Science.gov

Sample records for gem-bis-phosphonates powerful complexing

  1. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  2. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  3. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, Ioanis

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  4. Power distribution in complex environmental negotiations: Does balance matter?

    USGS Publications Warehouse

    Burkardt, N.; Lamb, B.L.; Taylor, J.G.

    1997-01-01

    We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

  5. Network model of bilateral power markets based on complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li

    2014-06-01

    The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.

  6. Power Curve Modeling in Complex Terrain Using Statistical Models

    NASA Astrophysics Data System (ADS)

    Bulaevskaya, V.; Wharton, S.; Clifton, A.; Qualley, G.; Miller, W.

    2014-12-01

    Traditional power output curves typically model power only as a function of the wind speed at the turbine hub height. While the latter is an essential predictor of power output, wind speed information in other parts of the vertical profile, as well as additional atmospheric variables, are also important determinants of power. The goal of this work was to determine the gain in predictive ability afforded by adding wind speed information at other heights, as well as other atmospheric variables, to the power prediction model. Using data from a wind farm with a moderately complex terrain in the Altamont Pass region in California, we trained three statistical models, a neural network, a random forest and a Gaussian process model, to predict power output from various sets of aforementioned predictors. The comparison of these predictions to the observed power data revealed that considerable improvements in prediction accuracy can be achieved both through the addition of predictors other than the hub-height wind speed and the use of statistical models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was funded by Wind Uncertainty Quantification Laboratory Directed Research and Development Project at LLNL under project tracking code 12-ERD-069.

  7. Power-Hop: A Pervasive Observation for Real Complex Networks.

    PubMed

    Papalexakis, Evangelos; Hooi, Bryan; Pelechrinis, Konstantinos; Faloutsos, Christos

    2016-01-01

    Complex networks have been shown to exhibit universal properties, with one of the most consistent patterns being the scale-free degree distribution, but are there regularities obeyed by the r-hop neighborhood in real networks? We answer this question by identifying another power-law pattern that describes the relationship between the fractions of node pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and describes a large variety of networks, ranging from social and urban to technological and biological networks. In particular, inspired by the definition of the fractal correlation dimension D2 on a point-set, we consider the hop-count r to be the underlying distance metric between two vertices of the network, and we examine the scaling of C(r) with r. We find that this relationship follows a power-law in real networks within the range 2 ≤ r ≤ d, where d is the effective diameter of the network, that is, the 90-th percentile distance. We term this relationship as power-hop and the corresponding power-law exponent as power-hop exponent h. We provide theoretical justification for this pattern under successful existing network models, while we analyze a large set of real and synthetic network datasets and we show the pervasiveness of the power-hop. PMID:26974560

  8. Power-Hop: A Pervasive Observation for Real Complex Networks

    PubMed Central

    Papalexakis, Evangelos; Hooi, Bryan; Pelechrinis, Konstantinos; Faloutsos, Christos

    2016-01-01

    Complex networks have been shown to exhibit universal properties, with one of the most consistent patterns being the scale-free degree distribution, but are there regularities obeyed by the r-hop neighborhood in real networks? We answer this question by identifying another power-law pattern that describes the relationship between the fractions of node pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and describes a large variety of networks, ranging from social and urban to technological and biological networks. In particular, inspired by the definition of the fractal correlation dimension D2 on a point-set, we consider the hop-count r to be the underlying distance metric between two vertices of the network, and we examine the scaling of C(r) with r. We find that this relationship follows a power-law in real networks within the range 2 ≤ r ≤ d, where d is the effective diameter of the network, that is, the 90-th percentile distance. We term this relationship as power-hop and the corresponding power-law exponent as power-hop exponent h. We provide theoretical justification for this pattern under successful existing network models, while we analyze a large set of real and synthetic network datasets and we show the pervasiveness of the power-hop. PMID:26974560

  9. Wind Power Curve Modeling in Simple and Complex Terrain

    SciTech Connect

    Bulaevskaya, V.; Wharton, S.; Irons, Z.; Qualley, G.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the results to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

  10. Power laws of complex systems from extreme physical information

    NASA Astrophysics Data System (ADS)

    Frieden, B. Roy; Gatenby, Robert A.

    2005-09-01

    Many complex systems obey allometric, or power, laws y=Yxa . Here y⩾0 is the measured value of some system attribute a , Y⩾0 is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values n/4 , n=0,±1,±2,… . Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1) . Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I-J=extremum of extreme physical information is found to provide such a cause. It describes the flow of Fisher information J→I from an attribute value a on the cell level to its exterior observation y . Data y are formed via a system channel function y≡f(x,a) , with f(x,a) to be found. Extremizing the difference I-J through variation of f(x,a) results in a general allometric law f(x,a)≡y=Yxa . Darwinian evolution is presumed to cause a second extremization of I-J , now with respect to the choice of a . The solution is a=n/4 , n=0,±1,±2… , defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by only two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradients

  11. Power laws of complex systems from extreme physical information.

    PubMed

    Frieden, B Roy; Gatenby, Robert A

    2005-09-01

    Many complex systems obey allometric, or power, laws y=Y x(a) . Here y > or = 0 is the measured value of some system attribute a , Y> or =0 is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values n/4 , n=0, +/-1, +/-2.... Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1) . Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I-J=extremum of extreme physical information is found to provide such a cause. It describes the flow of Fisher information J-->I from an attribute value a on the cell level to its exterior observation y . Data y are formed via a system channel function y identical to f (x,a) , with f (x,a) to be found. Extremizing the difference I-J through variation of f (x,a) results in a general allometric law f (x,a) identical to y=Y x(a) . Darwinian evolution is presumed to cause a second extremization of I-J , now with respect to the choice of a . The solution is a=n/4 , n=0,+/-1,+/-2..., defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by only two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradients. PMID:16241509

  12. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, ioanis

    2014-06-01

    After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

  13. Fact versus formula in the power spectra of complex systems

    NASA Astrophysics Data System (ADS)

    Watkins, Nick

    2016-04-01

    More than 100 years ago, Thomson and Tait's classic "Treatise on Natural Philosophy" cautioned its readers against "considering the formula and not the fact as physical reality". Deciding what the facts actually _were, however, was left as an exercise for the reader ... Complex systems offer many examples [1] of the ambiguity Thomson and Tait were trying to point out. This presentation will be about a formula-the "1/f" spectral shape seen in many areas of physics including climate science; and an empirical fact-the growth of rescaled range originally seen in river time series and now known as the Hurst effect. It is well known that Mandelbrot kicked off the study of long range dependence (LRD) in the mid 1960s [2] with a stationary model for 1/f noise and the Hurst effect. This fractional Gaussian model is now so well known that it is often seen as synonymous with both 1/f noise and the Hurst effect. However Mandelbrot himself was aware that there were other models that produced 1/f noise, including a family [3-6] which he called "conditionally stationary", with power law distributions of times between switching of states. Late in his life he re-emphasised the clear contrasts between their behaviour and that of fGn. I will explain why these other models are also physically interesting, and will show why real systems including climate examples may potentially map more closely to one or the other, or may in fact combine both aspects. I will also discuss his proposals for distinguishing between the models and how they may be implemented. [1] Watkins, Bunched Black Swans, Geophys Res. Lett, 2013 [2] Graves et al, A Brief History of Long Memory, arXiv:1406.6018 [stat.OT] [3] Berger and Mandelbrot, "A New Model for Error Clustering in Telephone Circuits", IBM Technical Journal, July 1963. [4] Mandelbrot, "Self-similar error clusters in communications systems, and the concept of conditional stationarity", IEEE Trans. on Communications Technology, COM-13, 71-90, 1965. [5

  14. Power Analysis for Complex Mediational Designs Using Monte Carlo Methods

    ERIC Educational Resources Information Center

    Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.

    2010-01-01

    Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex…

  15. Power laws and elastic nonlinearity in materials with complex microstructure

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.

    2016-01-01

    Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities.

  16. Topological interactive analysis of power system and its communication module: A complex network approach

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Yu, Jie; Cao, Jinde; Ni, Ming; Yu, Wenjie

    2014-12-01

    Power system and its communication system, which can be called a cyber-physical system, are interconnected and interdependent on each other. This paper considers the interaction problem between power system and its communication module from the perspective of the topological structure. Firstly, some structural properties and centrality measures of complex networks are briefly reviewed. Furthermore, novel interactive measures are proposed to describe the interactive system in terms of topologies. Finally, based on these metrics, the statistical properties and the interactive relationships of the main power system and its communication module (abstracted as two complex heterogeneous networks) of one province in China are investigated.

  17. Wind Power Forecasting techniques in complex terrain: ANN vs. ANN-CFD hybrid approach

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Burlando, Massimiliano; Meißner, Cathérine; Piccioni, Emanuele

    2016-09-01

    Due to technology developments, renewable energies are becoming competitive against fossil sources and the number of wind farms is growing, which have to be integrated into power grids. Therefore, accurate power forecast is needed and often operators are charged with penalties in case of imbalance. Yet, wind is a stochastic and very local phenomenon, and therefore hard to predict. It has a high variability in space and time and wind power forecast is challenging. Statistical methods, as Artificial Neural Networks (ANN), are often employed for power forecasting, but they have some shortcomings: they require data sets over several years and are not able to capture tails of wind power distributions. In this work a pure ANN power forecast is compared against a hybrid method, based on the combination of ANN and a physical method using computational fluid dynamics (CFD). The validation case is a wind farm sited in southern Italy in a very complex terrain, with a wide spread turbine layout.

  18. The fractal nature of nature: power laws, ecological complexity and biodiversity.

    PubMed Central

    Brown, James H; Gupta, Vijay K; Li, Bai-Lian; Milne, Bruce T; Restrepo, Carla; West, Geoffrey B

    2002-01-01

    Underlying the diversity of life and the complexity of ecology is order that reflects the operation of fundamental physical and biological processes. Power laws describe empirical scaling relationships that are emergent quantitative features of biodiversity. These features are patterns of structure or dynamics that are self-similar or fractal-like over many orders of magnitude. Power laws allow extrapolation and prediction over a wide range of scales. Some appear to be universal, occurring in virtually all taxa of organisms and types of environments. They offer clues to underlying mechanisms that powerfully constrain biodiversity. We describe recent progress and future prospects for understanding the mechanisms that generate these power laws, and for explaining the diversity of species and complexity of ecosystems in terms of fundamental principles of physical and biological science. PMID:12079523

  19. Boryeong Thermal Power Complex, Boryeong-Si, Chungcheongnam-do Province, South Korea

    SciTech Connect

    Neville, J.D.

    2008-10-15

    From tall skyscrapers and flashing neon signs to Buddhist temples and pagodas, South Korea is a mixture of the new and old Asia. Doing its part to help modernise this country, the Boryeong thermal power complex operates six coal-fired 500-MW units that provide electricity to power South Korea's economic growth. One of the important reasons for this facility's overall success is its operational reliability. An example of this is Boryeong Unit 3's outstanding achievement of 3,000 days of trouble-free operation. The Complex also has a dozen 150 MW combined cycle units burning imported liquefied natural gas for electrical system peaking. 4 photos.

  20. Metal-catalyzed cycloisomerization as a powerful tool in the synthesis of complex sesquiterpenoids.

    PubMed

    Stathakis, Christos I; Gkizis, Petros L; Zografos, Alexandros L

    2016-08-25

    Covering: up to 2015Sesquiterpenoids are consistently attracting the interest of the scientific community due to their promising clinical profile as therapeutic agents. Cycloisomerization of enynes and dienes is a powerful tool in the hands of organic chemists to access them. In the last 20 years the field has witnessed remarkable advances, especially by revealing the capability of platinum and gold complexes to initiate such reactions. Nowadays, cycloisomerizations continue to enrich our knowledge with atom-economical routes and impressive cascades to reach more complex molecules. The current review covers the basic mechanistic aspects of metal catalysis in cycloisomerization reactions and their progress to the synthesis of selected complex sesquiterpenoids.

  1. A point focusing collector for an integrated water/power complex

    NASA Technical Reports Server (NTRS)

    Zewen, H.; Schmidt, G.; Moustafa, S.

    1982-01-01

    The utilization potential of the point focusing parabolic dish is identified. Its main design parameters are summarized. Performance tests and the utilization of the collector as primary energy source in a food-water-power complex are described. Process heat, heat storage, heat transfer, and cogeneration are discussed.

  2. The Effects of Gender Variety and Power Disparity on Group Cognitive Complexity in Collaborative Learning Groups

    ERIC Educational Resources Information Center

    Curseu, Petru Lucian; Sari, Kimzana

    2015-01-01

    This study sets up to test the extent to which gender variety moderates the impact of power disparity on group cognitive complexity (GCC) and satisfaction with the group in a collaborative learning setting. Using insights from gender differences in perceptions, orientations and conflict handling behavior in negotiation, as well as gender…

  3. Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)

    NASA Astrophysics Data System (ADS)

    Newman, David

    2015-03-01

    Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.

  4. Power-law scaling for macroscopic entropy and microscopic complexity: Evidence from human movement and posture

    NASA Astrophysics Data System (ADS)

    Hong, S. Lee; Bodfish, James W.; Newell, Karl M.

    2006-03-01

    We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.

  5. Integrated bioenergy complex for the production of power, heat and bio-ethanol

    SciTech Connect

    Taviani, M.; Chiaramonti, D.; Tondi, G.; Grassi, G.

    1998-07-01

    In this paper an integrated bioenergy complex for the production of power, heat and bio-ethanol is presented. Ethanol, in fact, has been recognized as a high-quality transportation fuel. The reduction of petroleum consumption, especially for transport, is a strategic goal especially for those countries that already have or will experience an intensive industrial development in the next future. For these motivations, the production of bio-ethanol from Sweet Sorghum (which is now one of the most promising crop for this application in term of productivity, inputs demand, and flexibility) is of great interest in most of countries. The proposed integrated complex produces power, heat and bio-ethanol: the produced power and heat are partly used for bio-ethanol processing and biomass pre-treatment, partly to be sold to the market. This system has important innovations allowing a decentralized energy and ethanol production and creating new local jobs. The small power plant is based upon a steam cycle with an advanced low emission combustor, capable of burning different biomass resources with a modest decrease in the efficiency value. The Bioenergy Complex, suitable to satisfy the needs of a 3,000 inhabitants village, is composed by the following sub-systems: (1) Sweet Sorghum plantation (250 ha); the main products are: dry bagasse (approximately 3,900 Ton/year), grains (1,300 Ton/y) and sugar (1,850 Ton/y); (2) Cane crushing--sugar juice extraction system; (3) Sugar juice fermentation and distillation ethanol production (approx. 835 Ton/y); (4) Biomass pre-treatment components (grinding, drying, briquetting, storage, etc.); and (5) Cogeneration unit--the expansion unit is constituted by a last generation reciprocating steam engine, coupled with a 500 kWe alternator; the heat of the expanded flow is removed in the condenser, with an available thermal power of approximately 2,000 kWt.

  6. Low complexity interference alignment algorithms for desired signal power maximization problem of MIMO channels

    NASA Astrophysics Data System (ADS)

    Sun, Cong; Yang, Yunchuan; Yuan, Yaxiang

    2012-12-01

    In this article, we investigate the interference alignment (IA) solution for a K-user MIMO interference channel. Proper users' precoders and decoders are designed through a desired signal power maximization model with IA conditions as constraints, which forms a complex matrix optimization problem. We propose two low complexity algorithms, both of which apply the Courant penalty function technique to combine the leakage interference and the desired signal power together as the new objective function. The first proposed algorithm is the modified alternating minimization algorithm (MAMA), where each subproblem has closed-form solution with an eigenvalue decomposition. To further reduce algorithm complexity, we propose a hybrid algorithm which consists of two parts. As the first part, the algorithm iterates with Householder transformation to preserve the orthogonality of precoders and decoders. In each iteration, the matrix optimization problem is considered in a sequence of 2D subspaces, which leads to one dimensional optimization subproblems. From any initial point, this algorithm obtains precoders and decoders with low leakage interference in short time. In the second part, to exploit the advantage of MAMA, it continues to iterate to perfectly align the interference from the output point of the first part. Analysis shows that in one iteration generally both proposed two algorithms have lower computational complexity than the existed maximum signal power (MSP) algorithm, and the hybrid algorithm enjoys lower complexity than MAMA. Simulations reveal that both proposed algorithms achieve similar performances as the MSP algorithm with less executing time, and show better performances than the existed alternating minimization algorithm in terms of sum rate. Besides, from the view of convergence rate, simulation results show that the MAMA enjoys fastest speed with respect to a certain sum rate value, while hybrid algorithm converges fastest to eliminate interference.

  7. Molecular Dynamics Approach for Predicting Helical Twisting Powers of Metal Complex Dopants in Nematic Solvents.

    PubMed

    Watanabe, Go; Yoshida, Jun

    2016-07-14

    Nematic liquid crystals of small molecules are known to transform into chiral nematic liquid crystals with supramolecular helical structures upon doping with enantiomeric compounds. Although this phenomenon is well established, the basic mechanism is still unclear. We have previously examined metal complexes with Δ and Λ chiralities as dopants in nematic liquid crystals and have found that slight differences in the molecular structure determine the handedness of the induced helical structure. In this study, we investigated the microscopic arrangement of liquid crystal molecules around metal complex dopants with the aid of molecular dynamics (MD) simulations. There are several restrictions to performing MD simulations of the chiral nematic system; for example, one pitch of the helix usually exceeds one side of an applicable periodic boundary box (∼10(2) nm). In view of these simulation problems, we therefore examined racemic systems in which a pair of Δ- and Λ-isomers of the chiral dopant is mixed with liquid crystal molecules. We selected two different octahedral ruthenium complexes as the chiral dopant molecules. As a result, we accurately calculated the ordering matrix that is essential parameter to estimate the helical twisting power of the chiral dopant based on the surface chirality model. Since the microscopic ordering is experimentally hard to be determined, our new approach with using MD simulations accurately deduced the ordering matrix and, with the aid of the surface chirality model, gave reasonable values for the helical twisting powers of each complex. PMID:27333445

  8. Entanglement and entangling power of the dynamics in light-harvesting complexes

    SciTech Connect

    Caruso, Filippo; Plenio, Martin B.; Chin, Alex W.; Huelga, Susana F.; Datta, Animesh

    2010-06-15

    We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps of photosynthesis in sulfur bacteria. The influence of Markovian as well as spatially and temporally correlated (non-Markovian) noise on the generation of entanglement across distinct chromophores (site entanglement) and different excitonic eigenstates (mode entanglement) is studied for different injection mechanisms, including thermal and coherent laser excitation. Additionally, we study the entangling power of the FMO complex under natural operating conditions. While quantum information processing tends to favor maximal entanglement, near unit EET is achieved as the result of an intricate interplay between coherent and noisy processes where the initial part of the evolution displays intermediate values of both forms of entanglement.

  9. Economic and operational implications of a complex of wind-driven generators on a power system

    NASA Astrophysics Data System (ADS)

    Farmer, E. D.; Newman, V. G.; Ashmole, P. H.

    1980-06-01

    An assessment is presented of the technical and economic implications of integrating a sizeable complex of aerogenerators into a power system. An important economic and operational factor is the variable and uncertain nature of the wind. However, it is shown that the effects of the more rapid fluctuations are mitigated by the incoherency of different machine outputs; a diversity factor is defined in terms of the spacing of an array of machines and the turbulence length scale. In contrast, the slower variations require a significant enhancement of the operational reserve capacity without addition of dedicated storage in order to accommodate wind-power penetration up to 20% of maximum demand. The increased uncertainty of the residual generation affects the economics of utilization of pumped-storage and gas-turbines as standby plant. The results of an analysis of a year's data, pertaining to demand and wind speed at 4 well separated sites, are presented.

  10. Transference of Traditional Versus Complex Strength and Power Training to Sprint Performance

    PubMed Central

    Loturco, Irineu; Tricoli, Valmor; Roschel, Hamilton; Nakamura, Fabio Yuzo; Cal Abad, Cesar Cavinato; Kobal, Ronaldo; Gil, Saulo; González-Badillo, Juan José

    2014-01-01

    The purpose of this study was to determine the effects of two different strength-power training models on sprint performance. Forty-eight soldiers of the Brazilian brigade of special operations with at least one year of army training experience were divided into a control group (CG: n = 15, age: 20.2 ± 0.7 years, body height: 1.74 ± 0.06 m, and body mass: 66.7 ± 9.8 kg), a traditional training group (TT: n = 18, age: 20.1 ± 0.7 years, body height: 1.71 ± 0.05 m, and body mass: 64.2 ± 4.7 kg), and a complex training group (CT: n = 15, age: 20.3 ± 0.8 years, body height: 1.71 ± 0.07 m; and body mass: 64.0 ± 8.8 kg). Maximum strength (25% and 26%), CMJ height (36% and 39%), mean power (30% and 35%) and mean propulsive power (22% and 28%) in the loaded jump squat exercise, and 20-m sprint speed (16% and 14%) increased significantly (p≤0.05) following the TT and CT, respectively. However, the transfer effect coefficients (TEC) of strength and power performances to 20-m sprint performance following the TT were greater than the CT throughout the 9-week training period. Our data suggest that TT is more effective than CT to improve sprint performance in moderately trained subjects. PMID:25114753

  11. Hardware-Software Complex for a Study of High-Power Microwave Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Gal'chenko, V. G.; Gladkova, T. A.

    2016-06-01

    An instrumental complex is developed for a study of high-power microwave pulse parameters. The complex includes a bench for calibrating detectors and a measuring instrument for evaluating the microwave pulse parameters. The calibration of the measurement channels of microwave pulses propagating through different elements of the experimental setup is an important problem of experimental research. The available software for calibration of the measuring channels has a significant disadvantage related with the necessity of input of a number of additional parameters directly into the program. The software realized in the Qt 4.5 C++ medium is presented, which significantly simplifies the process of calibration data input in the dialog mode of setting the parameters of the medium of microwave pulse propagation.

  12. Investigation and optimization of the covering power and coloristic properties of paint coatings of complex composition

    NASA Astrophysics Data System (ADS)

    Prishivalko, A. P.

    1997-01-01

    A method for finding the optimum sizes of pigment particles, their volume concentration, and the paint coating thickness that provide the covering power and the required coloristic characteristics of reflected light for the minimum flow rate of pigments is based on using a four-flow approximation of the solution to the equation of radiation transfer in dispersion media and is extended to coatings of complex composition. The capabilities of the method are demonstrated by examples of coatings of mixtures of hematite and rutile particles in a binder with n=1.5 for variations of the modal size and the half-width of the size distribution of the pigment particles.

  13. Wind power evaluation around complex coastal area using WRF 3DVAR with inhomogeneous vertical data

    NASA Astrophysics Data System (ADS)

    Lee, H. W.; Park, S. Y.; Lee, S. H.; Lim, H. H.; Kim, D. H.

    2009-09-01

    Wind power energy is one of the favorable and fast growing renewable energy. It is most important for exact analysis of wind to evaluate and forecast the wind power energy. The purpose of this study is to improve the performance of numerical atmospheric model around a complex coastal area. Three wind profiler sites used in this study are inhomogeneously situated near south-west coastal area. The strong point of the profiler is its high time resolution and dense observation data at the lower troposphere. The method of the data assimilation for using the profiler to the model simulation is the three-dimensional variational data assimilation. This method is the most useful for the numerical wether prediction(NWP) in these days. Two experiments were conducted for how the wind profiler data effects on the model results. First, the observation system experiment was carried out. Second, the sensitivity test according to the data assimilation interval was implemented to apply an advantage of high time resolution of profiler. It was found that the result using both radio sonde and profiler data shows the lowest error when it was compared vertical observation and surface AWS(Automatic Weather Station) data. Although the effect of sonde data was better than profiler at higher altitude, the profiler data improves the model performance at lower atmosphere. When focus on surface results, the sensitivity to assimilation interval was different with synoptic condition. The sensitivity on the condition of weak synoptic effect was much larger than of strong synoptic effect. The hourly assimilated case shows the lowest RMSE(1.62m/s) and the highest IOA(0.82) on the weak synoptic condition. But, the statistics of 1, 3, and 6 hourly assimilation case were almost same on the strong synoptic condition. This results indicate that the profiler data represents the complex local circulation to the model performance with its high time and vertical resolution when the synoptic effect was weak

  14. Power-law ansatz in complex systems: Excessive loss of information.

    PubMed

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring. PMID:26764792

  15. Power-law ansatz in complex systems: Excessive loss of information.

    PubMed

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  16. Power-law ansatz in complex systems: Excessive loss of information

    NASA Astrophysics Data System (ADS)

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  17. Power-law behavior in complex organizational communication networks during crisis

    NASA Astrophysics Data System (ADS)

    Uddin, Shahadat; Murshed, Shahriar Tanvir Hasan; Hossain, Liaquat

    2011-08-01

    Communication networks can be described as patterns of contacts which are created due to the flow of messages and information shared among participating actors. Contemporary organizations are now commonly viewed as dynamic systems of adaptation and evolution containing several parts, which interact with one another both in internal and in external environment. Although there is limited consensus among researchers on the precise definition of organizational crisis, there is evidence of shared meaning: crisis produces individual crisis, crisis can be associated with positive or negative conditions, crises can be situations having been precipitated quickly or suddenly or situations that have developed over time and are predictable etc. In this research, we study the power-law behavior of an organizational email communication network during crisis from complexity perspective. Power law simply describes that, the probability that a randomly selected node has k links (i.e. degree k) follows P(k)∼k, where γ is the degree exponent. We used social network analysis tools and techniques to analyze the email communication dataset. We tested two propositions: (1) as organization goes through crisis, a few actors, who are prominent or more active, will become central, and (2) the daily communication network as well as the actors in the communication network exhibit power-law behavior. Our preliminary results support these two propositions. The outcome of this study may provide significant advancement in exploring organizational communication network behavior during crisis.

  18. The acute effects of conventional, complex, and contrast protocols on lower-body power.

    PubMed

    Talpey, Scott W; Young, Warren B; Saunders, Natalie

    2014-02-01

    This study compared conventional, complex, and contrast protocols on peak power (PP) output. Static vs. dynamic contractions were also manipulated to determine the effect of these confounding variables. Eighteen recreationally trained men [age, 21.1 ± 3.3 years; body mass, 81.7 ± 15.9 kg; height, 182.8 ± 6.2 cm; 5 repetition maximum (5RM) half back squat, 119.2 ± 25.4 kg; 5RM/BW, 1.5 ± 0.2 kg] involved in sports including Australian Rules football, basketball, soccer, and rugby participated in this investigation. Five protocols were executed in a randomized order, a conventional protocol in which 3 sets of 4 countermovement jumps (CMJs) were performed 2 minutes apart. Contrast protocols using a heavy resistance conditioning action of either 4 repetitions with a 5RM load or a 5-second static back squat were alternated with sets of 4 CMJs. Complex conditions with 3 sets of 4 repetitions of a 5RM back squat or a 5-second static back squat were performed before the 3 sets of CMJs. In all conditions, 4 minutes of rest followed sets of heavy resistance exercises and 2 minutes of rest followed each set of CMJs. Individual set means and a total session mean were calculated from each CMJ performed during the session. Results showed that the conventional protocol produced significantly greater PP than all conditions except for the dynamic complex and the static contrast. Results suggest that the use of the complex and contrast protocols used in this investigation should not be used for acute increases in lower-body PP in recreationally trained individuals.

  19. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  20. Industrial Complex for Solid Radwaste Management at Chernobyle Nuclear Power Plant

    SciTech Connect

    Ahner, S.; Fomin, V. V.

    2002-02-26

    In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) will be built under the EC TACIS Program in the vicinity of ChNPP. The paper will present the proposed concepts and their integration into existing buildings and installations. Further, the paper will consider the safety cases, as well as the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper will provide information on the status of the interim design and the effects of value engineering on the output of basic design phase. The paper therefor summarizes the design results of the involved design engineers of the Design and Process Providers BNFL (LOT 1), RWE NUKEM GmbH (LOT 2 and General) and INITEC (LOT 3).

  1. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity.

    PubMed

    Liu, Xiaokun; Zhang, Chunlai; Ji, Zheng; Ma, Yi; Shang, Xiaoming; Zhang, Qi; Zheng, Wencheng; Li, Xia; Gao, Jun; Wang, Ruofan; Wang, Jiang; Yu, Haitao

    2016-04-01

    To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease.

  2. The US business cycle: power law scaling for interacting units with complex internal structure

    NASA Astrophysics Data System (ADS)

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  3. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    SciTech Connect

    Madrak, Robyn

    2014-09-11

    Fermilab@?s Accelerator Complex has been recently upgraded, in order to increase the 120GeV proton beam power on target from about 400kW to over 700kW for NO@nA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at V_p_e_a_k@?150kV, but at slightly different frequencies (@Df=1260Hz). Their installation was completed in September 2013. This paper describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  4. Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases.

    PubMed

    Jiao, Shuo; Peters, Ulrike; Berndt, Sonja; Bézieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Lemire, Mathieu; Newcomb, Polly A; Potter, John D; Slattery, Martha L; Woods, Michael O; Hsu, Li

    2015-12-01

    Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction test (SBERIA), in this paper we propose a powerful framework for enhanced set-based G × E testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA then combines the screening-informed aggregate test with a variance component test to account for the residual signals. Additionally, we develop a case-only extension for eSBERIA (coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the G-E independence assumption but also by avoiding the need to specify main effects for a large number of variants in the set. Through extensive simulation, we show that coSBERIA and eSBERIA are considerably more powerful than existing methods within the case-only and the case-control method categories across a wide range of scenarios. We conduct a genome-wide G × E search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal cancer cases and 10,191 controls and identify two novel interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and MINK1 and PTCHD3.

  5. Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases.

    PubMed

    Jiao, Shuo; Peters, Ulrike; Berndt, Sonja; Bézieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Lemire, Mathieu; Newcomb, Polly A; Potter, John D; Slattery, Martha L; Woods, Michael O; Hsu, Li

    2015-12-01

    Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction test (SBERIA), in this paper we propose a powerful framework for enhanced set-based G × E testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA then combines the screening-informed aggregate test with a variance component test to account for the residual signals. Additionally, we develop a case-only extension for eSBERIA (coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the G-E independence assumption but also by avoiding the need to specify main effects for a large number of variants in the set. Through extensive simulation, we show that coSBERIA and eSBERIA are considerably more powerful than existing methods within the case-only and the case-control method categories across a wide range of scenarios. We conduct a genome-wide G × E search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal cancer cases and 10,191 controls and identify two novel interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and MINK1 and PTCHD3. PMID:26095235

  6. Seasonal differences in SO2 ground-level impacts from a power plant plume on complex terrain.

    PubMed

    Palau, J L; Meliá, J; Segarra, D; Pérez-Landa, G; Santa-Cruz, F; Millán, M M

    2009-02-01

    The objective of this study is to describe the seasonal differences in SO2 ground-level fumigations from a power plant situated on very complex terrain in the Iberian Peninsula within the Western Mediterranean Basin (WMB). The study area extends more than 80 km around the power plant on very complex semi-arid terrain. Considering different plume-rise schemes, by experimentation and modelling this study attempts to characterise the seasonal differences in both the plume footprint 80 km around the power plant and the turbulent regime (diurnal or nocturnal) driving the main contribution to the accumulated plume footprints at different distances from the power plant within a complex terrain region. Two markedly different SO2 ground-level distributions around the power plant are presented for the typical summer and winter dispersive scenarios in the area. Simulations show that the SO2 footprint of a plume being advected more than 450 m above ground level in complex terrain is highly dependent on the prevailing meteorological conditions and on the mesoscale perturbations of the synoptic flows within the lower layers of the troposphere. The results obtained show how on complex terrain, despite seasonal meteorological differences and under stable dispersive conditions, the simulated mechanical turbulence leeward of the mountain ranges reproduces highly concentrated SO2 fumigations on the ground more than 50 km away from the power plant. Besides, under summer convective activity, plume fumigations have been successfully simulated less than 15 km from the power plant. In conclusion, this study shows how measurements from air quality networks together with information obtained from atmospheric transport and diffusion models are able to characterise different transport scenarios. This is a clear advantage for the end-users and decision-makers who manage and optimise the regional air quality networks.

  7. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.

    PubMed

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.

  8. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.

    PubMed

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox. PMID:27445842

  9. A growth model for directed complex networks with power-law shape in the out-degree distribution.

    PubMed

    Esquivel-Gómez, J; Stevens-Navarro, E; Pineda-Rico, U; Acosta-Elias, J

    2015-01-01

    Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141

  10. A growth model for directed complex networks with power-law shape in the out-degree distribution

    PubMed Central

    Esquivel-Gómez, J.; Stevens-Navarro, E.; Pineda-Rico, U.; Acosta-Elias, J.

    2015-01-01

    Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In other models, the resultant out-degree distribution decays as a poisson or an exponential distribution. However, it has been found that in real complex networks, the out-degree distribution decays as a power-law. In order to obtain out-degree distribution with power-law behavior some models have been proposed. This work introduces a new model that allows to obtain out-degree distributions that decay as a power-law with an exponent in the range from 0 to 1. PMID:25567141

  11. Muscle Strength, Power, and Morphologic Adaptations After 6 Weeks of Compound vs. Complex Training in Healthy Men.

    PubMed

    Stasinaki, Angeliki-Nikoletta; Gloumis, Giorgos; Spengos, Konstantinos; Blazevich, Anthony J; Zaras, Nikolaos; Georgiadis, Giorgos; Karampatsos, Giorgos; Terzis, Gerasimos

    2015-09-01

    The aim of the study was to compare the effects of compound vs. complex resistance training on strength, high-speed movement performance, and muscle composition. Eighteen young men completed compound (strength and power sessions on alternate days) or complex training (strength and power sets within a single session) 3 times per week for 6 weeks using bench press, leg press, Smith machine box squat, and jumping exercises. Pre- and posttraining, jumping and throwing performance and maximum bench press, leg press, and Smith machine box squat strength were evaluated. The architecture of vastus lateralis and gastrocnemius muscle was assessed using ultrasound imaging. Vastus lateralis morphology was assessed from muscle biopsies. Jumping (4 ± 3%) and throwing (9 ± 8%) performance increased only with compound training (p < 0.02). Bench press (5 vs. 18%), leg press (17 vs. 28%), and Smith machine box squat (27 vs. 35%) strength increased after both compound and complex training. Vastus lateralis thickness and fascicle angle and gastrocnemius fascicle angle were increased with both compound and complex training. Gastrocnemius fascicle length decreased only after complex training (-11.8 ± 9.4%, p = 0.006). Muscle fiber cross-sectional areas increased only after complex training (p ≤ 0.05). Fiber type composition was not affected by either intervention. These results suggest that short-term strength and power training on alternate days is more effective for enhancing lower-limb and whole-body power, whereas training on the same day may induce greater increases in strength and fiber hypertrophy.

  12. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox

    PubMed Central

    Marshall, Najja; Timme, Nicholas M.; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M.

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of “neural avalanches” (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods—power-law fitting, avalanche shape collapse, and neural complexity—have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox. PMID:27445842

  13. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  14. ELF field in the proximity of complex power line configuration measurement procedures.

    PubMed

    Benes, M; Comelli, M; Villalta, R

    2006-01-01

    The issue of how to measure magnetic induction fields generated by various power line configurations, when there are several power lines that run across the same exposure area, has become a matter of interest and study within the Regional Environment Protection Agency of Friuli Venezia Giulia. In classifying the various power line typologies the definition of double circuit line was given: in this instance the magnetic field is determined by knowing the electrical and geometric parameters of the line. In the case of independent lines instead, the field is undetermined. It is therefore pointed out how, in the latter case, extracting previsional information from a set of measurements of the magnetic field alone is impossible. Making measurements throughout the territory of service has in several cases offered the opportunity to define standard operational procedures. PMID:16410292

  15. "My Body Speaks to Them": Instructor Reflections on the Complexities of Power and Social Embodiments

    ERIC Educational Resources Information Center

    Kannen, Victoria

    2012-01-01

    The dynamics of instructor embodiments and their relation to notions of power are explored in this paper. Informed by feminist poststructural theory, the author argues that, in classrooms where the focus of study is on conceptions of identity such as gender and race, the body of the instructor becomes an explicit pedagogical example. Through…

  16. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys.

    PubMed

    Ingle, Lee; Sleap, Mike; Tolfrey, Keith

    2006-09-01

    Complex training, a combination of resistance training and plyometrics is growing in popularity, despite limited support for its efficacy. In pre- and early pubertal children, the study of complex training has been limited, and to our knowledge an examination of its effect on anaerobic performance characteristics of the upper and lower body has not been undertaken. Furthermore, the effect of detraining after complex training requires clarification. The physical characteristics (mean+/-s) of the 54 male participants in the present study were as follows: age 12.3 +/- 0.3 years, height 1.57 +/- 0.07 m, body mass 50.3 +/- 11.0 kg. Participants were randomly assigned to an experimental (n = 33) or control group (n = 21). The training, which was performed three times a week for 12 weeks, included a combination of dynamic constant external resistance and plyometrics. After training, participants completed 12 weeks of detraining. At baseline, after training and after detraining, peak and mean anaerobic power, dynamic strength and athletic performance were assessed. Twenty-six participants completed the training and none reported any training-related injury. Complex training was associated with small increases (< or =5.5%) in peak and mean power during training, followed by decreases of a similar magnitude (< or = -5.9%) during detraining (P < 0.05). No changes or minor, progressive increases (< or =1.5%) were evident in the control group (P > 0.05). In the experimental group, dynamic strength was increased by 24.3 - 71.4% (dependent on muscle group; P < 0.01), whereas growth-related changes in the control group varied from 0 to 4.4% (P > 0.05). For 40-m sprint running, basketball chest pass and vertical jump test performance, the experimental group saw a small improvement (< or =4.0%) after training followed by a decline (< or = -4.4%) towards baseline during detraining (P < 0.05), whereas the control group experienced no change (P > 0.05). In conclusion, in pre- and early

  17. The Complexities of Participatory Action Research and the Problems of Power, Identity and Influence

    ERIC Educational Resources Information Center

    Hawkins, Karen A.

    2015-01-01

    This article highlights the complexity of participatory action research (PAR) in that the study outlined was carried out with and by, as opposed to on, participants. The project was contextualised in two prior-to-school settings in Australia, with the early childhood professionals and, to some extent, the preschoolers involved in this PAR project…

  18. Enthalpies of complex formation of boron and aluminum bromides with organic bases of high donor power

    SciTech Connect

    Grigor-ev, A.A.; Kondrat'ev, Y.V.; Suvorov, A.V.

    1986-11-20

    By the calorimetric method enthalpies of complex formation were determined for boron and aluminum bromides with piperidine and hexamethylphosphoric triamide in benzene solutions and for boron bromide with pyridine in dichloroethane, and also enthalpies of solution were determined for BBr/sub 3/ and the adducts AlBr/sub 3/ x PPy and BBr/sub 2/ x Py in benzene and pyridine.

  19. Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?

    ERIC Educational Resources Information Center

    Hostounsky, Zdenek; Pelc, Radek

    2007-01-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…

  20. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    PubMed

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  1. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications

    PubMed Central

    Revathy, M.; Saravanan, R.

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures. PMID:26065017

  2. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    PubMed

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.

  3. Methodological aspects of assessing atmospheric contamination with metal aerosols in the vicinity of thermal power complexes.

    PubMed

    Sokolov, S M

    1986-01-01

    A study of metal aerosols content in waste steam-containing gases from a thermal power station operating on oil fuel revealed that the concentrations of V2O5, Al2O3, Fe2O3, MnO2 and Cr2O3 are not influenced by the operational mode, type of boiler, the mean ratios being 1 : 0, 3 : 0, 27 : 0, 2 : 0, 03 : 0 and 0.25 respectively. Comparing the metal content in oil fuel and waste gases showed that no more than 10% of the studied compounds are sorbed on the boiler walls, the remaining 90% being released into the atmosphere. It is suggested that V2O5 be determined as an integral indicator with the aim of rapid hygienic assessment of the extent of atmospheric contamination with metal aerosols. The presented results may be used in preventive and regular sanitary surveillance during thermal power plant designing, construction and reconstruction.

  4. Preliminary experimental investigation of a complex dual-band high power microwave source.

    PubMed

    Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-01

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  5. Preliminary experimental investigation of a complex dual-band high power microwave source

    SciTech Connect

    Zhang, Xiaoping Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  6. Effect of effluents of a thermal power plant complex on reproductive processs of a winter season weed

    SciTech Connect

    Khan, F.A.; Iqbal, M.; Ghouse, A.K.M. )

    1990-05-01

    The Kasimpur Thermal Power Plant Complex (located in the District Aligarh, Uttar Pradesh, India) runs on a low grade, sulphur rich, bituminous type of coal with a daily average consumption rte of about 3,192 metric tons during winter season. Its effluents, mainly consisting of oxides of sulphur, nitrogen and carbon as well as particulate matters, were noted to affect the reproductive behavior of Melilotus indica-a winter season weed growing wild as a component of a grassland community. The samples consisting of 10 plants were collected at monthly intervals from 5 sites located about 0.5, 2, 6, 12 and 20 km leaward from the Complex. Emergence of inflorescence was delayed at the polluted sites. However, fruit formation started simultaneously (in March) at all the five sites. The pollution induced senescence of floral buds, flowers and fruits, but did not alter markedly weight of seed and fruit.

  7. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    PubMed

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.

  8. An Advanced User Interface Approach for Complex Parameter Study Process Specification in the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  9. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  10. Phase-contrast versus off-axis illumination: is a more complex microscope always more powerful?

    PubMed

    Hostounský, Zdenek; Pelc, Radek

    2007-06-01

    In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical microscopy are demonstrated. The results obtained under phase contrast (a rather sophisticated method, 1953 Nobel Prize to Zernike) and off-axis illumination (a very simple method) are compared. The off-axis illumination setup is capable of delivering noticeably better microscopic images of these two particular specimens, yet it can be easily assembled in a laboratory classroom. The outcome of such a demonstration is expected to be the realization on the part of the students that one needs to carefully choose the apparatus to address a given biological problem, with the "bottom line" being that a more complex one may not necessarily yield better results. An attempt to explain this "paradox" is presented, in the particular case presented here, partly from the physiology of vision perspective (the shape-from-shading problem). The overall aim of the present article is to induce in students critical thinking about the capabilities of a laboratory equipment in general and about data interpretation. PMID:17562916

  11. Power-law distributed temporal heterogeneity of human activities promotes cooperation on complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Li, Rong

    2016-09-01

    An evolutionary prisoner's dilemma game (PDG) with players located on Barabási-Albert scale-free networks is studied. The impact of players' heterogeneous temporal activity pattern on the evolution of cooperation is investigated. To this end, the normal procedure that players update their strategies immediately after a round of game is discarded. Instead, players update strategies according to their assigned reproduction time, which follows a power-law distribution. We find that the temporal heterogeneity of players' activities facilitates the prosperity of cooperation, indicating the important role of hubs in the maintenance of cooperation on scale-free networks. When the reproduction time is assigned to individuals negatively related to their degrees, a fluctuation of the cooperation level with the increase of the exponent β is observed.

  12. Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy.

    PubMed

    Shi, Zhenzhi; Ren, Wenzhi; Gong, An; Zhao, Xinmei; Zou, Yuehong; Brown, Eric Michael Bratsolias; Chen, Xiaoyuan; Wu, Aiguo

    2014-08-01

    Photodynamic therapy (PDT) is a promising treatment modality for cancer and other malignant diseases, however safety and efficacy improvements are required before it reaches its full potential and wider clinical use. Herein, we investigated a highly efficient and safe photodynamic therapy procedure by developing a high/low power density photodynamic therapy mode (high/low PDT mode) using methoxypoly(ethylene glycol) thiol (mPEG-SH) modified gold nanorod (GNR)-AlPcS4 photosensitizer complexes. mPEG-SH conjugated to the surface of simple polyelectrolyte-coated GNRs was verified using Fourier transform infrared spectroscopy; this improved stability, reduced cytotoxicity, and increased the encapsulation and loading efficiency of the nanoparticle dispersions. The GNR-photosensitizer complexes were exposed to the high/low PDT mode (high light dose = 80 mW/cm(2) for 0.5 min; low light dose = 25 mW/cm(2) for 1.5 min), and a high PDT efficacy leads to approximately 90% tumor cell killing. Due to synergistic plasmonic photothermal properties of the complexes, the high/low PDT mode demonstrated improved efficacy over using single wavelength continuous laser irradiation. Additionally, no significant loss in viability was observed in cells exposed to free AlPcS4 photosensitizer under the same irradiation conditions. Consequently, free AlPcS4 released from GNRs prior to cellular entry did not contribute to cytotoxicity of normal cells or impose limitations on the use of the high power density laser. This high/low PDT mode may effectively lead to a safer and more efficient photodynamic therapy for superficial tumors.

  13. Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy

    PubMed Central

    Shi, Zhenzhi; Ren, Wenzhi; Gong, An; Zhao, Xinmei; Zou, Yuehong; Brown, Eric Michael Bratsolias; Chen, Xiaoyuan; Wu, Aiguo

    2015-01-01

    Photodynamic therapy (PDT) is a promising treatment modality for cancer and other malignant diseases, however safety and efficacy improvements are required before it reaches its full potential and wider clinical use. Herein, we investigated a highly efficient and safe photodynamic therapy procedure by developing a high/low power density photodynamic therapy mode (high/low PDT mode) using methoxypoly(ethylene glycol) thiol (mPEG-SH) modified gold nanorod (GNR)-AlPcS4 photosensitizer complexes. mPEG-SH conjugated to the surface of simple polyelectrolyte-coated GNRs was verified using Fourier transform infrared spectroscopy; this improved stability, reduced cytotoxicity, and increased the encapsulation and loading efficiency of the nanoparticle dispersions. The GNR-photosensitizer complexes were exposed to the high/low PDT mode (high light dose = 80 mW/cm2 for 0.5 min; low light dose = 25 mW/cm2 for 1.5 min), and a high PDT efficacy leads to approximately 90% tumor cell killing. Due to synergistic plasmonic photothermal properties of the complexes, the high/low PDT mode demonstrated improved efficacy over using single wavelength continuous laser irradiation. Additionally, no significant loss in viability was observed in cells exposed to free AlPcS4 photosensitizer under the same irradiation conditions. Consequently, free AlPcS4 released from GNRs prior to cellular entry did not contribute to cytotoxicity of normal cells or impose limitations on the use of the high power density laser. This high/low PDT mode may effectively lead to a safer and more efficient photodynamic therapy for superficial tumors. PMID:24855961

  14. Determining mixing depths in complex terrain near a power plant with radar profiler reflectivities

    SciTech Connect

    Gaynor, J.E.

    1994-12-31

    Numerous analyses of 915-MHz wind profiler data are now appearing in the literature in such applications as air quality. Another set of data from these radars is just beginning to be exploited. Pioneering work used radar reflectivity to estimate daytime mixing depths by relating this reflectivity in the form of signal-to-noise ratios to radar C{sub n}{sup 2}. This, in turn, can be related to mixed layer turbulence. These results add a new dimension to the 915-MHz wind profiler products. We used these estimated mixing depths to determine the extent of mixing at several distributed wind profiler sites in the very complex terrain of the Project MOHAVE which occurred during 1992.

  15. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs.

    PubMed

    von Reumont, Björn M; Campbell, Lahcen I; Richter, Sandy; Hering, Lars; Sykes, Dan; Hetmank, Jörg; Jenner, Ronald A; Bleidorn, Christoph

    2014-09-01

    Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands. PMID:25193302

  16. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.

    PubMed

    Wang, Zhe; Sun, Huiyong; Yao, Xiaojun; Li, Dan; Xu, Lei; Li, Youyong; Tian, Sheng; Hou, Tingjun

    2016-05-14

    As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work

  17. Complex additive systems for Mn-Zn ferrites with low power loss

    SciTech Connect

    Töpfer, J. Angermann, A.

    2015-05-07

    Mn-Zn ferrites were prepared via an oxalate-based wet-chemical synthesis process. Nanocrystalline ferrite powders with particle size of 50 nm were sintered at 1150 °C with 500 ppm CaO and 100 ppm SiO{sub 2} as standard additives. A fine-grained, dense microstructure with grain size of 4–5 μm was obtained. Simultaneous addition of Nb{sub 2}O{sub 5}, ZrO{sub 2}, V{sub 2}O{sub 5}, and SnO{sub 2} results low power losses, e.g., 65 mW/cm{sup 3} (500 kHz, 50 mT, 80 °C) and 55 mW/cm{sup 3} (1 MHz, 25 mT, 80 °C). Loss analysis shows that eddy current and residual losses were minimized through formation of insulating grain boundary phases, which is confirmed by transmission electron microscopy. Addition of SnO{sub 2} increases the ferrous ion concentration and affects anisotropy as reflected in permeability measurements μ(T)

  18. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    SciTech Connect

    Schork, N.J.; Boehnke, M. ); Terwilliger, J.D.; Ott, J. )

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. The authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.

  19. Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex-forming solutions

    NASA Astrophysics Data System (ADS)

    Marino, M.; Misuri, L.; Carati, A.; Brogioli, D.

    2014-07-01

    We report experiments on a concentration cell with zinc electrodes and ZnCl2 solutions at different concentrations, separated by a porous diaphragm. The cell is aimed at the conversion of the free energy associated to the concentration difference into electrical energy, for renewable and clean energy applications. Usually, the diffusion of the solute across the diaphragm constitutes a waste of free energy, which impairs the voltage generation of the concentration cell with respect to other well-known techniques that work quasi-reversibly, such as reverse electrodialysis or the "mixing entropy battery." Quite surprisingly, we find that the voltage produced by our concentration cell is significantly higher than the voltage obtained with the other quasi-reversible techniques. We show that the surplus voltage comes from the active transformation of the mixing free energy into electrical energy performed by the liquid junction, and we show the connection with the negative apparent transference number of the zinc ion. This fortunate consequence of using ZnCl2 solution is ultimately related to the formation of complexes. We present the results of a cell for power production, which has excellent performances with respect to known salinity-difference-power methods.

  20. A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion.

    PubMed

    Hong, Seungwoo; Lee, Yong-Min; Sankaralingam, Muniyandi; Vardhaman, Anil Kumar; Park, Young Jun; Cho, Kyung-Bin; Ogura, Takashi; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2016-07-13

    A mononuclear non-heme manganese(V)-oxo complex, [Mn(V)(O)(TAML)](-) (1), was synthesized by activating dioxygen in the presence of olefins with weak allylic C-H bonds and characterized structurally and spectroscopically. In mechanistic studies, the formation rate of 1 was found to depend on the allylic C-H bond dissociation energies (BDEs) of olefins, and a kinetic isotope effect (KIE) value of 16 was obtained in the reactions of cyclohexene and cyclohexene-d10. These results suggest that a hydrogen atom abstraction from the allylic C-H bonds of olefins by a putative Mn(IV)-superoxo species, which is formed by binding O2 by a high-spin (S = 2) [Mn(III)(TAML)](-) complex, is the rate-determining step. A Mn(V)-oxo complex binding Sc(3+) ion, [Mn(V)(O)(TAML)](-)-(Sc(3+)) (2), was also synthesized in the reaction of 1 with Sc(3+) ion and then characterized using various spectroscopic techniques. The binding site of the Sc(3+) ion was proposed to be the TAML ligand, not the Mn-O moiety, probably due to the low basicity of the oxo group compared to the basicity of the amide carbonyl group in the TAML ligand. Reactivity studies of the Mn(V)-oxo intermediates, 1 and 2, in oxygen atom transfer and electron-transfer reactions revealed that the binding of Sc(3+) ion at the TAML ligand of Mn(V)-oxo enhanced its oxidizing power with a positively shifted one-electron reduction potential (ΔEred = 0.70 V). This study reports the first example of tuning the second coordination sphere of high-valent metal-oxo species by binding a redox-inactive metal ion at the supporting ligand site, thereby modulating their electron-transfer properties as well as their reactivities in oxidation reactions.

  1. A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion.

    PubMed

    Hong, Seungwoo; Lee, Yong-Min; Sankaralingam, Muniyandi; Vardhaman, Anil Kumar; Park, Young Jun; Cho, Kyung-Bin; Ogura, Takashi; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2016-07-13

    A mononuclear non-heme manganese(V)-oxo complex, [Mn(V)(O)(TAML)](-) (1), was synthesized by activating dioxygen in the presence of olefins with weak allylic C-H bonds and characterized structurally and spectroscopically. In mechanistic studies, the formation rate of 1 was found to depend on the allylic C-H bond dissociation energies (BDEs) of olefins, and a kinetic isotope effect (KIE) value of 16 was obtained in the reactions of cyclohexene and cyclohexene-d10. These results suggest that a hydrogen atom abstraction from the allylic C-H bonds of olefins by a putative Mn(IV)-superoxo species, which is formed by binding O2 by a high-spin (S = 2) [Mn(III)(TAML)](-) complex, is the rate-determining step. A Mn(V)-oxo complex binding Sc(3+) ion, [Mn(V)(O)(TAML)](-)-(Sc(3+)) (2), was also synthesized in the reaction of 1 with Sc(3+) ion and then characterized using various spectroscopic techniques. The binding site of the Sc(3+) ion was proposed to be the TAML ligand, not the Mn-O moiety, probably due to the low basicity of the oxo group compared to the basicity of the amide carbonyl group in the TAML ligand. Reactivity studies of the Mn(V)-oxo intermediates, 1 and 2, in oxygen atom transfer and electron-transfer reactions revealed that the binding of Sc(3+) ion at the TAML ligand of Mn(V)-oxo enhanced its oxidizing power with a positively shifted one-electron reduction potential (ΔEred = 0.70 V). This study reports the first example of tuning the second coordination sphere of high-valent metal-oxo species by binding a redox-inactive metal ion at the supporting ligand site, thereby modulating their electron-transfer properties as well as their reactivities in oxidation reactions. PMID:27310336

  2. On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents.

    PubMed

    Esquivel-Gómez, J; Arjona-Villicaña, P D; Stevens-Navarro, E; Pineda-Rico, U; Balderas-Navarro, R E; Acosta-Elias, J

    2015-01-01

    The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞. PMID:25765763

  3. On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents.

    PubMed

    Esquivel-Gómez, J; Arjona-Villicaña, P D; Stevens-Navarro, E; Pineda-Rico, U; Balderas-Navarro, R E; Acosta-Elias, J

    2015-03-13

    The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞.

  4. On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents

    PubMed Central

    Esquivel-Gómez, J.; Arjona-Villicaña, P. D.; Stevens-Navarro, E.; Pineda-Rico, U.; Balderas-Navarro, R. E.; Acosta-Elias, J.

    2015-01-01

    The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞. PMID:25765763

  5. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    SciTech Connect

    Lacaze, Guilhem; Oefelein, Joseph

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  6. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  7. The acute effect of upper-body complex training on power output of martial art athletes as measured by the bench press throw exercise.

    PubMed

    Liossis, Loudovikos Dimitrios; Forsyth, Jacky; Liossis, Ceorge; Tsolakis, Charilaos

    2013-12-18

    The purpose of this study was to examine the acute effect of upper body complex training on power output, as well as to determine the requisite preload intensity and intra-complex recovery interval needed to induce power output increases. Nine amateur-level combat/martial art athletes completed four distinct experimental protocols, which consisted of 5 bench press repetitions at either: 65% of one-repetition maximum (1RM) with a 4 min rest interval; 65% of 1RM with an 8 min rest; 85% of 1RM with a 4 min rest; or 85% of 1RM with an 8 min rest interval, performed on different days. Before (pre-conditioning) and after (post-conditioning) each experimental protocol, three bench press throws at 30% of 1RM were performed. Significant differences in power output pre-post conditioning were observed across all experimental protocols (F=26.489, partial eta2=0.768, p=0.001). Mean power output significantly increased when the preload stimulus of 65% 1RM was matched with 4 min of rest (p=0.001), and when the 85% 1RM preload stimulus was matched with 8 min of rest (p=0.001). Moreover, a statistically significant difference in power output was observed between the four conditioning protocols (F= 21.101, partial eta(2)=0.913, p=0.001). It was concluded that, in complex training, matching a heavy preload stimulus with a longer rest interval, and a lighter preload stimulus with a shorter rest interval is important for athletes wishing to increase their power production before training or competition.

  8. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    SciTech Connect

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwaste Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian

  9. EFFECT OF MICROWAVE POWER ON SHAPE OF EPR SPECTRA--APPLICATION TO EXAMINATION OF COMPLEX FREE RADICAL SYSTEM IN THERMALLY STERILIZED ACIDUM BORICUM.

    PubMed

    Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara

    2016-01-01

    Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed. PMID:27180421

  10. Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7.

    PubMed

    Qian, Min; Zhang, Ran; Hao, Jingyu; Zhang, Wenjun; Zhang, Qin; Wang, Jianpu; Tao, Youtian; Chen, Shufen; Fang, Junfeng; Huang, Wei

    2015-06-17

    Various low ratios of triplet iridium complexes (0, 0.5, 1, 1.5, 2.5, and 5 mol%) are conjugated to the backbone of the famous champion donor polymer PTB7. At the same conditions, the power conversion efficiency for polymer containing 1% of Ir increases by 45%, 39%, and 31% in three batches of devices compared with control Ir-free PTB7.

  11. EFFECT OF MICROWAVE POWER ON SHAPE OF EPR SPECTRA--APPLICATION TO EXAMINATION OF COMPLEX FREE RADICAL SYSTEM IN THERMALLY STERILIZED ACIDUM BORICUM.

    PubMed

    Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara

    2016-01-01

    Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.

  12. Cyano-decorated ligands: a powerful alternative to fluorination for tuning the photochemical properties of cyclometalated Ir(iii) complexes.

    PubMed

    Mills, Isaac N; Kagalwala, Husain N; Bernhard, Stefan

    2016-06-21

    A new cyclometalating ligand, featuring nitrile moieties to enhance the photophysical and consequently photocatalytic properties of bis-cyclometalated Ir(iii) complexes, was synthesized. Nitrile moieties were selected to replace expensive and environmentally problematic fluoride moieties commonly employed for synthetic tuning of chromophores. Two new chromophores bearing the new nitrile-decorated ligand were synthesized with strong electron-donating and electron-withdrawing ancillary ligands to probe extremes of the complexes' tunability. These complexes possessed rich and drastically different electrochemical and photophysical properties. One chromophore possessed a particularly long lifetime of approximately 8 μs; it was also a remarkably efficient triplet emitter with a quantum yield of 63%. The complexes were finally assessed as photosensitizers of water reduction with Pt colloids, where both complexes produced hydrogen with optimized conditions reaching 2000 and 1400 turnovers. PMID:27254387

  13. The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated Variation and Test Hypotheses About Complex Disease

    PubMed Central

    Fuchsberger, Christian; Flannick, Jason; Rivas, Manuel A.; Gaulton, Kyle J.; Albers, Patrick K.; McVean, Gil; Boehnke, Michael; Altshuler, David; McCarthy, Mark I.

    2015-01-01

    Genome and exome sequencing in large cohorts enables characterization of the role of rare variation in complex diseases. Success in this endeavor, however, requires investigators to test a diverse array of genetic hypotheses which differ in the number, frequency and effect sizes of underlying causal variants. In this study, we evaluated the power of gene-based association methods to interrogate such hypotheses, and examined the implications for study design. We developed a flexible simulation approach, using 1000 Genomes data, to (a) generate sequence variation at human genes in up to 10K case-control samples, and (b) quantify the statistical power of a panel of widely used gene-based association tests under a variety of allelic architectures, locus effect sizes, and significance thresholds. For loci explaining ~1% of phenotypic variance underlying a common dichotomous trait, we find that all methods have low absolute power to achieve exome-wide significance (~5-20% power at α=2.5×10-6) in 3K individuals; even in 10K samples, power is modest (~60%). The combined application of multiple methods increases sensitivity, but does so at the expense of a higher false positive rate. MiST, SKAT-O, and KBAC have the highest individual mean power across simulated datasets, but we observe wide architecture-dependent variability in the individual loci detected by each test, suggesting that inferences about disease architecture from analysis of sequencing studies can differ depending on which methods are used. Our results imply that tens of thousands of individuals, extensive functional annotation, or highly targeted hypothesis testing will be required to confidently detect or exclude rare variant signals at complex disease loci. PMID:25906071

  14. A general and accurate approach for computing the statistical power of the transmission disequilibrium test for complex disease genes.

    PubMed

    Chen, W M; Deng, H W

    2001-07-01

    Transmission disequilibrium test (TDT) is a nuclear family-based analysis that can test linkage in the presence of association. It has gained extensive attention in theoretical investigation and in practical application; in both cases, the accuracy and generality of the power computation of the TDT are crucial. Despite extensive investigations, previous approaches for computing the statistical power of the TDT are neither accurate nor general. In this paper, we develop a general and highly accurate approach to analytically compute the power of the TDT. We compare the results from our approach with those from several other recent papers, all against the results obtained from computer simulations. We show that the results computed from our approach are more accurate than or at least the same as those from other approaches. More importantly, our approach can handle various situations, which include (1) families that consist of one or more children and that have any configuration of affected and nonaffected sibs; (2) families ascertained through the affection status of parent(s); (3) any mixed sample with different types of families in (1) and (2); (4) the marker locus is not a disease susceptibility locus; and (5) existence of allelic heterogeneity. We implement this approach in a user-friendly computer program: TDT Power Calculator. Its applications are demonstrated. The approach and the program developed here should be significant for theoreticians to accurately investigate the statistical power of the TDT in various situations, and for empirical geneticists to plan efficient studies using the TDT.

  15. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil).

    PubMed

    Rodriguez-Iruretagoiena, Azibar; Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; Ramos, Claudete G; Oliveira, Marcos L S; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel; Silva, Luis F O

    2015-03-01

    Hazard element contamination coming from coal power plants is something obvious, but when this contamination is accompanied by other contamination sources, such as, urban, coal mining and farming activities the study gets complicated. This is the case of an area comprised in the southern part of Santa Catarina state (Brazil) with the largest private power plant generator. After the elemental analysis of 41 agricultural soils collected in an extensive area around the thermoelectric (from 0 to 47 km), the high presence of As, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Tl, V and Zn was found in some specific areas around the power plant. Nevertheless, as the NWAC (Normalized-and-Weighted Average Concentration) confirmed, only soils from one site were classified as of very high concern due to the presence of potential toxic elements. This site was located within the sedimentation basin of the power plant. The spatial distribution obtained by kriging in combination with the analysis of the data by Principal Component Analysis (PCA) revealed three important hotspots in the area according to soil uses and geographic localization: the thermoelectric, its area of influence due to volatile compound deposition, and the area comprised between two urban areas. Farming practice turn out to be an important factor too for the quantity of hazard element stored in soils.

  16. Short-term emergency response planning and risk assessment via an integrated modeling system for nuclear power plants in complex terrain

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Weng, Yu-Chi

    2013-03-01

    Short-term predictions of potential impacts from accidental release of various radionuclides at nuclear power plants are acutely needed, especially after the Fukushima accident in Japan. An integrated modeling system that provides expert services to assess the consequences of accidental or intentional releases of radioactive materials to the atmosphere has received wide attention. These scenarios can be initiated either by accident due to human, software, or mechanical failures, or from intentional acts such as sabotage and radiological dispersal devices. Stringent action might be required just minutes after the occurrence of accidental or intentional release. To fulfill the basic functions of emergency preparedness and response systems, previous studies seldom consider the suitability of air pollutant dispersion models or the connectivity between source term, dispersion, and exposure assessment models in a holistic context for decision support. Therefore, the Gaussian plume and puff models, which are only suitable for illustrating neutral air pollutants in flat terrain conditional to limited meteorological situations, are frequently used to predict the impact from accidental release of industrial sources. In situations with complex terrain or special meteorological conditions, the proposing emergency response actions might be questionable and even intractable to decisionmakers responsible for maintaining public health and environmental quality. This study is a preliminary effort to integrate the source term, dispersion, and exposure assessment models into a Spatial Decision Support System (SDSS) to tackle the complex issues for short-term emergency response planning and risk assessment at nuclear power plants. Through a series model screening procedures, we found that the diagnostic (objective) wind field model with the aid of sufficient on-site meteorological monitoring data was the most applicable model to promptly address the trend of local wind field patterns

  17. Use of a field model to analyze probable fire environments encountered within the complex geometries of nuclear power plants

    SciTech Connect

    Boccio, J.L.; Usher, J.L.; Singhal, A.K.; Tam, L.T.

    1985-08-01

    A fire in a nuclear power plant (NPP) can damage equipment needed to safely operate the plant and thereby either directly cause an accident or else reduce the plant's margin of safety. The development of a field-model fire code to analyze the probable fire environments encountered within NPP is discussed. A set of fire tests carried out under the aegis of the US Nuclear Regulatory Commission (NRC) is described. The results of these tests are then utilized to validate the field model.

  18. How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets

    PubMed Central

    Peixoto, Lucia; Risso, Davide; Poplawski, Shane G.; Wimmer, Mathieu E.; Speed, Terence P.; Wood, Marcelo A.; Abel, Ted

    2015-01-01

    The sequencing of the full transcriptome (RNA-seq) has become the preferred choice for the measurement of genome-wide gene expression. Despite its widespread use, challenges remain in RNA-seq data analysis. One often-overlooked aspect is normalization. Despite the fact that a variety of factors or ‘batch effects’ can contribute unwanted variation to the data, commonly used RNA-seq normalization methods only correct for sequencing depth. The study of gene expression is particularly problematic when it is influenced simultaneously by a variety of biological factors in addition to the one of interest. Using examples from experimental neuroscience, we show that batch effects can dominate the signal of interest; and that the choice of normalization method affects the power and reproducibility of the results. While commonly used global normalization methods are not able to adequately normalize the data, more recently developed RNA-seq normalization can. We focus on one particular method, RUVSeq and show that it is able to increase power and biological insight of the results. Finally, we provide a tutorial outlining the implementation of RUVSeq normalization that is applicable to a broad range of studies as well as meta-analysis of publicly available data. PMID:26202970

  19. Development of the millimeter-wave complex, intended for environmental control of nuclear, chemical, and power production facilities

    NASA Astrophysics Data System (ADS)

    Kosov, A. S.; Vald-Perlov, V. M.; Strukov, I. A.

    1997-08-01

    The paper is concerned with the development of the millimeter wave complex, intended for environmental control. To organize a reliable system for control and monitoring of the atmosphere one needs an adequate set of the measurement methods and devices for carrying out the needed measurements. At best, the devices must be capable of the remote sensing of the atmosphere in the continuous mode and should have proper means for communication with the central data acquisition system. The most informative methods for the atmospheric measurements are based on the microwave remote sensing. Particularly, using a 5-millimeter receiver (radiometer) it is possible to measure temperature vs. height dependence up to 1 km with required for temperature and height resolutions. Besides, a 3-millimeter coherent radar can be used for measuring the amount of condensed water (fog, rain, clouds) and smoke. Such hydrometers and other small particles support a dissipation of pollution from the accident to the distant areas. Besides, the radar allows us to measure the speed and direction of wind, which is very important for prediction of the danger for the other areas. So, the microwave complex, consisting of a 5-mm radiometer and a 3-mm coherent radar enables us to obtain needed information about the atmosphere state and to predict situation after the accident took place.

  20. Evaluation of Interconnect-Complexity-Aware Low-Power VLSI Design Using Multiple Supply and Threshold Voltages

    NASA Astrophysics Data System (ADS)

    Waidyasooriya, Hasitha Muthumala; Hariyama, Masanori; Kameyama, Michitaka

    This paper presents a high-level synthesis approach to minimize the total power consumption in behavioral synthesis under time and area constraints. The proposed method has two stages, functional unit (FU) energy optimization and interconnect energy optimization. In the first stage, active and inactive energies of the FUs are optimized using a multiple supply and threshold voltage scheme. Genetic algorithm (GA) based simultaneous assignment of supply and threshold voltages and module selection is proposed. The proposed GA based searching method can be used in large size problems to find a near-optimal solution in a reasonable time. In the second stage, interconnects are simplified by increasing their sharing. This is done by exploiting similar data transfer patterns among FUs. The proposed method is evaluated for several benchmarks under 90nm CMOS technology. The experimental results show that more than 40% of energy savings can be achieved by our proposed method.

  1. A Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs

    PubMed Central

    von Reumont, Björn M.; Richter, Sandy; Hering, Lars; Sykes, Dan; Hetmank, Jörg; Jenner, Ronald A.; Bleidorn, Christoph

    2014-01-01

    Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profiles of the venom glands of three species of bloodworm, Glycera dibranchiata, Glycera fallax and Glycera tridactyla, as well as the body tissue of G. tridactyla. The venom glands express a complex mixture of transcripts coding for putative toxin precursors. These transcripts represent 20 known toxin classes that have been convergently recruited into animal venoms, as well as transcripts potentially coding for Glycera-specific toxins. The toxins represent five functional categories: Pore-forming and membrane-disrupting toxins, neurotoxins, protease inhibitors, other enzymes, and CAP domain toxins. Many of the transcripts coding for putative Glycera toxins belong to classes that have been widely recruited into venoms, but some are homologs of toxins previously only known from the venoms of scorpaeniform fish and monotremes (stonustoxin-like toxin), turrid gastropods (turripeptide-like peptides), and sea anemones (gigantoxin I-like neurotoxin). This complex mixture of toxin homologs suggests that bloodworms employ venom while predating on macroscopic prey, casting doubt on the previously widespread opinion that G. dibranchiata is a detritivore. Our results further show that researchers should be aware that different assembly methods, as well as different methods of homology prediction, can influence the transcriptomic profiling of venom glands. PMID:25193302

  2. X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase

    SciTech Connect

    Harel, M.; Silman, I.; Quinn, D.M.; Nair, H.K.; Sussman, J.L. |

    1996-03-13

    The structure of a complex of Torpedo californica acetylcholinesterase with the transition state analog inhibitor m-(N, N,N-trimethylammonio)-2,2,2-trifluoroacetophenone has been solved by X-ray crystallographic methods to 2.8 A resolution. Since the inhibitor binds to the enzyme about 10{sup 10}-fold more tightly than the substrate acetylcholine, this complex provides a visual accounting of the enzyme-ligand interactions that provide the molecular basis for the catalytic power of acetylcholinesterase. The acetyl ester hydrolytic specificity of the enzyme is revealed by the interaction of the CF{sub 3} function of the transition state analog with a concave binding site comprised of the residues G119, W233, F288, F290, and F331. The highly geometrically convergent array of enzyme-ligand interactions visualized in the complex described herein envelopes the acylation transition state and sequesters it from solvent, this being consistent with the location of the active site at the bottom of a deep and narrow gorge. 82 refs., 5 figs.

  3. Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil.

    PubMed

    Teixeira, Tatiana Pires; Neves, Leonardo Mitrano; Araújo, Francisco Gerson

    2009-10-01

    Fish communities and habitat structures were evaluated by underwater visual censuses a rocky location impacted by thermal discharge (I) and at two control locations, one in a Sargassum bed (C1) and the other in a rocky shore with higher structural complexity (C2). Habitat indicators and fish communities exhibited significant differences between the impacted and control locations, with the impacted one showing a significant decrease in fish species richness and diversity, as well as a decrease in benthic cover. At the I location, only 13 fish species were described, and the average water temperature was 32+/-0.4 degrees C, compared with 44 species at C1 (25.9+/-0.3 degrees C) and 33 species at C2 (24.6+/-0.2 degrees C). Significant differences in fish communities among locations were found by ANOSIM with Eucinostomus argenteus, Mugil sp. and Haemulon steindachneri typical of location I, while Abudefduf saxatilis, Stegastes fuscus and Malacoctenus delalandi were typical of the control locations. Our study shows that thermal pollution alters benthic cover and influences fish assemblages by altering composition and decreasing richness.

  4. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  5. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents

    NASA Astrophysics Data System (ADS)

    Groot, Jens; Swierczynski, Maciej; Stan, Ana Irina; Kær, Søren Knudsen

    2015-07-01

    Li-ion batteries are known to undergo complex ageing processes, where the operating conditions have a profound and non-linear effect on both calendar life and cycle life. This is especially a challenge for the automotive industry, where the requirements on product lifetime and reliability are demanding. The aim of the present work is to quantify the ageing in terms of capacity fade and impedance growth as a function of operating conditions typical to high-power automotive applications; high charge and discharge rate, elevated temperatures and wide state-of-charge windows. The cycle life of 34 power-optimised LiFePO4/graphite cells was quantified by testing with charge and discharge rates between 1 and 4C-rate, temperatures between +23 °C and +53 °C, and a depth-of-discharge of either 100% or 60%. Although all cells show similar ageing pattern in general, the cycle life and the impedance growth is remarkably different for the tested cases. In addition, it is concluded that high charging rates, high temperatures or intensive cycling do not always lead to a shorter cycle life. One specifically interesting finding is that the combination of 1C-rate discharge in combination with 3.75C-rate charging was found to degrade the tested cells more rapidly than a symmetric cycle with 3.75C-rate in both directions.

  6. "The one who chases you away does not tell you go": silent refusals and complex power relations in research consent processes in Coastal Kenya.

    PubMed

    Kamuya, Dorcas M; Theobald, Sally J; Marsh, Vicki; Parker, Michael; Geissler, Wenzel P; Molyneux, Sassy C

    2015-01-01

    Consent processes have attracted significant research attention over the last decade, including in the global south. Although relevant studies suggest consent is a complex negotiated process involving multiple actors, most guidelines assume consent is a one-off encounter with a clear 'yes' or 'no' decision. In this paper we explore the concept of 'silent refusals', a situation where it is not clear whether potential participants want to join studies or those in studies want to withdraw from research, as they were not actively saying no. We draw on participant observation, in-depth interviews and group discussions conducted with a range of stakeholders in two large community based studies conducted by the KEMRI Wellcome Trust programme in coastal Kenya. We identified three broad inter-related rationales for silent refusals: 1) a strategy to avoid conflicts and safeguard relations within households, - for young women in particular-to appear to conform to the wishes of elders; 2) an approach to maintain friendly, appreciative and reciprocal relationships with fieldworkers, and the broader research programme; and 3) an effort to retain study benefits, either for individuals, whole households or wider communities. That refusals and underlying rationales were silent posed multiple dilemmas for fieldworkers, who are increasingly recognised to play a key interface role between researchers and communities in many settings. Silent refusals reflect and reinforce complex power relations embedded in decisions about research participation, with important implications for consent processes and broader research ethics practice. Fieldworkers need support to reflect upon and respond to the ethically charged environment they work in. PMID:25978465

  7. “The One Who Chases You Away Does Not Tell You Go”: Silent Refusals and Complex Power Relations in Research Consent Processes in Coastal Kenya

    PubMed Central

    Kamuya, Dorcas M.; Theobald, Sally J.; Marsh, Vicki; Parker, Michael; Geissler, Wenzel P.; Molyneux, Sassy C.

    2015-01-01

    Consent processes have attracted significant research attention over the last decade, including in the global south. Although relevant studies suggest consent is a complex negotiated process involving multiple actors, most guidelines assume consent is a one-off encounter with a clear ‘yes’ or ‘no’ decision. In this paper we explore the concept of ‘silent refusals’, a situation where it is not clear whether potential participants want to join studies or those in studies want to withdraw from research, as they were not actively saying no. We draw on participant observation, in-depth interviews and group discussions conducted with a range of stakeholders in two large community based studies conducted by the KEMRI Wellcome Trust programme in coastal Kenya. We identified three broad inter-related rationales for silent refusals: 1) a strategy to avoid conflicts and safeguard relations within households, - for young women in particular—to appear to conform to the wishes of elders; 2) an approach to maintain friendly, appreciative and reciprocal relationships with fieldworkers, and the broader research programme; and 3) an effort to retain study benefits, either for individuals, whole households or wider communities. That refusals and underlying rationales were silent posed multiple dilemmas for fieldworkers, who are increasingly recognised to play a key interface role between researchers and communities in many settings. Silent refusals reflect and reinforce complex power relations embedded in decisions about research participation, with important implications for consent processes and broader research ethics practice. Fieldworkers need support to reflect upon and respond to the ethically charged environment they work in. PMID:25978465

  8. Detection of potential genetic hazards in complex environmental mixtures using plant cytogenetics and microbial mutagenesis assays. [Arsenic-contaminated groundwater and power plant fly ash extract

    SciTech Connect

    Constantin, M J; Lowe, K; Rao, T K; Larimer, F W; Epler, J L

    1980-01-01

    Solid wastes have been characterized to determine their potential hazards to humans and the environment. An arsenic-contaminated ground water sample increased the frequency of histidine revertants in Salmonella typhimurium (TA-98) at 0.025 to 5.000 ..mu..l per plate with Aroclor-induced S-9 liver microsomes. When 2.5 to 75 ..mu..l of the XAD-2 concentrate (12.5-fold, v:v) were used, the mutant frequency was increased in strains TA-98, TA-100, and TA-1537; metabolic activation was not required. Only the XAD-2 concentrate was mutagenic in the Saccharomyces cerevisiae haploid strain XL-7-10B; metabolic activation was not required. The mutagenic principal, which is not known, appears to be at the limit of resolution; hence, the XAD-2 concentration is necessary to demonstrate mutagenic activity. The arsenic-contaminated ground water (0.0625 and 0.125 dilutions) and the power plant fly ash extract (undiluted) increased the frequency of bridges and fragements at anaphase in root tip cells of Hordeum. The fly ash sample was negative in the microbial assays. Results emphasize (1) the need for a battery of assays with different organisms and (2) the potential of a simple assay using plant root tip cells to detect mutagenic activity in complex environmental mixtures.

  9. Prospective power calculations for the Four Lab study of a multigenerational reproductive/developmental toxicity rodent bioassay using a complex mixture of disinfection by-products in the low-response region.

    PubMed

    Dingus, Cheryl A; Teuschler, Linda K; Rice, Glenn E; Simmons, Jane Ellen; Narotsky, Michael G

    2011-10-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA's Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss.

  10. Predictive complexation models of the impact of natural organic matter and cations on scaling in cooling water pipes: A case study of power generation plants in South Africa

    NASA Astrophysics Data System (ADS)

    Bosire, G. O.; Ngila, J. C.; Mbugua, J. M.

    This work discusses simulative models of Ca and Mg complexation with natural organic matter (NOM), in order to control the incidence of scaling in pipes carrying cooling water at the Eskom power generating stations in South Africa. In particular, the paper reports how parameters such as pH and trace element levels influence the distribution of scaling species and their interactions, over and above mineral phase saturation indices. In order to generate modelling inputs, two experimental scenarios were created in the model solutions: Firstly, the trace metals Cu, Pb and Zn were used as markers for Ca and Mg complexation to humic acid and secondly the effect of natural organic matter in cooling water was determined by spiking model solutions. Labile metal ions and total elements in model solutions and water samples were analysed by square wave anodic stripping voltammetry and inductively coupled plasma optical emission spectrometry (ICP-OES), respectively. ICP-OES results revealed high levels of K, Na, S, Mg and Ca and low levels of trace elements (Cd, Se, Pb, Cu, Mn, Mo, Ni, Al and Zn) in the cooling water samples. Using the Tipping and Hurley's database WHAM in PHREEQC format (T_H.DAT), the total elemental concentrations were run as inputs on a PHREEQC code, at pH 6.8 and defined charge as alkalinity (as HCO3-) For model solutions, PHREEQC inputs were based on (i) free metal differences attributed to competitive effect of Ca and the effect of Ca + Mg, respectively; (ii) total Ca and Mg used in the model solutions and (iii) alkalinity described as hydrogen carbonate. Anodic stripping peak heights were used to calculate the concentration of the free/uncomplexed/labile metal ions (used as tracers) in the model solutions. The objective of modelling was to describe scaling in terms of saturation indices of mineral phases. Accordingly, the minerals most likely to generate scale were further simulated (over a range of pH (3-10) to yield results that mimicked changing p

  11. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants

    SciTech Connect

    I. Surez-Ruiz; J.C. Hower; G.A. Thomas

    2007-01-15

    In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

  12. Managing Complexity

    SciTech Connect

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  13. THE POWER TO DETECT A DIFFERENCE: DETERMINING SAMPLE SIZE REQUIREMENTS FOR EVALUATION OF REPRODUCTIVE/DEVELOPMENTAL EFFECTS FROM EXPOSURE TO COMPLEX MIXTURES OF DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Toxicological assessment of environmentally-realistic complex mixtures of drinking-water disinfection byproducts (DBPs) are needed to address concerns raised by some epidemiological studies showing associations between exposure to chemically disinfected water and adverse reproduc...

  14. New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes

    PubMed Central

    Hassani, Rym; Jabli, Mahjoub; Kacem, Yakdhane; Marrot, Jérôme; Prim, Damien

    2015-01-01

    Summary The present paper describes the synthesis of new palladium–oxazoline complexes in one step with good to high yields (68–95%). The oxazolines were prepared from enantiomerically pure α-aminoalcohols. The structures of the synthesized palladium complexes were confirmed by NMR, FTIR, TOFMS, UV–visible spectroscopic analysis and X–ray diffraction. The optical properties of the complexes were evaluated by the determination of the gap energy values (E g) ranging between 2.34 and 3.21 eV. Their catalytic activities were tested for the degradation of Eriochrome Blue Black B (a model of azo dyes) in the presence of an ecological oxidant (H2O2). The efficiency of the decolorization has been confirmed via UV–visible spectroscopic analysis and the factors affecting the degradation phenomenon have been studied. The removal of the Eriochrome reached high yields. We have found that the complex 9 promoted 84% of color elimination within 5 min (C 0 = 30 mg/L, T = 22 °C, pH 7, H2O2 = 0.5 mL) and the energetic parameters have been also determined. PMID:26425176

  15. New palladium-oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes.

    PubMed

    Hassani, Rym; Jabli, Mahjoub; Kacem, Yakdhane; Marrot, Jérôme; Prim, Damien; Ben Hassine, Béchir

    2015-01-01

    The present paper describes the synthesis of new palladium-oxazoline complexes in one step with good to high yields (68-95%). The oxazolines were prepared from enantiomerically pure α-aminoalcohols. The structures of the synthesized palladium complexes were confirmed by NMR, FTIR, TOFMS, UV-visible spectroscopic analysis and X-ray diffraction. The optical properties of the complexes were evaluated by the determination of the gap energy values (E g) ranging between 2.34 and 3.21 eV. Their catalytic activities were tested for the degradation of Eriochrome Blue Black B (a model of azo dyes) in the presence of an ecological oxidant (H2O2). The efficiency of the decolorization has been confirmed via UV-visible spectroscopic analysis and the factors affecting the degradation phenomenon have been studied. The removal of the Eriochrome reached high yields. We have found that the complex 9 promoted 84% of color elimination within 5 min (C 0 = 30 mg/L, T = 22 °C, pH 7, H2O2 = 0.5 mL) and the energetic parameters have been also determined. PMID:26425176

  16. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    SciTech Connect

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Qualley, G.; Newman, J. F.; Miller, W. O.

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  17. Evaluation of the conservation potential of a refit energy management system (using a power line subcarrier) in a large, high-rise apartment complex. Phase II

    SciTech Connect

    Hirschfeld, H.E.

    1981-09-01

    An energy conservation study of the application of an energy management system (EMS) utilizing power line subcarrier communication equipment was made in a large apartment building in New York, New York. The building utilized individual cooling and resistance heating units in each apartment. The EMS turned the individual units on and off (with override by tenants) on a schedule determined by the building operator. Summer savings were found to be 11%; winter savings were 20%. Annual savings were projected to be 19%. The study demonstrated the conservation value of power line subcarrier technology as an alternative to submetering. It also developed and evaluated control strategies for the system and served as a field test to accelerate commercialization of the technology.

  18. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    PubMed

    Rana, Kunjan D; Vaina, Lucia M

    2014-01-01

    Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes) and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  19. Complex Laparoscopic Myomectomy with Severe Adhesions Performed with Proper Preventive Measures and Power Morcellation Provides a Safe Choice in Certain Infertility Cases.

    PubMed

    Alfaro-Alfaro, Jaime; Flores-Manzur, María de Los Ángeles; Nevarez-Bernal, Roberto; Ayala-Yáñez, Rodrigo

    2016-01-01

    Laparoscopic myomectomy offers a real benefit to infertile patients with uterine fibroids and peritoneal adhesions. The procedure requires a skilled surgeon and laparoscopy technique to minimize adhesion formation and other proven benefits. Restrictions arise since this procedure requires power morcellation for fibroid tissue extraction. Two years ago, the Food and Drug Administration in the United States of America (FDA) issued the alert on power morcellation for uterine leiomyomas, addressing the risk of malignant cell spreading within the abdominal cavity (actual risk assessment from 1 in 360 to 1 in 7400 cases). We review a 30-year-old female, without previous gestations, hypermenorrhea, intermenstrual bleeding, and chronic pelvic pain. Transvaginal ultrasound reports multiple fibroids in the right portion of a bicornuate uterus. Relevant history includes open myomectomy 6 years before and a complicated appendectomy, developing peritonitis within a year. Laparoscopy revealed multiple adhesions blocking uterine access, a bicornuate uterus, and myomas in the expected site. Myomectomy was performed utilizing power morcellation with good results. FDA recommendations have diminished this procedure's selection, converting many to open variants. This particular case was technically challenging, requiring morcellation, and safety device deployment was impossible, yet the infertility issue was properly addressed. Patient evaluation, safety measures, and laparoscopy benefits may outweigh the risks in particular cases as this one. PMID:27668110

  20. Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads

    NASA Astrophysics Data System (ADS)

    Wong, Derek N.; Wetz, David A.; Heinzel, John M.; Mansour, Azzam N.

    2016-10-01

    Three 26650 LiFePO4 (LFP) cells are cycled using a 40 A pulsed charge/discharge profile to study their performance in high rate pulsed applications. This profile is used to simulate naval pulsed power loads planned for deployment aboard future vessels. The LFP cells studied experienced an exponential drop in their usable high-rate recharge capacity within sixty cycles due to a rapid rise in their internal resistance. Differential capacitance shows that the voltage window for charge storage is pushed outside of the recommended voltage cutoff limits. Investigation into the state of health of the electrodes shows minimal loss of active material from the cathode to side reactions. Post-mortem examination of the anodic surface films reveals a large increase in the concentration of reduced salt compounds indicating that the pulsed profile creates highly favorable conditions for LiPF6 salt to break down into LiF. This film slows the ionic movement at the interface, affecting transfer kinetics, resulting in charge buildup in the bulk anode without successful energy storage. The results indicate that the use of these cells as a power supply for high pulsed power loads is hindered because of ionically resistant film development and not by an increasing rate of active material loss.

  1. Complex Laparoscopic Myomectomy with Severe Adhesions Performed with Proper Preventive Measures and Power Morcellation Provides a Safe Choice in Certain Infertility Cases

    PubMed Central

    Alfaro-Alfaro, Jaime; Flores-Manzur, María de los Ángeles; Nevarez-Bernal, Roberto

    2016-01-01

    Laparoscopic myomectomy offers a real benefit to infertile patients with uterine fibroids and peritoneal adhesions. The procedure requires a skilled surgeon and laparoscopy technique to minimize adhesion formation and other proven benefits. Restrictions arise since this procedure requires power morcellation for fibroid tissue extraction. Two years ago, the Food and Drug Administration in the United States of America (FDA) issued the alert on power morcellation for uterine leiomyomas, addressing the risk of malignant cell spreading within the abdominal cavity (actual risk assessment from 1 in 360 to 1 in 7400 cases). We review a 30-year-old female, without previous gestations, hypermenorrhea, intermenstrual bleeding, and chronic pelvic pain. Transvaginal ultrasound reports multiple fibroids in the right portion of a bicornuate uterus. Relevant history includes open myomectomy 6 years before and a complicated appendectomy, developing peritonitis within a year. Laparoscopy revealed multiple adhesions blocking uterine access, a bicornuate uterus, and myomas in the expected site. Myomectomy was performed utilizing power morcellation with good results. FDA recommendations have diminished this procedure's selection, converting many to open variants. This particular case was technically challenging, requiring morcellation, and safety device deployment was impossible, yet the infertility issue was properly addressed. Patient evaluation, safety measures, and laparoscopy benefits may outweigh the risks in particular cases as this one. PMID:27668110

  2. Complex Laparoscopic Myomectomy with Severe Adhesions Performed with Proper Preventive Measures and Power Morcellation Provides a Safe Choice in Certain Infertility Cases

    PubMed Central

    Alfaro-Alfaro, Jaime; Flores-Manzur, María de los Ángeles; Nevarez-Bernal, Roberto

    2016-01-01

    Laparoscopic myomectomy offers a real benefit to infertile patients with uterine fibroids and peritoneal adhesions. The procedure requires a skilled surgeon and laparoscopy technique to minimize adhesion formation and other proven benefits. Restrictions arise since this procedure requires power morcellation for fibroid tissue extraction. Two years ago, the Food and Drug Administration in the United States of America (FDA) issued the alert on power morcellation for uterine leiomyomas, addressing the risk of malignant cell spreading within the abdominal cavity (actual risk assessment from 1 in 360 to 1 in 7400 cases). We review a 30-year-old female, without previous gestations, hypermenorrhea, intermenstrual bleeding, and chronic pelvic pain. Transvaginal ultrasound reports multiple fibroids in the right portion of a bicornuate uterus. Relevant history includes open myomectomy 6 years before and a complicated appendectomy, developing peritonitis within a year. Laparoscopy revealed multiple adhesions blocking uterine access, a bicornuate uterus, and myomas in the expected site. Myomectomy was performed utilizing power morcellation with good results. FDA recommendations have diminished this procedure's selection, converting many to open variants. This particular case was technically challenging, requiring morcellation, and safety device deployment was impossible, yet the infertility issue was properly addressed. Patient evaluation, safety measures, and laparoscopy benefits may outweigh the risks in particular cases as this one.

  3. Function Allocation in Complex Socio-Technical Systems: Procedure usage in nuclear power and the Context Analysis Method for Identifying Design Solutions (CAMIDS) Model

    NASA Astrophysics Data System (ADS)

    Schmitt, Kara Anne

    This research aims to prove that strict adherence to procedures and rigid compliance to process in the US Nuclear Industry may not prevent incidents or increase safety. According to the Institute of Nuclear Power Operations, the nuclear power industry has seen a recent rise in events, and this research claims that a contributing factor to this rise is organizational, cultural, and based on peoples overreliance on procedures and policy. Understanding the proper balance of function allocation, automation and human decision-making is imperative to creating a nuclear power plant that is safe, efficient, and reliable. This research claims that new generations of operators are less engaged and thinking because they have been instructed to follow procedures to a fault. According to operators, they were once to know the plant and its interrelations, but organizationally more importance is now put on following procedure and policy. Literature reviews were performed, experts were questioned, and a model for context analysis was developed. The Context Analysis Method for Identifying Design Solutions (CAMIDS) Model was created, verified and validated through both peer review and application in real world scenarios in active nuclear power plant simulators. These experiments supported the claim that strict adherence and rigid compliance to procedures may not increase safety by studying the industry's propensity for following incorrect procedures, and when it directly affects the outcome of safety or security of the plant. The findings of this research indicate that the younger generations of operators rely highly on procedures, and the organizational pressures of required compliance to procedures may lead to incidents within the plant because operators feel pressured into following the rules and policy above performing the correct actions in a timely manner. The findings support computer based procedures, efficient alarm systems, and skill of the craft matrices. The solution to

  4. Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes.

    PubMed

    Gahoual, Rabah; Busnel, Jean-Marc; Wolff, Philippe; François, Yannis Nicolas; Leize-Wagner, Emmanuelle

    2014-02-01

    Development of nano-electrospray (nanoESI) sources allowed to increase significantly the sensitivity which is often lacking when studying biological noncovalent assemblies. However, the flow rate used to infuse the sample into the mass spectrometer cannot be precisely controlled with nanoESI and the robustness of the system could represent an issue. In this study, we have used a sheathless capillary electrophoresis-mass spectrometry (CESI) prototype as a nanoESI infusion device. The hydrodynamic mobilization of the capillary content was characterized and the ability of the system to generate a stable electrospray under controlled flow rate conditions ranging from 4 up to 900 nL/min was demonstrated. The effect of the infusing flow rate on the detection of an intact model protein analyzed under native conditions was investigated. Results demonstrated a significant increase in sensitivity of 46-fold and a signal-to-noise ratio improvement of nearly 5-fold when using an infusing flow rate from 456.9 down to 13.7 nL/min. The CESI prototype was further used to detect successfully the β ring homodimer in its native conformation. Obtained results were compared with those achieved with conventional ESI. Intensity signals were increased by a factor of 5, while sample consumption decreased 80 times. β ring complexed with the P14 peptide was also studied. Finally, the CESI interface was used to observe the quaternary structure of native hemocyanins from Carcinus maenas crabs; this high molecular complex coexisting under various degrees of complexation and resulting in masses ranging from 445 kDa to 1.34 MDa. PMID:23881366

  5. An Algorithm to Estimate Field Concentrations in the Wake of a Power Plant Complex under Nonsteady Meteorological Conditions from Wind-Tunnel Experiments.

    NASA Astrophysics Data System (ADS)

    Kothari, K. M.; Meroney, R. N.; Bouwmeester, R. J. B.

    1981-08-01

    Highest concentrations of pollutant at ground level are often produced from surface sources with stable or unstable atmospheric conditions and near calm erratic winds. This paper describes a weighted data methodology developed to predict surface concentrations from stationary wind-tunnel measurements and actual meteorological wind fields. Field measurements made downwind of the Rancho Seco Nuclear Power Station in 1975 have been compared against a set of wind-tunnel measurements around a 1:500 scale model of the same facilities. The weighted data algorithm was realistic in both predicting centerline concentration values as well as the horizontal spread of the plume. On the average the wind-tunnel data combined with the weighting algorithm was some 40 times more accurate in predicting field data than the conventional Pasquill-Gifford formulas.

  6. Quality control considerations for size exclusion chromatography with online ICP-MS: a powerful tool for evaluating the size dependence of metal-organic matter complexation

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2013-01-01

    Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight peaks. Storage in glass also produced more high molecular weight peaks than did plastic bottles. PMID:23416600

  7. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-05-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered.

  8. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. PMID:25413928

  9. Radiation occupational health interventions offered to radiation workers in response to the complex catastrophic disaster at the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Shimura, Tsutomu; Yamaguchi, Ichiro; Terada, Hiroshi; Okuda, Kengo; Svendsen, Erik Robert; Kunugita, Naoki

    2015-05-01

    The Fukushima Daiichi Nuclear Power Plant (NPP) 1 was severely damaged from the chain reaction of the Great East Japan Earthquake and Tsunami on 11 March 2011, and the consequent meltdown and hydrogen gas explosions. This resulted in the worst nuclear accident since the Chernobyl accident of 1986. Just as in the case of Chernobyl, emergency workers were recruited to conduct a wide range of tasks, including disaster response, rescuing activities, NPP containment, and radiation decontamination. This paper describes the types and efficacy of the various occupational health interventions introduced to the Fukushima NPP radiation workers. Such interventions were implemented in order to prevent unnecessary radiation overexposure and associated adverse health effects and work injuries. Less than 1% of all emergency workers were exposed to external radiation of >100 mSv, and to date no deaths or health adversities from radiation have been reported for those workers. Several occupational health interventions were conducted, including setting of new regulatory exposure limits, improving workers' radiation dosimetry, administration of stable iodine, running an occupational health tracking system, and improving occupational medicine and preventative care. Those interventions were not only vital for preventing unnecessary radiation, but also for managing other general health issues such as mental health, heat illness and infectious diseases. Long-term administration of the aforementioned occupational health interventions is essential to ensure the ongoing support and care for these workers, who were put under one of the most severe occupational health risk conditions ever encountered. PMID:25413928

  10. Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer's disease.

    PubMed

    Hampel, H; Teipel, S J; Padberg, F; Haslinger, A; Riemenschneider, M; Schwarz, M J; Kötter, H U; Scheloske, M; Buch, K; Stübner, S; Dukoff, R; Lasser, R; Müller, N; Sunderland, T; Rapoport, S I; Möller, H J

    1999-03-27

    Alzheimer's disease (AD) still can only be definitively diagnosed with certainty by examination of brain tissue. There is a great need for a noninvasive, sensitive and specific in vivo test for AD. We combined cerebrospinal fluid analyses of tau protein (levels were significantly increased in AD patients [p=0.0001]), a putative marker of neuronal degeneration, with components of the soluble interleukin-6 receptor complex (sIL-6RC: IL-6, soluble IL-6 receptor and soluble gp130), putative markers of neuroregulatory and inflammatory processes in the brain. A stepwise multivariate discriminant analysis revealed that tau protein and soluble gp130 (levels were significantly reduced in AD subjects [p=0.007]), the affinity converting and signal-transducing receptor of neuropoietic cytokines, maximized separation between the investigated groups. The discriminant function predicted 23 of 25 clinically diagnosed AD patients (sensitivity 92%) with mild to moderate dementia correctly as having AD. Furthermore, 17 of 19 physically and cognitively healthy age-matched control subjects (specificity 90%) were accurately distinguished by this test. Later predicting with the jackknife procedure each case in turn through the remaining patient group, the discriminant function remained stable. Our data suggest that multivariate discriminant analysis of combined CSF tau protein and sIL-6RC components may add more certainty to the diagnosis of AD, however, the method will need to be extended to an independent group of patients, comparisons and control subjects to assess the true applicability.

  11. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  12. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  13. Complexity in the Classroom.

    ERIC Educational Resources Information Center

    Doll, William E., Jr.

    1989-01-01

    Applies complexity theory, a movement in contemporary physics, to instruction of a sixth-grade math class. The mathematical chaos theory, embracing random and nonlinear patterning, contradicts the reductionist, particularist, and atomistic view commonly applied to science and teaching. Fractals and self-organization are similarly powerful,…

  14. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  15. Efficiency, Corporate Power, and the Bigness Complex.

    ERIC Educational Resources Information Center

    Adams, Walter; Brock, James W.

    1990-01-01

    Concludes that (1) the current infatuation with corporate bigness is void of credible empirical support; (2) disproportionate corporate size and industry concentration are incompatible with and destructive to good economic performance; and (3) structurally oriented antitrust policy must be revitalized to combat the burdens of corporate bigness.…

  16. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  17. Complex oxides useful for thermoelectric energy conversion

    DOEpatents

    Majumdar, Arunava; Ramesh, Ramamoorthy; Yu, Choongho; Scullin, Matthew L.; Huijben, Mark

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  18. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  19. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task. PMID:21974665

  20. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  1. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  2. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  3. Laughter, Power, and Motivation in Religious Education.

    ERIC Educational Resources Information Center

    Berryman, Jerome W.

    1998-01-01

    Investigates the connections among laughter, power, and motivation for religious education by reviewing the history of laughter and four models for laughter. Discusses complexity and the laughter of complexity. Concludes that the laughter of complexity can be a guide towards the appropriate use of power by using intrinsic motivation. (CMK)

  4. Complex Materials

    SciTech Connect

    Cooper, Valentino

    2014-04-17

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  5. Complex Materials

    ScienceCinema

    Cooper, Valentino

    2016-07-12

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  6. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  7. Nanosatellite Power System Considerations

    NASA Technical Reports Server (NTRS)

    Robyn, M.; Thaller, L.; Scott, D.

    1995-01-01

    The capability to build complex electronic functions into compact packages is opening the path to miniature satellites on the order of 1 kg mass, 10 cm across, packed with the computing processors, motion controllers, measurement sensors, and communications hardware necessary for operation. Power generation will be from short strings of silicon or gallium arsenide-based solar photovoltaic cells with the array power maximized by a peak power tracker (PPT). Energy storage will utilize a low voltage battery with nickel cadmium or lithium ion cells as the most likely selections for rechargeables and lithium (MnO2-Li) primary batteries for one shot short missions.

  8. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  9. Carney Complex

    MedlinePlus

    ... Screening guidelines may change over time as new technologies are developed and more is learned about Carney complex. It is important to talk with your doctor about appropriate screening tests. Learn more about what to expect when having ...

  10. Solar Sea Power

    ERIC Educational Resources Information Center

    Zener, Clarence

    1976-01-01

    In their preoccupation with highly complex new energy systems, scientists and statesmen may be overlooking the possibilities of Ocean Thermal Energy Conversion (OTEC). That is the view of a Carnegie-Mellon University physicist who is in the forefront of solar sea power investigation. (Author/BT)

  11. Complex networks: Patterns of complexity

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2010-07-01

    The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion systems. A framework that describes Turing-pattern formation in the context of complex networks should provide a new basis for studying the phenomenon.

  12. Rethinking family power.

    PubMed

    Kranichfeld, M L

    1987-03-01

    The family power literature, in its macrolevel focus on marital decision-making, has emphasized the kind of family power that is generally conferred on men and is based on extrafamilial roles and performances. Kranichfeld argues that for the last 2 decades, reviews of family power literature have been fundamentally shaped by the abiding interest in the relative power of men and women, rather than in power in the family per se. Researchers have continued to assume that family power is generated by acquiring skills, resources, and status outside the family rather than by acquiring skills for relating to others within the family. Much of the family power literature has focused on marriage and marital decision-making, but Kranichfeld argues that it is power within the parent-child relationship that is more complex, enduring, and significant. An understanding of the depth and reach of the kind of power that women hold, taken together without knowledge of how men's relationships to families are changing in our society, allows the possibility that women's positions are more secure than they sometimes seem. Many of the painful life situations that women experience because their powerlessness at a more macro level of society (desertion, physical abuse, teenage pregnancy) occur within the context of the romantic tie, and women's investment and power in vertical bonds are a source of support that reduces women's dependence on and vulnerability to the horizontal tie. Women occupy positions at the very center of the family, in contrast to men, who are becoming increasingly isolated from the family. From this perspective, the normally male power to make the decision about what kind of car to buy or where to spend the family vacation is nearly reduced to insignificance. The message seems to be that when it comes to securing family power, nothing can substitute for investment, attention, connection, and care.

  13. Complex chimerism

    PubMed Central

    Ma, Kimberly K.; Petroff, Margaret G.; Coscia, Lisa A.; Armenti, Vincent T.; Adams Waldorf, Kristina M.

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant. PMID:23974274

  14. Researching Complexity.

    ERIC Educational Resources Information Center

    Sumara, Dennis J.

    2000-01-01

    Discusses what Complexity Theory (presented as a rubric that collects theoretical understandings from a number of domains such as ecology, biology, neurology, and education) suggests about mind, selfhood, intelligence, and practices of reading, and the import of these reconceptualizations to reader-response researchers. Concludes that developing…

  15. Complex interactions

    NASA Astrophysics Data System (ADS)

    de Régules, Sergio

    2016-04-01

    Complexity science - which describes phenomena such as collective and emergent behaviour - is the focus of a new centre where researchers are examining everything from the spread of influenza to what a healthy heartbeat looks like. Sergio de Régules reports.

  16. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  17. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  18. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  19. Power supply

    SciTech Connect

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  20. Cogeneration at a residential complex

    SciTech Connect

    Not Available

    1981-10-01

    An energy cogeneration plant in a residential complex is described in which a 4 megawatts plant supplies 1000 apartments in seven buildings and a 60,000 ft/sup 2/ shopping center using diesel engine generators. The complex was retrofitted in that utility service was disconnected and all energy needs (heat, domestic hot water, electricity) are generated within the complex. Recovered heat from engine exhaust and jacket water is used to carry a portion of the buildings' thermal load. Steam is distributed from the central plant to each building. The total energy concept of the complex is described and energy savings are estimated ($300,000/y or 55%). Economics and financing of the project are described. The role of PURPA, standby equipment, automatic operation, and location of the power plant are discussed. Present and future savings in energy costs, tax benefits, and possible future sale of excess power to the utility are described. (MJJ)

  1. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Yu, Haiqing; Lu, Joann J; Rao, Wei; Liu, Shaorong

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  2. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Yu, Haiqing; Lu, Joann J; Rao, Wei; Liu, Shaorong

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122

  3. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Yu, Haiqing; Lu, Joann J.; Rao, Wei

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122

  4. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Yu, Haiqing; Lu, Joann J.; Rao, Wei

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  5. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands.

    PubMed

    Chen, Yanmei; Li, Lei; Chen, Zhou; Liu, Yonglu; Hu, Hailiang; Chen, Wenqian; Liu, Wei; Li, Yahong; Lei, Tao; Cao, Yanyuan; Kang, Zhenghui; Lin, Miaoshui; Li, Wu

    2012-09-17

    An efficient strategy for the synthesis of a wide variety of coordination complexes has been developed. The synthetic protocol involves a solvothermal in situ metal-ligand reaction of picolinaldehyde, ammonium acetate, and transition-metal ions, leading to the generation of 12 coordination complexes supported by a novel class of substituted 1-pyridineimidazo[1,5-a]pyridine ligands (L1-L5). The ligands L1-L5 were afforded by metal-mediated controllable conversion of the aldehyde group of picolialdehyde into a ketone and secondary, tertiary, and quaternary carbon centers, respectively. Complexes of various nuclearities were obtained: from mono-, di-, and tetranuclear to 1D chain polymers. The structures of the in situ formed complexes could be controlled rationally via the choice of appropriate starting materials and tuning of the ratio of the starting materials. The plausible mechanisms for the formation of the ligands L1-L5 were proposed.

  6. Debating complexity in modeling

    USGS Publications Warehouse

    Hunt, Randall J.; Zheng, Chunmiao

    1999-01-01

    As scientists trying to understand the natural world, how should our effort be apportioned? We know that the natural world is characterized by complex and interrelated processes. Yet do we need to explicitly incorporate these intricacies to perform the tasks we are charged with? In this era of expanding computer power and development of sophisticated preprocessors and postprocessors, are bigger machines making better models? Put another way, do we understand the natural world better now with all these advancements in our simulation ability? Today the public's patience for long-term projects producing indeterminate results is wearing thin. This increases pressure on the investigator to use the appropriate technology efficiently. On the other hand, bringing scientific results into the legal arena opens up a new dimension to the issue: to the layperson, a tool that includes more of the complexity known to exist in the real world is expected to provide the more scientifically valid answer.

  7. Exploring complex networks

    NASA Astrophysics Data System (ADS)

    Strogatz, Steven H.

    2001-03-01

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems - be they neurons, power stations or lasers - will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  8. Visualizing complex systems

    SciTech Connect

    Douglas, J.

    1994-12-01

    The complexity of modern power systems has necessitated an increasing degree of computer assistance to ensure efficient and dependable operation. But while the machines are able to process and deliver more data more quickly than ever, the sheer bulk of numerical detail can be overwhelming for an operator trying to make the best decisions in a timely manner. Visualization techniques that help people see patterns and deviations can enable operators to grasp the big picture more intuitively and get to the nub of a problem quickly. 8 figs.

  9. Power system commonality study

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1992-07-01

    A limited top level study was completed to determine the commonality of power system/subsystem concepts within potential lunar and Mars surface power system architectures. A list of power system concepts with high commonality was developed which can be used to synthesize power system architectures which minimize development cost. Examples of potential high commonality power system architectures are given in this report along with a mass comparison. Other criteria such as life cycle cost (which includes transportation cost), reliability, safety, risk, and operability should be used in future, more detailed studies to select optimum power system architectures. Nineteen potential power system concepts were identified and evaluated for planetary surface applications including photovoltaic arrays with energy storage, isotope, and nuclear power systems. A top level environmental factors study was completed to assess environmental impacts on the identified power system concepts for both lunar and Mars applications. Potential power system design solutions for commonality between Mars and lunar applications were identified. Isotope, photovoltaic array (PVA), regenerative fuel cell (RFC), stainless steel liquid-metal cooled reactors (less than 1033 K maximum) with dynamic converters, and in-core thermionic reactor systems were found suitable for both lunar and Mars environments. The use of SP-100 thermoelectric (TE) and SP-100 dynamic power systems in a vacuum enclosure may also be possible for Mars applications although several issues need to be investigated further (potential single point failure of enclosure, mass penalty of enclosure and active pumping system, additional installation time and complexity). There are also technical issues involved with development of thermionic reactors (life, serviceability, and adaptability to other power conversion units). Additional studies are required to determine the optimum reactor concept for Mars applications. Various screening

  10. [Carney complex].

    PubMed

    Kacerovská, D; Michal, M; Síma, R; Grossmann, P; Kazakov, D V

    2011-10-01

    Carney complex is a clinically and genetically heterogeneous disease, with at least two genetic loci including the PRKAR1A gene located on chromosome 17 and the CNC2 locus mapped to chromosome 2. Clinically this syndrome is characterized by multiple myxomas occurring in different anatomic sites, mucocutaneous pigmentary lesions, and a variety of non-endocrine and endocrine tumors, often causing endocrine abnormalities, involving various organs. Knowledge of morphological findings in CNC patients with their typical locations is necessary to raise suspicion of this syndrome by pathologists. Confirmation of the diagnosis allows regular clinical check-ups and early treatment of these patients. PMID:22145222

  11. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  12. Carney complex.

    PubMed

    Espiard, Stéphanie; Bertherat, Jérôme

    2013-01-01

    Carney complex is a rare, dominantly inherited multiple endocrine neoplasia syndrome, affecting endocrine glands as the adrenal cortex (causing Cushing's syndrome), the pituitary and the thyroid. It is associated with many other nonendocrine tumors, including cardiac myxomas, testicular tumors, melanotic schwannoma, breast myxomatosis, and abnormal pigmentation (lentiginosis) or myxomas of the skin. The gene located on the CNC1 locus was identified 12 years ago as the regulatory subunit 1A (R1A) of the protein kinase A (PRKAR1A) located at 17q22-24. Inactivating heterozygous germline mutations of PRKAR1A are observed in about two thirds of Carney complex patients with some genotype-phenotype correlation useful for follow-up and prognosis. More rarely, mutations of phosphodiesterase genes have been reported in patients presenting mainly with Cushing's syndrome. In vitro and in vivo studies help to understand how R1A inactivation leads to tumorigenesis. PRKAR1A appears to be a relatively weak tumorigenic signal which can cooperate with other signaling pathways and tumor suppressors. PMID:23652670

  13. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  14. Transforming Power Grid Operations

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Nieplocha, Jarek; Pratt, Robert G.

    2007-04-15

    While computation is used to plan, monitor, and control power grids, some of the computational technologies now used are more than a hundred years old, and the complex interactions of power grid components impede real-time operations. Thus it is hard to speed up “state estimation,” the procedure used to estimate the status of the power grid from measured input. State estimation is the core of grid operations, including contingency analysis, automatic generation control, and optimal power flow. How fast state estimation and contingency analysis are conducted (currently about every 5 minutes) needs to be increased radically so the analysis of contingencies is comprehensive and is conducted in real time. Further, traditional state estimation is based on a power flow model and only provides a static snapshot—a tiny piece of the state of a large-scale dynamic machine. Bringing dynamic aspects into real-time grid operations poses an even bigger challenge. Working with the latest, most advanced computing techniques and hardware, researchers at Pacific Northwest National Laboratory (PNNL) intend to transform grid operations by increasing computational speed and improving accuracy. Traditional power grid computation is conducted on single PC hardware platforms. This article shows how traditional power grid computation can be reformulated to take advantage of advanced computing techniques and be converted to high-performance computing platforms (e.g., PC clusters, reconfigurable hardware, scalable multicore shared memory computers, or multithreaded architectures). The improved performance is expected to have a huge impact on how power grids are operated and managed and ultimately will lead to more reliability and better asset utilization to the power industry. New computational capabilities will be tested and demonstrated on the comprehensive grid operations platform in the Electricity Infrastructure Operations Center, which is a newly commissioned PNNL facility for

  15. Cogeneration in large complexes

    SciTech Connect

    Kovacik, J.M.; Franklin, J.C.

    1982-02-01

    Power cogeneration in large chemical plants producing sulfuric acid and phosphate fertilizers is covered. In these plants, a large quantity of ''by-product steam'' is generated which can be expanded prior to extraction for process use. Steam generated in excess of process needs can be expanded through the steam turbine to a condenser. The combination of a sulfuric acid production facility with a phosphate complex producing wet process phosphoric acid and diammonium phosphate provides a unique opportunity for cogeneration. The exothermic oxidation reactions in the production of sulfuric (or nitric) acid provide the thermal energy for ''by-product'' steam production at elevated steam conditions. Expanding the steam generated in an automatic extraction, condensing steam turbine-generator permits power generation without any incremental fuel requirement in the process plant. Furthermore, steam demands for the phosphate complex for evaporators, vaporizers and other uses would be extracted from the steam turbine-generator. Many of the practical energy systems as well as hardware considerations have been briefly discussed. The data and examples presented illustrate the attractive economics and operational flexibility which are available through use of these cogeneration systems.

  16. Power Source

    ERIC Educational Resources Information Center

    Schooley, Michael L.

    2010-01-01

    Principals are powerful: They are the primary catalysts for creating a lasting foundation for learning, driving school and student performance, and shaping the long-term impact of school improvement efforts. Yet few principals would characterize themselves as powerful. Rather, they're self-effacing, adaptable, pragmatic, and quick to share credit…

  17. Powerful Literacies.

    ERIC Educational Resources Information Center

    Crowther, Jim, Ed.; Hamilton, Mary, Ed.; Tett, Lyn, Ed.

    These 15 papers share a common theme: seeking to promote literacy as a powerful tool for challenging existing inequalities and dependencies. "Powerful Literacies" (Jim Crowther et al.) is an introduction. Section 1 establishes the theoretical and policy frameworks that underpin the book and shows how literacy is situated in different geographical…

  18. Power Teaching

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2007-01-01

    Power Teaching weaves four factors into a seamless whole: standards, teaching thinking, research based strategies, and critical inquiry. As a prototype in its first year of development with an urban fifth grade class, the power teaching model connects selected district standards, thinking routines from Harvard University Project Zero Research…

  19. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  20. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  1. Space power plants and power-consuming industrial systems

    SciTech Connect

    Latyshev, L.; Semashko, N.

    1996-12-31

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis.

  2. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  3. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  4. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  5. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  6. Power performance

    SciTech Connect

    Anderson, J.

    1996-04-01

    Two power generation engineering and construction firms with international markets are briefly described in this article. Bibb and Associates and Black & Veatch, both Kansas-based companies, are discussed. Current projects and services provided by the companies are described.

  7. Finding Complex Roots: Can You Trust Your Calculator?

    ERIC Educational Resources Information Center

    Ciesla, Barbara A.; Watson, John W.

    2006-01-01

    This article investigates a specific instance when the textbook answer for finding a root of a complex number differed with the answer given by the TI-83. After explaining the reason for the difference the article then expands the definition of the integral root of a complex number to an arbitrary complex power of a complex number.

  8. Power Supply

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Maxwell Laboratories capacitor charging power supply is the first commercial spinoff from the NASA CCDS program - a consortia of industries and government establishments to accelerate development of ground and space based commercial applications of NASA technology. The power supply transforms and conditions large voltages to charge capacitors used in x-ray sources, medical accelerators, etc. It is lighter, more reliable, more compact and efficient. Originally developed for space lasers, its commercial potential was soon recognized.

  9. Power combiner

    SciTech Connect

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  10. [Carney complex].

    PubMed

    Losada Grande, Eladio José; Al Kassam Martínez, Daniel; González Boillos, Margarita

    2011-01-01

    Carney complex (CNC) is an autosomal dominantly inherited syndrome characterized by spotty skin pigmentation, cardiac and cutaneous myxoma, and endocrine overactivity. Skin pigmentation includes lentigines and blue nevi. Myxomas may occur in breast, skin and heart. Cardiac myxomas may be multiple and occur in any cardiac chamber, and are more prone to recurrence. The most common endocrine gland manifestation is an ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD may occur isolated, with no other signs of CNC. Pituitary and thyroid glands and gonads are also involved. The PRKAR1A gene, located in 17 q22-24, encodes type 1A regulatory subunit of protein kinase A. Inactivating germline mutations of this gene are found in 70% of patients with CNC. PRKAR1A is a key component of the c-AMP signaling pathway that has been implicated in endocrine tumorigenesis. Many different mutations have been reported in the PRKAR1A gene. In almost all cases the sequence change was predicted to lead to a premature stop codon and the resultant mutant mRNA was subject to nonsense-mediated mRNA decay. There is no clear genotype-phenotype correlation in patients with CNC. Genetic analysis should be performed in all CNC index cases. All affected patients should be monitored for clinical signs of CNC at least once a year. Genetic diagnosis allows for more effective preparation of more appropriate and effective therapeutic strategies and genetic counseling for patients and gene carriers, and to avoid unnecessary tests to relatives not carrying the gene. PMID:21536508

  11. Learning Platform for Study of Power Electronic Application in Power Systems

    ERIC Educational Resources Information Center

    Bauer, P.; Rompelman, O.

    2005-01-01

    Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…

  12. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  13. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  14. Quantization Effects on Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-05-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws.

  15. Quantization Effects on Complex Networks.

    PubMed

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  16. Multiscale simulation of complex coacervates

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle Q.; Whitmer, Jonathan K.; Qin, Jian; Priftis, Dimitris; Perry, Sarah; Leon, Lorraine; Kade, Matthew; Tirrell, Matthew; de Pablo, Juan J.

    2014-03-01

    Aqueous solutions of polymers having opposite charge can separate into a coacervate phase and a supernatant water phase.The conditions leading to such behavior, including chain lenght, ionization fraction, ionic strength, molecular structure, and temperature are poorly understood. Though thermodynamic models of this phase separation exist, they offer little descriptive power for the mechanism of complex coacervation, and the internal structure of the coacervate and precipitate phases. Here we use atomic-level and coarse-grained representations of polypeptides to study features of the phase diagram, scaling relations, and microstructure of complex coacervates, comparing results to experimental data and model calculations.

  17. Power inverters

    SciTech Connect

    Miller, David H.; Korich, Mark D.; Smith, Gregory S.

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  18. Stigma power.

    PubMed

    Link, Bruce G; Phelan, Jo

    2014-02-01

    When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource "stigma power" and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987, 1990) who notes that power is often most effectively deployed when it is hidden or "misrecognized." To explore the utility of the stigma-power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed - precisely the outcomes stigmatizers might desire. Our introduction of the stigma-power concept carries the possibility of seeing stigmatizing circumstances in a new light.

  19. Power, Revisited

    ERIC Educational Resources Information Center

    Roscigno, Vincent J.

    2011-01-01

    Power is a core theoretical construct in the field with amazing utility across substantive areas, levels of analysis and methodologies. Yet, its use along with associated assumptions--assumptions surrounding constraint vs. action and specifically organizational structure and rationality--remain problematic. In this article, and following an…

  20. Stigma power.

    PubMed

    Link, Bruce G; Phelan, Jo

    2014-02-01

    When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource "stigma power" and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987, 1990) who notes that power is often most effectively deployed when it is hidden or "misrecognized." To explore the utility of the stigma-power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed - precisely the outcomes stigmatizers might desire. Our introduction of the stigma-power concept carries the possibility of seeing stigmatizing circumstances in a new light. PMID:24507908

  1. Power sprouts

    NASA Astrophysics Data System (ADS)

    French, M. M. J.

    2014-05-01

    This paper explains how a large number of sprouts were used as a battery of cells and connected together to power a set of LED Christmas lights. All relevant calculations to find the number of sprouts needed, their arrangement in series and parallel, the charge stored on the required capacitor and the capacitor charging time are illustrated.

  2. Power Trains.

    ERIC Educational Resources Information Center

    Kukuk, Marvin; Mathis, Joe

    This curriculum guide is part of a series designed to teach students about diesel engines. The materials in this power trains guide apply to both on-road and off-road vehicles and include information about chain and belt drives used in tractors and combines. These instructional materials, containing nine units, are written in terms of student…

  3. Star Power

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  4. Star Power

    SciTech Connect

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  5. Power Struggle.

    ERIC Educational Resources Information Center

    Cook, Glenn

    2001-01-01

    California's "power struggle" will probably not be replicated in the other 23 states that have deregulated electricity, but costs are rising everywhere. The Environmental Protection Agency/Department of Energy's new Energy Star online rating system should help school officials measure their buildings' efficiency and remove barriers to improvement.…

  6. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  7. Multiscale vulnerability of complex networks.

    PubMed

    Boccaletti, Stefano; Buldú, Javier; Criado, Regino; Flores, Julio; Latora, Vito; Pello, Javier; Romance, Miguel

    2007-12-01

    We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links' betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

  8. Materials and Fuels Complex Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  9. Nonlocality and communication complexity

    NASA Astrophysics Data System (ADS)

    Buhrman, Harry; Cleve, Richard; Massar, Serge; de Wolf, Ronald

    2010-01-01

    Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles such as the superposition principle, entanglement, and interference. Until recently the common notion of computing was based on classical mechanics and did not take into account all the possibilities that physically realizable computing devices offer in principle. The field gained momentum after Shor developed an efficient algorithm for factoring numbers, demonstrating the potential computing powers that quantum computing devices can unleash. In this review the information counterpart of computing is studied. It was realized early on by Holevo that quantum bits, the quantum mechanical counterpart of classical bits, cannot be used for efficient transformation of information in the sense that arbitrary k -bit messages cannot be compressed into messages of k-1 qubits. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. The area of quantum communication complexity is reviewed and it is shown how it connects the foundational physics questions regarding nonlocality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on nonlocality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics and could even

  10. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  11. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 4. View of south elevation of power plant, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of south elevation of power plant, looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. 2. View of north elevation of power plant, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of north elevation of power plant, looking south - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  18. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  20. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. 11. Interior view, east side of power plant, close of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, east side of power plant, close of up fuel tanks, looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  4. More Power to the President?

    ERIC Educational Resources Information Center

    Keohane, Nannerl O.

    1998-01-01

    Argues that with the increasing complexity of American college and university governance, the presidency should be strengthened, and the president's goal should be to use the powers of the office in serious, not cosmetic, collaboration with others who have responsibility and interests in the institution, and to bring partial views together in a…

  5. Spectroscopy of plutonium-organic complexes

    SciTech Connect

    Richmann, M.K.; Reed, D.T.

    1995-12-31

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10{sup {minus}3}--10{sup {minus}7} M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes.

  6. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  7. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  8. The Power of Power Functions

    ERIC Educational Resources Information Center

    Gordon, Florence S.

    2005-01-01

    Traditional college algebra courses focus almost exclusively on power functions such as y = x[superscript 2] and y = x[superscript 3] rather than the more general y = x[superscript p]. However, it is the more general form that is the basis of the mathematical models that arise throughout the natural sciences in a host of unexpected and highly…

  9. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  10. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  11. Stigma Power

    PubMed Central

    Link, Bruce G.; Phelan, Jo

    2015-01-01

    When people have an interest in keeping other people down, in or away, stigma is a resource that allows them to obtain ends they desire. We call this resource “stigma power” and use the term to refer to instances in which stigma processes achieve the aims of stigmatizers with respect to the exploitation, control or exclusion of others. We draw on Bourdieu (1987; 1990) who notes that power is often most effectively deployed when it is hidden or “misrecognized.” To explore the utility of the stigma power concept we examine ways in which the goals of stigmatizers are achieved but hidden in the stigma coping efforts of people with mental illnesses. We developed new self-report measures and administered them to a sample of individuals who have experienced mental illness to test whether results are consistent with the possibility that, in response to negative societal conceptions, the attitudes, beliefs and behaviors of people with psychosis lead them to be concerned with staying in, propelled to stay away and induced to feel downwardly placed –precisely the outcomes stigmatizers might desire. Our introduction of the stigma power concept carries the possibility of seeing stigmatizing circumstances in a new light. PMID:24507908

  12. On State Complexes and Special Cube Complexes

    ERIC Educational Resources Information Center

    Peterson, Valerie J.

    2009-01-01

    This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…

  13. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  14. A new bipolar Qtrim power supply system

    SciTech Connect

    Mi, C.; Bruno, D.; Drozd, J.; Nolan, T.; Orsatti, F.; Heppener, G.; Di Lieto, A.; Schultheiss, C.; Samms, T.; Zapasek, R.; Sandberg, J.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  15. A power flow based model for the analysis of vulnerability in power networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoyang; Chen, Guo; Hill, David J.; Dong, Zhao Yang

    2016-10-01

    An innovative model which considers power flow, one of the most important characteristics in a power system, is proposed for the analysis of power grid vulnerability. Moreover, based on the complex network theory and the Max-Flow theorem, a new vulnerability index is presented to identify the vulnerable lines in a power grid. In addition, comparative simulations between the power flow based model and existing models are investigated on the IEEE 118-bus system. The simulation results demonstrate that the proposed model and the index are more effective in power grid vulnerability analysis.

  16. How PowerPoint Is Killing Education

    ERIC Educational Resources Information Center

    Isseks, Marc

    2011-01-01

    Although it is essential to incorporate new technologies into the classroom, says Isseks, one trend has negatively affected instruction--the misuse of PowerPoint presentations. The author describes how poorly designed PowerPoint presentations reduce complex thoughts to bullet points and reduce the act of learning to transferring text from slide to…

  17. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  18. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  19. Mass Spectrometry of Intact Membrane Protein Complexes

    PubMed Central

    Laganowsky, Arthur; Reading, Eamonn; Hopper, Jonathan T.S.; Robinson, Carol V.

    2014-01-01

    Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries. PMID:23471109

  20. Power optics

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2014-02-01

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  1. Power optics

    SciTech Connect

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  2. Direct Drive for Low Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2005-01-01

    Due to recent studies, NASA has initiated the development of a low power Hall thruster for discovery class missions. The potential advantages of a low power Hall thruster is primarily due to its high efficiency operation at low power and its lower complexity compared to ion engines. Direct drive is another method of reducing the complexity of a Hall thruster system while improving its efficiency. The technical challenges associated with this technology are reported. Additionally, the benefits of this technology are discussed based on parametric studies and mission analysis.

  3. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  4. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  5. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  6. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  7. Electricity Market Complex Adaptive System

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is tomore » model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.« less

  8. Turbulence measurements over complex terrain

    NASA Astrophysics Data System (ADS)

    Skupniewicz, Charles E.; Kamada, Ray F.; Schacher, Gordon E.

    1989-07-01

    Horizontal turbulence measurements obtained from 22 wind sensors located on 9 towers in a mountainous coastal area are described and categorized by stability and terrain. Vector wind time series are high-pass filtered, and lateral and longitudinal wind speed variance is calculated for averaging times ranging from 15 s to 2 h. Parameterizations of the functional dependence of variance on averaging time are discussed, and a modification of Panofsky's (1988) uniform terrain technique applicable to complex terrain is presented. The parameterization is applied to the data and shown to be more realistic than a less complicated power law technique. The parameter values are shown to be different than the flat terrain cases of Kaimal et al. (1972), and are primarily a function of sensor location within the complex terrain. The parameters are also examined in terms of their dependence upon season, stability, marine boundary-layer height, and measurement height.

  9. Protein Complexes in Bacteria

    PubMed Central

    Caufield, J. Harry; Abreu, Marco; Wimble, Christopher; Uetz, Peter

    2015-01-01

    Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometry-characterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies. PMID:25723151

  10. Addiction Science: Uncovering Neurobiological Complexity

    PubMed Central

    Volkow, N. D.; Baler, R. D.

    2013-01-01

    Until very recently addiction-research was limited by existing tools and strategies that were inadequate for studying the inherent complexity at each of the different phenomenological levels. However, powerful new tools (e.g., optogenetics and designer drug receptors) and high throughput protocols are starting to give researchers the potential to systematically interrogate “all” genes, epigenetic marks, and neuronal circuits. These advances, combined with imaging technologies (both for preclinical and clinical studies) and a paradigm shift towards open access have spurred an unlimited growth of datasets transforming the way we investigate the neurobiology of substance use disorders (SUD) and the factors that modulate risk and resilience. PMID:23688927

  11. Power transmission

    SciTech Connect

    Gunda, R.; McCarty, M.R.; Rode, M.A.

    1988-05-03

    This patent describes an electrohydraulic servo system which includes, in combination, a pressure compensated flow control servo valve for proportionally variably feeding hydraulic fluid to a load at a flow rate which is a predetermined proportional function of an electronic valve control signal, a variable output pump for coupling to a source of motive power to feed hydraulic fluid under pressure from a source to the servo valve, pump control means for controlling output of the pump, and an electronic servo control coupled to the valve and including means for receiving a first signal indicative of motion desired at the load, means for receiving a second signal indicative of actuation motion at the load and means for generating the valve control signal to the valve as a function of a difference between the first and second signals. The valve control signal is indicative of fluid flow velocity at the valve required to obtain the desired motion at the load, characterized in that the pump control means comprises: means for receiving the valve control signal, means for providing a signal indicative of fluid flow rate at the valve as the predetermined function of the valve control signal, and means for providing an output control signal to the pump as a function of the flow-indicative signal.

  12. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  13. Women, Power, and Libraries.

    ERIC Educational Resources Information Center

    Schuman, Patricia Glass

    1984-01-01

    Discusses the concept of power in the context of women and the library profession, citing views of power by Max Weber, John Kenneth Galbraith, Letty Cottin Pogrebin, and Rosabeth Moss Kantor. Male power and female submission, defining power, organizing for power, and sharing power are highlighted. A 12-item bibliography is included. (EJS)

  14. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  15. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  16. Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools

    PubMed Central

    Jo, Hunho; Ban, Changill

    2016-01-01

    Correct diagnosis and successful therapy are extremely important to enjoy a healthy life when suffering from a disease. To achieve these aims, various cutting-edge technologies have been designed and fabricated to diagnose and treat specific diseases. Among these technologies, aptamer–nanomaterial hybrids have received considerable attention from scientists and doctors because they have numerous advantages over other methods, such as good biocompatibility, low immunogenicity and controllable selectivity. In particular, aptamers, oligonucleic acids or peptides that bind to a specific target molecule, are regarded as outstanding biomolecules. In this review, several screening techniques for aptamers, also called systematic evolution of ligands by exponential enrichment (SELEX) methods, are introduced, and diagnostic and therapeutic aptamer applications are also presented. Furthermore, we describe diverse aptamer–nanomaterial conjugate designs and their applications for diagnosis and therapy. PMID:27151454

  17. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  18. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  19. What is complex about complex disorders?

    PubMed Central

    2012-01-01

    Rather than being polygenic, complex disorders probably represent umbrella terms for collections of conditions caused by rare, recent mutations in any of a large number of different genes. PMID:22269335

  20. The distrust of nuclear power.

    PubMed

    Hohenemser, C; Kasperson, R; Kates, R

    1977-04-01

    Society seems content to strike a more moderate or uncertain balance with other technologies than with nuclear power. This attitude is traced to the social history of nuclear power, the genuine uncertainty and complexity of safety issues, underestimation of the regulatory task, and the rancorous nature of the debate. Nuclear power is not just another problem of technology, of environment, or of health. It is unique in our time. To be more demanding of nuclear safety may be to apply a double standard, but not necessarily an irrational one. Our best course appears to be to keep the nuclear option open, work toward the rapid resolution of problems such as waste disposal, but postpone recycling and the breeder reactor. Time is needed to resolve immediate problems such as transport and disposal of nuclear wastes; to come to terms with trans-scientific issues such as plutonium toxicity, sabotage, and weapons proliferation; and to evaluate long-term energy alternatives.

  1. An index of floodplain surface complexity

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2016-01-01

    Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.

  2. Complex-I-ty in aging

    PubMed Central

    Stork, Devon A.

    2016-01-01

    The role of mitochondrial complex I in aging has been studied in both C. elegans and Drosophila, where RNAi knock down of specific complex I subunits has been shown to extend lifespan. More recently, studies in Drosophila have shown that an increase in mitochondrial activity, including complex I-like activity, can also slow aging. In this review, we discuss this apparent paradox. Improved maintenance of mitochondrial activity, mitochondrial homeostasis, may be responsible for lifespan extension in both cases. Decreased electron transport chain activity caused by reducing complex I subunit expression prompts an increase in stress response signaling that leads to enhanced mitochondrial homeostasis during aging. Increased complex I activity, as well as mitochondrial biogenesis, is expected to both directly counteract the decline in mitochondrial health that occurs during aging and may also increase cellular NAD+ levels, which have been linked to mitochondrial homeostatic mechanisms through activation of sirtuins. We suggest that manipulations that increase or decrease complex I activity both converge on improved mitochondrial homeostasis during aging, resulting in prolonged lifespan. PMID:24961226

  3. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other parts of ... after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications called ...

  4. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type of cancer of the ... two different treatments with other medications. Vincristine lipid complex is in a class of medications called vinca ...

  5. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to grow on ... related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called anthracyclines. ...

  6. Cytarabine Lipid Complex Injection

    MedlinePlus

    Cytarabine lipid complex is used to treat lymphomatous meningitis (a type of cancer in the covering of the spinal cord and brain). Cytarabine lipid complex is in a class of medications called antimetabolites. ...

  7. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma (a ...

  8. Complex carbohydrates (image)

    MedlinePlus

    ... later. Complex carbohydrate foods provide vitamins, minerals, and fiber that are important to the health of an ... which do not have the vitamins, minerals, and fiber found in complex and natural carbohydrates. Refined sugars ...

  9. Dynamic Simulation Nuclear Power Plants

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  10. Simply Complex by Design

    ERIC Educational Resources Information Center

    Nelson, Harold G.

    2007-01-01

    Reality--real life--is complex, more complex than can be imagined. The majority of our most pressing issues confronted in the management of organizations are overwhelmingly complex. I make the case for a systems design approach as a remedy. Examples introduced in this paper illuminate conceptual tools that advance how people transform their…

  11. Congruently melting complex oxides

    SciTech Connect

    Abrahams, S.C.; Brandle, C.D. Jr.

    1988-04-26

    A device is described comprising: a material including a complex oxide, characterized in that the complex oxide is essentially free of gadolinium scandium gallium garnet, gadolinium gallium garnet and lithium niobate, and the composition of the complex oxide is congruent and differs from stoichiometry by at least 0.1 atomic percent for at least one constituent element.

  12. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  13. Computability-theoretic learning complexity.

    PubMed

    Case, John; Kötzing, Timo

    2012-07-28

    Initially discussed are some of Alan Turing's wonderfully profound and influential ideas about mind and mechanism-including regarding their connection to the main topic of the present study, which is within the field of computability-theoretic learning theory. Herein is investigated the part of this field concerned with the algorithmic, trial-and-error inference of eventually correct programs for functions from their data points. As to the main content of this study: in prior papers, beginning with the seminal work by Freivalds et al. in 1995, the notion of intrinsic complexity is used to analyse the learning complexity of sets of functions in a Gold-style learning setting. Herein are pointed out some weaknesses of this notion. Offered is an alternative based on epitomizing sets of functions-sets that are learnable under a given learning criterion, but not under other criteria that are not at least as powerful. To capture the idea of epitomizing sets, new reducibility notions are given based on robust learning (closure of learning under certain sets of computable operators). Various degrees of epitomizing sets are characterized as the sets complete with respect to corresponding reducibility notions! These characterizations also provide an easy method for showing sets to be epitomizers, and they are then employed to prove several sets to be epitomizing. Furthermore, a scheme is provided to generate easily very strong epitomizers for a multitude of learning criteria. These strong epitomizers are the so-called self-learning sets, previously applied by Case & Kötzing in 2010. These strong epitomizers can be easily generated and employed in a myriad of settings to witness with certainty the strict separation in learning power between the criteria so epitomized and other not as powerful criteria!

  14. Secondary power systems

    SciTech Connect

    Not Available

    1985-01-01

    In aeronautical engineering secondary power systems have long played second fiddle to the airframe, the engine, and indeed, the avionics. This collection of papers is thus timely, and its publication by the Institution of Mechanical Engineers appropriate, as secondary power systems in modern aircraft present challenging mechanical engineering problems. In military aircraft demands for electrical and hydraulic power and high pressure air have grown over the past two decades. To these basic needs are added requirements for emergency power, ground power, and independent engine starting. Additionally increased reliability and maintainability is demanded from all secondary power systems. Complete contents: What is a secondary power system. Modern technology secondary power systems for next generation military aircraft; Integrated power units; Secondary power system gearbox; Starting the system - air turbine starters; Auxiliary and emergency power system; Secondary hydraulic power generation; Advanced technology electrical power generation equipment.

  15. Managing Complex Network Operation with Predictive Analytics

    SciTech Connect

    Huang, Zhenyu; Wong, Pak C.; Mackey, Patrick S.; Chen, Yousu; Ma, Jian; Schneider, Kevin P.; Greitzer, Frank L.

    2008-03-26

    Complex networks play an important role in modern societies. Their failures, such as power grid blackouts, would lead to significant disruption of people’s life, industry and commercial activities, and result in massive economic losses. Operation of these complex networks is an extremely challenging task due to their complex structures, wide geographical coverage, complex data/information technology systems, and highly dynamic and nonlinear behaviors. None of the complex network operation is fully automated; human-in-the-loop operation is critical. Given the complexity involved, there may be thousands of possible topological configurations at any given time. During an emergency, it is not uncommon for human operators to examine thousands of possible configurations in near real-time to choose the best option and operate the network effectively. In today’s practice, network operation is largely based on experience with very limited real-time decision support, resulting in inadequate management of complex predictions and inability to anticipate, recognize, and respond to situations caused by human errors, natural disasters, and cyber attacks. A systematic approach is needed to manage the complex operation paradigms and choose the best option in a near-real-time manner. This paper applies predictive analytics techniques to establish a decision support system for complex network operation management and help operators to predict potential network failures and adapt the network to adverse situations. The resultant decision support system enables continuous monitoring of network performance and turns large amounts of data into actionable information. Examples with actual power grid data are presented to demonstrate the capability of this proposed decision support system.

  16. The complex chemical Langevin equation.

    PubMed

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-07-14

    The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.

  17. The complex chemical Langevin equation

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-07-14

    The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE’s main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE’s predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE’s accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the “complex CLE” predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.

  18. Analysis of Genetically Complex Epilepsies

    PubMed Central

    Ottman, Ruth

    2006-01-01

    During the last decade, great progress has been made in the discovery of genes that influence risk for epilepsy. However, these gene discoveries have been in epilepsies with Mendelian modes of inheritance, which comprise only a tiny fraction of all epilepsy. Most people with epilepsy have no affected relatives, suggesting that the great majority of all epilepsies are genetically complex: multiple genes contribute to their etiology, none of which has a major effect on disease risk. Gene discovery in the genetically complex epilepsies is a formidable task. It is unclear which epilepsy phenotypes are most advantageous to study, and chromosomal localization and mutation detection are much more difficult than in Mendelian epilepsies. Association studies are very promising for the identification of complex epilepsy genes, but we are still in the earliest stages of their application in the epilepsies. Future studies should employ very large sample sizes to ensure adequate statistical power, clinical phenotyping methods of the highest quality, designs and analytic techniques that control for population stratification, and state-of-the-art molecular methods. Collaborative studies are essential to achieve these goals. PMID:16359464

  19. The complex chemical Langevin equation

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-07-01

    The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.

  20. Criticality Maximizes Complexity in Neural Tissue

    PubMed Central

    Timme, Nicholas M.; Marshall, Najja J.; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M.

    2016-01-01

    The analysis of neural systems leverages tools from many different fields. Drawing on techniques from the study of critical phenomena in statistical mechanics, several studies have reported signatures of criticality in neural systems, including power-law distributions, shape collapses, and optimized quantities under tuning. Independently, neural complexity—an information theoretic measure—has been introduced in an effort to quantify the strength of correlations across multiple scales in a neural system. This measure represents an important tool in complex systems research because it allows for the quantification of the complexity of a neural system. In this analysis, we studied the relationships between neural complexity and criticality in neural culture data. We analyzed neural avalanches in 435 recordings from dissociated hippocampal cultures produced from rats, as well as neural avalanches from a cortical branching model. We utilized recently developed maximum likelihood estimation power-law fitting methods that account for doubly truncated power-laws, an automated shape collapse algorithm, and neural complexity and branching ratio calculation methods that account for sub-sampling, all of which are implemented in the freely available Neural Complexity and Criticality MATLAB toolbox. We found evidence that neural systems operate at or near a critical point and that neural complexity is optimized in these neural systems at or near the critical point. Surprisingly, we found evidence that complexity in neural systems is dependent upon avalanche profiles and neuron firing rate, but not precise spiking relationships between neurons. In order to facilitate future research, we made all of the culture data utilized in this analysis freely available online. PMID:27729870

  1. Heat diffusion: Thermodynamic depth complexity of networks

    NASA Astrophysics Data System (ADS)

    Escolano, Francisco; Hancock, Edwin R.; Lozano, Miguel A.

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power.

  2. Modeling a crowdsourced definition of molecular complexity.

    PubMed

    Sheridan, Robert P; Zorn, Nicolas; Sherer, Edward C; Campeau, Louis-Charles; Chang, Charlie Zhenyu; Cumming, Jared; Maddess, Matthew L; Nantermet, Philippe G; Sinz, Christopher J; O'Shea, Paul D

    2014-06-23

    This paper brings together the concepts of molecular complexity and crowdsourcing. An exercise was done at Merck where 386 chemists voted on the molecular complexity (on a scale of 1-5) of 2681 molecules taken from various sources: public, licensed, and in-house. The meanComplexity of a molecule is the average over all votes for that molecule. As long as enough votes are cast per molecule, we find meanComplexity is quite easy to model with QSAR methods using only a handful of physical descriptors (e.g., number of chiral centers, number of unique topological torsions, a Wiener index, etc.). The high level of self-consistency of the model (cross-validated R(2) ∼0.88) is remarkable given that our chemists do not agree with each other strongly about the complexity of any given molecule. Thus, the power of crowdsourcing is clearly demonstrated in this case. The meanComplexity appears to be correlated with at least one metric of synthetic complexity from the literature derived in a different way and is correlated with values of process mass intensity (PMI) from the literature and from in-house studies. Complexity can be used to differentiate between in-house programs and to follow a program over time.

  3. Space power subsystem automation technology

    NASA Technical Reports Server (NTRS)

    Graves, J. R. (Compiler)

    1982-01-01

    The technology issues involved in power subsystem automation and the reasonable objectives to be sought in such a program were discussed. The complexities, uncertainties, and alternatives of power subsystem automation, along with the advantages from both an economic and a technological perspective were considered. Whereas most spacecraft power subsystems now use certain automated functions, the idea of complete autonomy for long periods of time is almost inconceivable. Thus, it seems prudent that the technology program for power subsystem automation be based upon a growth scenario which should provide a structured framework of deliberate steps to enable the evolution of space power subsystems from the current practice of limited autonomy to a greater use of automation with each step being justified on a cost/benefit basis. Each accomplishment should move toward the objectives of decreased requirement for ground control, increased system reliability through onboard management, and ultimately lower energy cost through longer life systems that require fewer resources to operate and maintain. This approach seems well-suited to the evolution of more sophisticated algorithms and eventually perhaps even the use of some sort of artificial intelligence. Multi-hundred kilowatt systems of the future will probably require an advanced level of autonomy if they are to be affordable and manageable.

  4. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  5. Complexity transmission during replication

    PubMed Central

    Davis, Brian K.

    1979-01-01

    The transmission of complexity during DNA replication has been investigated to clarify the significance of this molecular property in a deterministic process. Complexity was equated with the amount of randomness within an ordered molecular structure and measured by the entropy of a posteriori probabilities for discrete (monomer sequences, atomic bonds) and continuous (torsion angle sequences) structural parameters in polynucleotides, proteins, and ligand molecules. A theoretical analysis revealed that sequence complexity decreases during transmission from DNA to protein. It was also found that sequence complexity limits the attainable complexity in the folding of a polypeptide chain and that a protein cannot interact with a ligand moiety of higher complexity. The analysis indicated, furthermore, that in any deterministic molecular process a cause possesses more complexity than its effect. This outcome broadly complies with Curie's symmetry principle. Results from an analysis of an extensive set of experimental data are presented; they corroborate these findings. It is suggested, therefore, that complexity governs the direction of order—order molecular transformations. Two biological implications are (i) replication of DNA in a stepwise, repetitive manner by a polymerase appears to be a necessary consequence of structural constraints imposed by complexity, and (ii) during evolution, increases in complexity had to involve a nondeterministic mechanism. This latter requirement apparently applied also to development of the first replicating system on earth. PMID:287070

  6. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  7. Infrared power cells for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Summers, Christopher J.

    1991-01-01

    An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.

  8. NONCONSCIOUS EFFECTS OF POWER ON BASIC APPROACH AND AVOIDANCE TENDENCIES.

    PubMed

    Smith, Pamela K; Bargh, John A

    2008-02-01

    According to the approach/inhibition theory of power (Keltner, Gruenfeld, & Anderson, 2003), having power should be associated with the approach system, and lacking power with the avoidance system. However, to this point research has focused solely on whether power leads to more action, particularly approach-related action, or not. In three experiments, we extend this research by exploring the direct, unintentional relation between power and both approach and avoidance tendencies. Priming high power led to greater relative BAS strength than priming low power, but did not affect the BIS (Exp. 1). High-power priming also facilitated both simple and complex approach behavior, but did not affect avoidance behavior (Exp. 2-3). These effects of power occurred even in power-irrelevant situations. They also cannot be explained by priming of general positive versus negative constructs, nor by changes in positive, negative, approach-related, or avoidance-related affect.

  9. Transcriptional regulation by CHIP/LDB complexes.

    PubMed

    Bronstein, Revital; Levkovitz, Liron; Yosef, Nir; Yanku, Michaela; Ruppin, Eytan; Sharan, Roded; Westphal, Heiner; Oliver, Brian; Segal, Daniel

    2010-08-12

    It is increasingly clear that transcription factors play versatile roles in turning genes "on" or "off" depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for

  10. Self-similarity of complex networks.

    PubMed

    Song, Chaoming; Havlin, Shlomo; Makse, Hernán A

    2005-01-27

    Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.

  11. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  12. Review of Public Safety in Viewpoint of Complex Networks

    SciTech Connect

    Gai Chengcheng; Weng Wenguo; Yuan Hongyong

    2010-05-21

    In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.

  13. BOOK REVIEW: Modeling Complex Systems

    NASA Astrophysics Data System (ADS)

    Schreckenberg, M.

    2004-10-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as `complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a compehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this `wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany--Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success!

  14. Modeling of DC spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Berry, F. C.

    1995-01-01

    Future spacecraft power systems must be capable of supplying power to various loads. This delivery of power may necessitate the use of high-voltage, high-power dc distribution systems to transmit power from the source to the loads. Using state-of-the-art power conditioning electronics such as dc-dc converters, complex series and parallel configurations may be required at the interface between the source and the distribution system and between the loads and the distribution system. This research will use state-variables to model and simulate a dc spacecraft power system. Each component of the dc power system will be treated as a multiport network, and a state model will be written with the port voltages as the inputs. The state model of a component will be solved independently from the other components using its state transition matrix. A state-space averaging method is developed first in general for any dc-dc switching converter, and then demonstrated in detail for the particular case of the boost power stage. General equations for both steady-state (dc) and dynamic effects (ac) are obtained, from which important transfer functions are derived and applied to a special case of the boost power stage.

  15. Modeling of DC spacecraft power systems

    NASA Astrophysics Data System (ADS)

    Berry, F. C.

    1995-07-01

    Future spacecraft power systems must be capable of supplying power to various loads. This delivery of power may necessitate the use of high-voltage, high-power dc distribution systems to transmit power from the source to the loads. Using state-of-the-art power conditioning electronics such as dc-dc converters, complex series and parallel configurations may be required at the interface between the source and the distribution system and between the loads and the distribution system. This research will use state-variables to model and simulate a dc spacecraft power system. Each component of the dc power system will be treated as a multiport network, and a state model will be written with the port voltages as the inputs. The state model of a component will be solved independently from the other components using its state transition matrix. A state-space averaging method is developed first in general for any dc-dc switching converter, and then demonstrated in detail for the particular case of the boost power stage. General equations for both steady-state (dc) and dynamic effects (ac) are obtained, from which important transfer functions are derived and applied to a special case of the boost power stage.

  16. Two giant stellar complexes

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Efremov, E. Yu.

    Common star complexes are huge (0.3-1 kpc in diameter) groups of relatively young stars, associations and clusters. The complexes usually form regular chains along spiral arms of grand design galaxies, being evidently formed and supported by magneto- gravitational instability developing along an arm. Special attention is given to a few large complexes which have signatures of gravitational boundness, such as round shape and high central density. Concentrations of stars and clusters in such a complex in M51 galaxy were found in this paper; we concluded it is possible to suggest that the complex is gravitationally bound. It is also stressed that some properties of the giant complex in NGC 6946 (such as its semicircular and sharp Western edge) are still enigmatic.

  17. Artistic forms and complexity.

    PubMed

    Boon, J-P; Casti, J; Taylor, R P

    2011-04-01

    We discuss the inter-relationship between various concepts of complexity by introducing a complexity 'triangle' featuring objective complexity, subjective complexity and social complexity. Their connections are explored using visual and musical compositions of art. As examples, we quantify the complexity embedded within the paintings of the Jackson Pollock and the musical works of Johann Sebastian Bach. We discuss the challenges inherent in comparisons of the spatial patterns created by Pollock and the sonic patterns created by Bach, including the differing roles that time plays in these investigations. Our results draw attention to some common intriguing characteristics suggesting 'universality' and conjecturing that the fractal nature of art might have an intrinsic value of more general significance. PMID:21382264

  18. Responsibility, Complexity Science and Education: Dilemmas and Uncertain Responses

    ERIC Educational Resources Information Center

    Fenwick, Tara

    2009-01-01

    While complexity science is gaining interest among educational theorists, its constructs do not speak to educational responsibility or related core issues in education of power and ethics. Yet certain themes of complexity, as taken up in educational theory, can help unsettle the more controlling and problematic discourses of educational…

  19. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC DETAILS OF POWER OPERATED LOUVERS. Sheet 29-54 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05761, Marion Power Shovel Company, October 1963. CRAWLER TRUCK ASSEMBLY-FIELD WELDMENT SECTIONS & DETAILS. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05762, Marion Power Shovel Company, December 1964. CHASSIS STRUCTURE ASSEMBLY. Sheet 2 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05761, Marion Power Shovel Company, October 1963. CRAWLER TRUCK ASSEMBLY-SIDE VIEW. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05760, Marion Power Shovel Company, January 1965. GENERAL ARRANGEMENT. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05770, Marion Power Shovel Company, February 1964. OPERATOR'S CAB ASSY. Sheet 1 of 1 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  5. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05761, Marion Power Shovel Company, October 1963. CRAWLER TRUCK ASSEMBLY-PLAN VIEW. Sheet 2 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  7. Models for the modern power grid

    NASA Astrophysics Data System (ADS)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  8. Complexation of Optoelectronic Systems

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Il‧in, M. Yu.; Konyaev, M. A.; Mikhailenko, A. S.; Morozov, A. V.; Strakhov, S. Yu.

    2016-05-01

    Problems of increasing the efficiency and the functionality of complex optoelectronic systems for monitoring real atmospheric conditions and of their use are discussed. It is shown by the example of a meteorological complex comprising an infrared wind-sensing lidar and an X-range Doppler radar that the complexation of probing systems working in different electromagnetic-radiation ranges opens up new opportunities for determining the meteorological parameters of a turbulent atmosphere and investigating the interaction of radiation with it.

  9. Genetics of complex diseases.

    PubMed

    Motulsky, Arno G

    2006-02-01

    Approaches to the study of the genetic basis of common complex diseases and their clinical applications are considered. Monogenic Mendelian inheritance in such conditions is infrequent but its elucidation may help to detect pathogenic mechanisms in the more common variety of complex diseases. Involvement by multiple genes in complex diseases usually occurs but the isolation and identification of specific genes so far has been exceptional. The role of common polymorphisms as indicators of disease risk in various studies is discussed.

  10. Discovery of rare variants for complex phenotypes.

    PubMed

    Kosmicki, Jack A; Churchhouse, Claire L; Rivas, Manuel A; Neale, Benjamin M

    2016-06-01

    With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in the genetic contribution to complex trait variation. While some of the earlier targeted sequencing studies successfully identified rare variants of large effect, unbiased gene discovery using exome sequencing has experienced limited success for complex traits. Nevertheless, rare variant association studies have demonstrated that rare variants do contribute to phenotypic variability, but sample sizes will likely have to be even larger than those of common variant association studies to be powered for the detection of genes and loci. Large-scale sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation efforts such as the Exome Aggregation Consortium, have made great strides in advancing our knowledge of the landscape of rare variation, but there remain many considerations when studying rare variation in the context of complex traits. We discuss these considerations in this review, presenting a broad range of topics at a high level as an introduction to rare variant analysis in complex traits including the issues of power, study design, sample ascertainment, de novo variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, larger sequencing studies will yield clearer insights into the biological consequence of rare mutations and may reveal which genes play a role in the etiology of complex traits. PMID:27221085

  11. Status of the SNS Power Ramp Up

    SciTech Connect

    Plum, Michael A

    2010-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. Since formal operations began in 2006, the beam power has been steadily increasing toward the design goal of 1.4 MW. In September 2009 the power surpassed 1 MW for the first time, and operation at the 1 MW level is now routine. The status of the beam power ramp-up program and present operational limitations will be described.

  12. Causes of catastrophic failure in complex systems

    NASA Astrophysics Data System (ADS)

    Thomas, David A.

    2010-08-01

    Root causes of mission critical failures and major cost and schedule overruns in complex systems and programs are studied through the post-mortem analyses compiled for several examples, including the Hubble Space Telescope, the Challenger and Columbia Shuttle accidents, and the Three Mile Island nuclear power plant accident. The roles of organizational complexity, cognitive biases in decision making, the display of quantitative data, and cost and schedule pressure are all considered. Recommendations for mitigating the risk of similar failures in future programs are also provided.

  13. Complexity Characteristics of Currency Networks

    NASA Astrophysics Data System (ADS)

    Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.

    2006-11-01

    A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.

  14. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  15. Music, New Aesthetic and Complexity

    NASA Astrophysics Data System (ADS)

    Adams, David; Grigolini, Paolo

    This paper illustrates an algorithm to generate a complex acoustic stimulus whose statistical properties are as close as possible to the non-stationary dynamics revealed by the current analysis of the electro-encephalogram activity of the human brain. Thus, the composition is driven by crucial events, namely renewal non-Poisson events with an inter-time distribution density ψ(τ), which is an inverse power law with index μ, fitting the condition 1 ≤ μ ≤ 2. We find that the music composition is more attractive when we fill the time region between two consecutive crucial events so as to enhance the leading role of μ. In all cases the spectra markedly depart from the ideal 1/f condition, thereby suggesting a shift from the 1/f noise perspective of the pioneer work of Voss and Clark to the Zipf’s law perspective advocated by more recent work on music composition.

  16. Complexity in Picture Books

    ERIC Educational Resources Information Center

    Sierschynski, Jarek; Louie, Belinda; Pughe, Bronwyn

    2015-01-01

    One of the key requirements of Common Core State Standards (CCSS) in English Language Arts is that students are able to read and access complex texts across all grade levels. The CCSS authors emphasize both the limitations and lack of accuracy in the current CCSS model of text complexity, calling for the development of new frameworks. In response…

  17. Performance Improvement Assuming Complexity

    ERIC Educational Resources Information Center

    Rowland, Gordon

    2007-01-01

    Individual performers, work teams, and organizations may be considered complex adaptive systems, while most current human performance technologies appear to assume simple determinism. This article explores the apparent mismatch and speculates on future efforts to enhance performance if complexity rather than simplicity is assumed. Included are…

  18. Freestanding Complex Optical Scanners.

    ERIC Educational Resources Information Center

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  19. Visual Complexity: A Review

    ERIC Educational Resources Information Center

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  20. Tuberculosis in complex emergencies.

    PubMed

    Coninx, Rudi

    2007-08-01

    This paper describes the key factors and remaining challenges for tuberculosis (TB) control programmes in complex emergencies. A complex emergency is "a humanitarian crisis in a country, region or society where there is total or considerable breakdown of authority resulting from internal or external conflict and which requires an international response that goes beyond the mandate or capacity of any single agency and/or the ongoing United Nations country programme." Some 200 million people are believed to live in countries affected by complex emergencies; almost all of these are developing countries that also bear the main burden of TB. The effects of complex emergencies impact on TB control programmes, interfering with the goals of identifying and curing TB patients and possibly leading to the emergence of MDR-TB. There are many detailed descriptions of aid interventions during complex emergencies; yet TB control programmes are absent from most of these reports. If TB is neglected, it may quickly result in increased morbidity and mortality, as was demonstrated in Bosnia and Herzegovina and in Somalia. TB is a major disease in complex emergencies and requires an appropriate public health response. While there is no manual to cover complex emergencies, the interagency manual for TB control in refugee and displaced populations provides valuable guidance. These programmes contribute to the body of evidence needed to compile such a manual, and should ensure that the experiences of TB control in complex emergencies lead to the establishment of evidence-based programmes. PMID:17768523

  1. U1A Complex

    ScienceCinema

    None

    2016-07-12

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  2. U1A Complex

    SciTech Connect

    2014-10-28

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  3. Complexity and Relations

    ERIC Educational Resources Information Center

    Lancaster, Jeanette Elizabeth

    2013-01-01

    A central feature of complexity is that it is based on non-linear, recursive relations. However, in most current accounts of complexity such relations, while non-linear, are based on the reductive relations of a Newtonian onto-epistemological framework. This means that the systems that are emergent from the workings of such relations are a…

  4. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  5. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  6. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  7. Ideological Power in Education

    ERIC Educational Resources Information Center

    Laursen, Per F.

    2006-01-01

    This article agues that ideological power plays an important role in education and that it is part of a general trend in policy and social sciences to underestimate ideological and overestimate the role of political and economic power. The article sketches a concept of power in general and especially of ideological power based primarily on the…

  8. Tidal power in Argentina

    SciTech Connect

    Aisiks, E.G.

    1993-03-01

    This presentation describes the tidal power potential of Argentina and the current status of its utilization. The topics of the presentation include tidal power potential, electric production of the region and the Argentine share of production and consumption, conventional hydroelectric potential, economic feasibility of tidal power production, and the general design and feasibility of a tidal power plant planned for the San Jose Gulf.

  9. Planning for Power.

    ERIC Educational Resources Information Center

    Failla, Victor A.; Birk, Thomas A.

    1999-01-01

    Discusses the electrical power problems that can arise when schools try to integrate educational technology components into an existing facility, and how to plan the electrical power design to avoid power failures. Examines setting objectives, evaluating current electrical conditions, and developing the technology power design. (GR)

  10. Quad RF power meter

    SciTech Connect

    Stone, D.W.

    1987-09-01

    This report shows how to construct a four-channel RF power meter from circuit boards and components found in a Hewlett Packard Model 432A Power Meter. Included are descriptions of necessary modifications, electrical circuit diagrams, and a parts list. Each of the four power meters is compatible with a Hewlett Packard 432A Power Meter.

  11. Wind Power Now!

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  12. Complexity control for high-efficiency video coding by coding layers complexity allocations

    NASA Astrophysics Data System (ADS)

    Fang, Jiunn-Tsair; Liang, Kai-Wen; Chen, Zong-Yi; Hsieh, Wei; Chang, Pao-Chi

    2016-03-01

    The latest video compression standard, high-efficiency video coding (HEVC), provides quad-tree structures of coding units (CUs) and four coding tree depths to facilitate coding efficiency. The HEVC encoder considerably increases the computational complexity to levels inappropriate for video applications of power-constrained devices. This work, therefore, proposes a complexity control method for the low-delay P-frame configuration of the HEVC encoder. The complexity control mechanism is among the group of pictures layer, frame layer, and CU layer, and each coding layer provides a distinct method for complexity allocation. Furthermore, the steps in the prediction unit encoding procedure are reordered. By allocating the complexity to each coding layer of HEVC, the proposed method can simultaneously satisfy the entire complexity constraint (ECC) for entire sequence encoding and the instant complexity constraint (ICC) for each frame during real-time encoding. Experimental results showed that as the target complexity under both the ECC and ICC was reduced to 80% and 60%, respectively, the decrease in the average Bjøntegaard delta peak signal-to-noise ratio was ˜0.1 dB with an increase of 1.9% in the Bjøntegaard delta rate, and the complexity control error was ˜4.3% under the ECC and 4.3% under the ICC.

  13. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  14. Leading healthcare in complexity.

    PubMed

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization. PMID:25815410

  15. Leading healthcare in complexity.

    PubMed

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  16. Complexity and behavioral economics.

    PubMed

    Rosser, J Barkley; Rosser, Marina V

    2015-04-01

    This paper will consider the relationship between complexity economics and behavioral economics. A crucial key to this is to understand that Herbert Simon was both the founder of explicitly modern behavioral economics as well as one of the early developers of complexity theory. Bounded rationality was essentially derived from Simon's view of the impossibility of full rationality on the part of economic agents. Modern complexity theory through such approaches as agent-based modeling offers an approach to understanding behavioral economics by allowing for specific behavioral responses to be assigned to agents who interact within this context, even without full rationality. Other parts of modern complexity theory are considered in terms of their relationships with behavioral economics. Fundamentally, complexity provides an ultimate foundation for bounded rationality and hence the need to use behavioral economics in a broader array of contexts than most economists have thought appropriate.

  17. Hypergraph coloring complexes

    PubMed Central

    Breuer, Felix; Dall, Aaron; Kubitzke, Martina

    2012-01-01

    The aim of this paper is to generalize the notion of the coloring complex of a graph to hypergraphs. We present three different interpretations of those complexes–a purely combinatorial one and two geometric ones. It is shown, that most of the properties, which are known to be true for coloring complexes of graphs, break down in this more general setting, e.g., Cohen–Macaulayness and partitionability. Nevertheless, we are able to provide bounds for the f- and h-vectors of those complexes which yield new bounds on chromatic polynomials of hypergraphs. Moreover, though it is proven that the coloring complex of a hypergraph has a wedge decomposition, we provide an example showing that in general this decomposition is not homotopy equivalent to a wedge of spheres. In addition, we can completely characterize those hypergraphs whose coloring complex is connected. PMID:23483700

  18. Power Switching Device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The MOS-Controlled Thyristor is a new type of power switching device for faster and more efficient control and management of power electronics. It enables power electronic switching at frequencies of 50 to 100 thousand times a second with much lower power losses than other semiconductor devices. Advantages include electric power savings and smaller space. The device is used in motor and power controllers, AC & DC motor drives and induction heating. Early development was supported by Lewis Research Center (LEW) and other agencies. General Electric''s power semiconductor operation, the initial NASA contractor, was later purchased by Harris Semiconductor.

  19. Power-Efficient Design Challenges

    NASA Astrophysics Data System (ADS)

    Pangrle, Barry

    Design teams find themselves facing decreasing power budgets while simultaneously the products that they design continue to require the integration of increasingly complex levels of functionality. The market place (driven by consumer preferences) and new regulations and guidelines on energy efficiency and environmental impact are the key drivers. This in turn has generated new approaches in all IC and electronic system design domains from the architecture to the physical layout of ICs, to design-for-test, as well as for design verification to insure that the design implementation actually meets the intended requirements and specifications. This chapter covers key aspects of these forces from a technological and market perspective that are driving designers to produce more energy-efficient products. Observations by significant industry leaders from AMD, ARM, IBM, Intel, nVidia and TSMC are cited, and the emerging techniques and technologies used to address these issues now and into the future are explored. Topic areas include: System level: Architectural analysis and transaction-level modeling. How architectural decisions can dramatically reduce the design power and the importance of modeling hardware and software together. IC (Chip) level: The impact of creating on-chip power domains for selectively turning power off and/or multi-voltage operation on: (1) chip verification, (2) multi-corner multi-mode analysis during placement and routing of logic cells and (3) changes to design-for-test, all in order to accommodate for power-gating and multi-voltage control logic, retention registers, isolation cells and level shifters needed to implement these power saving techniques. Process level: The disappearing impact of body-bias techniques on leakage control and why new approaches like High-K Metal Gate (HKMG) technology help but don't eliminate power issues. Power-efficient design is impacting the way chip designers work today, and this chapter focuses on where the most

  20. Integrated Surface Power Strategy for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    A National Aeronautics and Space Administration (NASA) study team evaluated surface power needs for a conceptual crewed 500-day Mars mission. This study had four goals: 1. Determine estimated surface power needed to support the reference mission; 2. Explore alternatives to minimize landed power system mass; 3. Explore alternatives to minimize Mars Lander power self-sufficiency burden; and 4. Explore alternatives to minimize power system handling and surface transportation mass. The study team concluded that Mars Ascent Vehicle (MAV) oxygen propellant production drives the overall surface power needed for the reference mission. Switching to multiple, small Kilopower fission systems can potentially save four to eight metric tons of landed mass, as compared to a single, large Fission Surface Power (FSP) concept. Breaking the power system up into modular packages creates new operational opportunities, with benefits ranging from reduced lander self-sufficiency for power, to extending the exploration distance from a single landing site. Although a large FSP trades well for operational complexity, a modular approach potentially allows Program Managers more flexibility to absorb late mission changes with less schedule or mass risk, better supports small precursor missions, and allows a program to slowly build up mission capability over time. A number of Kilopower disadvantages-and mitigation strategies-were also explored.

  1. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  2. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  3. Low-Oscillation Complex Wavelets

    NASA Astrophysics Data System (ADS)

    ADDISON, P. S.; WATSON, J. N.; FENG, T.

    2002-07-01

    In this paper we explore the use of two low-oscillation complex wavelets—Mexican hat and Morlet—as powerful feature detection tools for data analysis. These wavelets, which have been largely ignored to date in the scientific literature, allow for a decomposition which is more “temporal than spectral” in wavelet space. This is shown to be useful for the detection of small amplitude, short duration signal features which are masked by much larger fluctuations. Wavelet transform-based methods employing these wavelets (based on both wavelet ridges and modulus maxima) are developed and applied to sonic echo NDT signals used for the analysis of structural elements. A new mobility scalogram and associated reflectogram is defined for analysis of impulse response characteristics of structural elements and a novel signal compression technique is described in which the pertinent signal information is contained within a few modulus maxima coefficients. As an example of its usefulness, the signal compression method is employed as a pre-processor for a neural network classifier. The authors believe that low oscillation complex wavelets have wide applicability to other practical signal analysis problems. Their possible application to two such problems is discussed briefly—the interrogation of arrhythmic ECG signals and the detection and characterization of coherent structures in turbulent flow fields.

  4. Powerful TV Satellite Prepared for Launch.

    ERIC Educational Resources Information Center

    Allaway, Howard; Witten, Donald E.

    This document presents complete descriptions of Health, Education, and Welfare (HEW)-funded education experiments with the Applications Technology Satellite (ATS) program. Special note is made of the ATS-F program which is considered as the most complex, versatile, and powerful communications spacecraft ever developed. This spacecraft will serve…

  5. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  6. Lost in Translation: The Power of Language

    ERIC Educational Resources Information Center

    Farquhar, Sandy; Fitzsimons, Peter

    2011-01-01

    The paper examines some philosophical aspects of translation as a metaphor for education--a metaphor that avoids the closure of final definitions, in favour of an ongoing and tentative process of interpretation and revision. Translation, it is argued, is a complex process involving language, within and among cultures, and in the exercise of power.…

  7. Safety management of complex research operators

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.

  8. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  9. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  10. The power of PowerPoint.

    PubMed

    Niamtu, J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques. PMID:11496193

  11. The power of PowerPoint.

    PubMed

    Niamtu, J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  12. High power fast ramping power supplies

    SciTech Connect

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  13. Decoupling, complexity and importance in the design and analysis of complex transport systems

    NASA Astrophysics Data System (ADS)

    Gamble, Robert Edward

    Complex transport systems are important in many industries. These systems are typically characterized by the transient evolution of mass, energy and momentum flows involving many different phenomena, which occur over a wide range of spatial and temporal scales. Gaining clear understanding of these complex transport systems can be a daunting task. The wide-ranging spatial and temporal scales can make analyses and testing uncertain, complicated and expensive. Extensive effort has been made in the nuclear industry to simplify understanding of nuclear power plants, which fall into the category of complex transport systems. In this work new tools to aid in the understanding of these systems are developed. Specifically tools that aid in the identification of system complexity and facilitate decoupling of the system into smaller subsystems for analyses and testing are developed and demonstrated using the ESBWR light water reactor as an example. Existing tools used to identify important processes in complex systems are extended to include the concepts of complexity and decoupling. Characteristic times, spatial orientation and phenomena magnitudes are used to identify when systems may have complex behavior and at what locations decoupling is appropriate. Complexity can lead to large uncertainties in modeling and difficulty in properly scaling test facilities, therefore the identification of sources of complexity, and if possible their avoidance, is important. Identifying appropriate decoupling boundaries provides justification for experimental and analytical studies of subsets of a complex system rather than the entire system. This leads to the ability to better satisfy difficult requirements for proper simulation in reduced scale experimental facilities and to model subsystem phenomena with lower uncertainty. Additionally, experimental studies of subregions of a complex system can be better-instrumented and done at full scale when appropriate within economic constraints

  14. 47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON LEFT; AIR-CONDITIONER DUCTS ON RIGHT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  16. DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS (REAR), ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  17. Complexity and forensic pathology.

    PubMed

    Jones, Richard Martin

    2015-12-01

    It has become increasingly apparent that nonlinearity and complexity are the norm in human physiological systems, the relevance of which is informing an enhanced understanding of basic pathological processes such as inflammation, the host response to severe trauma, and critical illness. This article will explore how an understanding of nonlinear systems and complexity might inform the study of the pathophysiology of deaths of medicolegal interest, and how 'complexity thinking' might usefully be incorporated into modern forensic medicine and forensic pathology research, education and practice.

  18. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  19. Power and revenge.

    PubMed

    Strelan, Peter; Weick, Mario; Vasiljevic, Milica

    2014-09-01

    We took an individual differences approach to explain revenge tendencies in powerholders. Across four experimental studies, chronically powerless individuals sought more revenge than chronically powerful individuals following a high power episode (Studies 1 and 2), when striking a powerful pose (Study 3), and when making a powerful hand gesture (Study 4). This relationship vanished when participants were not exposed to incidental power. A meta-analysis revealed that, relative to a lack of power or a neutral context, exposure to incidental power increased vengeance among the chronically powerless and reduced vengeance among the chronically powerful. These findings add to previous research on relations between power and aggression, and underscore the role of individual differences as a determinant of powerholders' destructive responses.

  20. Power and revenge.

    PubMed

    Strelan, Peter; Weick, Mario; Vasiljevic, Milica

    2014-09-01

    We took an individual differences approach to explain revenge tendencies in powerholders. Across four experimental studies, chronically powerless individuals sought more revenge than chronically powerful individuals following a high power episode (Studies 1 and 2), when striking a powerful pose (Study 3), and when making a powerful hand gesture (Study 4). This relationship vanished when participants were not exposed to incidental power. A meta-analysis revealed that, relative to a lack of power or a neutral context, exposure to incidental power increased vengeance among the chronically powerless and reduced vengeance among the chronically powerful. These findings add to previous research on relations between power and aggression, and underscore the role of individual differences as a determinant of powerholders' destructive responses. PMID:23841749

  1. Statistical mechanics of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka Zsuzsanna

    2001-07-01

    The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdoḧs and Alfréd Rényi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in

  2. Modeling Power System Operation with Intermittent Resources

    SciTech Connect

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  3. Complex coacervate core micelles.

    PubMed

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.

  4. A complex legacy

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher

    2011-11-01

    In his tragically short life, Alan Turing helped define what computing machines are capable of, and where they reach inherent limits. His legacy is still felt every day, in areas ranging from computational complexity theory to cryptography and quantum computing.

  5. Complex Regional Pain Syndrome

    MedlinePlus

    Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. ... in skin temperature, color, or texture Intense burning pain Extreme skin sensitivity Swelling and stiffness in affected ...

  6. Equivariant Complex Cobordism

    NASA Astrophysics Data System (ADS)

    Abram, William C.

    We begin with a development of equivariant stable homotopy theory relevant to our work, including a new result on shift desuspension of suspension spectra. We then build on existing techniques of Kriz to compute the equivariant complex cobordism ring of a finite abelian group. Methods of isotropy separation via Tate diagrams are heavily employed, and the key computational tool is the Isotropy Separation Spectral Sequence that is here introduced. We also consider equivariant formal group laws. There is a G-equivariant formal group law corresponding to any complex oriented G-equivariant spectrum E. Since the equivariant complex cobordism spectrum has a canonical complex orientation, there is a corresponding equivariant formal group law. We compute the G-equivariant formal group law corresponding to this spectrum for G finite abelian. This computation is a step in the direction of Greenlees' Conjecture that this equivariant formal group law is algebraically universal.

  7. Complex Flow Workshop Report

    SciTech Connect

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  8. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  9. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  10. Inside the complexity labyrinth

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2010-02-01

    Although the world we live in is complex, complexity as a science does not have a long history. For generations, most physicists tried to understand everything in terms of interactions between pairs of idealized "test particles". Then, about a 100 years ago, Henri Poincaré pointed out that a fully interacting three-body system was not just the sum of its three component pairs. The famous "three-body problem" was born.

  11. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  12. Modelling of Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is

  13. Role of design complexity in technology improvement.

    PubMed

    McNerney, James; Farmer, J Doyne; Redner, Sidney; Trancik, Jessika E

    2011-05-31

    We study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster of d - 1 other components. Innovation occurs through a series of trial-and-error events, each of which consists of randomly changing the cost of each component in a cluster, and accepting the changes only if the total cost of the cluster is lowered. We show that the relationship between the cost of the whole technology and the number of innovation attempts is asymptotically a power law, matching the functional form often observed for empirical data. The exponent α of the power law depends on the intrinsic difficulty of finding better components, and on what we term the design complexity: the more complex the design, the slower the rate of improvement. Letting d as defined above be the connectivity, in the special case in which the connectivity is constant, the design complexity is simply the connectivity. When the connectivity varies, bottlenecks can arise in which a few components limit progress. In this case the design complexity depends on the details of the design. The number of bottlenecks also determines whether progress is steady, or whether there are periods of stasis punctuated by occasional large changes. Our model connects the engineering properties of a design to historical studies of technology improvement.

  14. Intelligent freeform manufacturing of complex organs.

    PubMed

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney.

  15. Can we Power Future Mars Missions

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Sturm, E. J., II; Woolley, R. C.; Jordan, J. F.

    The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASA's Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependant power requirements to surface assets that would enable future in-situ exploration of Mars.

  16. Can We Power Future Mars Missions?

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Sturm, Erick J., II; Woolley, Ryan C.; Jordan, James F.

    2006-01-01

    The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.

  17. Anatomy of F1-ATPase powered rotation

    PubMed Central

    Martin, James L.; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D.

    2014-01-01

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank). PMID:24567403

  18. Power beaming providing a space power infrastructure

    SciTech Connect

    Bamberger, J.A.; Coomes, E.P.

    1992-08-01

    This study, based on two levels of technology, applies the power beaming concept to four planned satellite constellations. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations in orbits ranging from low earth orbit to geosynchronous orbit. Two constellations, space surveillance and tracking system and space based radar, can be supported with current technology. The other two constellations, space-based laser array and boost surveillance and tracking system, will require power and transmission system improvements before their breakeven specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20/% would meet or exceed breakeven for these constellations.

  19. Cancer and bone: a complex complex.

    PubMed

    van Driel, Marjolein; van Leeuwen, Johannes P T M

    2014-11-01

    Primary and secondary bone cancers are rare events. However, once settled, a complex process is started involving an extensive amount of factors and interactions. The bone micro-environment is a preferential site for (metastatic) tumor cells to enter, stay, colonize and expand. The fact that the tumor cells affect the complete bone environment involving many cell types and regulatory pathways to stimulate their own growth and escape from therapy is devastating for the patient. Many efforts have been made to get more insight into the mechanisms underlying the communication between bone cells and cancer cells and progress is made in therapeutic interventions. This review will discuss the biological mechanisms of primary bone malignancies (osteosarcoma, Ewing's sarcoma, chondrosarcoma, multiple myeloma) and secondary bone malignancies (bone metastases) and therapeutic interventions.

  20. Microwave beam power

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.

    1989-01-01

    Information on microwave beam power is given in viewgraph form. Information is given on orbit transfer proulsion applications, costs of delivering 100 kWe of usable power, and costs of delivering a 1 kg payload into orbit.

  1. Cell complexes through time

    NASA Astrophysics Data System (ADS)

    Klette, Reinhard

    2000-10-01

    The history of cell complexes is closely related to the birth and development of topology in general. Johann Benedict Listing (1802 - 1882) introduced the term 'topology' into mathematics in a paper published in 1847, and he also defined cell complexes for the first time in a paper published in 1862. Carl Friedrich Gauss (1777 - 1855) is often cited as the one who initiated these ideas, but he did not publish either on topology or on cell complexes. The pioneering work of Leonhard Euler (1707 - 1783) on graphs is also often cited as the birth of topology, and Euler's work was cited by Listing in 1862 as a stimulus for his research on cell complexes. There are different branches in topology which have little in common: point set topology, algebraic topology, differential topology etc. Confusion may arise if just 'topology' is specified, without clarifying the used concept. Topological subjects in mathematics are often related to continuous models, and therefore quite irrelevant to computer based solutions in image analysis. Compared to this, only a minority of topology publications in mathematics addresses discrete spaces which are appropriate for computer-based image analysis. In these cases, often the notion of a cell complex plays a crucial role. This paper briefly reports on a few of these publications. This paper is not intended to cover the very lively progress in cell complex studies within the context of image analysis during the last two decades. Basically it stops its historic review at the time when this subject in image analysis research gained speed in 1980 - 1990. As a general point of view, the paper indicates that image analysis contributes to a fusion of topological concepts, the geometric and the abstract cell structure approach and point set topology, which may lead towards new problems for the study of topologies defined on geometric or abstract cell complexes.

  2. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  3. 12. Interior view, fuel tanks on east side of power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view, fuel tanks on east side of power plant, electrical panels on the left and fuel tanks in the center looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  4. Literacy and Power--The Cases of Tanzania and Rwanda

    ERIC Educational Resources Information Center

    Wedin, Asa

    2008-01-01

    In this paper it is claimed that the relation between literacy and power is complex. What people do with literacy has effects on power relations but literacy is not democratic "per se". Drawing from two cases from Tanzania and Rwanda it is argued that plans for adult education and literacy education should consider the perspectives of target…

  5. A novel power block for CSP systems

    SciTech Connect

    Mittelman, Gur; Epstein, Michael

    2010-10-15

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving

  6. The Administrative Power Grab

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Administrative power for some school teachers can be an aphrodisiac that can be applied negatively, especially when a leader has devastating instinct for the weaknesses of others. A leader's intellect and heart closes shop and ceases to function when drunk on power. In this article, the author describes how the use of administrative power can be…

  7. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  8. The Power of Powerlessness.

    ERIC Educational Resources Information Center

    Weeks, Gerald; Johnson, Jackie

    1980-01-01

    Power and the paradox of powerlessness are defined in terms of the resource exchange theory of Foa and Foa. Power is conceptualized as the possession of resources, e.g., love, status, and money. The Karpman triangle is used to illustrate the power behind the victim's powerlessness. (Author)

  9. Wind power soars

    SciTech Connect

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  10. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  11. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  12. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  13. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.

  14. Complexes and imagination.

    PubMed

    Kast, Verena

    2014-11-01

    Fantasies as imaginative activities are seen by Jung as expressions of psychic energy. In the various descriptions of active imagination the observation of the inner image and the dialogue with inner figures, if possible, are important. The model of symbol formation, as Jung describes it, can be experienced in doing active imagination. There is a correspondence between Jung's understanding of complexes and our imaginations: complexes develop a fantasy life. Complex episodes are narratives of difficult dysfunctional relationship episodes that have occurred repeatedly and are internalized with episodic memory. This means that the whole complex episode (the image for the child and the image for the aggressor, connected with emotions) is internalized and can get constellated in everyday relationship. Therefore inner dialogues do not necessarily qualify as active imaginations, often they are the expression of complex-episodes, very similar to fruitless soliloquies. If imaginations of this kind are repeated, new symbols and new possibilities of behaviour are not found. On the contrary, old patterns of behaviour and fantasies are perpetuated and become cemented. Imaginations of this kind need an intervention by the analyst. In clinical examples different kinds of imaginations are discussed. PMID:25331506

  15. Complexes and imagination.

    PubMed

    Kast, Verena

    2014-11-01

    Fantasies as imaginative activities are seen by Jung as expressions of psychic energy. In the various descriptions of active imagination the observation of the inner image and the dialogue with inner figures, if possible, are important. The model of symbol formation, as Jung describes it, can be experienced in doing active imagination. There is a correspondence between Jung's understanding of complexes and our imaginations: complexes develop a fantasy life. Complex episodes are narratives of difficult dysfunctional relationship episodes that have occurred repeatedly and are internalized with episodic memory. This means that the whole complex episode (the image for the child and the image for the aggressor, connected with emotions) is internalized and can get constellated in everyday relationship. Therefore inner dialogues do not necessarily qualify as active imaginations, often they are the expression of complex-episodes, very similar to fruitless soliloquies. If imaginations of this kind are repeated, new symbols and new possibilities of behaviour are not found. On the contrary, old patterns of behaviour and fantasies are perpetuated and become cemented. Imaginations of this kind need an intervention by the analyst. In clinical examples different kinds of imaginations are discussed.

  16. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  17. Measure of robustness for complex networks

    NASA Astrophysics Data System (ADS)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect

  18. Diesel engine power prognosis

    SciTech Connect

    Armstrong, L.R.; Berret, P.; Zablocki, E.

    1985-01-01

    The increased demands imposed upon maintenance personnel by ever increasing vehicle complexity has markedly stressed the ability of these individuals to perform vehicle diagnostics in a timely fashion. As a response to this growing problem the vehicle industry and its supporting communities have developed sophisticated automated test equipment to support the maintenance function. The availability of test equipment capable of conveniently performing complete vehicle tests has led to a natural extension of vehicle diagnosis, in the form of vehicle prognosis. Vehicle prognosis directly addresses the issue of timely vehicle maintenance by identifying potential failures in advance of or during their occurance. The prognostic approach selected for a system is necessarily dependent on the types of failures occuring within the system. Of the three general types of failures, random, stress related and detectable, only the latter two represent cases for which vehicle prognosis is currently feasible. Prognosis for stress related failures is accomplished by monitoring system stress until internal components have completed their life cycles. Prognosis for detectable failures is accomplished by monitoring the progress of a measurable parameter as it degrades with system use. The rate at which this parameter changes with use provides information vital to the development of a prognosis. It is the latter approach which is discussed in this document. This paper describes the process of developing algorithms for diesel engine power prognosis using the specific example of a Cummins VT903 engine. It also includes a discussion for the extension of the techniques presented to other engines. Finally, the economic and technological issues affecting algorithm scope and utility are analyzed.

  19. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  20. Multiple displacement motor driven power drive unit

    SciTech Connect

    Burandt, W. A.

    1985-12-03

    A multiple displacement motor driven power drive unit having two separate hydraulic systems each with a variable displacement hydraulic motor having its output connected to a torque summing gear train. A control provides for operation of one or the other of the motors at full displacement while the other motor is at zero displacement and free-wheels. There is a manual mechanical control operation with both motors simultaneously set at one-half of full displacement and driving the torque summing gear train. The change in motor displacements to one-half full displacement accomplishes velocity summing within the hydraulics. The multiple displacement motor driven power drive unit accomplishes the power efficiency of a multiple motor driven power drive unit utilizing a speed summing gear train with fixed displacement motors, but without the complexities associated with the use of a speed summing gear train and brakes.

  1. Small and lightweight power amplifiers

    NASA Astrophysics Data System (ADS)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  2. Alanine water complexes.

    PubMed

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  3. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  4. Nonergodic complexity management

    NASA Astrophysics Data System (ADS)

    Piccinini, Nicola; Lambert, David; West, Bruce J.; Bologna, Mauro; Grigolini, Paolo

    2016-06-01

    Linear response theory, the backbone of nonequilibrium statistical physics, has recently been extended to explain how and why nonergodic renewal processes are insensitive to simple perturbations, such as in habituation. It was established that a permanent correlation results between an external stimulus and the response of a complex system generating nonergodic renewal processes, when the stimulus is a similar nonergodic process. This is the principle of complexity management, whose proof relies on ensemble distribution functions. Herein we extend the proof to the nonergodic case using time averages and a single time series, hence making it usable in real life situations where ensemble averages cannot be performed because of the very nature of the complex systems being studied.

  5. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  6. Controllability of complex networks.

    PubMed

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2011-05-12

    The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

  7. Dissociation as complex adaptation.

    PubMed

    Sel, R

    1997-03-01

    In this article the general theory of complex adaptive systems, substantiated by non-linear dynamics, will be used to put the dissociative disorders into a theoretical framework and clarify their genesis and presentation. When a system is far out of equilibrium, dissipative structures may be formed ('order out of chaos', as Prigogine (1) has put it). These structures provide the starting point for further evolution and co-evolution of competing groups of functional schemata divided on a bifurcation surface. Complex adaptation is almost inevitable in a complicated system (such as the brain) driven by non-linear dynamics. Dissociation is thus regarded as a consequence of adaptation to a chaotic environment rich in contrasts. In a sufficiently complex environment a person with dissociative identity disorder is more adapted and thus more likely to occur than a 'normal' monopersonality individual.

  8. On the reliability of voltage and power as input parameters for the characterization of high power ultrasound applications

    NASA Astrophysics Data System (ADS)

    Haller, Julian; Wilkens, Volker

    2012-11-01

    For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.

  9. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  10. ADEPT: Efficient Power Conversion

    SciTech Connect

    2011-01-01

    ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

  11. Precision signal power measurement

    NASA Technical Reports Server (NTRS)

    Winkelstein, R.

    1972-01-01

    Accurate estimation of signal power is an important Deep Space Network (DSN) consideration. Ultimately, spacecraft power and weight is saved if no reserve transmitter power is needed to compensate for inaccurate measurements. Spectral measurement of the received signal has proved to be an effective method of estimating signal power over a wide dynamic range. Furthermore, on-line spectral measurements provide an important diagnostic tool for examining spacecraft anomalies. Prototype equipment installed at a 64-m-diameter antenna site has been successfully used to make measurements of carrier power and sideband symmetry of telemetry signals received from the Mariner Mars 1971 spacecraft.

  12. Complexation of polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Pool, Joanna G.

    Complexation found in nature was the inspiration and motivation to study three model systems to gain understanding into the underlying parameters that govern these events. Static and dynamic light scattering was predominately used to understand the complexation in three model systems: complexation of antimicrobial polymers with biomimetic vesicles, the complexation of protein to a semi-flexible polyelectrolyte and with a flexible polyelectrolyte. Characterization of antimicrobial polymers in solution and their interactions with biomimetic vesicles were investigated in order to understand how antimicrobial polymers interacted with and killed bacteria. These studies observed that an aggregation of the vesicles correlated with antimicrobial activity. For these synthetic polymer systems, aggregation appeared to be a necessary component for antimicrobial activity,but was not indicative of activity. Inspired by complexation found in nature between DNA and RNA and proteins model polyelectrolyte-protein systems were also investigated. The focus of this section was to understand how polymer flexibility, concentration, protein concentration, and ionic strength affected the phase behavior and presence of soluble aggregates in solution. Construction of phase diagrams for both semi-flexible and flexible polyelectrolye systems dsDNA and hyaluronic acid showed different phase diagrams,yet amazingly both systems showed a spontaneous selection of size of ˜230nm away from any phase boundary and was irrespective of salt concentration, polymer concentration, persistence length or protein concentration. It was possible to gain insight into the internal packing of these two polyelectrolyte-protein complexes through static light scattering and fractal dimension analysis. Comparisons of the fractal dimension analysis of the DNA-lysozyme and HA-lysozyme was not affected by salt concentration and from analysis of the fractal dimension it was observed DNA-lysozyme aggregates, had a denser

  13. Cytoplasmic Viral Replication Complexes

    PubMed Central

    den Boon, Johan A.; Diaz, Arturo; Ahlquist, Paul

    2010-01-01

    Many viruses that replicate in the cytoplasm compartmentalize their genome replication and transcription in organelle-like structures that enhance replication efficiency and protection from host defenses. In particular, recent studies with diverse positive-strand RNA viruses have further elucidated the ultrastructure of membrane-bounded RNA replication complexes and their close coordination with virion assembly and budding. The structure, function and assembly of some positive-strand RNA virus replication complexes have parallels and potential evolutionary links with the replicative cores of double-strand RNA virus and retrovirus virions, and more general similarities with the replication factories of cytoplasmic DNA viruses. PMID:20638644

  14. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N.; Corneillie, Todd M.; Xu, Jide

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  15. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  16. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  17. Planning Complex Projects Automatically

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.

    1995-01-01

    Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.

  18. Multimode power processor

    DOEpatents

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  19. Multimode power processor

    DOEpatents

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  20. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser. PMID:21197032

  1. Fusion-power demonstration

    NASA Astrophysics Data System (ADS)

    Henning, C. D.; Logan, B. G.; Carlson, G. A.; Neef, W. S.; Moir, R. W.; Campbell, R. B.; Botwin, R.; Clarkson, I. R.; Carpenter, T. J.

    1983-03-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  2. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in... Digital Computer Software and Complex Electronics used in Safety Systems of Nuclear Power Plants.'' The DG... Requirement Specifications for Digital Computer Software and Complex Electronics used in Safety Systems...

  3. COMPLEX ADAPTIVE HIERARCHICAL SYSTEMS

    EPA Science Inventory

    One of the most powerful images of our time, an image that has changed the way we think of ourselves and the way we think about our relationship to our environment, is the image of Earth viewed from the surface of the moon. As we view "spaceship Earth" we sense that the complexit...

  4. Six Questions on Complex Systems

    NASA Astrophysics Data System (ADS)

    Symons, John F.; Sanayei, Ali

    2011-09-01

    This paper includes an interview with John F. Symons regarding some important questions in "complex systems" and "complexity". In addition, he has stated some important open problems concerning complex systems in his research area from a philosophical point of view.

  5. Salen complexes with dianionic counterions

    DOEpatents

    Job, Gabriel E.; Farmer, Jay J.; Cherian, Anna E.

    2016-08-02

    The present invention describes metal salen complexes having dianionic counterions. Such complexes can be readily precipitated and provide an economical method for the purification and isolation of the complexes, and are useful to prepare novel polymer compositions.

  6. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  7. Optical Complex Systems 2008

    NASA Astrophysics Data System (ADS)

    Brun, Guillaume

    The Optical Complex Systems are more and more in the heart of various systems that industrial applications bring to everyday life. From environment up to spatial applications, OCS is also relevant in monitoring, transportation, robotics, life sciences, sub-marine, and even for agricultural purposes.

  8. The Complexity of Care

    ERIC Educational Resources Information Center

    Collins, Steve; Ting, Hermia

    2014-01-01

    The profession of teaching is unique because of the extent to which a teacher becomes involved in the lives of their "clients". The level of care required to support students well can be intense, confusing, and overwhelming. Relationships co-evolve within an ever-changing process and care is considered an essential aspect of complex relationships…

  9. Coordination Complexes of Cobalt.

    ERIC Educational Resources Information Center

    Williams, Gregory M.; And Others

    1989-01-01

    Described is an experiment involving the synthesis and spectral studies of cobalt complexes that not only give general chemistry students an introduction to inorganic synthesis but allows them to conduct a systematic study on the effect of different ligands on absorption spectra. Background information, procedures, and experimental results are…

  10. Managing Complex Dynamical Systems

    ERIC Educational Resources Information Center

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  11. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  12. Unifying Complexity and Information

    NASA Astrophysics Data System (ADS)

    Ke, Da-Guan

    2013-04-01

    Complex systems, arising in many contexts in the computer, life, social, and physical sciences, have not shared a generally-accepted complexity measure playing a fundamental role as the Shannon entropy H in statistical mechanics. Superficially-conflicting criteria of complexity measurement, i.e. complexity-randomness (C-R) relations, have given rise to a special measure intrinsically adaptable to more than one criterion. However, deep causes of the conflict and the adaptability are not much clear. Here I trace the root of each representative or adaptable measure to its particular universal data-generating or -regenerating model (UDGM or UDRM). A representative measure for deterministic dynamical systems is found as a counterpart of the H for random process, clearly redefining the boundary of different criteria. And a specific UDRM achieving the intrinsic adaptability enables a general information measure that ultimately solves all major disputes. This work encourages a single framework coving deterministic systems, statistical mechanics and real-world living organisms.

  13. Leadership Complexities. Research Notes.

    ERIC Educational Resources Information Center

    Jordan, Debra J.

    1996-01-01

    Findings from three studies show that effective leaders have greater behavioral complexity and fill multiple roles better than ineffective leaders; listening skills are key to effective leadership; there are no gender differences in emerged leadership; and although task-relevant communication is important to leadership, other research indicates…

  14. Launching Complex Tasks

    ERIC Educational Resources Information Center

    Jackson, Kara J.; Shahan, Emily C.; Gibbons, Lynsey K.; Cobb, Paul A.

    2012-01-01

    Mathematics lessons can take a variety of formats. In this article, the authors discuss lessons organized around complex mathematical tasks. These lessons usually unfold in three phases. First, the task is introduced to students. Second, students work on solving the task. Third, the teacher "orchestrates" a concluding whole-class discussion in…

  15. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  16. Complex Characters Made Simple

    ERIC Educational Resources Information Center

    Kettle, Sidney F. A.

    2009-01-01

    The physical significance of complex characters is explored with particular reference to the C[subscript 4] point group. While a diagrammatic representation of these characters in this group is possible, the extension to higher groups C[subscript n], n greater than 4 is left as a problem for discussion. (Contains 3 tables, 8 figures, and 1 note.)

  17. Complexity in Cultural Identity

    ERIC Educational Resources Information Center

    Holliday, Adrian

    2010-01-01

    Despite their diverse national backgrounds, 28 interviewees speak similarly about the complexity of the cultural realities with which they live, and refuse to be pinned down to specific cultural types. While nation is of great importance, unless personally inspiring, it tends to be an external force which is in conflict with a wide variety of…

  18. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  19. Maximizing information exchange between complex networks

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-10-01

    modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.

  20. On power and empowerment.

    PubMed

    Pratto, Felicia

    2016-03-01

    This study presents a conceptual analysis of social power. The most common theories of power are social-relational, an approach instantiated in a range of contemporary experiments that give participants the chance to control other people's outcomes. The relational approach is also reflected in various analyses of international relations. In comparing and contrasting relational theories of power, I identify logical inconsistencies and shortcomings in their ability to address empowerment and reductions in inequality. In turn, I propose a new ecological conceptualization of empowerment as the state of being able to achieve one's goals and of power as stemming from a combination of the capacity of the party and the affordances of the environment. I explain how this new conceptualization can describe the main kinds of power social relations, avoid logical contradictions, and moreover, distinguish power from agency and from control. This new conceptualization of power as the possibility of meeting goals, coupled with recognizing survival as the fundamental goal of all living things, implies an absolute and not relative or relational standard for power, namely well-being. It also allows us to conceive of power in ways that help address the many social concerns that have motivated research on power. PMID:26690541

  1. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  2. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound

  3. Power Goals for NASA's Exploration Program

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2009-01-01

    Exciting Future Programs ahead for NASA. Power is needed for all Exploration vehicles and for the missions. For long term missions as in Lunar and Mars programs, safe, high energy/ultra high energy batteries are required. Safety is top priority for human-rated missions. Two-fault tolerance to catastrophic failures is required for human-rated safety To meet power safety goals -inherent cell safety may be required; it can lessen complexity of external protective electronics and prevents dependency on hardware that may also have limitations. Inherent cell safety will eliminate the need to carry out screening of all cells (X-rays, vibration, etc.)

  4. Power variations of wireless communication systems.

    PubMed

    Andersen, J B; Mogensen, P E; Pedersen, G F

    2010-05-01

    The use of wireless digital communication devices like GSM, WCDMA, HSPA, DECT, and WiFi changes the exposure of electromagnetic waves toward the user. Concentrating on the power variations on a slow and fast time scale, these new systems are discussed. Experimental results for both uplink and downlink are included for a sample of systems. The spectrum of the power fluctuations is seen as a convenient and compact way of describing very complex system behavior. The results are of interest for scientific studies of epidemiology and biological effects, and for general electromagnetic compatibility (EMC) aspects.

  5. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  6. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

    PubMed

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-02-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and

  7. Powerful Winds in Extreme RBS quasars (POWER)

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico

    2013-10-01

    This proposal aims at studying powerful outflows in ultra-luminous (log Lx >45) Radio-Quiet Quasars (RQQ). We propose to observe four objects extracted from a luminosity limited sample in the ROSAT Bright Survey for a full orbit (130 ks) each. Both models and observations suggest that the efficiency of driving energetic outflows increases with the AGN luminosity. Therefore, our targets are potentially the best objects to hunt for very powerful outflows expected in the AGN/galaxy feedback scenario. Our observations represent the first attempt ever to obtain deep, high-resolution-driven spectroscopy of a representative sample of RQQ in this high-luminosity regime.

  8. Self-powered sensors.

    PubMed

    Arechederra, Robert L; Minteer, Shelley D

    2011-06-01

    One of the problems associated with miniaturization and portability of sensors is the power supply. Power supplies, such as batteries, are difficult to miniaturize and require a sensor design that allows for easy replacement or recharging. This review describes the field of self-powered sensing, where the sensor itself provides the power for the sensing device. Most self-powered-sensing strategies employ either nuclear energy conversion or electrochemical energy conversion. Nuclear energy conversion is employed for radioisotope or nuclear reactor sensing. Electrochemical energy conversion is employed for chemical and biological sensing. This review details the common strategies for self-powered nuclear, chemical, and biological sensing and discusses the future of the technology.

  9. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  10. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  11. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  12. Complex Amorphous Dielectrics

    SciTech Connect

    van Dover, Robert Bruce

    2014-11-22

    This work focused on synthesizing a wide range of oxides containing two or more metals, and measuring their properties. Many simple metal oxides such as zirconium oxide, have been extensively studied in the past. We developed a technique in which we create a large number of compositions simultaneously and examine their behavior to understand trends and identify high performance materials. Superior performance generally comes in the form of increased responsiveness; in the materials we have studied this may mean more electrical charge for a given voltage in a capacitor, faster switching for a given drive in a transistor, more current for a given voltage in an ionic conductor, or more current for a given illumination in a solar cell. Some of the materials we have identified may find use in decreasing the power needed to operate integrated circuits, other materials could be useful for solar power or other forms of energy conversion.

  13. Affinity Purification of Protein Complexes Using TAP Tags

    PubMed Central

    Gerace, Erica; Moazed, Danesh

    2016-01-01

    This protocol is used for the isolation and analysis of protein complexes using the tandem affinity purification (TAP) tag system. The protocol describes the purification of a protein fused to a TAP tag comprised of two protein A domains and the calmodulin binding peptide separated by a TEV cleavage site. This is a powerful technique for rapid purification of protein complexes and the analysis of their stoichiometric composition, posttranslational modifications, structure, and functional activities. PMID:26096502

  14. Characterization and design of a low-power wireless power delivery system

    NASA Astrophysics Data System (ADS)

    Falkenstein, Erez Avigdor

    There is an increased demand for wireless sensors for data gathering and transmission where running wires to power a device or changing/charging batteries is difficult. Often the data is gathered at locations that are difficult to access, that need to be covert, and/or where the sensors cannot be easily maintained. Some examples are implanted sensors for medical diagnostics and therapy, structural monitoring sensors, sensors inside hazardous manufacturing or other hazardous environments, etc. For any low power sensor that operates at a low duty cycle, and in an environment with low levels of light or vibration, RF wireless powering offers the potential for maintenance-free operation. The thesis focuses on a design methodology for low-power non-directional far-field wireless powering. The power receiver consists of one or more antennae which receive plane waves transmitted by the powering source, and deliver the RF power to a rectifying element. The resulting DC power is optimally transferred to the electronic application via a power management circuit. The powering is independent of the electronic application which can include wireless transmission of sensor data. The design and implementation of an integrated rectifier-antenna at low incident power densities (from 25--200 muW/cm2) is presented. Nonlinear source-pull measurements and harmonic balance simulations are used for finding the optimal rectifying device RF and DC impedances for efficient rectification. Experimental results show that an antenna design with a specific complex impedance reaches the highest rectification efficiency. Several examples of the design methodology will be shown. In specific, characterization of a rectifying patch antenna at frequency of 2.45GHz will be detailed, with an optimal RF impedance of 137+j149O and an optimal DC load of 365O resulting in RF to DC conversion efficiency of 63% for the rectifier alone and 56% for the total rectifying antenna.

  15. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  16. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  17. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  18. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  19. Electric power annual 1993

    SciTech Connect

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  20. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Sewy, D.; Pickering, C.; Sauers, R.

    1984-01-01

    The purpose of the phase 2 of the power subsystem automation study was to demonstrate the feasibility of using computer software to manage an aspect of the electrical power subsystem on a space station. The state of the art in expert systems software was investigated in this study. This effort resulted in the demonstration of prototype expert system software for managing one aspect of a simulated space station power subsystem.

  1. Developments in tidal power

    SciTech Connect

    Charlier, R.H.

    1982-08-01

    Marine power has been the subject of numerous conferences and an impressive number of studies has considered schemes to harness ocean energy. Recently some attention has also been given to small marine power projects. Thermal difference, tides and waves appear to offer the greatest immediate promise, but so far only tidal power has been tapped on a large scale. Since completion of the Rance plant new concepts have been developed and new schemes designed. Some aspects are briefly examined here.

  2. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  3. Nuclear power browning out

    SciTech Connect

    Flavin, C.; Lenssen, N.

    1996-05-01

    When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

  4. 100 most powerful.

    PubMed

    Romano, Michael

    2002-08-26

    Compiling a list of the 100 Most Powerful People in Healthcare requires some contemplation. Exactly what is power in this industry? C. Thomas Smith, president and CEO of VHA, calls power simply "the ability to make a difference." The influential figures chosen by Modern Healthcare readers represent a broadly varied and diverse group of movers and shakers. But they share the ability to change things.

  5. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  6. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  7. Unraveling Protein Networks with Power Graph Analysis

    PubMed Central

    Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-01-01

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks. PMID:18617988

  8. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  9. Power beaming options

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1989-01-01

    Some large scale power beaming applications are proposed for the purpose of stimulating research. The first proposal is for a combination of large phased arrays on the ground near power stations and passive reflectors in geostationary orbit. The systems would beam excess electrical power in microwave form to areas in need of electrical power. Another proposal is to build solar arrays in deserts and beam the energy around the world. Another proposal is to use lasers to beam energy from earth to orbiting spacecraft.

  10. A power fund focus

    SciTech Connect

    Hennagir, T.

    1996-04-01

    The Indeck North American Power Fund LP, which was formed for the purpose of purchasing established non-utility and utility power generating assets in the U.S. and Canada, is discussed in this article. Fund participants are listed, and the two acquisitions made to date are described. The 38 MW(e) Pepperell Power Project in Massachussets was acquired in August 1995 from Kenetech Energy Systems Inc. In October 1995, the Fund purchased the 76 MW(e) Harbor Cogeneration Project in California. The Fund will also consider purchasing equity interests in North American power projects.

  11. A private power plan

    SciTech Connect

    Thompson, M.K.

    1995-09-01

    The South Korean market for electric power equipment and services is booming. Electricity demand is forecast to grow at an average annual rate of 6.4% during 1993 to 2006. Recognizing the importance of abundant, quality and reliable electric power to continued economic growth, the Korean government plans to build 76 new power plants by 2006. More than $5 billion per year will be spent by Korean Electric Power Corp. and its affiliates. The size of the market and the program of economic reforms that is being implemented make this an attractive opportunity for US companies.

  12. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  13. Radioisotope powered AMTEC systems

    NASA Astrophysics Data System (ADS)

    Ivanenok, Joseph F., III; Sievers, Robert K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.

  14. Application Power Signature Analysis

    SciTech Connect

    Hsu, Chung-Hsing; Combs, Jacob; Nazor, Jolie; Santiago, Fabian; Thysell, Rachelle; Rivoire, Suzanne; Poole, Stephen W

    2014-01-01

    The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

  15. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  16. CSTI High Capacity Power

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  17. CSTI high capacity power

    SciTech Connect

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  18. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  19. Power: a changing commodity.

    PubMed

    Hage, S J

    1991-01-01

    "Rapid and tumultuous change in health care as well as business has precipitated a power shift," declares Mr. Hage in this candid discussion of a quality that is both abstract and concrete. Centralized power is no longer the order of the day; in fact, the new stance supports pushing power down into organizations where it can be better used by those closer to the action. The author maintains that effective participants in this new model will learn to share power and respect knowledge as the only tool that wields it.

  20. Carney complex: an update.

    PubMed

    Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine A

    2015-10-01

    Carney complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22-24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment and molecular etiology, including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing's syndrome. PMID:26130139

  1. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  2. Carney Complex: an update

    PubMed Central

    Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine

    2015-01-01

    Carney Complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas, and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment, and molecular etiology including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing’s syndrome. PMID:26130139

  3. A complex affair

    PubMed Central

    Bewley, Maria C.; Tash, Brian R.; Tian, Fang; Flanagan, John M.

    2013-01-01

    Tight junctions (TJs) are protein complexes comprised of claudins, which anchor them in the membrane and numerous cytosolic scaffolding proteins including MAGI, MUPP1, cingulin and members of the Zonula Occludens (ZO) family. Originally, their main function was thought to be as a paracellular barrier. More recently, however, additional roles in signal transduction, differentiation and proliferation have been reported. Dysregulation is associated with a wide range of disease states, including diabetic retinopathy, irritable bowel disease and some cancers. ZO proteins and occludin form a protein complex that appears to act as a master regulator of TJ assembly/disassembly. Recent studies have highlighted the structural character of the primary ZO-1:occludin interaction and identified regions on occludin that control association and disassociation of TJ in a phosphorylation-dependent manner. We hypothesize that regions within ZO-1 in the so-called U5 and U6 regions behave in a similar manner. PMID:24665376

  4. Homogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Bogacz, Leszek; Burda, Zdzisław; Wacław, Bartłomiej

    2006-07-01

    We discuss various ensembles of homogeneous complex networks and a Monte-Carlo method of generating graphs from these ensembles. The method is quite general and can be applied to simulate micro-canonical, canonical or grand-canonical ensembles for systems with various statistical weights. It can be used to construct homogeneous networks with desired properties, or to construct a non-trivial scoring function for problems of advanced motif searching.

  5. Complexity in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  6. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  7. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  8. NDT for Complex Projects

    NASA Astrophysics Data System (ADS)

    Carnevale, Mario

    2013-04-01

    Non-destructive testing of structures composed of various types of materials is performed using a variety of methods. Most commonly, electromagnetic and acoustic methods are used to perform this task. Advances in computer software and electro-mechanical hardware have resulted in semi-automated systems for performing simple low-cost in-situ concrete testing. These systems are designed to be operated by anyone who can read a manual and push the right buttons. Although useful in many circumstances, we ask: "What happens when concrete structures are not simple and are too complex to be analyzed by these semi-automated systems and, most importantly, by minimally trained operators?" Many infrastructure projects are boldly pushing the limit of traditional engineering design. As structures become more complex, the methods and techniques used to evaluate these structures must also evolve. A first step towards adapting geophysical methods to evaluate complex structures is to develop pre-investigation conceptual models of possible responses that structures will have to available geophysical methods. This approach is important for designing the geometry and data acquisition parameters necessary for achieving the desired results. Examples of case by case assessments of the application of GPR to concrete investigations are examined. These include complex concrete wall structures, soil tunnel structures, and airport runways. HGI's adaption of ground penetrating radar (GPR) and seismic methods for assessing the substrate of a heavily reinforced concrete structure up to seven feet thick is reviewed. A range of GPR antenna frequencies were used to image the concrete and the underlying material. Time and frequency domain GPR analyses where used in the assessment. A multi-channel seismic survey using a roll-along data collection technique was used to assess the resonant frequency of the concrete structure, the nature of the underlying medium, and behavior of the structural system.

  9. Complex posterior urethral injury

    PubMed Central

    Kulkarni, Sanjay B.; Joshi, Pankaj M.; Hunter, Craig; Surana, Sandesh; Shahrour, Walid; Alhajeri, Faisal

    2015-01-01

    Objective To assess treatment strategies for seven different scenarios for treating complex pelvic fracture urethral injury (PFUI), categorised as repeat surgery for PFUI, ischaemic bulbar urethral necrosis (BUN), repair in boys and girls aged ⩽12 years, in patients with a recto-urethral fistula, or bladder neck incontinence, or with a double block at the bulbomembranous urethra and bladder neck/prostate region. Patients and methods We retrospectively reviewed the success rates and surgical procedures of these seven complex scenarios in the repair of PFUI at our institution from 2000 to 2013. Results In all, >550 PFUI procedures were performed at our centre, and 308 of these patients were classified as having a complex PFUI, with 225 patients available for follow-up. The overall success rates were 81% and 77% for primary and repeat procedures respectively. The overall success rate of those with BUN was 76%, using various methods of novel surgical techniques. Boys aged ⩽12 years with PFUI required a transpubic/abdominal approach 31% of the time, compared to 9% in adults. Young girls with PFUI also required a transpubic/abdominal urethroplasty, with a success rate of 66%. In patients with a recto-urethral fistula the success rate was 90% with attention to proper surgical principles, including a three-stage procedure and appropriate interposition. The treatment of bladder neck incontinence associated with the tear-drop deformity gave a continence rate of 66%. Children with a double block at the bulbomembranous urethra and at the bladder neck-prostate junction were all continent after a one-stage transpubic/abdominal procedure. Conclusion An understanding of complex pelvic fractures and their appropriate management can provide successful outcomes. PMID:26019978

  10. Complex Flows by Nanohydrodynamics

    SciTech Connect

    Alley, E; Covello, P; Alder, B

    2004-03-01

    The study of complex flows by particle simulations is speeded up over molecular dynamics (MD) by more than two orders of magnitude by employing a stochastic collision dynamics method (DSMC) extended to high density (CBA). As a consequence, a picture generated on a single processor shows the typical features of the Rayleigh-Taylor instability and is in quantitative agreement with the experimentally found long time behavior.

  11. On the Powers of Powerful Knowledge

    ERIC Educational Resources Information Center

    Young, Michael; Muller, Johan

    2014-01-01

    The aim of this paper is to explore and clarify the idea of "powerful knowledge" as a sociological concept and as a curriculum principle. The paper seeks to clarify its conceptual basis and to make its meaning and the arguments it implies, less ambiguous and less open to misunderstanding. This will enable us to suggest some of the…

  12. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  13. Putting Grammatical Complexity in Context

    ERIC Educational Resources Information Center

    Rimmer, Wayne

    2008-01-01

    Effective writing is to some degree characterised by the ability to use complex grammatical structures. However, grammatical complexity is poorly defined in linguistics and related disciplines such as literacy. This empirical study examined the notion of grammatical complexity and its relevance to literacy. Complexity is multifaceted, so for…

  14. Statistical Factors in Complexation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1985-01-01

    Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)

  15. Observability of complex systems

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2013-01-01

    A quantitative description of a complex system is inherently limited by our ability to estimate the system’s internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system’s state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system’s complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems. PMID:23359701

  16. Keynes, Hayek and Complexity

    NASA Astrophysics Data System (ADS)

    Ormerod, Paul

    In the spirit of the overall topic of the conference, in this paper I consider the extent to which economic theory includes elements of the complex systems approach. I am setting to one side here the developments over the past decade in applying complex systems analysis to economic problems. This is not because this recent work is not important. It most certainly is. But I want to argue that there is a very distinct tradition of what we would now describe as a complex systems approach in the works of two of the greatest economists of the 20th century. There is of course a dominant intellectual paradigm within economics, that known as `neo-classical'economics. This paradigm is by no means an empty box, and is undoubtedly useful in helping to understand how some aspects of the social and economic worlds work. But even in its heyday, neo-classical economics never succeeded by its empirical success in driving out completely other theoretical approaches, for its success was simply not sufficient to do so. Much more importantly, economics over the past twenty or thirty years has become in an increasing state of flux.

  17. [VGKC-complex antibodies].

    PubMed

    Watanabe, Osamu

    2013-04-01

    Various antibodies are associated with voltage-gated potassium channels (VGKCs). Representative antibodies to VGKCs were first identified by radioimmunoassays using radioisotope-labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were detected only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in patients with Morvan's syndrome and in those with a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins (for example LGI-1 and CASPR-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now commonly known as VGKC-complex antibodies. In general, LGI-1 antibodies are most commonly detected in patients with limbic encephalitis with syndrome of inappropriate secretion of antidiuretic hormone. CASPR-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability. Furthermore, VGKC-complex antibodies are tightly associated with chronic idiopathic pain. Hyperexcitability of nociceptive pathways has also been implicated. These antibodies may be detected in sera of some patients with neurodegenerative diseases (for example, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease).

  18. Complex regional pain syndrome.

    PubMed

    Bruehl, Stephen

    2015-07-29

    Complex regional pain syndrome is a chronic pain condition characterized by autonomic and inflammatory features. It occurs acutely in about 7% of patients who have limb fractures, limb surgery, or other injuries. Many cases resolve within the first year, with a smaller subset progressing to the chronic form. This transition is often paralleled by a change from "warm complex regional pain syndrome," with inflammatory characteristics dominant, to "cold complex regional pain syndrome" in which autonomic features dominate. Multiple peripheral and central mechanisms seem to be involved, the relative contributions of which may differ between individuals and over time. Possible contributors include peripheral and central sensitization, autonomic changes and sympatho-afferent coupling, inflammatory and immune alterations, brain changes, and genetic and psychological factors. The syndrome is diagnosed purely on the basis of clinical signs and symptoms. Effective management of the chronic form of the syndrome is often challenging. Few high quality randomized controlled trials are available to support the efficacy of the most commonly used interventions. Reviews of available randomized trials suggest that physical and occupational therapy (including graded motor imagery and mirror therapy), bisphosphonates, calcitonin, subanesthetic intravenous ketamine, free radical scavengers, oral corticosteroids, and spinal cord stimulation may be effective treatments. Multidisciplinary clinical care, which centers around functionally focused therapies is recommended. Other interventions are used to facilitate engagement in functional therapies and to improve quality of life.

  19. Complexity in `simple' metals

    NASA Astrophysics Data System (ADS)

    Rousseau, Bruno; Ashcroft, Neil W.

    2008-03-01

    In electronic and structural terms, the light alkalis have long been regarded as `simple systems', at least under ordinary conditions. However, when compressed they exhibit unforeseen complexity; the melting curve of sodium, for example, has a striking maximum, falling to near room temperature melting where a complex structure (CI16) is found, this being in the cubic class but with 16 atoms per unit cell [1,2]. The light alkalis have been extensively studied using ab initio methods with standard assumptions of transferability made for the key pseudopotential input information, largely atomic based. Lacking still, however, is a somewhat more intuitive and physical understanding of the developments in electronic structure with progressive increase in density. In the present work, the problem is treated with non-linear response theory and non-overlapping pseudopotentials, and the structural complexity traced to effective ion-ion interactions with features that both at short range and long display competing state dependence. [1] Gregoryanz et al., Phys. Rev. Lett. 94, 185502 (2005) [2] McMahon et al., Chem. Soc. Rev. 35, 943 (2006)

  20. Emergent Complex Network Geometry

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.