Science.gov

Sample records for gel culture final

  1. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, February-August 1989

    SciTech Connect

    Grodzinsky, A.J.; Gluzband, Y.A.; Buschmann, M.D.

    1990-02-01

    The research accomplished during this project period focused on control experiments designed to establish whether cartilage cells from normal cartilage will continue to synthesize and accumulate normal extracellular matrix in agarose gel culture. This information is essential to properly design experiments to qualify changes in chondrocyte biosynthesis due to applied electromagnetic fields. The results suggest that both normal chondrocytes and swarm rat chondrosarcoma cells in agarose culture can continue to synthesize matrix macromolecules at a rate similar to or slightly higher than that in normal cartilage; also, that chondrocytes in agarose can successfully mediate assembly and accumulation of normal, mechanically functional extracellular matrix.

  2. Interaction of electromagnetic fields with chondrocytes in gel culture. Final report, 15 Jan 92-14 Jan 94

    SciTech Connect

    Grodzinsky, A.J.; Buschmann, M.D.; Gluzband, Y.A.

    1992-01-14

    The specific objectives of this research period were: (1) to quantify the effect of applied electric fields on chondrocyte metabolism, using a range of stimulation frequencies and amplitudes; (2) to compare the chondrocyte biosynthetic response to applied fields at early times in agarose gel culture before an extracellular matrix has accumulated and at later times after significant deposition of matrix around and between the cells; and (3) to begin to interpret the biosynthetic response to applied fields in terms of models of physical mechanisms. The results of these studies suggest that electric fields applied to chondrocytes in agarose can modulate the synthesis of proteoglycans and protein constituents. Biosynthesis may be inhibited or stimulated depending on the amplitude of the applied current density. In addition, the presence of extracellular matrix may enhance the ability of normal chondrocytes and cells in intact cartilage to respond to electric fields, although the presence of matrix was not required for the stimulatory response to be observed with Swarm rat chondrosarcoma cells.

  3. Gels for the conservation of cultural heritage.

    PubMed

    Baglioni, Piero; Dei, Luigi; Carretti, Emiliano; Giorgi, Rodorico

    2009-08-04

    Gels are becoming one of the most important tools for the conservation of cultural heritage. They are very versatile systems and can be easily adapted to the cleaning and consolidation of works of art. This perspective reviews the major achievements in the field and suggests possible future developments.

  4. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture.

    PubMed

    Laydi, F; Rahouadj, R; Cauchois, G; Stoltz, J-F; de Isla, N

    2013-01-01

    Collagen gels could be used as carriers in tissue engineering to improve cell retention and distribution in the defect. In other respect hydroxyapatite could be added to gels to improve mechanical properties and regulate gel contraction. The aim of this work was to analyze the feasibility to incorporate hydroxyapatite into collagen gels and culture mesenchymal stem cells inside it. Human bone marrow mesenchymal stem cells (hMSC-BM) were used in this study. Gels were prepared by mixing rat tail type I collagen, hydroxyapatite microparticles and MSCs. After polymerization gels were kept in culture while gel contraction and mechanical properties were studied. In parallel, cell viability and morphology were analyzed. Gels became free-floating gels contracted from day 3, only in the presence of cells. A linear rapid contraction phase was observed until day 7, then a very slow contraction phase took place. The incorporation of hydroxyapatite improved gel stability and mechanical properties. Cells were randomly distributed on the gel and a few dead cells were observed all over the experiment. This study shows the feasibility and biocompatibility of hydroxyapatite supplemented collagen gels for the culture of mesenchymal stem cells that could be used as scaffolds for cell delivery in osteoarticular regenerative medicine.

  5. Maintenance of Bacterial Cultures on Anhydrous Silica Gel

    ERIC Educational Resources Information Center

    Lennox, John E.

    1977-01-01

    Suspensions of 20 different cultures were grown on appropriate media, then pipetted into sterile anhydrous silica gel. Silica gel cultures after incubation and refrigerated storage were tested for viability. Results showed little mutation, low replication, low contamination, minimal expenses, and survival up to two years. (CS)

  6. A thixotropic nanocomposite gel for three-dimensional cell culture.

    PubMed

    Pek, Y Shona; Wan, Andrew C A; Shekaran, Asha; Zhuo, Lang; Ying, Jackie Y

    2008-11-01

    Thixotropic materials, which become less viscous under stress and return to their original state when stress is removed, have been used to deliver gel-cell constructs and therapeutic agents. Here we show that a polymer-silica nanocomposite thixotropic gel can be used as a three-dimensional cell culture material. The gel liquefies when vortexed--allowing cells and biological components to be added--and resolidifies to trap the components when the shear force from spinning is removed. Good permeability of nutrients and gases through the gel allows various cell types to proliferate and be viable for up to three weeks. Human mesenchymal stem cells cultured in stiffer gels developed bone-like behaviour, showing that the rheological properties of the gel can control cell differentiation. No enzymatic, chemical, or photo-crosslinking, changes in ionic strength or temperature are required to form or liquefy the gel, offering a way to sub-culture cells without using trypsin-a protease commonly used in traditional cell culture techniques.

  7. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    SciTech Connect

    Shen Chong; Meng Qin Schmelzer, Eva; Bader, Augustinus

    2009-07-15

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 {mu}M which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 {mu}M. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to {beta}-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  8. Micelle, microemulsions, and gels for the conservation of cultural heritage.

    PubMed

    Baglioni, Piero; Berti, Debora; Bonini, Massimo; Carretti, Emiliano; Dei, Luigi; Fratini, Emiliano; Giorgi, Rodorico

    2014-03-01

    Past restorations performed with acrylic and vinyl polymers showed detrimental effects to wall paintings that lead to the complete disfiguration of the painted surfaces. The removal of these materials performed with the traditional solvent-based methodology represents a real challenge to conservators and usually achieves very poor results. This review reports on the new palette, nowadays available to restorers, based on microemulsions, micellar systems, physical and chemical gels specifically formulated for the cleaning of cultural heritage artefacts. These systems have been developed in the last twenty years within the cultural framework of colloids and surface science.

  9. 76 FR 34773 - Final Safety Culture Policy Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... COMMISSION Final Safety Culture Policy Statement AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of final safety culture policy statement. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the... organizations performing or overseeing regulated activities establish and maintain a positive safety...

  10. 78 FR 27419 - Final Safety Culture Policy Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Bureau of Safety and Environmental Enforcement Final Safety Culture Policy Statement AGENCY: Bureau of... positive safety culture commensurate with the significance of their activities and the nature and complexity of their organizations and functions. The BSEE defines safety culture as the core values...

  11. Intermediate Amharic Cultural Reader. Final Report.

    ERIC Educational Resources Information Center

    Leslau, Wolf

    This reader is intended to provide material for the intermediate-level student of Amharic, as well as to introduce the student to the cultural and social life of Ethiopia. The 39 texts were each prepared by a different student at Haile Selassie I University, thus providing the reader with a variety of language styles. The Amharic texts are…

  12. Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells.

    PubMed

    Walenda, Gudrun; Hemeda, Hatim; Schneider, Rebekka K; Merkel, Rudolf; Hoffmann, Bernd; Wagner, Wolfgang

    2012-12-01

    Cell culture in regenerative medicine needs to facilitate efficient expansion according to good manufacturing practice requirements. Human platelet lysate (HPL) can be used as a substitute for fetal calf serum without the risk of xenogeneic immune reactions or transmission of bovine pathogens. Heparin needs to be added as anticoagulant before addition of HPL to culture medium; otherwise, HPL-medium forms a gel within 1 h. Here, we demonstrated that such HPL-gels provide a suitable 3D-matrix for cell culture that-apart from heparin-consists of the same components as the over-layered culture medium. Mesenchymal stromal cells (MSCs) grew in several layers at the interface between HPL-gel and HPL-medium without contact with any artificial biomaterials. Notably, proliferation of MSCs was much higher on HPL-gel compared with tissue culture plastic. Further, the frequency of initial fibroblastoid colony forming units (CFU-f) increased on HPL-gel. The viscous consistency of HPL-gel enabled passaging with a convenient harvesting and reseeding procedure by pipetting cells together with their HPL-matrix-this method does not require washing steps and can easily be automated. The immunophenotype and in vitro differentiation potential toward adipogenic, osteogenic, and chondrogenic lineage were not affected by culture-isolation on HPL-gel. Taken together, HPL-gel has many advantages over conventional plastic surfaces: it facilitates enhanced CFU-f outgrowth, increased proliferation rates, higher cell densities, and nonenzymatic passaging procedures for culture expansion of MSCs.

  13. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis.

    PubMed

    Temmerman, R; Scheirlinck, I; Huys, G; Swings, J

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.

  14. [Bacteriostatic and/or bactericidal extract of Aloe vera gel on cultures of Listeria monocytogenes].

    PubMed

    Ramírez Mérida, Luis Guillermo; Morón de Salim, Alba; Catinella, Rosangela; Castillo, Luis

    2012-03-01

    Listeria monocytogenes is a bacteria responsible for food borne diseases (FBD). The effect of Aloe vera gel extract as a possible bacteriostatic and/or bactericidal against Listeria monocytogenes, was checked by determined the minimum inhibitory concentration (MIC), the time of minimum inhibition (TMI) and minimum bactericidal concentration (MBC) solutions extract of Aloe vera gel in different concentrations on cultures of Listeria monocytogenes ATCC 7635. We applied the agar diffusion method, using solutions of extract of Aloe vera gel at concentrations of 0 to 100% for the MIC. The TMI was determined by growth curves in trypticase soy broth with an initial inoculum of Listeria monocytogenes ATCC 7635 of 108 CFU/mL in each solution. It was determined that the MIC was 10% extract of Aloe vera gel and TMI was 5 hours at concentrations of 10%, 20% and 30% of Aloe vera, while concentrations of 50, 80, 90 and 100%, the time was 8 hours. It was found that indeed the Aloe vera gel is bacteriostatic power on Listeria monocytogenes (p < 0.001), but yet, no bactericidal effect was obtained in our study.

  15. Factors affecting morphogenesis of rabbit gallbladder epithelial cells cultured in collagen gels.

    PubMed

    Mori, M; Miyazaki, K

    2000-05-01

    Although peptide growth factors play an important role in the morphogenesis of gallbladder, little is known about how they effect the morphogenesis of gallbladder epithelial cells. Rabbit gallbladder epithelial cells (RGEC) were isolated and cultured in monolayer or collagen gels. Epidermal growth factor (EGF), hepatocyte growth factor (HGF), epimorphin, transforming growth factor-beta 1 (TGF-beta 1), and fibroblast-conditioned medium (FCM) were added to the cultured cells to clarify the effects of these peptides and FCM on morphogenesis of RGEC. RGEC suspended in collagen gels form spherical cysts with morphologic polarity. EGF, HGF, epimorphin, and FCM promoted cyst maturation by accelerating the proliferation and aggregation of clear, polarized vesicles. In contrast, TGF-beta 1 markedly inhibited DNA synthesis in both monolayer and collagen gel cultures and promoted formation of branching structures in collagen gels. Furthermore, in the presence of EGF, TGF-beta 1 induced a drastic change in morphogenesis, with the formation of branching networks that showed cell-cell contact only at sites where branches touched. RGEC-forming multicellular cysts did not express vimentin but expressed significant amounts of cytokeratin and regained junctional complexes. In contrast, TGF-beta 1-treated cells strongly expressed vimentin along with branching structures and showed decreases in cytokeratin expression and junctional complexes. Thus, TGF-beta 1 induces a mesenchyme-like cell shape accompanied by cytoskeletal molecular changes, with loss of both epithelial polarization and junctional complexes. These results suggest that the morphogenetic program of RGEC is likely to be determined by the interaction of these peptides and the timing of their presence.

  16. OPTICA: Our Path Together Initiating Cultural Access. Final Report.

    ERIC Educational Resources Information Center

    Jackson, Susan, Comp.

    This final report describes the activities and outcomes of OPTICA (Our Path Together Initiating Cultural Access) programs. For each program an information sheet indicates the goal, total participation, status of the goal, and activities of the program. Programs included: (1) Hands On: ASL Creative Story Telling, a program that used children's…

  17. Final Evaluation for the Neighborhood Educational Cultural Centerette.

    ERIC Educational Resources Information Center

    Frost, Patricia

    Contained in this report is the final evaluation for the Neighborhood Educational Cultural Centerette Project. Objectives of the research project were to: (1) investigate, experiment with, create, and evaluate methods of instruction curriculum, and materials; analyze pupil learning styles and teacher-teaching styles; and to provide staff growth…

  18. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    PubMed

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  19. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Fitzsimmons, Michael [LANL

    2016-07-12

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  20. Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    PubMed

    Patil, Smruti; Chaudhury, Pulkit; Clarizia, Lisa; McDonald, Melisenda; Reynaud, Emmanuelle; Gaines, Peter; Schmidt, Daniel F

    2012-08-01

    In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been developed based on the combination of an aliphatic triisocyanate with pH-insensitive amine functional polyether and pH-sensitive poly(ethyleneimine) segments in a minimally toxic solvent suitable for the sol-gel reaction. The polyether component of the polyurea network is sufficiently hydrophilic to give rise to some level of swelling independent of environmental pH, while the poly(ethyleneimine) component contains tertiary amine groups providing pH sensitivity to the network in the form of enhanced swelling and release under acidic conditions. The reaction of these materials to form a network is rapid and requires no catalyst. The resultant material exhibits the desired pH-responsive swelling behavior and demonstrates its ability to simultaneously neutralize lactic acid and release glucose in both cell-free culture media and mammalian cell culture, with no detectable evidence of cytotoxicity or changes in cell behavior, in the case of either SA-13 human hybridomas or mouse embryonic stem cells. Furthermore, pH is observed to have a clear effect on the rate at which glucose is released from the hydrogel network. Such characteristics promise to maintain a favorable cell culture environment in the absence of human intervention.

  1. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  2. Omaha District Final Cultural Resource Site Monitoring Plan

    DTIC Science & Technology

    2014-06-01

    plan outlines the components and processes of cultural resource site monitoring. The Programmatic Agreement for the Operation and Management of the...Routine Monitoring Plan. Background: In 2004, the Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System for...Compliance with the National Historic Preservation Act, as amended, (March 19, 2004) was finalized. The agreement states; “is an attempt to address

  3. Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis.

    PubMed

    Alegría, Angel; González, Renata; Díaz, Mario; Mayo, Baltasar

    2011-03-01

    The composition and development of microbial population during the manufacture and ripening of two batches of a blue-veined cheese was examined by culturing and polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) (PCR-DGGE). Nine selective and/or differential media were used to track the cultivable populations of total and indicator microbial groups. For PCR-DGGE, the V3 hyper variable region of the bacterial 16S rRNA gene and the eukaryotic D1 domain of 28S rDNA were amplified with universal primers, specific for prokaryotes and eukaryotes, respectively. Similarities and differences between the results obtained by the culturing and the molecular method were recorded for some populations. Culturing analysis allows minority microbial groups (coliforms, staphylococci) to be monitored, although in this study PCR-DGGE identified a population of Streptococcus thermophilus that went undetected by culturing. These results show that the characterization of the microbial populations interacting and evolving during the cheese-making process is improved by combining culturing and molecular methods.

  4. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  5. Characterization of Mannheimia haemolytica in beef calves via nasopharyngeal culture and pulsed-field gel electrophoresis.

    PubMed

    Capik, Sarah F; White, Brad J; Lubbers, Brian V; Apley, Michael D; Mosier, Derek A; Larson, Robert L; Murray, Robert W

    2015-09-01

    Mannheimia haemolytica is a major bacterial component of bovine respiratory disease (BRD); unfortunately, very little is known about M. haemolytica transmission dynamics among cattle. Identifying potential variation in M. haemolytica populations over time and induction of nasopharyngeal colonization and subsequent shedding are 2 areas where knowledge is lacking. In our study, 2 separate loads of 20 mixed-origin, male calves were purchased through an order buyer on different dates. Deep nasopharyngeal cultures (NPC) were performed on all calves on arrival and, if M. haemolytica-negative, a second screening culture was obtained. Calves that were negative on 2 initial NPCs (NEG; n = 4) were subsequently challenged with a previously isolated field strain of M. haemolytica in both the upper and lower respiratory tract, individually housed, and then monitored for M. haemolytica shedding via NPCs at 0.5, 1, 3, 5, 7, and 9 days postchallenge. Naturally M. haemolytica-positive calves (2 per load) were kept for additional daily cultures (POS; n = 4). Individual calf M. haemolytica status for both the POS and NEG groups was inconsistent between study days. Additionally, pulsed-field gel electrophoresis performed on isolates from the positive cultures showed that the NEG calves did not shed the M. haemolytica challenge strain, but rather 2 distinct clusters of M. haemolytica were shared among POS and NEG calves regardless of their initial status. Although sample sizes were small, these findings illustrate how variable the results of a single nasopharyngeal swab can be and the challenges of using an individual culture to truly represent animal M. haemolytica status.

  6. An agarose gel-based neurosphere culture system leads to enrichment of neuronal lineage cells in vitro.

    PubMed

    Park, Kyuhee; Nam, Yeonju; Choi, Yongmun

    2015-05-01

    Stem cell-based therapy holds great potential especially for neurological disorders. However, clinical applications await further understanding of many aspects of stem cell differentiation and development of technology enabling manipulation of stem cells into desired cell types in the central nervous system. Here, we developed a new method that leads to enrichment of neuronal lineage cells in neural stem cell cultures. The protocol involves cultivation of primary cells derived from the forebrains of rat E18 embryos above a layer of nonadhesive hard agarose gel in the form of neurospheres. In contrast to the neurospheres that were cultured above an anti-adhesive hydrogel layer, the primary cells that were cultured above a layer of agarose gel preferentially differentiated into β-III tubulin-positive neurons when allowed to undergo differentiation in vitro.In an effort to investigate the mechanism behind this observation, we found that the gene expression of a vertebrate neuronal determination gene (neurogenin1) was enhanced in the neurospheres that proliferated above a layer of agarose gel as compared with the control, and the gene expression level of neurogenin1 was quite well correlated with the rigidity of agarose gel. These results indicate that agarose gel can contribute, at least in part, to enrich neuronal progenitors and immature postmitotic neurons during neurosphere formation and may provide additional information to establish efficient protocols for the neural stem cell-based study.

  7. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome.

    PubMed

    Fitzsimons, Michael S; Novotny, Mark; Lo, Chien-Chi; Dichosa, Armand E K; Yee-Greenbaum, Joyclyn L; Snook, Jeremy P; Gu, Wei; Chertkov, Olga; Davenport, Karen W; McMurry, Kim; Reitenga, Krista G; Daughton, Ashlynn R; He, Jian; Johnson, Shannon L; Gleasner, Cheryl D; Wills, Patti L; Parson-Quintana, Beverly; Chain, Patrick S; Detter, John C; Lasken, Roger S; Han, Cliff S

    2013-05-01

    The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.

  8. Dental Health Care Models of Southwest Cultures. Final Report.

    ERIC Educational Resources Information Center

    Pettibone, Timothy J.; Solis, Enrique, Jr.

    The major goal of this research was the development and validation of cultural models of dental health practices. The specific objectives were to determine if 3 cultural groups (American Indians, Mexican Americans, and Anglo Americans) differ in the dental health hygiene indices, characteristics, psychological factors, or social factors; to…

  9. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    PubMed

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition.

  10. An Application of Microcapsules Having Enzyme-degradable Gel Membrane to Cell Culture

    NASA Astrophysics Data System (ADS)

    Dobashi, Toshiaki; Koike, Michiru; Kobayashi, Kentaro; Maki, Yasuyuki; Yamamoto, Takao; Tanaka, Susumu

    Newly developed microcapsules having gelatin wall membrane was applied as a scaffold for suspension cell culture. The optimum preparation condition was determined, and the stability of the cultured human fibroblast cells using the microcapsules was examined at both protein and gene levels.

  11. Facing Finality: Cognitive and Cultural Studies on Death and Dying "Arabic Culture"

    ERIC Educational Resources Information Center

    Al-Meshhedany, Amna A. Hasan; Al-Sammerai, Nabiha S. Mehdi

    2010-01-01

    Semantics is a study of human beings cultural background, has from its beginning as a field of study been concerned with the study of humans understanding of culture. Understanding the meaning of "death" has been of great importance to many of the central theoretical developments in this field, especially as it imposes on studies of…

  12. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel

    PubMed Central

    ALVES, Luciana Bastos; MARIGUELA, Viviane Casagrande; GRISI, Márcio Fernando de Moraes; de SOUZA, Sérgio Luiz Scaombatti; NOVAES, Arthur Belém; TABA, Mário; de OLIVEIRA, Paulo Tambasco; PALIOTO, Daniela Bazan

    2015-01-01

    Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy. PMID:26018313

  13. In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture

    SciTech Connect

    Vescio, R.A.; Redfern, C.H.; Nelson, T.J.; Ugoretz, S.; Stern, P.H.; Hoffman, R.M.

    1987-07-01

    An in vitro test of cell sensitivity to drugs that indicates in vivo response is an important need in cancer therapy and cancer drug development. Toward this end, the authors previously developed a collagen gel-supported culture system for growth of human tumors. This three-dimensional culture system is general and grows tumors at high frequency directly from surgery or biopsy that maintain important in vivo properties in vitro, including tissue architecture. They report here that with autoradiographic techniques measuring cellular DNA synthesis the drug responses of individual cells within the tissue structure of in vitro-grown tumors can be determined. Twenty tumor classes, including all the major ones, have been measured in toto at >50% frequency. Quantitative and qualitative results show increasing cell kill with rising cytotoxic drug concentration, differential drug sensitivities of multiple cell types within individual cultured tumors, differential sensitivities of a series of tumors of the same histopathological classification to a single drug, differential sensitivities of individual tumors to a series of drugs, and sensitivity patterns of various tumor types similar to the sensitivities found in vivo. Therefore, the results indicate that potentially important therapeutic data can be obtained from tumor specimens growing in vitro for the individual cancer patient as well as for rational and relevant screening for new agents active against human solid tumors.

  14. In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture.

    PubMed Central

    Vescio, R A; Redfern, C H; Nelson, T J; Ugoretz, S; Stern, P H; Hoffman, R M

    1987-01-01

    An in vitro test of cell sensitivity to drugs that indicates in vivo response is an important need in cancer therapy and cancer drug development. Toward this end, we previously developed a collagen gel-supported culture system for growth of human tumors. This three-dimensional culture system is general and grows tumors at high frequency directly from surgery or biopsy that maintain important in vivo properties in vitro, including tissue architecture. We report here that with autoradiographic techniques measuring cellular DNA synthesis the drug responses of individual cells within the tissue structure of in vitro-grown tumors can be determined. Twenty tumor classes, including all the major ones, have been measured in toto at greater than 50% frequency. Quantitative and qualitative results show increasing cell kill with rising cytotoxic drug concentration, differential drug sensitivities of multiple cell types within individual cultured tumors, differential sensitivities of a series of tumors of the same histopathological classification to a single drug, differential sensitivities of individual tumors to a series of drugs, and sensitivity patterns of various tumor types similar to the sensitivities found in vivo. Therefore, the results indicate that potentially important therapeutic data can be obtained from tumor specimens growing in vitro for the individual cancer patient as well as for rational and relevant screening for new agents active against human solid tumors. Images PMID:3474637

  15. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  16. Levodopa-Carbidopa Intestinal Gel in Advanced Parkinson'd Disease: Final 12-Month, Open-Label Results

    PubMed Central

    Fernandez, Hubert H; Standaert, David G; Hauser, Robert A; Lang, Anthony E; Fung, Victor SC; Klostermann, Fabian; Lew, Mark F; Odin, Per; Steiger, Malcolm; Yakupov, Eduard Z; Chouinard, Sylvain; Suchowersky, Oksana; Dubow, Jordan; Hall, Coleen M; Chatamra, Krai; Robieson, Weining Z; Benesh, Janet A; Espay, Alberto J

    2015-01-01

    Motor complications in Parkinson's disease (PD) are associated with long-term oral levodopa treatment and linked to pulsatile dopaminergic stimulation. l-dopa-carbidopa intestinal gel (LCIG) is delivered continuously by percutaneous endoscopic gastrojejunostomy tube (PEG-J), which reduces l-dopa-plasma–level fluctuations and can translate to reduced motor complications. We present final results of the largest international, prospective, 54-week, open-label LCIG study. PD patients with severe motor fluctuations (>3 h/day “off” time) despite optimized therapy received LCIG monotherapy. Additional PD medications were allowed >28 days post-LCIG initiation. Safety was the primary endpoint measured through adverse events (AEs), device complications, and number of completers. Secondary endpoints included diary-assessed off time, “on” time with/without troublesome dyskinesia, UPDRS, and health-related quality-of-life (HRQoL) outcomes. Of 354 enrolled patients, 324 (91.5%) received PEG-J and 272 (76.8%) completed the study. Most AEs were mild/moderate and transient; complication of device insertion (34.9%) was the most common. Twenty-seven (7.6%) patients withdrew because of AEs. Serious AEs occurred in 105 (32.4%), most commonly complication of device insertion (6.5%). Mean daily off time decreased by 4.4 h/65.6% (P < 0.001). On time without troublesome dyskinesia increased by 4.8 h/62.9% (P < 0.001); on time with troublesome dyskinesia decreased by 0.4 h/22.5% (P = 0.023). Improvements persisted from week 4 through study completion. UPDRS and HRQoL outcomes were also improved throughout. In the advanced PD population, LCIG's safety profile consisted primarily of AEs associated with the device/procedure, l-dopa/carbidopa, and advanced PD. LCIG was generally well tolerated and demonstrated clinically significant improvements in motor function, daily activities, and HRQoL sustained over 54 weeks. © 2014 The Authors. Movement Disorders published by Wiley

  17. Final Technical Report for 'Investigations of the Role of Protozoa in Transformations of Marine Biopolymers using Phaeocytis Polymer Gels as a Model'

    SciTech Connect

    Lessard, Evelyn

    2003-04-01

    protists are able to use the polymer for nutrition and growth. This is the first demonstration of the ingestion and utilization of a natural marine biopolymer by protists. We also isolated three bacterial strains from our Phaeocystis cultures. All three bacterial strains were capable of growing solely on the polymer gels produced by Phaeocystis without added inorganic nitrogen sources. We used the bacterial and protist strains to investigate degradation and alterations (size, chemical composition) of Phaeocystis polymer gels by bacteria alone and in the presence of protists. In a typical experiment, bacterial abundance in the presence of protists was reduced to one third of that in the control due to grazing, but the degradation rate was about the same. This indicates either that grazing by the protist somehow enhanced the per cell rate of bacterial degradation and/or the protist was ingesting polymer directly. Residual polymer remained after weeks, but the mean the mean diameter of the polymers were shortened considerably to ca. 200 nm. These results, along with other lines of evidence, suggest that it may be the length of polymer that limits degradation, which has important implications for the large pool of refractory DOM in the oceans. Chemical analyses indicated that the polymers are carbohydrate-rich and that the nitrogen is not proteinaceous, but most likely in the form of low molecular weight compounds such as amino sugars or sialic acid, and that they had a surprisingly low C:N ratios (<9). Extracellular polymers may therefore provide a nutritional substrate for bacteria and protists without the need for other sources of nitrogen in nature.

  18. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    PubMed Central

    Marycz, Krzysztof; Śmieszek, Agnieszka; Grzesiak, Jakub; Siudzińska, Anna; Marędziak, Monika; Donesz-Sikorska, Anna; Krzak, Justyna

    2015-01-01

    The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine. PMID:25710015

  19. Diamond turned master molds for bulk casting of sol-gel silica diffractive optical elements. Final report

    SciTech Connect

    Maxey, L.C.; Nogues, J.L.; Moreshead, B.

    1997-08-01

    This CRADA has combined the resources of a national laboratory and an innovative small company to investigate the production of diffractive lenses in silica glass, using diamond turned master molds. The method for producing these lenses combines the unique characteristics of the sol-gel silica replication process, pioneered by Geltech, with the state-of-the-art diamond turning expertise of the Oak Ridge Centers for Manufacturing Technology (ORCMT). A conventional lens focuses light by using a curved surface to refract (or bend) the incoming light so that it will form an image. These lenses are usually thick glass elements with one or both surfaces shaped into convex or concave spherical shapes. Traditionally, these lenses are produced by grinding and polishing the glass to the desired shape. Light can also be focused using the phenomenon of diffraction, rather than refraction. A lens of this type uses precision microscopic surface features to bend the light so that it forms an image. The result is a lens that is thinner and lighter than its refractive counterpart. Production of diffractive lenses requires the ability to accurately produce the precision microscopic features necessary to achieve controlled diffraction. Diffractive lenses have, for the most part, been limited to infra-red applications because the manufacturing technologies available have not enabled their use at visible wavelengths. Except in limited applications, these lenses have remained laboratory curiosities, because they must be individually produced by diamond turning infra-red optical materials. Geltech`s sol-gel silica replication process offers the opportunity to mass produce diffractive lenses in high quality silica glass. These lenses can be produced by diamond turning the necessary precision microscopic surface features into master surfaces that are replicated into intermediate molds. These molds are then used to produce a batch of diffractive lenses using the sol-gel process.

  20. Adipose tissue can be generated in vitro by using adipocytes from human fat tissue mesenchymal stem cells seeded and cultured on fibrin gel sheet.

    PubMed

    Tran, Cong Toai; Huynh, Duy Thao; Gargiulo, Ciro; Tran, Le Bao Ha; Huynh, Minh Hang; Nguyen, Khanh Hoa; Filgueira, Luis; Strong, D Micheal

    2013-03-01

    The current study has developed an innovative procedure to generate ex novo fat tissue by culturing adipocytes from human fat tissue mesenchymal stem cells (hFTMSCs) on fibrin gel sheet towards applications in medicine and cosmetology. Fibrin gel has been obtained by combining two components fibrinogen and thrombin collected by human peripheral blood. By this procedure it was possible to generate blocks of fibrin gel containing adipocytes within the gel that show similar features and consistency to human fat tissue mass. Results were assessed by histological staining methods, fluorescent immune-histochemistry staining as well photos by scanning electron microscopy (SEM) to demonstrate the adhesion and growth of cells in the fibrin gel. This result opens a real possibility for future clinical applications in the treatment of reconstructive and regenerative medicine where the use of stem cell may eventually be a unique solution or in the field of aesthetic medicine where autograft fat stem cells may grant for a safer and better outcome with long lasting results.

  1. Cat and dog primordial follicles enclosed in ovarian cortex sustain viability after in vitro culture on agarose gel in a protein-free medium.

    PubMed

    Fujihara, M; Comizzoli, P; Wildt, D E; Songsasen, N

    2012-12-01

    Our objective was to examine the influences of differing media, protein supplementation and the microenvironment on cat vs dog primordial follicle viability in vitro. Ovarian cortical slices were cultured for 3, 9 or 15 days in α-minimum essential medium (α-MEM) or MEM supplemented with 10% fetal bovine serum (FBS), 10% knock-out serum replacement (KSR) or 0.1% polyvinyl alcohol (protein free). In a separate study, cat and dog ovarian tissues were cultured in protein-free α-MEM and MEM, respectively, in cell culture inserts, on 1.5% agarose gel or in 24-well cell culture plates (control). Follicle viability was assessed in both studies using calcein AM/ethidium homodimer and histological evaluation with haematoxylin/eosin staining. No cat follicle sustained viability beyond 9 days of in vitro culture in α-MEM compared to 37.5% of those incubated for 15 days in MEM in protein-free condition (p < 0.05). In contrast, α-MEM was superior (p < 0.05) to MEM in maintaining dog follicle viability (32.7% vs 8.1%) in protein-free condition at 15 days. Serum was detrimental (p < 0.05) to follicle survival in both species. Knock-out serum replacement supplementation and a protein-free condition supported cat follicle viability, whereas the latter was superior (p < 0.05) to the former for sustaining dog follicle survival. Likewise, dog follicle viability was enhanced (p < 0.05) by the agarose gel compared to the cell culture insert and control groups after 3 and 9 days of culture. For the cat, the agarose gel better (p < 0.05) supported follicle viability compared to the control, but was equivalent to the cell culture insert. Therefore, sustaining primordial follicle survival from intracortical ovarian slices requires a different in vitro microenvironment for the cat vs the dog. A key factor to enhancing survival of these early stage follicles in culture appears to be the use of agarose gel, which enhances follicle viability, perhaps by promoting gas exchange.

  2. The influence of particle size and static magnetic fields on the uptake of magnetic nanoparticles into three dimensional cell-seeded collagen gel cultures.

    PubMed

    Lewis, Emily E L; Child, Hannah W; Hursthouse, Andrew; Stirling, David; McCully, Mark; Paterson, David; Mullin, Margaret; Berry, Catherine C

    2015-08-01

    Over recent decades there has been and continues to be major advances in the imaging, diagnosis and potential treatment of medical conditions, by the use of magnetic nanoparticles. However, to date the majority of cell delivery studies employ a traditional 2D monolayer culture. This article aims to determine the ability of various sized magnetic nanoparticles to penetrate and travel through a cell seeded collagen gel model, in the presence or absence of a magnetic field. Three different sized (100, 200, and 500 nm) nanoparticles were employed in the study. The results showed cell viability was unaffected by the presence of nanoparticles over a 24-h test period. The initial uptake of the 100 nm nanoparticle into the collagen gel structure was superior compared to the larger sized nanoparticles under the influence of a magnetic field and incubated for 24 h. Interestingly, it was the 200 nm nanoparticles, which proved to penetrate the gel furthest, under the influence of a magnetic field, during the initial culture stage after 1-h incubation.

  3. Efficacy and Safety of a Low Molecular Weight Hyaluronic Acid Topical Gel in the Treatment of Facial Seborrheic Dermatitis Final Report

    PubMed Central

    Rowland Powell, Callie

    2014-01-01

    Objective: Hyaluronic acid sodium salt gel 0.2% is a topical device effective in reducing skin inflammation. Facial seborrheic dermatitis, characterized by erythema and or flaking/scaling in areas of high sebaceous activity, affects up to five percent of the United States population. Despite ongoing study, the cause of the condition is yet unknown, but has been associated with yeast colonization and resultant immune derived inflammation. First-line management typically is with keratolytics, topical steroids, and topical antifungals as well as the targeted immunosuppressant agents pimecrolimus and tacrolimus. The objective of this study was to evaluate the efficacy and safety of a novel topical antiinflammatory containing low molecular weight hyaluronic acid. Design and setting: Prospective, observational, non-blinded safety and efficacy study in an outpatient setting. Participants: Individuals 18 to 75 years of age with facial seborrheic dermatitis. Measurements: Outcome measures included scale, erythema, pruritus, and the provider global assessment, all measured on a five-point scale. Subjects were assessed at baseline, Week 2, Week 4, and Week 8. Results: Final data with 13 of 17 subjects are presented. Hyaluronic acid sodium salt gel 0.2% was shown through visual grading assessments to improve the provider global assessment by 65.48 percent from baseline to Week 4. Reductions in scale, erythema, and pruritus were 76.9, 64.3, and 50 percent, respectively, at Week 4. At Week 8, the provider global assessment was improved from baseline in 92.3 percent of subjects. Conclusion: Treatment with topical low molecular weight hyaluronic acid resulted in improvement in the measured endpoints. Final data reveal continued improvement from that seen in the interim data shown previously. Topical low molecular weight hyaluronic acid is another option that may be considered for the treatment of facial seborrheic dermatitis in the adult population. Compliance and tolerance were

  4. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture.

    PubMed

    Lee, Yeong-Bae; Polio, Samuel; Lee, Wonhye; Dai, Guohao; Menon, Lata; Carroll, Rona S; Yoo, Seung-Schik

    2010-06-01

    Time-released delivery of soluble growth factors (GFs) in engineered hydrogel tissue constructs promotes the migration and proliferation of embedded cells, which is an important factor for designing scaffolds that ultimately aim for neural tissue regeneration. We report a tissue engineering technique to print murine neural stem cells (C17.2), collagen hydrogel, and GF (vascular endothelial growth factor: VEGF)-releasing fibrin gel to construct an artificial neural tissue. We examined the morphological changes of the printed C17.2 cells embedded in the collagen and its migration toward the fibrin gel. The cells showed high viability (92.89+/-2.32%) after printing, which was equivalent to that of manually-plated cells. C17.2 cells printed within 1mm from the border of VEGF-releasing fibrin gel showed GF-induced changes in their morphology. The cells printed in this range also migrated toward the fibrin gel, with the total migration distance of 102.4+/-76.1microm over 3days. The cells in the control samples (fibrin without the VEGF or VEGF printed directly in collagen) neither proliferated nor migrated. The results demonstrated that bio-printing of VEGF-containing fibrin gel supported sustained release of the GF in the collagen scaffold. The presented method can be gainfully used in the development of three-dimensional (3D) artificial tissue assays and neural tissue regeneration applications.

  5. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  6. Towards a proteomic analysis of atopic dermatitis: a two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts.

    PubMed

    Park, Yong-Doo; Kim, So-Yeon; Jang, Hee-Sun; Seo, Eun-Young; Namkung, Jung-Hyun; Park, Hyung-Seok; Cho, Sang Yun; Paik, Young-Ki; Yang, Jun-Mo

    2004-11-01

    Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease typically characterized by a distribution of eczematous skin lesions with lichenification, pruritic excoriations, and dry skin with wide varieties of pathophysiologic aspects. Recently, AD was divided into extrinsic and intrinsic forms according to the presence or absence of an allergy. We investigated alterations in protein expression in primary cultured AD cells from the patient biopsy samples by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight. In the primary cultured fibroblasts, we obtained 31 candidate proteins from the two-dimensional gel image analysis in which 18 proteins were up-regulated, eight proteins were down-regulated and five proteins were post-translationally modified. From these 2-DE results, we found several candidate genes matched proteomic expression patterns by semiquantitative reverse transcription PCR. Since the exact mechanism of atopic alterations in fibroblasts remains unknown, our results may provide new clues to aid in understanding AD.

  7. Tetracaine oral gel in patients treated with radiotherapy for head-and-neck cancer: Final results of a phase II study

    SciTech Connect

    Alterio, Daniela . E-mail: daniela.alterio@ieo.it; Jereczek-Fossa, Barbara Alicja; Zuccotti, Gabriele Fulvio Phar; Leon, Maria Elena; Omodeo Sale, Emanuela Phar; Pasetti, Marcella; Modena, Tiziana Phar; Perugini, Paola; Mariani, Luigi; Orecchia, Roberto

    2006-02-01

    Purpose: We performed a phase II study to assess feasibility, pain relief, and toxicity of a tetracaine-based oral gel in the treatment of radiotherapy (RT)-induced mucositis. Methods and Materials: Fifty patients treated with RT for head-and-neck cancer with clinical evidence of acute oral mucositis of grade {>=}2 were scheduled to receive the tetracaine gel. A questionnaire evaluating the effect of the gel was given to all subjects. Results: In 38 patients (79.2%), a reduction in oral cavity pain was reported. Thirty-four patients (82.9%) reported no side effect. Seventy-one percent of patients had no difficulties in gel application. Unpleasant taste of the gel and interference with food taste were noticed in 5 (12%) and 16 patients (39%), respectively. Planned RT course was interrupted less frequently in patients who reported benefit from gel application than in patients who did not (p = 0.014). None of the patients who experienced pain relief needed a nasogastric tube, opposite to the patients who did not report any benefit from gel application (p = 0.001). Conclusion: Tetracaine oral gel administration seemed feasible and safe while reducing RT-induced mucositis-related oral pain in a sizeable proportion of treated head-and-neck cancer patients. A trial designed to compare efficacy of this gel vs. standard treatment is warranted.

  8. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film.

    PubMed

    Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe

    2015-09-01

    Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.

  9. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)--denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures.

    PubMed

    Wartiainen, Ingvild; Hestnes, Anne Grethe; Svenning, Mette M

    2003-10-01

    The methanotrophic community in arctic soil from the islands of Svalbard, Norway (78 degrees N) was analysed by combining group-specific PCR with PCR of the highly variable V3 region of the 16S rRNA gene and then by denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced for identification. The analyses were performed with DNA extracted directly from soil and from enrichment cultures at 10 and 20 degrees C. The two genera Methylobacter and Methylosinus were found in all localities studied. The DGGE band patterns were simple, and DNA fragments with single base differences were separated. The arctic tundra is a potential source of extensive methane emission due to climatic warming because of its large reservoirs of stored organic carbon. Higher temperatures due to climatic warming can cause increased methane production, and the abundance and activity of methane-oxidizing bacteria in the arctic soil may be important regulators for methane emission to the atmosphere.

  10. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  11. Cultural Tools and Learning Processes in a Changing World. Final Report to the Spencer Foundation.

    ERIC Educational Resources Information Center

    Greenfield, Patricia M.

    This research study centers on the interrelations among culture, social change, informal education, and cognitive development. The study explored how changing cultural and social conditions influence processes of informal education and their cognitive consequences. The overall goal was to examine the relationship between important cultural tools,…

  12. Collagen gels and the 'Bornstein legacy': from a substrate for tissue culture to cell culture systems and biomaterials for tissue regeneration.

    PubMed

    García-Gareta, Elena

    2014-07-01

    As collagen is the main structural component of connective tissues and skin, much effort was made in the past and still today to use it in cell culture applications. Moreover, collagen biomaterials are widely used in tissue regeneration, including the treatment of burns and chronic wounds. The great implications of the research carried out by Bornstein, Ehrmann and Gey on collagen preparations in the 1950s for cell culture and more recently tissue engineering and regeneration are described in this commentary. Specifically, it is explored why the 1958 paper on 'Reconstituted Rat-Tail Collagen Used as Substrate for Tissue Cultures on Coverslips in Maximow Slides and Roller Tubes' by M. B. Bornstein has made an invaluable contribution to the field.

  13. Photothermal Microneedle Etching: Improved Three-Dimensional Microfabrication Method for Agarose Gel for Topographical Control of Cultured Cell Communities

    NASA Astrophysics Data System (ADS)

    Moriguchi, Hiroyuki; Yasuda, Kenji

    2006-08-01

    We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 μm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 μm in diameter, formed in a 50-μm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.

  14. Platelet-Rich Gel Supernatants Stimulate the Release of Anti-Inflammatory Proteins on Culture Media of Normal Equine Synovial Membrane Explants

    PubMed Central

    Ríos, Diana L.; López, Catalina; Carmona, Jorge U.

    2015-01-01

    The aims were as follows: (1) to evaluate the effects at 48 and 96 h of two concentrations (25 and 50%) of leukocyte and platelet-rich gel (L-PRG) and pure PRG (P-PRG) supernatants on the production/degradation in normal equine synovial membrane explants (SME) of platelet derived growth factor isoform BB, transforming growth factor beta-1, tumor necrosis factor alpha, interleukin (IL-) 4 (IL-4), IL-1 receptor antagonist (IL-1ra), and hyaluronan (HA) synthesis and (2) to correlate these molecules with their respective PRG supernatant treatments. SME from 6 horses were cultured for 96 h with L-PRG and P-PRG supernatants at 25 and 50% concentrations, respectively. SME culture media were changed each 48 h and used for determination by ELISA of the molecules, which were also determined in synovial fluid. 25% L-PRG supernatant produced a sustained release over time of IL-1ra and a gradual release of HA, whereas 50% L-PRG supernatant produced a sustained increase over time of IL-4 and HA. 50% P-PRG supernatant produced an increased and sustained production of IL-1ra and IL-4. The cellular composition and the articular concentration (volume) of a platelet-rich plasma preparation could affect the anti-inflammatory and anabolic joint responses in horses with osteoarthritis. PMID:26090267

  15. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture

    PubMed Central

    1981-01-01

    Low density vascular smooth muscle (VSM) cell cultures maintained on extracellular-matrix(ECM)-coated dishes and plated in the presence of either plasma or serum will proliferate actively when serum-containing medium is replaced by a synthetic medium supplemented with three factors: high density lipoprotein (HDL, 250 micrograms protein/ml); insulin (2.5 micrograms/ml) or somatomedin C (10 ng/ml); and fibroblast growth factor (FGF, 100 ng/ml) or epidermal growth factor (EGF, 50 ng/ml). The omission of any of these three factors from the synthetic medium results in a lower growth rate of the cultures, as well as in a lower final cell density once cultures reach confluence. When cells are plated in the total absence of serum, transferrin (10 micrograms/ml) is also required to induce optimal cell growth. The effects of the substrate and medium supplements on the life span of VSM cultures have also been analyzed. Cultures maintained on plastic and exposed to medium supplemented with 5% bovine serum underwent 15 generations. However, when maintained on ECM-coated dishes the serum-fed cultures had a life span of at least 88 generations. Likewise, when cultures were maintained in a synthetic medium supplemented with HDL and either FGF or EGF, an effect on the tissue culture life span by the substrate was observed. Cultures maintained on plastic underwent 24 generations, whereas those maintained on ECM-coated dishes could be passaged repeatedly for 58 generations. These experiments demonstrate the influence of the ECM-substrate only in promoting cell growth but also in increasing the longevity of the cultures. PMID:6454694

  16. Cultural resources in the southern Lake Erie Basin: a predictive study. Final report

    SciTech Connect

    Curtis, S.A.; Hatch, J.W.; Bebrich, C.A.; Beckerman, I.C.; Hamilton, C.E.

    1981-01-01

    The text of this study has been structured around three basic themes: (1) the presentation of substantive findings that resulted from a review of the cultural-historical and environmental literature; (2) recommendations based on federal and state regulatory controls concerning the management of cultural resources in the Lake Erie Basin; and (3) the use of a conceptual framework--the cultural-ecological approach--to structure the collection and presentation of substantive findings and to provide a scientific basis for cultural resource management.

  17. Characteristics of the Culturally Different Client: A Guide for the Rehabilitation Counselor. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    The material focuses on the following areas: definition and purpose, some of the more common characteristics of the culturally different, counselor attitudes in serving the culturally different, counselor's knowledge of client's background, communication in the counseling relationship, and client attitudes toward helping services. Some…

  18. AN ANALYSIS OF THE CROSS-CULTURAL STUDY OF CHILDREN'S SOCIAL BEHAVIOR, FINAL REPORT.

    ERIC Educational Resources Information Center

    LONGABAUGH, RICHARD

    SYSTEMATICALLY OBSERVED, RECORDED, AND CODED INTERPERSONAL BEHAVIORS OF CHILDREN, AGES 3 TO 11, WERE EXAMINED FOR THE EXISTENCE OF CROSS-CULTURALLY CONSISTENT RELATIONS BETWEEN THEIR BEHAVIORS. THE STUDY SAMPLE CONSISTED OF OVER 130 CHILDREN FROM DIVERSE CULTURES, AND WAS SELECTED FROM COMMUNITIES IN NEW ENGLAND, MEXICO, AFRICA, INDIA, OKINAWA,…

  19. Effects of food and water quality on culturing and toxicity testing of Ceriodaphnia dubia: Final report

    SciTech Connect

    Cooney, J.D.; DeGraeve, G.M.; Moore, E.L.; Palmer, W.D.; Pollock, T.L.

    1988-05-01

    Effects of Food and Water Quality on Culturing and Toxicity Testing of Ceriodaphnia dubia. Tests of eight diets for culturing Ceriodaphnia have identified two foods that support high and consistent survival and reproduction. Use of these foods can contribute to the precision of EPA recommended effluent toxicity tests.

  20. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.

    PubMed

    Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon

    2015-05-01

    We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.

  1. Environmental guidelines for development of Cultural Resource Management plans. Final report

    SciTech Connect

    1995-08-01

    The purpose of this document is to provide guidelines to the DOE field managements with responsibility for the development of an individual Cultural Resource Management Plan for each DOE facility and program.

  2. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture.

    PubMed

    Yang, Hsiao-yin; van Ee, Renz J; Timmer, Klaas; Craenmehr, Eric G M; Huang, Julie H; Öner, F Cumhur; Dhert, Wouter J A; Kragten, Angela H M; Willems, Nicole; Grinwis, Guy C M; Tryfonidou, Marianna A; Papen-Botterhuis, Nicole E; Creemers, Laura B

    2015-09-01

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in cartilaginous tissues. Effectiveness of siRNA transfection using pNIPAAM formulated with either MgAl-LDH or MgFe-LDH platelets was investigated using osteoarthritic chondrocytes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing. No significant adverse effects of pNIPAAM/LDH hydrogels on cell viability were noticed. Cellular uptake of fluorescently labeled siRNA was greatly enhanced (>75%) in pNIPAAM/LDH hydrogel constructs compared to alginate, hyaluronan and fibrin gels, and was absent in pNIPAAM hydrogel without LDH platelets. When using siRNA against GAPDH, 82-98% reduction of gene expression was found in both types of pNIPAAM/LDH hydrogel constructs after 6 days of culturing. In the pNIPAAM/MgAl-LDH hybrid hydrogel, 80-95% of GAPDH enzyme activity was reduced in parallel with gene. Our findings show that the combination of a cytocompatible hydrogel and therapeutic RNA oligonucleotides is feasible. Thus it might hold promise in treating degeneration of cartilaginous tissues by providing supporting scaffolds for cells and interference with locally produced degenerative factors.

  3. Collagen gel droplet-embedded culture drug sensitivity testing in squamous cell carcinoma cell lines derived from human oral cancers: Optimal contact concentrations of cisplatin and fluorouracil

    PubMed Central

    Sakuma, Kaname; Tanaka, Akira; Mataga, Izumi

    2016-01-01

    The collagen gel droplet-embedded culture drug sensitivity test (CD-DST) is an anticancer drug sensitivity test that uses a method of three-dimensional culture of extremely small samples, and it is suited to primary cultures of human cancer cells. It is a useful method for oral squamous cell carcinoma (OSCC), in which the cancer tissues available for testing are limited. However, since the optimal contact concentrations of anticancer drugs have yet to be established in OSCC, CD-DST for detecting drug sensitivities of OSCC is currently performed by applying the optimal contact concentrations for stomach cancer. In the present study, squamous carcinoma cell lines from human oral cancer were used to investigate the optimal contact concentrations of cisplatin (CDDP) and fluorouracil (5-FU) during CD-DST for OSCC. CD-DST was performed in 7 squamous cell carcinoma cell lines derived from human oral cancers (Ca9-22, HSC-3, HSC-4, HO-1-N-1, KON, OSC-19 and SAS) using CDDP (0.15, 0.3, 1.25, 2.5, 5.0 and 10.0 µg/ml) and 5-FU (0.4, 0.9, 1.8, 3.8, 7.5, 15.0 and 30.0 µg/ml), and the optimal contact concentrations were calculated from the clinical response rate of OSCC to single-drug treatment and the in vitro efficacy rate curve. The optimal concentrations were 0.5 µg/ml for CDDP and 0.7 µg/ml for 5-FU. The antitumor efficacy of CDDP at this optimal contact concentration in CD-DST was compared to the antitumor efficacy in the nude mouse method. The T/C values, which were calculated as the ratio of the colony volume of the treatment group and the colony volume of the control group, at the optimal contact concentration of CDDP and of the nude mouse method were almost in agreement (P<0.05) and predicted clinical efficacy, indicating that the calculated optimal contact concentration is valid. Therefore, chemotherapy for OSCC based on anticancer drug sensitivity tests offers patients a greater freedom of choice and is likely to assume a greater importance in the selection of

  4. A Study of Method in Language and Culture Research; Phase II: Textual Analysis. Final Report.

    ERIC Educational Resources Information Center

    California State Univ. Foundation, Northridge.

    The development and testing of textual analysis procedures using Mexican-Spanish and Papago texts as a phase of a study of method in language and culture research are described in this research report. These procedures, which are designed to allow the examination of informational structure and cognitive content, (1) segment uniformized texts into…

  5. African American and Youth Culture as a Bridge To Writing Development. Final Report.

    ERIC Educational Resources Information Center

    Mahiri, Jabari

    A study examined whether the familiarity and competence that many African American students have with elements of rap music and culture could be used as a bridge to the production of other literate texts. Two high-school English teachers, one teaching at Fremont High School, East Oakland and the other teaching at Berkeley High School in Berkeley,…

  6. Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report

    SciTech Connect

    Goldman, J. C.

    1981-04-01

    Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

  7. Patterns in shrinking gels

    NASA Astrophysics Data System (ADS)

    Matsuo, Eriko Sato; Tanaka, Toyoichi

    1992-08-01

    POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.

  8. Instructional Centers for Pima Culture. Final Report: Academic Year 1968-69.

    ERIC Educational Resources Information Center

    Fullerton, Bill J., Comp.; Bell, John E., Comp.

    The document contains the final report of the establishment of instructional centers for schools of Arizona's Gila River Indian Community. The project was made possible through Title III funds of the Elementary and Secondary Education Act and was intended (1) to provide programs, services, and materials for making learning experiences more…

  9. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    SciTech Connect

    Freed, J.J.

    1982-03-01

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis.

  10. Culturally relevant science: An approach to math science education for hispanics. Final technical report

    SciTech Connect

    Montellano, B.O. de

    1996-11-14

    This progress report summarizes results of a teacher workshop. A letter sent to 17 teachers who had participated in the workshop requested a report of any activities undertaken and copies of lesson plans and materials developed. Only nine responses were received, and not all of them demonstrated a satisfactory level of activity. Teachers who submitted materials showing the most promise were invited to participate in the Summer Writing Workshop. A partial first draft of a companion volume for the teacher`s manual was written which provides a rationale for culturally relevant science and presents the cultural and scientific background needed. The outline of the book is presented in Appendix 1. Appendix 2 is a sample chapter from the book.

  11. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  12. Culturally Aware Agents for Training Environments (CAATE): Phase I Final Report

    DTIC Science & Technology

    2009-01-01

    relationships.  Personality. As with culture and emotion, there are dimension-based theories of personality that can capture many important aspects of...upset. o Intonation/Tone. NPCs can use sarcasm or emotional intonation to indicate dislike, attitudes, and emotions. o Use of humor. Jokes and humor...interface between the CAATE agents and the Half-Life 2 simulation platform with portability in mind . One key aspect of this portability relates to the basic

  13. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Cultural Resources.

    SciTech Connect

    Columbia River System Operation Review

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes.

  14. Rational Synthesis of Imprinted Organofunctional Sol-Gel Materials for Toxic Metal Separation - Final Report - 09/15/1997 - 09/14/2001

    SciTech Connect

    Xue, Ziling; Barnes, Craig E.; Dai, Shang

    2001-09-14

    Current cost estimates for the environmental remediation of contaminated installations under the auspices of the Department of Energy (DOE) are staggering. On this basis alone, there is a critical need to develop the scientific basis for new approaches to the treatment and disposal of toxic metal ions from wastes or contaminated areas at many DOE sites. The overall goal of this project is to rationally design and synthesize imprinted, hybrid inorganic-organic sol-gel materials containing metal binding sites through template approaches, and to develop a scientific basis for metal ion binding and recognition by such tailored hybrid inorganic-organic materials. After removal of the template M, functionalized cavities are created which contain both grafted binding sites and functionality inherent to the silica network (Si-OH, Si-O-Si). These cavities are expected to ''recognize'' and bind the target metal ions through the high affinities between the binding sites and M, and their retained shapes. Our approaches utilize both the metal ion binding and the tailored impressions of the template metal ions in the imprinted cavities. Such imprinted organofunctional sol-gel networks are expected to exhibit both high selectivity and capacity for binding targeted ions in fluid waste streams. The principles of sol-gel chemistry and imprinting techniques will guide our approaches to optimize the chemical and physical properties of the imprinted organofunctional sol-gel materials. Cold isotopes or non-radioactive surrogate ions of similar size and charge will be used in imprinting investigations to minimize hazardous waste production. The design strategy we will follow is based on imprinted binding sites cross-linked by rigid, hydrophilic inorganic SiO{sub 2} or MiO{sub 2} networks. These hydrophilic metal oxide-based materials are expected to exhibit fast ion mass transfer and binding kinetics in comparison to functionalized hydrophobic organic polymers. Success in this research

  15. Final Environmental Assessment for the Integrated Cultural Resources Management Plan for Edwards Air Force Base, California

    DTIC Science & Technology

    2005-07-01

    Ocean by the Coastal Range to the west and the San Gabriel Mountains to the south. The MDAB has an arid continental desert climate. The climate of...River Indian Tribes Beverly Folks Pauline Gallegos FINAL July 2005 70 ICRMP EA Ernie Garcia , Tejon Indian Tribe Christine Hernandez Lucille Hicks...Band of Mission Indians Deron Marquez , San Manuel Band of Mission Indians Kathy Morgan, Tejon Indian Tribe George Murillo, San Manuel Band of

  16. Culturally relevant science: An approach to math science education for Hispanics. Final technical report

    SciTech Connect

    Ortiz de Montellano, B.

    1996-11-14

    As planned a letter was sent out to 17 teachers who had participated in a Summer 1994 workshop on ``Culturally Relevant Science for Hispanics`` at Michigan State. These teachers were supposed to have spent the intervening time developing lesson plans and curricula. The letter requested a report of any activities undertaken and copies of lesson plans and materials developed by February 1996 with a stipend of $400 for satisfactory reports. It was a disappointment to only get 9 responses and not all of them demonstrating a satisfactory level of activity. Diana Marinez, Dean of Science at Texas A and M University, Corpus Christi, who is the other developer of this curriculum and the author reviewed the submitted materials and chose those showing the most promise to be invited to participate in the Summer Writing Workshop. Spring of 1996 and particularly in May--June, the author wrote a partial first draft of a companion volume for the teacher`s manual which would provide a rationale for doing culturally relevant science, present the cultural and the scientific background that teachers would need in order to be able to teach. One of the goals of this curriculum is that it should be off-the-shelf ready to teach and that teachers would not have to do extra research to encourage its adoption. The outline of the book is appendix 1. The Writing Workshop was held at Texas A and M University, Corpus Christi from July 14 to July 27, 1996. Participating teachers chose topics that they were interested in developing and wrote first drafts. These were distributed to all participants and critiqued by the workshop directors before being rewritten. Some teachers were more productive than others depending on their science background. In total an impressive number of lesson plans were written. These lesson plans are listed in Appendix 3. Appendix 4 is a sample lesson. Work still needs to be done on both the source book and the teachers` manual.

  17. Historic, enthnohistoric and prehistoric cultural resource inventory. Final technical report, November 1980-May 1982

    SciTech Connect

    Not Available

    1982-01-01

    The goal of this study is to provide a literature search and write a historical narrative of the cultural significance of the study area for the proposed WyCoalGas Inc., pipeline, railroad, well fields, and coal gasification plant. The request for a cultural resource investigation states at a minimum the study shall be a literature search on the narrow one mile corridor along the proposed pipelines, areas included within the various facilities plus a one mile buffer surrounding these facilities. In addition, the study must be tied into appropriate local, state, and national history. The writer of this history has felt a responsibility for providing a realistic assessment of the themes of the study area's historical development. Several ideas have been concentrated upon: its American Indian heritage; the Euro-American's exploitive relationship with the region; and the overriding fragile, arid nature of its land. It is hoped that the government agencies and ultimately the energy company will feel a similiar responsibility toward the study area's historical integrity.

  18. [Sixty years ago, cell cultures finally permitted the poliomyelitis virus to multiply easily].

    PubMed

    Chastel, Claude

    2009-01-01

    In 1949, three American virologists, John F. Enders, Thomas H. Weller and Frederick C. Robbins, from the Harvard Medical Scholl and working at the Children's Medical Centre, Boston, Mass., have provoked a true revolution in Virology. Here, they have succeeded in readily multiplying the three poliomyelitis viruses in vitro, in non-nervous cells cultures. A few years afterwards (1954), they were collectively honoured by the Nobel Prize of Physiology and Medicine. This discovery not only has quickly led to the production of efficient poliomyelitis vaccines (J. E. Salk, 1953; A. B. Sabin, 1955) but also has permitted to easily isolate a number of already known viruses (measles, rubella, mumps, herpes simplex and herpes zoster) or until then totally unknown viruses (adenovirus, echovirus, cytomegalovirus). These progresses have significantly contributed to improve diagnosis, sanitary surveillance and vaccinal prophylaxis of human and animal viral diseases. Moreover, the cells cultures techniques have also benefited to other domains of fundamental Biology, such as cellular biology, genetics, cancerology, biology of the reproduction and regenerative medicine as well.

  19. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  20. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  1. Some Thoughts on The Definition of a Gel

    NASA Astrophysics Data System (ADS)

    Nishinari, Katsuyoshi

    To avoid the confusion of the concept of a gel frequently encountered in daily markets of food, cosmetics, and other industrial products, the definition of a gel is revisited. Recent proposals of the definition of a gel are overviewed, and classifications of various gels from different points of view are described. Discussion is mainly focused on the gel-sol transition and the difference between the structured liquid and the gel, and the classification of gels by temperature dependence of elastic modulus. Finally, the definition of a gel is proposed as a working hypothesis from rheological and structural view points.

  2. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces

    PubMed Central

    Haisma, Elisabeth M.; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E.; Cordfunke, Robert A.; Schrumpf, Jasmijn; Limpens, Ronald W. A. L.; Schimmel, Kirsten J. M.; den Hartigh, Jan; Hiemstra, Pieter S.; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb

    2016-01-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  3. Environmental transformations and cultural changes: A multidisciplinary case study for the Late Glacial and Final Palaeolithic from Northern Germany

    NASA Astrophysics Data System (ADS)

    Turner, F.; Tolksdorf, J. F.; Viehberg, F.; Schwarz, A.; von Bramann, U.; Bittmann, F.; Kaiser, K.; Schwalb, A.; Staesche, U.; Breest, K.; Pott, R.; Veil, S.

    2012-04-01

    In contrast to younger periods, studies integrating archaeological and environmental records for the Palaeolithic are still rare. Especially our knowledge about interactions between the drastic climatic/environmental changes and cultural developments during the Late Glacial is very limited. This multidisciplinary case study from river Jeetzel, a western Elbe tributary in Northern Germany, combines high resolution palaeoenvironmental investigations with fine-scaled archaeological research on stratified and surface sites. Various dating methods (palynostratigraphy, radiocarbon- and OSL-dating) and analyses of environmental and climatological proxies (pollen and plant macro-remains, ostracods, diatoms and green algae) on river palaeochannel sediments allow detailed reconstruction of interactions between Late Glacial climate, vegetation and fluvial developments. Biostratigraphical analyses on stratified archaeological sites and dating of charcoal / bone fragments from artefact scatters place the Late Palaeolithic occupation of Early Federmesser groups in an environmental context. Thus the former production of hitherto unknown amber art (amongst others a figurine representing a moose) can be ascribed to the Older Dryas and Early Allerød, which are the periods of main Late Glacial afforestation. Therewith our investigations suggest that Final Palaeolithic cultural changes may have been triggered by climatic and environmental transformations.

  4. Cell response to silica gels with varying mechanical properties

    NASA Astrophysics Data System (ADS)

    Lefebvre, Molly Ann

    Sol-gel encapsulation has a variety of applications in biotechnology and medicine: creating biosensors, biocatalysts, and bioartificial organs. However, encapsulated cell viability is a major challenge. Consequently, interactions between cells and their 3D microenvironment were studied through rheological, metabolic activity, and extraction studies to aid in the development of new gel protocols. The cells were encapsulated in variations of three silica sol-gels with varying stiffness. It was hypothesized that the cell viability and the amount of extracted cells would depend on gel stiffness. For two gels, there was no apparent correlation between the gel stiffness and the cell viability and extracted cell quantity. These gels did strongly depend on the varying gel ingredient, polyethylene glycol. The third gel appeared to follow the hypothesized correlation, but it was not statistically significant. Finally, one gel had a significantly longer period of cell viability and higher quantity of extracted cells than the other gels.

  5. The DOE subsurface microbial culture collection at Florida State University. Final technical report, January 16, 1996--February 15, 1997

    SciTech Connect

    Balkwill, D.L.

    1998-05-25

    This report describes the research that supports the Subsurface Science Program by maintaining a culture collection of microorganisms isolated from deep terrestrial subsurface environments (the Subsurface Microbial Culture Collection, or SMCC). The general distribution of cultures and data was identified as an important function of the SMCC. The accomplishments related to this function of the culture collection are described.

  6. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the…

  7. SisterTalk: final results of a culturally tailored cable television delivered weight control program for Black women

    PubMed Central

    2013-01-01

    Background Obesity among Black women continues to exceed that of other women. Most weight loss programs created without reference to specific cultural contexts are less effective for Black than White women. Weight control approaches accessible to Black women and adapted to relevant cultural contexts are important for addressing this problem. This paper reports the final results of SisterTalk, the randomized controlled trial of a cable TV weight control program oriented toward Black women. Methods A five group design included a comparison group and a 2 × 2 factorial comparison of a) interactive vs. passive programming and b) telephone social support vs no telephone support, with 12 weekly initial cable TV programs followed by 4 monthly booster videos. At baseline, 3, 8, and 12 months post randomization, telephone and in person surveys were administered on diet, physical activity, and physical measurements of height and weight were taken to calculate body mass index (BMI). Analysis of variance (ANOVA) was used to examine differences over time, and between treatment and comparison groups. Dose variables reflecting use of the TV/video and written materials were also assessed. Results At 3 months, BMI, weight, and dietary fat were significantly lower and physical activity significantly higher among women exposed to the Cable TV intervention compared to the wait-list comparison group. Significant dietary fat differences were still observed at 8 and 12 month evaluations, but not BMI or physical activity differences. Main effects were not observed for interactive programming or enhanced social support at any time point. Within the intervention group, higher watching of the TV series and higher reading of educational materials were both (separately) associated with significantly lower dietary fat. Conclusions Cable TV was an effective delivery channel to assist Black women with weight control, increasing physical activity and decreasing dietary fat during an initial

  8. Rapid identification of gram-negative bacteria with and without CTX-M extended-spectrum β-lactamase from positive blood culture bottles by PCR followed by microchip gel electrophoresis.

    PubMed

    Fujita, Shin-ichi; Yosizaki, Kentaro; Ogushi, Thikako; Uechi, Kouhei; Takemori, Yukiko; Senda, Yasuko

    2011-04-01

    We evaluated the usefulness of PCR analysis of the 16S-23S rRNA gene internal transcribed spacer (ITS) and the CTX-M extended-spectrum β-lactamase (ESBL) followed by microchip gel electrophoresis (MGE) for direct identification and CTX-M detection of Gram-negative bacteria (GNB) from positive blood culture bottles. Of 251 GNB isolated from blood cultures containing a single bacterium, 225 (90%) were correctly identified at the species level directly from positive blood culture bottles by comparing the ITS-PCR patterns of the sample strain with those of the control strains. There were no cases of incorrect identification. Limitations encountered included the inability to detect mixed cultures (four bottles) as well as some species (Enterobacter species and Klebsiella oxytoca) demonstrating identical ITS-PCR patterns. A total of 109 ESBL-producing isolates from various clinical materials obtained between January 2005 and December 2008 were examined for bla(CTX-M), bla(SHV), and bla(TEM) genes by PCR and sequences of PCR products. CTX-M ESBL was detected in 105 isolates, and SHV ESBL was detected in two isolates. The remaining two isolates (K. oxytoca) were shown to harbor bla(OXY.) Twenty (19%) of 104 Escherichia coli isolates from blood cultures were suspected to produce ESBL by the combination disk method, and these isolates were shown to harbor CTX-M ESBL by PCR-MGE. The results were obtained within 1.5 h at a calculated cost of $6.50 per specimen. In conclusion, simultaneous detection of ITS length polymorphisms and bla(CTX)-(M) by single PCR followed by MGE is useful for rapid, cost-effective, and reliable species-level identification of CTX-M ESBL-producing GNB responsible for bloodstream infections.

  9. Construction of Mesenchymal Stem Cell–Containing Collagen Gel with a Macrochanneled Polycaprolactone Scaffold and the Flow Perfusion Culturing for Bone Tissue Engineering

    PubMed Central

    Yu, Hye-Sun; Won, Jong-Eun; Jin, Guang-Zhen

    2012-01-01

    Abstract A novel bone tissue-engineering construct was developed by using poly(ɛ-caprolactone) (PCL)-macrochanneled scaffolds combined with stem cell-seeded collagen hydrogels and then applying flow perfusion culture. Rat mesenchymal stem cells (MSCs) were loaded into collagen hydrogels, which were then combined with macrochanneled PCL scaffolds. Collagen hydrogels were demonstrated to provide favorable growth environments for MSCs and to foster proliferation. Cell number determination identified retention of substantially fewer (50–60%) cells when they were seeded directly onto macrochanneled PCL than of cells engineered within collagen hydrogels. Additionally, the cells actively proliferated within the combined scaffold for up to 7 days. MSC-loaded collagen–PCL scaffolds were subsequently cultured under flow perfusion to promote proliferation and osteogenic differentiation. Cells proliferated to levels significantly higher in flow perfusion culture than that under static conditions during 21 days. A quantitative polymerase chain reaction (QPCR) assay revealed significant alterations in the transcription of bone-related genes such as osteopontin (OPN), osteocalcin (OCN), and bone sialoprotein (BSP), such as 8-, 2.5-, and 3-fold induction, respectively, after 10 days of flow perfusion relative to those in static culture. OPN and OCN protein levels, as determined by Western blot, increased under flow perfusion. Cellular mineralization was significantly enhanced by the flow perfusion during 21 and 28 days. Analyses of mechanosensitive gene expression induced by flow perfusion shear stress revealed significant upregulation of c-fos and cyclooxygenase-2 (COX-2) during the initial culture period (3–5 days), suggesting that osteogenic stimulation was possible as a result of mechanical force-driven transduction. These results provide valuable information for the design of a new bone tissue-engineering system by combining stem cell-loaded collagen hydrogels with

  10. Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model.

    PubMed

    Twardowski, Rachel L; Black, Lauren D

    2014-05-01

    A primary impediment to cardiac tissue engineering lies in the inability to adequately vascularize the constructs to optimize survival upon implantation. During normal angiogenesis, endothelial cells (ECs) require a support cell to form mature patent lumens and it has been demonstrated that pericytes, vascular smooth muscle cells and mesenchymal stem cells (MSCs) are all able to support the formation of mature vessels. In the heart, cardiac fibroblasts (CFs) provide important electrical and mechanical functions, but to date have not been sufficiently studied for their role in angiogenesis. To study CFs role in angiogenesis, we co-cultured different concentrations of various cell types in fibrin hemispheres with appropriate combinations of their specific media, to determine the optimal conditions for EC growth and sprout formation through DNA analysis, flow cytometry and immunohistology. ECs proliferated best when co-cultured with CFs and analysis of immunohistological images demonstrated that ECs formed the longest and most numerous sprouts with CFs as compared to MSCs. However, ECs were able to produce more multicellular sprouts when in culture with the MSCs. Moreover, these effects were dependent on the ratio of support cell to EC in co-culture. Overall, CFs provide a good support system for EC proliferation and sprout formation; however, MSCs allow for more multicellular sprouts, which is more indicative of the in vivo process.

  11. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  12. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    SciTech Connect

    Not Available

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  13. A PRELIMINARY STUDY OF ACQUIRING CROSS-CULTURAL INTERACTION SKILLS THROUGH SELF-CONFRONTATION. FINAL REPORT JUL 1964-AUG 1964.

    ERIC Educational Resources Information Center

    EACHUS, HERBERT T.; HAINES, DONALD B.

    AN EXPERIMENT CARRIED OUT TO ASSESS THE RELATIVE EFFECTIVENESS OF TWO METHODS OF TRAINING UNITED STATES AIR FORCE MILITARY ADVISORS IN CROSS-CULTURAL SKILLS REQUIRED SUBJECTS TO PLAY THE ROLE OF AN AMERICAN AIR FORCE CAPTAIN WHO HAD TO INTERACT, IN SPECIFIED WAYS, WITH A FOREIGN COUNTERPART PLAYED BY AN ACTOR. A LIST OF 34 BEHAVIORS APPROPRIATE TO…

  14. ACQUISITION AND RETENTION OF CROSS-CULTURAL INTERACTION SKILLS THROUGH SELF-CONFRONTATION. FINAL REPORT APR 1965-SEP 1965.

    ERIC Educational Resources Information Center

    EACHUS, HERBERT T.; KING, PHILIP H.

    AN EXPERIMENT TESTED THE RELATIVE EFFECTIVENESS OF TWO TECHNIQUES FOR TRAINING UNITED STATES AIR FORCE MILITARY ADVISORS IN CROSS CULTURAL COMMUNICATION SKILLS. RETENTION OF SKILLS OVER TIME AND EFFECTS OF ATTITUDE ON LEARNING WERE ALSO STUDIED. SUBJECTS PLAYED THE ROLE OF AN AIR FORCE CAPTAIN INTERACTING WITH A FOREIGN COUNTERPART, PLAYED BY A…

  15. A NATIONAL DEMONSTRATION PROJECT UTILIZING TELEVISED MATERIALS FOR THE FORMAL EDUCATION OF CULTURALLY DISADVANTAGED PRESCHOOL CHILDREN. FINAL REPORT.

    ERIC Educational Resources Information Center

    MUKERJI, ROSE; AND OTHERS

    TO SUPPLY DISADVANTAGED PRESCHOOL CHILDREN WITH CULTURALLY STIMULATING EXPERIENCES, A TV SERIES, "ROUNDABOUT," WAS DESIGNED TO BE USED IN WASHINGTON, D.C. INNER-CITY PRESCHOOL AND DAY CARE CENTERS. THE 15-MINUTE PROGRAMS WERE TO INTRODUCE NEW EXPERIENCES AND SUPPLEMENT REGULAR ACTIVITIES. IT WAS HOPED THAT THE CHILDREN WOULD IDENTIFY…

  16. Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing Denaturing Gradient Gel Electrophoresis of 16S ribosomal RNA gene fragments

    PubMed Central

    2013-01-01

    Background The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples were collected in May, 2005 and 2006, at the sampling stations A (10°30′ N, 64°40′ W), B (10°40′ N, 64°45′ W) and D (10°43’N, 64°32’W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate as carbon source. To analyze the composition of enrichment cultures, we performed DNA extraction, PCR-DGGE, and sequencing of selected bands. Results DGGE results indicate that many bacterial genera were present that are associated with the sulfur cycle, including Desulfovibrio spp., as well as heterotrophs belonging to Vibrio, Enterobacter, Shewanella, Fusobacterium, Marinifilum, Mariniliabilia, and Spirochaeta. These bacterial populations are related to sulfur coupling and carbon cycles in an environment of variable redox conditions and oxygen availability. Conclusions In our studies, we found an association of SRB-like Desulfovibrio with Vibrio species and other genera that have a previously defined relevant role in sulfur transformation and coupling of carbon and sulfur cycles in an environment where there are variable redox conditions and oxygen availability. This study provides new information about microbial species that were culturable on media for SRB at anaerobic conditions at several locations and water depths in the Cariaco Basin. PMID:23981583

  17. Combinatorial methods in sol-gel technology

    NASA Astrophysics Data System (ADS)

    Rantala, Juha T.; Kololuoma, Terho K.; Kivimaki, L.

    2000-05-01

    Sol-gel processing consists several variable parameters during materials synthesis and post processing steps. The sol-gel synthesis is rather sensitive for the parameters such as pH, temperature, type of catalyst, reaction time etc. However, this sensitivity can be taken as an advantage when developing and studying new materials and their properties. Furthermore, since the sol-gel technology mainly describes the fabrication of solid state materials from a liquid phase by applying metal alkoxides or metal salts as precursors, the post processing such as sintering has critical effects on the final form and properties of the solid material. Combinatorial chemistry and methods are valuable tools to estimate the effects of different variables and to build-up combinatorial libraries for the sol-gel technique. This paper generally describes potentials and the usage motivation of combinatorial chemistry in the sol-gel technology by taking into account some major steps in the synthesis and processing which are valuable for the estimation of the final product properties. Different kind of post processing steps in the combinatorial manner are studied in details. As an example the post processing of sol-gel derived semiconductor oxides and photosensitivity of hybrid sol-gel glasses are presented. The combinatorial treatment and measurement methods for these materials are explained.

  18. Redox-responsive macroscopic gel assembly based on discrete dual interactions.

    PubMed

    Nakahata, Masaki; Takashima, Yoshinori; Harada, Akira

    2014-04-01

    The macroscopic self-assembly of polymeric hydrogels modified with β-cyclodextrin (βCD gel), ferrocene (Fc gel), and styrenesulfonic acid sodium salt (SSNa gel) was investigated. Under reductive conditions, the Fc gel selectively adhered to the βCD gel through a host-guest interaction. On the other hand, the oxidized ferrocenium (Fc(+)) gel selectively adhered to the SSNa gel through an ionic interaction under oxidative conditions. The adhesion strength was estimated by a tensile test. We finally succeeded in forming an ABC-type macroscopic assembly of all three gels through two discrete noncovalent interactions.

  19. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    -linked gels becomes increasingly inhomogeneous with the approach to the cross-link saturation threshold at which the heterogeneity parameter diverges. Analytical expressions for the correlators of deformed gels are derived in both the long wavelength and the short wavelength limits and an exact expression for the total static structure factor, valid for arbitrary wavelengths, is obtained for gels in the state of preparation. We adapt the RPA results to gels permeated by free labelled chains and to gels in good solvents (in the latter case, excluded volume effects are taken into account exactly) and make predictions which can be directly tested by scattering and thermodynamic experiments. Finally, we discuss the limitations and the possible extensions of our work.

  20. Oral Traditions of Micronesians as an Index to Culture Change Reflected in Micronesian College Graduates. Final Report.

    ERIC Educational Resources Information Center

    Mitchell, Roger E.

    The study on which this final report is based focused on selected Micronesian students at the University of Guam who, after receiving their degrees, will return to their home islands to assume positions requiring them to function as intermediaries between the American and Micronesian approaches of life. Interviews with these students and with…

  1. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  2. Level II Cultural Resource investigation for the Texoma Distribution Enhancements project, Cameron and Calcasieu Parishes, Louisiana: Final report

    SciTech Connect

    LeeDecker, C. H.; Holland, C. C.

    1987-10-01

    A Level II Cultural Resource Survey was completed for the Texoma Distribution Enhancements project, located in Cameron and Calcasieu Parishes, Louisiana. The 13-mile pipeline extends from Strategic Petroleum Reserve No. 3 to a terminus near Vincent Landing. Located in Louisiana's southwest coastal zone, the pipeline will traverse extensive marsh lands as well as upland prairie terrace areas. Present land use within the project area consists primarily of undeveloped marsh land and cattle range. The study methods included background research, intensive pedestrian survey with systematic shovel testing, a boat survey, and laboratory analysis of recovered artifact collections. One historic site, 16CU205, was identified during the field survey, and it was tested for National Register eligibility. The site is assignable to the Industrialization and Modernization (1890-1940) Cultural Unit. Archaeological testing indicates that it is a rural residence or farmstead, with a house and one outbuilding within the proposed right-of-way. The site lacks significant historical association and sufficient archaeological integrity to merit inclusion on the National Register of Historic Places. Four standing structures were also identified during the field survey. The structures are agricultural outbuildings, less than 40 years in age, that possess no architectural distinction or historical association. They have been documented photographically and by scaled plan drawings, but do not merit additional study prior to their destruction. 24 refs., 15 figs., 3 tabs.

  3. Prevention of ultraviolet radiation-induced suppression of accessory cell function of Langerhans cells by Aloe vera gel components.

    PubMed

    Lee, C K; Han, S S; Mo, Y K; Kim, R S; Chung, M H; Park, Y I; Lee, S K; Kim, Y S

    1997-10-01

    The active components of Aloe vera gel that can prevent ultraviolet B (UVB)-induced suppression of accessory cell function of Langerhans cells (LC) were purified by activity-guided sequential fractionation followed by in vitro functional assay. The functional assay was based on the fact that exposure of freshly isolated murine epidermal cells (EC) to UVB radiation resulted in impairment of accessory cell function of LC, as measured by their ability to support anti-CD3 monoclonal antibody (mAb)-primed T-cell mitogenesis. This UVB-suppressed LC accessory cell function was prevented by addition of partially purified Aloe gel components to cultures of UVB-irradiated EC. The Aloe gel components appeared to prevent events occurring within the first 24 h after UVB irradiation that lead to the impairment of accessory cell function. The Aloe gel components did not cause proliferation of anti-CD3 mAb-primed T-cells, nor did induce proliferation of normal EC. The activity-guided final purification of Aloe gel components resulted in the isolation of two components. Both of the components were small molecular weight (MW) substances with an apparent MW of less than 1,000 Da but different from each other in net charge characteristics at pH 7.4. These results suggest that Aloe vera gel contains at least two small molecular weight immunomodulators that may prevent UVB-induced immune suppression in the skin.

  4. Multiscale modeling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Wittel, Falk K.; Kröplin, Bernd H.

    2006-03-01

    Electrolyte polymer gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties having a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a considerably large change of volume. Due to this capability, they can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically and electrically stimulated polymer gels in a solution bath are investigated. To describe the different complicated phenomena occurring in these gels adequately, the modeling can be conducted on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a multi-field model and a discrete element formulation are derived. A refinement of the different theories from global macroscopic to microscopic are presented in this paper: The statistical theory is a macroscopic theory capable to describe the global swelling or bending e.g. of a gel film, while the general theory of porous media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. The TPM is a homogenized model, i.e. all geometrical and physical quantities can be seen as statistical averages of the real quantities. The presented chemo-electro-mechanical multi-field formulation is a mesoscopic theory. It is capable of giving the concentrations and the electric potential in the whole domain. Finally the (micromechanical) discrete element (DE) theory is employed. In this case, the continuum is represented by distributed particles with local interaction relations combined with balance equations for the chemical field. This method is predestined for problems involving large displacements, strains and discontinuities. The presented formulations are compared and conclusions on their

  5. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  6. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  7. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  8. Physical and chemical properties of gels. Application to protein nucleation control in the gel acupuncture technique

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Juárez-Martínez, Gabriela; Hernández-Pérez, Tomás; Batina, Nikola; Mundo, Manuel; McPherson, Alexander

    1999-09-01

    In this work, we present a new approach using analytical and optical techniques in order to determine the physical and chemical properties of silica gel, as well as the measurement of the pore size in the network of the gel by scanning electron microscopy. The gel acupuncture technique developed by Garcı´a-Ruiz et al. (Mater. Res. Bull 28 (1993) 541) Garcı´a-Ruiz and Moreno (Acta Crystallogr. D 50 (1994) 484) was used throughout the history of crystal growth. Several experiments were done in order to evaluate the nucleation control of model proteins (thaumatin I from Thaumatococcus daniellii, lysozyme from hen egg white and catalase from bovine liver) by the porous network of the gel. Finally, it is shown how the number and the size of the crystals obtained inside X-ray capillaries is controlled by the size of the porous structure of the gel.

  9. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese.

    PubMed

    Bouton, Yvette; Buchin, Solange; Duboz, Gabriel; Pochet, Sylvie; Beuvier, Eric

    2009-04-01

    The effect of four associations of adjunct cultures composed of mesophilic lactobacilli and enterococci, either solely or combined, on the microbiological, biochemical and sensory characteristics of Swiss-type cheese made using microfiltered cows' milk and supplemented with propionibacteria was studied. The global pattern of growth was similar to that generally observed in raw milk cheese and interactions between microflora were highlighted during ripening. Enterococci, which negatively affected the survival of streptococci starters, seemed to play a limited role in the formation of volatile compounds, probably due to their low levels throughout ripening. On the contrary, mesophilic lactobacilli, which affected the evolution of propionibacteria, enterococci and L. delbrueckii subsp. lactis starter counts, modified free amino acid content, production of volatile compounds and organoleptic properties of mature cheese. This population appeared to be of major importance in the formation of cheese flavor as it was positively related to numerous potential flavor compounds such as alcohols and their corresponding esters, acetaldehyde and 4-methyl-4-heptanone. The original mesophilic lactobacilli present in milk could play an important role in the sensorial diversity of raw milk Swiss-type cheeses such as Comte.

  10. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  11. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.

    PubMed

    Mercadé-Prieto, Ruben; Gunasekaran, Sundaram

    2009-05-19

    The cold gelation of preheated whey protein isolate (WPI) solutions at alkaline conditions (pH>10) has been studied to better understand the effect of NaOH in the formation and destruction of whey protein aggregates and gels. Oscillatory rheology has been used to follow the gelation process, resulting in novel and different gelation profiles with the gelation pH. At low alkaline pH, typical sol-gel transitions are observed, as in many other biopolymers. At pH>11.5, the system gels quickly, after approximately 300 s, followed by a slow degelation step that transforms the gel to a viscous solution. Finally, there is a second gelation step. This results in a surprising sol-gel-sol-gel transition in time at constant gelation conditions. At very high pH (>12.5), the degelation step is very severe, and the second gelation step is not observed, resulting in a sol-gel-sol transition. The first quick gelation step is related to the quick swelling of the WPI aggregates in alkali, as observed from light scattering, which enables the formation of new noncovalent interactions to form a gel network. These interactions are argued to be destroyed in the subsequent degelation step. Disulfide cross-linking is observed only in the second gelation step, not in the first step.

  12. Gel-sol synthesis of rutile nanoparticles.

    PubMed

    Verhovšek, Dejan; Lešnik, Maja; Veronovski, Nika; Samardžija, Zoran; Žagar, Kristina; Čeh, Miran

    2014-01-01

    Titanium dioxide (TiO(2)) rutile nanoparticles were synthesized at temperatures below 100 °C using a gel-sol process that provides control of the final particles' characteristics, such as the nanoparticle size, morphology, crystal structure and crystallinity. The synthesized rutile nanoparticles were analyzed using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the gel-sol process allows control over the final nanoparticle characteristics with the proper choice of reaction parameters. The most profound influence on the nanoparticles' properties is achieved by the type and concentration of the acid used in the reaction mixture. The gel-sol synthesis resulted in anisotropic rutile nanoparticles that are 60-160 nm long, depending on the reaction parameters, and have an aspect ratio of about 5. A reaction mechanism is presented, explaining the influence of various reaction parameters on the characteristics of the TiO(2) nanoparticles.

  13. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  14. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  15. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  16. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  17. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  18. Foldable and Cytocompatible Sol-gel TiO2 Photonics.

    PubMed

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-07

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  19. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    PubMed Central

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-01-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823

  20. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  1. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  2. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  3. UC781 Microbicide Gel Retains Anti-HIV Activity in Cervicovaginal Lavage Fluids Collected following Twice-Daily Vaginal Application

    PubMed Central

    Evans-Strickfaden, Tammy; Holder, Angela; Pau, Chou-Pong; McNicholl, Janet M.; Chaikummao, Supraporn; Chonwattana, Wannee; Hart, Clyde E.

    2012-01-01

    The potent nonnucleoside reverse transcriptase inhibitor UC781 has been safety tested as a vaginal microbicide gel formulation for prevention of HIV-1 sexual transmission. To investigate whether UC781 retained anti-infective activity following exposure to the female genital tract, we conducted an ex vivo analysis of the UC781 levels and antiviral activity in cervicovaginal lavage (CVL) fluids from 25 Thai women enrolled in a 14-day safety trial of twice-daily vaginal application of two concentrations of the UC781 microbicide gel. CVL samples were collected from women in the 0.1% (n = 5), 0.25% (n = 15), and placebo (n = 5) gel arms following the first application of gel (T15 min) and 8 to 24 h after the final application (T8-24 h) and separated into cell-free (CVL-s) and pelletable (CVL-p) fractions. As UC781 is highly hydrophobic, there were significantly higher levels of UC781 in the CVL-p samples than in the CVL-s samples for the UC781 gel arms. In T8-24 h CVL-p samples, 2/5 and 13/15 samples collected from the 0.1% and 0.25% UC781 gel arms, respectively, efficiently blocked infection with ≥4 log10 50% tissue culture infective dose (TCID50) of a CCR5-tropic CRF01_AE HIV-1 virus stock. Independent of the arm, the 11 CVL-p samples with UC781 levels of ≥5 μg/CVL sample reduced infectious HIV by ≥4 log10 TCID50. Our results suggest that the levels and anti-infective activities of UC781 gel formulations are likely to be associated with a cellular or pelletable component in CVL samples. Therefore, cellular and pelletable fractions should be assayed for drug levels and anti-infective activity in preclinical studies of candidate microbicides. PMID:22508307

  4. Growing an actin gel on spherical surfaces.

    PubMed Central

    Noireaux, V; Golsteyn, R M; Friederich, E; Prost, J; Antony, C; Louvard, D; Sykes, C

    2000-01-01

    Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a "comet-like" tail of F-actin is produced. We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN. Finally, we estimate from our theoretical model possible conditions for developing actin comet tails. PMID:10692348

  5. Continuum Models of Stimuli-responsive Gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    Immersed in a solution of small molecules and ions, a network of long-chain polymers may imbibe the solution and swell, resulting in a polymeric gel. Depending on the molecular structure of the polymers, the amount of swelling can be regulated by moisture, mechanical forces, ionic strength, electric field, pH value, and many other types of stimuli. Starting from the basic principles of non-equilibrium thermodynamics, this chapter formulates a field theory of the coupled large deformation and mass transportation in a neutral polymeric gel. The theory is then extended to study polyelectrolyte gels with charge-carrying networks by accounting for the electromechanical coupling and migration of solute ions. While the theoretical framework is adaptable to various types of material models, some representative ones are described through specific free-energy functions and kinetic laws. A specific material law for pH-sensitive gels—a special type of polyelectrolyte gels—is introduced as an example of incorporating chemical reactions in modeling stimuli-responsive gels. Finally, a simplified theory for the equilibrium but inhomogeneous swelling of a polymeric gel is deduced. The theory and the specific material models are illustrated through several examples.

  6. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  7. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration.

    PubMed

    Meghezi, Sébastien; Seifu, Dawit G; Bono, Nina; Unsworth, Larry; Mequanint, Kibret; Mantovani, Diego

    2015-06-16

    Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The "static bioreactor" provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.

  8. Electroblotting from Polyacrylamide Gels.

    PubMed

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications.

  9. Gravitational compression of colloidal gels

    NASA Astrophysics Data System (ADS)

    Liétor-Santos, J. J.; Kim, C.; Lu, P. J.; Fernández-Nieves, A.; Weitz, D. A.

    2009-02-01

    We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, φ , inside the gel. We find φ is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the φ -dependence of the gravitational, elastic and viscous stresses acting on the gel.

  10. Bi-Sr-Co-O thermoelectrics prepared by sol-gel methods with modified gel decomposition

    NASA Astrophysics Data System (ADS)

    Rubešová, K.; Hlásek, T.; Jakeš, V.; Sedmidubský, D.; Hejtmánek, J.

    2012-02-01

    We prepared misfit Bi2Sr2Co1.8Ox (Bi-222) phase as a member of a Bi-Sr-Co-O family. Two water based sol-gel methods were chosen with regard to the presence of a strongly hydrolysing Bi3+ ion - chelating route combining EDTA (ethylenediaminetetraacetic acid) and TEA (triethanolamine) and, secondly, water soluble polymer method using PEI (polyethylenimine). We focused on the influence of gel decomposition process on the grain size of precursor and, consequently, on the bulk density of the final samples. We tested decomposition in N2 atmosphere followed by a treatment in pure oxygen. The precursors decomposed in "N2/O2" regime were mainly composed of Bi2O3, SrCO3 and cobalt oxides with the grain size of approximately 50-100 nm. The powders arising from gel decomposition in air contained the desired Bi-Sr-Co-O oxide as the major phase independently of the chosen sol-gel method. The final sintered samples were almost single-phase with traces of the other pseudoternary phase Bi2Sr2CoOx independently of the decomposition atmosphere. For comparison, samples were also prepared by solid state reaction. The sol-gel prepared samples were always of higher bulk density with larger grains, moreover partly microstructurally ordered. These facts were also reflected in transport thermoelectric measurements.

  11. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  12. Droplet Spreading with Sol-Gel Transition

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris; Balmforth, Neil J.

    2014-11-01

    The impact and spreading of liquid droplets on a smooth solid substrate is a classical subject with several industrial applications such as ink-jet printing, spray cooling, coating, and many others. For many of these deposition processes, controlling the final shape of the drop is critical. In the current research, a new technique for controlling the spreading of droplets impacting a substrate is presented. This technique exploits the rheology of a thermo-responsive polymer solution that undergoes a reversible sol/gel transition above a critical temperature. Experiments are conducted using a combination of shadowgraphy and micro-PIV to observe spreading drops. It is shown that the final diameter of a droplet can be controlled through the temperature of the substrate and the tunable sol/gel transition temperature of the fluid.A mathematical model is provided to further elucidate the flow dynamics.

  13. Fibroblast migration in fibrin gel matrices.

    PubMed Central

    Brown, L. F.; Lanir, N.; McDonagh, J.; Tognazzi, K.; Dvorak, A. M.; Dvorak, H. F.

    1993-01-01

    In healing wounds and many solid tumors, locally increased microvascular permeability results in extravasation of fibrinogen and its extravascular coagulation to form a fibrin gel, with concomitant covalent cross-linking of fibrin by factor XIIIa. Subsequently, inflammatory cells, fibroblasts, and endothelial cells migrate into the gel and organize it into granulation tissue and later into mature collagenous connective tissue. To gain insight into some of the cell migration events associated with these processes, we developed a quantitative in vitro assay that permits the study of fibroblast migration in fibrin gels. Early passage human or rat fibroblasts were allowed to attach to tissue culture dishes and then were overlaid with a thin layer of fibrinogen that was clotted with thrombin. Fibroblasts began to migrate upwards into the fibrin within 24 hours and their numbers and the distance migrated were quantified over several days. The extent of fibroblast migration was affected importantly by the nature of the fibrin clot. Fibroblasts migrated optimally into gels prepared from fibrinogen at concentrations of -3 mg/ml; ie, near normal plasma fibrinogen levels. Migration was greatly enhanced by extensive cross-linking of the fibrin alpha-chains by factor XIIIa, as occurs when clotting takes place in vivo. When fibrinogen was clotted in Dulbecco's modified Eagle's medium, gamma-chains were cross-linked, but alpha-chain cross-linking was strikingly inhibited, and fibroblasts migrated poorly. Gels prepared from factor XIII-depleted fibrinogen exhibited neither alpha-nor gamma-chain cross-linking and did not support fibroblast migration. Further purification of fibrinogen by anion exchange high pressure liquid chromatography depleted fibrinogen of fibronectin, plasminogen, and other impurities; this purified fibrinogen clotted to form fibrin gels that supported reproducible fibroblast migration. Images Figure 1 Figure 2 Figure 4 Figure 6 PMID:8424460

  14. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  15. Cultural History and Cultural Materialism.

    ERIC Educational Resources Information Center

    Berman, Ronald

    1990-01-01

    Historicism critiques cultural history and cultural materialism as a methodology for literary analysis. Questions the finality of interpretation, how original values change, and whether dramatic history implies actual history. Using Shakespearean plays, analyzes the power and politics of a play in relation to its audience; posits that cultural…

  16. Shallow Algal Mass Culture Systems for the Production of Oils: Final Report on Work Carried Out 8/16/84 - 6/15/85

    SciTech Connect

    Laws, E. A.

    1985-01-01

    The objective of this project was to improve the technology of outdoor mass culture of microa1gae for oil production by investigation of species/strains, optimization of culture conditions and development of strategies that increase efficiency and improve yield.

  17. Globalizing Education for Engineering and Science Students: A FIPSE Project Model for "Cross-Cultural Studies of Science and Technology." Final Report.

    ERIC Educational Resources Information Center

    Koller, John M.

    This report describes a project at Rensselaer Polytechnic Institute (New York) to develop a curriculum that focuses on the social construction and use of science and technology in diverse cultural contexts. The program consists of both a minor and a three-course concentration on cross-cultural studies of science and technology. Courses covered…

  18. Sorption and desorption studies on chitin gels.

    PubMed

    Vachoud, L; Zydowicz, N; Domard, A

    2001-01-10

    The aim of this work was to study various transport phenomena in chitin gels obtained by N-acetylation of chitosan in a water-alcohol mixture. Three kinds of transport were investigated: the sorption of solutes interacting with chitin, the desorption of solutes without significant interaction with the polymer, and osmosis phenomena. In the case of interactive sorption, dyes having different chemical structures such as C.I. Acid Blue 74, C.I. Reactive Violet 5 or C.I. Direct Red 28 were tested. Sorptions of C.I. Acid Blue 74 and C.I. Reactive Violet 5 depend on the charge density of the polymer network and, as a consequence, on DA, pH and the dielectric constant of the media. This result reveals the importance of electrostatic interactions. On the other hand, the sorption of C.I. Direct Red 28 is mainly due to hydrophobic interactions and H-bonding, it is limited to the extreme surface of the gel. Concerning the non-interactive desorption, solutes of different steric hindrance such as PP vitamin, B1 vitamin and caffeine exhibit similar diffusion coefficients located within 3.7-5.6x10(-6) cm(2) s(-1). Finally, the osmotic behaviour of the gel immersed in a concentrated solution of gelatin allows us to multiply by 25 the concentration of chitin in the gel without any penetration of gelatin.

  19. [Adhesion of Bacillus subtilis on the surface of pectin-calcium gel].

    PubMed

    Gunter, E A; Melekhin, A K

    2015-01-01

    Pectin-calcium gels obtained based on pectins of callus cultures are able to adhere to the surface of cells of Gram-positive bacteria Bacillus subtilis to various degrees and this is thanks to the structural features of pectin. Rapid adhesion of the cells to gels obtained from the pectin of Tanacetum vulgare (TVC) callus cultures is associated with a high content of the linear region in the carbohydrate chain of pectin, a high molecular weight, and a low degree of methyl etherification of pectin. The number of adherent cells on the surface of gels obtained from pectins of Silene vulgaris callus cultures (SVC), TVC, and Lemna minor (LMC) after 8 h of incubation was close, whereas the number of cells was minimal on a gel produced using the pectin of Silene tatarica (STC) callus culture. This was due to the higher degree of methyl etherification of STC pectin (45%) compared to other pectins (4-12%). The adhesion rate constant (k) of B. subtilis for TCV gel during the first 120 min was the highest in comparison with other gels; the k value for SVC, STC and LMC gels was similar. The lowest level of k was characteristic for the gel from commercial apple pectin. The obtained data can beused for the production of gels with adhesive and antiadhesive properties.

  20. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  1. Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size.

    PubMed

    Guo, Qing; Ye, Aiqian; Lad, Mita; Dalgleish, Douglas; Singh, Harjinder

    2014-06-21

    A set of whey protein stabilized-emulsion gels with different droplet size distributions (D4,3 = ∼1, 6 and 12 μm) was produced, and the mechanical properties of the gels in the linear viscoelastic region and at large deformation were measured, along with the physicochemical and structural changes of the gels during oral mastication and gastric digestion. The gels containing 1 μm oil droplets had an aggregated particle structure with proteins coating at oil droplets whereas the gels containing 12 μm oil droplets had a particle-filled structure with spatially continuous matrix. During oral processing, the release of oil droplets from the gels increased as the droplet size increased, with coalescence being seen in gels containing oil droplets of 6 and 12 μm diameter. Under gastric digestion, high degrees of coalescence and phase separation of oil droplets occurred in the gels containing 6 and 12 μm oil droplets because of oil droplet release from the gel matrix; this led to slow gastric emptying. The gels were finally broken down into peptide aggregates and oil droplets (or free oil). The gels, containing 1 μm oil droplets disintegrated into various particles of several to several tens of microns with a low degree of oil droplet release and coalescence. Protein breakdown was slower in these gels, suggesting that the protein structures of the gel matrices were affected by the sizes of the incorporated oil droplets.

  2. Enzymatically cross-linked gelatin/chitosan hydrogels: tuning gel properties and cellular response.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Drake, Alex F; Goldoni, Silvia; Stevens, Molly M; Dreiss, Cécile A

    2014-06-01

    This work investigates the effect of combining physical and chemical gelation processes in a biopolymer blend: chitosan and tilapia fish gelatin. Chemical (C) gels are obtained by cross-linking with the microbial enzyme transglutaminase at 37 °C. Hybrid physical-co-chemical (PC) gels are cross-linked at 21 °C, below gelatin gelation temperature. These protocols provide two microenvironments for the gelation process: in C gels, both gelatin and chitosan are present as single strands; in PC gels, cross-linking proceeds within a transient physical gel of gelatin, filled by chitosan strands. The chitosan/gelatin chemical networks generated in PC gels show a consistently higher shear modulus than pure C gels; they are also less turbid than their C gels counterparts, suggesting a more homogeneous network. Finally, chitosan enhances the gels' shear modulus in all gels. Proliferation assays show that MC3T3 cells proliferate in these mixed, hybrid gels and better so on PC gels than in C mixed gels.

  3. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  4. Carcinogenesis studies with benzoyl peroxide (Panoxyl gel 5%)

    SciTech Connect

    Iversen, O.H.

    1986-04-01

    Several groups of hairless mice were given UV radiation with and without pretreatment with 7,12-dimethylbenz(a)anthracene (DMBA), 5% benzoyl peroxide in a gel (Panoxyl), and gel alone, in various combinations, with appropriate control groups included, in order to see whether benzoyl peroxide, which is known to enhance chemical skin carcinogenesis after a single, small dose of DMBA, also enhances UV carcinogenesis. The mice were observed for skin tumors, and all skin lesions were histologically investigated. The percentage of tumor-bearing animals with time is called the tumor rate, the total number of tumors occurring is called the tumor yield. Continual treatment with 5% benzoyl peroxide in gel twice a week, with or without a short pretreatment period of UV radiation resulted in only 2 skin carcinomas, which is remarkable, but not significant. Both Panoxyl and gel alone enhanced tumorigenicity significantly in animals pretreated with a single dose of 51.2 micrograms DMBA. There was no difference between the enhancement caused by Panoxyl and the gel as regards the tumor rate, but when measured as final tumor yield, Panoxyl was slightly more tumor-enhancing than gel alone. However, both Panoxyl and gel protected significantly against UV tumorigenesis (all tumors). There was no difference between the protective effect of the 2 types of treatment. Neither Panoxyl nor gel alone influenced significantly UV skin carcinogenesis (malignant tumors). It is concluded that under these experimental conditions both Panoxyl and gel alone tend to protect against the tumorigenicity and do not enhance the carcinogenicity of UV radiation in hairless mice, whereas both gel and Panoxyl enhance chemical carcinogenesis. The carcinogenic mechanisms may be different for UV and chemical carcinogenesis, respectively.

  5. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  6. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  7. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  9. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  10. Fibril formation from pea protein and subsequent gel formation.

    PubMed

    Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J

    2014-03-19

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.

  11. Medical devices; immunology and microbiology devices; classification of multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. Final order.

    PubMed

    2015-05-27

    The Food and Drug Administration (FDA) is classifying multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures into class II (special controls). The special controls that will apply to this device are identified in this order and will be part of the codified language for the multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  12. DNA gel electrophoresis: the reptation model(s).

    PubMed

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  13. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  14. A SUMMARY OF RESEARCH IN TRAINING FOR ADVISORY ROLES IN OTHER CULTURES BY THE BEHAVIORAL SCIENCES LABORATORY. FINAL REPORT 1963-1966.

    ERIC Educational Resources Information Center

    KING, PHILIP H.

    DUE TO THE NEED FOR IMPROVED INTERPERSONAL RELATIONS BETWEEN UNITED STATES AIR FORCE TECHNICAL ADVISORS OVERSEAS AND THE INDIGENOUS PERSONS WITH WHOM THEY WORK, A RESEARCH PROGRAM HAS BEEN ESTABLISHED TO IMPROVE METHODS FOR TRAINING CROSS-CULTURAL COMMUNICATIVE SKILLS. THIS RESEARCH IS DIVIDED INTO FOUR PARTS--(1) IDENTIFICATION IN THE FIELD OF…

  15. Degradation of mix hydrocarbons by immobilized cells of mix culture using a trickle fluidized bed reactor. Final report: June 1992--June 1994

    SciTech Connect

    Chapatwala, K.D.

    1994-12-01

    The microorganisms capable of degrading mix hydrocarbons were isolated from the soil samples collected from the hydrocarbon contaminated sites. The mix cultures were identified as Pseudomonas acidovorans, Flavobacterium indoltheticum and Phyllobacterium rubiaceum. The bacterial cells of mix cultures were immobilized in calcium-alginate solution in the form of beads. A trickle fluidized bed air-uplift-type reactor designed to study the degradation of mix hydrocarbons was filled with 0.85% normal saline containing the immobilized cells of mix culture. The immobilized beads were aerated with different amounts of CO{sub 2}-free air. The normal saline saturated with BTXs was circulated in the bioreactors at the rate of 2--4 ml/min. The biodegradation of BTXs by the immobilized beads of mix culture was monitored by determining the concentrations of the BTXs and the metabolites formed during their degradation in the samples at regular intervals using GC. The peaks obtained through the degradation of BTXs were not identified and quantified in this study.

  16. Vocational Evaluation of the Culturally Disadvantaged; A Comparative Investigation of the JEVS [Jewish Employment and Vocational Service] System and a Model-Based System. Final Report.

    ERIC Educational Resources Information Center

    Nadolsky, Julian M.

    The purpose of this study was to compare the overall effectiveness of a vocational education system designed specifically for a culturally disadvantaged population (in this case the Jewish Employment and Vocational Service (JEVS) System) with a model-based system incorporating the techniques and procedures normally employed by vocational…

  17. Hom Gel'fand-Dorfman bialgebras and Hom-Lie conformal algebras

    SciTech Connect

    Yuan, Lamei

    2014-04-15

    The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Finally, we prove that a Hom Gel'fand-Dorfman bialgebra is equivalent to a Hom-Lie conformal algebra of degree 2.

  18. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  19. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  20. Nanocrystal/sol-gel nanocomposites

    SciTech Connect

    Petruska, Melissa A; Klimov, Victor L

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  1. A new agarose gel model

    SciTech Connect

    Hasenfeld, A.; Pepke, E.; Lim, H.A.; Cantor, C.R.

    1993-12-31

    A new agarose gel model is introduced, which corresponds to what the authors believe agarose gels look like microscopically. While the scientific literature is filled with studies of the microscopic structure of agarose, the fact remains that there is no unambiguous and exact model of its underlying structure. Given this, the authors are left to construct their own model numerically.

  2. Sol-gel based optical chemical sensors

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Korent Urek, Špela; Turel, Matejka; Frančič, Nina

    2011-05-01

    The growing activity in the field of optical chemical sensors has resulted in numerous sensing schemes, new indicator dyes, various polymeric matrix, size and shapes and highly diversified methods of immobilization. The sensor characteristics are dependent upon the choice of indicator, polymer, immobilization technique, and also size. Sol-gel technology provides a low-temperature method for obtaining porous silicate glass matrices. It enables to obtain material in the form of films, powders, monoliths, fibres or nanoparticles. Organic reagents and molecular receptors can be easily immobilized in the matrices. Moreover, one of the unique features of the sol-gel process is that the properties of the final network structure, such as hydrophobicity, thickness, porosity, flexibility, reactivity and stability can be easily tailored by controlling the process conditions, the type and the size of the precursors and catalysis. Here we will report about several sensor designed over the years based on sol-gel materials for monitoring and controlling different parameters, such as heavy metals, amines, phosphates, organophosphates.

  3. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    PubMed Central

    Mokhtari, Fatemeh; Faghihi, Gita; Basiri, Akram; Farhadi, Sadaf; Nilforoushzadeh, Mohammadali; Behfar, Shadi

    2016-01-01

    Background: Acne vulgaris is the most common skin disease. Local and systemic antimicrobial drugs are used for its treatment. But increasing resistance of Propionibacterium acnes to antibiotics has been reported. Materials and Methods: In a double-blind clinical trial, 40 patients with mild to moderate acne vulgaris were recruited. one side of the face was treated with Clindamycin Gel 1% and the other side with Azithromycin Topical Gel 2% BID for 8 weeks and then they were assessed. Results: Average age was 21. 8 ± 7 years. 82.5% of them were female. Average number of papules, pustules and comedones was similarly reduced in both groups and, no significant difference was observed between the two groups (P > 0.05, repeated measurs ANOVA). The mean indexes of ASI and TLC also significantly decreased during treatment in both groups, no significant difference was observed between the two groups. (P > 0.05, repeated measurs ANOVA). Also, impact of both drugs on papules and pustules was 2-3 times greater than the effect on comedones. Average satisfaction score was not significant between the two groups (P = 0.6, repeated measurs ANOVA). finally, frequency distribution of complications was not significant between the two groups (P > 0.05, Fisher Exact test). Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy. PMID:27169103

  4. Rheological and textural properties of pulse starch gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  5. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  6. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  7. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  8. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  9. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  10. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  11. Anomalous diffusion in gelatin-surfactant solutions and gels

    NASA Astrophysics Data System (ADS)

    Maity, Saroj; Bohidar, H. B.

    1998-07-01

    A photon correlation spectroscopy study carried out on semidilute 4% (wt./vol) aqueous gelatin sols and gels with the anionic surfactant sodium dodecyl sulphate (SDS) showed three relaxation processes in the dynamic structure factor data. First an exponential process S(q,t)~exp(-Dfq2t) at t<=20 μs, referred to as the collective mode, was observed, followed by an intermediate power-law regime S(q,t)~t-α(q) at 20 μs>=t<=1 ms, and finally a stretched exponential decay S(q,t)~exp-(t/τc)β was observed for t>=1 ms. The power-law exponent α and characteristic time τc in the stretched part were found to be q dependent: α~qx, with x=1.80+/-0.09 in the sol state and x=0.98+/-0.05 in the gel state, and τc~q-y, with y=2.05+/-0.08 and 3.0+/-0.2 in the sol and gel states, respectively, but independently of SDS concentrations. In the fast mode the relaxation time was measured to be the same in the pure gelatin sol and gel states. It is proposed that the different q dependences observed in the gel and sol states with and without SDS indicate the presence of different characteristic length scales. Our results agree with the predictions of the anomalous Gaussian diffusion model in the sol state, but differ significantly in the gel state.

  12. Non-equilibrium tuning of attractive colloidal gels

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2015-11-01

    In colloidal gel systems, the presence of multiple interactions in multiple length scales such as Van der Waals, depletion attractions, and electrostatic repulsions makes these systems challenging from both experimental and simulation aspects. Recently, there has been growing interest to tune and manipulate the structural and dynamics properties of those systems without adjusting interparticle interactions, just by taking them out of equilibrium. In this work, we used Core-Modified Dissipative Particle Dynamics (CM-DPD) with a modified depletion potential, as a coarse-grain model to address the gel formation process in short ranged-attractive colloidal suspensions for a range of volume fractions and attraction strengths. It is suggested that at high volume fractions and near the glass transition, there is a transformation from non-bonded glass to bonded-glass for which that the effect of topological frustration (caging) will be alleviated by the presence of attractive potentials (bonding) i.e. melting during cooling. In the first part of the presentation, we discuss our similar findings for semi-dilute volume fraction of attractive bimodal colloidal gels at equilibrium, which can be explained through local densification of attractive colloidal gels. In the second part, structural and dynamics properties of arrested gels will be studied under shear and after cessation of shear to study how the different flow profiles and history will alter final morphology of the gel systems.

  13. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  14. Scaling and Continuum Percolation Model for Enzyme-Catalyzed Gel Degradation

    NASA Astrophysics Data System (ADS)

    Lairez, D.; Carton, J.-P.; Zalczer, G.; Pelta, J.

    2007-06-01

    Enzyme-catalyzed gel degradation is inherently controlled by diffusion of enzymes in the gel. We report kinetics measurements on the gelatin-thermolysin system, varying solvent viscosity as well as gel and enzyme concentrations. Scaling relations and reduced variables are proposed which are shown to account for the experimental results. Finally, we argue that the nontrivial experimental dependence on enzyme concentration for the degradation time demonstrates that enzyme random walk is self-attracting, leading to a continuum percolation model for gel degradation.

  15. Diffusion of polymer gel implants.

    PubMed

    Davis, B K

    1974-08-01

    Crosslinked polyacrylamide and polyvinylpyrrolidone gels have been used to subcutaneously implant (125)I-labeled immunoglobulin, (125)I-labeled luteinizing hormone, (125)I-labeled bovine serum albumin, (125)I-labeled insulin, [(3)H]prostaglandin F(2alpha), and Na(125)I into hamsters. From the rates of absorption of the solutes, their diffusion coefficients were determined. The diffusion coefficients showed a logarithmic dependence on implant polymer concentration and solute molecular weight. Release of the solutes from gel preparations incubated 10 mM phosphate buffer (pH 7.2) at 37 degrees revealed a similar relationship between solute diffusion coefficient, molecular weight, and the concentration of polymer. A general equation was derived that gives the expected diffusion coefficient of a substance in a polymer gel from its molecular weight, diffusion coefficient in solvent, and polymer concentration of the gel.

  16. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  17. Actuation performances of anisotropic gels

    NASA Astrophysics Data System (ADS)

    Nardinocchi, P.; Teresi, L.

    2016-12-01

    We investigated the actuation performances of anisotropic gels driven by mechanical and chemical stimuli, in terms of both deformation processes and stroke-curves, and distinguished between the fast response of gels before diffusion starts and the asymptotic response attained at the steady state. We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely isotropic extensions.

  18. Multiple phases of protien gels

    NASA Astrophysics Data System (ADS)

    Annaka, Masahiko; Tanaka, Toyoichi

    1994-03-01

    A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native α-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy minimum and thus in a phase.

  19. Purification of the Caenorhabditis elegans transposase Tc1A refolded during gel filtration chromatography.

    PubMed

    García-Sáez, I; Plasterk, R H

    2000-08-01

    Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12-16 mg/liter E. coli culture, in a form suitable for crystallization studies.

  20. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  1. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  2. Rheological characterization of hydroxypropylcellulose gels.

    PubMed

    Ramachandran, S; Chen, S; Etzler, F

    1999-02-01

    The present paper describes the rheological properties of hydroxypropylcellulose (HPC) gels formulated in propylene glycol (PG), water, ethanol, and mixtures of these components. The effects of molecular weight, polymer concentration, and solvent composition on the apparent viscosity and flow characteristics have been studied by continuous shear rheometry. The HPC gels are shear thinning and do not exhibit significant yield or hysteresis in their rheograms. The apparent viscosity increases with increasing molecular weight and concentration of the polymer, as expected. Although not so pronounced at lower concentrations (< or = 1.5%), HPC gels tend to become increasingly non-Newtonian with increasing molecular weight at higher polymer concentrations (3%). A mathematical model has been proposed for the prediction of viscosities of HPC gels. There exists a high degree of dependence on molecular interactions between various solvent molecules in the prediction of mixture viscosities in ternary systems. The effects of solvent composition on the viscoelastic behavior of these gels have also been examined by dynamic mechanical analysis. The HPC gels are highly viscoelastic and exhibit greater degrees of elasticity with increased PG content in ternary solvent mixtures with water and ethanol. The study also suggests that dynamic mechanical analysis could prove to be a useful tool in the determination of zero-shear viscosities, viscosities that are representative of most realistic situations.

  3. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  4. Final Report

    SciTech Connect

    David W. Mazyck; Angela Lindner; CY Wu, Rick Sheahan, Ashok Jain

    2007-06-30

    Forest products provide essential resources for human civilization, including energy and materials. In processing forest products, however, unwanted byproducts, such as volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) are generated. The goal of this study was to develop a cost effective and reliable air pollution control system to reduce VOC and HAP emissions from pulp, paper and paperboard mills and solid wood product facilities. Specifically, this work focused on the removal of VOCs and HAPs from high volume low concentration (HVLC) gases, particularly methanol since it is the largest HAP constituent in these gases. Three technologies were developed and tested at the bench-scale: (1) A novel composite material of activated carbon coated with a photocatalyst titanium dioxide (TiO{sub 2}) (referred to as TiO{sub 2}-coated activated carbon or TiO{sub 2}/AC), (2) a novel silica gel impregnated with nanosized TiO{sub 2} (referred to as silica-titania composites or STC), and (3) biofiltration. A pilot-scale reactor was also fabricated and tested for methanol removal using the TiO{sub 2}/AC and STC. The technical feasibility of removing methanol with TiO{sub 2}/AC was studied using a composite synthesized via a spay desiccation method. The removal of methanol consists of two consecutive operation steps: removal of methanol using fixed-bed activated carbon adsorption and regeneration of spent activated carbon using in-situ photocatalytic oxidation. Regeneration using photocatalytic oxidation employed irradiation of the TiO{sub 2} catalyst with low-energy ultraviolet (UV) light. Results of this technical feasibility study showed that photocatalytic oxidation can be used to regenerate a spent TiO{sub 2}/AC adsorbent. A TiO{sub 2}/AC adsorbent was then developed using a dry impregnation method, which performed better than the TiO{sub 2}/AC synthesized using the spray desiccation method. The enhanced performance was likely a result of the better

  5. Amorphous cellulose gel as a fat substitute in fermented sausages.

    PubMed

    Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Rodrigues Pollonio, Marise Aparecida

    2012-01-01

    Fermented sausages were produced with 25%, 50%, 75% or 100% of their pork back fat content replaced by amorphous cellulose gel. The sausage production was monitored with physical, chemical and microbiological analyses. The final products were submitted to a consumer study, and the volatile compounds of the final products were extracted by solid-phase microextraction and analyzed by GC/MS. The reformulated fermented sausages had significant reductions in fat and cholesterol, and the volatile compounds derived from lipid oxidation were also reduced in the final products. These results suggest that the substitution of up to 50% of the pork back fat content by amorphous cellulose gel can be accomplished without a loss of product quality, enabling the production of fermented sausages with the levels of fat and cholesterol decreased by approximately 45% and 15%, respectively.

  6. Gel-based versus gel-free proteomics: a review.

    PubMed

    Baggerman, Geert; Vierstraete, Evy; De Loof, Arnold; Schoofs, Liliane

    2005-12-01

    With the sequencing of the genome of over 150 organisms, the field of biology has been revolutionised. Instead of studying one gene or protein at the time, it is now possible to study the effect of physiological or pathological changes on the expression of all genes or proteins in the organism. Proteomics aims at the simultaneous analysis of all proteins expressed by a cell, tissue or organism in a specific physiological condition. Because proteins are the effector molecules in all organisms, it is evident that changes in the physiological condition of an organism will be reflected by changes in protein expression and/or processing. Since the formulation of the concept of proteomics in the mid 90's proteomics has relied heavily on 2 dimensional gel electrophoresis (2DGE) for the separation and visualization of proteins. 2DGE, however, has a number of inherent drawbacks. 2DGE is costly, fairly insensitive to low copy proteins and cannot be used for the entire proteome. Therefore, over the years, several gel-free proteomics techniques have been developed to either fill the gaps left by 2DGE or to entirely abolish the gel based techniques. This review summarizes the most important gel-free and gel-based proteomics techniques and compares their advantages and drawbacks.

  7. Studies of matrix vesicle-induced mineralization in a gelatin gel

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  8. Bleach gel: a simple agarose gel for analyzing RNA quality.

    PubMed

    Aranda, Patrick S; LaJoie, Dollie M; Jorcyk, Cheryl L

    2012-01-01

    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the 'bleach gel' is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality.

  9. THERMAL DETECTION OF DNA AND PROTEINS DURING GEL ELECTROPHORESIS

    SciTech Connect

    R. JOHNSTON

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to try to detect unstained, untagged, unlabeled DNA bands in real-time during gel electrophoresis using simple thermal measurements. The technical and ES&H advantages to this approach could potentially be quite significant, especially given the extreme importance of gel electrophoresis to a wide variety of practical and research fields. The project was unable to demonstrate sufficient thermal sensitivity to detect DNA bands. It is clear that we still do not understand the gel electrophoresis phenomenon very well. The temperature control techniques developed during the course of this project have other useful applications.

  10. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  11. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  12. Thixotropic gel for vadose zone remediation

    SciTech Connect

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  13. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  14. Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs.

    PubMed

    Berry, Catherine C; Shelton, Julia C; Lee, David A

    2009-01-01

    The aim of this study was to investigate the influence of the endogenous forces generated by fibroblast-mediated contraction, using four individual collagen gel models that differed with respect to the ability of the cells to contract the gel. Human neonatal dermal fibroblasts were seeded in type I collagen and the gels were cast in a racetrack-shaped mould containing a removable central island. Two of the models were mechanically stressed (20 mm and 10 mm), as complete contraction was prevented by the presence of a central island. The central island was removed in the third model (released) and the final model was cast in a Petri dish and detached, allowing full multi-axial contraction (SR). Cell viability was maintained in the 10 mm, released and SR models over a 6 day culture period but localized regions of cell death were evident in the 20 mm model. Cell and collagen alignment was developed in the 20 mm and 10 mm models and to a lesser extent in the released model, but was absent in the SR model. Cell proliferation and collagen synthesis was lower in the 20 mm model compared to the other systems and there was evidence of enhanced matrix metalloproteinase production. The mechanical properties of the 20 mm model system were inferior to the 10 mm and released systems. The 10 mm model system induced a high level of cell and matrix orientation and may, therefore, represent the best option for tissue-engineered ligament repair involving an orientated fibroblast-seeded collagen gel.

  15. Posing for a picture: vesicle immobilization in agarose gel

    PubMed Central

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-01-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs. PMID:27140695

  16. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing.

    PubMed

    Hu, Nan; Rao, YuanQiao; Sun, Shengtong; Hou, Lei; Wu, Peiyi; Fan, Shaojuan; Ye, Bangjiao

    2016-08-01

    The curing of coatings of two types of siloxane containing materials, silica gel and silsesquioxane, at a modest temperature (<280℃) was studied with in situ heating Fourier transform infrared spectroscopy (FT-IR) in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2D-COS) analyses. The result revealed detailed structural evolution of these two different gels. When the silica gel was heated, (Si-O)6 rings appeared from the random Si-O-Si network formed after sol gel reaction, followed by condensation of silanol groups. Upon further heating, the existing (Si-O)4 rings were broken down and converted into (Si-O)6 structures, and finally isolated silanols appeared. The transition from (Si-O)4 rings to (Si-O)6 rings was observed by IR and further confirmed with positron annihilation lifetime spectroscopy (PALS). In comparison, during the curing of hybrid silsesquioxane, the condensation of silanols happens immediately upon heating without the rearrangement of Si-O-Si network. Afterwards, the fraction of (Si-O)6 ring structure increased. (Si-O)4 structures exhibited higher stability in hybrid silsesquioxanes. In addition, the amount of silanols in silsesquioxane continued to reduce without the generation of isolated silanol in the end. The different curing behavior of silsesquioxanes from silica gel originates from the organic groups in silsesquioxanes, which lowers the cross-linking density and reduces the rigidity of siloxane network.

  17. Gamma Knife output factor measurements using VIP polymer gel dosimetry

    SciTech Connect

    Moutsatsos, A.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Georgiou, E.; Dardoufas, K.; Sandilos, P.; Torrens, M.; Pantelis, E.; Kantemiris, I.; Sakelliou, L.; Seimenis, I.

    2009-09-15

    Purpose: Water equivalent polymer gel dosimeters and magnetic resonance imaging were employed to measure the output factors of the two smallest treatment fields available in a Gamma Knife model C radiosurgery unit, those formed employing the 4 and 8 mm final collimator helmets. Methods: Three samples of the VIP normoxic gel formulation were prepared and irradiated so that a single shot of the field whose output factor is to be measured and a single shot of the reference 18 mm field were delivered in each one. Emphasis is given to the development and benchmarking of a refined data processing methodology of reduced uncertainty that fully exploits the 3D dose distributions registered in the dosimeters. Results: Polymer gel results for the output factor of the 8 mm collimator helmet are found to be in close agreement with the corresponding value recommended by the vendor (0.955{+-}0.007 versus 0.956, respectively). For the 4 mm collimator helmet, however, polymer gel results suggest an output factor 3% lower than the value recommended by the vendor (0.841{+-}0.009 versus 0.870, respectively). Conclusions: A comparison with corresponding measurements published in the literature indicates that output factor results of this work are in agreement with those obtained using dosimetric systems which, besides fine spatial resolution and lack of angular and dose rate dependence of the dosimeter's response, share with polymer gels the favorable characteristic of minimal radiation field perturbation.

  18. Posing for a picture: vesicle immobilization in agarose gel

    NASA Astrophysics Data System (ADS)

    Lira, Rafael B.; Steinkühler, Jan; Knorr, Roland L.; Dimova, Rumiana; Riske, Karin A.

    2016-05-01

    Taking a photo typically requires the object of interest to stand still. In science, imaging is potentiated by optical and electron microscopy. However, living and soft matter are not still. Thus, biological preparations for microscopy usually include a fixation step. Similarly, immobilization strategies are required for or substantially facilitate imaging of cells or lipid vesicles, and even more so for acquiring high-quality data via fluorescence-based techniques. Here, we describe a simple yet efficient method to immobilize objects such as lipid vesicles with sizes between 0.1 and 100 μm using agarose gel. We show that while large and giant unilamellar vesicles (LUVs and GUVs) can be caged in the pockets of the gel meshwork, small molecules, proteins and micelles remain free to diffuse through the gel and interact with membranes as in agarose-free solutions, and complex biochemical reactions involving several proteins can proceed in the gel. At the same time, immobilization in agarose has no adverse effect on the GUV size and stability. By applying techniques such as FRAP and FCS, we show that the lateral diffusion of lipids is not affected by the gel. Finally, our immobilization strategy allows capturing high-resolution 3D images of GUVs.

  19. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    PubMed

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms.

  20. Sol-gel technologies for multimode waveguide structures

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Kusevic, Maja; Hiltunen, Marianne; Paaso, Janne; Maekinen, Jukka-Tapani; Hiltunen, Jussi A.; Kautio, Kari; Kopola, Harri K.

    2002-06-01

    Lithographic patterning of organic-inorganic hybrid materials processed by the use of sol-gel technology allows for the generation of waveguide structures at low temperatures onto polymer or ceramic substrates. In addition, sol-gel technology provides the possibility to process precision structures, such as, grooves and cavities, which are applicable for the passive alignment of photonic devices. This provides the possibility for the realization of mass-producible photonic circuits onto large-area substrates. At the moment, the most potential applications are systems based on then use of multimode waveguide structures. Actually, when utilizing sol-gel technology, the challenge is how to process homogenous, low-loss and high-aspect-ratio structures. In addition, when aiming to highly mass-producible multimode modules, the key issue is the alignment of photonic devices preferably by the use of passive precision structures. In the future, when the systems need to be more complicated, the modeling of systems requires sophisticated 3D modeling tools. In this paper, the processing of multimode structures with sol-gel technologies is described, and the characterization results of prototype devices are reported. In addition, molding and cofiring technologies potentially applicable for the hybrid integration of photonic modules are reviewed. Finally, the future research aims for the commercialization of photonic modules based on the use of sol-gel technologies are envisioned.

  1. Deformation of Unentangled Swollen Gels

    NASA Astrophysics Data System (ADS)

    Sariyer, Ozan; Panyukov, Sergey; Rubinstein, Michael

    2014-03-01

    We study the deformation characteristics (Poisson's ratios and stress-strain relations) of unentangled gels swollen and uniaxially or biaxially deformed in excess solvent by considering the balance of osmotic pressure and elastic stress in unconstrained dimensions. Our scaling theory predicts a crossover from theta solvent behavior to marginal solvent behavior upon stretching gels that are in concentrated regime at swelling equilibrium - a phenomenon that was experimentally observed long ago, but not understood theoretically. For gels that are in the semidilute good solvent regime at swelling equilibrium, we predict a crossover to theta solvent behavior upon compression and a crossover to marginal solvent behavior upon stretching. Our theory reproduces the previously known results for equilibrium swelling degree as well as known deformation characteristics in theta and athermal solvents.

  2. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  3. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  4. Supramolecular Construction of Multifluorescent Gels: Interfacial Assembly of Discrete Fluorescent Gels through Multiple Hydrogen Bonding.

    PubMed

    Ji, Xiaofan; Shi, Bingbing; Wang, Hu; Xia, Danyu; Jie, Kecheng; Wu, Zi Liang; Huang, Feihe

    2015-12-22

    Multifluorescent supramolecular gels with complex structures are constructed from discrete fluorescent gels, which serve as the building blocks, through hydrogen bonding interactions at interfaces. The multifluorescent gel can realize rapid healing within only ≈100 s.

  5. Microbubble tunneling in gel phantoms

    PubMed Central

    Caskey, Charles F.; Qin, Shengping; Dayton, Paul A.; Ferrara, Katherine W.

    2009-01-01

    Insonified microbubbles were observed in vessels within a gel with a Young’s modulus similar to that of tissue, demonstrating shape instabilities, liquid jets, and the formation of small tunnels. In this study, tunnel formulation occurred in the direction of the propagating ultrasound wave, where radiation pressure directed the contact of the bubble and gel, facilitating the activity of the liquid jets. Combinations of ultrasonic parameters and microbubble concentrations that are relevant for diagnostic imaging and drug delivery and that lead to tunnel formation were applied and the resulting tunnel formation was quantified. PMID:19425620

  6. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes.

    PubMed

    Koga, Haruka; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Nakazawa, Kohji

    2013-03-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration.

  7. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  8. Pseudomonas aeruginosa respiratory tract infections associated with contaminated ultrasound gel used for transesophageal echocardiography - Michigan, December 2011-January 2012.

    PubMed

    2012-04-20

    In late December 2011, the Department of Epidemiology at Beaumont Health System (BHS) in Royal Oak, Michigan, noted an increase in the number of positive respiratory cultures in one surgical intensive-care unit (ICU), prompting further investigation. The increase in positive cultures was attributed entirely to Pseudomonas aeruginosa. Investigation by BHS staff members found that all of these positive cultures were related to use of ultrasound transmission gel from a single manufacturer during transesophageal echocardiography. Seven patients were infected with P. aeruginosa based on National Healthcare Safety Network (NHSN) criteria, and nine were colonized. Cultures from one open and one unopened bottle of the gel grew P. aeruginosa closely related to the outbreak strain based on molecular typing via repetitive extragenic palindromic polymerase chain reaction (rep-PCR). The Oakland County Health Department, the Michigan Department of Community Health, and the Food and Drug Administration (FDA) were notified of the findings. On January 23, all implicated ultrasound gel in multiuse bottles was removed from BHS facilities and replaced with a single-use, sterile ultrasound gel for all potentially invasive procedures. On April 18, FDA issued a Safety Communication* advising health-care professionals and facilities not to use certain lot numbers of the ultrasound transmission gel and further advising that the only ultrasound gel that is sterile is unopened gel in containers labeled as sterile. To date, no further respiratory cultures have been positive for P. aeruginosa.

  9. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  10. Liquid-crystalline physical gels.

    PubMed

    Kato, Takashi; Hirai, Yuki; Nakaso, Suguru; Moriyama, Masaya

    2007-12-01

    Liquid-crystalline (LC) physical gels are a new class of dynamically functional materials consisting of liquid crystals and fibrous aggregates of molecules that are called "gelators". Liquid-crystalline physical gels, which are macroscopically soft solids, exhibit induced or enhanced electro-optical, photochemical, electronic properties due to the combination of two components that form phase-separated structures. In this tutorial review, we describe the materials design and structure-property relationships of the LC physical gels. The introduction of self-assembled fibers into nematic liquid crystals leads to faster responses in twisted nematic (TN) mode and high contrast switching in light scattering mode. Furthermore, the LC physical gels can be exploited as a new type of materials for electro-optical memory. This function is achieved by the control of reversible aggregation processes of gelators under electric fields in nematic liquid crystals. Electronic properties such as hole mobilities are improved by the introduction of fibrous aggregates into triphenylene-based columnar liquid crystals. The incorporation of photochromic azobenzenes or electroactive tetrathiafulvalenes into the chemical structures of gelators leads to the preparation of ordered functional materials.

  11. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability

    PubMed Central

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-01-01

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects. PMID:26110392

  12. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability.

    PubMed

    Suzawa, Yoshika; Kubo, Norihiko; Iwai, Soichi; Yura, Yoshiaki; Ohgushi, Hajime; Akashi, Mitsuru

    2015-06-23

    Hydroxyapatite (HA) or calcium carbonate (CaCO3) formed on an organic polymer of agarose gel is a biomaterial that can be used for bone tissue regeneration. However, in critical bone defects, the regeneration capability of these materials is limited. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming osteoblasts. In this study, we loaded MSCs on HA- or CaCO3-formed agarose gel and cultured them with dexamethasone, which triggers the osteogenic differentiation of MSCs. High alkaline phosphatase activity was detected on both the HA- and CaCO3-formed agarose gels; however, basal activity was only detected on bare agarose gel. Bone-specific osteocalcin content was detected on CaCO3-formed agarose gel on Day 14 of culture, and levels subsequently increased over time. Similar osteocalcin content was detected on HA-formed agarose on Day 21 and levels increased on Day 28. In contrast, only small amounts of osteocalcin were found on bare agarose gel. Consequently, osteogenic capability of MSCs was enhanced on CaCO3-formed agarose at an early stage, and both HA- and CaCO3-formed agarose gels well supported the capability at a later stage. Therefore, MSCs loaded on either HA- or CaCO3-formed agarose could potentially be employed for the repair of critical bone defects.

  13. Final report

    SciTech Connect

    Dobbs, Fred C.

    2003-01-15

    species of flagellates, Spumella sp. and Bodo sp. (identifications are tentative) were isolated from South Oyster sediments by repetitive serial dilution/extinction method. Protistan cells were cultured with Cereal leaf Prescott medium and pelleted by centrifugation. Protistan DNAs were extracted with a DNA extraction kit (Sigma Co.) and the sequencing of their SSrDNA is underway. Finally, to follow up on our collaboration of Dr. Bill Johnson (Univ. of Utah), one of the co-PIs under the same NABIR umbrella, we are pleased to report we have successfully tested antibody-ferrographic capture of protists (See previous year's report for more background). Polyclonal FITC-conjugated antibody specific for a flagellate, Spumella sp., was produced by Rockland Inc., and we now are able to enumerate that species using ferrographic capture. There are, however, some issues of non-specific staining that remain to be resolved.

  14. Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality

    PubMed Central

    Aranda, Patrick S.; LaJoie, Dollie M.; Jorcyk, Cheryl L.

    2013-01-01

    RNA-based applications requiring high quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the ‘bleach gel’ is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality. PMID:22222980

  15. Species-specific toxicity of troglitazone on rats and human by gel entrapped hepatocytes

    SciTech Connect

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2012-01-01

    Troglitazone, despite passing preclinical trials on animals, was shortly withdrawn from market due to its severe hepatotoxicity in clinic. As rat hepatocyte monolayer consistently showed sensitive troglitazone toxicity as human hepatocyte monolayer in contrast to the species-specific toxicity in vivo, this paper utilized both hepatocytes in three-dimensional culture of gel entrapment to reflect the species difference on hepatotoxicity. Rat hepatocytes in gel entrapment did not show obvious cellular damage even under a long-term exposure for 21 days while gel entrapped human hepatocytes significantly displayed oxidative stress, steatosis, mitochondrial damage and cell death at a short exposure for 4 days. As a result, the detected species-specific toxicity of troglitazone between gel entrapped rat and human hepatocytes consisted well with the situation in vivo but was in a sharp contrast to the performance of two hepatocytes by monolayer culture. Such contradictory toxicity of rat hepatocytes between monolayer and gel entrapment culture could be explained by the fact that troglitazone was cleared more rapidly in gel entrapment than in monolayer culture. Similarly, the differential clearance of troglitazone in rat and human might also explain its species-specific toxicity. Therefore, gel entrapment of hepatocytes might serve as a platform for evaluation of drug toxicity at early stage of drug development by reducing costs, increasing the likelihood of clinical success and limiting human exposure to unsafe drugs. -- Highlights: ► Species-specific toxicity of troglitazone reflected by rat/human hepatocytes ► 3D hepatocytes in 21 days’ long-term culture used for drug hepatotoxicity ► Oversensitive toxicity in hepatocyte monolayer by slow troglitazone clearance.

  16. Clindamycin phosphate 1% gel in acne vulgaris.

    PubMed

    Rizer, R L; Sklar, J L; Whiting, D; Bucko, A; Shavin, J; Jarratt, M

    2001-01-01

    A 12-week study compared Clindagel, a unique water-based gel formulation of clindamycin phosphate 1%, administered once daily, and Cleocin T, a slightly different gel formulation indicated for twice-daily use, in the treatment of acne vulgaris. Clindagel was safe and effective and equivalent to Cleocin T gel, albeit with a better tolerability profile. Clindagel is a viable alternative to Cleocin T gel.

  17. Study of Fricke gel dosimeter response for different gel quality

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Campos, L. L.

    2010-11-01

    The Fricke xylenol gel (FXG) dosimeter has been studied for application in radiotherapy because it is capable of to measure the spatial distribution of radiation doses. The dosimetry is based on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions radiation induced, related to the radiation dose. The gel material usually employed is the 300 Bloom gelatin, which is imported and very expensive in Brazil. Aiming to analyze the viability of to use a locally produced and low cost gel material, in this work the spectrophotometric responses of FXG solutions prepared using 270 Bloom gelatin commercially available and 300 Bloom gelatin imported were compared. The absorption spectra of solutions prepared with 5% by weight 270 and 300 Bloom gelatins non-irradiated and irradiated with 60Co gamma radiation in the dose range between 0.5 and 100 Gy were analysed, the dose-response curves were evaluated and the useful dose range was established. The obtained results indicate that the FXG solution prepared with 270 Bloom gelatin presents good performance, similar to that presented by the FXG solution prepared with 300 Bloom gelatin and its use can be recommended owing to the low cost and the availability in local market.

  18. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen.

    PubMed

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J

    2011-04-01

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  19. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    SciTech Connect

    Leong, Wen Shing; Tay, Chor Yong; Yu, Haiyang; Li, Ang; Wu, Shu Cheng; Duc, Duong-Hong; Lim, Chwee Teck; Tan, Lay Poh

    2010-10-15

    Research highlights: {yields} hMSCs appeared to sense thin collagen gel (130 {mu}m) with higher effective modulus as compared to thick gel (1440 {mu}m). {yields} Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). {yields} Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanical properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 {mu}m) as having a higher effective modulus than the thick gel (1440 {mu}m) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 {mu}m) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.

  20. Final Report

    SciTech Connect

    Gurney, Kevin R.

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  1. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  2. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  3. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  4. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.

    PubMed

    Draget, Kurt Ingar; Stokke, Bjørn T; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji

    2003-01-01

    Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.

  5. A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density.

    PubMed

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua; Zhou, Hongbo

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.

  6. A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density

    PubMed Central

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage. PMID:24242252

  7. Cultured Memories: Power, Memory, and Finalism

    ERIC Educational Resources Information Center

    Morris, Richard; Stuckey, Mary E.

    2004-01-01

    Social images of Indian/white relations, so typically born and nurtured in fiction, frequently seem impervious to fact, circumstance, perspective, or even argument. Despite a public that in record numbers consumed descriptions like the one that closes Dee Brown's 1971 book, for instance, official accounts of the massacre at Wounded Knee--like…

  8. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  9. Soft fibrin gels promote selection and growth of tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  10. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    PubMed

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  11. Sol-gel microextraction phases for sample preconcentration in chromatographic analysis.

    PubMed

    Segro, Scott S; Tran, Minh Phuong; Kesani, Sheshanka; Alhendal, Abdullah; Turner, Erica B

    2010-10-01

    Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.

  12. Modulating the Rigidity and Mineralization of Collagen Gels Using Poly(Lactic-Co-Glycolic Acid) Microparticles

    PubMed Central

    DeVolder, Ross J.; Kim, Il Won; Kim, Eun-Suk

    2012-01-01

    Extensive efforts have been made to prepare osteoconductive collagen gels for the regeneration of normal bone and the pathological examination of diseased bone; however, collagen gels are often plagued by limited controllability of their rigidity and mineral deposition. This study reports a simple but efficient strategy that tunes the mechanical properties of, and apatite formation in, collagen gels by incorporating hydrolyzable poly(lactic-co-glycolic acid) (PLGA) microparticles within the gels. The PLGA microparticles are associated with the collagen fibrils and increased both the gel's elasticity and rigidity while minimally influencing its permeability. As compared with pure collagen gels, the PLGA microparticle-filled collagen gels, termed PLGA-Col hydrogels, significantly enhanced the deposition of apatite-like minerals within the gels when incubated in simulated body fluid or encapsulated with mesenchymal stem cells (MSCs) undergoing osteogenic differentiation. Finally, PLGA-Col hydrogels mineralized by differentiated MSCs led to an enhanced formation of bone-like tissues within the hydrogels. Overall, the PLGA-Col hydrogel system developed in this study will serve to improve the quality of osteoconductive matrices for both fundamental and clinical studies that are relevant to bone repair, regeneration, and pathogenesis. PMID:22480235

  13. Influence of Whitening Gel Application Protocol on Dental Color Change

    PubMed Central

    Caneppele, Taciana Marco Ferraz; Torres, Carlos Rocha Gomes; Huhtala, Maria Filomena Rocha Lima; Bresciani, Eduardo

    2015-01-01

    Objectives. To evaluate the influence of different whitening protocols on the efficacy of 35% hydrogen peroxide (HP) tooth whitening and gel pH and concentration. Material and Methods. Eighty-four enamel/dentin discs from bovine incisors were used. The baseline color was measured with a spectrophotometer. Two sessions of in-office whitening with 35% HP were performed under different protocols: G1: 3 applications of HP (10 min each) per session; G2: 1 application of 30 min per session; G3: 1 application of 40 min per session, with no gel replenishment within session for groups 2 and 3. HP titration and pH evaluation at baseline, after 10, 30, and 40 min were also performed. The final color was measured 24 h after the 1st and 2nd whitening sessions. Data were submitted to Repeated Measures ANOVA and Tukey's test. Results. For color evaluation, no differences were observed among groups after two sessions. HP titration showed no drop on concentration after 10, 30, or 40 min. The pH was 5.54 at baseline and 5.41 after 40 min. Conclusion. Replenishment or extended application time of in-office whitening gel does not affect gel pH and concentration, a fact that supports the similar effectiveness of whitening observed among the tested protocols. PMID:25866839

  14. Protein interactions with nanoporous sol-gel derived bioactive glasses.

    PubMed

    Lin, Sen; Van den Bergh, Wouter; Baker, Simon; Jones, Julian R

    2011-10-01

    Sol-gel derived bioactive glasses are excellent candidates for bone regenerative implant materials as they bond with bone, stimulate bone growth and degrade in the body. Their interactions with proteins are critical to understanding their performance after implantation. This study focuses on the interactions between fibrinogen and sol-gel glass particles of the 70S30C (70 mol.% SiO(2), 30 mol.% CaO composition). Sol-gel silica and melt-derived Bioglass® were also used for comparison. Fibrinogen penetration into the nanoporous glasses was observed by live tracking the fluorescent-labelled fibrinogen with confocal microscopy. The effect of pore size on protein penetration was investigated. Nanoporous networks with modal pore diameters larger than 6 nm were accessible to fibrinogen. When the modal nanopore diameter was decreased to 2 nm or less, the penetration of fibrinogen was inhibited. The surface properties of the glasses, which can be modulated by media pH, glass composition and final stabilisation temperature in the sol-gel process, have effects on fibrinogen adsorption via long-range Coulombic forces before the adsorption and via short-range interactions such as hydrogen bonding after the adsorption.

  15. Gravitational collapse of colloidal gels: Origins of the tipping point

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Zia, Roseanna

    2016-11-01

    Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.

  16. Lecithin-Linker Microemulsion Gelatin Gels for Extended Drug Delivery

    PubMed Central

    Xuan, Xiao-Yue; Cheng, Yu-Ling; Acosta, Edgar

    2012-01-01

    This article introduces the formulation of alcohol-free, lecithin microemulsion-based gels (MBGs) prepared with gelatin as gelling agent. The influence of oil, water, lecithin and hydrophilic and lipophilic additives (linkers) on the rheological properties and appearance of these gels was systematically explored using ternary phase diagrams. Clear MBGs were obtained in regions of single phase microemulsions (μEs) at room temperature. Increasing the water content in the formulation increased the elastic modulus of the gels, while increasing the oil content had the opposite effect. The hydrophilic additive (PEG-6-caprylic/capric glycerides) was shown to reduce the elastic modulus of gelatin gels, particularly at high temperatures. In contrast to anionic (AOT) μEs, the results suggest that in lecithin (nonionic) μEs, the introduction of gelatin “dehydrates” the μE. Finally, when the transdermal transport of lidocaine formulated in the parent μE and the resulting MBG were compared, only a minor retardation in the loading and release of lidocaine was observed. PMID:24300183

  17. Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt.

    PubMed

    Pang, Zhihua; Deeth, Hilton; Yang, Hongshun; Prakash, Sangeeta; Bansal, Nidhi

    2017-03-08

    Tilapia skin gelatin (TSG) was studied in a 3-stage process (cooling, annealing, and heating) for pure gelatin gels and in a 4-stage process (acidification, cooling, annealing, and heating) for acid milk gels and cultured yogurt. The aim was to evaluate the use of TSG as a replacement for mammalian gelatin in yogurt. In pure TSG gels, stronger gels with higher melting temperatures were formed with increasing TSG concentrations. Compared with bovine gelatin (BG), which gelled at a concentration of 2.5%, TSG gels had lower gelling (14.1°C) and melting (24°C) temperatures but comparable storage moduli during annealing. In acid milk gels, addition of TSG increased the firmness of the gels with increasing concentration. Gelling and melting points of TSG in milk gels were observed at sufficient concentrations during cooling and heating. Strands and sheets were observed in the electron micrographs of milk gels with 1% TSG and a very dense structure was observed with 2.5% TSG. Yogurt with 0.4% TSG had similar viscosity, consistency, pseudoplasticity, and thixotropy as yogurt containing 0.4% BG; no difference was perceived by sensory panelists according to a triangle test. Addition of 0.4% TSG completely prevented whey separation from the acid milk gel and yogurt. The results suggest that TSG could be a suitable replacement for mammalian gelatin in low-fat stirred yogurt.

  18. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis.

    PubMed

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; Zhong, Mingjiang; Jordan, Alex M; Biswas, Santidan; Korley, LaShanda T J; Balazs, Anna C; Johnson, Jeremiah A

    2017-02-22

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials "dead" toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative "living additive manufacturing" strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant "parent" materials to generate more complex and diversely functionalized "daughter" materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent's average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.

  19. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis

    PubMed Central

    2017-01-01

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized. PMID:28280779

  20. Colloidal gel and its application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Xie, Baojun

    2005-12-01

    Scope and method of study. Three dimensional, porous polymer scaffolds are fabricated by direct writing of colloidal gels. This work focuses on both the processing of colloidal gel and assembly of the scaffold structures as well as characterization of cytotoxicity and protein release kinetics. Specifically, rheological and elastic properties of the colloidal gels are probed as a function of solids loading and binder concentration. Porous scaffolds are characterized by optical and electron microscopy. In vitro studies include cell mortality after six weeks culture on passive scaffolds, model protein release profiles from scaffolds, and quantitative measurement of protein activity upon release from the scaffolds by chemotaxis. Findings and conclusions. The polymer colloidal gels formulated with acrylic latex particles and Pluronic F127 copolymer binder have pseudoplastic with yield stress rheology. Increases in solids loading and Pluronic concentration cause increased viscosity, elastic modulus, and yield stress. The rheology and rapid recovery of yield allow for flow through a deposition nozzle of the direct write toot and rapid setting of the extrudate to maintain the deposited structure. Scaffolds with a wide variety of porosity are fabricated. Because of the aqueous and low temperature nature of the process, bioactive molecules such as proteins are readily incorporated into the scaffold either in their original form or encapsulated in chitosan nanoparticles and subsequently released without denaturation and in a controlled fashion. Protein release rate is dependent on both the degree of coalescence of the scaffold material and the molecular weight of the chitosan nanoparticles. Protein inclusion and subsequent release is demonstrated using BSA and PDGF-BB. The scaffolds fabricated are non-cytotoxic as confirmed by QEC6 cell culture. Heterogeneous scaffolds with localized regions of dissolved species are demonstrated to illustrate the capability to assembly

  1. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

  2. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  3. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  4. Molecular imprinting in sol-gel matrix.

    PubMed

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    Molecular imprinting is a newly developed methodology which provides molecular assemblies of desired structures and properties and is being increasingly used for several applications such as in separation processes, microreactors, immunoassays and antibody mimics, catalysis, artificial enzymes, biosensor recognition elements and bio- and chemo-sensors. The ambient processing conditions and versatility of the sol-gel process makes sol-gel glassy matrix suitable for molecular imprinting. The progress of sol-gel based molecular imprinted polymers (MIPs) for various applications can be seen from the growing number of publications. The main focus of the review is molecular imprinting in sol-gel matrix and applications of molecular imprinted sol-gel derived materials for the development of sensors. Combining sol-gel process with molecular imprinting enables to procure the sensors with greater sensitivity and selectivity necessary for sensing applications. The merits, problems, challenges and factors affecting molecular imprinting in sol-gel matrix have been discussed. Considerable attention has been drawn on recent developments like use of organically modified silane precursors (ORMOSILS) for the synthesis of hybrid molecular imprinted polymers (HMIPs) and applying surface sol-gel process for molecular imprinting. The development of molecular imprinted sol-gel nanotubes for biochemical separation and bio-imprinting is a new advancement and is under progress. Templated xerogels and molecularly imprinted sol-gel films provide a good platform for various sensor applications.

  5. Optically characterizing collagen gels made with different cell types

    NASA Astrophysics Data System (ADS)

    Levitz, David; Choudhury, Niloy; Vartanian, Keri; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2009-02-01

    The ability of optical imaging techniques such as optical coherence tomography (OCT) to non-destructively characterize tissue-engineered constructs has generated enormous interest recently. Collagen gels are 3D structures that represent a simple common model of many engineered tissues that contain 2 primary scatterers: collagen and cells. We are testing the ability of OCT data to characterize the remodeling of such collagen-based constructs by 3 different types of cells: vascular smooth muscle cells (SMCs), endothelial cells (ECs), and osteoblasts (OBs). Collagen gels were prepared with SMCs, ECs, and OBs with a seeding density of 1×106 cells/ml; additionally, acellular controls were also prepared. The disk-shaped constructs were allowed to remodel in the incubator for 5 days, with OCT imaging occurring on days 1 and 5. From the OCT data, the attenuation and reflectivity were evaluated by fitting the data to a theoretical model that relates the tissue optical properties (scattering coefficient and anisotropy factor) and imaging conditions to the OCT signal. The degree of gel compaction was determined from the volume of the culture medium that feeds the constructs. We found that gel compaction (relative to the acellular control) occurred in the SMC constructs, but not in the OB or EC constructs. The optical property data showed that at day 5 the SMC constructs had an overall higher reflectivity (lower g) relative to day 1, whereas there was no obvious change in reflectivity of the EC, OB constructs and acellular controls relative to day 1. Moreover, there was a difference in the attenuation of the OB constructs on day 5 relative to day 1, but not in the other constructs. The apparent decrease in anisotropy observed in the SMC constructs, but not in the OB and EC constructs and acellular controls, suggests that OCT is sensitive to the remodeling of the collagen matrix that accompanies gel compaction, and can offer highly localized information on the construct

  6. Photorefractive sol-gel materials

    SciTech Connect

    Chaput, F.; Boilot, J.P.; Gacoin, T.; Darracq, B.; Riehl, D.; Canva, M.; Levy, Y.; Brun, A.

    1996-12-31

    The authors report the synthesis and characterization of photorefractive sol-gel materials that possess covalently attached push-pull azobenzene and carbazole moieties. Molecular structural characterization of the modified silane monomers was achieved by {sup 1}H NMR and infra red spectroscopy. The second-order nonlinear optical properties of the organic-inorganic hybrid films prepared from modified silane monomers were evaluated by second-harmonic generation. The stabilized value of the second harmonic coefficient, d{sub 33}, of films poled by corona discharge, at 1,064 nm fundamental wavelength was found to be 107 pm/V. Photorefractivity was clearly displayed from a two beam coupling experiment.

  7. Optical-CT gel-dosimetry I: basic investigations.

    PubMed

    Oldham, Mark; Siewerdsen, Jeffrey H; Kumar, Sai; Wong, John; Jaffray, David A

    2003-04-01

    Comprehensive verification of the intricate dose distributions associated with advanced radiation treatments is now an immediate and substantial problem. The task is challenging using traditional dosimeters because of restrictions to point measurements (ion chambers, diodes, TLD, etc.) or planar measurements (film). In essence, rapid advances in the technology to deliver radiation treatments have not been paralleled by corresponding advances in the ability to verify these treatments. A potential solution has emerged in the form of water equivalent three dimensional (3D) gel-dosimetry. In this paper we present basic characterization and performance studies of a prototype optical-CT scanning system developed in our laboratory. An analysis of the potential role or scope of gel dosimetry, in relation to other dosimeters, and to verification across the spectrum of therapeutic techniques is also given. The characterization studies enabled the determination of nominal operating conditions for optical-CT scanning. "Finger" phantoms are introduced as a powerful and flexible tool for the investigation of optical-CT performance. The modulation-transfer function (MTF) of the system is determined to be better than 10% out to 1 mm(-1), confirming sub-mm imaging ability. System performance is demonstrated by the acquisition of a 1 x 1 x 1 mm3 dataset through the dose distribution delivered by an x-ray lens that focuses x rays in the energy range 40-80 KeV. This 3D measurement would be extremely difficult to achieve with other dosimetry techniques and highlights some of the strengths of gel dosimetry. Finally, an optical Monte Carlo model is introduced and shown to have potential to model light transport through gel-dosimetry systems, and to provide a tool for the study and optimization of optical-CT gel dosimetry. The model utilizes Mie scattering theory and requires knowledge of the variation of the particle size distribution with dose. The latter was determined here using the

  8. The Filipino Family, Teacher's Guide. A Unit of the Bay Area Filipino Culture Education Project, Revised Edition 1977 [And] Student Booklet [And] Teenagers in the Philippines and the Filipino Teenager: USA, Teacher's Guide. [And] Appendix: Final Report.

    ERIC Educational Resources Information Center

    San Francisco Univ., CA. Dept. of Education.

    Three units of one to three weeks duration each comprise this Filipino Culture Education Project package developed for students in grades 6-8. Objectives are to help students recognize the cultural heritage of Filipino Americans, to develop bicultural identities, and to help non-Filipino students develop appreciation for the cultural diversity…

  9. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    PubMed Central

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. Results: hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. Conclusions: The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler. PMID:25589892

  10. [Induced abortion using prostaglandin E2 and F2alpha gel].

    PubMed

    Lippert, T H; Modly, T

    1974-01-01

    In this study of 20 patients in the 13th-17th week of pregnancy abortion was induced with intrauterine, extraamniotic application of prostaglandins (PG) E2 or F2 in gel form. The gel composition was as follows: 4% tylose MH 300, 2% glycerine, 1% chlorhexidine digluconate, 83% sterile distilled water and 10% PG stock solution. Both PGE2 and PGF2 gels were used. Final concentration was 2.5 mg E2 or 2.5 mg F2 per g of gel. Gel was applied via transcervical, extraamniotic polyethylene catheter every 2-3 hours. Results: PGE2-gel was used in 14 cases. After 3-4 applications both fetus and placenta were expelled. Average dose used was 4.6 mg E2/patient. First contractions started in 30 minutes; induction to expulsion time was 11 hours 35 minutes. F2-gel given to 6 patients resulted in expulsion of the fetus in all cases but placenta needed removal by curettage in 4 patients. Average dose per patient was 17.7 mg of F2; first contractions in 30 minutes, average expulsion time 17 hours 38 minutes. With both PGs there were painful contractions which were controlled with a combination of pentazocine and Valium. PGE2 caused vomiting in 5 patients. No increased bleeding or postabortion infection occurred. Follow-up curettage was done in all patients to ensure removal of all tissues. Overall evaluation of the PG-gels was considered good. PG stability in gel form is good; during 8 months of preservation in sterile aluminum tubes at -25 degrees Celsius no decline in clinical effectiveness was noted. The gel application is less expensive than the slow-injection pump method.

  11. User`s guide and documentation manual for ``PC-Gel`` simulator

    SciTech Connect

    Chang, Ming-Ming; Gao, Hong W.

    1993-10-01

    PC-GEL is a three-dimensional, three-phase (oil, water, and gas) permeability modification simulator developed by incorporating an in-situ gelation model into a black oil simulator (BOAST) for personal computer application. The features included in the simulator are: transport of each chemical species of the polymer/crosslinker system in porous media, gelation reaction kinetics of the polymer with crosslinking agents, rheology of the polymer and gel, inaccessible pore volume to macromolecules, adsorption of chemical species on rock surfaces, retention of gel on the rock matrix, and permeability reduction caused by the adsorption of polymer and gel. The in-situ gelation model and simulator were validated against data reported in the literature. The simulator PC-GEL is useful for simulating and optimizing any combination of primary production, waterflooding, polymer flooding, and permeability modification treatments. A general background of permeability modification using crosslinked polymer gels is given in Section I and the governing equations, mechanisms, and numerical solutions of PC-GEL are given in Section II. Steps for preparing an input data file with reservoir and gel-chemical transport data, and recurrent data are described in Sections III and IV, respectively. Example data inputs are enclosed after explanations of each input line to help the user prepare data files. Major items of the output files are reviewed in Section V. Finally, three sample problems for running PC-GEL are described in Section VI, and input files and part of the output files of these problems are listed in the appendices. For the user`s reference a copy of the source code of PC-GEL computer program is attached in Appendix A.

  12. Final Report

    SciTech Connect

    Marchant, Gary E.

    2013-04-23

    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  13. Final Report

    SciTech Connect

    R. Paul Drake

    2001-11-30

    This final report describes work involving 22 investigators from 11 institutions to explore the dynamics present in supernova explosions by means of experiments on the Omega laser. The specific experiments emphasized involved the unstable expansion of a spherical capsule and the coupling of perturbations at a first interface to a second interface by means of a strong shock. Both effects are present in supernovae. The experiments were performed at Omega and the computer simulations were undertaken at several institutions. B139

  14. Final Report

    SciTech Connect

    Stinis, Panos

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  15. In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel.

    PubMed

    Im, Sun-A; Lee, Young-Ran; Lee, Young-Hee; Lee, Myung-Koo; Park, Young In; Lee, Sungwon; Kim, Kyungjae; Lee, Chong-Kil

    2010-03-01

    The gels of Aloe species contain immunomodulatory components such as aloctin A and acemannan. Most studies on these gels were performed in in vitro cell culture systems. Although several studies examined their immunomodulatory activity in vivo, the route of administration was intraperitoneal or intramuscular. Here, we evaluated the in vivo immunomodulatory activity of processed Aloe vera gel (PAG) in mice. Oral administration of PAG significantly reduced the growth of C. albicans in the spleen and kidney following intravenous injection of C. albicans in normal mice. PAG administration also reduced the growth of C. albicans in streptozotocin-induced diabetic mice. PAG administration did not increase ovalbumin (OVA)-specific cytotoxic T lymphocyte (CTL) generation in normal mice, but did increase it in high-fat-diet induced diabetic mice. These findings provide the first clear evidence for the immunomodulatory activity of orally administered Aloe vera gel.

  16. Endosperm protein synthesis and L-(/sup 35/S)methionine incorporation in maize kernels cultured in vitro

    SciTech Connect

    Cully, D.E.; Gengenbach, B.G.; Smith, J.A.; Rubenstein, I.; Connely, J.A.; Park, W.D.

    1984-02-01

    This study was conducted to examine protein synthesis and L-(/sup 35/S)methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries L-(/sup 35/S)methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endosperm for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages. Sodium, dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing patterns for endosperm proteins were similar for field and cultured kernels throughout development. By 15 days, over 70% of the L-(/sup 35/S)methionine taken up was present in endosperm proteins. Label incorporation visualized by fluorography generally followed the protein intensity of the stained gels. The high methionine content, low molecular weight zeins (i.e. 15 and 9 kilodaltons) were highly labeled. All of the radioactivity in hydrolyzed zein samples was recovered in the methionine peak indicating minimal conversion to L-(/sup 35/S)cysteine. The procedure described here is suitable for long term culture and labeling experiments in which continued kernel development is required.

  17. Timescales in creep and yielding of attractive gels.

    PubMed

    Grenard, Vincent; Divoux, Thibaut; Taberlet, Nicolas; Manneville, Sébastien

    2014-03-14

    The stress-induced yielding scenario of colloidal gels is investigated under rough boundary conditions by means of rheometry coupled with local velocity measurements. Under an applied shear stress σ, the fluidization of gels made of attractive carbon black particles dispersed in a mineral oil is shown to involve a previously unreported shear rate response γ dot above(t) characterized by two well-defined and separated timescales τc and τf. First γ dot above decreases as a weak power law strongly reminiscent of the primary creep observed in numerous crystalline and amorphous solids, coined the "Andrade creep". We show that the bulk deformation remains homogeneous at the micron scale, which demonstrates that whether plastic events take place or whether any shear transformation zone exists, such phenomena occur at a smaller scale. As a key result of this paper, the duration τc of this creep regime decreases as a power law of the viscous stress, defined as the difference between the applied stress and the yield stress σc, i.e. τc ∼ (σ - σc)(-β), with β = 2-3 depending on the gel concentration. The end of this first regime is marked by a jump of the shear rate by several orders of magnitude, while the gel slowly slides as a solid block experiencing strong wall slip at both walls, despite rough boundary conditions. Finally, a second sudden increase of the shear rate is concomitant with the full fluidization of the material which ends up being homogeneously sheared. The corresponding fluidization time τf robustly follows an exponential decay with the applied shear stress, i.e. τf = τ0 exp(-σ/σ0), as already reported for smooth boundary conditions. Varying the gel concentration C in a systematic fashion shows that the parameter σ0 and the yield stress σc exhibit similar power-law dependences with C. Finally, we highlight a few features that are common to attractive colloidal gels and to solid materials by discussing our results in the framework of

  18. Active gel model of amoeboid cell motility

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Voituriez, R.

    2013-02-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  19. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  20. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  1. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  2. Gel trapping of dense colloids.

    PubMed

    Laxton, Peter B; Berg, John C

    2005-05-01

    Phase density differences in sols, foams, or emulsions often lead to sedimentation or creaming, causing problems for materials where spatial uniformity over extended periods of time is essential. The problem may be addressed through the use of rheology modifiers in the continuous phase. Weak polymer gels have found use for this purpose in the food industry where they appear to be capable of trapping dispersoid particles in a three-dimensional matrix while displaying water-like viscosities at low shear. Attempts to predict sedimentation stability in terms of particle properties (size, shape, density difference) and gel yield stress have led to qualitative success for suspensions of large particles. The effect of particle size, however, in particular the case in which colloidal dimensions are approached, has not been investigated. The present work seeks to determine useful stability criteria for colloidal dispersions in terms of readily accessible viscoelastic descriptors. Results are reported for systems consisting of 12 microm poly(methyl methacrylate) (PMMA) spheres dispersed in aqueous gellan gum. Monovalent salt concentration is varied to control rheological properties, and sedimentation/centrifugation experiments are performed to determine dispersion stability. Necessary conditions for stability consist of a minimum yield stress together with a value of tan delta less than unity.

  3. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    NASA Astrophysics Data System (ADS)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  4. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  5. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering.

    PubMed

    Taylor, Stewart J; Haw, Mark D; Sefcik, Jan; Fletcher, Ashleigh J

    2014-09-02

    Xerogels and porous materials for specific applications such as catalyst supports, CO2 capture, pollutant adsorption, and selective membrane design require fine control of pore structure, which in turn requires improved understanding of the chemistry and physics of growth, aggregation, and gelation processes governing nanostructure formation in these materials. We used time-resolved dynamic light scattering to study the formation of resorcinol-formaldehyde gels through a sol-gel process in the presence of Group I metal carbonates. We showed that an underlying nanoscale phase transition (independent of carbonate concentration or metal type) controls the size of primary clusters during the preaggregation phase; while the amount of carbonate determines the number concentration of clusters and, hence, the size to which clusters grow before filling space to form the gel. This novel physical insight, based on a close relationship between cluster size at the onset of gelation and average pore size in the final xerogel results in a well-defined master curve, directly linking final gel properties to process conditions, facilitating the rational design of porous gels with properties specifically tuned for particular applications. Interestingly, although results for lithium, sodium, and potassium carbonate fall on the same master curve, cesium carbonate gels have significantly larger average pore size and cluster size at gelation, providing an extended range of tunable pore size for further adsorption applications.

  6. Food gels: gelling process and new applications.

    PubMed

    Banerjee, Soumya; Bhattacharya, Suvendu

    2012-01-01

    Food gels are viscoelastic substances and several gelled products are manufactured throughout the world. The gelling agents in foods are usually polysaccharides and proteins. In food gels, the polymer molecules are not cross-linked by covalent bonds with the exception of disulphide bonds in some protein gels. Instead, the molecules are held together by a combination of weak inter-molecular forces like hydrogen bonds, electrostatic forces, Van der Waals forces, and hydrophobic interactions. Polysaccharides including hydrocolloids are strongly hydrated in aqueous medium but they tend to have less ordered structures. The mechanism of gelation depends on the nature of the gelling agent(s) and on the conditions of gel formation like the temperature, the presence of ions, the pH, and the concentration of gelling agents, etc. Characterization of gels can be performed in several ways of which rheological measurements are frequently practiced. Multi-component or mixed gel system is an important area of interest in which two or more gelling components are simultaneously used to achieve certain specific structural and functional characteristics. We here discuss about the different gels and gelling agents, the characterization of gels, and the mechanism of gelation with an emphasis on mixed or multi-component gels that would have significant commercial applications.

  7. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  8. Conducting polymer electrodes for gel electrophoresis.

    PubMed

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  9. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  10. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    SciTech Connect

    Russell, D.L.; Consigli, R.A.

    1986-10-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure.

  11. Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels.

    PubMed

    Wang, Lixia; Jiang, Yaoping; Lin, Youhui; Pang, Jie; Liu, Xiang Yang

    2016-05-20

    Konjac glucomannan-tungsten (KGM-T) hydrogel of electrochemical reversibility was successfully produced under DC electric fields in the presence of sodium tungstate. The structure and the effects of sodium tungstate concentration, KGM concentration, voltage and electric processing time on the rheological properties of the gels were investigated. pH experiments showed that KGM sol containing Na2WO4·2H2O in the vicinity of the positive electrode became acidic and the negative electrode basic after the application of DC electric fields. Under acid conditions, WO4(2-) ions transformed into isopoly-tungstic acid ions. FTIR and Raman studies indicated that isopoly-tungstic acid ions absorbed on KGM molecular chain and cross-linked with -OH groups at C-6 position on sugar units of KGM. Frequency sweep data showed with increasing sodium tungstate concentration, voltage, and electric processing time, the viscoelastic moduli, i.e., the storage and the loss moduli of the gel increased, whereas an increase in KGM concentration led to a decrease in gel viscoelastic moduli. The temperature sweep measurements indicated the obtained gel exhibited high thermal stability. Finally, the mechanism of gel formation was proposed. Our work may pave the way to use DC electric fields for the design and development of KGM gels as well as polysaccharide gels.

  12. Final Report

    SciTech Connect

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  13. A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol.

    PubMed

    Moon, E J; Lee, Y M; Lee, O H; Lee, M J; Lee, S K; Chung, M H; Park, Y I; Sung, C K; Choi, J S; Kim, K W

    1999-01-01

    Aloe vera gel has a beneficial effect on wound healing. Because angiogenesis is an essential process in wound healing, we hypothesized that Aloe vera gel might contain potent angiogenic compounds. Here we demonstrate that Aloe vera gel and its extracts are angiogenic on the chorioallantoic membrane (CAM) of chick embryo. Out of the three compounds purified from the final fraction of Aloe vera gel, beta-sitosterol showed a potent angiogenic activity in the CAM assay. In the presence of heparin, beta-sitosterol stimulated neovascularization in the mouse Matrigel plug assay and the motility of human umbilical vein endothelial cells in an in vitro wound migration assay. Thus beta-sitosterol is a novel plant-derived angiogenic factor which may have potential pharmaceutical applications for the management of chronic wounds.

  14. Optical pH sensor based on sol-gel-doped new luminescent dye

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra; Niederreiter, Karlheinz; Uray, Georg

    1999-11-01

    The sol-gel process is an exciting new technology that enables the production of gel glasses and ceramic materials at room temperature. Sol-gel technology offers simple methods for manipulation of the structure, configuration, composition and chemical characteristics of organic matrices. A novel longwave luminescent dye based on the europium luminescence initiated by a covalently bonded antenna fluorophore was designed, synthesized and characterized. The dye was successfully entrapped into various sol-gel and ormosil matrices and consequent optical- , leaching- and light fastness-properties were tested. Finally, sensor layer based on TMOS doped with Eu3+- complex and bromothymol blue was found to be most appropriate for purposes of sensing pH over the range 5-10.

  15. Enhancing Osteoconductivity of Fibrin Gels with Apatite-Coated Polymer Microspheres

    PubMed Central

    Davis, Hillary E.; Binder, Bernard Y.K.; Schaecher, Phillip; Yakoobinsky, Dana D.; Bhat, Archana

    2013-01-01

    Fibrin gels are a promising material for use in promoting bone repair and regeneration due to their ease of implant formation, tailorability, biocompatibility, and degradation by natural processes. However, these materials lack necessary osteoconductivity to nucleate calcium, integrate with surrounding bone, and promote bone formation. Polymeric substrata formed from poly(lactide-co-glycolide) (PLG) are widely used in bone tissue engineering. A carbonated apatite layer of bone-like mineral can be successfully grown on the surface of PLG microspheres after a multiday incubation process in modified simulated body fluid. Such coatings improve the osteoconductivity of the polymer, provide nucleation sites for cell-secreted calcium, and enhance the potential osseointegration with host tissue. We examined the capacity of mineralized polymeric microspheres suspended within fibrin hydrogels to enhance the osteoconductivity of fibrin gels and increase the osteogenic potential of these materials. The inclusion of microparticles, both nonmineralized and mineralized, reduced the capacity of mesenchymal stem cells (MSCs) to contract the gel. When cultured in osteogenic media, we detected a near linear increase in both calcium and phosphate incorporation in gels containing mineralized microspheres and entrapped MSCs. The osteoconductivity of acellular fibrin gels with mineralized and nonmineralized microspheres was assessed in a rodent calvarial bone defect over 12 weeks. Compared to untreated rodent calvarial bone defects, we detected significant increases in early vascularization when treated with fibrin gels, with greater vascularization, on average, occurring with gels containing microspheres. We detected a trend for increased bone mineral density in gels containing mineralized microspheres after 12 weeks. These findings demonstrate that the osteoconductivity of fibrin gels can be increased by inclusion of mineralized microspheres, but additional signals may be required to

  16. Stool Culture

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Stool Culture Share this page: Was this page helpful? Also known as: Bacterial Culture, stool; Feces Culture Formal name: Enteric Pathogens Culture, ...

  17. Enhanced Chondrogenic Differentiation of Dental Pulp Stem Cells Using Nanopatterned PEG-GelMA-HA Hydrogels

    PubMed Central

    Nemeth, Cameron L.; Janebodin, Kajohnkiart; Yuan, Alex E.; Dennis, James E.

    2014-01-01

    We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers (Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X), while downregulating the pluripotent stem cell gene, Nanog, and epithelial–mesenchymal genes (Twist, Snail, Slug) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs. PMID:24749806

  18. A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release.

    PubMed

    García, Mónica C; Cuggino, Julio C; Rosset, Clarisa I; Páez, Paulina L; Strumia, Miriam C; Manzo, Ruben H; Alovero, Fabiana L; Alvarez Igarzabal, Cecilia I; Jimenez-Kairuz, Alvaro F

    2016-12-01

    The development and characterization of a novel, gel-type material based on a dendronized polymer (DP) loaded with ciprofloxacin (CIP), and the evaluation of its possible use for controlled drug release, are presented in this work. DP showed biocompatible and non-toxic behaviors in cultured cells, both of which are considered optimal properties for the design of a final material for biomedical applications. These results were encouraging for the use of the polymer loaded with CIP (as a drug model), under gel form, in the development of a new controlled-release system to be evaluated for topical administration. First, DP-CIP ionic complexes were obtained by an acid-base reaction using the high density of carboxylic acid groups of the DP and the amine groups of the CIP. The complexes obtained in the solid state were broadly characterized using FTIR spectroscopy, XRP diffraction, DSC-TG analysis and optical microscopy techniques. Gels based on the DP-CIP complexes were easily prepared and presented excellent mechanical behaviors. In addition, optimal properties for application on mucosal membranes and skin were achieved due to their high biocompatibility and acute skin non-irritation. Slow and sustained release of CIP toward simulated physiological fluids was observed in the assays (in vitro), attributed to ion exchange phenomenon and to the drug reservoir effect. An in vitro bacterial growth inhibition assay showed significant CIP activity, corresponding to 38 and 58% of that exhibited by a CIP hydrochloride solution at similar CIP concentrations, against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. However, CIP delivery was appropriate, both in terms of magnitude and velocity to allow for a bactericidal effect. In conclusion, the final product showed promising behavior, which could be exploited for the treatment of topical and mucosal opportunistic infections in human or veterinary applications.

  19. Viscoelastic Properties of Vitreous Gel

    NASA Astrophysics Data System (ADS)

    Pirouz Kavehpour, H.; Sharif-Kashani, Pooria

    2010-11-01

    We studied the rheological properties of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment at body temperature to mimic in-vivo conditions. We modeled the creep deformation using a two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a separate response to the applied stress was obtained from each component. The short time scale was associated with the collagen structure, while the longer time scale was related to the microfibrilis and hyaluronan network. We were able to distinguish the role of each main component from the overall rheological properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy.

  20. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.

    PubMed

    Qi, Zhenhui; Schalley, Christoph A

    2014-07-15

    CONSPECTUS: Supramolecular gels are ideal candidates for soft, stimuli-responsive materials, because they combine the elastic behavior of solids with the microviscous properties of fluids. The dynamic networks of fibers in supramolecular gels are reminiscent of the cytoskeleton of a cell and provide scaffolds to implement function. When gels are made responsive to stimuli, these mechanical properties can be controlled. Gel-sol transitions also open opportunities to immobilize molecules inside the gel's cavities and to release them on demand. To establish selective responsiveness, suitable recognition sites are required influencing the properties of the fiber network depending on the presence of the stimulus. Supramolecular gels are expected to be stimuli-responsive per se, for example, to temperature, mechanical stress, or an environment that is competitive with the noncovalent interactions connecting the low-molecular weight gelators. Nevertheless, the opportunities for controlling the mechanical properties are rather limited, if one merely relies on interfering with these interactions. It would be much more promising to equip the gel with additional receptor sites that offer selectivity for a broader variety of chemical stimuli. Macrocycles often exhibit a distinct host-guest chemistry and thus are excellent candidates for this purpose. A broad variety of macrocycles differing with respect to structure, topology, solubility, or biocompatibility have been incorporated in gels and endow gels with responsiveness and function. Macrocycles can have different roles: They offer rather rigid scaffolds for the construction of structurally well-defined gelator molecules. Furthermore, their host-guest interactions can be integral to gel formation, if these interactions are required to build the gel fibers. Finally, macrocycles can also be functional groups with which gelators are equipped that would also form gels in the absence of the macrocycle. Here, the macrocycle can

  1. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  2. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  3. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  4. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  5. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  6. SDS-Polyacrylamide Gel Electrophoresis of Proteins.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes the separation of proteins by SDS-polyacrylamide gel electrophoresis. SDS is used with a reducing agent and heat to dissociate the proteins. SDS-polypeptide complexes form and migrate through the gels according to the size of the polypeptide. By using markers of known molecular weight, the molecular weight of the polypeptide chain(s) can be estimated.

  7. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  8. Flow of colloidal suspensions and gels

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  9. A Short-Duration Gel Diffusion Experiment.

    ERIC Educational Resources Information Center

    Mulcahy, D. E.

    1980-01-01

    Described is a gel diffusion experiment that permits the completion of duplicate diffusion runs within a three-hour laboratory session. Information included for the short-duration gel diffusion experiment is the diffusion cell, the experiment, data treatment, and the expected results of the experiment. (Author/DS)

  10. Acoustic images of gel dosimetry phantoms

    NASA Astrophysics Data System (ADS)

    Vieira, Silvio L.; Baggio, André; Kinnick, Randall R.; Fatemi, M.; Carneiro, Antonio Adilton O.

    2010-01-01

    This work presents Vibro-acoustography (VA) as a tool to visualize absorbed dose in a polymer gel dosimetry phantom. VA relies on the mechanical excitation introduced by the acoustic radiation force of focused modulated ultrasound in a small region of the object. A hydrophone or microphone is used to measure the sound emitted from the object in response to the excitation, and by using the amplitude or phase of this signal, an image of the object can be generated. To study the phenomena of dose distribution in a gel dosimetry phantom, continuous wave (CW), tone burst and multi-frequency VA were used to image this phantom. The phantom was designed using 'MAGIC' gel polymer with addition of glass microspheres at 2% w/w having an average diameter range between 40-75 μm. The gel was irradiated using conventional 10 MeV X-rays from a linear accelerator. The field size in the surface of the phantom was 1.0×1.0 cm2 and a source-surface distance (SSD) of 100 cm. The irradiated volume corresponds to an approximately 8.0 cm3, where a dose of 50 gray was delivered to the gel. Polymer gel dosimeters are sensitive to radiation-induced chemical changes that occur in the irradiated polymer. VA images of the gel dosimeter showed the irradiate area. It is concluded that VA imaging has potential to visualize dose distribution in a polymer gel dosimeter.

  11. Gel bead composition for metal adsorption

    SciTech Connect

    Scott, C.D.; Woodward, C.A.; Byers, C.H.

    1990-12-18

    This patent describes a gel bead consisting essentially of a sufficient amount of water and propylene glycol alginate to allow for bead formation and a sufficient amount of bone gelatin to allow for metal absorption and chemically crosslinked in an alkaline medium to form a stable structure. A gel bead contained therein a biological absorbent capable of removing metals from solution.

  12. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  13. An agarose-gel based method for transporting cell lines.

    PubMed

    Yang, Lingzhi; Li, Chufang; Chen, Ling; Li, Zhiyuan

    2009-12-16

    Cryopreserved cells stored in dry ice or liquid nitrogen is the classical method for transporting cells between research laboratories in different cities around the world in order to maintain cell viability. An alternative method is to ship the live cells in flasks filled with cell culture medium. Both methods have limitations of either a requirement on special shipping container or short times for the cells to survive on the shipping process. We have recently developed an agarose gel based method for directly transporting the live adherent cells in cell culture plates or dishes in ambient temperature. This convenient method simplifies the transportation of live cells in long distance that can maintain cells in good viability for several days.

  14. Sol gel-fluorination synthesis of amorphous magnesium fluoride

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, J.; Groß, Udo; Rüdiger, Stephan; Kemnitz, Erhard; Winfield, John M.

    2006-03-01

    The sol-gel fluorination process is discussed for the reaction of magnesium alkoxides with HF in non-aqueous solvents to give X-ray amorphous nano-sized magnesium fluoride with high surface areas in the range of 150-350 m 2/g (HS-MgF 2). The H2 type hysteresis of nitrogen adsorption-desorption BET-isotherms is indicative for mesoporous solids. A highly distorted structure causes quite high Lewis acidity, shown by NH 3 temperature-programmed desorption (NH 3-TPD) and catalytic test reactions. XPS data of amorphous and conventionally crystalline MgF 2 are compared, both show octahedral coordination at the metal site. Thermal analysis, F-MAS NMR- and IR-spectroscopy give information on composition and structure of the precursor intermediate as well as of the final metal fluoride. The preparation of complex fluorides, M +MgF 3-, by the sol-gel route is reported. From the magnesium fluoride gel of the above process thin films for optical application are obtained by, e.g., spin coating.

  15. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  16. Development and evaluation of in situ gel of pregabalin

    PubMed Central

    Madan, Jyotsana R; Adokar, Bhushan R; Dua, Kamal

    2015-01-01

    Aim and Background: Pregabalin (PRG), an analog of gamma-aminobutyric acid, reduces the release of many neurotransmitters, including glutamate, and noradrenaline. It is used for the treatment of epilepsy; simple and complex partial convulsion. The present research work aims to ensure a high drug absorption by retarding the advancement of PRG formulation through the gastrointestinal tract. The work aims to design a controlled release PRG formulation which is administered as liquid and further gels in the stomach and floats in gastric juice. Materials and Methods: In situ gelling formulations were prepared using sodium alginate, calcium chloride, sodium citrate, hydroxypropyl methylcellulose (HPMC) K100M, and sodium bicarbonate. The prepared formulations were evaluated for solution viscosity, drug content, in vitro gelling studies, gel strength, and in vitro drug release. The final formulation was optimized using a 32 full factorial design. Results: The formulation containing 2.5% w/v sodium alginate and 0.2% w/v calcium chloride were considered optimum since it showed minimum floating lag time (18 s), optimum viscosity (287.3 cps), and gel strength (4087.17 dyne/cm2). The optimized formulation follows Korsmeyer-Peppas kinetic model with n value 0.3767 representing Fickian diffusion mechanism of drug release. Conclusion: Floating in situ gelling system of PRG can be formulated using sodium alginate as a gelling polymer and calcium chloride as a complexing agent to control the drug release for about 12 h for the treatment of epilepsy. PMID:26682193

  17. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  18. New families of carbon gels based on natural resources

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-03-01

    Carbon gels are versatile materials which can be used for many applications. They are extremely expensive, because generally prepared from resorcinol - formaldehyde (RF) resins first gelled and next dried with supercritical carbon dioxide. In the present work, resorcinol has been substituted partly or completely by tannins, a family of molecules extracted from mimosa tree barks. Tannins are natural, non-toxic products, typically thirty times cheaper than resorcinol. Their chemical resemblance with the latter makes them be often called natural resorcinol. Using tannins not only substantially decreases the cost but also allows preparing materials in a much wider range of pHs than that usually employed for RF gels. Consequently the main pore size and the fraction of given families of pores, controlling the carbon gels' properties, are tuned in an easier way, and a much wider range of pore structures is obtained. Finally, two alternative ways of drying are suggested for further decreasing the cost: freeze-drying and supercritical drying in acetone. Both are shown to lead, in some conditions described below, to materials having similar characteristics to those of expensive RF carbon aerogels previously dried in supercritical CO2.

  19. GRIN optics with transition elements in gel-silica matrices

    NASA Astrophysics Data System (ADS)

    Kunetz, James M.; West, Jon K.; Hench, Larry L.

    1992-12-01

    Sol-gel technology is providing a viable alternative path towards developing doped optical components via impregnation of Type VI gel silica using a vapor or liquid phase. Past work presented an optical technique for determining quantitative mass transport properties of Cr3+ ions within the water filled porous phase of Type VI silica. Ion influx is measured by integrating the strong absorption bands produced by the chromium in the visible region. Diffusion coefficients are determined for an array of pore properties (radius, volume, surface area) as well as solution concentrations. Diffusion coefficients are calculated to be 2.0 X 10-8 cm2/sec for the most restricted case and approach 1.6 X 10-6 cm2/sec, the bulk liquid diffusion coefficient, as the ratio of diffusing solute diameter to the pore diameter decreases. Final chromium distributions are determined using electron microprobe x-ray. Higher chromium distributions are found on surfaces of the gels from which solvent is restricted from evaporating. Sample geometries affect the percent change of concentration across the cross-section.

  20. Active protease mapping in 2DE gels.

    PubMed

    Zhao, Zhenjun; Russell, Pamela J

    2009-01-01

    Proteases act as the molecular mediators of many vital biological processes. To understand the function of each protease, it needs to be separated from other proteins and characterized in its natural, biologically active form. In the method described in this chapter, proteases in a biological sample are separated under nonreducing conditions in 2DE gels. A specific small protease substrate, tagged with a fluorescent dye, is copolymerized into the SDS gel in the second dimension. After electrophoresis, the proteins are renatured by washing the gel with Triton X-100 solution or Milli Q water to remove SDS. The gel is then incubated in a protease assay buffer. The hydrolysis of the tagged specific substrate by the renatured protease releases the free fluorescent dye, which fluoresces in situ. The fluorescent spots indicate the location of the specific proteases in the gel and the specificity of the proteases.

  1. Enantioselective Recognition by Chiral Supramolecular Gels.

    PubMed

    Zhang, Li; Jin, Qingxian; Liu, Minghua

    2016-10-06

    Chiral supramolecular gels, in which small organic molecules self-assemble into chiral nanostructures and entangle each other to immobilize solvents through various noncovalent interactions, can work as a matrix for enantioselective recognition on chiral analytes. Through gelation and the formation of well-defined nanostructures, the chiral sense of the component molecules can be accumulated or amplified, and thus, the enantioselective recognition ability can be enhanced. Furthermore, a chiral microenvironment formed in the gel networks could provide additional stereochemical recognition geometry and attribute to efficient recognition. In this focus review, enantioselective recognition on chiral analytes through chiral supramolecular gels, with either amplified signals or the gel-sol phase transition, is discussed. This review is expected to provide useful insights into the design and fabrication of supramolecular gel systems with chiral features and high enantioselectivity.

  2. Thermotropic nanostructured "gel in gel" systems for improved oil recovery and water shutoff

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Stasyeva, L. A.

    2015-10-01

    Thermotropic nanostructured system with two gel-forming components has been created based on inorganic hydroxypolymer and organic polymer with a lower critical solution temperature of "aluminum salt-cellulose ether-carbamide-water", forming at heating a bound-dispersed nano-sized "gel in gel" structure. The studies on the kinetics of gelation and rheological properties of solutions and gels in this system have shown that the gels have a higher viscosity and elasticity and thereby are promising for creating deflecting screens in oil reservoirs, redistribution of filtration flows, improved oil recovery and for water shutoff.

  3. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  4. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  5. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  6. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution.

    PubMed

    Stellwagen, Nancy C

    2009-06-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are primarily due to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 +/- 0.01) x 10(-4) cm2/V s in 40 mM Tris-acetate-EDTA buffer at 20 degrees C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration.

  7. Sol-gel composite material characteristics caused by different dielectric constant sol-gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol-gel composite method have been investigated in the field of nondestructive testing (NDT). Sol-gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol-gel composite with desirable characteristics has been developed. Three kinds of sol-gel composite materials composed of different dielectric constant sol-gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol-gel composite with the highest dielectric constant sol-gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  8. Final Report

    SciTech Connect

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  9. Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering.

    PubMed

    Roy, Rani; Boskey, Adele L; Bonassar, Lawrence J

    2008-11-01

    Collagen glycated with ribose (250 mM) in solution (pre-glycation) and as a gel (post-glycation) was seeded with chondrocytes and the effects of glycation on chondrocyte matrix assembly in culture were determined. Pre-glycation enhanced GAG accumulation significantly over controls at both 2 and 4 weeks (p < 0.05), although at both time points there were no statistical differences in cell number between pre-glycated and control gels. The increased proteoglycan accumulation was shown to be in part due to significantly increased GAG retention by the pre-glycated constructs (p < 0.05). Total collagen content in these pre-glycated gels was also significantly higher than unglycated gels at 4 weeks (p < 0.05). With post-glycation of collagen gels, chondrocyte number and GAG accumulation were all significantly lower than controls (p < 0.05). Post-glycation also inhibited GAG retention by the constructs (p < 0.05). Given these results, pre-glycation may be an improved processing method for collagen gels for tissue engineering techniques.

  10. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    NASA Astrophysics Data System (ADS)

    Vogel, Nancy Amanda

    material so that prolonged release can be readily achieved from highly water soluble nanofibers. The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.

  11. Structure and Properties of Polysaccharide Based BioPolymer Gels

    NASA Astrophysics Data System (ADS)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  12. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel

  13. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  14. Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery.

    PubMed

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs.

  15. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  16. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  17. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    NASA Astrophysics Data System (ADS)

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase.

  18. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  19. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  20. Electroacoustics of Particles Dispersed in Polymer Gel

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-27

    This study examines the acoustic electrophoresis of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μd (obtained in terms of colloid vibration current, CVI), is the same as in water. For the case of particles larger than the gel mesh size, μd is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its crosslink density, the latter being characterized as the storage modulus, G’. The dependence of mobility on G’, for systems of a given particle size, and on particle size, for gels of a given G’, are investigated. The measured mobility remains constant as G’ is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G’ approximately 100 Pa. In this case, the measured μd is found to be effectively constant over the particle size range studied (14-120 nm), i.e., it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.

  1. Astronomy in Culture

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.

    2010-07-01

    Which is more appropriate? “Astronomy in culture,” or “Astronomy and culture,” or “Culture without astronomy?” These are only few variants, each with its own sense. I guess the last question is the most pertinent. Does culture really exist without astronomy? The existence and evolution of the human civilization answer NO! But what “culture” means? When we are thinking of a culture (the Hellenistic one, for instance), we mean a set of customs, artistic, religious, intellectual manifestations that differentiate one group or society from another. On the other hand, we often use the notion of culture in a different sense: shared beliefs, ways of regarding and doing, which orient more or less consciously the behavior of an individual or a group. An example would be the laic culture. Moreover, the set of knowledge acquired in one or several domains also constitutes a culture, for instance the scientific culture of an individual or a group. Finally, the set of cultures is nothing else but the civilization. Now, if we come back in time into the history of civilization, we find a permanent component, which was never missing and often played a decisive part in its evolution: the Astronomy.

  2. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels

    PubMed Central

    Nam, Sungmin; Hu, Kenneth H.; Chaudhuri, Ovijit

    2016-01-01

    The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction. PMID:27140623

  3. Analysis of gel heterogeneities on a local level

    NASA Astrophysics Data System (ADS)

    Boyne, Philip; Lechenault, Frederic; Daniels, Karen

    2008-10-01

    We study the heterogeneity of gels near the sol-gel transition through measurements of the spatial variations in gel strength. The correlated motion of fluorescent polystyrene microspheres suspended in gels is measured via two-point microrheology. Analysis of this correlated motion provides a local measure of gel heterogeneity. Additionally, we divide the images into micron-wide squares and determine how rheological properties spatially vary as a function of gel concentration. Our results imply that weaker gels exhibit more heterogeneity than stronger gels.

  4. Control of Drug Diffusion Behavior of Xanthan and Locust Bean Gum Gel by Agar Gel.

    PubMed

    Hishikawa, Yoshihiro; Kakino, Yukari; Tsukamoto, Hoshi; Tahara, Kohei; Onodera, Risako; Takeuchi, Hirofumi

    2016-01-01

    Oral gel formulations are known as easy to administer drug products for patients who have problems taking drugs including those with conditions such as dysphagia. In addition, there are numerous commercially available oral gel products, most of which are immediate-release formulation that release their pharmaceutical ingredient content by diffusion. This study is focused on developing oral gel formulations that reduce the dosing frequency and dosage compared to the conventional types. This is with the aim of facilitating the use of gel formulations for producing pharmaceutical agents with different dose regimens, thereby enhancing patient convenience. Here, we used naturally derived high-molecular-weight agar (Ag), xanthan gum (Xa), and locust bean gum (Lo) as gel bases to prepare a variety of gel membranes, and evaluated the diffusion coefficient of the model substances. The result revealed that the Ag content in the Xa-Lo combination gel concentration-dependently increased the diffusion coefficient. Moreover, these findings were applied in an attempt to mask the taste of intensely bitter levofloxacin. The results indicated that the Xa-Lo combination gel exhibited a significantly superior masking effect to that of the Ag gel. This study demonstrates the feasibility of using oral gel formulations to modulate the controlled-release functionality of pharmaceutical agents.

  5. Muscular Contraction Mimiced by Magnetic Gels

    NASA Astrophysics Data System (ADS)

    Zrínyi, Miklós; Szabó, Dénes

    The ability of magnetic-field-sensitive gels to undergo a quick controllable change of shape can be used to create an artificially designed system possessing sensor- and actuator functions internally in the gel itself. The peculiar magneto-elastic properties may be used to create a wide range of motion and to control the shape change and movement, that are smooth and gentle similar to that observed in muscle. Magnetic field sensitive gels provide attractive means of actuation as artificial muscle for biomechanics and biomimetic applications.

  6. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    PubMed

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  7. Ferroelectric and piezoelectric properties of poly(vinylidene fluoride–trifluoroethylene) gels

    NASA Astrophysics Data System (ADS)

    Fukagawa, Miki; Koshiba, Yausko; Morimoto, Masahiro; Ishida, Kenji

    2017-04-01

    The structural, ferroelectric, and piezoelectric properties of poly(vinylidene fluoride–trifluoroethylene) [P(VDF–TrFE)] gels fabricated using poly(pyridinium-1,4-diyliminocarbonyl-1,4-phenylenemethylene thiocyanate) (PICPM-SCN) as a gelator are investigated in this study. The P(VDF–TrFE)/PICPM-SCN composites formed thermally reversible physical gels and their analysis by Fourier transform infrared spectroscopy revealed that the P(VDF–TrFE) molecules in these gels exhibit predominantly the ferroelectric phase I (Form β). Furthermore, the polarization switching peaks of the P(VDF–TrFE)/PICPM-SCN gel films were clearly observed. The coercive electric field for these gel films was estimated to be 2 MV/m, which is dramatically lower than the values typically observed for P(VDF–TrFE) solid films (50 MV/m). Finally, the P(VDF–TrFE)/PICPM-SCN gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was determined to be ∼53 pm/V at an applied voltage frequency of 4 kHz.

  8. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  9. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  10. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  11. Guided and magnetic self-assembly of tunable magnetoceptive gels.

    PubMed

    Tasoglu, S; Yu, C H; Gungordu, H I; Guven, S; Vural, T; Demirci, U

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call 'magnetoceptive' materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  12. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the strontium-added sol-gel hydroxyapatite gel materials.

    PubMed

    Raucci, Maria Grazia; Giugliano, Daniela; Alvarez-Perez, M A; Ambrosio, Luigi

    2015-02-01

    In the present study, strontium-modified hydroxyapatite gels (Sr-HA) at different concentrations were prepared using sol-gel approach and their effect on human-bone-marrow-derived mesenchymal stem cells, were evaluated. The effect of Strontium on physico-chemical and morphological properties of hydroxyapatite gel were evaluated. Morphological analyses (SEM and TEM) demonstrate that an increasing in the amount of Sr ions doped into HA made the agglomerated particles smaller. The substitution of large Sr2+ for small Ca2+ lead to denser atomic packing of the system causing retardation of crystals growth. The biological results demonstrated that hydroxyapatite gel containing from 0 to 20 mol% of Sr presented no cytotoxicity and promote the expression of osteogenesis related genes including an early marker for osteogenic differentiation ALP; a non-collagen protein OPN and a late marker for osteogenic differentiation OCN. Finally, the Sr-HA gels could have a great potential application as filler in bone repair and regeneration and used in especially in the osteoporotic disease.

  13. A comparison of the efficacy of metronidazole vaginal gel and Myrtus (Myrtus communis) extract combination and metronidazole vaginal gel alone in the treatment of recurrent bacterial vaginosis

    PubMed Central

    Masoudi, Mansoureh; Rafieian Kopaei, Mahmoud; Miraj, Sepideh

    2017-01-01

    Objective: Due to the high incidence of bacterial vaginosis (BV) and its resistance to chemical medications and considering the anti-bacterial and anti-fungal effects of Myrtus communis, the present study aimed to compare the therapeutic effects of the vaginal gel of M. communis 2% (in metronidazole base) with metronidazole vaginal gel 0.75% alone on BV. Materials and Methods: This research was a randomized controlled clinical trial conducted on 80 women of 18-40 years old with BV. Patients were divided into two groups of 40 women. Diagnostic criteria were Amsel's criteria and Gram staining. The first group received vaginal gel of metronidazole plus M. communis 2% and the second group received metronidazole vaginal gel alone for five consecutive nights. Therapeutic effects and Amsel’s criteria were assessed after one week. Finally, the data were analyzed by SPSS 16 using t-test and Chi square tests. Results: There was a significant difference in the therapeutic response between the two groups. The results demonstrated that the combination of metronidazole and M. communis had a higher efficiency (p<0.05). The patients receiving M. communis in metronidazole gel base did not experience any recurrent BV, but 30% of patients taking metronidazole alone faced recurrent BV after three weeks of follow up. Conclusion: Findings of the study suggested that adding M. communis extract to metronidazole increases the efficiency of BV treatment. PMID:28348968

  14. Urine culture

    MedlinePlus

    Culture and sensitivity - urine ... when urinating. You also may have a urine culture after you have been treated for an infection. ... when bacteria or yeast are found in the culture. This likely means that you have a urinary ...

  15. Urine Culture

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Urine Culture Share this page: Was this page helpful? Also known as: Urine Culture and Sensitivity; Urine C and S Formal name: Culture, ...

  16. Safeguards Culture

    SciTech Connect

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  17. Effect of inorganic salts and glucose additives on dose-response, melting point and mass density of genipin gel dosimeters.

    PubMed

    Al-jarrah, A M; Abdul Rahman, Azhar; Shahrim, Iskandar; Razak, Nik Noor Ashikin Nik Ab; Ababneh, Baker; Tousi, Ehsan Taghizadeh

    2016-01-01

    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.

  18. Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method.

    PubMed

    Kang, Young-Mi; Kim, Kyoung-Hwa; Seol, Yang-Jo; Rhee, Sang-Hoon

    2009-01-01

    Evaluations of the osteoblast-like cell responses and osteoconductivity of a non-woven silica gel fabric were carried out to determine its potential for application as a scaffold material for use in bone tissue engineering. The silica gel solution was prepared by condensation following hydrolysis of tetraethyl orthosilicate under acidic conditions. The solution was spun under a 2kVcm(-1) electric field. The diameters of the as-spun silica gel fibers were in the range of approximately 0.7-6microm. The fabric was then heat-treated at 300 degrees C for 3h. The proliferation of pre-osteoblastic MC3T3-E1 cells evaluated by the MTS assay was lower than on the tissue culture plate (TCP) as many cells leaked through the large voids formed by the randomly placed long, narrow silica gel fibers, which further retarded cell growth. However, the expressions of extracellular signal-regulated kinase and transcriptional factor from the cells were higher when cultured on the non-woven silica gel fabrics than on TCP. The alkaline phosphatase (ALP) activity and differentiation marker expressions assessed by amplication via the reverse transcription-polymerase chain reaction, such as type I collagen, ALP and osteocalcin, were higher for cells cultured on non-woven silica gel fabrics than on TCP. The non-woven silica gel fabric showed good osteoconductivity in the calvarial defect New Zealand white rabbit model. To this end, the non-woven silica gel fabric has good potential as a scaffold material for bone tissue engineering due to its good biological properties.

  19. a Cultural Market Model

    NASA Astrophysics Data System (ADS)

    HerdaǦDELEN, Amaç; Bingol, Haluk

    Social interactions and personal tastes shape our consumption behavior of cultural products. In this study, we present a computational model of a cultural market and we aim to analyze the behavior of the consumer population as an emergent phenomena. Our results suggest that the final market shares of cultural products dramatically depend on consumer heterogeneity and social interaction pressure. Furthermore, the relation between the resulting market shares and social interaction is robust with respect to a wide range of variation in the parameter values and the type of topology.

  20. Mechanical Properties of Gels; Stress from Confined Fluids

    SciTech Connect

    George W. Scherer

    2009-12-01

    Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in some applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof. Stephen

  1. Porosity Governs Normal Stresses in Polymer Gels.

    PubMed

    de Cagny, Henri C G; Vos, Bart E; Vahabi, Mahsa; Kurniawan, Nicholas A; Doi, Masao; Koenderink, Gijsje H; MacKintosh, F C; Bonn, Daniel

    2016-11-18

    When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

  2. Large deformation analysis of gellan gels

    NASA Astrophysics Data System (ADS)

    Kawai, Shinnosuke; Nitta, Yoko; Nishinari, Katsuyoshi

    2007-08-01

    Gellan gel, a typical polysaccharide gel, is ruptured with different deformation behaviors from gelatin gel or rubber. It exhibits both strain hardening and softening; hardening is observed for moderate strain and softening occurs for larger strain. From the analyses of stress-strain curves of gellan gels, we propose forms of strain energy function. The fit with the proposed equation was excellent, while the existing models fail because they consider only one of hardening or softening effect. Furthermore, these equations are shown to be capable of extracting the hardening and softening effects separately from the observed stress-strain curves. By using these fitting equations, the concentration dependences of hardening and softening are investigated. It is shown that the degrees of hardening and softening both increase with increasing gellan concentration.

  3. Adhesion of gels by silica particle.

    PubMed

    Abe, Hidekazu; Hara, Yusuke; Maeda, Shingo; Hashimoto, Shuji

    2014-03-06

    In this study, a method for achieving adhesion between two positively charged gels with high mechanical strength was developed. By utilizing a silica particle dispersion as a binder, the gels easily adhered to each other and remained stable for up to 11 days when immersed in aqueous solution. The adhesion force between the two positively charged semi-interpenetrating network gels with the silica particle was measured to be up to approximately 20 kPa, which is around 10 times larger than that with a charged polymer-rich liquid as a cross-linker (approximately 1.5 kPa). It was demonstrated that the adhesion force was a result of two types of interactions: an electrostatic attractive force between the cationic gel surface and hydrogen bonding among the silica particles. In addition, it was shown that the adhesion force was dependent on solution pH, which was attributed to changes in the charge of the silica particles.

  4. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  5. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  6. Turbidimetric studies of Limulus coagulin gel formation.

    PubMed Central

    Moody, T P; Donovan, M A; Laue, T M

    1996-01-01

    The turbidity during trypsin-induced coagulin gel formation was studied over a range of wavelengths. The range of wavelengths used (686-326 nm) also made it possible to investigate the dependence of turbidity on wavelength (the wavelength exponent). Using the results from that work, and structural information on coagulin and the coagulin gel from other studies, a model gel-forming system was designed that consists of species for which the turbidity can be calculated relatively simply. These species include small particles (small in all dimensions relative to the wavelength of incident light); long rods and long random coils (particles that are large in just one dimension relative to the wavelength of incident light); and reflective regions (aggregated material that is large in more than one dimension relative to the wavelength of incident light). The turbidimetric characteristics of the real coagulin gel-forming system are compared with those of the model system. PMID:8889175

  7. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  8. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  9. Sol-gel deposited electrochromic coatings

    SciTech Connect

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  10. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  11. K-Basin gel formation studies

    SciTech Connect

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  12. Gel electrolyte candidates for electrochromic devices (ECDs)

    NASA Astrophysics Data System (ADS)

    Legenski, Susan E.; Xu, Chunye; Liu, Lu; Le Guilly, Marie O.; Taya, Minoru

    2004-07-01

    A comparison of key parameters of seven different gel electrolytes for use in electrochromic devices (ECD) is reported. The ionic conductivity, transmittance, and stability of the gel electrolytes are important considerations for smart window applications. The gel electrolytes were prepared by combining polymethylmethacrylate (PMMA) with a salt and a solvent combination. Two different salts, lithium perchlorate (LiClO4) and trifluorosulfonimide (LiN(CF3SO2)2), and three solvent combinations, acetonitrile and propylene carbonate (ACN and PC), ethylene carbonate and propylene carbonate (EC and PC), and Gamma-butyrolactone and propylene carbonate (GBL and PC) were investigated. Results show that gel electrolytes composed of a LiClO4 and GBL+PC combination and a LiClO4 and EC+PC combination are the best candidates for a smart window device based on its high conductivity over time and various temperatures, as well as its electrochemical stability and high transmittance.

  13. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  14. Porosity Governs Normal Stresses in Polymer Gels

    NASA Astrophysics Data System (ADS)

    de Cagny, Henri C. G.; Vos, Bart E.; Vahabi, Mahsa; Kurniawan, Nicholas A.; Doi, Masao; Koenderink, Gijsje H.; MacKintosh, F. C.; Bonn, Daniel

    2016-11-01

    When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

  15. Surfactant-driven fracture of gels: Growth

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Schillaci, Mark; Bostwick, Joshua

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Fractures have previously been observed to initiate through a thermal process, with the number of fractures controlled by the ratio of surface tension differential to gel shear modulus. After the onset of fracture, experiments show the arm length grows with universal power law L =t 3 / 4 that does not scale with any material parameters (Daniels et al. 2007, PRL), including super-spreading surfactants (Spandangos et al. 2012, Langmuir). We develop a model for crack growth controlled by the transport of an inviscid fluid into the fracture tip. While treating the gel as a linear material correctly predicts power-law growth, we find that only by considering a Neo-Hookean (incompressible) material do we obtain agreement with the experiments.

  16. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  17. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  18. [Disease, tradition and culture].

    PubMed

    Ritarossi, P

    1989-01-01

    The observation of the present technological society nullifies thesis of the scientific rationalism, that is the equation between magic, popular or primitive culture and underdevelopment. The pathological experience invests every plane of the cultural pattern, so the different levels of technical knowledge, rationality, symbols and magic imagination are mobilized to give a reason to pain; the illness, in addition to representing an indisposition really existing, has a specific cultural meaning too. In fact every culture, following certain parameters, has built ideologic frames; the concept of illness is connected to the classification of the reality. Biology and culture are inseparable. For this, lately, the gnosiological horizons of the science are becoming larger and less dogmatic. The knowledge (in the medicine, too) is a process in fieri, without absolute and final limits.

  19. Review of gel dosimetry: a personal reflection

    NASA Astrophysics Data System (ADS)

    Baldock, C.

    2017-01-01

    Gel dosimeters are manufactured from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters have the capacity to record radiation dose distribution in three-dimensions (3D) compared to one and two-dimensional dosimeters. 3D dosimeters are radiologically soft-tissue equivalent and may be evaluated using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT, ultrasound or vibrational spectroscopy.

  20. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  1. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  2. Tissue-Simulating Gel For Medical Research

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    Nonhardening, translucent gel more nearly simulates soft human or animal tissue. Modified to be softer or harder by altering proportions of ingredients. Fillers added to change electrical, mechanical, heat-conducting, or sound-conducting/scattering properties. Molded to any desired shape and has sufficient mechanical strength to maintain shape without supporting shell. Because of its thermal stability, gel especially useful for investigation of hyperthermia as treatment for cancer.

  3. Absorption, luminescent and lasing properties of laser dyes in silica gel matrices and thin gel films

    SciTech Connect

    Shaposhnikov, A A; Kuznetsova, Rimma T; Kopylova, T N; Maier, G V; Tel'minov, E N; Pavich, T A; Arabei, S M

    2004-08-31

    The absorption and emission properties of eight organic compounds in silica gel matrices of different chemical compositions and different types (bulk samples and thin films) are studied upon excitation by a XeCl laser and the second harmonic of a Nd:YAG laser. The mechanisms of the laser-induced changes in the spectral parameters of molecules in silica gel matrices are discussed and the photostability of the laser dyes in silica gel films is estimated. (active media)

  4. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  5. A thermodynamic model of physical gels

    NASA Astrophysics Data System (ADS)

    An, Yonghao; Solis, Francisco J.; Jiang, Hanqing

    2010-12-01

    Physical gels are characterized by dynamic cross-links that are constantly created and broken, changing its state between solid and liquid under influence of environmental factors. This restructuring ability of physical gels makes them an important class of materials with many applications, such as in drug delivery. In this article, we present a thermodynamic model for physical gels that considers both the elastic properties of the network and the transient nature of the cross-links. The cross-links' reformation is captured through a connectivity tensor M at the microscopic level. The macroscopic quantities, such as the volume fraction of the monomer ϕ, number of monomers per cross-link s, and the number of cross-links per volume q, are defined by statistic averaging. A mean-field energy functional for the gel is constructed based on these variables. The equilibrium equations and the stress are obtained at the current state. We study the static thermodynamic properties of physical gels predicted by the model. We discuss the problems of un-constrained swelling and stress driven phase transitions of physical gels and describe the conditions under which these phenomena arise as functions of the bond activation energy Ea, polymer/solvent interaction parameter χ, and external stress p.

  6. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  7. Model carcinogen adsorption dynamics of DNA gel.

    PubMed

    Tomita, Naoko; Naito, Daisuke; Rokugawa, Isamu; Yamamoto, Takao; Dobashi, Toshiaki

    2014-09-01

    We have derived theoretical equations describing the adsorption of carcinogen to gels in an immersion medium containing carcinogens. The theory was developed for a cylindrical boundary condition under the assumption of a carcinogen diffusion-limited process combined with the "moving boundary picture (Furusawa et al., 2007)". The time course of the adsorbed carcinogen layer thickness and that of the carcinogen concentration in an immersion medium were expressed by a set of scaled variables, and the asymptotic behavior in the initial stage was derived. Experiments based on the theory were performed using a DNA gel sandwiched between a set of coverglasses in a medium containing acridine orange (AO). The boundary between the AO-adsorbed gel layer and AO-nonadsorbed gel layer was traced during the immersion. The time courses of the AO-adsorbed gel layer thickness and the AO concentration in the immersion medium were well explained by the theory, and the number ratio of the total AO molecules to the adsorption sites in the DNA gel was determined.

  8. Actuation and ion transportation of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  9. Dynamics of surfactants spreading on gel layers

    NASA Astrophysics Data System (ADS)

    Spandagos, Constantine; Luckham, Paul; Matar, Omar

    2009-11-01

    Gel-like materials are of central importance to a large number of engineering, biological, biomedical and day-life applications. This work attempts to investigate the spreading of droplets of surfactant solutions on agar gels, which is accompanied by cracking of the gel layers. The cracking progresses via the formation of patterns that resemble ``starbursts,'' which have been reported recently in the literature by Daniels et al. Marangoni stresses generated by surface tension gradients between the surfactant droplet and the uncontaminated gel layer are identified to be the driving force behind these phenomena. The morphology and dynamics of the starburst patterns are investigated for droplets of different surfactant solutions, including sodiumdodecylsulphate, spreading on gel layers of different strengths. The instability is characterised in terms of the number of arms that form, and their mean width and length as a function of time. In addition, photoelasticity is used to provide information about the stress field of the material, which, combined with the results from our direct visualisation, can elucidate further the mechanisms underlying the pattern formation and the nature of the interactions between the liquid and the gel.

  10. The use of highly ordered vesicle gels as template for the formation of silica gels.

    PubMed

    Oppel, Claudia; Prévost, Sylvain; Noirez, Laurence; Gradzielski, Michael

    2011-07-19

    A spontaneously forming gel of unilamellar vesicles based on sodium oleate (Na oleate) and 1-octanol as amphiphiles has been employed as a template in the formation of a silica gel formed by the hydrolysis of the inorganic precursor tetraethyl orthosilicate (TEOS). Up to about 10 wt % TEOS can be incorporated into this vesicle gel without phase separation and in a fully homogeneous formation process by simple mixing of the components. The process itself relies solely upon the self-organizing properties of this amphiphilic template system. The formation process was followed by means of time-resolved turbidity, rheology, and small-angle neutron scattering (SANS) experiments. It can be concluded that the presence of the precursor TEOS affects the kinetics of the process but the original vesicle gel structure is retained even up to highest TEOS content. The kinetic studies confirm that under the chosen conditions the vesicle formation proceeds much faster than the hydrolysis of TEOS and the subsequent formation of the silica gel. SANS displays in the low q-range an additional scattering due to the silica gel network, i.e., a hybrid material of an amphiphilic vesicle gel and an inorganic oxide gel is formed. Thus, this method is a very facile novel route of forming a highly ordered silica/vesicle gel by employing a self-organizing amphiphilic system as template and the formation of the silica network proceeds in a fully homogeneous fashion under kinetic control.

  11. Optimization of topical gels with betamethasone dipropionate: selection of gel forming and optimal cosolvent system.

    PubMed

    Băiţan, Mariana; Lionte, Mihaela; Moisuc, Lăcrămioara; Gafiţanu, Eliza

    2011-01-01

    The purpose of these studies was to develop a 0.05% betamethasone gel characterized by physical-chemical stability and good release properties. The preliminary studies were designed to select the gel-forming agents and the excipients compatible with betamethasone dipropionate. In order to formulate a clear gel without particles of drug substances in suspension, a solvent system for the drug substance was selected. The content of drug substance released, the rheological and in vitro release tests were the tools used for the optimal formulation selection. A stable carbomer gel was obtained by solubilization of betamethasone dipropionate in a vehicle composed by 40% PEG 400, 10% ethanol and 5% Transcutol.

  12. Comparison of gel filtration and ammonium sulphate precipitation in the purification of diphtheria toxin and toxoid.

    PubMed

    Møyner, K; Christiansen, G

    1984-02-01

    Crude diphtheria toxin and toxoid were subjected to purification by gel filtration and stepwise ammonium sulphate precipitation. The various fractions obtained by the purification procedures were studied by immunological methods. A high molecular weight fraction of glycoprotein nature was present in all of the crude preparations studied. The fraction was antigenically non-identical with the real toxin or toxoid and did not have its origin in the culture medium. It showed a long flocculation time when tested against equine diphtheria toxoid antiserum. The fraction could be removed from the crude preparations by gel filtration or by precipitation with 21% (w/v) ammonium sulphate. When comparing toxoids purified by each of these methods, the method of gel filtration resulted in a somewhat higher degree of purity, suggesting that this method would be more suitable than the AS precipitation method for the purification of diphtheria toxoid.

  13. Influence of drying conditions of zirconium molybdate gel on performance of (99m)Tc gel generator.

    PubMed

    Davarpanah, M R; Attar Nosrati, S; Fazlali, M; Kazemi Boudani, M; Khoshhosn, H; Ghannadi Maragheh, M

    2009-10-01

    (99m)Tc can be produced from (99)Mo/(99m)Tc gel generators. These gels are part of the generator and the (99)Mo/(99m)Tc gel generator performance is directly related with gel structure. In this work a series of zirconium molybdate gels have been synthesized and dried under different conditions and characterized using thermal analysis (TGA, DTA), SEM, XRD and porosity measurements. It is found that the water content of the gel determines the structure porosity which allows the diffusion of the (99m)TcO(4)(-) ions inside the gel and was directly connected with performance of the (99)Mo/(99m)Tc gel generators. Drying conditions of the gel is as an important factor that influence water content and physical-chemical properties of this gel and must be carefully studied to optimize the properties of the gel generators.

  14. Analysis of cells isolated from bone cultured on collagen gels and polystyrene culture dishes

    SciTech Connect

    Fletcher, K.

    1981-01-01

    Bone is a complex tissue which contains three types of differentiated cells viz., osteoblasts, osteoclasts and osteocytes. In mature bone, these cells are identified both by their location within the tissue and their morphological characteristics. In fetal tissue, one also finds many progenitor cells, fibroblasts and some cartilage cells. Each of these cell types has distinct functions which are reflected in their morphology, metabolic properties and response to hormones. Studies were also undertaken to evaluate the class of problems associated with electron microprobe analysis of the extracellular fluid space in bone. It was determined that differences in elemental composition in a small volume between cells and mineral cannot be quantitatively corrected for fluorescence, atomic number or absorption effects of the mineral. A study of the use of free-flow dialysis in the study of metal binding to protein demonstrates the anomalous behavior of mercury in this experimental approach and emphasizes the importance of a thorough examination of the control situation before protein to metal binding is examined.

  15. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  16. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: development and comparison with ethosomal gel.

    PubMed

    Akhtar, Nida; Pathak, Kamla

    2012-03-01

    The present research work was aimed to formulate clotrimazole encapsulated Cavamax W7 composite ethosomes by injection method for improved delivery across epidermis. 3(2) factorial design was used to design nine formulations (F1-F9) and compared with ethosomal formulations (F10-F12). F9 with vesicle size of 202.8 ± 4.8 nm, highest zeta potential (-83.6 ± 0.96 mV) and %EE of 98.42 ± 0.15 was selected as optimized composite ethosome and F12 as reference ethosomal formulation. As revealed by transmission electron microscopy F9 vesicles were more condensed, uniformly spherical in shape than F12 vesicles. Vesicular stability studies indicated F9 to be more stable as compared to F12. Both F9 and F12 were incorporated in carbopol 934 gel base to get G1-G8 gel formulations and evaluated for in vitro skin permeability. Cavamax W7 composite ethosomal optimized gel (G5) showed higher in vitro percent cumulative drug permeation (88.53 ± 2.10%) in 8 h and steady state flux (J(ss)) of 3.39 ± 1.45 μg/cm(2)/min against the J(ss) of 1.57 ± 0.23 μg/cm(2)/min for ethosomal gel (G1) and 1.13 ± 0.06 μg/cm(2)/min for marketed formulation. The J(ss) flux of G5 was independent of amount of drug applied/unit area of skin. In vivo confocal laser scanning microscopic study of G5 depicted uniform and deeper penetration of rhodamine B (marker) in epidermis from Cavamax W7 composite ethosomal gel in comparison to G1. Finally, G5 demonstrated better (p < 0.05) antifungal activity against Candida albicans and Aspergillus niger than G1 thus, signifying that Cavamax W7 composite ethosomes present a superior stable and efficacious vesicular system than ethosomal formulation for topical delivery of clotrimazole.

  17. Preparation and characterization of lidocaine rice gel for oral application.

    PubMed

    Okonogi, Siriporn; Kaewpinta, Adchareeya; Yotsawimonwat, Songwut; Khongkhunthian, Sakornrat

    2015-12-01

    The objective of the present study was to prepare buccal anesthetic gels using rice as gelling agent. Rice grains of four rice varieties, Jasmine (JM), Saohai (SH), Homnil (HN), and Doisket (DS) were chemically modified. Buccal rice gels, containing lidocaine hydrochloride as local anesthetic drug were formulated using the respective modified rice varieties. The gels were evaluated for outer appearance, pH, color, gel strength, foaming property, adhesion, in vitro drug release and in vivo efficacy. It was found that the developed rice gels possessed good texture. Rice varieties showed influence on gel strength, color, turbidity, adhesive property, release property, and anesthetic efficacy. JM gel showed the lowest turbidity with light transmission of 86.76 ± 1.18% whereas SH gel showed the highest gel strength of 208.78 ± 10.42 g/cm(2). Lidocaine hydrochloride can cause a decrease in pH and adhesive property but an increase in turbidity of the gels. In vitro drug release profile within 60 min of lidocaine SH gel and lidocaine HN gel showed that lidocaine could be better released from SH gel. Evaluation of in vivo anesthetic efficacy in 100 normal volunteers indicates that both lidocaine rice gels have high efficacy but different levels. Lidocaine SH gel possesses faster onset of duration and longer duration of action than lidocaine HN gel.

  18. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    PubMed

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  19. Recycling of superfine resolution agarose gel.

    PubMed

    Seng, T-Y; Singh, R; Faridah, Q Z; Tan, S-G; Alwee, S S R S

    2013-07-08

    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred.

  20. Workshop for Counselors and Educations Concerned with the Education, Training and Employment of Minority Youth. Final Report, Part II, Discussion Guide to the Problems of the Culturally Deprived: An introduction for Teachers and Counselors. University College Research Publications Number 8.

    ERIC Educational Resources Information Center

    Whiteley, John M.; Wientge, King M.

    Developed out of a workshop conducted during the summer of 1965, this guide provides introductory information in areas pertinent to the study of the culturally deprived youth, raises questions for discussion or future exploration, examines some aspects of fair employment for minority groups, and supplies a relevant bibliography. A comprehensive…

  1. PROJECT HEAD START AND THE CULTURALLY DEPRIVED IN ROCHESTER, NEW YORK, A STUDY OF PARTICIPATING AND NON-PARTICIPATING FAMILIES IN AREAS SERVED BY PROJECT HEAD START IN ROCHESTER, FINAL REPORT.

    ERIC Educational Resources Information Center

    CHANDLER, MARVIN; AND OTHERS

    A COMMUNITY PROFILE OF ROCHESTER, N.Y. CITES HISTORY, PRESENT COMMUNITY CHARACTERISTICS, AND CURRENT IMPROVEMENT PROGRAMS AS THEY RELATE TO CULTURAL DEPRIVATION AND AN ANTI-POVERTY PROGRAM. TO DETERMINE WHAT EFFECTS HISTORICAL, ECONOMIC, POLITICAL, ECOLOGICAL, AND SOCIAL FORCES HAVE UPON HEAD START CHILDREN, MATCHED GROUPS OF EIGHT HEAD START…

  2. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  3. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    PubMed

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression.

  4. Contraction-induced Mmp13 and -14 expression by goat articular chondrocytes in collagen type I but not type II gels.

    PubMed

    Berendsen, Agnes D; Vonk, Lucienne A; Zandieh-Doulabi, Behrouz; Everts, Vincent; Bank, Ruud A

    2012-10-01

    Collagen gels are promising scaffolds to prepare an implant for cartilage repair but several parameters, such as collagen concentration and composition as well as cell density, should be carefully considered, as they are reported to affect phenotypic aspects of chondrocytes. In this study we investigated whether the presence of collagen type I or II in gel lattices affects matrix contraction and relative gene expression levels of matrix proteins, MMPs and the subsequent degradation of collagen by goat articular chondrocytes. Only floating collagen I gels, and not those attached or composed of type II collagen, contracted during a culture period of 12 days. This coincided with an upregulation of both Mmp13 and -14 gene expression, whereas Mmp1 expression was not affected. The release of hydroxyproline in the culture medium, indicating matrix degradation, was increased five-fold in contracted collagen I gels compared to collagen II gels without contraction. Furthermore, blocking contraction of collagen I gels by cytochalasin B inhibited Mmp13 and -14 expression and the release of hydroxyproline. The expression of cartilage-specific ECM genes was decreased in contracted collagen I gels, with increased numbers of cells with an elongated morphology, suggesting that matrix contraction induces dedifferentiation of chondrocytes into fibroblast-like cells. We conclude that the collagen composition of the gels affects matrix contraction by articular chondrocytes and that matrix contraction induces an increased Mmp13 and -14 expression as well as matrix degradation.

  5. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces.

    PubMed

    Jaiswal, Swarna; McHale, Patrick; Duffy, Brendan

    2012-06-01

    The colonisation of clinical and industrial surfaces with microorganisms, including antibiotic-resistant strains, has promoted increased research into the development of effective antibacterial and antifouling coatings. This study describes the preparation of metal nitrate (Ag, Cu, Zn) doped methyltriethoxysilane (MTEOS) coatings and the rapid assessment of their antibacterial activity using polyproylene microtitre plates. Microtitre plate wells were coated with different volumes of liquid sol-gel and cured under various conditions. Curing parameters were analysed by thermogravimetric analysis (TGA) and visual examination. The optimum curing conditions were determined to be 50-70°C using a volume of 200 μl. The coated wells were challenged with Gram-positive and Gram-negative bacterial cultures, including biofilm-forming and antibiotic-resistant strains. The antibacterial activities of the metal doped sol-gel, at equivalent concentrations, were found to have the following order: silver>zinc>copper. The order is due to several factors, including the increased presence of silver nanoparticles at the sol-gel coating surface, as determined by X-ray photoelectron spectroscopy, leading to higher elution rates as measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The use of microtitre plates enabled a variety of sol-gel coatings to be screened for their antibacterial activity against a wide range of bacteria in a relatively short time. The broad-spectrum antibacterial activity of the silver doped sol-gel showed its potential for use as a coating for biomaterials.

  6. In Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering

    PubMed Central

    Kim, Beom Su; Shkembi, Feride

    2017-01-01

    Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young's modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration. PMID:28210623

  7. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration.

    PubMed

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S

    2014-02-06

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a naturally derived extracellular matrix for cell growth, type I collagen gels were reconstituted with conductive polymer nanofibres and cells. Cell viability and proliferation of PC-12 cells and human skeletal muscle cells on these three-dimensional conductive collagen gels were evaluated in vitro. PANI and PEDOT nanofibres were found to be cytocompatible with both cell types and the best results (i.e. cell growth and gel electrical conductivity) were obtained with a low concentration (0.5 wt%) of PANI. After 7 days of culture in the conductive gels, the densities of both cell types were similar and comparable to collagen positive controls. Moreover, PC-12 cells were found to differentiate in the conductive hydrogels without the addition of nerve growth factor or electrical stimulation better than collagen control. Importantly, electrical conductivity of the three-dimensional gel scaffolds increased by more than 400% compared with control. The increased conductivity and injectability of the cell-laden collagen gels to injury sites in order to create an electrically conductive extracellular matrix makes these biomaterials very conducive for the regeneration of tissues.

  8. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    SciTech Connect

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-12-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  9. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber.

    PubMed

    Shen, Chong; Zhang, Guoliang; Meng, Qin

    2010-12-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  10. Monolayer and three-dimensional cell culture and living tissue culture of gallbladder epithelium.

    PubMed

    Nakanuma, Y; Katayanagi, K; Kawamura, Y; Yoshida, K

    1997-10-01

    Several models for preparing and isolating human and animal gallbladder epithelial cells, including low-grade gallbladder carcinoma cells, as well as proposed systems for culturing these isolated epithelial cells are reviewed here. Several reports concerning tissue culture of the gallbladder are also reviewed. The cell culture systems are divided into monolayer cell culture on collagen-coated or uncoated culture dishes or other culture substrate and three-dimensional cell culture in collagen gel. To prepare and isolate gallbladder epithelial cells, digestion of the gallbladder mucosa, abrasion of the mucosal epithelial cells, and excision of epithelial outgrowth of mucosal explants are applied. In monolayer cell culture, most of the specific biological features of isolated and cultured cells characteristic to the gallbladder are gradually lost after several passages, though quantitative and objective analyses of the pathophysiology of cultured cells and their secretory substances can be performed. Tissue culture using explants of the gallbladder has mainly been used for physiological studies of the gallbladder, such as investigating the transport of water and electrolytes. In this tissue culture system, quantitative assessment is difficult, though the original and specific biological and histological characteristics of the gallbladder are retained. Three-dimensional collagen gel culture could be an ideal model combining monolayer cell culture and tissue culture systems, and create controllable conditions or environments when several biologically active substances, such as growth factors, proinflammatory cytokines and adhesion molecules, are added to the culture medium. Advantages and shortcomings of individual cultivation models are discussed, and selecting the culture model most appropriate to the purpose of the study will facilitate investigations of the biology and pathogenetic mechanisms of gallbladder diseases such as cholelithiasis.

  11. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    PubMed

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  12. A newly developed chromium(III) gel technology

    SciTech Connect

    Sydansk, R.D. . Research Div.)

    1990-08-01

    Laboratory testing of a recently developed chromium(III) (Cr(III)) gel technology is reported. The gels can be used in conjunction with a number of oilfield treatments. The single-fluid acrylamide-polymer/Cr(III)-carboxylate aqueous gels are formed by crosslinking acrylamide polymer with a Cr(III)-carboxylate-complex crosslinking agent. Representative gel compositions and associated gel properties are discussed.

  13. Optimizing design and fabrication of microfluidic devices for cell cultures: An effective approach to control cell microenvironment in three dimensions

    PubMed Central

    Pagano, G.; Ventre, M.; Iannone, M.; Greco, F.; Maffettone, P. L.; Netti, P. A.

    2014-01-01

    The effects of gradients of bioactive molecules on the cell microenvironment are crucial in several biological processes, such as chemotaxis, angiogenesis, and tumor progression. The elucidation of the basic mechanisms regulating cell responses to gradients requires a tight control of the spatio-temporal features of such gradients. Microfluidics integrating 3D gels are useful tools to fulfill this requirement. However, even tiny flaws in the design or in the fabrication process may severely impair microenvironmental control, thus leading to inconsistent results. Here, we report a sequence of actions aimed at the design and fabrication of a reliable and robust microfluidic device integrated with collagen gel for cell culturing in 3D, subjected to a predetermined gradient of biomolecular signals. In particular, we developed a simple and effective solution to the frequently occurring technical problems of gas bubble formation and 3D matrix collapsing or detaching from the walls. The device here proposed, in Polydimethylsiloxane, was designed to improve the stability of the cell-laden hydrogel, where bubble deprived conditioning media flow laterally to the gel. We report the correct procedure to fill the device with the cell populated gel avoiding the entrapment of gas bubbles, yet maintaining cell viability. Numerical simulations and experiments with fluorescent probes demonstrated the establishment and stability of a concentration gradient across the gel. Finally, chemotaxis experiments of human Mesenchymal Stem Cells under the effects of Bone Morphogenetic Protein-2 gradients were performed in order to demonstrate the efficacy of the system in controlling cell microenvironment. The proposed procedure is sufficiently versatile and simple to be used also for different device geometries or experimental setups. PMID:25379108

  14. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  15. Evolution of gel structure during thermal processing of Na-geopolymer gels.

    PubMed

    Duxson, Peter; Lukey, Grant C; van Deventer, Jannie S J

    2006-10-10

    The present work examines how the gel structure and phase composition of Na-geopolymers derived from metakaolin with varied Si/Al ratio evolve with exposure to temperatures up to 1000 degrees C. Gels were thermally treated and characterized using quantitative XRD, DTA, and FTIR to elucidate the changes in gel structure, phase composition, and porosity at each stage of heating. It is found that the phase stability, defined by the amount and onset temperature of crystallization, is improved at higher Si/Al ratios. Two different mechanisms of densification have been isolated by FTIR, related to viscous flow and collapse of the highly distributed pore network in the gel. Gels with low Si/Al ratio only experience viscous flow that correlates with low thermal shrinkage. Gels at a higher Si/Al ratio, which have a homogeneous microstructure composed of a highly distributed porosity, undergo both densification processes corresponding to a large extent of thermal shrinkage during densification. This work elucidates the intimate relationship between gel microstructure, chemistry, and thermal evolution of Na-geopolymer gels.

  16. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  17. Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis.

    PubMed

    Lee, S V; Bahaman, A R

    2010-08-01

    Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.

  18. 3D Gel Map of Arabidopsis Complex I

    PubMed Central

    Peters, Katrin; Belt, Katharina; Braun, Hans-Peter

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana. PMID:23761796

  19. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel.

  20. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  1. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  2. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.

    2013-06-01

    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  3. Use of a bilayer stacking gel to improve resolution of lipopolysaccharides and lipooligosaccharides in polyacrylamide gels.

    PubMed

    Inzana, T J; Apicella, M A

    1999-03-01

    Lipopolysaccharide (LPS) and lipooligosaccharide (LOS) are important antigenic and integral components of the outer membrane of Gram-negative bacteria. Alteration or heterogeneity of LPS/LOS structure is most often assessed by alteration of electrophoretic band profiles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In order to discern minor differences in the electrophoretic profile of closely spaced bands, particularly the low molecular weight bands of LOS, optimum resolution is required. Unfortunately, many publications of LPS/LOS in polyacrylamide gels show a diffuse, smeared pattern without discernible bands. We report here a formulation for polyacrylamide gels that reproducibly yields LPS/LOS bands with sharp resolution. A key feature of this formulation is the use of a separate comb gel containing electrode buffer layered on top of the conventional stacking gel.

  4. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  5. A Pilot Study Integrating Visual Form and Anthropological Content for Teaching Children Ages 6 to 11 about Cultures and Peoples of the World; Specifically, the Preparation of a Danced Presentation with Lecture Interpreting Some of the Cultural Values in West and Central African Communities. Final Report.

    ERIC Educational Resources Information Center

    Primus, Pearl E.

    A pilot study was conducted to demonstrate the use of dance as a method for improving and extending curriculum content of world cultures in elementary schools. The secondary objectives emphasized nonverbal experience as a means of interpreting the patterns of cultural values in West and Central Africa. Most of the 41 presentations of the dance…

  6. Removing residual DNA from Vero-cell culture-derived human rabies vaccine by using nuclease.

    PubMed

    Li, Si-Ming; Bai, Fu-Liang; Xu, Wen-Juan; Yang, Yong-Bi; An, Ying; Li, Tian-He; Yu, Yin-Hang; Li, De-Shan; Wang, Wen-Fei

    2014-09-01

    The clearance of host cell DNA is a critical indicator for Vero-cell culture-derived rabies vaccine. In this study, we evaluated the clearance of DNA in Vero-cell culture-derived rabies vaccine by purification process utilizing ultrafiltration, nuclease digestion, and gel filtration chromatography. The results showed that the bioprocess of using nuclease decreased residual DNA. Dot-blot hybridization analysis showed that the residual host cell DNA was <100 pg/ml in the final product. The residual nuclease in rabies vaccine was less than 0.1 ng/ml protein. The residual nuclease could not paly the biologically active role of digestion of DNA. Experiments of stability showed that the freeze-drying rabies virus vaccine was stable and titers were >5.0 IU/ml. Immunogenicity test and protection experiments indicated mice were greatly induced generation of neutralizing antibodies and invoked protective effects immunized with intraperitoneal injections of the rabies vaccine. These results demonstrated that the residual DNA was removed from virus particles and nuclease was removed by gel filtration chromatography. The date indicated that technology was an efficient method to produce rabies vaccine for human use by using nuclease.

  7. Isolation and some properties of exohemagglutinin from the culture medium of Bacteroides gingivalis 381.

    PubMed Central

    Inoshita, E; Amano, A; Hanioka, T; Tamagawa, H; Shizukuishi, S; Tsunemitsu, A

    1986-01-01

    Exohemagglutinin was found in the culture medium of Bacteroides gingivalis 381. Exohemagglutinin was purified 3,150-fold from culture fluid by ultracentrifugation followed by gel filtration on Sepharose CL-4B and by affinity chromatography on arginine-agarose. Examination of the final preparation of exohemagglutinin by biochemical analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the isolated exohemagglutinin contained three major proteins but not a detectable lipopolysaccharide. Hemagglutination inhibition experiments showed that the activity of exohemagglutinin was inhibited by L-arginine and the arginine-containing peptides, although the activity was unaffected by the sugars tested. Some protein and glycoproteins that were examined also exhibited the inhibitory activity. When the bovine submaxillary mucin was chemically modified by beta-elimination and bovine serum albumin was modified by guanidination, the inhibitory effects on hemagglutination were significantly enhanced. These results suggest that the hemagglutination of the isolated exohemagglutinin may be involved in arginine residues as components of ligand-binding sites on erythrocytes. Images PMID:3699890

  8. Sol-gel derived aluminosilicate coatings on alumina as substrate for osteoblasts.

    PubMed

    Leivo, Jarkko; Meretoja, Ville; Vippola, Minnamari; Levänen, Erkki; Vallittu, Pekka; Mäntylä, Tapio A

    2006-11-01

    Rat bone marrow stromal cell differentiation on aluminosilicate 3Al(2)O(3)-2SiO(2) coatings was investigated. Thin ceramic coatings were prepared on alpha-alumina substrates by the sol-gel process and calcined in order to establish an amorphous aluminosilicate ceramic phase with and without nanosized transitional mullite crystals. In addition, coatings of thermally sprayed aluminosilicate and diphasic gamma-alumina-silica nanosized colloids were prepared. Cell culture testing by rat osteoblasts showed good biocompatibility for aluminosilicates with sustained normal osteoblast functions. Despite mutual disparities in physical and chemical nanostructures, the culture findings suggested fairly similar osteoblast response to all tested coatings. The results suggest that topographical frequency parameters and chemical uniformity are important parameters in determining the best conditions for osteoblasts on sol-gel derived aluminosilicate materials.

  9. Efficacy of Imiquimod-Based Transcutaneous Immunization Using a Nano-Dispersed Emulsion Gel Formulation

    PubMed Central

    Tenzer, Stefan; Schild, Hansjörg; Stevanovic, Stefan; Langguth, Peter; Radsak, Markus P.

    2014-01-01

    Background Transcutaneous immunization (TCI) approaches utilize skin associated lymphatic tissues to elicit specific immune responses. In this context, the imidazoquinoline derivative imiquimod formulated in Aldara applied onto intact skin together with a cytotoxic T lymphocyte (CTL) epitope induces potent CTL responses. However, the feasibility and efficacy of the commercial imiquimod formulation Aldara is limited by its physicochemical properties as well as its immunogenicity. Methodology/Principal Findings To overcome these obstacles, we developed an imiquimod-containing emulsion gel (IMI-Gel) and characterized it in comparison to Aldara for rheological properties and in vitro mouse skin permeation in a Franz diffusion cell system. Imiquimod was readily released from Aldara, while IMI-Gel showed markedly decreased drug release. Nevertheless, comparing vaccination potency of Aldara or IMI-Gel-based TCI in C57BL/6 mice against the model cytotoxic T-lymphocyte epitope SIINFEKL, we found that IMI-Gel was equally effective in terms of the frequency of peptide-specific T-cells and in vivo cytolytic activity. Importantly, transcutaneous delivery of IMI-Gel for vaccination was clearly superior to the subcutaneous or oral route of administration. Finally, IMI-Gel based TCI was at least equally effective compared to Aldara-based TCI in rejection of established SIINFEKL-expressing E.G7 tumors in a therapeutic setup indicated by enhanced tumor rejection and survival. Conclusion/Significance In summary, we developed a novel imiquimod formulation with feasible pharmaceutical properties and immunological efficacy that fosters the rational design of a next generation transcutaneous vaccination platform suitable for the treatment of cancer or persistent virus infections. PMID:25025233

  10. New frontiers in materials science for art conservation: responsive gels and beyond.

    PubMed

    Carretti, Emiliano; Bonini, Massimo; Dei, Luigi; Berrie, Barbara H; Angelova, Lora V; Baglioni, Piero; Weiss, Richard G

    2010-06-15

    The works of art and artifacts that constitute our cultural heritage are subject to deterioration, both from internal and from external factors. Surfaces that interact with the environment are the most prone to aging and decay; accordingly, soiling is a prime factor in the degradation of surfaces and the attendant disfigurement of a piece. Coatings that were originally intended to protect or contribute aesthetically to an artwork should be removed if they begin to have a destructive impact on its appearance or surface chemistry. Since the mid-19th century, organic solvents have been the method of choice for cleaning painted surfaces and removing degraded coatings. Care must be taken to choose a solvent mixture that minimizes swelling of or leaching from the original paint films, which would damage and compromise the physical integrity of all the layers of paint. The use of gels and poultices, first advocated in the 1980s, helps by localizing the solvent and, in some cases, by reducing solvent permeation into underlying paint layers. Unfortunately, it is not always easy to remove gels and their residues from a paint surface. In this Account, we address the removal problem by examining the properties of three classes of innovative gels for use on artwork--rheoreversible gels, magnetic gels, and "peelable" gels. Their rheological properties and efficacies for treating the surfaces of works have been studied, demonstrating uniquely useful characteristics in each class: (1) Rheoreversible gels become free-flowing on application of a chemical or thermal "switch". For art conservation, a chemical trigger is preferred. Stable gels formed by bubbling CO(2) through solutions of polyallylamine or polyethylenimines (thereby producing ammonium carbamates, which act as chain cross-links) can be prepared with a wide range of solvent mixtures. After solubilization of varnish and dirt, addition of a weak acid (mineral or organic) displaces the CO(2), and the resulting free

  11. [Safety culture: definition, models and design].

    PubMed

    Pfaff, Holger; Hammer, Antje; Ernstmann, Nicole; Kowalski, Christoph; Ommen, Oliver

    2009-01-01

    Safety culture is a multi-dimensional phenomenon. Safety culture of a healthcare organization is high if it has a common stock in knowledge, values and symbols in regard to patients' safety. The article intends to define safety culture in the first step and, in the second step, demonstrate the effects of safety culture. We present the model of safety behaviour and show how safety culture can affect behaviour and produce safe behaviour. In the third step we will look at the causes of safety culture and present the safety-culture-model. The main hypothesis of this model is that the safety culture of a healthcare organization strongly depends on its communication culture and its social capital. Finally, we will investigate how the safety culture of a healthcare organization can be improved. Based on the safety culture model six measures to improve safety culture will be presented.

  12. Development of the Alaska Heritage Stewardship Program for protection of cultural resources at increased risk due to the Exxon Valdez oil spill. Restoration study number 104a. Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Corbett, D.G.; Reger, D.

    1994-08-01

    The authors developed a stewardship program, based on functioning models in Arizona and Texas, to train interested local groups and individuals to protect cultural resources. The program was adapted to Alaska`s remoteness, sparse populations, and climate by giving Stewards greater flexibility to deal with local conditions. The State Office of History and Archaeology and U.S. Fish and Wildlife Service are attempting to implement Stewardship in areas expressing interest.

  13. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.

    PubMed

    Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R

    2003-06-01

    We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology.

  14. Fabricating neuromast-inspired gel structures for membrane-based hair cell sensing

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Stephens, Christopher P.; Sarles, S. A.

    2012-04-01

    Recent research has shown that a new class of mechanical sensor, assembled from biomolecules and which features an artificial cell membrane as the sensing element, can be used to mimic basic hair cell mechanotransduction in vertebrates. The work presented in this paper is motivated by the need to increase sensor performance and stability by refining the methods used to fabricate and connect lipid-encapsulated hydrogels. Inspired by superficial neuromasts found on fish, three hydrogel materials are compared for their ability to be readily shaped into neuromast-inspired geometries and enable lipid bilayer formation using self-assembly at an oil/water interface. Agarose, polyethylene glycol (PEG, 6kg/mole), and hydroxyethyl methacrylate (HEMA) gel materials are compared. The results of this initial study determined that UV-curable gel materials such as PEG and HEMA enable more accurate shaping of the gel-needed for developing a sensor that uses a gel material both for mechanical support and membrane formation-compared to agarose. However, the lower hydrophobicity of agarose and PEG materials provide a more fluid, water-like environment for membrane formation-unlike HEMA. In working toward a neuromast-inspired design, a final experiment demonstrates that a bilayer can also be formed directly between two lipid-covered PEG surfaces. These initial results suggest that candidate gel materials with a low hydrophobicity, high fluidity, and a low modulus can be used to provide membrane support.

  15. Alternative Ultrasound Gel for a Sustainable Ultrasound Program: Application of Human Centered Design

    PubMed Central

    Bissinger, Alexa; Muller, Mundenga Mutendi; Gebreyesus, Alegnta; Geremew, Haimanot; Wendell, Sarah; Azaza, Aklilu; Salumu, Maurice; Benfield, Nerys

    2015-01-01

    This paper describes design of a low cost, ultrasound gel from local products applying aspects of Human Centered Design methodology. A multidisciplinary team worked with clinicians who use ultrasound where commercial gel is cost prohibitive and scarce. The team followed the format outlined in the Ideo Took Kit. Research began by defining the challenge "how to create locally available alternative ultrasound gel for a low-resourced environment? The "End-Users," were identified as clinicians who use ultrasound in Democratic Republic of the Congo and Ethiopia. An expert group was identified and queried for possible alternatives to commercial gel. Responses included shampoo, oils, water and cornstarch. Cornstarch, while a reasonable solution, was either not available or too expensive. We then sought deeper knowledge of locally sources materials from local experts, market vendors, to develop a similar product. Suggested solutions gleaned from these interviews were collected and used to create ultrasound gel accounting for cost, image quality, manufacturing capability. Initial prototypes used cassava root flour from Great Lakes Region (DRC, Rwanda, Uganda, Tanzania) and West Africa, and bula from Ethiopia. Prototypes were tested in the field and resulting images evaluated by our user group. A final prototype was then selected. Cassava and bula at a 32 part water, 8 part flour and 4 part salt, heated, mixed then cooled was the product design of choice. PMID:26252003

  16. Alternative Ultrasound Gel for a Sustainable Ultrasound Program: Application of Human Centered Design.

    PubMed

    Salmon, Margaret; Salmon, Christian; Bissinger, Alexa; Muller, Mundenga Mutendi; Gebreyesus, Alegnta; Geremew, Haimanot; Wendel, Sarah K; Wendell, Sarah; Azaza, Aklilu; Salumu, Maurice; Benfield, Nerys

    2015-01-01

    This paper describes design of a low cost, ultrasound gel from local products applying aspects of Human Centered Design methodology. A multidisciplinary team worked with clinicians who use ultrasound where commercial gel is cost prohibitive and scarce. The team followed the format outlined in the Ideo Took Kit. Research began by defining the challenge "how to create locally available alternative ultrasound gel for a low-resourced environment? The "End-Users," were identified as clinicians who use ultrasound in Democratic Republic of the Congo and Ethiopia. An expert group was identified and queried for possible alternatives to commercial gel. Responses included shampoo, oils, water and cornstarch. Cornstarch, while a reasonable solution, was either not available or too expensive. We then sought deeper knowledge of locally sources materials from local experts, market vendors, to develop a similar product. Suggested solutions gleaned from these interviews were collected and used to create ultrasound gel accounting for cost, image quality, manufacturing capability. Initial prototypes used cassava root flour from Great Lakes Region (DRC, Rwanda, Uganda, Tanzania) and West Africa, and bula from Ethiopia. Prototypes were tested in the field and resulting images evaluated by our user group. A final prototype was then selected. Cassava and bula at a 32 part water, 8 part flour and 4 part salt, heated, mixed then cooled was the product design of choice.

  17. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation.

    PubMed

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-02-01

    The rheological properties of acid-induced coagulation of camel and cow milk gels following the addition of calcium chloride (CaCl2) and hydrogen phosphate dehydrate (Na2HPO4*2H2O) were investigated using a dynamic low amplitude oscillatory rheology. For a considered condition, the final values of storage modulus (G') and loss modulus (G″) of camel milk gels were significantly lower than those of cow milk gels. The increase of the added CaCl2 levels improved significantly the gelation properties of camel and cow milk gels, since a reduction in the gelation time and an increase in the gel firmness were observed. Following the addition of Na2HPO4*2H2O at 10 and 20 mM, no significant effect on the gelation rate and the firmness of camel milk gels was observed, while, a significant decrease in the gelation rate and firmness were observed for cow milk gels.

  18. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  19. Phase diagram of a reentrant gel of patchy particles

    SciTech Connect

    Roldán-Vargas, Sándalo; Smallenburg, Frank; Sciortino, Francesco; Kob, Walter

    2013-12-28

    We study the phase diagram of a binary mixture of patchy particles which has been designed to form a reversible gel. For this we perform Monte Carlo and molecular dynamics simulations to investigate the thermodynamics of such a system and compare our numerical results with predictions based on the analytical parameter-free Wertheim theory. We explore a wide range of the temperature-density-composition space that defines the three-dimensional phase diagram of the system. As a result, we delimit the region of thermodynamic stability of the fluid. We find that for a large region of the phase diagram the Wertheim theory is able to give a quantitative description of the system. For higher densities, our simulations show that the system is crystallizing into a BCC structure. Finally, we study the relaxation dynamics of the system by means of the density and temperature dependences of the diffusion coefficient. We show that there exists a density range where the system passes reversibly from a gel to a fluid upon both heating and cooling, encountering neither demixing nor phase separation.

  20. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  1. DNA Gel with dynamic cross-links

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Fygenson, Deborah; Saleh, Omar

    2014-03-01

    The mechanical properties of a living cell are strongly related to the cytoskeletal network, which is comprised of diverse protein filaments connected by cross-linking proteins, some of which are dynamic. Gels comprised of dynamic cross-linkers exhibit unique mechanical properties not seen in those using permanent cross-linkers. To investigate the effect of a dynamic cross-linker on mechanical properties of a material, we have synthesized biopolymer gels with a well-known semi-flexible biopolymer, DNA, and probed the mechanics of the system using microrheological techniques. We discuss these results in comparison to cytoskeletal systems, and seek to establish universal principles of dynamic cross-link based gels. This work was supported by the NSF-funded UCSB MRSEC program, Award No. DMR-0520415.

  2. Writing in the granular gel medium

    PubMed Central

    Bhattacharjee, Tapomoy; Zehnder, Steven M.; Rowe, Kyle G.; Jain, Suhani; Nixon, Ryan M.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-01-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  3. Writing in the granular gel medium.

    PubMed

    Bhattacharjee, Tapomoy; Zehnder, Steven M; Rowe, Kyle G; Jain, Suhani; Nixon, Ryan M; Sawyer, W Gregory; Angelini, Thomas E

    2015-09-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies.

  4. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  5. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-29

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  6. Preparation and characterization of hydrophobic superparamagnetic gel.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Pritzker School of Medicine; Chinese Academy of Sciences

    2006-01-01

    The present study describes the preparation and analysis of a highly concentrated hydrophobic oleic acid-coated magnetite gel. By contrast to conventional techniques to prepare magnetic fluids, herein the oleic acid was introduced as a reactant during the initial crystallization phase of magnetite that was obtained by the co-precipitation of Fe(II) and Fe(III) salts by addition of ammonium hydroxide. The resulting gelatinous hydrophobic magnetite was characterized in terms of morphology, particle size, magnetic properties, crystal structure, and hydrophobicity/hydrophilicity. This magnetic gel exhibited superparamagnetism with a saturation magnetization of 46.0 emu/g at room temperature and could be well dispersed both in polar and nonpolar carrier liquids. This protocol produced highly concentrated hydrophobic magnetic gel for biopolymer encapsulations.

  7. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  8. A New Standard-Based Polynomial Interpolation (SBPIn) Method to Address Gel-to-Gel Variability for the Comparison of Multiple Denaturing Gradient Gel Electrophoresis Profile Matrices

    PubMed Central

    Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2013-01-01

    The Standard-Based Polynomial Interpolation (SBPIn) method is a new simple three-step protocol proposed to address common gel-to-gel variations for the comparison of sample profiles across multiple DGGE gels. The advantages of this method include no requirement for additional software or modification of the standard DGGE protocol. PMID:23234884

  9. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum.

    PubMed

    Karim, Asima; Hall, Andrew C

    2017-05-01

    Changes to chondrocyte volume/morphology may have deleterious effects on extracellular matrix (ECM) metabolism potentially leading to cartilage deterioration and osteoarthritis (OA). The factors controlling chondrocyte properties are poorly understood, however, pericellular matrix (PCM) weakening may be involved. We have studied the density, volume, morphology, and clustering of cultured bovine articular chondrocytes within stiff (2% w/v) and soft (0.2% w/v) three-dimensional agarose gels. Gels with encapsulated chondrocytes were cultured in Dulbecco's Modified Eagle's Medium (DMEM; fetal calf serum (FCS) 1-10%;380 mOsm) for up to 7 days. Chondrocytes were fluorescently labeled after 1, 3, and 7 days with 5-chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI) or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5) to identify cytoplasmic space or DNA and imaged by confocal laser scanning microscopy (CLSM). Chondrocyte density, volume, morphology, and clustering were quantified using Volocity™ software. In stiff gels after 7 d with 10% FCS, chondrocyte density remained unaffected and morphology was relatively normal with occasional cytoplasmic processes. However, in soft gels by day 1, chondrocyte volume increased (P = 0.0058) and by day 7, density increased (P = 0.0080), along with the percentage of chondrocytes of abnormal morphology (P < 0.0001) and enhanced clustering (P < 0.05), compared to stiff gels. FCS exacerbated changes to density (P < 0.01), abnormal morphology (P < 0.001) and clustering (P < 0.01) compared to lower concentrations at the same gel strength. Reduced gel stiffness and/or increased FCS concentrations promoted chondrocyte proliferation and clustering, increased cell volume, and stimulated abnormal morphology, producing similar changes to those occurring in OA. The increased penetration of factors in FCS into soft gels may be important in the development of

  10. Culturing Protozoa.

    ERIC Educational Resources Information Center

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  11. Bronchoscopic culture

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003748.htm Bronchoscopic culture To use the sharing features on this page, please enable JavaScript. Bronchoscopic culture is a laboratory exam to check a piece ...

  12. Throat Culture

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Throat Culture Share this page: Was this page helpful? Collecting | ... treatment | Getting results | see BLOOD SAMPLE Collecting A culture is a test that is often used to ...

  13. Bile culture

    MedlinePlus

    ... these risks. Alternative Names Culture - bile Images Bile culture References Hall GS, Woods GL. Medical bacteriology. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier ...

  14. Esophageal culture

    MedlinePlus

    Culture - esophageal ... There, it is placed in a special dish (culture) and watched for the growth of bacteria, fungi, ... and Fordtran's Gastrointestinal and Liver Disease Pathophysiology/Diagnosis/Management . 10th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap ...

  15. A case report of combination treatment with potassium-titanyl phosphate laser and brimonidine topical gel in erythematotelangiectatic rosacea.

    PubMed

    Hofmann, Maja A; Kokolakis, G

    2017-01-31

    Laser therapies have been shown to provide symptom improvement in patients with erythema and telangiectasia of rosacea; however, they are associated with side effects such as erythema. Combinatorial treatment with pharmacological agents and laser have demonstrated better efficacy, fewer side effects and continued long-term remission compared with monotherapies. A case of moderate facial erythema that responded well to combination treatment with brimonidine 3 mg/g gel and a treatment course of potassium-titanyl phosphate (KTP) laser therapy is presented, showing a reduction from baseline, maintained after final laser session, by applying brimonidine 3 mg/g gel daily. Using brimonidine 3 mg/g gel to target post-laser treatment erythema is highly effective in minimising refractory erythema. Continued use of brimonidine 3 mg/g gel provides a sustained reduction of erythema, increasing the visibility of other signs and symptoms of rosacea that may be present. This can facilitate the treatment of these additional signs and symptoms.

  16. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-04-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn-Sn-O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer.

  17. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  18. The Sol-Gel-Xerogel Transition

    DTIC Science & Technology

    1993-11-01

    cases, on the matrix of the gel. They showed that photofading of methylene blue in thin films prepared from methyltriethoxy-silane is faster than In films...thin films doped with zeolite crystals (>1 pim, ZSM-5) benefit from the size exclusion selectivity of the encased zeolites . 2. Control of the surface...exposed to H2S due to the formation of CdS crystals. Zink and 0 Dunn [33] reported that sol-gel glasses doped with iron(III) produce an intense blue

  19. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  20. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  1. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  2. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer.

    PubMed

    Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi

    2010-05-01

    We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively).

  3. Efficacy of alcohol gel for removal of methicillin-resistant Staphylococcus aureus from hands of colonized patients.

    PubMed

    Sunkesula, Venkata; Kundrapu, Sirisha; Macinga, David R; Donskey, Curtis J

    2015-02-01

    Of 82 patients with methicillin-resistant Staphylococcus aureus (MRSA) colonization, 67 (82%) had positive hand cultures for MRSA. A single application of alcohol gel (2 mL) consistently reduced the burden of MRSA on hands. However, incomplete removal of MRSA was common, particularly in those with a high baseline level of recovery.

  4. Sol-gel process for preparing YBa{sub 2}Cu{sub 4}O{sub 8} precursors from Y, Ba, and Cu acidic acetates/ammonia/ascorbic acid systems

    SciTech Connect

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.; Di Bartolomeo, A.; Casadio, S.

    1995-08-01

    Sols were prepared by addition of ammonia to acidic acetate solutions of Y{sup 3+}, Ba{sup 2+}, and Cu{sup 2+}. Ascorbic acid was added to a part of the sol. The resultant sols were gelled to a shard, a film, or microspheres by evaporation at 60 C or by extraction of water from drops of emulsion suspended in 2-ethylhexanol-1. Addition of ethanol to the sols facilitated the formation of gel films, fabricated by a dipping technique, on glass or silver substrates. At 100 C, gels that were formed in the presence of ascorbic acid were perfectly amorphous, in contrast to the crystalline acetate gels. Conversion of the amorphous ascorbate gels to final products was easier than for the acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings.

  5. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for Pgel-condensed state at P>Pc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  6. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  7. Beyond Culture.

    ERIC Educational Resources Information Center

    Barron, Daniel D.

    1993-01-01

    Discusses the lack of literature relating to cultural differences and school library media programs and reviews the book "Beyond Culture" by Edward T. Hall. Highlights include the population/environment crisis, cultural literacy, the use of technology, and Marshall McLuhan's idea of the global village. (LRW)

  8. Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoli; Niu, Chunyu; Wang, Yongqiang; Zhou, Shaomin; Liu, Jin

    2014-10-01

    A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel under heating at the very beginning of the reaction, thus all the subsequent reactions proceeded in the interior of the gel. The gel-limited reactions had two advantages, on the one hand, the magnetic Fe3O4 microspheres were fixed in the gel which avoided them aggregating together, whereas on the other hand, the silver ions stored in the gel could be gradually released and tended to diffuse towards the nearest Fe3O4 microsphere, which favored the generation of a dumbbell-like Fe3O4-Ag structure. From the time-dependent experiments under optimal conditions, the typical growth process of dumbbell-like structures clearly demonstrated that a silver seed first appeared on the surface of a single Fe3O4 microsphere, which then grew bigger slowly and finally formed a dumbbell-like Fe3O4-Ag structure. Moreover, the formation of the gel was found to be strongly affected by the ratio of water and ethanol in the precursor solution, which further influenced the morphologies of the Fe3O4-Ag microspheres. Furthermore, the effect of lattice match between Fe3O4 and Ag on the final products was also proven from the control experiments by using a template with a different surface crystalline structure. When used as SERS substrates, the final dumbbell-like Fe3O4-Ag microspheres show fast magnetic separation and the selective detection of thiram for the surface capped oleic chain during the growth process.A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel

  9. Organizational climate and culture.

    PubMed

    Schneider, Benjamin; Ehrhart, Mark G; Macey, William H

    2013-01-01

    Organizational climate and organizational culture theory and research are reviewed. The article is first framed with definitions of the constructs, and preliminary thoughts on their interrelationships are noted. Organizational climate is briefly defined as the meanings people attach to interrelated bundles of experiences they have at work. Organizational culture is briefly defined as the basic assumptions about the world and the values that guide life in organizations. A brief history of climate research is presented, followed by the major accomplishments in research on the topic with regard to levels issues, the foci of climate research, and studies of climate strength. A brief overview of the more recent study of organizational culture is then introduced, followed by samples of important thinking and research on the roles of leadership and national culture in understanding organizational culture and performance and culture as a moderator variable in research in organizational behavior. The final section of the article proposes an integration of climate and culture thinking and research and concludes with practical implications for the management of effective contemporary organizations. Throughout, recommendations are made for additional thinking and research.

  10. A method for horizontal polyacrylamide slab gel electrophoresis.

    PubMed

    Bellomy, G R; Record, M T

    1989-01-01

    We present a simplified method of preparation of polyacrylamide gels which is totally analogous to the procedure now widely used to pour and run horizontal agarose gels. The acrylamide is poured into an open air gel mold consisting of a glass plate with a masking tape border and a comb. It is subsequently run in a submarine horizontal electrophoresis apparatus. The electrophoretic mobility and resolution of DNA fragments obtained in such gels are identical to results obtained with gels poured and run in the vertical configuration. Numerous advantages of horizontal polyacrylamide gel electrophoresis are discussed.

  11. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  12. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  13. Non-diffusing radiochromic micelle gel

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-11-01

    The addition of Laponite, a synthetic clay nanoparticle material to radiochromic leuco Malachite Green micelle hydrogel eliminates diffusion of the cationic dye by electrostatic binding. The clay nanoparticles also increased dose sensitivity ten-fold relative to the parent gel formulation. This material is a suitable 3D water equivalent dosimeter with optical CT readout.

  14. Sol-Gel Synthesis Of Aluminoborosilicate Powders

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Leiser, Daniel; Selvaduray, Guna

    1992-01-01

    Application of sol-gel process to synthesis of aluminoborosilicate powders shows potential for control of microstructures of materials. Development of materials having enhanced processing characteristics prove advantageous in extending high-temperature endurance of fibrous refractory composite insulation made from ceramic fibers.

  15. Sol-Gel Derived Hafnia Coatings

    NASA Technical Reports Server (NTRS)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  16. Sudden collapse of a colloidal gel.

    PubMed

    Bartlett, Paul; Teece, Lisa J; Faers, Malcolm A

    2012-02-01

    Metastable gels formed by weakly attractive colloidal particles display a distinctive two-stage time-dependent settling behavior under their own weight. Initially, a space-spanning network is formed that, for a characteristic time, which we define as the lag time τ(d), resists compaction. This solidlike behavior persists only for a limited time. Gels whose age t(w) is greater than τ(d) yield and suddenly collapse. We use a combination of confocal microscopy, rheology, and time-lapse video imaging to investigate both the process of sudden collapse and its microscopic origin in a refractive-index matched emulsion-polymer system. We show that the height h of the gel in the early stages of collapse is well described by the surprisingly simple expression, h(τ)=h(0)-Aτ(3/2), with h(0) the initial height and τ=t(w)-τ(d) the time counted from the instant where the gel first yields. We propose that this unexpected result arises because the colloidal network progressively builds up internal stress as a consequence of localized rearrangement events, which leads ultimately to collapse as thermal equilibrium is reestablished.

  17. Gels and microgels for nanotechnological applications.

    PubMed

    Fernández-Barbero, Antonio; Suárez, Iván J; Sierra-Martín, B; Fernández-Nieves, A; de Las Nieves, F Javier; Marquez, Manuel; Rubio-Retama, J; López-Cabarcos, Enrique

    2009-01-01

    In recent years, "smart" materials have been the focus of considerable interest, from both fundamental and applied perspectives. Polymer gels are within this category; they respond to specific environmental stimuli by changing their size. Thus, the internal structure, the refractive index, and the mechanical properties of the polymer network change. They are considered super absorbent materials, as they can absorb solvent up to several hundred times their own weight. They respond rapidly to local environmental variations, an important fact in device miniaturization and microsensor developments. As size changes are accompanied by changes in internal dimensions, microgels have found application as carriers of therapeutic drugs and as diagnostic agents. They have also been used as microreactors, optically active materials, for template synthesis of nanoparticles or fabrication of artificial muscle. In this paper we review a set of application based on the special features associated to this systems. Basic concepts on the physical-chemistry of gel swelling is first described, followed by different applications covering drug delivery, composite materials using polymer gels to modulate optical or magnetic and electrical properties, molecular imprinting, gel-based biosensors and polymer sensors and actuators used in the field of artificial muscles.

  18. Gel Permeation Chromatography of Fluoroether Polymers

    NASA Technical Reports Server (NTRS)

    Korus, Roger A.; Rosser, Robert W.

    1978-01-01

    A Method is described for determining the molecular weight distribution of fluorinated polymers by gel permeation chromatography. Porous silica-packed columns are used with Freon 113 as the chromatographic solvent. Fluoroether oligomers are used for column calibration in the molecular weight range of 1400 to 12000.

  19. Gel bead composition for metal adsorption

    SciTech Connect

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  20. Gel bead composition for metal adsorption

    DOEpatents

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1991-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  1. Gel injection successfully shuts off excess water

    SciTech Connect

    1995-11-01

    Unocal applied a high-temperature organic polymer gel in Feather field Well H-43 in the UK North Sea to reduce water production in them more-permeable upper perforated section of the Brent Sand. The operation and technical details of the polymer system developed by Unocal, and how it was applied, are described in paper SPE 30426, ``Water shut off in the North Sea; Testing a new polymer system in the Heather field, UKCS Block 2/5.`` The authors concluded that the new gel system successfully isolated the Upper Brent water production, increasing oil production and decreasing water production. Lower perforations were successfully isolated using sized calcium carbonate suspended in an HEC polymer--a technique difficult to monitor in the deviated well. Batch mixing provided ``excellent`` quality gel, closely matching lab measured performance. And the gel required no pre-cooling in the near-wellbore area. Some 1,100 bbl were injected without excessive wellhead pressure, at 1 bpm. A summary of the paper`s highlights is presented here.

  2. Electrophoretic Porosimetry of Sol-Gels

    NASA Technical Reports Server (NTRS)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  3. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    SciTech Connect

    Pavoni, J; Silveira, M; Filho, O Baffa; Neves, W; Ramos, P; Haddad, C

    2015-06-15

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance image (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.

  4. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOEpatents

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  5. Analysis of photoaffinity-labeled aryl hydrocarbon receptor heterogeneity by two-dimensional gel electrophoresis

    SciTech Connect

    Perdew, G.H.; Hollenback, C.E. )

    1990-07-03

    The level of charge heterogeneity in the aryl hydrocarbon receptor (AhR) was examined by high-resolution denaturing two-dimensional (2D) gel electrophoresis. Hepa 1c1c7 cell cytosolic fraction was photoaffinity-labeled with 2-azido-3-({sup 125}I)-iodo-7,8-dibromodibenzo-p-dioxin and applied to isoelectric focusing (IEF) tube gels. After optimization of focusing conditions a broad peak of radioactivity was detected in the apparent pI range of 5.2-5.7. IEF tube gels were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by visualization of the radiolabeled AhR by autoradiography; three distinct isoforms were detected. The same 2D electrophoretic isoform pattern was obtained when the AhR from Hepa 1c1c7 was photoaffinity-labeled in cell culture. BP{sup r}Cl cells, a mutant line derived from Hepa 1c1c7 cells, contain an AhR that is unable to bind to DNA. Photoaffinity-labeled BP{sup r}Cl cytosolic fractions were subjected to 2D gel electrophoretic analysis resulting in essentially the same molecular weight and isoform pattern as seen in Hepa 1c1c7 cytosol. This result would suggest that if a mutation is present in the BP{sup r}Cl AhR it has not caused a significant change in its IEF pattern, although a small shift in the pI values was observed. Two-dimensional gel electrophoresis of photoaffinity-labeled cytosolic fractions from HeLa cells, the rat liver tumor cell line McA-RH777, and buffalo rat thymus revealed three isoforms, essentially the same isoform pattern as in Hepa 1c1c7 cells. This would indicate that despite the considerable molecular weight polymorphism between species the level of charge heterogeneity is high conserved.

  6. Fabrication and physical and biological properties of fibrin gel derived from human plasma.

    PubMed

    Zhao, Haiguang; Ma, Lie; Zhou, Jie; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2008-03-01

    The fast development of tissue engineering and regenerative medicine drives the old biomaterials, for example, fibrin glue, to find new applications in these areas. Aiming at developing a commercially available hydrogel for cell entrapment and delivery, in this study we optimized the fabrication and gelation conditions of fibrin gel. Fibrinogen was isolated from human plasma by a freeze-thaw circle. Gelation of the fibrinogen was accomplished by mixing with thrombin. Absorbance of the fibrinogen/thrombin mixture at 550 nm as a function of reaction time was monitored by UV-VIS spectroscopy. It was found that the clotting time is significantly influenced by the thrombin concentration and the temperature, while less influenced by the fibrinogen concentration. After freeze-drying, the fibrin gel was characterized by scanning electron microscopy (SEM), revealing fibrous microstructure. Thermal gravimetric analysis found that the degradation temperature of the crosslinked fibrin gel starts from 288 degrees C, which is about 30 degrees C higher than that of the fibrinogen. The hydrogel has an initial water-uptake ratio of approximately 50, decreased to 30-40 after incubation in water for 11 h depending on the thrombin concentration. The fibrin gels lost their weights in PBS very rapidly, while slowly in DMEM/fetal bovine serum and DMEM. In vitro cell culture found that human fibroblasts could normally proliferate in the fibrin gel with spreading morphology. In conclusion, the fibrin gel containing higher concentration of fibrinogen (20 mg ml(-1)) and thrombin (5 U ml(-1)) has suitable gelation time and handling properties, and thus is applicable as a delivery vehicle for cells such as fibroblasts.

  7. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  8. Synthetic and Biopolymer Gels - Similarities and Difference.

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc

    2006-03-01

    Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.

  9. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition.

    PubMed

    Audebrand, Michel; Kolb, Max; Axelos, Monique A V

    2006-10-01

    The sol-gel transition of biopolymer mixtures has been investigated by rheological and ultrasonic measurements. A scaling analysis of the data was performed for both types of measurements. A gel time was determined from rheology for the pure pectin samples, and the data could be fitted to a universal scaling form near the transition point. Its critical exponents are in good agreement with the predictions of scalar percolation theory. In addition, the ultrasonic signal of the pectin samples close to the transition was analyzed in terms of a high-frequency scaling approach for the attenuation and the velocity. For the alginate samples and the mixtures, for which the gel point cannot be determined reliably from rheology, the ultrasonic measurements were analyzed using the same scaling form as for the pectin sample, thus providing a method for estimating the gel point, even in the absence of rheological data.

  10. Practice guidelines for the application of nonsilicone or silicone gels and gel sheets after burn injury.

    PubMed

    Nedelec, Bernadette; Carter, Alissa; Forbes, Lisa; Hsu, Shu-Chuan Chen; McMahon, Margaret; Parry, Ingrid; Ryan, Colleen M; Serghiou, Michael A; Schneider, Jeffrey C; Sharp, Patricia A; de Oliveira, Ana; Boruff, Jill

    2015-01-01

    The objective of this review was to systematically evaluate available clinical evidence for the application of nonsilicone or silicone gels and gel sheets on hypertrophic scars and keloids after a burn injury so that practice guidelines could be proposed. This review provides evidence based recommendations, specifically for the rehabilitation interventions required for the treatment of aberrant wound healing after burn injury with gels or gel sheets. These guidelines are designed to assist all healthcare providers who are responsible for initiating and supporting scar management interventions prescribed for burn survivors. Summary recommendations were made after the literature, retrieved by systematic review, was critically appraised and the level of evidence determined according to Oxford Centre for Evidence-based Medicine criteria.

  11. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects.

    PubMed

    Maaloum, M; Pernodet, N; Tinland, B

    1998-07-01

    Agarose gels have been studied by atomic force microscopy (AFM). The experiments were especially designed to work in aqueous conditions, allowing direct observation of the "unperturbed" gel without invasive treatment. AFM images clearly show strong dependence of pore diameter and its distribution on ionic strength of the solvent. As the ionic strength increases, the distribution becomes broader and the position of its maximum shifts toward higher values. The evolution of the distribution curves indicates that gels become more homogeneous with decreasing Tris-borate-EDTA (TBE) buffer concentration. An empirical law of the mean pore diameter as a function of the ionic strength is established. In agreement with our previous work we found that, for a given ionic strength, the pore diameter increases when the agarose concentration decreases and that the wide pore diameter distribution narrows as the gel concentration increases.

  12. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  13. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  14. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue.

    PubMed

    Asgari, Fatemeh; Valojerdi, Mojtaba Rezazadeh; Ebrahimi, Bita; Fatehi, Roya

    2015-12-01

    To evaluate the effects slow-freezing and vitrification on three dimensional in vitro culture of preantral follicles, ovaries of 12-14 days old female NMRI mice were isolated and randomly assigned to fresh control, slow-freezing and vitrification groups. Slow-freezing was performed using programmable freezer. Vitrification was carried out in a medium consisting of ethylene glycol (EG) and dimethyl sulphoxide (Me2SO) by needle immersion method. middle sized preantral follicles were mechanically isolated and cultured for 12 days in 0.7% sodium alginate gel. The follicles development and quantitative expression of oocyte specific genes (Bmp15, Gdf9, Fgf8) and the growth related genes (Igf1, Kit, Kit-l) were assessed after 1, 8 and 12 days of culture. Both cryopreserved groups showed reduction of follicular survival rates compared to the control group on days 8 and 12 of culture (P < 0.05). Antrum formation rates reduced in slow-freezing after 12 days of culture (P < 0.05). Evaluation of gene expression showed reduction of Bmp15, Gdf9, Fgf8, Kit and Kit-l during 12 days of culture (P < 0.05). Kit and Kit-l expression in slow-freezing group significantly reduced on day 8 of culture (p < 0.05). Igf1 expression was lower in slow-freezing group on 1st day of culture than vitrification and control groups (P < 0.05). Finally, intergroup comparison showed same expression pattern of genes after 12 days of culture. Thus, cryopreservation of mouse ovaries by both methods can preserve most developmental parameters and expression of maturation genes. However, vitrification is a better method for cryopreservation of mouse ovaries due to greater antrum formation and expression of growth related markers.

  15. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae.

    PubMed

    De Bari, Isabella; De Canio, Paola; Cuna, Daniela; Liuzzi, Federico; Capece, Angela; Romano, Patrizia

    2013-09-25

    Bioethanol can be produced from several biomasses including lignocellulosic materials. Besides 6-carbon sugars that represent the prevalent carbohydrates, some of these feedstocks contain significant amounts of 5-carbon sugars. One common limit of the major part of the xylose-fermenting yeasts is the diauxic shift between the uptake of glucose and xylose during the fermentation of mixed syrups. Thus, optimized fermentation strategies are required. In this paper the ability of Scheffersomyces stipitis strain NRRLY-11544 to ferment mixed syrups with a total sugar concentration in the range 40-80 g/L was investigated by using mono cultures, co-cultures with Saccharomyces cerevisiae strain Bakers Yeast Type II and single cultures immobilized in silica-hydrogel films. The experimental design for the fermentations with immobilized cells included the process analysis in function of two parameters: the fraction of the gel in the broth and the concentration of the cells loaded in the gel. Furthermore, for each total sugars level, the fermentative course of S. stipitis was analyzed at several glucose-to xylose ratios. The results indicated that the use of S. stipitis and S. cerevisiae in free co-cultures ensured faster processes than single cultures of S. stipitis either free or immobilized. However, the rapid production of ethanol by S. cerevisiae inhibited S. stipitis and caused a stuck of the process. Immobilization of S. stipitis in silica-hydrogel increased the relative consumption rate of xylose-to-glucose by 2-6 times depending on the composition of the fermentation medium. Furthermore the films performances appeared stable over three weeks of continuous operations. However, on the whole, the final process yields obtained with the immobilized cells were not meaningfully different from that of the free cells. This was probably due to concurrent fermentations operated by the cells released in the broth. Optimization of the carrier characteristics could improve the

  16. Covalent Fusion of layered Incompatible Gels in Immiscible Solvents

    NASA Astrophysics Data System (ADS)

    Biswas, Santidan; Singh, Awaneesh; Matyjaszewski, Krzysztof; Balazs, Anna C.

    We carry out dissipative particle dynamics (DPD) simulations to model a two layered stackable gel where the gels are incompatible and are present in immiscible solvent. The bottom layer of the gel is created first and then a solution of new initiators, monomers and cross-linkers is introduced on top of it. These components then undergo polymerization and form the second gel layer. We study all possible combinations of free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) mechanisms with the two layers of the gel. For example, the bottom layer gel is created via ATRP, whereas the top layer gel follows FRP. Our focus is to do a systematic study of all these combinations and find out the factors responsible for combining two incompatible gels in immiscible solvents.

  17. Nonlinear gel electrophoresis: an analogy with ideal fluid flow.

    PubMed

    Dennison, C; Phillips, A M; Nevin, J M

    1983-12-01

    The behavior of electrolytes undergoing electrophoresis in various shaped gels was investigated using bromphenol blue as a model electrolyte. The results suggest that during gel electrophoresis, small electrolytes behave in a manner analogous to the flow of ideal, irrotational fluids.

  18. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  19. The association between radiographic embrasure morphology and interdental papilla reconstruction using injectable hyaluronic acid gel

    PubMed Central

    2016-01-01

    Purpose The purpose of this study was to evaluate the clinical efficacy of enhancing deficient interdental papilla with hyaluronic acid gel injection by assessing the radiographic anatomical factors affecting the reconstruction of the interdental papilla. Methods Fifty-seven treated sites from 13 patients (6 males and 7 females) were included. Patients had papillary deficiency in the upper anterior area. Prior to treatment, photographic and periapical radiographic standardization devices were designed for each patient. A 30-gauge needle was used with an injection-assistance device to inject a hyaluronic acid gel to the involved papilla. This treatment was repeated up to 5 times every 3 weeks. Patients were followed up for 6 months after the initial gel application. Clinical photographic measurements of the black triangle area (BTA), height (BTH), and width (BTW) and periapical radiographic measurements of the contact point and the bone crest (CP-BC) and the interproximal distance between roots (IDR) were undertaken using computer software. The interdental papilla reconstruction rate (IPRR) was calculated to determine the percentage change of BTA between the initial and final examination and the association between radiographic factors and the reconstruction of the interdental papilla by means of injectable hyaluronic acid gel were evaluated. Results All sites showed improvement between treatment examinations. Thirty-six sites had complete interdental papilla reconstruction and 21 sites showed improvement ranging from 19% to 96%. The CP-BC correlated with the IPRR. More specifically, when the CP-BC reached 6 mm, virtually complete interdental papilla reconstruction via injectable hyaluronic acid gel was achieved. Conclusions These results suggest that the CP-BC is closely related to the efficacy of hyaluronic acid gel injection for interdental papilla reconstruction. PMID:27588217

  20. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    PubMed

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  1. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  2. Highly Elastic and Self-Healing Composite Colloidal Gels.

    PubMed

    Diba, Mani; Wang, Huanan; Kodger, Thomas E; Parsa, Shima; Leeuwenburgh, Sander C G

    2017-03-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new, critical insight into the structural and mechanical properties of composite colloidal gels and opens up new avenues for practical application of colloidal gels.

  3. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  4. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  5. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  6. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  7. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  8. A multistimuli-responsive photochromic metal-organic gel.

    PubMed

    Wei, Shi-Chao; Pan, Mei; Li, Kang; Wang, Sujuan; Zhang, Jianyong; Su, Cheng-Yong

    2014-04-02

    A photochromic metal-organic gel with thermo-, photo-, and anion-responsive behavior is obtained. Unusually, heating of the Al-ligand solution leads to gel formation and cooling to room temperature reverses the process to reform the solution. The gel is sensitive to weakly coordinating anions. Additionally, reversible photochromic transformations take place both in the solution and gel states, accompanied by reversibly switched luminescence.

  9. Titanium (IV) sol-gel chemistry in varied gravity environments

    NASA Astrophysics Data System (ADS)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    Sol-gel synthesis in reduced gravity is a relatively new topic in the literature and further inves-tigation is essential to realise its potential and application to other sol-gel systems. The sol-gel technique has been successfully applied to the synthesis of silica systems of varying porosity for many diverse applications [1-5]. It is proposed that current methods for the synthesis of silica sol-gels in reduced gravity may be applied to titanium sol-gel processing in order to enhance desirable physical and chemical characteristics of the final materials. The physical and chemical formation mechanisms for titanium alkoxide based sol-gels, to date, is not fully understood. However, various authors [6-9] have described potential methods to control the hydrolysis and condensation reactions of titanium alkoxides through the use of chemical inhibitors. A preliminary study of the reaction kinetics of titanium alkoxide sol-gel reaction in normal gravity was undertaken in order to determine reactant mixtures suitable for further testing under varied gravity conditions of limited duration. Through the use of 1H Nuclear Magnetic Resonance spectroscopy (NMR) for structural analysis of precursor materials, Ultra-Violet-Visible spectroscopy (UV-VIS) and viscosity measurements, it was demonstrated that not only could the rate of the chemical reaction could be controlled, but directed linear chain growth within the resulting gel structure was achievable through the use of increased inhibitor concentrations. Two unique test systems have been fabricated to study the effects of varied gravity (reduced, normal, high) on the formation of titanium sol-gels. Whilst the first system is to be used in conjunction with the recently commissioned drop tower facility at Queensland University of Technology in Brisbane, Australia to produce reduced gravity conditions. The second system is a centrifuge capable of providing high gravity environments of up to 70 G's for extended periods of time

  10. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.

    PubMed

    Qiu, Chunsheng; Shi, Puyu; Xiao, Shumin; Sun, Liping

    2017-01-01

    Biohydrogen is considered as one of the most promising energy alternatives considering the climate and energy crisis. The dark fermentative hydrogen production from xylose at extreme thermophilic condition (70 °C) using mixed culture was conducted in this study. The effects of initial pH values (ranged from 5.0 to 10.0) and substrate concentrations (ranged from 2.5 to 15.0 g/L) on the hydrogen production, substrate degradation and metabolite distributions were investigated using batch-mode operations. Results showed that initial substrate pH values in the neutral region (6.0-7.0) were beneficial for hydrogen production. The fermentation at initial pH 7.0 and 7.5 g/L xylose reached an optimal hydrogen yield of 1.29 mol-H2/mol-xyloseconsumed. Ethanol, butyrate, and propionate were the major liquid metabolites. The xylose biodegradation efficiency of the mixed culture decreased sharply at high initial culture pH values. The increase of xylose concentration resulted in the accumulation of propionate and an obvious decrease in the final pH value, as well as a low hydrogen yield. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis indicated that hydrogen producing bacteria were enriched by repeated culture under extreme thermophilic conditions. Also, the mixed culture was dominated with bacterial species related to Clostridium and Thermoanaerobacterium.

  11. Nasopharyngeal culture

    MedlinePlus

    Culture - nasopharyngeal; Swab for respiratory viruses; Swab for staph carriage ... The test identifies viruses and bacteria that cause upper respiratory ... Staphylococcus aureus Methicillin-resistant Staphylococcus ...

  12. Skin or nail culture

    MedlinePlus

    Mucosal culture; Culture - skin; Culture - mucosal; Nail culture; Culture - fingernail; Fingernail culture ... There, it is placed in a special dish (culture). It is then watched to see if bacteria, ...

  13. Non-cytotoxic antibacterial silver-coumarin complex doped sol-gel coatings.

    PubMed

    Jaiswal, Swarna; Bhattacharya, Kunal; Sullivan, Maeve; Walsh, Maureen; Creaven, Bernadette S; Laffir, Fathima; Duffy, Brendan; McHale, Patrick

    2013-02-01

    Microbial colonisation on clinical and industrial surfaces is currently of global concern and silane based sol-gel coatings are being proposed as potential solutions. Sol-gels are chemically inert, stable and homogeneous and can be designed to act as a reservoir for releasing antimicrobial agents over extended time periods. In the present study, silver nitrate (AgN) and a series of silver coumarin complexes based on coumarin-3-carboxylatosilver (AgC) and it is 6, 7 and 8 hydroxylated analogues (Ag6, Ag7, Ag8) were incorporated into sol-gel coatings. The comparative antibacterial activity of the coatings was determined against meticillin resistant Staphylococcus aureus (MRSA) and multidrug resistance Enterobacter cloacae WT6. The percentage growth inhibitions were found in the range of 9.2 (±2.7)-66.0 (±1.2)% at low silver loadings of 0.3% (w/w) with E. cloacae being the more susceptible. Results showed that among the Ag coumarin complexes, the Ag8 doped coating had the highest antibiofilm property. XPS confirmed the presence of silver in the nanoparticulate state (Ag(0)) at the coating surface where it remained after 4 days of exposure to bacterial culture. Comparative cytotoxicity studies revealed that the Ag-complex coatings were less toxic than the AgN coating. Thus, it can be concluded that a sol-gel matrix with Ag-coumarin complexes may provide non-toxic surfaces with antibacterial properties.

  14. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    PubMed Central

    Irastorza, Ramiro M.; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840

  15. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    PubMed

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  16. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin.

    PubMed

    Ilbasmis-Tamer, Sibel; Unsal, Hande; Tugcu-Demiroz, Fatmanur; Kalaycioglu, Gokce Dicle; Degim, Ismail Tuncer; Aydogan, Nihal

    2016-07-01

    Lipid nanotubes (LNTs) are one of the most advantageous structures for drug delivery and targeting. LNTs formed by a specially designed molecule called AQUA (AQ-NH-(CH2)10COOH (AQ: anthraquinone group) is used for drug delivery, and doxorubicin (DOX) is the drug selected. DOX and AQUA have some similarities in their molecular structures, so a significant amount of DOX can be loaded to LNTs. The AQUA LNTs are pH responsive, and drug loading increased almost linearly by increasing the pH, reaching a maximum value (96%) at pH 9.0. In terms of drug release, lower pHs are preferred. Drug-loaded LNTs are also mixed with four different gels (chitosan, alginate, hydroxypropyl methylcellulose and polycarbophil) to use the advantages of these gels. The drug release efficiency is studied using a Franz diffusion cell in which sheep colon membranes and dialysis membranes are utilized. The amount of released DOX from the chitosan gel formulations was quite high. Sodium alginate gels had lower release and slower diffusion of DOX. The cytotoxic effect of DOX-loaded AQUA LNTs has also been determined on cell cultures. Our new lipid nanotubes are a non-toxic, effective, biodegradable, biocompatible, stable and promising system for drug delivery and can be used for colonic administration of DOX for the treatment of colorectal cancer (CRC).

  17. Rotation-based technique for the rapid densification of tubular collagen gel scaffolds.

    PubMed

    Loy, Caroline; Lainé, Audrey; Mantovani, Diego

    2016-12-01

    Type I collagen gel is often used as a tubular scaffold because of its easy molding properties as well as its biocompatibility, low immunogenicity and ability to be remodelled by cells. However, its highly hydrated structure contributes to its weak mechanical properties and reduces its ability to be handled, which is important in tubular tissue engineering. Although cell-driven remodelling of collagen matrices is known to reinforce their mechanical properties, this process can take weeks. This study introduces a novel, simple, and rapid technique using a rotational bioreactor to expel water and densify collagen under sterile conditions to generate denser and stronger collagen gel scaffolds. This process produces a dense tubular-shaped collagen gel which, compared to standard collagen gel scaffolds, shows a decreased wall thickness and a four-fold increase in collagen concentration. A denser collagen fiber network observed by immunofluorescence staining and mechanical characterisation shows a twenty-fold increase in the elastic modulus of the dense constructs which maintain cell viability inside the scaffold. Moreover, by simply modifying the scaffold mold, customised shapes and sizes can be obtained to provide a wide range of applications, including complex tubular geometries and multi-layered scaffolds for the culture of various cell types and tissues.

  18. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer

    PubMed Central

    Park, Daewon; Wu, Wei; Wang, Yadong

    2010-01-01

    Injectable reverse thermal gels have great potentials as biomaterials for tissue engineering and drug delivery. However, most existing gels lack functional groups that can be modified with biomolecules that can guide cell/material interactions. We created an amine-functionalized ABA block copolymer, poly(ethylene glycol)-poly(serinol hexamethylene urethane), or ESHU. This reverse thermal gel consists of a hydrophobic block (B): poly(serinol hexamethylene urethane) and a hydrophilic block (A): poly(ethylene glycol). The polymer was characterized by GPC, FTIR and 1H FTNMR. Rheological study demonstrated that ESHU solution in phosphate-buffered saline initiated phase transition at 32°C and reached maximum elastic modulus at 37°C. The in vitro degradation tests performed in PBS and cholesterol esterase solutions revealed that the polymer was hydrolyzable and the presence of cholesterol esterase greatly accelerated the hydrolysis. The in vitro cytotoxicity tests carried out using baboon smooth muscle cells demonstrated that ESHU had good cytocompatibility with cell viability indistinguishable from tissue culture treated polystyrene. Subcutaneous implantation in rats revealed well tolerated accurate inflammatory response with moderate ED-1 positive macrophages in the early stages, which largely resolved 4 weeks post-implantation. We functionalized ESHU with a hexapeptide, Ile-Lys-Val-Ala-Val-Ser (IKVAVS), which gelled rapidly at body temperature. We expect this new platform of functionalizable reverse thermal gels to provide versatile biomaterials in tissue engineering and regenerative medicine. PMID:20937526

  19. Formulation and method for preparing gels comprising hydrous cerium oxide

    SciTech Connect

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  20. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.