Fate of the Mg Ion

    PubMed Central

    Ben Hamida-Rebaï, Mériam; Robert, Charles H.

    2010-01-01

    Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs). Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity. PMID:20174625

  8. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. RHGF-1/PDZ-RhoGEF and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly.

    PubMed

    Chen, Chun-Hao; Lee, Albert; Liao, Chien-Po; Liu, Ya-Wen; Pan, Chun-Liang

    2014-11-18

    Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite. This remodeling required RHGF-1, a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that was associated with and inhibited by microtubules. Independent of the myosin light chain activation, RHGF-1 acted through Rho-dependent kinase LET-502/ROCK and activated a conserved, retrograde DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which triggered synaptic branch retraction and overgrowth of the PLM neurite in a dose-dependent manner. Our data represent a neuronal remodeling paradigm during development that reshapes the neural circuit by the coordinated removal of the dysfunctional synaptic branch compartment and compensatory extension of the primary neurite.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    SciTech Connect

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  12. The Applied and Industrial Mathematics Program with Example Project: Efficient Routing for Meals on Wheels in the Shenandoah Valley

    ERIC Educational Resources Information Center

    Axvig, Nathan; David, John; Falcetti, Alex

    2015-01-01

    The Applied and Industrial Mathematics program partners applied mathematics students with businesses, governments, laboratories, and agencies to solve real problems. We will discuss the logistics of the program and give advice on starting and running similar programs. We also give a detailed example of a specific project, namely our work with the…

  13. Allocation of control rights and cooperation efficiency in public-private partnerships: theory and evidence from the Chinese pharmaceutical industry.

    PubMed

    Zhang, Zhe; Jia, Ming; Wan, Difang

    2009-06-01

    This article uses incomplete contract theory to study the allocation of control rights in public-private partnerships (PPPs) between pharmaceutical enterprises and nonprofit organizations; it also investigates how this allocation influences cooperation efficiency. We first develop a mathematic model for the allocation of control rights and its influence on cooperation efficiency, and then derive some basic hypotheses from the model. The results of an empirical test show that the allocation of control rights influences how enterprises invest in PPPs. A proper allocation provides incentives for firms to make fewer self-interested and more public-interested investments. Such an allocation also improves the cooperation efficiency of PPPs.

  14. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    SciTech Connect

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  15. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    PubMed

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  16. Integrating Efficiency of Industry Processes and Practices Alongside Technology Effectiveness in Space Transportation Cost Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2012-01-01

    This paper presents past and current work in dealing with indirect industry and NASA costs when providing cost estimation or analysis for NASA projects and programs. Indirect costs, when defined as those costs in a project removed from the actual hardware or software hands-on labor; makes up most of the costs of today's complex large scale NASA space/industry projects. This appears to be the case across phases from research into development into production and into the operation of the system. Space transportation is the case of interest here. Modeling and cost estimation as a process rather than a product will be emphasized. Analysis as a series of belief systems in play among decision makers and decision factors will also be emphasized to provide context.

  17. [Justifying genetic and immune markers of efficiency and sensitivity under combined exposure to risk factors in mining industry workers].

    PubMed

    Dolgikh, O V; Zaitseva, N V; Krivtsov, A V; Gorshkova, K G; Lanin, D V; Bubnova, O A; Dianova, D G; Lykhina, T S; Vdovina, N A

    2014-01-01

    The authors evaluated and justified immunologic and genetic markers under combined exposure to risk factors in mining industry workers. Analysis covered polymorphism features of 29 genes with variant alleles possibly participating in occupationally conditioned diseases formation and serving as sensitivity markers of these diseases risk. The genes association selected demonstrates reliably changed polymorphism vs. the reference group (SOD2 superoxidedismutase gene, ANKK1 dophamine receptor gene, SULT1A1 sulphtransaminase gene, MTHFR methylene tetrahydrofolate reductase gene, VEGF endothelial growth factor gene, TNF-alpha tumor necrosis factor gene). Under combined exposure to occupational hazards (sylvinite dust, noise) in mining industry, this association can serve as adequate marking complex of sensitivity to development of occupationally conditioned diseases. Increased-production of immune cytokine regulation markers: tumor necrosis factor and vascular endothelial growth factor. Genes SOD2, ANKK1, SULT1A1, VEGF, TNFalpha are recommended as sensitivity markers, and the coded cytokines (tumor necrosis factor and endothelial growth factor) are proposed as effect markers in evaluation of health risk for workers in mining industry.

  18. δ(13)C and Water Use Efficiency in the Glucose of Annual Pine Tree Rings as Ecological Indicators of the Forests in the Most Industrialized Part of Poland.

    PubMed

    Sensuła, Barbara M

    In this study, stable carbon isotope ratios in the glucose samples were extracted from annual pine tree rings as bio-indicators of contemporary environmental changes in heavily urbanized areas. The sampling sites were located in close proximity to point source pollution emitters, such as a heat and power plant "Łaziska" and steelworks "Huta Katowice" in Silesia (Poland). The analysed samples covered the time span from 1975 to 2012 AD, the time period of the development of industrialization and the modernization in the industrial sector in Poland, similarly as in Eastern Europe. This modernization was connected with EU legislation and the implementation of restrictive governmental regulations on emissions. The carbon isotope discrimination has been proposed as a method for evaluating water use efficiency. The measurements of carbon isotopes were carried out using the continuous flow isotope ratio mass spectrometer coupled to the elemental analyser. The δ(13)C values were calibrated relative to the C-3 and C-5 international standards. Diffuse air pollution caused the variation in δ(13)C and iWUE (the ratio between CO2 assimilation and stomatal conductance) dependency on the type of emitter and some local effects of other human activities. In this study, the first results of water use efficiency in glucose are presented. In the period of time from 1975 to 2012, the water use efficiency values increased from 98 to 122 μmol/mol.

  19. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  20. Ratepayer-funded energy-efficiency programs in a restructured electricity industry: Issues, options, and unanswered questions

    SciTech Connect

    Eto, J.; Goldman, C.; Kito, S.

    1996-08-01

    Regulated utilities have, in the past, been responsible for {open_quotes}Public purpose{close_quotes} programs that contribute to the general social good, such as energy-efficiency programs. In several states, continuation of these programs has become a critical issue in forging the consensus required to proceed with restructuring. As a result of reviewing the restructuring process in several states, we expect this trend to continue, but do not believe a single, generic approach can or should be defined. Instead, we expect a variety of solutions based on considerations unique to individual states or regions. To help structure these discussions in states struggling with this issue, we pose a series of questions and describe a range of possible answers: (1) We encourage state public utility commissions and legislatures to provide clear guidance on goals. (2) Close attention to the primary objectives for energy efficiency is important because the objectives influence the choices of programs and activities to be supported. (3) We advocate that states adopt a pragmatic approach to resolving the potentially contentious issue of determining whether or not utilities should continue to have primary responsibility for program administration, management, and design. The approach we propose involves assessing a utility`s past performance, its cur-rent commitment to energy-efficiency activities, and the potential conflicts of interest presented, if the utility retains a central role in administering energy-efficiency programs after restructuring. (4) A state should first assess policy options to mitigate adverse incentives and conflicts of interest in the utility before examining the possibility of having a non-utility entity assume responsibility for designing and managing energy-efficiency activities. (5) If a state does pursue non-utility administration for ratepayer-funded energy-efficiency programs, explicit attention must be paid to governance and accountability issues.

  1. Technical and economic analysis of the decisions efficiency of system of water vapor condensate collecting and reusing organization in the industrial firm practice

    NASA Astrophysics Data System (ADS)

    Khamidullina, G. R.

    2016-06-01

    We consider the technical and economic aspects of power - and resource-recovery decisions on a steam condensate recycling and effective using of the (residual) afterheat containing in it basing on the specifics of the industrial enterprises. Below there are the results of the technical and economic analysis of the original innovative solution introduced in practice of the organization of system of collecting and recycling using of water vapor condensate in the conditions of high probability of its pollution by hydrocarbon joints and a non-return of condensate to the source. Also we showed here the high efficiency of the proposed solution.

  2. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    NASA Astrophysics Data System (ADS)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  3. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  4. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  5. A lesson from Japan: research and development efficiency is a key element of pharmaceutical industry consolidation process.

    PubMed

    Shimura, Hirohisa; Masuda, Sachiko; Kimura, Hiromichi

    2014-02-01

    Scholarly attention to pharmaceutical companies' ability to sustain research and development (R&D) productivity has increased as they increasingly handle business challenges. Furthermore, the deterioration of R&D productivity has long been considered a major cause of mergers and acquisitions (M&As). This study attempts to investigate quantitatively the possible causes of the deterioration and the relationship between the deterioration and M&As by examining the Japanese pharmaceutical industry. Japan from 1980 to 1997 is an ideal case because of the availability of official data, but more importantly the significant changes in its business environment at the time. Using the Malmquist Index and data envelopment analysis, we measured the deterioration of R&D productivity from 1980 to 1997 based on a sample of 15 Japanese companies. Two lessons can be learned from Japan's case. First, to sustain R&D productivity over the long term, companies should use licensing activities and focus on the dominant therapeutic franchises. Second, if a company fails significantly to catch up with the benchmark, it is likely to pursue an M&A or seek an alternative way to improve R&D productivity. These findings appear similar to the current situation of the global pharmaceutical industry, although Japan pursued more licensing activities than M&A to improve R&D productivity.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  7. The 5f2-->5f16d1 absorption spectrum of Cs2GeF6:U4+ crystals: A quantum chemical and experimental study.

    PubMed

    Ordejón, Belén; Karbowiak, Miroslaw; Seijo, Luis; Barandiarán, Zoila

    2006-08-21

    Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of

  8. Evaluation of the efficiency of respiratory protective equipment based on the biological monitoring of styrene in fibreglass reinforced plastics industries.

    PubMed

    Nakayama, Shoji; Nishide, Tadashi; Horike, Tokushi; Kishimoto, Takumi; Kira, Shohei

    2004-03-01

    The purpose of the present study was to determine the efficiency of respiratory protective equipment in a fibreglass reinforced plastic factory by comparing results of environmental and biological monitoring of exposure to styrene. Five factories including 39 workers were investigated. Three types of respiratory protective equipment were tested: one was a half-mask air-purifying respirator equipped with a cartridge for organic solvents, another was a disposable gauze respirator impregnated with charcoal filter, and the third was a dust-proof respirator. The frequency of cartridge exchange of a half-mask respirator was twice a day only at one factory, and that was less than once a month at other factories. The site concentrations exceeded 20 ppm at 10 of the 82 sampling points (12.2%), and 22 of the 39 workers' (56.4%) personal exposure exceeded 20 ppm which is the current occupational exposure limit recommended by the Japan Society for Occupational Health. The efficiency of disposable gauze respirators and dust-proof respirators was low or rather zero. The average efficiency of half-mask respirators in which cartridges were exchanged twice a day and once a month was 83.6% and 46.6%, respectively. There was a significant disparity in the efficiency of the respirator depending on the frequency of cartridge exchange (p<0.05). Overall this study showed that even though a half-mask respirator is used and its cartridge is exchanged every half a day, workers exposed to a styrene concentration at or over 122 ppm are expected to inhale more than 20 ppm of styrene.

  9. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  10. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.

    PubMed

    Costa, Carlos E; Romaní, Aloia; Cunha, Joana T; Johansson, Björn; Domingues, Lucília

    2017-03-01

    In this work, four robust yeast chassis isolated from industrial environments were engineered with the same xylose metabolic pathway. The recombinant strains were physiologically characterized in synthetic xylose and xylose-glucose medium, on non-detoxified hemicellulosic hydrolysates of fast-growing hardwoods (Eucalyptus and Paulownia) and agricultural residues (corn cob and wheat straw) and on Eucalyptus hydrolysate at different temperatures. Results show that the co-consumption of xylose-glucose was dependent on the yeast background. Moreover, heterogeneous results were obtained among different hydrolysates and temperatures for each individual strain pointing to the importance of designing from the very beginning a tailor-made yeast considering the specific raw material and process.

  11. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    PubMed

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10(6) CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production.

  12. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    SciTech Connect

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental energy use, identify

  13. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.

    PubMed

    Zhou, Guiyin; Luo, Jinming; Liu, Chengbin; Chu, Lin; Ma, Jianhong; Tang, Yanhong; Zeng, Zebing; Luo, Shenglian

    2016-02-01

    High sorption capacity, high sorption rate, and fast separation and regeneration for qualified sorbents used in removing heavy metals from wastewater are urgently needed. In this study, a polyampholyte hydrogel was well designed and prepared via a simple radical polymerization procedure. Due to the remarkable mechanical strength, the three-dimensional polyampholyte hydrogel could be fast separated, easily regenerated and highly reused. The sorption capacities were as high as 216.1 mg/g for Pb(II) and 153.8 mg/g for Cd(II) owing to the existence of the large number of active groups. The adsorption could be conducted in a wide pH range of 3-6 and the equilibrium fast reached in 30 min due to its excellent water penetration for highly accessible to metal ions. The fixed-bed column sorption results indicated that the polyampholyte hydrogel was particularly effective in removing Pb(II) and Cd(II) from actual industrial effluent to meet the regulatory requirements. The treatment volumes of actual smelting effluent using one fixed bed column were as high as 684 bed volumes (BV) (7736 mL) for Pb(II) and 200 BV (2262 mL) for Cd(II). Furthermore, the treatment volumes of actual smelting effluent using tandem three columns reached 924 BV (31,351 mL) for Pb(II) and 250 BV (8483 mL) for Cd(II), producing only 4 BV (136 mL) eluent. Compared with the traditional high density slurry (HDS) process with large amount of sludge, the proposed process would be expected to produce only a small amount of sludge. When the treatment volume was controlled below 209.3 BV (7103 mL), all metal ions in the actual industrial effluent could be effectively removed (<0.01 mg/L). This wok develops a highly practical process based on polyampholyte hydrogel sorbents for the removal of heavy metal ions from practical wastewater.

  14. The RhoA GEF, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration

    PubMed Central

    Lessey-Morillon, Elizabeth C.; Osborne, Lukas D.; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O’Brien, E. Timothy; Superfine, Richard; Burridge, Keith

    2014-01-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. While much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared to ICAM-1 clustering alone. We have identified that the RhoA GEF LARG/ARHGEF12 acts downstream of clustered ICAM-1 to increase RhoA activity and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. This is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes. PMID:24585879

  15. RHGF-1/PDZ-RhoGEF and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly

    PubMed Central

    Chen, Chun-Hao; Lee, Albert; Liao, Chien-Po; Liu, Ya-Wen; Pan, Chun-Liang

    2014-01-01

    Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite. This remodeling required RHGF-1, a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that was associated with and inhibited by microtubules. Independent of the myosin light chain activation, RHGF-1 acted through Rho-dependent kinase LET-502/ROCK and activated a conserved, retrograde DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which triggered synaptic branch retraction and overgrowth of the PLM neurite in a dose-dependent manner. Our data represent a neuronal remodeling paradigm during development that reshapes the neural circuit by the coordinated removal of the dysfunctional synaptic branch compartment and compensatory extension of the primary neurite. PMID:25359212

  16. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II.

    PubMed

    Jean, Léolène; Yang, Lijie; Majumdar, Devi; Gao, Yandong; Shi, Mingjian; Brewer, Bryson M; Li, Deyu; Webb, Donna J

    2014-01-01

    Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.

  17. The neuronal RhoA GEF, Tech, interacts with the synaptic multi-PDZ-domain-containing protein, MUPP1.

    PubMed

    Estévez, Marcel A; Henderson, Jennifer A; Ahn, David; Zhu, Xin-Ran; Poschmann, Gereon; Lübbert, Hermann; Marx, Ruth; Baraban, Jay M

    2008-08-01

    Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.

  18. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants.

    PubMed

    Cano-Rodríguez, Claudia Teodora; Roa-Morales, Gabriela; Amaya-Chávez, Araceli; Valdés-Arias, Ricardo Antonio; Barrera-Díaz, Carlos Eduardo; Balderas-Hernández, Patricia

    2014-01-01

    The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

  19. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    SciTech Connect

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-03-15

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.

  20. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation

  1. Development and testing of a high efficiency advanced coal combustor Phase III industrial boiler retrofit. Quarterly technical progress report, July 1, 1995--September 30, 1995 No. 16

    SciTech Connect

    Borio, R.W.

    1995-12-15

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the sixteenth quarter (July `95 through September `95) of the program. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components. (2) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4) Economics evaluation of the HEACC concept for retrofit applications. (5) Long term demonstration under commercial user demand conditions.

  2. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    SciTech Connect

    Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.; Parker, Graham B.

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  3. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    SciTech Connect

    Xu, Tengfang; Sathaye, Jayant; Kramer, Klaas Jan

    2012-07-01

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct a brief review of different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by the problem statement, and a description of the basic concepts of quantifying the cost of conserved energy including integrating no-regrets options.

  4. High efficiency electricity production in the sugar industry of the future: The Pacific International Center for High Technology Research Project (>6MW{sub e})

    SciTech Connect

    Trenka, A.R.

    1995-12-31

    The Pacific International Center for High Technology Research (PICHTR) is presently starting up a 100 tpd bagasse Renugas{reg_sign} gasifier which was developed under license from the Institute of Gas Technology (IGT). For thousands of years, mankind has used biomass for energy, burning it first in campfires. In more modem times, combustion boiler systems were developed such as those fueled by coal. Through inefficient, these systems answered an increasing need for energy brought on by the industrial revolution. Yesterday`s systems are being replaced with more efficient methods of energy conversion and extraction. Recognizing the untapped potential for biomass power to provide clean and efficient energy, the U.S. Department of Energy established the National Biomass Power Program in 1991. The State of Hawaii Department of Business, Economic Development & Tourism is collaborating in this national program to complement the development of its own sustainable resource program. As a key player in this program, PICHTR will design, construct, and operate a biomass gasification facility that will be the centerpiece of the nation`s biomass gasification technology.

  5. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.

    PubMed

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah

    2013-01-01

    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

  6. Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994

    SciTech Connect

    Patel, R.L.; Borio, R.; McGowan, J.G.

    1994-11-18

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

  7. Eco-efficience et analyse des couts du cycle de vie: Developpement d'un outil d'aide a la conception dans l'industrie aeronautique

    NASA Astrophysics Data System (ADS)

    Mami, Fares

    The aeronautical sector, responsible for about 3 % of the world emissions of greenhouse gases, predict a 70 % growth in 2025 and 300 % to 500 % in 2050 of its emissions compared to the level of 2005. The decision-makers must thus be supported in their choice of conception to integrate the environmental aspect into the decision-making. Our industrial partner in the aeronautical sector developed an expertise in Life Cycle Assessment (LCA) and seeks to integrate the costs and the environmental impacts in a systematic way into the ecodesign of products. Based on the literature review and the objectives of this research we propose a model of eco-efficiency, which integrates LCA with Life Cycle Costing (LCC). This model is consistent with defined cost cutting and environmental impacts reduction targets and allows a simple interpretation of the results while minimizing the efforts during data collection. The model is applied for 3D printing as an alternative production process in the manufacturing of an aircraft blocker door. 3D printing is a new technology of production working by addition of material and present interesting opportunities of cost cutting and environmental impacts, particularly in the aeronautical domain. The results showed that 3D printing, when associated with improvement in the topology of the part, allows an improvement both on costs and environmental impacts of the part life cycle. Nevertheless, the results are sensitive to the productivity of the 3D printing machine, in particular with costs when the productivity of the 3D printing is reduced. This eco-efficiency model presents several opportunities of improvement. A more elaborate definition of the objectives in reduction of environmental impacts would allow to direct the choices in design to considerations of eco-efficiency at a macro level. Moreover, the integration of the social dimension in the model constitutes an important stage to operationalize the stakes of environmental and social

  8. The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots.

    PubMed

    Mongiardini, Elías J; Parisi, Gustavo D; Quelas, Juan I; Lodeiro, Aníbal R

    2016-01-01

    Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide.

  9. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function.

    PubMed

    Monteiro, Ana C; Sumagin, Ronen; Rankin, Carl R; Leoni, Giovanna; Mina, Michael J; Reiter, Dirk M; Stehle, Thilo; Dermody, Terence S; Schaefer, Stacy A; Hall, Randy A; Nusrat, Asma; Parkos, Charles A

    2013-09-01

    Intestinal barrier function is regulated by epithelial tight junctions (TJs), structures that control paracellular permeability. Junctional adhesion molecule-A (JAM-A) is a TJ-associated protein that regulates barrier; however, mechanisms linking JAM-A to epithelial permeability are poorly understood. Here we report that JAM-A associates directly with ZO-2 and indirectly with afadin, and this complex, along with PDZ-GEF1, activates the small GTPase Rap2c. Supporting a functional link, small interfering RNA-mediated down-regulation of the foregoing regulatory proteins results in enhanced permeability similar to that observed after JAM-A loss. JAM-A-deficient mice and cultured epithelial cells demonstrate enhanced paracellular permeability to large molecules, revealing a potential role of JAM-A in controlling perijunctional actin cytoskeleton in addition to its previously reported role in regulating claudin proteins and small-molecule permeability. Further experiments suggest that JAM-A does not regulate actin turnover but modulates activity of RhoA and phosphorylation of nonmuscle myosin, both implicated in actomyosin contraction. These results suggest that JAM-A regulates epithelial permeability via association with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and control contraction of the apical cytoskeleton.

  10. Purification and crystallization of the catalytic PRONE domain of RopGEF8 and its complex with Rop4 from Arabidopsis thaliana

    SciTech Connect

    Thomas, Christoph; Weyand, Michael; Wittinghofer, Alfred; Berken, Antje

    2006-06-01

    Crystals of the catalytic PRONE domain of the guanine nucleotide exchange factor RopGEF8 and its complex with the Rho-family protein Rop4 from A. thaliana were obtained that diffract to 2.2 and 3.1 Å resolution, respectively. The PRONE domain of the guanine nucleotide exchange factor RopGEF8 (PRONE8) was purified and crystallized free and in complex with the Rho-family protein Rop4 using the hanging-drop vapour-diffusion method. PRONE8 crystals were obtained using NaCl as precipitating agent and belong to the hexagonal space group P6{sub 5}22. Native and anomalous data sets were collected using synchrotron radiation at 100 K to 2.2 and 2.8 Å resolution, respectively. Crystals of the Rop4–PRONE8 complex belonging to space group P6{sub 3} were obtained using Tacsimate and PEG 3350 as precipitating agents and diffracted to 3.1 Å resolution.

  11. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion.

    PubMed

    Osborne, Lukas D; Li, George Z; How, Tam; O'Brien, E Tim; Blobe, Gerard C; Superfine, Richard; Mythreye, Karthikeyan

    2014-11-05

    Recent studies implicate a role for cell mechanics in cancer progression. The epithelial-to-mesenchymal transition (EMT) regulates the detachment of cancer cells from the epithelium and facilitates their invasion into stromal tissue. Although classic EMT hallmarks include loss of cell-cell adhesions, morphology changes, and increased invasion capacity, little is known about the associated mechanical changes. Previously, force application on integrins has been shown to initiate cytoskeletal rearrangements that result in increased cell stiffness and a stiffening response. Here we demonstrate that transforming growth factor β (TGF-β)-induced EMT results in decreased stiffness and loss of the normal stiffening response to force applied on integrins. We find that suppression of the RhoA guanine nucleotide exchange factors (GEFs) LARG and GEF-H1 through TGF-β/ALK5-enhanced proteasomal degradation mediates these changes in cell mechanics and affects EMT-associated invasion. Taken together, our results reveal a functional connection between attenuated stiffness and stiffening response and the increased invasion capacity acquired after TGF-β-induced EMT.

  12. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis.

    PubMed

    Naramoto, Satoshi; Otegui, Marisa S; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-07-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.

  13. Preclinical Development of Novel Rac1-GEF Signaling Inhibitors using a Rational Design Approach in Highly Aggressive Breast Cancer Cell Lines

    PubMed Central

    Cardama, Georgina A; Comin, Maria J; Hornos, Leandro; Gonzalez, Nazareno; Defelipe, Lucas; Turjanski, Adrian G; Alonso, Daniel F; Gomez, Daniel E; Menna, Pablo Lorenzano

    2014-01-01

    Rho GTPases play a key role in the regulation of multiple essential cellular processes, including actin dynamics, gene transcription and cell cycle progression. Aberrant activation of Rac1, a member of Rho family of small GTPases, is associated with tumorigenesis, cancer progression, invasion and metastasis. Particularly, Rac1 is overexpressed and hyperactivated in highly aggressive breast cancer. Thus, Rac1 appears to be a promising and relevant target for the development of novel anticancer drugs. We identified the novel Rac1 inhibitor ZINC69391 through a docking-based virtual library screening targeting Rac1 activation by GEFs. This compound was able to block Rac1 interaction with its GEF Tiam1, prevented EGF-induced Rac1 activation and inhibited cell proliferation, cell migration and cell cycle progression in highly aggressive breast cancer cell lines. Moreover, ZINC69391 showed an in vivo antimetastatic effect in a syngeneic animal model. We further developed the novel analog 1A-116 by rational design and showed to be specific and more potent than the parental compound in vitro and interfered Rac1-P-Rex1 interaction. We also showed an enhanced in vivo potency of 1A-116 analog. These results show that we have developed novel Rac1 inhibitors that may be used as a novel anticancer therapy. PMID:24066799

  14. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation.

    PubMed

    Koubek, Emily J; Santy, Lorraine C

    2016-08-12

    Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.

  15. A high efficiency industrial polysilicon solar cell with a honeycomb-like surface fabricated by wet etching using a photoresist mask

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Ding, Bin; Chen, Tianhang

    2016-11-01

    In this paper, an effective and low cost method of texturization was introduced into the fabrication process for industrial multicrystalline silicon solar cell production. The purpose of the method was to reduce reflectance by creating a honeycomb-like textured surface using a masked wet etching process. A negative photoresist film was selected as an etching mask. Although large surface roughness of wafer was considered to affect the adhesion and acid resistance of etching mask, a honeycomb-like textured surface with a pitch of 18 μm was fabricated successfully. The etched pits had a nearly smooth spherical segment surface, an average aperture of 15.1 μm, and a depth of 6.5 μm. This regular textured surface had a low light reflectivity of approximately 20.5% and greatly increased the carrier lifetime. Compared with multicrystalline silicon solar cells textured by conventional acid etching, the average short circuit current increased by 2.2% and the average efficiency increased from 17.41% to 17.75%, a net gain of 0.34%. And a high throughput above 2400 pieces per hour was obtained. This texturing technique is expected to promote the application of diamond-wire cut multicrystalline silicon wafers with the low saw-damage in the future.

  16. Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions.

    PubMed

    Heerd, Doreen; Diercks-Horn, Sonja; Fernández-Lahore, Marcelo

    2014-01-01

    Previously identified fungal pectinase producers of the species Aspergillus sojae were used for optimization of polygalacturonase production in solid-state fermentation applying Design of Experiment. The effects of media composition and several process parameters, like inoculum size, moisture level, incubation time and temperature on polygalacturonase activity were studied in screening and optimization investigations. Utilization of agricultural and agro-industrial by-products provided the establishment of a cost-efficient and sustainable process for enzyme production. Comparison of pectinase production by A. sojae ATCC 20235 and A. sojae CBS 100928 under optimized conditions yielded 6.9 times higher polygalacturonase activity by A. sojae ATCC 20235. Highest enzyme yield (909.5 ± 2.7 U/g) was obtained by A. sojae ATCC 20235 after 8 days at 30°C applying 30% sugar beet pulp as inducer substrate in combination with wheat bran as medium wetted at 160% with 0.2 M HCl. Furthermore, an overview of pectinolytic enzyme activities present in the extracts of both strains is provided. Protein profiles of both strains are given by SDS-PAGE electrophoresis, as well as zymograms for pectinolytic enzymes in comparison to commercial pectinase preparations.

  17. Agriculture--Industry of the Future

    SciTech Connect

    2001-01-23

    This 8-page brochure describes the Office of Industrial Technologies' Agriculture Industry of the Future, a partnership between the Department of Energy and the agriculture industry established to increase industrial energy and cost efficiency.

  18. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis.

    PubMed

    Somers, W Gregory; Saint, Robert

    2003-01-01

    The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.

  19. Reduced cell number in the hindgut epithelium disrupts hindgut left-right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos.

    PubMed

    Nakamura, Mitsutoshi; Matsumoto, Kenjiroo; Iwamoto, Yuta; Muguruma, Takeshi; Nakazawa, Naotaka; Hatori, Ryo; Taniguchi, Kiichiro; Maeda, Reo; Matsuno, Kenji

    2013-02-01

    Animals often show left-right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl's role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity.

  20. The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless.

    PubMed

    Schumacher, Sabine; Gryzik, Tanja; Tannebaum, Sylvia; Müller, H-Arno J

    2004-06-01

    The FGF receptor Heartless (HTL) is required for mesodermal cell migration in the Drosophila gastrula. We show that mesoderm cells undergo different phases of specific cell shape changes during mesoderm migration. During the migratory phase, the cells adhere to the basal surface of the ectoderm and exhibit extensive protrusive activity. HTL is required for the protrusive activity of the mesoderm cells. Moreover, the early phenotype of htl mutants suggests that HTL is required for the adhesion of mesoderm cells to the ectoderm. In a genetic screen we identified pebble (pbl) as a novel gene required for mesoderm migration. pbl encodes a guanyl nucleotide exchange factor (GEF) for RHO1 and is known as an essential regulator of cytokinesis. We show that the function of PBL in cell migration is independent of the function of PBL in cytokinesis. Although RHO1 acts as a substrate for PBL in cytokinesis, compromising RHO1 function in the mesoderm does not block cell migration. These data suggest that the function of PBL in cell migration might be mediated through a pathway distinct from RHO1. This idea is supported by allele-specific differences in the expressivity of the cytokinesis and cell migration phenotypes of different pbl mutants. We show that PBL is autonomously required in the mesoderm for cell migration. Like HTL, PBL is required for early cell shape changes during mesoderm migration. Expression of a constitutively active form of HTL is unable to rescue the early cellular defects in pbl mutants, suggesting that PBL is required for the ability of HTL to trigger these cell shape changes. These results provide evidence for a novel function of the Rho-GEF PBL in HTL-dependent mesodermal cell migration.

  1. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.

    PubMed

    Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue

    2013-08-01

    In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM10 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10.

  2. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  3. p190RhoGEF Binds to a destabilizing element in the 3' untranslated region of light neurofilament subunit mRNA and alters the stability of the transcript.

    PubMed

    Cañete-Soler, R; Wu, J; Zhai, J; Shamim, M; Schlaepfer, W W

    2001-08-24

    Stabilization of neurofilament (NF) mRNAs plays a major role in regulating levels of NF expression and in establishing axonal size and rate of axonal conduction. Previous studies have identified a 68-nucleotide destabilizing element at the junction of the coding region and 3' untranslated region of the light NF subunit (NF-L) mRNA. The present study has used the destabilizing element (probe A) to screen a rat brain cDNA library for interactive proteins. A cDNA clone encoding 1068 nucleotides in the C-terminal domain of p190RhoGEF (clone 39) was found to bind strongly and specifically to the RNA probe. The interaction was confirmed using a glutathione S-transferase/clone 39 fusion protein in Northwestern, gel-shift, and cross-linkage studies. The glutathione S-transferase/clone 39 fusion protein also enhanced the cross-linkage of a major 43-kDa protein in brain extract to the destabilizing element. Functional studies on stably transfected neuronal cells showed that p190RhoGEF expression increased the half-life of a wild-type NF-L mRNA but did not alter the half-life of a mutant NF-L mRNA lacking the destabilizing element. The findings reveal a novel interactive feature of p190RhoGEF that links the exchange factor with NF mRNA stability and regulation of the axonal cytoskeleton.

  4. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  5. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  6. Turning industry visions into reality

    SciTech Connect

    1997-01-01

    This brochure outlines the activities of the Office of Industrial Technologies (OIT) in the Department of Energy. OIT activities are aimed at industry adoption of energy-efficient, pollution-reducing technologies and include research and development on advanced technologies, financing, technical assistance, information dissemination, education, and bringing together industry groups, universities, National Laboratories, states, and environmentalists. OIT`s core initiative is to facilitate partnerships within seven materials and process industries: aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel industries.

  7. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  8. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  9. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway.

    PubMed

    Tang, Xiaolong; Jin, Rongrong; Qu, Guojun; Wang, Xiu; Li, Zhenxi; Yuan, Zengjin; Zhao, Chen; Siwko, Stefan; Shi, Tieliu; Wang, Ping; Xiao, Jianru; Liu, Mingyao; Luo, Jian

    2013-10-15

    Adhesion G-protein-coupled receptors (GPCR), which contain adhesion domains in their extracellular region, have been found to play important roles in cell adhesion, motility, embryonic development, and immune response. Because most adhesion molecules with adhesion domains have vital roles in cancer metastasis, we speculated that adhesion GPCRs are potentially involved in cancer metastasis. In this study, we identified GPR116 as a novel regulator of breast cancer metastasis through expression and functional screening of the adhesion GPCR family. We found that knockdown of GPR116 in highly metastatic (MDA-MB-231) breast cancer cells suppressed cell migration and invasion. Conversely, ectopic GPR116 expression in poorly metastatic (MCF-7 and Hs578T) cells promoted cell invasion. We further showed that knockdown of GPR116 inhibited breast cancer cell metastasis in two mammary tumor metastasis mouse models. Moreover, GPR116 modulated the formation of lamellipodia and actin stress fibers in cells in a RhoA- and Rac1-dependent manner. At a molecular level, GPR116 regulated cell motility and morphology through the Gαq-p63RhoGEF-RhoA/Rac1 pathway. The biologic significance of GPR116 in breast cancer is substantiated in human patient samples, where GPR116 expression is significantly correlated with breast tumor progression, recurrence, and poor prognosis. These findings show that GPR116 is crucial for the metastasis of breast cancer and support GPR116 as a potential prognostic marker and drug target against metastatic human breast cancer.

  10. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  11. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  12. 76 FR 34192 - Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Economy (ACEEE) 2003 report ``Realizing Energy Efficiency Opportunities in Industrial Fan and Pump Systems... use. \\5\\ Nadel, S. and N. Elliot. ``Realizing Energy Efficiency Opportunities in Industrial Fan and..., ``Realizing Energy Efficiency 140.6 Opportunities in Industrial Fan and Pump Systems''.. Based on U.S....

  13. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  14. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  15. Industrial partnerships yield EPIC results

    SciTech Connect

    Moore, T.

    1996-08-01

    With a new era of competition approaching in the electricity supply industry, utilities are getting closer than ever to their industrial customers, in many cases making direct alliances as partners to help customers become more efficient, productive, and competitive. The EPRI Partnership for Industrial Competitiveness (EPIC) program aims to help industrial customers address critical priorities in environmental impact, efficiency, and productivity with the ultimate goals of long-term profitability and job retention. By offering in-plant consultant evaluations of systems and processes, EPIC helps industrial customers develop strategic insights into their operations and leverage technology and productivity solutions for competitive business advantage.

  16. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    SciTech Connect

    Jennings, P.; Borio, R.; McGowan, J.G.

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  17. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  18. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  20. The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice.

    PubMed

    Reviriego-Mendoza, Marta M; Santy, Lorraine C

    2015-06-01

    The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage. The molecular aspects of kidney injury and repair are still uncertain. Hepatocyte growth factor (HGF) promotes recovery of the injured kidney by inducing survival and migration of tubular epithelial cells to repopulate bare tubule areas. HGF-stimulated kidney epithelial cell migration requires the activation of ADP-ribosylation factor 6 (Arf6) and Rac1 via the cytohesin family of Arf-guanine-nucleotide exchange factors (GEFs), in vitro. We used an ischemia and reperfusion injury (IRI) mouse model to analyze the effects of modulating this signaling pathway on kidney recovery. We treated IRI mice with either HGF, the cytohesin inhibitor SecinH3, or a combination of both. As previously reported, HGF treatment promoted rapid improvement of kidney function as evidenced by creatinine (Cre) and blood urea nitrogen (BUN) levels. In contrast, simultaneous treatment with SecinH3 and HGF blocks the ability of HGF to promote kidney recovery. Immunohistochemistry showed that HGF treatment promoted recovery of tubule structure, and had enhanced levels of active, GTP-bound Arf6 and GTP-Rac1. SecinH3 treatment, however, caused a dramatic decrease in GTP-Arf6 and GTP-Rac1 levels when compared to kidney sections from HGF-treated IRI mice. Additionally, SecinH3 counteracted the renal reparative effects of HGF. Our results support the conclusion that cytohesin function is required for HGF-stimulated renal IRI repair.

  1. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  2. The charge of ergonomics--a model according to the influence of ergonomic workplace design for economical and efficient indicators of the automotive industry.

    PubMed

    Neubert, Nicole; Bruder, Ralph; Toledo, Begoña

    2012-01-01

    The importance of ergonomic workplace design has been rising incredibly. The knowledge of the interaction with a view to many indicators (e.g. operators' health, quality, productivity etc.) in the automotive assembly shop pushed into another thinking of ergonomics and an increasing awareness of economic possibilities relating to benefits and cost savings aligned with ergonomics. The paper discusses exemplary the various indicators and factors which could be influenced by ergonomic workplace design. These factors are linked each other and support the statement of ergonomic efficiency. Thus, the aim of this paper is to present a model which describes that investments in ergonomic work placement acts with preventive measurements, minimization of losses (refinishing operations, compensation money etc.) and extensive economies on the whole company.

  3. Development and testing of a high efficiency advanced coal combustor: Phase 3 -- Industrial boiler retrofit. Proof of concept testing summary (Task 3.0 Final topical report)

    SciTech Connect

    Patel, R.L.; Borio, R.; McGowan, J.G.

    1995-07-01

    Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility, Pittsburgh Energy Technical Center (PETC) has supported a program led by ABB Power Plant Laboratories in cooperation with the Energy and Fuels Research Center of Penn State University to develop the High Efficiency Advanced Coal Combustor (HEACC). The objective of the program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall objective the following specific areas were targeted: a coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; maintaining NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieving combustion efficiencies of 98% or higher; and calculating economic payback periods as a function of key variables. The work carried out under this program is broken into five major Tasks: review of current state-of-the-art coal firing system components; design and experimental testing of a prototype HEACC burner; installation and testing of a HEACC system in a retrofit application; economic evaluation of the HEACC concept for retrofit applications; and long term demonstration under user demand conditions. This report summarizes the work done under Task 3, the installation and testing of the HEACC burner in a 15,000 lb/hr package boiler located at Penn State. The period of testing was approximately 400 hours. Key findings are presented.

  4. Industrial Assessment Center

    SciTech Connect

    J. Kelly Kissock; Becky Blust

    2007-04-17

    The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

  5. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH.

  6. Analysis of industry-generated data. Part 2: Risk-based sampling plan for efficient self-control of aflatoxin M₁ contamination in raw milk.

    PubMed

    Farkas, Zsuzsa; Trevisani, Marcello; Horváth, Zsuzsanna; Serraino, Andrea; Szabó, István J; Kerekes, Kata; Szeitzné-Szabó, Mária; Ambrus, Arpád

    2014-01-01

    Aflatoxin M₁ (AFM1) contamination in 21,969 milk samples taken in Italy during 2005-08 and 2010 provided the basis for designing an early warning self-control plan. Additionally, 4148 AFM1 data points from the mycotoxin crisis (2003-04) represented the worst case. No parametric function provided a good fit for the skewed and scattered AFM1 concentrations. The acceptable reference values, reflecting the combined uncertainty of AFM1 measured in consignments consisting of milk from one to six farms, ranged from 40 to 16.7 ng kg(-1), respectively. Asymmetric control charts with these reference values, 40 and 50 ng kg(-1) warning and action limits are recommended to assess immediately the distribution of AFM1 concentration in incoming consignments. The moving window method, presented as a worked example including 5 days with five samples/day, enabled verification of compliance of production with the legal limit in 98% of the consignments at a 94% probability level. The sampling plan developed assumes consecutive analyses of samples taken from individual farms, which makes early detection of contamination possible and also immediate corrective actions if the AFM1 concentration in a consignment exceeds the reference value. In the latter case different control plans with increased sampling frequency should be applied depending on the level and frequency of contamination. As aflatoxin B₁ increases in feed at about the same time, therefore a coordinated sampling programme performed by the milk processing plants operating in a confined geographic area is more effective and economical then the individual ones. The applicability of the sample size calculation based on binomial theorem and the fast response rate resulting from the recommended sampling plan were verified by taking 1000-10,000 random samples with replacement from the experimental databases representing the normal, moderately and highly contaminated periods. The efficiency of the control plan could be

  7. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2004-01-01

    Part of the 2003 industrial minerals review. Supply and demand data for industrial diamond are provided. Topics discussed are consumption, prices, imports and exports, government stockpiles, and the outlook for 2004.

  8. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst.

    PubMed

    Subramonian, Wennie; Wu, Ta Yeong; Chai, Siang-Piao

    2017-02-01

    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m(2)/g), pore volume (0.29 cm(3)/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3(-), and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10(-3) and 2.7 × 10(-3) min(-1), respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.

  9. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  10. Industrial Microbiology.

    ERIC Educational Resources Information Center

    Demain, Arnold L.; Solomon, Nadine A.

    1981-01-01

    Presents an overview of the field of industrial microbiology, providing historical backgrounds of scientific discoveries in the field and descriptions of industrially important microorganisms. Applied research in industry is also detailed, with mention of gene amplification, DNA recombination, pharmaceutical approaches, and detoxification and…

  11. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  12. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  13. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    This article illustrates projected employment change from an industry perspective over the 2008-2018 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment in which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  14. ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1.

    PubMed

    Pasten, Consuelo; Cerda, Joaquín; Jausoro, Ignacio; Court, Felipe A; Cáceres, Alfredo; Marzolo, Maria-Paz

    2015-11-01

    ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration.

  15. Industrial market and energy management guide. Standard Industrial Classification 22, textile mill products industry

    SciTech Connect

    Not Available

    1985-01-01

    Purpose of this guide is twofold: First, to provide an overview of the industrial market for consulting engineers in the textile mill products industry by providing an overall description of the market, its size, and attitudes toward more energy efficient operations. Second, to present sources of information to help consulting engineers locate these industries on a local and national level, and further assess their market opportunities. The facts and figures that describe the various elements of this industrial sector are presented along with its national distribution of plant locations, and resources where more detailed information can be found. Process flow diagrams, process step descriptions, and energy efficient ideas are presented.

  16. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  17. Working with Industry

    ERIC Educational Resources Information Center

    Ullman, Ellen

    2012-01-01

    As community colleges focus on becoming more efficient and preparing more students for success in a climate of reduced state and federal funding, many institutions are reaching out to neighbors in business and industry, forming partnerships and working together to achieve goals that require money and resources colleges are unlikely to raise on…

  18. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  19. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  20. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  1. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  2. 7 CFR 1220.112 - Industry information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.112 Industry information. The... markets, new marketing strategies, or increased efficiency for the soybean industry, and activities...

  3. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  4. Supporting industries energy and environmental profile

    SciTech Connect

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  5. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  6. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  7. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  8. Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities.

    PubMed

    Ramos, I; Pérez, R; Reinoso, M; Torio, R; Fdz-Polanco, M

    2014-07-01

    Biogas produced in an industrial-pilot scale sewage sludge reactor (5m(3)) was desulphurised by imposing microaerobic conditions. The H2S concentration removal efficiency was evaluated under various configurations: different mixing methods and O2 injection points. Biogas was entirely desulphurised under all the configurations set, while the O2 demand of the digester decreased over time. Although the H2S removal seemed to occur in the headspace, S(0) (which was found to be the main oxidation product) was scarcely deposited there in the headspace. O2 did not have a significant impact on the digestion performance; the VS removal remained around 47%. Conversely, DGGE revealed that the higher O2 transfer rate to the sludge maintained by biogas recirculation increased the microbial richness and evenness, and caused an important shift in the structure of the bacterial and the archaeal communities in the long term. All the archaeal genera identified (Methanosaeta, Methanospirillum and Methanoculleus) were present under both anaerobic and microaerobic conditions.

  9. INDUSTRIAL ASSESSMENT CENTER PROGRAM

    SciTech Connect

    ASFAW BEYENE

    2008-09-29

    Since its establishment in 1990, San Diego State University’s Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IAC’s efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

  10. Electronics Industry

    DTIC Science & Technology

    2006-01-01

    companies to begin listing stock options as expenses on financial reports (Chappell, 2005). The industry had used stock options extensively to help... stock options (Chappell, 2005). Industry representatives interviewed by the group argued against the requirement since they predict U.S. companies...may be less inclined now to offer stock options , and subsequently talent may be lost to aggressive foreign competition (Anonymous interviews, 2006

  11. Industrial Combustion Technology Roadmap: A Technology Roadmap by and for the Industrial Combustion Community (1999)

    SciTech Connect

    none,

    1999-04-01

    Combustion system users and manufacturers joined forces in 1999 to develop the Industrial Combustion Technology Roadmap. The roadmap outlines R&D priorities for developing advanced, highly efficient combustion systems that U.S. industry will require in the future.

  12. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  13. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  14. Industrial systems biology.

    PubMed

    Otero, José Manuel; Nielsen, Jens

    2010-02-15

    The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology.

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  16. 76 FR 43218 - Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... information from interested parties regarding product markets, energy use, test procedures, and energy efficient product designs for commercial and industrial pumps. The comment period closed on July 13, 2011... procedures, and energy efficient product designs for commercial and industrial pumps as prescribed by...

  17. Office of Industrial Technologies research in progress

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  18. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of natural and synthetic industrial diamond was about 648 million carats in 2006, with 79 percent of the production coming from Ireland, Japan, Russia, South Africa, and the U.S. U.S. consumption was was an estimated 602 million carats, imports were over 391 million carats, and exports were about 83 million carats. About 87 percent of the industrial diamonds market uses synthetic diamonds, which are expected to become less expensive as technology improves and competition from low-cost producers increases.

  19. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  20. Research Projects in Industrial Technology.

    SciTech Connect

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  1. Fermentation Industry.

    ERIC Educational Resources Information Center

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  2. Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Phaff, Herman J.

    1981-01-01

    Describes industrially important yeasts, molds, bacteria, and actinomycetes. Discussed in detail are microbial products, such as primary metabolites, secondary metabolites, enzymes, and capsular polysaccharides. Traces the historical background of human cell culture, mentioning recombinant DNA research and hybridization of normal mammalian cells…

  3. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  4. Fermentation industry

    SciTech Connect

    Chiesa, S.C.; Manning, J.F. Jr.

    1983-06-01

    A literature review of the fermenation industry's wastes is presented. In addition to studies on the characterization, treatment, and disposal of wastes in alcohol fuel production, studies concerning wastes from breweries, wineries, yeast manufacture, pharmaceutical production, and distilleries are reviewed. (JMT)

  5. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  6. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  7. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  8. Industrial Orientation.

    ERIC Educational Resources Information Center

    Rasor, Leslie; Brooks, Valerie

    These eight modules for an industrial orientation class were developed by a project to design an interdisciplinary program of basic skills training for disadvantaged students in a Construction Technology Program (see Note). The Drafting module overviews drafting career opportunities, job markets, salaries, educational requirements, and basic…

  9. Industrial alliances

    SciTech Connect

    Adams, K.V.

    1993-09-13

    The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

  10. Industrial Section Convenor's Report

    NASA Astrophysics Data System (ADS)

    Barone, M.; Riboni, P.

    2002-11-01

    Over the years this conference has gained a solid reputation as an appropriate rostrum for illustrating new concepts in the relations between industry and the scientific world and for introducing new technologies to a large assistance of junior and more experienced scientists. In fact, from the very beginning the founders of this endeavour announced: "The conference is aimed for promoting contacts among scientists involved in particle and fundamental physics, among experimental physicists in other fields and representatives from industry." Facilities at the Conference are designed to fulfil the task: space and general facilities are offered to industry representatives to display their products. This year a more accessible and luminous space arrangement was made available to the exhibitors. At the same time two plenary sessions have been dedicated to selected speakers to illustrate new trends in Technology Transfer, analysis of environment affecting our community, examples of historical successes in the merging of science and industry. We have identified in "GRID" and in "E-Publishing" two major promising areas where our Community will play a prime role as "User" and it was of the general interest to have them illustrated by two personalities directly involved in their development. The flow of knowledge is of course more massive from "Industry" to "Science" than vice-versa, but "Science" to "Industry" move offers an intensive added value. The technology transfer concept with the "Patents" as fund raising tool proved less glorious than expected. Trademark, licensing agreement and " Patents" can assure intellectual properties. But patent is an issue to be used cautiously. Evidence exists that much more efficient transfer of "Science" knowledge to "Economy" is achieved by venture capital move and start-up companies. These two facets of the Technology Transfer business have been covered by Routti's and Bourgeois's lectures.There are two examples of Companies who moved

  11. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  12. Shipbuilding Industry

    DTIC Science & Technology

    2006-01-01

    vessels, the industry cannot compete internationally due to higher costs and prices . On the commercial side, based on information provided during...challenges. The defense sector, though producing the most advanced ships in the world, does so at exorbitant prices , limiting the number that the U.S...Navy can afford. Based on visits to twenty-four U.S. and Australian shipyards, the U.S. government should provide targeted support to the commercial

  13. Industrial radiointroscopy

    NASA Astrophysics Data System (ADS)

    Kliuev, V. V.; Leonov, B. I.; Gusev, E. A.

    The operating principles and design of various types of radiointroscopes used in industry for fault inspection are described, together with the sources of penetrating radiation, radiooptic image converters, and image amplifiers. The theory of image formation by a radiointroscope and mathematical models of the image formation are discussed. Consideration is given to the design of radioscope television systems, and their optical characteristics, resolving power, signal/noise characteristics, contrast sensitivity, and the transmission band of the communication channel.

  14. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  15. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  16. Mining Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  17. How utilizes can revitalize industry

    SciTech Connect

    De Vaul, D.; Bartsch, C.

    1993-12-31

    During the first weeks of his presidency, Bill Clinton asserted that the nation`s industries must modernize if Americans are to enjoy a rising standard of living. He noted that inadequate knowledge about new production technologies and inadequate capital for plant improvements were making it hard for manufacturers, particularly small and midsized firms, to improve their productivity and economic competitiveness. And though he said his administration would stress the benefits of government research, technology transfer, and financial assistance, President Clinton acknowledged that Washington needs new partners to help modernize U.S. industrial processes. Electric utilities are likely candidates. They have considerable technical expertise and access to large sums of capital that could help industry improve its productivity. Fortuitously, power companies also would benefit by such a partnership stimulating local economic activity and better managing electricity demands. Although many utilities pursue so-called demand-side management programs for their commercial and residential customers, most have not focused much attention on the industrial sector, in part because achieving industrial energy efficiency requires more specialized expertise than do routine energy audits to improve the insulation and lighting of homes and commercial buildings. Yet the reasons to target industry are compelling: Industrial firms consume more than 35 percent of the electricity in the United States, and investment in retooling manufacturing operations with energy-efficient and productive equipment could help spur economic revitalization.

  18. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  19. Aircraft Industry

    DTIC Science & Technology

    2007-01-01

    resources. Lean manufacturing allows companies to maximize production facility throughput so that capacity is less an issue. However, human capital...instituted a wide range of strategies that include lean manufacturing processes, global strategic partnering to spread development and production risk...various stages of employing the principles of lean manufacturing and six sigma to maximize efficiency, lower costs, increase volume, and minimize

  20. Spring 2008 Industry Study. Manufacturing Industry

    DTIC Science & Technology

    2008-01-01

    UNCTAD, 2006). While all industries are arguably essential, of this list, only dairy products rise to the level of national importance. The question to...Spring 2008 Industry Study Final Report Manufacturing Industry The Industrial College of the Armed Forces National...SUBTITLE Spring 2008 Industry Study Final Report: Manufacturing Industry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  1. Information for Industrial Development,

    DTIC Science & Technology

    Information processing, *Technology transfer, * Industries , Information transfer, Industrial engineering , Planning, Research management, Investments...Operation, Industrial production, Data bases, Information systems, User needs, Symposia

  2. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  3. Agribusiness Industry

    DTIC Science & Technology

    2007-01-01

    efficient routes of commerce of many thousands of miles - a fresh head of broccoli and lettuce lands in the chilled and computer controlled misting... assembler in the nation’s food supply chain. Globalization has also led to the rise of massive multi-national food processing companies which often...cumulatively, seemingly minor and insignificant changes in food production methods (i.e. packaged precut lettuce ), society (desire for convenience foods

  4. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  5. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  6. Industrial furnace

    SciTech Connect

    Shostak, V.M.; Tolochko, A.I.; Volkov, V.P.; Maradudin, G.I.; Schekin, N.G.; Popov, M.I.; Shepelev, D.N.; Matveev, A.I.; Butnyakov, A.I.; Rzhavichev, A.P.

    1986-09-02

    An industrial furnace is described which consists of: a bath made of a refractory material for filling with a melt; a direct current source; main current-carrying elements having free ends extending to an operating area of the refractory material of the bath below and above the melt, and the main current-carrying elements extending to the operating area below the melt being connected with opposite terminals of the current source from the main current-carrying elements extending to the operating area above the melt; and additional current-carrying elements having free ends sunk in the refractory material of the bath below and above the melt and the additional current-carrying elements being connected with the terminals of the power source of opposite polarity with respect to the connection of the main current-carrying elements of a corresponding part of the operating area.

  7. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  8. [Practical industrial medicine in Switzerland].

    PubMed

    Greuter, W

    1981-07-01

    The actual state of the industrial medicine in Switzerland, which has not reached yet a satisfying level, is brought in connection with the development of the corresponding legislation as well as the traditionally rather negative attitude of the social partners towards the introduction of an efficient industrial medicine. The revised law of accident prevention might promote the completion of the necessary infrastructure. To our own behoof, we should take advantage of the experiences made in our neighbour states. The independent and competent activity of an industrial physicians is considered as the essential condition of an efficient protection of the worker to the advantage of themselves as well as the employers. The lack of postgraduate instruction and the deficient image of this specialty of medicine in our country are responsible for the difficulties in providing our industry with a considerable number of doctors of industrial medicine. The paper concludes with an information on the tasks of the Service of Occupational Medicine of the Federal Office for Industry and Labour and on examples of its work during the past years.

  9. Distance collaborations with industry

    SciTech Connect

    Peskin, A.; Swyler, K.

    1998-06-01

    The college industry relationship has been identified as a key policy issue in Engineering Education. Collaborations between academic institutions and the industrial sector have a long history and a bright future. For Engineering and Engineering Technology programs in particular, industry has played a crucial role in many areas including advisement, financial support, and practical training of both faculty and students. Among the most important and intimate interactions are collaborative projects and formal cooperative education arrangements. Most recently, such collaborations have taken on a new dimension, as advances in technology have made possible meaningful technical collaboration at a distance. There are several obvious technology areas that have contributed significantly to this trend. Foremost is the ubiquitous presence of the Internet. Perhaps almost as important are advances in computer based imaging. Because visual images offer a compelling user experience, it affords greater knowledge transfer efficiency than other modes of delivery. Furthermore, the quality of the image appears to have a strongly correlated effect on insight. A good visualization facility offers both a means for communication and a shared information space for the subjects, which are among the essential features of both peer collaboration and distance learning.

  10. The Resurgence of America's Auto Industry

    SciTech Connect

    Zimmer, Stephen; Cischke, Sue

    2012-01-01

    A look at how strategic investments and partnerships between the Energy Department and automakers have helped the American auto industry become a leader in advanced and fuel-efficient vehicles — creating jobs and boosting profits in the process.

  11. The Rise and Fall of Industrial Agriculture

    ERIC Educational Resources Information Center

    Geno, Larry M.

    1976-01-01

    This article analyzes the evolution of industrial agriculture in Canada. Population pressures and technology caused the development of industrial agriculture. Although total crop yields have increased, energy efficiency and nutritional quality have decreased. Also intensive agriculture has degraded the soil and lowered air and water qualities. (MR)

  12. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of new markets, new marketing strategies, or increased efficiency for the popcorn industry, or... 7 Agriculture 10 2010-01-01 2010-01-01 false Industry information. 1215.8 Section 1215.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE...

  13. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of new markets, new marketing strategies, or increased efficiency for the popcorn industry, or... 7 Agriculture 10 2011-01-01 2011-01-01 false Industry information. 1215.8 Section 1215.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE...

  14. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of new markets, new marketing strategies, or increased efficiency for the popcorn industry, or... 7 Agriculture 10 2013-01-01 2013-01-01 false Industry information. 1215.8 Section 1215.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE...

  15. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of new markets, new marketing strategies, or increased efficiency for the popcorn industry, or... 7 Agriculture 10 2014-01-01 2014-01-01 false Industry information. 1215.8 Section 1215.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE...

  16. 7 CFR 1215.8 - Industry information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of new markets, new marketing strategies, or increased efficiency for the popcorn industry, or... 7 Agriculture 10 2012-01-01 2012-01-01 false Industry information. 1215.8 Section 1215.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE...

  17. Application of Core Theory to the Airline Industry

    NASA Technical Reports Server (NTRS)

    Raghavan, Sunder

    2003-01-01

    Competition in the airline industry has been fierce since the industry was deregulated in 1978. The proponents of deregulation believed that more competition would improve efficiency and reduce prices and bring overall benefits to the consumer. In this paper, a case is made based on core theory that under certain demand and cost conditions more competition can actually lead to harmful consequences for industries like the airline industry or cause an empty core problem. Practices like monopolies, cartels, price discrimination, which is considered inefficient allocation of resources in many other industries, can actually be beneficial in the case of the airline industry in bringing about an efficient equilibrium.

  18. Industrial Productivity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASTRAN is an offshoot of the computer-design technique used in construction of airplanes and spacecraft. [n this technique engineers create a mathematical model of the aeronautical or space vehicle and "fly" it on the ground by means of computer simulation. The technique enables them to study performance and structural behavior of a number of different designs before settling on the final configuration and proceeding with construction. From this base of aerospace experience, NASA-Goddard developed the NASTRAN general purpose computer program, which offers an exceptionally wide range of analytic capability with regard to structures. NASTRAN has been applied to autos, trucks, railroad cars, ships, nuclear power reactors, steam turbines, bridges, and office buildings. NASA-Langley provides program maintenance services regarded as vital by many NASTRAN users. NASTRAN is essentially a predictive tool. It takes an electronic look at a computerire$.dedgn and reports how the structure will react under a great many different conditions. It can, for example, note areas where high stress levels will occur-potential failure points that need strengthening. Conversely, it can identify over-designed areas where weight and material might be saved safely. NASTRAN can tell how pipes stand up under strong fluid flow, how metals are affected by high temperatures, how a building will fare in an earthquake or how powerful winds will cause a bridge to oscillate. NASTRAN analysis is quick and inexpensive. It minimizes trial-and-error in the design process and makes possible better, safe, lighter structures affording large-scale savings in development time and materials. Some examples of the broad utility NASTRAN is finding among industrial firms are shown on these pages.

  19. Energy Efficiency Project Development

    SciTech Connect

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  20. Efficient Windows Collaborative

    SciTech Connect

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  1. Industrial Assessment Center Program Impact Evaluation

    SciTech Connect

    Martin, M.A.

    2000-01-26

    This report presents the results of an evaluation of the U.S. Department of Energy's Industrial Assessment Center (IAC) Program. The purpose of this program is to conduct energy, waste, and productivity assessments for small to medium-sized industrial firms. Assessments are conducted by 30 university-based industrial assessment centers. The purpose of this project was to evaluate energy and cost savings attributable to the assessments, the trained alumni, and the Websites sponsored by this program. How IAC assessments, alumni, and Web-based information may influence industrial energy efficiency decision making was also studied. It is concluded that appreciable energy and cost savings may be attributed to the IAC Program and that the IAC Program has resulted in more active and improved energy-efficiency decision making by industrial firms.

  2. Professors and Industry Meet

    ERIC Educational Resources Information Center

    Sheriff, Robert E.

    1974-01-01

    Describes backgrounds of geophysics graduates that are desired for employment by industry. Also listed are areas in which industry could help universities concerning the development of programs to meet the future manpower needs in industry. (BR)

  3. Chemicals Industry Vision

    SciTech Connect

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  4. Computer Technology for Industry

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In this age of the computer, more and more business firms are automating their operations for increased efficiency in a great variety of jobs, from simple accounting to managing inventories, from precise machining to analyzing complex structures. In the interest of national productivity, NASA is providing assistance both to longtime computer users and newcomers to automated operations. Through a special technology utilization service, NASA saves industry time and money by making available already developed computer programs which have secondary utility. A computer program is essentially a set of instructions which tells the computer how to produce desired information or effect by drawing upon its stored input. Developing a new program from scratch can be costly and time-consuming. Very often, however, a program developed for one purpose can readily be adapted to a totally different application. To help industry take advantage of existing computer technology, NASA operates the Computer Software Management and Information Center (COSMIC)(registered TradeMark),located at the University of Georgia. COSMIC maintains a large library of computer programs developed for NASA, the Department of Defense, the Department of Energy and other technology-generating agencies of the government. The Center gets a continual flow of software packages, screens them for adaptability to private sector usage, stores them and informs potential customers of their availability.

  5. The impact of industrial biotechnology.

    PubMed

    Soetaert, Wim; Vandamme, Erick

    2006-01-01

    In this review, the impact of industrial (or "white") biotechnology can have on our society and economy is discussed. An overview is given of industrial biotechnology and its applications in a number of product categories ranging from food ingredients, vitamins, bio-colorants, solvents, plastics and biofuels. The use of fossil resources is compared with renewable resources as the preferred feedstock for industrial biotechnology. A brief discussion is also given of the expected changes in society and technology, ranging from the shift in the supply of resources, the growing need for efficiency and sustainability of the production systems, changing consumer perception and behaviour and changing agricultural systems and practices. Many of these changes are expected to speed up the transition from a fossil-based to a bio-based economy and society.

  6. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  7. Industrial energy performance indicator reports

    SciTech Connect

    Munroe, V.

    1999-07-01

    The mandate for this work originated in December, 1996, when a joint meeting of federal and provincial Ministers of Energy and Environment, in addressing their responsibility to provide leadership on the Greenhouse Gases/Climate Change agenda, endorsed the following statement ({number{underscore}sign}13 of 45 initiatives launches at that time): Industrial establishments will be provided with a confidential benchmarking report on their energy efficiency progress, including how they compare to national and international averages for their sector. Information will also be provided on energy management best practices in their industries. The goal of the initiative is to use information provided on the state of energy practice to prompt, motivate, and induce companies to implement further energy efficiency measures. And one premise underlying it is that useful guidance on the state of energy practice in a company can be obtained from existing data sources, primarily the Industrial Consumption of Energy (ICE) survey and the Annual Survey of Manufacturers (ASM), both products of Statistics Canada. In addition, there are existing surveys which include energy consumption that are undertaken by associations such as the Canadian Portland Cement Association, the Canadian Chemical Producers Association, the Canadian Pulp and Paper Association, etc. Since the commitment was made, Natural Resources Canada staff have undertaken a large amount of investigative and developmental work which will be presented. Existing data from three sectors, pulp, cement and fluid milk, has been analyzed and will be delivered with draft context and energy efficiency guidance notes to the management of about 100 establishments. The author will also be able to report on how this information was received by these managers, and on the recommendations that will have been collected from industry on the more specific nature and frequency of industrial energy performance reporting desired.

  8. Sour-water stripper efficiency

    SciTech Connect

    Won, K.W.

    1983-04-01

    The sour waters from the synthetic fuel industries will contain substantial percentages of carbon dioxide, phenolics, hydrogen cyanide, acetic, and other carboxylic acids. The use of multi-component-dependent stage efficiencies for sour-water stripper caluclations is discussed. It was established from actual operating data on sour-water strippers that the more volatile a component in a mixture, the lower the stage efficiency of that compound. (JMT)

  9. Conservation and the industry sector

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The following six highly energy intensive industries were studied as targets of energy conservation opportunity: food and kindred products, paper and allied products, chemicals and allied products, petroleum and coal products, stone, glass and clay products, and primary manufacturing. After studying conservation actions within each industry the actions were grouped under three broad categories: increased combustion efficiency, process improvement, and good housekeeping. Some of the results were: (1) approximately 2.18 quads could be saved in 1980 and 2.57 quads in 1985 by installing cogenerative facilities in 50% of the industries, (2) regenerative air-preheaters could result in a 10-15% increase in furnace efficiency representing a 15-25% fuel savings (2.3 to 3.9 quads in 1980 and 2.7 to 4.5 quads in 1985), (3) several major industries have potential for energy savings by recycling-aluminum (0.2 quads), steel (1 quad), glass (0.006 quads), paper and cement (0.08 quads).

  10. Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis.

    PubMed

    Nasirian, Mohsen; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2017-03-23

    The inadequate management practices in industrial textile effluents have a considerable negative impact on the environment and human health due to the indiscriminate release of dyes. Photocatalysis is one of the diverse advance oxidation processes (AOPs) and titanium dioxide (TiO2) is recognized for its high oxidation and reduction power. A composite photocatalyst of Fe2O3/TiO2 is synthesized using different mass ratios of Fe:TiO2 to improve its photoactivity. The composite photocatalyst is calcined at 300-900 °C. Their photocatalytic activity for the degradation of Congo red (CR) and methyl orange (MO) is investigated by total organic carbon (TOC) analysis. The formation and characterization of the as-prepared composite are studied by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The effect of calcination temperature on the composite Fe2O3/TiO2 photocatalyst is investigated using Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity and the phase conversion are studied by X-ray diffraction (XRD). The specific surface area of photocatalysts at different calcination temperatures is investigated based on Brunauer-Emmett-Teller (BET) surface area analysis. Results show that at an optimum calcination temperature of 300 °C for the photocatalyst preparation, the specific surface area is maximum and the photocatalyst has the highest photoactivity. Thus, the degradation of organic materials reaches 62.0% for MO and 46.8% for CR in the presence of Fe2O3/TiO2 (0.01 w:w Fe:TiO2) calcined at 300 °C with the highest specific surface area (98.73 m(2)/g). The transformation of TiO2 from anatase to rutile is facilitated by high temperature and high concentration of iron while high crystallization and particle size increase occur. An optimum calcination temperature of 300 °C is found at which the degradation of typical dyes in textile industries is maximum.

  11. Industrial jet noise: Coanda nozzles

    NASA Astrophysics Data System (ADS)

    Li, P.; Halliwell, N. A.

    1985-04-01

    Within the U.K. manufacturing industries noise from industrial jets ranks third as a major contributor to industrial deafness. Noise control is hindered because use is made of the air once it has exuded from the nozzle exit. Important tasks include swarf removal, paint spreading, cooling, etc. Nozzles which employ the Coanda effect appear to offer the possibility of significant noise reduction whilst maintaining high thrust efficiency when compared with the commonly used simple open pipe or ordinary convergent nozzle. In this paper the performance of Coanda-type nozzles is examined in detail and an index rating for nozzle performance is introduced. Results show that far field stagnation pressure distributions are Gaussian and similar in all cases with a dispersion coefficient σ = 0·64. Noise reduction and thrust efficiency are shown to be closely related to the design geometry of the central body of the nozzle. Performance is based on four fundamental characteristics, these being the noise level at 1 m from the exit and at a 90° station to the nozzle axis, and the thrust on a chosen profile, the noise reduction and the thrust efficiency. Physically, performance is attributed to flow near field effects where, although all nozzles are choked, shock cell associated noise is absent.

  12. Energy Efficiency I: Automobiles

    SciTech Connect

    Martin, Peter M.

    2003-11-15

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  13. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  14. Spatial and Short-Temporal Variability of δ(13)C and δ(15)N and Water-Use Efficiency in Pine Needles of the Three Forests Along the Most Industrialized Part of Poland.

    PubMed

    Sensuła, Barbara M

    In this study, stable carbon and nitrogen isotope ratios in the samples of pine needles collected in 2013 and 2014 from heavily urbanized area in close proximity to point-source pollution emitters, such as a heat and power plant, nitrogen plant, and steelworks in Silesia (Poland), were analyzed as bio-indicators of contemporary environmental changes. The carbon isotope discrimination has been proposed as a method for evaluating water-use efficiency. The measurement of carbon and nitrogen isotopes was carried out using the continuous flow isotope ratio mass spectrometer. The isotope ratio mass spectrometer allows the precise measurement of mixtures of naturally occurring isotopes. The δ(15)N values were calibrated relative to the NO-3 and USGS34 international standards, whereas the δ(13)C values were calibrated relative to the C-3 and C-5 international standards. The strong year-to-year correlations between the δ(13)C in different sampling sites, and also the inter-annual correlation of δ(15)N values in the pine needles at each of the investigated sampling sites confirm that the measured δ(13)C and δ(15)N and also intrinsic water-use efficiency (iWUE) trends are representative of the sampling site. Diffuse air pollution caused the variation in δ (13)C, δ(15)N, and iWUE dependent on type of emitter, the localization in the space (distance and direction) from factories and some local effect of other human activities. The complex short-term variation analysis can be helpful to distinguish isotopic fractionation, which is not an effect explainable by climatic conditions but by the anthropogenic effect. Between 2012 and 2014, an increase in iWUE is observed at leaf level.

  15. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  16. Making Industry Part of the Climate Solution

    SciTech Connect

    Lapsa, Melissa Voss; Brown, Dr. Marilyn Ann; Jackson, Roderick K; Cox, Matthew; Cortes, Rodrigo; Deitchman, Benjamin H

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  17. Driving Efficiency in Higher Education

    ERIC Educational Resources Information Center

    Walz, Dru Anne

    2003-01-01

    For many industries, the economic crunch of the past few years has brought about an increased focus on controlling expenses, gaining process efficiencies and finding a competitive advantage in an overcrowded market. While community colleges are not immune to these challenges, they are limited in how they are able to respond. Unlike other areas of…

  18. Building an efficient supply chain.

    PubMed

    Scalise, Dagmara

    2005-08-01

    Realizing at last that supply chain management can produce efficiencies and save costs, hospitals are beginning to adopt practices from other industries, such as the concept of extended supply chains, to improve product flow. They're also investing in enterprise planning resource software, radio frequency identification and other technologies, using quality data to drive standardization and streamlining processes.

  19. 2001 Industry Studies: Munitions

    DTIC Science & Technology

    2001-01-01

    industry can pay, and the munitions industry has difficulty providing the lucrative stock options and other equity attractions that other industries...improve the financial strength of the munitions industry, and result in an enhanced ability to provide stock options and equity attractions to both

  20. A View of Industry.

    ERIC Educational Resources Information Center

    Swanson, Richard A., Ed.; And Others

    This monograph describes industry at a point in time from the perspective of the faculty in Industrial Education at the University of Minnesota. Section 1 describes the effort to define industry from the perspective of the industrial, business, and economic literature. The remainder of this section is divided into the two components of analysis…