Science.gov

Sample records for gemcitabine etoposide cisplatin

  1. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin

    PubMed Central

    Mitry, E; Baudin, E; Ducreux, M; Sabourin, J-C; Rufié, P; Aparicio, T; Lasser, P; Elias, D; Duvillard, P; Schlumberger, M; Rougier, P

    1999-01-01

    The purpose of this study was to evaluate by a retrospective analysis of 53 patients the efficacy of chemotherapy combining etoposide and cisplatin in the treatment of neuroendocrine tumours. The regimen was a combination of etoposide 100 mg m–2 day–1 for 3 days and cisplatin 100 mg m–2 on day 1, given by 2-h intravenous infusion, administered every 21 days. Twelve patients had a well-differentiated and 41 a poorly differentiated neuroendocrine tumour. Toxicity of treatment was assessed in 50 patients and efficacy in 52 patients. Among the 11 patients with a well-differentiated tumour evaluable for tumoural response, only one (9.4%) had a partial response for 8.5 months. Forty-one patients with a poorly differentiated tumour showed an objective response rate of 41.5% (four complete and 13 partial responses); the median duration of response was 9.2 months, the median overall survival 15 months and the median progression-free survival 8.9 months. Haematological grade 3–4 toxicity was observed in 60% of the cases with one treatment-related death, digestive grade 3–4 toxicity in 40% and grade 3 alopecia was constant. No severe renal, hearing and neurological toxicities were observed (grade 1 in 6%, 14%, 72% respectively and no grade >1). We confirm that poorly differentiated neuroendocrine tumours are chemosensitive to the etoposide plus cisplatin combination. However, the prognosis remains poor with a 2-year survival lower than 20% confirming that new therapeutic strategies have to be developed. © 1999 Cancer Research Campaign PMID:10604732

  2. Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells.

    PubMed

    Pastwa, Elzbieta; Poplawski, Tomasz; Lewandowska, Urszula; Somiari, Stella B; Blasiak, Janusz; Somiari, Richard I

    2014-08-01

    The combination of etoposide and cisplatin represents a common modality for treating of glioma patients. These drugs directly and indirectly produce the most lethal DNA double-stand breaks (DSB), which are mainly repaired by non-homologous DNA end joining (NHEJ). Drugs that can specifically inhibit the kinase activity of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the major component of NHEJ, are of special interest in cancer research. These small molecule inhibitors can effectively enhance the efficacy of current cancer treatments that generate DNA damage. In this study, we investigated the effect of DNA-PKcs inhibitor, wortmannin, on the cytotoxic mechanism of etoposide and cisplatin in MO59K and MO59J human glioblastoma cell lines. These cell lines are proficient and deficient in DNA-PKcs, respectively. Wortmannin synergistically increased the cytotoxicity of cisplatin and etoposide, when combined, in NHEJ-proficient MO59K cells. Surprisingly, wortmannin sensitizing effect was also observed in DNA-PKcs-deficient MO59J cells. These data suggest that wortmannin sensitization to etoposide and cisplatin in human glioma cells is mediated by inhibition of not only DNA-PKcs activity but other enzymes from PI3-K family, e.g. ATM and ATR. A concentration-dependent increase in etoposide and cisplatin-induced DSB levels was potentiated by inhibitor in both cell lines. Moreover, drug-induced accumulation in the G2/M checkpoint and S-phase was increased by wortmannin. Wortmannin significantly inhibited drug-induced DSB repair in MO59 cells and this effect was more pronounced in MO59J cells. We conclude that the mechanism of wortmannin potentiation of etoposide and cisplatin cytotoxicity involves DSBs induction, DSBs repair inhibition, G2/M checkpoint arrest and inhibition of not only DNA-PKcs activity.

  3. Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review.

    PubMed

    Park, Joon Oh; Oh, Do-Youn; Hsu, Chiun; Chen, Jen-Shi; Chen, Li-Tzong; Orlando, Mauro; Kim, Jong Seok; Lim, Ho Yeong

    2015-07-01

    Evidence suggests that combined gemcitabine-cisplatin chemotherapy extends survival in patients with advanced biliary tract cancer (BTC). We conducted a systematic review in order to collate this evidence and assess whether gemcitabine-cisplatin efficacy is influenced by primary tumor site, disease stage, or geographic region, and whether associated toxicities are related to regimen. MEDLINE (1946-search date), EMBASE (1966-search date), ClinicalTrials. gov (2008-search date), and abstracts from major oncology conferences (2009- search date) were searched (5 Dec 2013) using terms for BTC, gemcitabine, and cisplatin. All study types reporting efficacy (survival, response rates) or safety (toxicities) outcomes of gemcitabine-cisplatin in BTC were eligible for inclusion; efficacy data were extracted from prospective studies only. Evidence retrieved from one meta-analysis (abstract), four randomized controlled trials, 12 nonrandomized prospective studies, and three retrospective studies supported the efficacy and safety of gemcitabine-cisplatin for BTC. Median overall survival ranged from 4.6 to 11.7 months, and response rate ranged from 17.1% to 36.6%. Toxicities were generally acceptable and manageable. Heterogeneity in study designs and data collected prevented formal meta-analysis, however exploratory assessments suggested that efficacy did not vary with primary tumor site (gallbladder vs. others), disease stage (metastatic vs. locally advanced), or geographic origin (Asia vs. other). Incidence of grade 3/4 toxicities was not related to gemcitabine dose or cisplatin frequency. Despite individual variation in study designs, the evidence presented suggests that gemcitabine-cisplatin is effective in patients from a diverse range of countries and with heterogeneous disease characteristics. No substantial differences in toxicity were observed among the different dosing schedules of gemcitabine and cisplatin.

  4. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells*

    PubMed Central

    Teixeira, Sarah Fernandes; Guimarães, Isabella dos Santos; Madeira, Klesia Pirola; Daltoé, Renata Dalmaschio; Silva, Ian Victor; Rangel, Leticia Batista Azevedo

    2013-01-01

    OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide) with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity. METHODS: We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and calculated the combination index for the drugs studied. RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy. CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher. PMID:24473757

  5. Etoposide

    MedlinePlus

    ... medications, or any of the ingredients in etoposide capsules. Ask your pharmacist for a list of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  6. Prometheus' spirit: quality survival in advanced hepatocellular carcinoma after gemcitabine and cisplatin-based chemotherapy.

    PubMed

    Doval, D C; Pande, S B; Sharma, J B; Pavithran, K; Jena, A; Vaid, A K

    2008-10-01

    In advanced virus-induced hepatocellular carcinoma (HCC) associated with cirrhosis, the average survival is four months. We report a 56-year-old man with a large-volume advanced HCC, in whom gemcitabine and cisplatin-based chemotherapy resulted in near-complete regression, and quality survival of 24 months.

  7. Comparison of the Efficacy between Gemcitabine-Cisplatin and Capecitabine-Cisplatin Combination Chemotherapy for Advanced Biliary Tract Cancer

    PubMed Central

    Lee, Jieun; Hong, Tae Ho; Lee, In Seok; You, Young Kyoung; Lee, Myung Ah

    2015-01-01

    Purpose Gemcitabine-cisplatin combination chemotherapy has been regarded as standard regimen for advanced or metastatic biliary tract cancer (BTC), based on the ABC-02 trial. To date, however, no studies have compared the efficacies of gemcitabine-platinum and fluoropyrimidine- platinum combination chemotherapy, even though fluoropyrimidine has been widely used as a backbone agent for gastrointestinal cancer. This study compared the efficacy and toxicities of gemcitabine-cisplatin (GP) and capecitabine-cisplatin (XP) combination chemotherapy for treatment of advanced BTC. Materials and Methods We examined 49 patients treated with GP and 44 patients treated with XP from October 2009 to July 2012. All patients had unresectable BTC. The GP regimen comprised gemcitabine (1,000 mg/m2, intravenously [IV], days 1 and 8) and cisplatin (75 mg/m2, IV, day 1). The XP regimen comprised capecitabine (1,250 mg/m2 twice a day, peroral, days 1-14) and cisplatin (60 mg/m2, IV, day 1, every three weeks). We analyzed the response rate (RR), time to progression (TTP), overall survival (OS), and toxicity. Results The RRs were 27.3% and 6.1% in the XP and GP arms, respectively. XP resulted in longer TTP (5.2 months vs. 3.6 months, p=0.016), but OS was not statistically different (10.7 months vs. 8.6 months, p=0.365). Both regimens resulted in grade 3-4 hematologic toxicities, but febrile neutropenia was not noted. Grade 3-4 asthenia, stomatitis, and hand-foot syndrome occurred more frequently in the XP arm. Conclusion XP resulted in a superior TTP and RR compared to GP for treatment of advanced BTC, with comparable toxicity. Conduct of prospective large, randomized trials to evaluate the possibility of XP as another standard therapy is warranted. PMID:25648099

  8. Paclitaxel-etoposide-carboplatin/cisplatin versus etoposide-carboplatin/cisplatin as first-line treatment for combined small-cell lung cancer: a retrospective analysis of 62 cases

    PubMed Central

    Li, Yue-Ya; Zhou, Chan; Yang, Deng-Xia; Wang, Jing; Liu, Zhu-Jun; Wang, Xin-Yue; Li, Kai

    2015-01-01

    Objective To compare the efficacy and adverse effects of paclitaxel-etoposide-carboplatin/cisplatin (TEP/TCE) regimen with those of etoposide-carboplatin/cisplatin (EP/CE) regimen as first-line treatment for combined small-cell lung cancer (CSCLC). Methods A retrospective study was conducted on 62 CSCLC patients who were treated at Tianjin Medical University Cancer Institute and Hospital from July 2000 to April 2013 and administered with TEP/TCE regimen (n=19) or EP/CE regimen (n=43) as first-line CSCLC treatment. All patients received more than two cycles of chemotherapy, and the response was evaluated every two cycles. The primary endpoint was overall survival (OS), and the secondary endpoints were progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and adverse effects. Results ORR between the TEP/TCE and EP/CE groups showed a statistical difference (90% vs. 53%, P=0.033). Both groups failed to reach a statistical difference in DCR (100% vs. 86%, P=0.212). The median PFS and OS of the TEP/TCE group were slightly longer than those of the EP/CE group, although both groups failed to reach a statistical difference (10.5 vs. 8.9 months, P=0.484; 24.0 vs. 17.5 months, P=0.457). However, stratified analysis indicated that the PFS of patients with stages III and IV CSCLC showed marginally significant difference between the TEP/TCE and EP/CE groups (19.5 vs. 7.6 months; P=0.071). Both rates of grade IV bone marrow depression and termination of chemotherapy in the TEP/TCE group were significantly higher than those in the EP/CE group (26.3% vs. 7.0%, P=0.036; 31.6% vs. 14.7%, P=0.004). Conclusion The TEP/TCE regimen may not be preferred for CSCLC, and this three-drug regimen requires further exploration and research. To date, the EP/CE regimen remains the standard treatment for CSCLC patients. PMID:26175927

  9. A multicentre phase II study of cisplatin and gemcitabine for malignant mesothelioma

    PubMed Central

    Nowak, A K; Byrne, M J; Williamson, R; Ryan, G; Segal, A; Fielding, D; Mitchell, P; Musk, A W; Robinson, B W S

    2002-01-01

    Our previous phase II study of cisplatin and gemcitabine in malignant mesothelioma showed a 47.6% (95% CI 26.2–69.0%) response rate with symptom improvement in responding patients. Here we confirm these findings in a multicentre setting, and assess the effect of this treatment on quality of life and pulmonary function. Fifty-three patients with pleural malignant mesothelioma received cisplatin 100 mg m−2 i.v. day 1 and gemcitabine 1000 mg m−2 i.v. days 1, 8, and 15 of a 28 day cycle for a maximum of six cycles. Quality of life and pulmonary function were assessed at each cycle. The best response achieved in 52 assessable patients was: partial response, 17 (33%, 95% CI 20–46%); stable disease, 31 (60%); and progressive disease, four (8%). The median time to disease progression was 6.4 months, median survival from start of treatment 11.2 months, and median survival from diagnosis 17.3 months. Vital capacity and global quality of life remained stable in all patients and improved significantly in responding patients. Major toxicities were haematological, limiting the mean relative dose intensity of gemcitabine to 75%. This schedule of cisplatin and gemcitabine is active in malignant mesothelioma in a multicentre setting. Investigation of alternative scheduling is needed to decrease haematological toxicity and increase the relative dose intensity of gemcitabine whilst maintaining response rate and quality of life. British Journal of Cancer (2002) 87, 491–496. doi:10.1038/sj.bjc.6600505 www.bjcancer.com © 2002 Cancer Research UK PMID:12189542

  10. Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells

    PubMed Central

    Chen, Lian; Cui, Hengmin; Fang, Jing; Deng, Huidan; Kuang, Ping; Guo, Hongrui; Wang, Xun; Zhao, Ling

    2016-01-01

    Glutamine provides cancer cells with the energy required to synthesize macromolecules. Methods which block glutamine metabolism in treatment of breast cancer inhibit oncogenic transformation and tumor growth. We investigated whether inhibiting glutamine metabolism produces effects that are synergistic with those produced by drugs which damage DNA in triple-negative breast cancer cells. HCC1937 and BT-549 breast cancer cells were co-treated with either cisplatin or etoposide in combination with BPTES (a specific inhibitor of glutaminase 1) or exposure to a glutamine-free medium, and the cell proliferation and cell apoptosis were measured by flow cytometry, immunoblotting studies, and CCK-8 assays. The results showed that both glutamine deprivation and BPTES pretreatments increased the toxic effects of cisplatin and etoposide on HCC1937 cells, as demonstrated by their reduced proliferation, increased expression of apoptosis-related proteins (cleaved-PARP, cleaved-caspase 9, and cleaved-caspase 3) and decreased Bcl-2/BAX ratio. However, in BT-549 cells, glutamine deprivation and BPTES treatment increased etoposide-induced apoptosis only when used with higher concentrations of etoposide, and the effect on cisplatin-induced apoptosis was minimal. These results suggest that the anti-cancer effects produced by a combined approach of inhibiting glutamine metabolism and administering common chemotherapeutic agents correlate with the tumor cell type and specific drugs being administered. PMID:27419628

  11. VIP (etoposide, ifosfamide, and cisplatin) in patients with previously treated soft tissue sarcoma.

    PubMed

    Moon, Ji Young; Baek, Seung-Woo; Ryu, Hyewon; Choi, Yoon-Seok; Song, Ik-Chan; Yun, Hwan-Jung; Jo, Deog-Yeon; Kim, Samyong; Lee, Hyo Jin

    2017-01-01

    We retrospectively reviewed outcomes of treatment with VIP (combination of etoposide, ifosfamide, and cisplatin) in patients with previously treated soft tissue sarcoma (STS).We analyzed the medical records of patients with advanced or relapsed STS who had undergone VIP treatment as second-line or more chemotherapy between January 2000 and December 2015. The patients were treated with a combination of etoposide (100 mg/m for 5 days), ifosfamide (2000 mg/m for 2 days), and cisplatin (20 mg/m for 5 days) once every 4 weeks. Treatment response, progression-free survival (PFS), and overall survival (OS) were analyzed in all patients and between responder and nonresponder groups (responders showed a tumor response to any prior systemic chemotherapy before VIP).Twenty-four patients with a median age of 50 years (range: 20-68 years) were treated with VIP. Eleven (45.8%) patients were male and 7 (29.2%) received 2 or more chemotherapy regimens before VIP. Median PFS was 3.7 months (95% confidence interval [CI], 1.3-6.1 months) and median OS was 10.0 months (95% CI, 6.6-13.5). The overall response rate was 37.5%, and the disease control rate was 50%. The responder group showed better PFS (7.7 months vs 3.0 months; P = 0.101) and significantly improved OS (11.0 months vs 8.8 months; P = 0.039) compared to those of nonresponders. All patients reported some grade of hematological toxicity. The most frequently encountered hematological toxicity was neutropenia (any grade, 77.7%; grade 3 or 4, 74.0%).VIP might be effective in patients with previously treated STS.

  12. VIP (etoposide, ifosfamide, and cisplatin) in patients with previously treated soft tissue sarcoma

    PubMed Central

    Moon, Ji Young; Baek, Seung-Woo; Ryu, Hyewon; Choi, Yoon-Seok; Song, Ik-Chan; Yun, Hwan-Jung; Jo, Deog-Yeon; Kim, Samyong; Lee, Hyo Jin

    2017-01-01

    Abstract We retrospectively reviewed outcomes of treatment with VIP (combination of etoposide, ifosfamide, and cisplatin) in patients with previously treated soft tissue sarcoma (STS). We analyzed the medical records of patients with advanced or relapsed STS who had undergone VIP treatment as second-line or more chemotherapy between January 2000 and December 2015. The patients were treated with a combination of etoposide (100 mg/m2 for 5 days), ifosfamide (2000 mg/m2 for 2 days), and cisplatin (20 mg/m2 for 5 days) once every 4 weeks. Treatment response, progression-free survival (PFS), and overall survival (OS) were analyzed in all patients and between responder and nonresponder groups (responders showed a tumor response to any prior systemic chemotherapy before VIP). Twenty-four patients with a median age of 50 years (range: 20–68 years) were treated with VIP. Eleven (45.8%) patients were male and 7 (29.2%) received 2 or more chemotherapy regimens before VIP. Median PFS was 3.7 months (95% confidence interval [CI], 1.3–6.1 months) and median OS was 10.0 months (95% CI, 6.6–13.5). The overall response rate was 37.5%, and the disease control rate was 50%. The responder group showed better PFS (7.7 months vs 3.0 months; P = 0.101) and significantly improved OS (11.0 months vs 8.8 months; P = 0.039) compared to those of nonresponders. All patients reported some grade of hematological toxicity. The most frequently encountered hematological toxicity was neutropenia (any grade, 77.7%; grade 3 or 4, 74.0%). VIP might be effective in patients with previously treated STS. PMID:28121937

  13. Postoperative chemotherapy in gastric cancer, consisting of etoposide, doxorubicin and cisplatin, followed by radiotherapy with concomitant cisplatin: A feasibility study

    PubMed Central

    SHULMAN, KATERINA; HAIM, NISSIM; WOLLNER, MIRA; BERNSTEIN, ZVI; ABDAH-BORTNYAK, ROXYLANA; BAR-SELA, GIL

    2012-01-01

    The prognosis following surgical treatment of gastric carcinoma (GC) or gastroesophageal junction (GEJ) adenocarcinoma remains poor. Although adjuvant chemo-radiotherapy with 5-fluorouracil has been shown to be beneficial, a high rate of distant failure has been reported. Thus, the toxicity profile and efficacy of an intensified chemo-radiotherapy regimen following complete or near-complete resection of GC was evaluated. Patients who underwent surgery for GC were eligible for evaluation. Treatment consisted of four cycles of modified EAP: etoposide 100 mg/m2, days 1–3; cisplatin 27 mg/m2, days 1–3; and adriamycin 40 mg/m2, day 1; every 21 days, followed by a course of radiotherapy (45 Gy; 1.8 Gy/fr) combined with weekly cisplatin 40 mg/m2. In total, 40 patients were included in the analysis. Median follow-up was 34 months from the onset of chemotherapy. Microscopic stage IV disease and/or R1 resection were found in 11 patients. For these patients, the median progression-free survival was 6.5 months, and overall survival 9.5 months, compared to 25 and 54 months, respectively, for the remaining 29 patients. In the latter subgroup, longer disease-free survival was associated with average dose intensity of >90% for the four cycles of EAP. The predominant grade 3–4 toxicities during EAP-chemotherapy were hematological adverse events. Nevertheless, the rate of severe non-hematologic toxicity reached 60%. There was one toxicity-related mortality. During the chemo-radiotherapy course, 39% of patients experienced grade 3–4 non-hematologic toxicities. It was concluded that the high toxicity rate of this regimen does not justify further evaluation of this postoperative protocol. Chemo-radiotherapy for R1 or pathological microscopic M1 patients does not appear to be justified. PMID:22783410

  14. [A case of pineoblastoma successfully treated with surgery, combined chemotherapy of cisplatin and etoposide, and radiotherapy].

    PubMed

    Akiyama, Y; Akiyama, Y; Kumai, J; Nishikawa, M

    1995-10-01

    A 5-year-old girl was admitted to another clinic because of vomiting and convulsions. She was brought to our clinic after a ventriculoperitoneal shunt was inserted. CT scan on admission in our clinic showed a tumor in the pineal region with tumoral hemorrhage. Tumor markers such as HCG, AFP, CEA, P-LAP were within normal range. A biopsy of the tumor was performed and the histological diagnosis was pineoblastoma. Her recovery was excellent and disseminated metastasis was not recognized. A subtotal removal of the tumor was performed through the occipital transtentorial approach. She had no neurological deficits after surgery. She then received two 5-day cycles of chemotherapy, consisting of intravenous administration of 20 mg/m2/day cisplatin and 60 mg/m2/day etoposide, and craniospinal radiotherapy. After these therapies, the tumor responded and disappeared completely. Follow-up radiographic investigations also demonstrated no abnormal evidence except for brain atrophy. She is attending a primary school without any problems. Pineoblastoma is quite rare and remarkably malignant. Hence, aggressive therapies including surgery, radiotherapy and chemotherapy is indicated for this tumor.

  15. Liposomal cisplatin combined with gemcitabine in pretreated advanced pancreatic cancer patients: a phase I-II study.

    PubMed

    Stathopoulos, George P; Boulikas, Teni; Vougiouka, Maria; Rigatos, Sotirios K; Stathopoulos, John G

    2006-05-01

    The present trial is a phase I-II study based on a new liposomal cisplatin (lipoplatin). Previous preclinical and clinical data (phase I pharmacokinetics) led to the investigation of a combined treatment modality involving lipoplatin and gemcitabine. The gemcitabine dose was kept standard at 1000 mg/m2 and the lipoplatin dose was escalated from 25 mg/m2 to 125 mg/m2. The treatment was administered to advanced pretreated pancreatic cancer patients who were refractory to previous chemotherapy which included gemcitabine. Lipoplatin at 125 mg/m2 was defined as dose limiting toxicity (DLT) and 100 mg/m2 as the maximum tolerated dose (MTD) in combination with 1000 mg/m2 of gemcitabine. Preliminary objective response rate data showed a partial response in 2/24 patients (8.3%), disease stability in 14 patients (58.3%) for a median duration of 3 months (range 2-7 months) and clinical benefit in 8 patients (33.3%). Liposomal cisplatin is a non-toxic alternative agent to bare cisplatin. In combination with gemcitabine, it has an MTD of 100 mg/m2 and shows promising efficacy in refractory pancreatic cancer.

  16. Comparison of Ifosfamide, Carboplatin and Etoposide versus Etoposide, Steroid, and Cytarabine Cisplatin as Salvage Chemotherapy in Patients with Refractory or Relapsed Hodgkin's lymphoma

    PubMed Central

    Mehrzad, Valiollah; Ashrafi, Farzaneh; Farrashi, Ali Reza; Pourmarjani, Reyhaneh; Dehghani, Mehdi; Shahsanaei, Armindokht

    2017-01-01

    Background: Refractory or relapsed Hodgkin's disease (HD) occurs in 10-50% of patients. The treatment of choice for these patients is high-dose chemotherapy (HDCT) and autologous stem cell transplantation (ASCT). Response to salvage chemotherapy (SCT) partial remission (PR) is necessary before HDCT with ASCT. However, its applicability is restricted mostly to patients responding to salvage chemotherapy. Optimal salvage regimen for these patients is unclear. In this study, our aim was to compare the efficacy profiles of ifosfamide, carboplatin, and etoposide (ICE) and etoposide-steroid-cytarabine-cisplatin (ESHAP) (cytosine arabinoside, cisplatin, and dexamethasone) regimens in the salvage treatment of relapsed or refractory HD. Materials and Methods: In this retrospective analysis, 114 patients with primary refractory or relapsed HD who received ICE or ESHAP salvage regimen were included. Results: Of 114 patients, 47 (41.2%) were females and the median age was 31.5 years. Response could be evaluated in 114 patients. Of 114 patients, 38 (33%) achieved complete remission (CR) and 21 (18.4%) achieved PR, leading to an overall response rate (ORR: CR + PR) of 51.4%. In the evaluable ICE group (n = 41), rates of CR, PR, and ORR were 21.9%, 17.1%, and 39% and in the ESHAP group (n = 73), rates of CR, PR, and ORR were 39.7%, 19.2%, and 58.9% (for ORR, P = 0.04), respectively. Conclusion: In patients with relapsed or refractory HD, treatment with ESHAP seems to have higher rates of response than ICE regimen does.

  17. Erlotinib and bevacizumab versus cisplatin, gemcitabine and bevacizumab in unselected nonsquamous nonsmall cell lung cancer.

    PubMed

    Thomas, Michael; Fischer, Jürgen; Andreas, Stefan; Kortsik, Cornelius; Grah, Christian; Serke, Monika; von Eiff, Michael; Witt, Christian; Kollmeier, Jens; Müller, Ernst; Schenk, Michael; Schröder, Michael; Villalobos, Matthias; Reinmuth, Niels; Penzel, Roland; Schnabel, Philipp; Acker, Thomas; Reuss, Alexander; Wolf, Martin

    2015-07-01

    Erlotinib with bevacizumab showed promising activity in recurrent nonsquamous (NS) nonsmall cell lung cancer (NSCLC). The INNOVATIONS study was designed to assess in first-line treatment of unselected cisplatin-eligible patients this combination compared to cisplatin, gemcitabine and bevacizumab. Stage IIIB/IV patients with NS-NSCLC were randomised on erlotinib (150 mg daily) and bevacizumab (15 mg·kg(-1) on day 1, every 3 weeks) (EB) until progression, or cisplatin (80 mg·m(-2) on day 1, every 3 weeks) and gemcitabine (1250 mg·m(-2) on days 1 and 8, every 3 weeks) up to six cycles and bevacizumab (15 mg·kg(-1) on day 1, every 3 weeks) (PGB) until progression. 224 patients were randomised (EB n=111, PGB n=113). The response rate (12% versus 36%; p<0.0001), progression-free survival (median 3.5 versus 6.9 months; hazard ratio (HR) 1.85, 95% CI 1.39-2.45; p<0.0001) and overall survival (median 12.6 versus 17.8 months; HR 1.41, 95% CI 1.01-1.97; p=0.04) clearly favoured PGB. In patients with epidermal growth factor receptor mutations (n=32), response rate, progression-free survival and overall survival were not superior with EB. Platinum-based combination chemotherapy remains the standard of care in first-line treatment of unselected NS-NSCLC. Molecular targeted approaches strongly mandate appropriate testing and patient selection.

  18. Is Gemcitabine and Cisplatin Induction Chemotherapy Superior in Locoregionally Advanced Nasopharyngeal Carcinoma?

    PubMed Central

    Zheng, Wei; Qiu, Sufang; Huang, Lingling; Pan, Jianji

    2015-01-01

    Objective: To investigate the outcome of locoregionally advanced nasopharyngeal carcinoma (NPC) treated with induction chemotherapy followed by chemoradiotherapy. Methods: Between June 2005 and October 2007, 604 patients with locoregionally advanced NPC were analyzed, of whom 399 and 205 were treated with conventional radiotherapy and intensity-modulated radiotherapy (IMRT) respectively. Meanwhile, 153 patients received concurrent chemotherapy, and 520 were given induction chemotherapy. Results: With a median follow-up time of 65 months, the 3-, and 5-year overall survival (OS), locoregional free survival (LRFS), and distant-metastasis free survival (DMFS) rates were 82.5% vs. 72.6%, 90.6% vs. 87.1%, and 82.5% vs. 81.2%, respectively. Induction chemotherapy was not an independent prognostic factor for OS (P=0.193) or LRFS, but there was a positive tendency for DMFS (P=0.088). GP regimen (gemcitabine + cisplatin) was an independent prognostic factor for OS (P = 0.038) and it had a trend toward improved DMFS (P = 0.109). TP regimen (taxol + cisplatin) was only a significant prognostic factor for DMFS (P =0.038). Conclusions: Adding induction chemotherapy had no survival benefit, but GP regimen benefited overall survival and had a trend toward improved DMFS. GP regimen may be superior to TP/FP regimen (fluorouracil + cisplatin) in treating locoregionally advanced NPC. PMID:26430402

  19. Gemcitabine and Cisplatin induced posterior reversible encephalopathy syndrome: A case report with review of literature

    PubMed Central

    Kabre, Rohit Santosh; Kamble, Krishna Marotirao

    2016-01-01

    Posterior reversible encephalopathy syndrome (PRES) is a recently described, scarcely documented clinical entity. PRES is caused by various factors, the most common being hypertension, followed by nonhypertensive causes such as renal diseases and immunosuppressive therapy. Recently, some cases have been reported about the association of increased use of cytotoxic and immunosuppressive agents in cancer patients, and relevant reports have increased with advances in radiological examinations. Here, we report a case of gallbladder cancer with liver metastasis undergoing gemcitabine- and cisplatin-based chemotherapy who presented with complaints of seizures, headache, and bilateral lower limb weakness. Thorough clinical examination, biochemical analysis, and radiological evaluation led to diagnosis of PRES. It is important to recognize this syndrome which will facilitate early diagnosis and prompt symptomatic management. Removal of causative agent is an important aspect of management. Studies are needed to identify factors of adverse prognostic significance and to develop neuroprotective strategies. PMID:27843969

  20. Sequential chemoradiotherapy with gemcitabine and cisplatin for locoregionally advanced nasopharyngeal carcinoma.

    PubMed

    Gu, Mo-Fa; Liu, Li-Zhi; He, Long-Jun; Yuan, Wen-Xin; Zhang, Rong; Luo, Guang-Yu; Xu, Guo-Liang; Zhang, Hua-Man; Yan, Chao-Xian; Li, Jian-Jun

    2013-01-01

    We investigated a new chemoradiotherapy (CRT) regimen for locoregionally advanced nasopharyngeal carcinoma (NPC). A total of 240 patients were randomly assigned to three different CRT regimens: sequential CRT [1 cycle chemotherapy + Phase I radiotherapy (RT) + 1 cycle chemotherapy + Phase II RT + 2 cycles chemotherapy] with a cisplatin-gemcitabine (GC) regimen (800 mg/m(2) gemcitabine on Days 1 and 8 and 20 mg/m(2) cisplatin on Days 1-5, every 4 weeks) (sGC-RT); sequential chemoradiotherapy with a cisplatin-fluorouracil (PF) regimen (20 mg/m(2) DDP and 500 mg/m(2) 5-FU on Days 1-5, every 4 weeks) (sPF-RT) and cisplatin-based concurrent chemoradiotherapy plus adjuvant PF chemotherapy (Con-RT + PF). The complete response rate was higher in the sGC + RT group than in the other two groups (98.75% vs. 92.50%, p < 0.01). The 3-year overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS) rates in the sGC-RT group were significantly higher than those observed in the Con-RT group (OS, 95.0% vs. 76.3%, p < 0.001; DFS, 89.9% vs. 67.5%, p < 0.001; DMFS, 92.5% vs. 76.0%, p = 0.004) and in the sPF + RT group (OS, 95.0% vs. 73.6%, p < 0.001; DFS, 89.9% vs. 63.3%, p < 0.001; DMFS, 92.5% vs. 74.7%, p = 0.002). There were no significant differences in 3-year OS, DFS and MFS rates between the Con-RT and the sPF-RT groups. The GC-RT group experienced more hematologic toxicity, constipation and rash; however, there were no differences in late RT toxicity between the groups. These results demonstrate that a sGC-RT regimen is effective and well tolerated in patients with locoregionally advanced NPC.

  1. Induction of apoptosis in non-small lung carcinoma cell line (H1299) by combination of anti-asthma drugs with gemcitabine and cisplatin.

    PubMed

    Merimsky, O; Hirsh, L; Dantes, A; Land-Bracha, A; Suh, B S; Amsterdam, A

    2005-02-01

    Gemcitabine and cisplatin are commonly used in chemotherapy, however, these drugs may cause severe cytotoxic side effects. Theophylline and aminophylline are commonly used as anti-asthma drugs and can block anti-phosphodiesterase activity. We examined whether these methylxanthins could effect lung cancer cell survival and synergise with gemcitabine and cisplatin to induce apoptosis. We found that theophylline induced apoptosis in the cultured H1299 cell line already at concentrations of 30 microg/ml, reaching an ED50% at 100 microg/ml. In contrast, aminophylline induced apoptosis at concentrations of 300 microg/ml and 17% apoptosis was evident at concentrations as high as 900 microg/ml, which is a lethal dose for in vivo treatment. Cisplatin induced apoptosis with ED50% of 0.8 microg/ml, while gemcitabine induced apoptosis with ED50% of 20 ng/ml. Using a combination of 20 microg/ml of theophylline (calculated as an effective but not toxic anti-asthma drug) with 10 ng/ml gemcitabine or with 0.3 microg/ml cisplatin significantly elevated incidence of apoptosis compared to gemcitabine or cisplatin alone at similar concentrations. In contrast, an observed synergistic effect between aminophylline and gemcitabine was evident only at concentrations of 80 microg/ml and 10 ng/ml respectively. However, no effect was apparent in combination doses of aminophylline (80 microg/ml) with cisplatin (0.3 microg/ml). The combined treatments involved reduction in the intracellular level of the anti-apoptotic Bcl-2 gene product. This corresponded with the extent of apoptosis induced by the various drug combinations. Thus, theophylline is significantly more effective than aminophylline in increasing the sensitivity of the H1299 lung cancer cells to the induction of cell death by gemcitabine and cisplatin. Thus, combination of theophylline with these drugs may permit a reduction in the effective dose needed in chemotherapy treatment of lung cancer patients.

  2. Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines.

    PubMed Central

    Zangemeister-Wittke, U.; Schenker, T.; Luedke, G. H.; Stahel, R. A.

    1998-01-01

    Expression of Bcl-2 is life-sustaining for small-cell lung cancer cells and associated with drug resistance. In the present study, the interactions between the bcl-2 antisense oligodeoxynucleotide 2009 and the chemotherapeutic agents etoposide, doxorubicin and cisplatin were investigated on small-cell lung cancer cell lines to search for synergistic combinations. The cell lines NCI-H69, SW2 and NCI-H82 express high, intermediate-high and low basal levels of Bcl-2, respectively, which are inversely correlated with the sensitivities of the cell lines to treatment with oligodeoxynucleotide 2009 and the chemotherapeutic agents alone. Moreover, differences were found in the responsiveness of the cell lines to treatment with combinations of oligodeoxynucleotide 2009 and the chemotherapeutic agents. In the cell lines NCI-H69 and SW2, all combinations resulted in synergistic cytotoxicity. In NCI-H69 cells, maximum synergy with a combination index of 0.2 was achieved with the combination of oligodeoxynucleotide 2009 and etoposide. In SW2 cells, the combination of oligodeoxynucleotide 2009 and doxorubicin was the most effective (combination index = 0.5). In the cell line NCI-H82, which expresses a low basal level of Bcl-2, most of the combinations were slightly antagonistic. Our data suggest the use of oligodeoxynucleotide 2009 in combination with chemotherapy for the treatment of small-cell lung cancer that overexpresses Bcl-2. Images Figure 1 PMID:9792147

  3. Phase I Study of Everolimus in Combination with Gemcitabine and Split-Dose Cisplatin in Advanced Urothelial Carcinoma

    PubMed Central

    Abida, Wassim; Milowsky, Matthew I.; Ostrovnaya, Irina; Gerst, Scott R.; Rosenberg, Jonathan E.; Voss, Martin H.; Apolo, Andrea B.; Regazzi, Ashley M.; McCoy, Asia S.; Boyd, Mariel E.; Bajorin, Dean F.

    2016-01-01

    Background: Cisplatin-based combination chemotherapy is standard first-line treatment for patients with advanced urothelial carcinoma (UC). Molecular profiling studies reveal that the PI3K/AKT/mTOR pathway is altered in a significant percentage of UCs. Objective: We conducted a phase I trial to evaluate the feasibility of combining the mTOR inhibitor everolimus with gemcitabine and split-dose cisplatin (GC) in advanced UC in the first-line setting. Methods: Patients received gemcitabine 800 mg/m2 and cisplatin 35 mg/m2 on days 1 and 8 of 21-day cycles for a total of 6 cycles in combination with everolimus at increasing dose levels (DL1:5 mg QOD, DL2:5 mg daily, DL3:10 mg daily) following a standard 3+3 design. Responses were assessed every 2 cycles. Patients with at least stable disease (SD) continued everolimus until progression. Goals were to establish dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) for the combination. Results: 12 patients were enrolled, 3 at DL1, 3 at DL2, and an additional 6 at DL1 *(DL1 following de-escalation). 3/3 patients at DL2 had DLTs during cycle 1. 2/8 evaluable patients at DL1/DL1 * had DLTs during cycle 1. DLTs were primarily hematologic. Further toxicities, also primarily hematologic, were observed during later treatment cycles, leading to 8 chemotherapy dose reductions overall. Partial responses were observed in 4/10 evaluable patients, and SD in 5/10. Median overall survival was 10.8 months (95% CI 6.9, not reached). Conclusions: The maximum tolerated dose was reached at the lowest dose level, 5 mg QOD, for everolimus in combination with gemcitabine and split-dose cisplatin in advanced UC. The regimen was limited by hematologic toxicity. PMID:27376132

  4. Efficacy of methotrexate/vinblastine/doxorubicin cisplatin combination in gemcitabine-pretreated patients with advanced urothelial cancer: a retrospective analysis

    PubMed Central

    Karadimou, Alexandra; Lianos, Evangelos; Pectasides, Dimitrios; Dimopoulos, Meletios A; Bamias, Aristotle

    2010-01-01

    Objective Second-line treatment options in advanced urothelial cancer are limited. We investigated the efficacy of a methotrexate/vinblastine/doxorubicin/cisplatin (MVAC) combination after failure of gemcitabine/platinum chemotherapy. Patients and methods Twenty-five patients with advanced urothelial cancer, who received second-line MVAC after first-line gemcitabine/cisplatin (n = 9) or gemcitabine/carboplatin (n = 16), were included in this retrospective analysis. Results Twenty-two patients (88%) relapsed within 6 months after first-line treatment. Following MVAC, there were 5 (20%) objective responses. Median follow-up was 20.2 months. Median progression-free survival (PFS) was 3.8 months (95% CI: 2.3–5.2), and median overall survival (OS) was 9 months (95% CI: 6.6–11.4). Eastern Cooperative Oncology Group performance status 0.1 versus 2 was associated with longer PFS (5 months versus 3.3 months, P = 0.049). Response or stabilization of disease during second-line chemotherapy predicted for a significantly longer PFS and OS (7.4 versus 3.5, P = 0.005; 15.5 versus 7, P = 0.046). Conclusions Second-line MVAC chemotherapy may result in prolonged survival in some patients with refractory disease. Further research in this field is necessary. PMID:24198628

  5. [A Case of Advanced Seminoma in a 79-Year-Old Man Successfully Treated with Etoposide and Cisplatin].

    PubMed

    Shiga, Masanobu; Kawai, Koji; Kojyo, Kousuke; Kurobe, Masahiro; Ichioka, Daishi; Yoshino, Takayuki; Ikeda, Atsushi; Kojima, Takahiro; Joraku, Akira; Suetomi, Takahiro; Tsutsumi, Masakazu; Miyazaki, Jun; Nishiyama, Hiroyuki

    2015-12-01

    Testicular tumors are representative solid cancers that occur in young men, and the standard multi-drug combination chemotherapy has been established for metastatic tumors. However, they develop rarely in elderly men over 70 years old, and there are few reports about the information of combination chemotherapy for elderly testicular tumor patients. Here, we present a case in a 79-year-old who had right testicular tumors (seminoma, cT2N3M1a, IGCC classification : good prognosis) safely treated with multi-drug combination chemotherapy. To reduce the risk of side effects, we selected 4 courses of etoposide and cisplatin (EP) to the patient. The patient suffered from febrile neutropenia (FN) and oral mucositis during the first cycle of EP. However, no further episodes of oral mucositis and FN were observed after introduction of oral health care by a dentist. The patient received 4 courses of EP without dose reduction or treatment postponement. There was no evidence of recurrence 6 months after chemotherapy. To our knowledge, the present case is the oldest patient with metastatic testicular treated with combination chemotherapy including cisplatin.

  6. Weekly Gemcitabine and Cisplatin in Combination With Radiotherapy in Patients With Locally Advanced Head-and-Neck Cancer: Phase I Study

    SciTech Connect

    Arruda Viani, Gustavo; Afonso, Sergio Luis; Cardoso Tavares, Vivian; Bernardes Godoi da Silva, Lucas; Stefano, Eduardo Jose

    2011-11-15

    Purpose: To define the maximum tolerated dose by describing the dose-limiting toxicity (DLT) of weekly gemcitabine and cisplatin in patients with locally advanced head-and-neck (LAHN) cancer concomitant to irradiation. Methods and Materials: Patients with LAHN cancer were enrolled in a prospective, dose-escalation Phase I study. Toxicity was graded according to the Common Toxicity Criteria score. Maximum tolerated dose was defined when DLT developed in 2 of 6 patients. The starting dose of cisplatin was 20 mg/m{sup 2} and that of gemcitabine was 10 mg/m{sup 2} in 3 patients, with a subsequent dose escalation of 10 mg/m{sup 2} of cisplatin only for 3 new patients. In the next levels, only a dose escalation of gemcitabine with 10 mg/m{sup 2} for each new cohort was used (Level 1, 10 mg/m{sup 2} of gemcitabine and 20 mg/m{sup 2} of cisplatin; Level 2, 10 mg/m{sup 2} of gemcitabine and 30 mg/m{sup 2} of cisplatin; and Level 3, 20 mg/m{sup 2} of gemcitabine and 30 mg/m{sup 2} of cisplatin). Radiation therapy was administered by use of a conformal technique over a period of 6 to 7 weeks in 2.0-Gy daily fractions for 5 consecutive days per week to a total dose of 70 Gy. Results: From 2008 to 2009, 12 patients completing 3 dose levels were included in the study. At Dose Level 3, 1 of 3 patients had DLT with Grade 3 mucositis. Of the next 3 required patients, 2 showed DLT with Grade 3 dermatitis. At a follow-up of 3 months, 10 of 12 evaluable patients (83.3%) obtained a complete response and 1 patient (8.3%) obtained a partial response. Among the complete responders, at a median follow-up of 10 months (range, 6-14 months), 9 patients are alive and disease free. Conclusion: Gemcitabine at low doses combined with cisplatin is a potent radiosensitizer effective in patients with LAHN cancer. The recommended Phase II dose is 10 mg/m{sup 2} of gemcitabine and 30 mg/m{sup 2} of cisplatin with an acceptable tolerability profile.

  7. Neoadjuvant cisplatin and etoposide, with or without tamoxifen, prior to radiotherapy in high-grade gliomas: a single-center experience.

    PubMed

    Díaz, Roberto; Jordá, María V; Reynés, Gaspar; Aparicio, Jorge; Segura, Angel; Amador, Román; Calderero, Verónica; Beltrán, Andrés

    2005-03-01

    Neoadjuvant chemotherapy (CT), prior to radical radiotherapy (RT), in the treatment of high-grade gliomas may offer several advantages over standard adjuvant CT. The addition of tamoxifen, which can circumvent P-glycoprotein (P-gp)-mediated chemo-resistance, also merits attention. We have evaluated the neoadjuvant regimen of cisplatin and etoposide after surgery of grade III-IV gliomas and prior to radical RT, with regard to response rates (RRs), overall survival (OS) and time to progression (TTP). The synergistic activity between etoposide and tamoxifen was also studied. Forty-four patients were included. CT regime: cisplatin 100 mg/m2 on day +1 and etoposide 100 mg/m2 on days +1 to +3 every 3 weeks for 3 cycles. The initial 24 were also treated with high-dose tamoxifen, 275 mg/m2 on days -3 to +3. An immunohistochemical analysis of P-gp, p53, vascular endothelial growth factor, Ki67 and bcl-2 was also performed. Median follow-up was 11.57 months. In the 16 patients with measurable disease after surgery, a RR of 12.5% was seen, with 37.5% of disease stabilizations and 31.25% of progressions. The median OS and TTP were 11.3 and 5.7 months. Excluding the three deaths possibly related to tamoxifen, grade 3-4 was low, mainly emesis. Favorable prognostic factors were age less than 60 years, extent of surgery, absence of measurable disease, and the absence of radiological necrosis and ring enhancement. Only high p53 expression was associated with better OS. We conclude that neoadjuvant cisplatin and etoposide is a feasible regime, although any real advantage over standard adjuvant CT is dubious. Short-course high-dose tamoxifen should not be used alongside primary CT.

  8. Phase I and pharmacological study of the farnesyltransferase inhibitor tipifarnib (Zarnestra®, R115777) in combination with gemcitabine and cisplatin in patients with advanced solid tumours

    PubMed Central

    Siegel-Lakhai, W S; Crul, M; Zhang, S; Sparidans, R W; Pluim, D; Howes, A; Solanki, B; Beijnen, J H; Schellens, J H M

    2005-01-01

    This phase I trial was designed to determine the safety and maximum tolerated dose (MTD) of tipifarnib in combination with gemcitabine and cisplatin in patients with advanced solid tumours. Furthermore, the pharmacokinetics of each of these agents was evaluated. Patients were treated with tipifarnib b.i.d. on days 1–7 of each 21-day cycle. In addition, gemcitabine was given as a 30-min i.v. infusion on days 1 and 8 and cisplatin as a 3-h i.v. infusion on day 1. An interpatient dose-escalation scheme was used. Pharmacokinetics was determined in plasma and white blood cells. In total, 31 patients were included at five dose levels. Dose-limiting toxicities (DLTs) consisted of thrombocytopenia grade 4, neutropenia grade 4, febrile neutropenia grade 4, electrolyte imbalance grade 3, fatigue grade 3 and decreased hearing grade 2. The MTD was tipifarnib 200 mg b.i.d., gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. Eight patients had a confirmed partial response and 12 patients stable disease. No clinically relevant pharmacokinetic interactions were observed. Tipifarnib can be administered safely at 200 mg b.i.d. in combination with gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. This combination showed evidence of antitumour activity and warrants further evaluation in a phase II setting. PMID:16251868

  9. [A case of small cell carcinoma in the urinary bladder responding to gemcitabine/cisplatin combination therapy as neoadjuvant chemotherapy].

    PubMed

    Shirato, Akitomi; Shimamoto, Kenji; Ozawa, Akira; Tanji, Nozomu; Yokoyama, Masayoshi

    2006-12-01

    We report a case of primary small cell carcinoma of the urinary bladder. A 79-year-old man with the chief complaints of macrohematuria and pollakisuria was admitted to our hospital. Cystoscopy and computed tomography (CT) revealed a non-papillary broad-based bladder tumor. Histological diagnosis was small cell carcinoma of the urinary bladder, and he underwent 3 courses of neoadjuvant chemotherapy including gemcitabine and cisplatin with a preoperative diagnosis of cT3bN0M0. After the chemotherapy, cystoscopy and CT showed complete remission. Total cystectomy with ileal conduit was performed following 3 courses of chemotherapy. Microscopic examination revealed that the small cell carcinoma had disappeared and the converted squamous cell carcinoma remained only in a small part of the specimens. The patient was carefully followed for 10 months after operation, with no tumor recurrence.

  10. 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622

  11. GEMCITABINE AND CISPLATIN IN UNRESECTABLE MALIGNANT MESOTHELIOMA OF THE PLEURA: A PHASE II STUDY OF THE SOUTHWEST ONCOLOGY GROUP (SWOG 9810)

    PubMed Central

    Kalmadi, Sujith R.; Rankin, Cathryn; Kraut, Michael J.; Jacobs, Andrew D.; Petrylak, Daniel P.; Adelstein, David J.; Keohan, Mary Louise; Taub, Robert N.; Borden, Ernest C.

    2009-01-01

    Purpose The purpose of this open- label phase II SWOG study was to evaluate the activity of gemcitabine (Gemzar ®; Eli Lilly, Indiana, USA) and cisplatin combination therapy, in patients with unresectable malignant mesothelioma of the pleura. Patients and methods Fifty eligible chemotherapy naïve patients with histologically proven malignant mesothelioma of the pleura, and a SWOG performance status 0–2 were enrolled between February 1999 to August 2000. Treatment consisted of gemcitabine 1000mg/m2 and cisplatin 30 mg/m2 on days 1,8 and 15 of a 28-day cycle, until progression of disease or two cycles beyond complete response. Results Using SWOG response criteria, one patient had a confirmed complete response and five patients had a confirmed partial response, for a total response rate of 12% (95% C.I. of 5% – 24%). All the responses were seen in patients with epithelioid or unspecified histology. Stable disease was seen in 25 patients (50%). The median overall survival was 10 months (95% C.I. 7 – 15 mo.), with a median progression free survival of 6 months. Sixteen patients experienced Grade 4 toxicity. Twelve of these grade 4 toxicities were hematologic. There were no treatment-related deaths. Conclusions Cisplatin-gemcitabine combination chemotherapy has modest activity with an acceptable toxicity profile, as first line treatment for patients with malignant mesothelioma. PMID:18006112

  12. Preclinical in vivo activity of a combination gemcitabine/liposomal doxorubicin against cisplatin-resistant human ovarian cancer (A2780/CDDP).

    PubMed

    Gallo, D; Fruscella, E; Ferlini, C; Apollonio, P; Mancuso, S; Scambia, G

    2006-01-01

    Both gemcitabine and liposomal doxorubicin are antineoplastic drugs with clinical activity in platinum-refractory ovarian cancer. The purpose of this study was to evaluate the antitumor activity of a combination gemcitabine/liposomal doxorubicin administered to athymic mice bearing cisplatin-resistant human ovarian cancer (A2780/CDDP) xenografts. Emphasis was on the use of very low doses of each drug and of different dosing schedules. Data obtained showed that combined treatment with 80 mg/kg gemcitabine and 15 mg/kg liposomal doxorubicin produced a significant enhancement of antitumor activity compared with monotherapy at the same doses of these agents. Noteworthy is the fact that the majority of xenograft-bearing animals receiving the combination therapy demonstrated a complete tumor regression at the end of the study. A similar trend was observed when doses of both drugs were reduced to 20 mg/kg gemcitabine and to 6 mg/kg liposomal doxorubicin. Again, three out of ten mice receiving the combination were tumor free at the end of the study. No significant differences were observed in antitumor activity when comparing the simultaneous vs the consecutive dosing schedule. Remarkably, no additive toxicity was observed in any experimental trials. These data encourage clinical trials to prove the advantages of this combination treatment with respect to the single-agent chemotherapy in platinum-refractory ovarian cancer patients.

  13. Combination of anti-L1 cell adhesion molecule antibody and gemcitabine or cisplatin improves the therapeutic response of intrahepatic cholangiocarcinoma

    PubMed Central

    Cho, Seulki; Lee, Tae Sup; Song, In Ho; Kim, A-Ram; Lee, Yoon-Jin; Kim, Haejung; Hwang, Haein; Jeong, Mun Sik; Kang, Seung Goo; Hong, Hyo Jeong

    2017-01-01

    Cholangiocarcinoma has a poor prognosis and is refractory to conventional chemotherapy and radiation therapy. Improving survival of patients with advanced cholangiocarcinoma urgently requires the development of new effective targeted therapies in combination with chemotherapy. We previously developed a human monoclonal antibody (mAb) Ab417 that binds to both the human and mouse L1 cell adhesion molecule (L1CAM) with high affinities. In the present study, we observed that Ab417 exhibited tumor targeting ability in biodistribution studies and dose-dependent tumor growth inhibition in an intrahepatic cholangiocarcinoma (Choi-CK) xenograft mouse model. Regarding the mechanism of action, Ab417 was internalized into the tumor cells and thereby down-regulated membrane L1CAM, and inhibited tumor growth by reducing tumor cell proliferation in vivo. Gemcitabine inhibited the tumor growth in a dose-dependent manner in the Choi-CK xenograft model. However, cisplatin inhibited the tumor growth moderately and not in a dose-dependent way, suggesting that the tumors may have developed resistance to apoptosis induced by cisplatin. Combined treatment with Ab417 and gemcitabine or cisplatin exerted enhanced tumor growth inhibition compared to treatment with antibody or drug alone. The results suggest that Ab417 in combination with chemotherapy may have potential as a new therapeutic regimen for cholangiocarcinoma. Our study is the first to show an enhanced therapeutic effect of a therapeutic antibody targeting L1CAM in combination with chemotherapy in cholangiocarcinoma models. PMID:28166242

  14. [Second-line chemotherapy with gemcitabine and cisplatin for urothelial cancer previously treated with or resistant to M-VAC therapy].

    PubMed

    Honda, Masahito; Hatano, Koji; Satoh, Mototaka; Tsujimoto, Yuichi; Takada, Tsuyoshi; Matsumiya, Kiyomi; Fujioka, Hideki

    2006-09-01

    We evaluated the efficacy of gemcitabine-cisplatin (GC) therapy as a second line chemotherapy for recurrent urothelial cancer previously treated with or resistant to methotrexate, vinblastine, doxorubicin and cisplatin (M-VAC) therapy. Four patients who had recurrent cancer after adjuvant M-VAC therapy and five patients with resistant lesions to M-VAC were treated by GC. Of the nine patients, three completely responded to GC and three obtained partial response. These complete responders were cancer-free for 34, 32 and 24 months. In one partial responder, the metastatic masses have been decreasing in size for 12 months after completion of GC therapy. Our findings suggested that GC would be useful as a second line chemotherapy for urothelial cancer previously treated with M-VAC.

  15. FEP regimen (epidoxorubicin, etoposide and cisplatin) in advanced gastric cancer, with or without low-dose GM-CSF: an Italian Trial in Medical Oncology (ITMO) study.

    PubMed Central

    Bajetta, E.; Di Bartolomeo, M.; Carnaghi, C.; Buzzoni, R.; Mariani, L.; Gebbia, V.; Comella, G.; Pinotti, G.; Ianniello, G.; Schieppati, G.; Bochicchio, A. M.; Maiorino, L.

    1998-01-01

    The new regimens developed over the last few years have led to an improvement in the treatment of advanced gastric cancer, and our previous experience confirmed the fact that the combination of etoposide, doxorubicin and cisplatin (EAP regimen) is an active treatment that leads to interesting complete remission rates. The primary end point of the present multicentre, randomized, parallel-group phase II study was to determine the activity of the simplified 2-day EAP schedule in patients with locally advanced or metastatic gastric cancer, and to verify whether the addition of low doses of granulocyte-macrophage colony-stimulating factor (GM-CSF) made it possible to increase dose intensity. Of the 62 enrolled patients, 30 were randomized to receive epirubicin 35 mg m(-2), etoposide 120 mg m(-2) and cisplatin 45 mg m(-2) (FEP) on days 1 and 2 every 28 days and 32 to receive the same schedule plus subcutaneous GM-CSF (molgramostin) 150 microg day(-1) on days 5-14 every 21 days. The patients were stratified by age and the number of disease sites. The characteristics of the patients were well balanced between the two groups. The objective response rate of the patients as a whole was 34% (21 out of 62; 95% confidence interval 22-46), with only one complete remission. The median response duration was 4.5 months (range 1-24 months). The median time to treatment failure was 5 months (range 1-14 months), without any difference between the two groups. The median survival of the patients as a whole was 9 months. Full doses were administered in 92% and 94% of the cycles in the control and GM-CSF arms respectively. The average dose intensity calculated for all drugs was 0.96% in the control and 1.27% in the GM-CSF group. CTC-NCI grade 3-4 neutropenia was reported in 39% vs 45% of patients, thrombocytopenia in 11% vs 35% (P = 0.020) and anaemia in 7% vs 35% (P = 0.014). The FEP combination is as active (OR: 34%) in the treatment of patients with advanced gastric cancer as the EAP

  16. Gemcitabine and cisplatin in a concomitant alternating chemoradiotherapy program for locally advanced head-and-neck cancer: A pharmacology-guided schedule

    SciTech Connect

    Numico, Gianmauro . E-mail: gianmauro.numico@fastwebnet.it; Russi, Elvio G.; Vitiello, Raffele; Sorrentino, Raffaele; Colantonio, Ida; Cipolat, Marco; Taglianti, Riccardo Vigna; Pelissero, Antonio; Fea, Elena; Granetto, Cristina; Di Costanzo, Gianna; Gasco, Milena; Garrone, Ornella; Occelli, Marcella; Merlano, Marco

    2006-11-01

    Purpose: Administration of gemcitabine together with cisplatin at cytotoxic doses in a chemoradiotherapy regimen is hampered by a high degree of local toxicity. Using the pharmacologic properties of the drug we designed a modified schedule aimed at reducing toxicity while preserving activity. Methods and Materials: Patients with squamous cell carcinomas of the oral cavity, pharynx and larynx, bulky T4, and/or N2 to N3 were eligible. Gemcitabine was administered at a dose of 800 mg/m{sup 2} on Days 1 and 12 and cisplatin at a dose of 20 mg/m{sup 2} on Days 2 to 5, every 21 days for 3 courses. Radiotherapy, delivered with standard fractionation, was given on Days 8 to 12 and 15 to 19 and was repeated 3 times up to a total dose of {>=}60 Gy. Results: A total of 28 patients were selected. Grade 3 to 4 stomatitis was recorded in 25 patients (89%). Thirteen patients (46%) experienced Grade 3 to 4 neutropenia. Febrile neutropenia occurred in 8 patients (29%) and in 2 was complicated by infection and death. The overall complete response rate was 79%. At a median follow up of 71 months, 11 patients had a locoregional relapse (3-year locoregional control, 64%); 6 patients had distant metastases, among whom only 2 were without locoregional recurrence. The 3-year progression-free survival is 39% and 3-year overall survival has been 43%. Conclusion: The schedule modification did not attenuate local toxicity. Moreover, infections and especially pneumonia, were a major problem. The high activity of gemcitabine when combined with radiotherapy would most likely be better exploited in the context of modified radiation schemes.

  17. Ifosfamide, Cisplatin or Carboplatin, and Etoposide (ICE)-based Chemotherapy for Mobilization of Autologous Peripheral Blood Stem Cells in Patients with Lymphomas

    PubMed Central

    Zhou, Ping; Liu, Peng; Zhou, Sheng-Yu; He, Xiao-Hui; Han, Xiao-Hong; Qin, Yan; Yang, Sheng; Zhang, Chang-Gong; Gui, Lin; Yao, Jia-Rui; Zhao, Li-Ya; Zhang, Shu-Xiang; Sun, Yan; Shi, Yuan-Kai

    2015-01-01

    Background: High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is a promising approach for lymphomas. This study aimed to evaluate the effect of ifosfamide, cisplatin or carboplatin, and etoposide (ICE)-based regimen as a mobilization regimen on relapsed, refractory, or high-risk aggressive lymphoma. Methods: From June 2001 to May 2013, patients with lymphomas who mobilized by ICE-based regimen for ASCT were analyzed in this retrospective study. The results of the autologous peripheral blood stem cells collection, toxicity, engraftment after ICE-based mobilization regimen were analyzed in this study. Furthermore, risk factors for overall survival (OS) and progression free survival (PFS) were evaluated by univariate analysis. Results: The stem cells were mobilized using ICE-based regimen plus rituximab or ICE-based regimen alone in 12 patients and 54 patients, respectively. The results of stem cell mobilization were excellent. Ninety-seven percentages of the patients had the stem cell collection of at least 2.0 × 106 CD34+ cells/kg and 68% had at least 5 × 106 CD34+ cells/kg. Fifty-eight percentage of the patients experienced Grade 4 neutropenia, 20% developed febrile neutropenia, and only 12% had Grade 4 thrombocytopenia. At a median follow-up of 63.8 months, the 5-year PFS and OS were 64.4% and 75.3%, respectively. Conclusion: ICE is a powerful regimen for stem cell mobilization in patients with lymphomas. PMID:26365969

  18. [Combination of etoposide, cisplatin and ifosfamide (VPH) in the salvage chemotherapy of relapsing or refractory aggressive malignant lymphoma. Study of 51 patients].

    PubMed

    Eghbali, H; Catry-Thomas, I; Soubeyran, P; Bonnel, C; Hoerni, B

    1994-09-01

    Fifty-one patients with non-Hodgkin's lymphoma refractory or relapsing after CHOP-like regimen, underwent a salvage chemotherapy by VPH: etoposide 100 mg/m2/d, D1 to D3, cisplatin 20 mg/m2/d, D1 to D5, ifosfamide 1 g/m2/d D1 to D5, mesna 1.2 g/m2/d D1 to D5, every 4 weeks. Among 46 evaluable patients for efficacy, 21 (45.6%) achieved complete or partial response according to WHO criteria and 25 (54.3%) failed, while five cases (9.8% of all patients) were not evaluable (two initial complete remission before VPH, two early toxic deaths and one confusional syndrome). Thirty-five patients (68.6%) died of lymphoma, three (5.8%) of acute toxicity and 13 (25.5%) are alive: five in complete remission. The toxicity is mainly myelo-suppression, digestive and renal but could be managed as usually. Although the follow-up is short, this regimen appears effective in these circumstances after CHOP failure but it should be used early, before overt chemoresistance. It does not hinder a bone marrow transplantation programme.

  19. Study on effectiveness of gemcitabine, dexamethasone, and cisplatin (GDP) for relapsed or refractory AIDS-related non-Hodgkin's lymphoma.

    PubMed

    Zhong, Dong Ta; Shi, Chun Mei; Chen, Qiang; Huang, Jing Ze; Liang, Jian Gang

    2012-11-01

    Non-Hodgkin's lymphoma (NHL) remains the second most common malignant complication in patients with human immunodeficiency virus (HIV) infection. Even though NHL is commonly chemosensitive to primary treatment, failure or relapse still occurs in a large number of patients. We conducted this retrospective study to evaluate the efficacy and safety of gemcitabine, dexamethasone, and cisplatin (GDP) for relapsed or refractory AIDS-related NHL (AIDS-NHL). Forty-eight patients with relapsed or refractory AIDS-NHL were treated with intravenous combination chemotherapy with GDP. The overall objective response rate was 54.1% (95% confidence interval, CI, 40.1-68.3%), with 10 complete responses and 16 partial responses. The 2-year overall survival rate (OS) was 70.8% (95% CI 58.0-83.7%), and the 5-year OS was 41.7% (95% CI 27.7-55.6%). The 2-year progression-free survival rate (PFS) was 37.5% (95% CI 23.8-51.2%), and the 5-year PFS was 25.0% (95% CI 12.8-37.3%). The median progression-free survival was 8.8 months (95% CI 0-20.3 months), and the median overall survival was 40.6 months (95% CI 22.6-58.6 months). Patients with B cell tumors who relapsed but had no B symptoms were clinical stage I/II, had infiltration fewer than two extranodal sites, had CD4⁺ counts >200 cells/μL, and had lactate dehydrogenase (LDH) less than the upper limit of normal benefited from GDP. The level of LDH had a significant impact on the response rate to chemotherapy with GDP (P = 0.015). Myelosuppression was the main side effect; the incidence of grade 3-4 anemia was 8.3%; leukopenia, 37.5%; and thrombocytopenia, 48.3%. Univariate and multivariate analyses were performed to determine variables for OS and PFS. This study confirms that GDP is an effective and safe salvage regimen in relapsed or refractory AIDS-NHL, was associated with modest declines in CD4⁺ lymphocyte counts, and did not promote HIV-1 viral replication.

  20. The DDGP (cisplatin, dexamethasone, gemcitabine, and pegaspargase) regimen for treatment of extranodal natural killer (NK)/T-cell lymphoma, nasal type

    PubMed Central

    Zhang, Lei; Li, Sucai; Jia, Sisi; Nan, Feifei; Li, Zhaoming; Cao, Jingyu; Fan, Shanshan; Zhang, Chao; Su, Liping; Wang, Jinghua; Xue, Hongwei; Zhang, Mingzhi

    2016-01-01

    Extranodal natural killer/T cell lymphoma (ENKL) is a high invasive disease with poor prognosis. Since there is no consensus on standard chemotherapy, we developed an original chemotherapeutic DDGP (cisplatin, dexamethasone, gemcitabine, and pegaspargase) regimen. We retrospectively analyzed 80 patients who received DDGP chemotherapy. The primary end point was progression-free survival (PFS) and secondary end points were overall survival (OS), complete response rate (CRR), and overall response rate (ORR). The one-year PFS and OS rates were 86.0% and 88.6%, and the 2-year PFS and OS rates were 81.40% and 87.1%, respectively. The ORR and CRR of DDGP chemotherapy were 91.3% and 60.0%. The major adverse events were myelosuppression, digestive tract toxicities, and coagulation disorder. No treatment-related deaths were observed. Our results suggest that the DDGP regimen is a high effective and safe treatment for ENKL. PMID:27517317

  1. Concomitant etoposide and cisplatin provided improved survival compared with docetaxel and cisplatin in patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy

    PubMed Central

    Sen, Fatma; Tambas, Makbule; Ozkaya, Kubra; Guveli, Murat Emin; Ciftci, Rumeysa; Ozkan, Berker; Oral, Ethem Nezih; Saglam, Esra Kaytan; Saip, Pinar; Toker, Alper; Demir, Adalet; Firat, Pinar; Aydiner, Adnan; Eralp, Yesim

    2016-01-01

    Abstract Presently, there is no consensus regarding which chemotherapy regimen is best to administer with radiotherapy in patients with locally advanced non-small-cell lung cancer (LA-NSCLC). Herein, our aim was to compare the outcome of patients treated with either etoposide–cisplatin (EP) or docetaxel–cisplatin (DP) in this curative setting. Patients treated with either EP or DP and concurrent radiotherapy from 2004 to2012 were identified and their detailed medical records and follow-up information were obtained for analysis in this retrospective study. Survival rates were compared using Cox proportional hazards regression models with adjustments for confounding parameters provided by propensity score methods. A total of 105 patients were treated with concurrent chemoradiotherapy for LA-NSCLC (stage IIB-IIIA-IIIB). The median ages were 54 years (range, 32–70 years) and 55 years (range, 37–73 years) in the EP (n = 50) and DP (n = 55) groups, respectively. The median follow-up time was 27 months (range, 1–132 months) in the EP group and 19 months (range, 1–96 months) in DP group. There was no significant difference in baseline clinicopathologic features including age, sex, performance status, histologic subtype, and clinical TNM stages between groups. In the univariate analysis, the median overall survival of patients treated with EP was higher than that of patients treated with DP (41 vs. 20 months, P = 0.003). Multivariate analysis further revealed a survival advantage with EP compared with DP (hazard ratio [HR], 0.46; 95% confidence interval: 0.25–0.83; P = 0.009). The toxicity profile of the 2treatment groups was similar except that pulmonary toxicity was higher in the DP group (grade 3–4: 0% vs. 6%, P = 0.024). Concurrent chemoradiotherapy with EP may provide more favorable outcomes than DP and with an acceptable safety profile. PMID:27472701

  2. A phase II prospective study of the "Sandwich" protocol, L-asparaginase, cisplatin, dexamethasone and etoposide chemotherapy combined with concurrent radiation and cisplatin, in newly diagnosed, I/II stage, nasal type, extranodal natural killer/T-cell lymphoma.

    PubMed

    Jiang, Ming; Zhang, Li; Xie, Li; Zhang, Hong; Jiang, Yu; Liu, Wei-Ping; Zhang, Wen-Yan; Tian, Rong; Deng, Yao-Tiao; Zhao, Sha; Zou, Li-Qun

    2017-03-17

    Nasal-type, extranodal NK/T cell lymphoma (ENKTCL) is a special type of lymphomas with geographic and racial specificity. Up to now, the standard first-line treatment is still not unified. In our previous report, the "sandwich" protocol produced good results. Continuing to use the "sandwich" mode, a new chemotherapy composed of L-asparaginase, cisplatin, etoposide and dexamethasone (LVDP) plus concurrent chemoradiotherapy (CCRT) was conducted in more patients with newly diagnosed, I/II stage ENKTCL. The results showed that 66 patients were enrolled. Overall response rate was 86.4% including 83.3% complete response and 3.0% partial remission. With the median follow-up of 23.5 months, 3-year overall survival and 3-year progression-free survival were 70.1% and 67.4%, respectively. The survival rate in stage II and extra-cavity stage I was significantly less than that in limited stage I (p < 0.05). Therefore, we thought that the "sandwich" mode was worthy of being generalized and LVDP combined with CCRT was an effective protocol for I/II stage ENKTCL. But this regimen was not suitable for all stage I/II patients and warrants larger sample and layering investigation. This study was a registered clinical trial with number ChiCTR-TNC-12002353.

  3. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice

    PubMed Central

    LIU, YING; XIA, XIZHENG; ZHOU, MINGKAI; LIU, XIAOJUN

    2015-01-01

    The aim of this study was to investigate the effect of Avastin® in combination with gemcitabine and cisplatin (GP) on the tumor growth of A549 tumor-bearing mice and the potential anti-tumor mechanism. A total of 30 human A549 tumor-bearing nude mice were randomly divided into the Avastin, chemotherapy and combined treatment groups for treatment with an intraperitoneal injection of Avastin (5 mg/kg) (Avastin group); an intraperitoneal injection of gemcitabine (4 mg/kg) and cisplatin (4 mg/kg) (chemotherapy group); or intraperitoneal injections of Avastin and GP (combined treatment group). The mice were observed for 30 days and the tumor growth, survival and body weight of the mice in the three groups were analyzed. The protein level of vascular endothelial growth factor (VEGF) in the tumor tissues was analyzed by ELISA. The vascular density and structural changes of the tumor were analyzed using immunohistochemistry. Compared with the Avastin and chemotherapy groups, the tumor growth of mice in the combined treatment group was significantly inhibited, and the survival rate of the mice was increased significantly. No difference in body weight was observed among the three groups of mice (P>0.05). The levels of VEGF in the combined treatment group tumor tissues were significantly reduced compared with those in the chemotherapy group tumor tissues (P<0.05). Furthermore, the vessel density of the tumor tissue in the combined treatment group was significantly reduced compared with that in the chemotherapy group (P<0.05), and the number of normal vessels in the combined treatment group tumors was significantly higher than that in the chemotherapy group tumors after 7 days of treatment (P<0.05). In conclusion, Avastin can significantly decrease the level of VEGF in tumor tissue, inhibit tumor angiogenesis and promote the normalization of tumor vascular structure, which may explain the enhanced efficacy of Avastin in combination with chemotherapy. PMID:26136956

  4. Cisplatin and Etoposide Versus Carboplatin and Paclitaxel With Concurrent Radiotherapy for Stage III Non–Small-Cell Lung Cancer: An Analysis of Veterans Health Administration Data

    PubMed Central

    Santana-Davila, Rafael; Devisetty, Kiran; Szabo, Aniko; Sparapani, Rodney; Arce-Lara, Carlos; Gore, Elizabeth M.; Moran, Amy; Williams, Christina D.; Kelley, Michael J.; Whittle, Jeffrey

    2015-01-01

    Purpose The optimal chemotherapy regimen to use with radiotherapy in stage III non–small-cell lung cancer is unknown. Here, we compare the outcome of patents treated within the Veterans Health Administration with either etoposide-cisplatin (EP) or carboplatin-paclitaxel (CP). Methods We identified patients treated with EP and CP with concurrent radiotherapy from 2001 to 2010. Survival rates were compared using Cox proportional hazards regression models with adjustments for confounding provided by propensity score methods and an instrumental variables analysis. Comorbidities and treatment complications were identified through administrative data. Results A total of 1,842 patients were included; EP was used in 27% (n = 499). Treatment with EP was not associated with a survival advantage in a Cox proportional hazards model (hazard ratio [HR], 0.97; 95% CI, 0.85 to 1.10), a propensity score matched cohort (HR, 1.07; 95% CI, 0.91 to 1.24), or a propensity score adjusted model (HR, 0.97; 95% CI, 0.85 to 1.10). In an instrumental variables analysis, there was no survival advantage for patients treated in centers where EP was used more than 50% of the time as compared with centers where EP was used in less than 10% of the patients (HR, 1.07; 95% CI, 0.90 to 1.26). Patients treated with EP, compared with patients treated with CP, had more hospitalizations (2.4 v 1.7 hospitalizations, respectively; P < .001), outpatient visits (17.6 v 12.6 visits, respectively; P < .001), infectious complications (47.3% v 39.4%, respectively; P = .0022), acute kidney disease/dehydration (30.5% v 21.2%, respectively; P < .001), and mucositis/esophagitis (18.6% v 14.4%, respectively; P = .0246). Conclusion After accounting for prognostic variables, patients treated with EP versus CP had similar overall survival, but EP was associated with increased morbidity. PMID:25422491

  5. A Phase II Study of Fixed-Dose Rate Gemcitabine Plus Low-Dose Cisplatin Followed by Consolidative Chemoradiation for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Ko, Andrew H.; Venook, Alan P.

    2007-07-01

    Purpose: The optimal strategy for treating locally advanced pancreatic cancer remains controversial, including the respective roles and timing of chemotherapy and radiation. We conducted a Phase II nonrandomized trial to evaluate sequential chemotherapy followed by chemoradiation in this patient population. Methods and Materials: Chemotherapy naive patients with locally advanced pancreatic adenocarcinoma were treated with fixed-dose rate gemcitabine (1,000 mg/m{sup 2} at 10 mg/m{sup 2}/min) plus cisplatin 20 mg/m{sup 2} on Days 1 and 15 of a 28-day cycle. Those without evidence of extrapancreatic metastases after six cycles of chemotherapy received radiation (5,040 cGy over 28 fractions) with concurrent capecitabine (800 mg/m{sup 2} orally twice daily on the day of radiation) as a radiosensitizer. Results: A total of 25 patients were enrolled with a median follow-up time of 656 days. Twelve patients (48%) successfully received all six cycles of chemotherapy plus chemoradiation. Eight patients (32%) progressed during chemotherapy, including 7 with extrapancreatic metastases. Grade 3/4 hematologic toxicities were uncommon. Two patients sustained myocardial infarctions during chemotherapy, and 4 were hospitalized for infectious complications, although none in the setting of neutropenia. Median time to progression was 10.5 months and median survival was 13.5 months, with an estimated 1-year survival rate of 62%. Patients receiving all components of therapy had a median survival of 17.0 months. Conclusions: A strategy of initial fixed-dose rate gemcitabine-based chemotherapy, followed by chemoradiation, shows promising efficacy for treatment of locally advanced disease. A substantial proportion of patients will be identified early on as having extrapancreatic disease and spared the potential toxicities associated with radiation.

  6. A phase I safety, pharmacological, and biological study of the farnesyl protein transferase inhibitor, lonafarnib (SCH 663366), in combination with cisplatin and gemcitabine in patients with advanced solid tumors

    PubMed Central

    Chow, Laura Q. M.; Eckhardt, S. Gail; O’Bryant, Cindy L.; Schultz, Mary Kay; Morrow, Mark; Grolnic, Stacy; Basche, Michele

    2010-01-01

    Purpose This phase I study was conducted to evaluate the safety, tolerability, pharmacological properties and biological activity of the combination of the lonafarnib, a farnesylproteintransferase (FTPase) inhibitor, with gemcitabine and cisplatin in patients with advanced solid malignancies. Experimental design This was a single institution study to determine the maximal tolerated dose (MTD) of escalating lonafarnib (75–125 mg po BID) with gemcitabine (750–1,000 mg/m2 on days 1, 8, 15) and fixed cisplatin (75 mg/m2 day 1) every 28 days. Due to dose-limiting toxicities (DLTs) of neutropenia and thrombocytopenia in initial patients, these patients were considered “heavily pretreated” and the protocol was amended to limit prior therapy and re-escalate lonafarnib in “less heavily pre-treated patients” on 28-day and 21-day schedules. Cycle 1 and 2 pharmacokinetics (PK), and farnesylation of the HDJ2 chaperone protein and FPTase activity were analyzed. Results Twenty-two patients received 53 courses of therapy. Nausea, vomiting, and fatigue were frequent in all patients. Severe toxicities were observed in 91% of patients: neutropenia (41%), nausea (36%), thrombocytopenia (32%), anemia (23%) and vomiting (23%). Nine patients withdrew from the study due to toxicity. DLTs of neutropenia, febrile neutropenia, thrombocytopenia, and fatigue limited dose-escalation on the 28-day schedule. The MTD was established as lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 in heavily pre-treated patients. The MTD in the less heavily pre-treated patients could not be established on the 28-day schedule as DLTs were observed at the lowest dose level, and dose escalation was not completed on the 21-day schedule due to early study termination by the Sponsor. No PK interactions were observed. FTPase inhibition was not observed at the MTD, however HDJ-2 gel shift was observed in one patient at the 100 mg BID lonafarnib dose. Anti-cancer activity was

  7. A Phase II Study of Gemcitabine, Vincristine, and Cisplatin (Gvp) As Second-Line Treatment for Patients with Advanced Soft Tissue Sarcoma

    PubMed Central

    Luo, Zhiguo; Zhang, Xiaowei; Peng, Wei; Wu, Xianghua; Wang, Huijie; Yu, Hui; Wang, Jialei; Chang, Jianhua; Hong, Xiaonan

    2015-01-01

    Abstract Patients with advanced soft tissue sarcoma (aSTS) typically have a poor prognosis. Patients progressing to doxorubicin-based regimen have limited therapeutic options. Monotherapy with cytotoxic drugs appears to have only modest activity in the second-line setting. The purpose of this phase II study was to prospectively evaluate the safety and efficacy of combination regimen with gemcitabine, vincristine, and cisplatin (GVP) as a salvage treatment for patients with aSTS. Eligible patients were female with 18∼75 years old, and had aSTS that had progressed after 1 prior anthracyclines-based chemotherapy regimen. Patients were treated with 1,000 mg/m2 gemcitabine intravenously (IV) on days 1 and 8, 1.4 mg/m2 (max 2 mg) vincristine IV on day 1 and 25 mg/m2 cisplatin IV on days 1 through 3 every 21 days until disease progression, unacceptable toxicity or up to 6 cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), over response rate (ORR) and safety. This trial was registered with www.clinicaltrials.gov (no. NCT01192633). A total of 26 patients with a median age 47 years (21–72) were recruited. ORR was 23.1% [1 complete response and 5 partial responses]. The median PFS and OS were 4.8 (95% CI, 0.1–9.5) months and 15.0 (95% CI, 6.1–23.9) months, respectively. Grade 3/4 hematologic toxicities included neutropenia (34.6%), leukopenia (23.1%), thrombocytopenia (11.5%) and anemia (3.8%). No febrile neutropenia and grade 3/4 non-hematologic toxicities occurred. The most frequent non-hematologic toxicities were nausea/vomiting (50.0%), fatigue (30.8%), and fever (11.5%). We conclude that GVP regimen is effective with a favorable safety profile as the second-line chemotherapy in aSTS patients, which warrants further investigation in a phase III study. PMID:26512574

  8. Combined Chemoradiation Therapy With Twice-Weekly Gemcitabine and Cisplatin for Organ Preservation in Muscle-Invasive Bladder Cancer: Long-Term Results of a Phase 1 Trial

    SciTech Connect

    Azria, David; Riou, Olivier; Rebillard, Xavier; Thezenas, Simon; Thuret, Rodolphe; Fenoglietto, Pascal; Pouessel, Damien; Culine, Stephane

    2014-03-15

    Purpose: Concomitant treatment with radiation therapy and cisplatin (CDDP) remains the gold standard for bladder preservation in the treatment of muscle-invasive bladder cancer (MIBC). We present the long-term results of a phase 1 clinical trial to assess the association of twice-weekly gemcitabine with CDDP and radiation therapy in this setting. Methods and Materials: Patients with pT2-pT4N0M0 MIBC without hydronephrosis or diffuse carcinoma in situ were enrolled in this study. After maximal transurethral resection of the bladder tumor, patients received concomitant radiation therapy (63 Gy in 1.8 fractions) and chemotherapy (CDDP 20 mg/m²/day over 4 days every 21 days and gemcitabine twice a week). The starting dose of gemcitabine was 15 mg/m² with dose escalation to 20, 25, and 30 mg/m². The primary endpoint was the maximum tolerated dose (MTD). Secondary endpoints included toxicity and tumor control. Results: Fourteen patients were enrolled. Dose-limiting toxicity occurred in 2 patients treated with 30 mg/m² gemcitabine (grade 4 thrombocytopenia and severe impairment of World Health Organization performance status, respectively). Nine patients received the complete chemoradiation therapy protocol. The recommended dose of gemcitabine was 25 mg/m². The median follow-up time was 53 months, and the overall and disease-specific 5-year survival rates were 62% and 77%, respectively. Among the patients who received the complete treatment, bladder-intact survival was 76% at 5 years, and the median overall survival was 69.6 months. Conclusions: This regimen was well tolerated. The gemcitabine MTD was 25 mg/m². Bladder preservation and disease control were promising. A multicenter phase 2 randomized trial is ongoing.

  9. Histological complete response in a patient with advanced biliary tract cancer treated by gemcitabine/cisplatin/S-1 combination chemotherapy: A case report

    PubMed Central

    Matsubara, Tokuhiro; Nishida, Tsutomu; Tomimaru, Yoshito; Yamamoto, Masashi; Hayashi, Shiro; Nakajima, Sachiko; Fukui, Koji; Dono, Keizo; Adachi, Shiro; Ioka, Tatsuya; Kanai, Masashi; Inada, Masami

    2016-01-01

    A 68-year-old woman was referred to our hospital with increased levels of biliary enzymes. On imaging, the patient was diagnosed with unresectable intrahepatic biliary tract cancer (BTC) with invasion of the portal vein and para-aortic lymph node metastasis (cT3N1M1, cStage IVb) and underwent endoscopic biliary drainage for the biliary stricture prior to therapy. The patient was subsequently enrolled in a phase III randomized trial (UMIN000014371/NCT02182778) and randomly assigned to receive gemcitabine/cisplatin/S-1 (GCS) combination therapy intravenously at doses of 1,000 or 25 mg/m2 on day 1 and orally twice daily at a dose of 80 mg/m2 on days 1–7 every 2 weeks. After 12 cycles of scheduled therapy without uncontrollable adverse effects, the patient achieved a good partial response with chemotherapy. Computed tomography (CT) revealed a marked reduction of the primary and metastatic lesions. In addition,18F-fluorodeoxyglucose-positron emission tomography/CT revealed diminishing abnormal uptake and no macroscopic evidence of factors adversely affecting tumor resectability. Therefore, the patient underwent extended right hepatic lobectomy, lymph node dissection and left hepaticojejunostomy. Finally, histological examination of the resected tissues revealed no residual cancer cells, suggesting a pathologically complete response. We herein present the case of a patient with intrahepatic BTC who achieved a pathologically complete response following combination chemotherapy with GCS. PMID:28101354

  10. Etoposide Injection

    MedlinePlus

    ... other medications to treat a certain type of lung cancer (small cell lung cancer; SCLC). Etoposide is in a class of medications ... organs where eggs are formed), another type of lung cancer (non-small cell lung cancer; NSCLC), and Kaposi's ...

  11. Has aidi injection the attenuation and synergistic efficacy to gemcitabine and cisplatin in non-small cell lung cancer? A meta-analysis of 36 randomized controlled trials

    PubMed Central

    Xiao, Zheng; Wang, Chengqiong; Chen, Ling; Tang, Xuemei; Li, Lianhong; Li, Nana; Li, Jing; Gong, Qihai; Tang, Fushan; Feng, Jihong; Li, Xiaofei

    2017-01-01

    Gemcitabine and cisplatin is the first line chemotherapy for non-small cell lung cancer with high toxicity. Aidi injection is a cantharidin and astragalu-based Chinese herbs injection in China. Has Aidi injection attenuation and synergistic efficacy to GP in NSCLC? There is lack of strong evidence to prove it. To further reveal it, we systematically evaluated all related studies. We collected all studies about Aidi injection plus GP for NSCLC in Medline, Embase, Web of Science, CNKI, VIP, Wanfang Database, CBM, CCRCT, Chi-CTR, and US-clinical trials (established to June 2015). We evaluated their quality according to the Cochrane evaluation handbook of randomized controlled trials (5.1.0), extracted data following the PICO principles and synthesized the data by Meta analysis. Thirty six RCTs with 2582 NSCLC patients were included, with general methodological quality in most trials. The RR values and their 95% CI of Meta-analysis for ORR, DCR and QOL were as following: 1.28 (1.17, 1.39), 1.11(1.07, 1.15) and 1.81 (1.61, 2.03). The merged RD values and their 95% CI of Meta-analysis for myelosuppression, neutropenia, thrombocytopenia, neurotoxicity and nausea and vomiting were as following: -0.23(-0.29, -0.17), -0.17(-0.22, -0.11), -0.13(-0.18, -0.08), -0.06(-0.17, 0.05) and -0.15(-0.21, -0.10). To compare with GP alone, all differences were statistically significant. The available evidence indicates that Aidi injection plus GP can significantly increase the clinical efficacy and improve the QOL of patients with NSCLC. Aidi injection can reduce myelosuppression, neutropenia, thrombocytopenia neurotoxicity and nausea/vomiting. These indirectly reveal that Aidi injection has the attenuation and synergistic efficacy to GP chemotherapy in NSCLC. PMID:27901493

  12. Gemcitabine Injection

    MedlinePlus

    ... with surgery. Gemcitabine is also used to treat cancer of the pancreas that has spread to other parts of the ... 4 weeks. When gemcitabine is used to treat cancer of pancreas it may be injected once every week. The ...

  13. Human antigen R as a predictive marker for response to gemcitabine-based chemotherapy in advanced cisplatin-resistant urothelial cancer

    PubMed Central

    Miyata, Yasuyoshi; Mitsunari, Kensuke; Akihiro, Asai; Watanabe, Shin-Ichi; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki

    2017-01-01

    In patients with advanced urothelial cancer (UC), a combination of cisplatin (CDDP) and gemcitabine (GEM) is the most commonly used first-line systematic chemotherapy regimen. Although no standard regime for the treatment of CDDP-resistant UC has been established, GEM-based regimens are frequently used in these patients. In other types of cancer, human antigen R (HuR) status in cancer cells is closely associated with patient response to GEM. The aim of the present study was to establish the predictive potential of HuR expression for disease progression and survival in patients with UC who were treated with GEM-based regimens as a first or second-line chemotherapy. A total of 50 patients with advanced UC were enrolled in the current study. As first-line chemotherapy, methotrexate, vinblastine, epirubicin and CDDP (MVEC) combination therapy and GEM and CDDP combination therapy were administered in 34 (68.0%) and 16 patients (32.0%), respectively. Following progression, 45 patients (90.0%) were treated with combined GEM and paclitaxel therapy, and 5 patients (10.0%) were treated with GEM monotherapy. Cytoplasmic and nuclear HuR expression was evaluated using immunohistochemical techniques. The associations between HuR expression levels and local tumor response and treatment outcomes were analyzed. In first-line chemotherapy, no anticancer effects were observed to be significantly associated with nuclear or cytoplasmic HuR expression. In second-line chemotherapy nuclear HuR expression also exhibited no significant association with anticancer effects; however, the local tumor response was significantly improved if positive cytoplasmic HuR expression was present (P=0.002). Multivariate analyses revealed that cytoplasmic HuR expression levels were a significant predictive marker for longer OS (hazard ratio, 0.22; 95% confidence interval, 0.09–0.56; P=0.001). No significant association was observed between nuclear HuR expression levels and the overall survival. Therefore

  14. Gemcitabine in patients with ovarian cancer.

    PubMed

    Poveda, Andres

    2005-01-01

    Standard first-line treatment of ovarian cancer (OC) consists of platinum-taxane combined chemotherapy. However, this regimen only cures about 25% of women with OC. Phase II studies have shown that platinum-gemcitabine doublet and platinum-taxane-gemcitabine triplet regimens are active first-line chemotherapy in advanced OC, with overall response rates (ORR) above 55%. Several phase III studies of gemcitabine-based doublet and triplet chemotherapy in OC are currently underway. Preliminary data show that these regimens are well-tolerated, with manageable haematological toxicity, and the efficacy results are eagerly awaited. Gemcitabine is also active as second-line monotherapy in women with recurrent OC, and studies combining gemcitabine with paclitaxel, docetaxel, liposomal doxorubicin or topotecan resulted in higher ORR than gemcitabine alone. Gemcitabine-cisplatin and gemcitabine-carboplatin are active in women with platinum-resistant recurrent OC suggesting in vivo synergy between these two classes of drug. These studies show that gemcitabine-based chemotherapy may have an important role as second-line treatment in women with platinum-resistant OC. Gemcitabine combinations are also highly recommended as they avoid the problems of neurotoxicity and alopecia seen with other regimens. In order to respect the quality of life of women with recurrent OC, assessment of prognostic factors is recommended so that the most appropriate chemotherapy can be administered.

  15. Association of xeroderma pigmentosum group D (Asp312Asn, Lys751Gln) and cytidine deaminase (Lys27Gln, Ala70Thr) polymorphisms with outcome in Chinese non-small cell lung cancer patients treated with cisplatin-gemcitabine.

    PubMed

    Zhou, M; Ding, Y J; Feng, Y; Zhang, Q R; Xiang, Y; Wan, H Y

    2014-04-29

    Xeroderma pigmentosum group D (XPD) plays a key role in the repair of DNA and platinum resistance lesions. Cytidine deaminase (CDA) genes determine the velocity of gemcitabine catalysis. This study aimed to investigate the relationship between XPD and CDA genotypes and outcome in non-small lung cancer (NSCLC) patients. We used polymerase chain reaction-restriction fragment length polymorphism to evaluate genetic polymorphisms of XPD (Asp312Asn and Lys751Gln) and CDA (Lys27Gln and Ala70Thr) in 93 NSCLC patients treated with a cisplatin-gemcitabine regimen. There were no significant correlations between the XPD polymorphisms Asp312Asn and Lys751Gln with clinical benefits (P>0.05). Time to progression (TTP) did not differ between patients with wild type genotypes and those heterozygous for the single nucleotide polymorphism loci of XPD. However, a significant difference was observed in overall survival (OS) between XPD Asp312Asp and XPD Asp312Asn individuals (20.0 vs 12.4 months, P=0.04). Furthermore, the OS of patients with wild type genotypes was longer (20.5 months) than that of patients carrying the XPD 751Lys/Gln polymorphism (11.5 months). No significant differences in TTP or OS were observed in patients carrying different genotypes of CDA Lys27Gln, and no mutations were observed at the CDA Ala70Thr site. These results provide suggestive evidence of a favorable effect for the XPD 312Asp/Asp and XPD 751Lys/Lys genotypes with respect to overall survival rates in platinum-treated NSCLC patients. However, the CDA 27 polymorphism does not appear to affect the efficacy of gemcitabine.

  16. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299).

    PubMed

    Crescenzi, Elvira; Chiaviello, Angela; Canti, Gianfranco; Reddi, Elena; Veneziani, Bianca Maria; Palumbo, Giuseppe

    2006-03-01

    We compared the effects of monotherapy (photodynamic therapy or chemotherapy) versus combination therapy (photodynamic therapy plus a specific drug) on the non-small cell lung cancer cell line H1299. Our aim was to evaluate whether the additive/synergistic effects of combination treatment were such that the cytostatic dose could be reduced without affecting treatment efficacy. Photodynamic therapy was done by irradiating Photofrin-preloaded H1299 p53/p16-null cells with a halogen lamp equipped with a bandpass filter. The cytotoxic drugs used were cis-diammine-dichloroplatinum [II] (CDDP or cisplatin) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine). Various treatment combinations yielded therapeutic effects (trypan blue dye exclusion test) ranging from additive to clearly synergistic, the most effective being a combination of photodynamic therapy and CDDP. To gain insight into the cellular response mechanisms underlying favorable outcomes, we analyzed the H1299 cell cycle profiles and the expression patterns of several key proteins after monotherapy. In our conditions, we found that photodynamic therapy with Photofrin targeted G0-G1 cells, thereby causing cells to accumulate in S phase. In contrast, low-dose CDDP killed cells in S phase, thereby causing an accumulation of G0-G1 cells (and increased p21 expression). Like photodynamic therapy, low-dose gemcitabine targeted G0-G1 cells, which caused a massive accumulation of cells in S phase (and increased cyclin A expression). Although we observed therapeutic reinforcement with both drugs and photodynamic therapy, reinforcement was more pronounced when the drug (CDDP) and photodynamic therapy exert disjointed phase-related cytotoxic activity. Thus, if photodynamic therapy is appropriately tuned, the dose of the cytostatic drug can be reduced without compromising the therapeutic response.

  17. GDP (Gemcitabine, Dexamethasone, and Cisplatin) Is Highly Effective and Well-Tolerated for Newly Diagnosed Stage IV and Relapsed/Refractory Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type

    PubMed Central

    Wang, Jing-jing; Dong, Mei; He, Xiao-hui; Li, Ye-xiong; Wang, Wei-hu; Liu, Peng; Yang, Jian-liang; Gui, Lin; Zhang, Chang-gong; Yang, Sheng; Zhou, Sheng-yu; Shi, Yuan-kai

    2016-01-01

    Abstract This study was conducted to evaluate the effectiveness and tolerance of GDP (gemcitabine, dexamethasone, and cisplatin) regimen in patients with newly diagnosed stage IV and relapsed/refractory extranodal natural killer/T-cell lymphoma, nasal type (ENKTL). The study enrolled 41 ENKTL patients who received GDP regimen at the Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College between January 2008 and January 2015. The disease status was newly diagnosed stage IV in 15 patients and relapsed/refractory in 26 patients. The median number of cycles of chemotherapy per patient was 6 (range, 2–8 cycles). The overall response rate and complete-remission rate were 83.0% (34/41) and 41.5% (17/41), respectively. After a median follow-up of 16.2 months, 1-year progression-free survival rate and 1-year overall survival rate for the whole cohort were 54.5% and 72.7%. Grade 3 to 4 adverse events included neutropenia (34.1%), thrombocytopenia (19.5%), and anemia (14.6%). Our study has suggested high efficacy and low toxicity profile of GDP regimen in patients with newly diagnosed stage IV and relapsed/refractory ENKTL. PMID:26871836

  18. Molecular mechanisms of etoposide

    PubMed Central

    Montecucco, Alessandra; Zanetta, Francesca; Biamonti, Giuseppe

    2015-01-01

    Etoposide derives from podophyllotoxin, a toxin found in the American Mayapple. It was first synthesized in 1966 and approved for cancer therapy in 1983 by the U.S. Food and Drug Administration (Hande, 1998[25]). Starting from 1980s several studies demonstrated that etoposide targets DNA topoisomerase II activities thus leading to the production of DNA breaks and eliciting a response that affects several aspects of cell metabolisms. In this review we will focus on molecular mechanisms that account for the biological effect of etoposide. PMID:26600742

  19. Efficacy and safety of cisplatin, dexamethasone, gemcitabine and pegaspargase (DDGP) regimen in newly diagnosed, advanced-stage extranodal natural killer/T-cell lymphoma: interim analysis of a phase 4 study NCT01501149

    PubMed Central

    Li, Ling; Li, Xin; Wang, Xinhua; Fu, Xiaorui; Ma, Wang; Qin, Yanru; Li, Wencai; Wu, Jingjing; Sun, Zhenchang; Zhang, Xudong; Nan, Feifei; Chang, Yu; Li, Zhaoming; Zhang, Dandan; Wang, Guannan; Yan, Jiaqin; Su, Liping; Wang, Jinghua; Xue, Hongwei; Young, Ken H.; Zhang, Mingzhi

    2016-01-01

    To explore a more effective treatment for newly diagnosed, advanced-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTL), we conducted a phase 4 study of the cisplatin, dexamethasone, gemcitabine, pegaspargase (DDGP) regimen. The primary end point was the 2-year progression-free survival (PFS) after the protocol treatment. Secondary endpoints included response rate (RR), overall survival (OS) and median survival time (MST). The interim analysis included data only from March 2011 to September 2013, who received six cycles of DDGP chemotherapy. A total of 25 eligible patients were enrolled. Seventeen patients (17/24, 70.83%) achieved complete response (CR) and four (4/24, 16.67%) achieved partial response (PR), three (3/24, 12.50%) had progressive disease (PD). The RR after treatment was 87.50%. After a median follow-up duration of 24.67 months (range 4-48 months). The 2-year PFS and OS rate were 61.80% (95% CI, 42.00% to 81.60%) and 68.50 % (95% CI, 48.70% to 88.30%), respectively. The MST was 36.55 months (95% CI, 29.41 months to 43.70 months). Grade 3/4 leukopenia occurred in fourteen patients (58.33%) and grade 3/4 thrombocytopenia occurred in eleven patients (45.83%). Twelve patients (50.00%) experienced Activated Partial Phromboplastin Ptime (APTT) elongation and fourteen patients (58.33%) experienced hypofibrinogenemia. In conclusion, DDGP regimen is an effective and tolerated treatment for newly diagnosed, advanced-stage ENKTL. This trial was registered at www.ClinicalTrials.gov as #NCT01501149. PMID:27384676

  20. Wogonin, a plant flavone, potentiates etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Suzuki, Chie; Ohno, Masataka; Ohashi, Toshinori; Miyauchi, Azusa; Tanimoto, Eriko; Maeda, Kaori; Hirano, Hiroyuki; Yokoi, Toshio; Sugahara, Chiyoko

    2007-01-01

    Etoposide, a podophylotoxin anticancer agent, induces apoptotic cell death in normal and cancer cells. Etoposide-induced apoptosis plays a role in not only anticancer effect but also adverse reaction, such as myelosuppression. Since we have found that wogonin, a flavone found in Scutellaria baicalensis Georgi, prevents thymocyte apoptosis induced by various compounds including etoposide, we examined the effect of this flavone on etoposide-induced apoptosis in cancer cells. Although 100 muM wogonin itself significantly increased DNA fragmentation in HL-60 cells, this change was not observed in Jurkat cells. On the other hand, this flavone significantly potentiated etoposide-induced apoptosis in Jurkat and HL-60 cells. Similarly, wogonin accelerated etoposide-induced cell death in lung cancer cells. Since wogonin had no effect on the action of other anticancer agents, such as 5-FU and cisplatin, this flavone seems to accelerate only etoposide-induced apoptotic cell death in cancer cells. These results suggest that the modification of etoposide-induced apoptosis by wogonin may be available to reduce the adverse reaction of this agent.

  1. Liposomal cisplatin: a new cisplatin formulation.

    PubMed

    Stathopoulos, George P

    2010-09-01

    Over the last three decades, cisplatin has been one of the most effective cytotoxic agents, but its administration has been hindered by its nephrotoxicity, neurotoxicity and myelo toxicity. Recently, liposomal cisplatin, lipoplatin, has been formulated and tested thoroughly in preclinical (in vitro) and phase I, II and III trials, as documented in the literature. Experiments in animals showed that lipoplatin is less toxic than cisplatin and that it produces tumour reduction. The histological examination of treated tumours from mouse xenografts was consistent with apoptosis in the tumour cells in a mechanism similar to that of cisplatin. Lipoplatin infusion in patients and measurements of platinum levels in tumour specimens showed 10-50 times higher levels in tumours and metastases than in the adjacent normal specimens. A phase I-II study using a combination of lipoplatin and gemcitabine in pretreated patients (with disease progression or stable disease) with advanced pancreatic cancer was conducted. No nephrotoxicity was observed. With lipoplatin monotherapy the dose-limiting toxicity was determined to be 350 mg/m and the maximum tolerated dose 300 mg/m; when used in combination with paclitaxel the dose-limiting toxicity for lipoplatin was 250 mg/m and for paclitaxel 175 mg/m, and the maximum tolerated dose was 200 and 175 mg/m, respectively. In two phase II randomized studies comparing the lipoplatin combination versus the cisplatin combination, it was found that the former was statistically significantly less toxic than the latter, whereas the response rate and survival were similar. Up to now, the data on lipoplatin treatment in malignant tumours are quite impressive, because of the negligible toxicity and because it is equal if not superior to cisplatin with regard to response rate. This review aims to chronologically document publications relevant to liposomal cisplatin to date.

  2. [Etoposide desensitization. A case report].

    PubMed

    Alvarez Cardona, Aristóteles; Hernández Nieto, Leticia; Pérez Gómez, Martín; Pedroza Meléndez, Alvaro; Huerta López, José G

    2010-01-01

    All chemotherapeutic agents have the potential to induce hypersensitivity reactions and the repeated administration of such drugs during a cancer treatment enhances specific sensitization. Epipodophyllotoxins (etoposide and teniposide) are commonly used to treat lung, testicular, central nervous system and hematologic cancers. Hypersensitivity reactions to epipodophyllotoxins are not the most common but they have been reported. We present a case of an eight-year-old male patient, diagnosed with high risk acute lymphoblastic leukemia who received treatment with etoposide among other drugs (St. Jude XIIIB). During the first course of treatment he needed premedication to etoposide administration because of mild hypersensitivity reactions. At the beginning of a second treatment the patient presented two severe hypersensitivity reactions (acute urticaria, angioedema and hypotension) despite the use of premedication and slow infusion. We initiated a twelve steps desensitization protocol for etoposide with success in the second round allowing the administration of further doses in an ambulatory unit without hypersensitivity reactions.

  3. Gemcitabine for the treatment of advanced nonsmall cell lung cancer.

    PubMed

    Toschi, Luca; Cappuzzo, Federico

    2009-02-18

    Gemcitabine is a pyrimidine nucleoside antimetabolite agent which is active in several human malignancies, including nonsmall cell lung cancer (NSCLC). Because of its acceptable toxicity profile, with myelosuppression being the most common adverse event, gemcitabine can be safely combined with a number of cytotoxic agents, including platinum derivatives and new-generation anticancer compounds. In fact, the combination of gemcitabine and cisplatin is a first-line treatment for patients with advanced NSCLC, pharmacoeconomic data indicating that it represents the most cost-effective regimen among platinum-based combinations with third-generation cytotoxic drugs. The drug has been investigated in the context of nonplatinum-based regimens in a number of prospective clinical trials, and might provide a suitable alternative for patients with contraindications to platinum. Recently, gemcitabine-based doublets have been successfully tested in association with novel targeted agents with encouraging results, providing further evidence for the role of the drug in the treatment of NSCLC. In the last few years several attempts have been pursued in order to identify molecular predictors of gemcitabine activity, and recent data support the feasibility of genomic-based approaches to customize treatment with the ultimate goal of improving patient outcome.

  4. Cisplatin Injection

    MedlinePlus

    Cisplatin is used combination with other medications to treat cancer of the testicles that has not improved ... after treatment with other medications or radiation therapy. Cisplatin is used alone or in combination with other ...

  5. Numerical Analysis of Etoposide Induced DNA Breaks

    PubMed Central

    Muslimović, Aida; Nyström, Susanne; Gao, Yue; Hammarsten, Ola

    2009-01-01

    Background Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs. Methodology/Principal Findings To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity. Conclusions/Significance These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity. PMID:19516899

  6. Cost-effectiveness of paclitaxel plus cisplatin in advanced non-small-cell lung cancer

    PubMed Central

    Earle, C C; Evans, W K

    1999-01-01

    The aim of this study was to assess the cost-effectiveness of combination chemotherapy with paclitaxel/cisplatin, compared with standard etoposide/cisplatin in patients with advanced non-small cell lung cancer (NSCLC). We obtained the primary survival and resource utilization data from a large three-arm randomized trial comparing: paclitaxel 135 mg m−2 by 24-h intravenous (i.v.) infusion + cisplatin; paclitaxel 250 mg m−2 by 24-h i.v. infusion + cisplatin + granulocyte colony-stimulating factor (G-CSF); and standard etoposide/cisplatin in patients with stage IIIb or IV NSCLC. We also modelled the regimens with paclitaxel 135 mg m−2 + cisplatin administered as an outpatient by 3-h infusion, as clinical data suggest that this is equivalent to 24-h infusion. We collected costing data from the Ottawa Regional Cancer Centre and applied it to the resources consumed in the randomized trial. We integrated these data into the Statistics Canada POpulation HEalth Model (POHEM), which generated hypothetical cohorts of patients treated with each regimen. The POHEM model assigned diagnostic work-up, treatment, disease progression and survival characteristics to each individual in these cohorts and tabulated the costs associated with each. We did sensitivity analyses around the costs of chemotherapy and its administration, and the survival differences between the two regimens. All costs are in 1997 Canadian dollars ($1.00 Canadian ˜ £0.39 sterling). The perspective is that of the Canadian health care system. In the trial, the two paclitaxel-containing arms had almost identical survival curves with a median survival of 9.7 months compared with 7.4 months for etoposide/cisplatin. As administered in the trial, paclitaxel/cisplatin cost $76 370 per life-year gained (LYG) and paclitaxel/cisplatin/G-CSF $138 578 per LYG relative to etoposide/cisplatin. However, when modelled as an outpatient 3-h infusion, paclitaxel/cisplatin was moderately cost-effective at $30 619 per LYG

  7. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    SciTech Connect

    Sun Yunguang; Zheng Siyuan; Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J.; Carbone, David P.; Zhao Zhongming; Lu Bo

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  8. Etoposide catechol is an oxidizable topoisomerase II poison.

    PubMed

    Jacob, David A; Gibson, Elizabeth G; Mercer, Susan L; Deweese, Joseph E

    2013-08-19

    Topoisomerase II regulates DNA topology by generating transient double-stranded breaks. The anticancer drug etoposide targets topoisomerase II and is associated with the formation of secondary leukemias in patients. The quinone and catechol metabolites of etoposide may contribute to strand breaks that trigger leukemic translocations. To further analyze the characteristics of etoposide metabolites, we extend our previous analysis of etoposide quinone to the catechol. We demonstrate that the catechol is ∼2-3-fold more potent than etoposide and under oxidative reaction conditions induces high levels of double-stranded DNA cleavage. These results support a role for etoposide catechol in contributing to therapy-induced DNA damage.

  9. Cisplatin and bleomycin-induced acute peripheral-vascular stenosis in patient with testicular cancer

    PubMed Central

    Ozkan, Tayyar Alp; Aydin, Ufuk; Ay, Derih; Cebeci, I. Oguz Ozden

    2016-01-01

    After cisplatin and bleomycin-containing chemotherapy (CTx) for testicular cancer, part of the patients may develop acute or long-term cardiovascular toxicity. In the present case, we reported that a 58-year-old male patient presenting with testicular tumors who developed acute peripheral arterial disease during combination CTx with bleomycin, etoposide, and cisplatin. Superficial femoral artery occlusion not responded to structure thrombolytic and anticoagulators treatment. Left lower extremity was amputated below knee. In patients with high risk of cardiovascular disease, prophylactic anticoagulation may be recommended. The risk of causing factors of thromboembolism in patients with testicular cancer under cisplatin and bleomycin-containing CTx should be evaluated. PMID:28057998

  10. Diagnostic Microdosing Approach to Study Gemcitabine Resistance.

    PubMed

    Scharadin, Tiffany M; Zhang, Hongyong; Zimmermann, Maike; Wang, Sisi; Malfatti, Michael A; Cimino, George D; Turteltaub, Kenneth; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T

    2016-11-21

    Gemcitabine metabolites cause the termination of DNA replication and induction of apoptosis. We determined whether subtherapeutic "microdoses" of gemcitabine are incorporated into DNA at levels that correlate to drug cytotoxicity. A pair of nearly isogenic bladder cancer cell lines differing in resistance to several chemotherapy drugs were treated with various concentrations of (14)C-labeled gemcitabine for 4-24 h. Drug incorporation into DNA was determined by accelerator mass spectrometry. A mechanistic analysis determined that RRM2, a DNA synthesis protein and a known resistance factor, substantially mediated gemcitabine toxicity. These results support gemcitabine levels in DNA as a potential biomarker of drug cytotoxicity.

  11. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    SciTech Connect

    Knecht, Wolfgang; Mikkelsen, Nils Egil; Clausen, Anders Ranegaard; Willer, Mette; Gojkovic, Zoran

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  12. PPIP5K1 Suppresses Etoposide-triggered Apoptosis

    PubMed Central

    Machkalyan, Gayane

    2016-01-01

    Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.

  13. Phase I clinical trial of ifosfamide, oxaliplatin, and etoposide (IOE) in pediatric patients with refractory solid tumors.

    PubMed

    Lam, Catherine G; Furman, Wayne L; Wang, Chong; Spunt, Sheri L; Wu, Jianrong; Ivy, Percy; Santana, Victor M; McGregor, Lisa M

    2015-01-01

    Oxaliplatin, although related to cisplatin and carboplatin, has a more favorable toxicity profile and may offer advantages in combination regimens. We combined oxaliplatin, ifosfamide, and etoposide (IOE) and estimated the regimen's maximum tolerated dose (MTD) in children with refractory solid tumors. Dose-limiting toxicity (DLT) and MTD were assessed at 3 dose levels in a 21-day regimen: day 1, oxaliplatin 130 mg/m (consistent dose); days 1 to 3, ifosfamide 1200 mg/m/d (level 0) or 1500 mg/m/d (levels 1 and 2) and etoposide 75 mg/m/d (levels 0 and 1) or 100 mg/m/d (level 2). Course 1 filgrastim/pegfilgrastim was permitted after initial DLT determination, if neutropenia was dose limiting. Seventeen patients received 59 courses. Without filgrastim (n=9), DLT was neutropenia in 2 patients at dose level 1. No DLT was observed after adding filgrastim (n=8). There was no ototoxicity, nephrotoxicity >grade 1, or neurotoxicity >grade 2. One patient experienced a partial response and 9 had stable disease after 2 courses. In conclusion, the IOE regimen was well tolerated. Without filgrastim, neutropenia was dose limiting with MTD at ifosfamide 1200 mg/m/d and etoposide 75 mg/m/d. The MTD with filgrastim was not defined due to early study closure. Filgrastim allowed ifosfamide and etoposide dose escalation and should be included in future studies.

  14. Experience with carboplatin and etoposide maintenance chemotherapy in patients with extensive stage small cell lung cancer

    PubMed Central

    Siddiqi, Amaan; Bahrain, Huzefa; Auerbach, Michael

    2011-01-01

    Purpose To determine whether maintenance therapy with carboplatin and etoposide improves progression-free and overall survival in patients with extensive stage small cell lung cancer, compared to the standard four to six cycles of cisplatin and etoposide. Methods Forty-two patient records (25 males and 17 females) were retrospectively reviewed in a single community practice. All patients were over the age of 18, with pathologically and radiographically proven extensive stage small cell lung carcinoma (SCLC). The starting doses of chemotherapy were carboplatin, AUC (area under the curve) of 6 IV day 1, and etoposide, 100 mg/m2 IV days 1–3. The regimen was administered every 3 weeks and increased to every 4 to 5 weeks as tolerated or until documented progression occurred. Varying second-line chemotherapies were used. Results Median overall survival was 17 months from diagnosis, with a progression-free survival of 15 months. Seventy-nine percent of the patients survived more than 10 months. The 1- and 2-year overall survival (OAS) rates were 0.74 (31 patients) and 0.31 (13 patients), respectively. The 1- and 2-year progression free survival (PFS) rates were 0.50 (21 patients) and 0.21 (9 patients), respectively. Conclusion The improved overall and progression-free survival compared to the current standard in this small single center cohort suggests that maintenance therapy with carboplatin and etoposide to progression may be a prudent area for further investigation in a properly powered randomized, controlled trial. PMID:28210117

  15. [Cisplatin and vinca alkaloid combination chemotherapy of advanced non-small-cell lung cancer in the aged].

    PubMed

    Teramoto, S; Nagase, T; Fukuchi, Y; Ishida, K; Yamaoka, M; Matsuse, T; Jo, C; Orimo, H

    1990-11-01

    Fifteen patients aged over 65 years of age with advanced non-small-cl lung cancer (mean age = 70.7, stage IIIb: IV = 4:11) were treated with combination chemotherapy consisting of Cisplatin (50 or 80 mg/m2) and a vinca-alkaloid (Vindesine 3 mg/m2 or Etoposide 80 mg/m2). The effectiveness and side effects of this cisplatin therapy in different combinations of vinca-alkaloid regimens (Vindesine vs Etoposide) were examined. The mean dose of Cisplatin in the Etoposide combination group (75.2 mg/m2) was significantly higher than that in the Vindesine combination group (54.3 mg/m2) (p less than 0.01). A notable reduction the tumor size was observed in 25% of the Etoposide group, only. The 6-month survival rate and one-year survival rate were respectively 85.7%, 57.1% in the Vindesine + Cisplatin group, and 87.5%, 50% in the Etoposide + Cisplatin group. The common side effects were nausea, vomiting, anorexia, and alopecia. These symptoms were either alleviated by antiemetic drugs or followed by spontaneous recovery. Leucopenia, anemia and thrombocytopenia were found in both groups, and there was no difference in the time course of myelosuppression between the two groups. The extent of nephrotoxicity was assessed by creatinine clearance rate. Its decrease in the Vindesine group (60.1----38.9 ml/min) was higher than that in the Etoposide group (64.9----48.9 ml/min), while there was no significant change in BUN, serum creatinine and urine NAG between the two groups. There were no cases in which chemotherapy schedules had to be interrupted due to myelosuppression and nephrotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Gemcitabine, Oxaliplatin, Tarceva &/or Cisplatin in HCC & Biliary Tree Cancers

    ClinicalTrials.gov

    2016-03-15

    Hepatocellular Carcinoma; Cholangiocellular Carcinoma; Cholangiocarcinoma of the Extrahepatic Bile Duct; Bile Duct Cancer; Periampullary Adenocarcinoma; Gallbladder Cancer; Extrahepatic Bile Duct Cancer

  17. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells

    PubMed Central

    2011-01-01

    Background Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. Results We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. Conclusions we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by

  18. Gemcitabine-induced gouty arthritis attacks.

    PubMed

    Bottiglieri, Sal; Tierson, Neil; Patel, Raina; Mo, Jae-Hyun; Mehdi, Syed

    2013-09-01

    In this case report, we review the experience of a patient who presented with early stage pancreatic cancer (Stage IIb) who underwent a Whipple procedure and adjuvant chemoradiation. The patient's past medical history included early stage colon cancer in remission, post-traumatic-stress-disorder, hypertension, hyperlipidemia, osteoarthritis, gout, and pre-diabetes. Chemotherapy initially consisted of weekly gemcitabine. The patient developed acute gouty attacks after his second dose of gemcitabine, which brought him to the emergency room for emergent treatment on several occasions. Gemcitabine was held and treatment began with fluorouracil and concurrent radiation. After completion of his chemoradiation with fluorouracil, he was again treated with weekly gemcitabine alone. As soon as the patient started gemcitabine chemotherapy the patient developed gouty arthritis again, requiring discontinuation of chemotherapy. The patient received no additional treatment until his recent recurrence 8 months later where gemcitabine chemotherapy was again introduced with prophylactic medications consisting of allopurinol 100 mg by mouth daily and colchicine 0.6 mg by mouth daily throughout gemcitabine chemotherapy, and no signs of gouty arthritis occurred. To our knowledge, this is the first case report describing gout attacks associated with gemcitabine therapy. There is limited data available describing the mechanism that gouty arthritis may be precipitated from gemcitabine chemotherapy. Further monitoring and management may be required in patients receiving gemcitabine chemotherapy with underlying gout.

  19. Gemcitabine resistance in pancreatic ductal adenocarcinoma.

    PubMed

    Binenbaum, Yoav; Na'ara, Shorook; Gil, Ziv

    2015-11-01

    Pancreatic ductal adenocarcinoma (PDA) ranks fourth among cancer related deaths. The disappointing 5-year survival rate of below 5% stems from drug resistance to all known therapies, as well as from disease presentation at a late stage when PDA is already metastatic. Gemcitabine has been the cornerstone of PDA treatment in all stages of the disease for the last two decades, but gemcitabine resistance develops within weeks of chemotherapy initiation. From a mechanistic perspective, gemcitabine resistance may result from alterations in drug metabolism until the point that the cytidine analog is incorporated into the DNA, or from mitigation of gemcitabine-induced apoptosis. Both of these drug resistance modalities can be either intrinsic to the cancer cell, or influenced by the cancer microenvironment. Mechanisms of intrinsic gemcitabine resistance are difficult to tackle, as many of the genes that drive the carcinogenic process itself also interfere with gemcitabine-induced apoptosis. In this regard, recent understanding of the involvement of microRNAs in gemcitabine resistance may offer new opportunities to overcome intrinsic gemcitabine resistance. The characteristically fibrotic and immune infiltrated stroma of PDA that accompanies tumor inception and expansion is a lush ground for treatments aimed at targeting tumor microenvironment-mediated drug resistance. In the last couple of years, drugs interfering with tumor microenvironment have matured to clinical trials. Although drugs inducing 'stromal depletion' have yet failed to improve survival, they have greatly increased our understanding of tumor microenvironment-mediated drug resistance. In this review we summarize the current knowledge on intrinsic and environment-mediated gemcitabine resistance, and discuss the impact of these pathways on patient screening, and on future treatments aimed to potentiate gemcitabine activity.

  20. Preparation and characterization of gemcitabine liposome injections.

    PubMed

    Zhou, Qinmei; Liu, Liucheng; Zhang, Dengshan; Fan, Xingfeng

    2012-10-01

    Gemcitabine liposome injection (stealth liposomes) has facilitated the targeting of gemcitabine for cancer treatment. We systemically review liposome-based drug-delivery systems, which can improve pharmacokinetics, reduce side effects and potentially increase tumor uptake, for pancreatic cancer therapy. A novel liposomal formulation, which allows for higher tumor targeting efficiencies and can be used in current clinical trials to treat this challenging disease, has gained great popularity and attention. In this study, since extrusion technology was used to make sterile preparation of liposomes, the process included aseptic production process and sterile filtration. During the preparation, it has been found that the lipid concentration, emulsification speed and time, the homogenization times and pattern, the lipid solution temperature are all critical parameters for the character of the gemcitabine liposome injection. The particle size method and zeta potential method to characterize a PEGylated liposomal drug formulation of the anti-cancer agent gemcitabine was developed. The methods are specific, precise, reproducible and sensitive, therefore they are suitable for the determination of particle size and zeta potential of gemcitabine liposome injection. Negative staining technology of transmission electron microscopy revealed that gemcitabine liposome injection has a typical morphology, which enables liposomal surfaces could be seen so additional visual information on the stealth liposome can be routinely obtained in a fast and reliable manner. Moreover, the above three methods are simple, fast and would be used for continuous quality control of gemcitabine liposome injection when it moves to cGMP production scale.

  1. Improvement in Gemcitabine-Induced Thrombotic Microangiopathy with Rituximab in a Patient with Ovarian Cancer: Mechanistic Considerations.

    PubMed

    Murugapandian, Sangeetha; Bijin, Babitha; Mansour, Iyad; Daheshpour, Sepehr; Pillai, Biju G; Thajudeen, Bijin; Salahudeen, Abdulla K

    2015-01-01

    Gemcitabine is a potent and widely used anticancer drug. We report a case of gemcitabine-induced thrombotic microangiopathy (GCI-TMA), a known but not widely recognized complication of gemcitabine use, and our experience of treating GCI-TMA with rituximab. A 74-year-old woman was referred to our clinic for an evaluation of worsening renal function. She has recently been treated for ovarian cancer (diagnosed in 2011) with surgery (tumor debulking and bilateral salpingo-oophorectomy) along with cisplatin chemotherapy in 2012, followed by carboplatin/doxorubicin in 2013 and recent therapy for resistant disease with gemcitabine. Laboratory tests showed anemia, normal platelets and elevated lactate dehydrogenase. A peripheral smear revealed numerous schistocytes, and a kidney biopsy showed acute as well as chronic TMA. The patient continued on gemcitabine therapy, and treatment with plasma exchange was started. Since there was no response to treatment even after 5 sessions of plasma exchange, one dose of rituximab was given, which was associated with a drop in the creatinine level to 2 mg/dl. The pathogenesis of renal injury could be the effect of direct injury to the endothelium mediated by cytokines. Usual treatment includes withdrawing the drug and initiation of treatment with plasmapheresis with or without steroids. In cases resistant to plasmapheresis, treatment with rituximab can be tried. The mechanism of action of rituximab might be due to the reduced production of B-cell-dependent cytokines that drive endothelial dysfunction by depleting B cells. Patients receiving gemcitabine chemotherapy should be monitored for the development of TMA, and early treatment with plasma exchange along with rituximab might benefit these patients who already have a bad prognosis.

  2. Improvement in Gemcitabine-Induced Thrombotic Microangiopathy with Rituximab in a Patient with Ovarian Cancer: Mechanistic Considerations

    PubMed Central

    Murugapandian, Sangeetha; Bijin, Babitha; Mansour, Iyad; Daheshpour, Sepehr; Pillai, Biju G.; Thajudeen, Bijin; Salahudeen, Abdulla K.

    2015-01-01

    Gemcitabine is a potent and widely used anticancer drug. We report a case of gemcitabine-induced thrombotic microangiopathy (GCI-TMA), a known but not widely recognized complication of gemcitabine use, and our experience of treating GCI-TMA with rituximab. A 74-year-old woman was referred to our clinic for an evaluation of worsening renal function. She has recently been treated for ovarian cancer (diagnosed in 2011) with surgery (tumor debulking and bilateral salpingo-oophorectomy) along with cisplatin chemotherapy in 2012, followed by carboplatin/doxorubicin in 2013 and recent therapy for resistant disease with gemcitabine. Laboratory tests showed anemia, normal platelets and elevated lactate dehydrogenase. A peripheral smear revealed numerous schistocytes, and a kidney biopsy showed acute as well as chronic TMA. The patient continued on gemcitabine therapy, and treatment with plasma exchange was started. Since there was no response to treatment even after 5 sessions of plasma exchange, one dose of rituximab was given, which was associated with a drop in the creatinine level to 2 mg/dl. The pathogenesis of renal injury could be the effect of direct injury to the endothelium mediated by cytokines. Usual treatment includes withdrawing the drug and initiation of treatment with plasmapheresis with or without steroids. In cases resistant to plasmapheresis, treatment with rituximab can be tried. The mechanism of action of rituximab might be due to the reduced production of B-cell-dependent cytokines that drive endothelial dysfunction by depleting B cells. Patients receiving gemcitabine chemotherapy should be monitored for the development of TMA, and early treatment with plasma exchange along with rituximab might benefit these patients who already have a bad prognosis. PMID:26266248

  3. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    Calabretta, Sara; Bielli, Pamela; Passacantilli, Ilaria; Pilozzi, Emanuela; Fendrich, Volker; Capurso, Gabriele; Delle Fave, Gianfranco; Sette, Claudio

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favour the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, up-regulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to up-regulation of PTBP1 and modulation of PKM alternative splicing in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy. PMID:26234680

  4. Response of a patient with pleural and peritoneal mesothelioma after second-line chemotherapy with lipoplatin and gemcitabine.

    PubMed

    Karpathiou, Georgia; Argiana, Evangelia; Koutsopoulos, Anastassios; Froudarakis, Marios E

    2007-01-01

    We report the case of a 56-year-old patient with malignant pleural mesothelioma of epithelial type, who responded to second-line chemotherapy with lipoplatin plus gemcitabine. Diagnosis and staging of the disease was done by medical thoracoscopy with biopsies of the right pleura in December 2003, when he was treated with talc pleurodesis. Eighteen months later, he presented with pleural effusion of the left side and underwent first-line chemotherapy with cisplatin plus vinorelbine. After 8 cycles, the patient presented renal toxicity limiting further cisplatinum chemotherapy and disease progression with peritoneal invasion of the tumor and ascites. Treatment with lipoplatin-gemcitabine was decided on in November 2006, and the patient showed important improvement in the clinical status and peritoneal effusion. He survived for 36 weeks, with symptom-free survival of 34 weeks.

  5. Nab-Paclitaxel Plus Gemcitabine for Metastatic Pancreatic Cancer

    Cancer.gov

    A summary of results from a phase III trial that compared the combination of albumin-bound paclitaxel (nab-paclitaxel [Abraxane®]) and gemcitabine (Gemzar®) versus gemcitabine alone in patients with metastatic pancreatic cancer.

  6. SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine

    SciTech Connect

    Zhao, Cuirong; Yue, Bin; Liu, Huiping; Sun, Cuicui; Li, Wenbao; Qu, Xianjun

    2012-08-01

    SL-01, an oral gemcitabine derivative, was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl)pyrazine-2-carbonyl at the N4-position on the cytidine ring of gemcitabine. Our goal in this study was to evaluate the efficacy of SL-01 on the growth of human cancers with gemcitabine as control. Experiments were performed on human non-small cell lung cancer NCI-H460 and colon cancer HCT-116 both in vitro and in vivo. In vitro assays, SL-01 significantly inhibited the growth of cancer cells as determined by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Further studies indicated that SL-01 induced the cancer cells to apoptosis showing chromatin condensation and externalization of phosphatidylserine. In in vivo studies, we evaluated the efficacy of SL-01 in nude mice bearing human cancer xenografts. SL-01 effectively delayed the growth of NCI-H460 and HCT-116 without significant loss of body weight. Molecular analysis indicated that the high efficacy of SL-01 was associated with its ability to induce apoptosis as evidenced by increase of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining cells, activation of caspase-9, caspase-3 and cleaved poly ADP-ribose polymerase (PARP) in tumor tissues. SL-01 also increased Bax/Bcl-2 ratio in cancer cells. These biological activities of SL-01 were more potential than that of gemcitabine. Based on these in vitro and in vivo results, SL-01 is proposed as a potent oral anticancer agent that may supplant the use of gemcitabine in the clinic. -- Highlights: ► An oral gemcitabine derivative SL-01 was synthesized. ► The effects of SL-01 were evaluated and its efficacy was compared with gemcitabine. ► The biological activities of SL-01 were more potent than that of gemcitabine. ► SL-01 could replace gemcitabine for clinical use.

  7. Cisplatin nephrotoxicity: molecular mechanisms

    PubMed Central

    Hanigan, Marie H.; Devarajan, Prasad

    2007-01-01

    Summary Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of several human malignancies. The efficacy of cisplatin is dose dependent, but the significant risk of nephrotoxicity frequently hinders the use of higher doses to maximize its antineoplastic effects. Several advances in our understanding of the biochemical and molecular mechanisms underlying cisplatin nephrotoxicity have recently emerged, and are reviewed in this article. Evidence is presented for distinct mechanisms of cisplatin toxicity in actively dividing tumor cells versus the normally quiescent renal proximal tubular epithelial cells. The unexpected role of gamma-glutamyl transpeptidase in cisplatin nephrotoxicity is elucidated. Recent studies demonstrating the ability of proximal tubular cells to metabolize cisplatin to a nephrotoxin are reviewed. The evidence for apoptosis as a major mechanism underlying cisplatin-induced renal cell injury is presented, along with the data exploring the role of specific intracellular pathways that may mediate the programmed cell death. The information gleaned from this review may provide critical clues to novel therapeutic interventions aimed at minimizing cisplatin-induced nephrotoxicity while enhancing its antineoplastic efficacy. PMID:18185852

  8. Cisplatin triggers platelet activation.

    PubMed

    Togna, G I; Togna, A R; Franconi, M; Caprino, L

    2000-09-01

    Clinical observations suggest that anticancer drugs could contribute to the thrombotic complications of malignancy in treated patients. Thrombotic microangiopathy, myocardial infarction, and cerebrovascular thrombotic events have been reported for cisplatin, a drug widely used in the treatment of many solid tumours. The aim of this study is to explore in vitro cisplatin effect on human platelet reactivity in order to define the potentially active role of platelets in the pathogenesis of cisplatin-induced thrombotic complications. Our results demonstrate that cisplatin increases human platelet reactivity (onset of platelet aggregation wave and thromboxane production) to non-aggregating concentrations of the agonists involving arachidonic acid metabolism. Direct or indirect activation of platelet phospholipase A(2) appears to be implicated. This finding contributes to a better understanding of the pathogenesis of thrombotic complications occurring during cisplatin-based chemotherapy.

  9. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research.

    PubMed

    Ali, Badreldin H; Al Moundhri, Mansour S

    2006-08-01

    Cisplatin (cis-diamminedichloroplatinum (II)) is an effective agent against various solid tumours. Despite its effectiveness, the dose of cisplatin that can be administered is limited by its nephrotoxicity. Hundreds of platinum compounds (e.g. carboplatin, oxaliplatin, nedaplatin and the liposomal form lipoplatin) have been tested over the last two decades in order to improve the effectiveness and to lessen the toxicity of cisplatin. Several agents have been tested to see whether they could ameliorate or augment the nephrotoxicity of platinum drugs. This review summarizes these studies and the possible mechanisms of actions of these agents. The agents that have been shown to ameliorate experimental cisplatin nephrotoxicity include antioxidants (e.g. melatonin, vitamin E, selenium, and many others), modulators of nitric oxide (e.g. zinc histidine complex), agents interfering with metabolic pathways of cisplatin (e.g. procaine HCL), diuretics (e.g. furosemide and mannitol), and cytoprotective and antiapoptotic agents (e.g. amifostine and erythropoietin). Only few of these agents have been tested in humans. Those agents that have been shown to augment cisplatin nephrotoxicity include nitric oxide synthase inhibitors, spironolactone, gemcitabine and others. Combining these agents with cisplatin should be avoided.

  10. Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin.

    PubMed

    Boulikas, Teni

    2009-08-01

    Nanoparticle formulations for packaging existing drugs have been used to treat cancer. Lipoplatin is a liposomal cisplatin encapsulated into liposome nanoparticles of an average diameter of 110 nm. Lipoplatin has substantially reduced the renal toxicity, peripheral neuropathy, ototoxicity, myelotoxicity as well as nausea/vomiting and asthenia of cisplatin in Phase I, II and III clinical studies with enhanced or similar efficacy to cisplatin. During clinical development, 10- to 200-fold higher accumulation of Lipoplatin in solid tumors compared to adjacent normal tissue was found in patients. Targeting of tumor vasculature by Lipoplatin in animals suggested its antiangiogenesis potential and Lipoplatin was proposed to act like a double-sword: as chemotherapy and an antiangiogenesis drug. Lipoplatin has finished successfully one Phase III non-inferiority clinical study as first-line against NSCLC in its combination with paclitaxel showing statistically significant reduction in nephrotoxicity; two more Phase III studies are in progress, one in NSCLC with gemcitabine also showing noninferiority with reduced toxicity and another in squamous cell carcinoma of the head and neck with 5-fluorouracil. A registrational Phase II/III study against pancreatic cancer is in progress under the orphan drug status granted to Lipoplatin by the European Medicines Agency. Phase II studies are continuing in advanced breast cancer with vinorelbine and gastrointestinal cancers with radiotherapy and 5-fluorouracil. The highlights of the clinical development of Lipoplatin are reviewed.

  11. Gemcitabine-Based Combination Chemotherapy Followed by Radiation With Capecitabine as Adjuvant Therapy for Resected Pancreas Cancer

    SciTech Connect

    Desai, Sameer; Ben-Josef, Edgar; Griffith, Kent A.; Simeone, Diane; Greenson, Joel K.; Francis, Isaac R.; Hampton, Janet; Colletti, Lisa; Chang, Alfred E.; Lawrence, Theodore S.; Zalupski, Mark M.

    2009-12-01

    Purpose: To report outcomes for patients with resected pancreas cancer treated with an adjuvant regimen consisting of gemcitabine-based combination chemotherapy followed by capecitabine and radiation. Patients and Methods: We performed a retrospective review of a series of patients treated at a single institution with a common postoperative adjuvant program. Between January 2002 and August 2006, 43 resected pancreas cancer patients were offered treatment consisting of 4, 21-day cycles of gemcitabine 1 g/m{sup 2} intravenously over 30 min on Days 1 and 8, with either cisplatin 35 mg/m{sup 2} intravenously on Days 1 and 8 or capecitabine 1500 mg/m{sup 2} orally in divided doses on Days 1-14. After completion of combination chemotherapy, patients received a course of radiotherapy (54 Gy) with concurrent capecitabine (1330 mg/m{sup 2} orally in divided doses) day 1 to treatment completion. Results: Forty-one patients were treated. Median progression-free survival for the entire group was 21.7 months (95% confidence interval 13.9-34.5 months), and median overall survival was 45.9 months. In multivariate analysis a postoperative CA 19-9 level of >=180 U/mL predicted relapse and death. Toxicity was mild, with only two hospitalizations during adjuvant therapy. Conclusions: A postoperative adjuvant program using combination chemotherapy with gemcitabine and either cisplatin or capecitabine followed by radiotherapy with capecitabine is tolerable and efficacious and should be considered for Phase III testing in this group of patients.

  12. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells

    PubMed Central

    Xiao, Jun; Yu, Haibo

    2017-01-01

    Background Pancreatic cancer is considered a chemoresistant neoplasm with extremely dismal prognosis and gemcitabine treatment is associated with many side effects and poor overall survival. The study aimed at developing a new nanobioconjugate, which specifically delivered gemcitabine and anti-EGFR antibody into pancreatic cancer cells. Material/Methods The novel nanodrug is based on chitosan platform, which is non-toxic, biocompatibility and biodegradable. We measured the effects of proliferation and metastasis on SW1990 by CCK-8 assay, colony formation assay, wound healing assay and Transwell assay. The expression of related proteins were evaluated by Western blot. Results We synthesized Abc-GC-gemcitabine nanoparticles successfully with the encapsulation rate of nanobioconjugates was 91.63% and the drug loadings was 9.97%. Both GC-gemcitabine microspheres solution (GC group) and Abc-GC-gemcitabine microspheres solution (Abc group) inhibited cells proliferation, colony formation, migration and invasion in SW1990 cells dramatically. Moreover, Abc-GC-gemcitabine microspheres expressed more significant inhibited action than GC-gemcitabine microspheres efficiently Conclusions Our data suggested that Abc-GC-gemcitabine nanoparticles could have promising potential in treating metastasized and chemoresistant pancreatic cancer by enhancing the drug efficacy and minimizing off target effects. PMID:28366930

  13. Gemcitabine Conjugated Chitosan and Double Antibodies (Abc-GC-Gemcitabine Nanoparticles) Enhanced Cytoplasmic Uptake of Gemcitabine and Inhibit Proliferation and Metastasis In Human SW1990 Pancreatic Cancer Cells.

    PubMed

    Xiao, Jun; Yu, Haibo

    2017-04-03

    BACKGROUND Pancreatic cancer is considered a chemoresistant neoplasm with extremely dismal prognosis and gemcitabine treatment is associated with many side effects and poor overall survival. The study aimed at developing a new nanobioconjugate, which specifically delivered gemcitabine and anti-EGFR antibody into pancreatic cancer cells. MATERIAL AND METHODS The novel nanodrug is based on chitosan platform, which is non-toxic, biocompatibility and biodegradable. We measured the effects of proliferation and metastasis on SW1990 by CCK-8 assay, colony formation assay, wound healing assay and Transwell assay. The expression of related proteins were evaluated by Western blot. RESULTS We synthesized Abc-GC-gemcitabine nanoparticles successfully with the encapsulation rate of nanobioconjugates was 91.63% and the drug loadings was 9.97%. Both GC-gemcitabine microspheres solution (GC group) and Abc-GC-gemcitabine microspheres solution (Abc group) inhibited cells proliferation, colony formation, migration and invasion in SW1990 cells dramatically. Moreover, Abc-GC-gemcitabine microspheres expressed more significant inhibited action than GC-gemcitabine microspheres efficiently CONCLUSIONS Our data suggested that Abc-GC-gemcitabine nanoparticles could have promising potential in treating metastasized and chemoresistant pancreatic cancer by enhancing the drug efficacy and minimizing off target effects.

  14. Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer

    PubMed Central

    Zhang, Jian-Wei; Jenkins, Gregory; Xie, Fang; Carlson, Erin E.; Fridley, Brooke L.; Bamlet, William R.; Petersen, Gloria M.; McWilliams, Robert R.; Wang, Liewei

    2016-01-01

    Background Pancreatic cancer is a rapidly fatal disease with gemcitabine remaining the first-line therapy. We performed a genotype–phenotype association study to identify biomarkers for predicting gemcitabine treatment outcome. Materials and methods We selected the top 200 single nucleotide polymorphisms (SNPs) identified from our previous genome-wide association study to associate with overall survival using 400 patients treated with/or without gemcitabine, followed by imputation analysis for regions around the identified SNPs and a replication study using an additional 537 patients by the TaqMan genotyping assay. Functional validation was performed using quantitative reverse transcription-PCR for gemcitabine-induced expression in genotyped lymphoblastoid cell lines and siRNA knockdown for candidate genes in pancreatic cancer cell lines. Results Four SNPs in chromosome 1, 3, 9, and 20 showed an interaction with gemcitabine from the discovery cohort of 400 patients (P<0.01). Subsequently, we selected those four genotyped plus four imputed SNPs for SNP×gemcitabine interaction analysis using the secondary validation cohort. Two imputed SNPs in CDH4 and KRT8P35 showed a trend in interaction with gemcitabine treatment. The lymphoblastoid cell lines with the variant sequences showed increased CDH4 expression compared with the wild-type cells after gemcitabine exposure. Knockdown of CDH4 significantly desensitized pancreatic cancer cells to gemcitabine cytotoxicity. The CDH4 SNPs that interacted with treatment are more predictive than prognostic. Conclusion We identified SNPs with gemcitabine-dependent effects on overall survival. CDH4 might contribute to variations in gemcitabine response. These results might help us to better predict gemcitabine response in pancreatic cancer. PMID:27749787

  15. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation

    NASA Astrophysics Data System (ADS)

    Pili, Barbara; ReddyCurrent Address: Sanofi-Aventis, 13 Quai Jules-Guesdes, 94403, Vitry-Sur-Seine, France., L. Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  16. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation.

    PubMed

    Pili, Barbara; Reddy, L Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  17. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia

  18. Nab-paclitaxel and Gemcitabine vs Gemcitabine Alone as Adjuvant Therapy for Patients With Resected Pancreatic Cancer (the "Apact" Study)

    ClinicalTrials.gov

    2017-02-27

    Pancreatic Neoplasms; Digestive System Neoplasms; Neoplasms by Site; Neoplasms; Endocrine Gland Neoplasms; Pancreatic Diseases; Digestive System Diseases; Endocrine System Diseases; Gemcitabine; Antimetabolites, Antineoplastic

  19. Gemcitabine-Based Chemoradiation in the Treatment of Locally Advanced Head and Neck Cancer: Systematic Review of Literature and Meta-Analysis

    PubMed Central

    Szturz, Petr; Specenier, Pol; Merlano, Marco C.; Benasso, Marco; Van Gestel, Dirk; Wouters, Kristien; Van Laer, Carl; Van den Weyngaert, Danielle; Peeters, Marc; Vermorken, Jan

    2016-01-01

    Background. Platinum-based concurrent chemoradiation (CCRT) improves locoregional control and overall survival of locoregionally advanced (LA) squamous cell carcinoma of the head and neck (SCCHN) when compared to radiotherapy alone, but this approach is hampered by significant toxicity. Therefore, alternative ways to enhance the radiation effects are worth investigating. Gemcitabine (2′,2′-difluorodeoxycytidine), in addition to its activity against a variety of solid tumors, including SCCHN, is one of the most potent radiosensitizers, and it has an overall favorable safety profile. In this paper, the clinical experience with gemcitabine-based chemoradiation in the treatment of patients with LA-SCCHN is reviewed. Methods. We conducted a review of the literature on the clinical experience with radiotherapy combined with either single-agent gemcitabine or gemcitabine/cisplatin-based polychemotherapy for the treatment of patients with LA-SCCHN. We also searched abstracts in databases of major international oncology meetings from the last 20 years. A meta-analysis was performed to calculate pooled proportions with 95% confidence intervals (CIs) for complete response rate and grade 3–4 acute mucositis rate. Results. A total of 13 papers were eligible for the literature review. For schedules using a gemcitabine dose intensity (DI) below 50 mg/m2 per week, the complete response rate was 86% (95% CI, 74%–93%) with grade 3–4 acute mucositis rate of 38% (95% CI, 27%–50%) and acceptable late toxicity. In one of the studies employing such low DIs, survival data were provided showing a 3-year overall survival of 50%. Compared with DI ≥50 mg/m2 per week, there was no difference in the complete response rate (71%; 95% CI, 55%–83%; p = .087) but a significantly higher (p < .001) grade 3–4 acute mucositis rate of 74% (95% CI, 62%–83%), often leading to treatment interruptions (survival data provided in 8 studies; 3-year overall survival, 27%–63%). Late toxicity

  20. Oral treatment with etoposide in small cell lung cancer – dilemmas and solutions

    PubMed Central

    Rezonja, Renata; Knez, Lea; Cufer, Tanja; Mrhar, Ales

    2013-01-01

    Background Etoposide is a chemotherapeutic agent, widely used for the treatment of various malignancies, including small cell lung cancer (SCLC), an aggressive disease with poor prognosis. Oral etoposide administration exhibits advantages for the quality of life of the patient as well as economic benefits. However, widespread use of oral etoposide is limited by incomplete and variable bioavailability. Variability in bioavailability was observed both within and between patients. This suggests that some patients may experience suboptimal tumor cytotoxicity, whereas other patients may be at risk for excess toxicity. Conclusions The article highlights dilemmas as well as solutions regarding oral treatment with etoposide by presenting and analyzing relevant literature data. Numerous studies have shown that bioavailability of etoposide is influenced by genetic, physiological and environmental factors. Several strategies were explored to improve bioavailability and to reduce pharmacokinetic variability of oral etoposide, including desired and undesired drug interactions (e.g. with ketoconazole), development of suitable drug delivery systems, use of more water-soluble prodrug of etoposide, and influence on gastric emptying. In addition to genotype-based dose administration, etoposide is suitable for pharmacokinetically guided dosing, which enables dose adjustments in individual patient. Further, it is established that oral and intravenous schedules of etoposide in SCLC patients do not result in significant differences in treatment outcome, while results of toxicity are inconclusive. To conclude, the main message of the article is that better prediction of the pharmacokinetics of oral etoposide may encourage its wider use in routine clinical practice. PMID:23450046

  1. Defective hCNT1 transport contributes to gemcitabine chemoresistance in ovarian cancer subtypes: overcoming transport defects using a nanoparticle approach.

    PubMed

    Hung, Sau Wai; Marrache, Sean; Cummins, Shannon; Bhutia, Yangzom D; Mody, Hardik; Hooks, Shelley B; Dhar, Shanta; Govindarajan, Rajgopal

    2015-04-10

    Nucleoside analogs are used as chemotherapeutic options for the treatment of platinum-resistant ovarian cancers. Human concentrative nucleoside transporter 1 (hCNT1) is implicated in sensitizing solid tumors to nucleoside analogs although its role in determining drug efficacy in ovarian cancers remains unclear. Here we examined the functional expression of hCNT1 and compared its contributions toward gemcitabine efficacy in histological subtypes of ovarian cancer. Radioactivity analysis identified hCNT1-mediated (3)H-gemcitabine transport in ovarian cancer cells to be significantly reduced compared with that of normal ovarian surface epithelial cells. Biochemical and immunocytochemical analysis identified that unlike normal ovarian cells which expressed high levels of hCNT1 at the apical cell surface, the transporter was either diminished in expression and/or mislocalized in cell lines of various subtypes of ovarian cancer. Retroviral expression of hCNT1 selectively rescued gemcitabine transport in cell lines representing serous, teratocarcinoma, and endometrioid subtypes, but not clear cell carcinoma (CCC). In addition, exogenous hCNT1 predominantly accumulated in intracytoplasmic vesicles in CCC suggesting defective cellular trafficking of hCNT1 as a contributing factor to transport deficiency. Despite diminution of hCNT1 transport in the majority of ovarian cancers and apparent trafficking defects with CCC, the chemotherapeutic efficacy of gemcitabine was broadly enhanced in all subtypes when delivered via engineered nanoparticles (NPs). Additionally, by bypassing the transport requirement, the delivery of a gemcitabine-cisplatin combination in NP formulation increased their synergistic interactions. These findings uncover hCNT1 as a putative determinant for nucleoside analog chemoresistance in ovarian cancer and may help rationalize drug selection and delivery strategies for various histological subtypes of ovarian cancer.

  2. Pharmacokinetically guided dosing of carboplatin and etoposide during peritoneal dialysis and haemodialysis.

    PubMed Central

    English, M. W.; Lowis, S. P.; Peng, B.; Boddy, A.; Newell, D. R.; Price, L.; Pearson, A. D.

    1996-01-01

    Two patients with relapsed Wilms' tumour and renal failure requiring dialysis were given carboplatin and etoposide by pharmacokinetically guided dosing. The target area under the drug plasma concentration vs time curve (AUC) was 6 mg ml-1 min for carboplatin and 18 and 21 mg ml-1 min for etoposide. On course 1 measured AUCs of carboplatin and etoposide were 6 and 20 mg ml-1 min for patient 1 and 6 and 21 mg ml-1 min for patient 2 respectively. Peritoneal dialysis did not remove carboplatin or etoposide from the plasma, however carboplatin but not etoposide was cleared by haemodialysis. Therapy with carboplatin and etoposide is possible in children and adults with renal failure who require dialysis, but in this situation pharmacokinetic monitoring is essential. PMID:8611379

  3. Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells.

    PubMed

    Lee, Seung-Baek; Tong, Seo-Yun; Kim, Jung-Jin; Um, Soo-Jong; Park, Jong-Sup

    2007-10-01

    We studied the in vitro mechanism of etoposide-induced cell death in cervical cancer cells. Etoposide is cytotoxic to these cells, causing cell death by both apoptosis and autophagy, which has recently been described as a possible mechanism for nonapoptotic cell death. Electron microscopy revealed that autophagosomes/autolysosomes exhibited an autophagic appearance in the presence of etoposide. When autophagy was blocked by inhibitors of autophagy, including 3-methyladenine, both the expression of beclin 1 protein and the antitumor effect of etoposide were suppressed. Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a pan-caspase inhibitor, reduced etoposide-induced cytotoxicity in CaSki cells. Hence, autophagy and apoptosis likely occur concurrently in etoposide-treated cervical cancer cells.

  4. Gemcitabine Hydrochloride and Cisplatin or High-Dose Methotrexate, Vinblastine, Doxorubicin Hydrochloride, and Cisplatin in Treating Patients With Urothelial Cancer

    ClinicalTrials.gov

    2014-01-27

    Anterior Urethral Cancer; Localized Transitional Cell Cancer of the Renal Pelvis and Ureter; Posterior Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Ureter Cancer; Urethral Cancer Associated With Invasive Bladder Cancer

  5. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway.

    PubMed

    Namba, T; Kodama, R; Moritomo, S; Hoshino, T; Mizushima, T

    2015-06-25

    Pancreatic cancer is one of the most difficult malignancies to treat owing to the rapid acquisition of resistance to chemotherapy. Gemcitabine, a first-line treatment for pancreatic cancer, prolongs patient survival by several months, and combination treatment with gemcitabine and other anti-cancer drugs in the clinic do not show any significant effects on overall survival. Thus, identification of a drug that resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine and a better understanding of the molecular mechanisms of gemcitabine resistance are critical to develop new therapeutic options for pancreatic cancer. Here, we report that zidovudine resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine as shown by screening a compound library, including clinical medicine, using gemcitabine-resistant cells. In analyzing the molecular mechanisms of zidovudine effects, we found that the epithelial-to-mesenchymal transition (EMT)-like phenotype and downregulation of human equilibrative nucleoside transporter 1 (hENT1) are essential for the acquisition of gemcitabine resistance, and zidovudine restored these changes. The chemical biology investigations also revealed that activation of the Akt-GSK3β-Snail1 pathway in resistant cells is a key signaling event for gemcitabine resistance, and zidovudine resensitized resistant cells to gemcitabine by inhibiting this activated pathway. Moreover, our in vivo study demonstrated that co-administration of zidovudine and gemcitabine strongly suppressed the formation of tumors by gemcitabine-resistant pancreatic cancer and prevented gemcitabine-sensitive pancreatic tumors from acquiring gemcitabine-resistant properties, inducing an EMT-like phenotype and downregulating hENT1 expression. These results suggested that co-treatment with zidovudine and gemcitabine may become a novel therapeutic strategy for pancreatic cancer by inhibiting chemoresistance-specific signaling.

  6. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway

    PubMed Central

    Namba, T; Kodama, R; Moritomo, S; Hoshino, T; Mizushima, T

    2015-01-01

    Pancreatic cancer is one of the most difficult malignancies to treat owing to the rapid acquisition of resistance to chemotherapy. Gemcitabine, a first-line treatment for pancreatic cancer, prolongs patient survival by several months, and combination treatment with gemcitabine and other anti-cancer drugs in the clinic do not show any significant effects on overall survival. Thus, identification of a drug that resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine and a better understanding of the molecular mechanisms of gemcitabine resistance are critical to develop new therapeutic options for pancreatic cancer. Here, we report that zidovudine resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine as shown by screening a compound library, including clinical medicine, using gemcitabine-resistant cells. In analyzing the molecular mechanisms of zidovudine effects, we found that the epithelial-to-mesenchymal transition (EMT)-like phenotype and downregulation of human equilibrative nucleoside transporter 1 (hENT1) are essential for the acquisition of gemcitabine resistance, and zidovudine restored these changes. The chemical biology investigations also revealed that activation of the Akt-GSK3β-Snail1 pathway in resistant cells is a key signaling event for gemcitabine resistance, and zidovudine resensitized resistant cells to gemcitabine by inhibiting this activated pathway. Moreover, our in vivo study demonstrated that co-administration of zidovudine and gemcitabine strongly suppressed the formation of tumors by gemcitabine-resistant pancreatic cancer and prevented gemcitabine-sensitive pancreatic tumors from acquiring gemcitabine-resistant properties, inducing an EMT-like phenotype and downregulating hENT1 expression. These results suggested that co-treatment with zidovudine and gemcitabine may become a novel therapeutic strategy for pancreatic cancer by inhibiting chemoresistance-specific signaling. PMID:26111057

  7. Chemoradiation with gemcitabine for cervical cancer in patients with renal failure.

    PubMed

    Cetina, Lucely; Rivera, Lesbia; Candelaria, Myrna; de la Garza, Jaime; Dueñas-González, Alfonso

    2004-09-01

    The prognosis of cervical cancer patients with renal failure secondary to obstructive uropathy is poor. Our objective was to analyze our experience in the management with chemoradiation of untreated cervical cancer patients complicated by obstructive nephropathy and kidney dysfunction. Untreated patients with cervical cancer and renal failure as manifested by raised serum creatinine were treated with pelvic radiotherapy concurrently with weekly gemcitabine at 300 mg/m2. Response, toxicity and renal function pre- and post-therapy were evaluated. Eight FIGO stage IIIB and one IVB patients were treated. Pre-treatment serum creatinine ranged from 1.6 to 18.5 mg/100 ml (median 3.3, mean 6.8) and creatinine clearance varied from 4 to 57 mg/ml/min (median 17, mean 22.1). Four patients had a percutaneous nephrostomy placed and four patients had symptoms from kidney failure. All patient completed chemoradiation. Most patients had grade 3 leukopenia and neutropenia. Dermatitis, colitis and proctitis were common. All patients had improvement in creatinine clearance (pre-therapy 22.78, post-therapy 54.3 mg/ml/min) (p=0.0058) and all but one normalized serum creatinine. Eight (89%) of nine patients achieved complete response and one patient had persistence. At a median follow-up of 11 months (range 6-14), all patients are alive, one with pelvic and another with systemic disease. Ureteral obstruction causing any degree of renal insufficiency should not be a contraindication to receive chemoradiation to attempt cure. In this setting where cisplatin-based therapy is contraindicated, the use of gemcitabine may be considered.

  8. N-Acyl-phosphoramidates as potential novel form of gemcitabine prodrugs.

    PubMed

    Baraniak, Janina; Pietkiewicz, Aleksandra; Kaczmarek, Renata; Radzikowska, Ewa; Kulik, Katarzyna; Krolewska, Karolina; Cieslak, Marcin; Krakowiak, Agnieszka; Nawrot, Barbara

    2014-04-01

    Gemcitabine (dFdC) is a cytidine analog remarkably active against a wide range of solid tumors. Inside a cell, gemcitabine is phosphorylated by deoxycytidine kinase to yield gemcitabine monophosphate, further converted to gemcitabine di- and triphosphate. The most frequent form of acquired resistance to gemcitabine in vitro is the deoxycytidine kinase deficiency. Thus, proper prodrugs carrying the 5'-pdFdC moiety may help to overcome this problem. A series of new derivatives of gemcitabine possessing N-acyl(thio)phosphoramidate moieties were prepared and their cytotoxic properties were determined. N-Acyl-phosphoramidate derivatives of gemcitabine have similar cytotoxicity as gemcitabine itself, and have been found accessible to the cellular enzymes. The nicotinic carboxamide derivative of gemcitabine 5'-O-phosphorothioate occurred to be the best inhibitor of bacterial DNA polymerase I and human DNA polymerase α.

  9. Combined gemcitabine and S-1 chemotherapy for treating unresectable hilar cholangiocarcinoma: a randomized open-label clinical trial

    PubMed Central

    Zhou, Zun-Qiang; Guan, Jiao; Tong, Da-Nian; Zhou, Guang-Wen

    2016-01-01

    Although the combination of cisplatin and gemcitabine (GEM) is considered the standard first-line chemotherapy against unresectable hilar cholangiocarcinoma (HC), its efficacy is discouraging. The present randomized open-label clinical trial aimed to evaluate the efficacy and safety of the GEM plus S-1 (GEM-S-1) combination against unresectable HC. Twenty-five patients per group were randomly assigned to receive GEM, S-1 or GEM-S-1. Neutropenia (56%) and leukopenia (40%) were the most common chemotherapy-related toxicities in the GEM-S-1 group. Median overall survival (OS) in the GEM-S-1, GEM and S-1 groups was 11, 10 and 6 months, respectively. GEM plus S-1 significantly improved OS compared to S-1 monotherapy (OR=0.68; 95%CI, 0.50–0.90; P=0.008). Median progression-free survival (PFS) times in the GEM-S-1, GEM and S-1 groups were 4.90, 3.70 and 1.60 months, respectively. GEM plus S-1 significantly improved PFS compared to S-1 monotherapy (OR=0.50; 95%CI, 0.27–0.91; P=0.024). Response rates were 36%, 24% and 8% in the GEM-S-1, GEM and S-1 groups, respectively. A statistically significant difference was found in response rates between the gemcitabine-S-1 and S-1 groups (36% vs 8%, P=0.017). Patients with CA19-9<466 U/ml were more responsive to chemotherapeutic agents than those with CA19-9≥571 U/ml (88.9% vs 0%, P<0.001). We conclude that the combination of GEM plus S-1 provides a better OS, PFS and response rate than S-1 monotherapy, but it did not significantly differ from GEM monotherapy. (ChiCTR-TRC-14004733). PMID:27058753

  10. Treatment of paediatric pontine glioma with oral trophosphamide and etoposide

    PubMed Central

    Wolff, J E A; Westphal, S; Mölenkamp, G; Gnekow, A; Warmuth-Metz, M; Rating, D; Kuehl, J

    2002-01-01

    To evaluate the overall survival of paediatric patients with pontine gliomas treated with oral trophosphamide and etoposide. Patients between 3 and 17 years of age with either typical diffuse pontine glioma on MRI or histologically proven anaplastic astrocytoma/glioblastoma multiforme located in the pons, were eligible. Treatment consisted of oral trophosphamide 100 mg m−2 day−1 combined with oral etoposide at 25 mg m−2 day−1 starting simultaneously with conventional radiation. Twenty patients were enrolled (median age 6 years, male : female=9 : 11). Surgical procedures included: no surgery: five, open biopsy: three, stereotactic biopsy: six, partial resection: three, and sub-total resection: three. Histological diagnoses included pilocytic astrocytoma: one, astrocytoma with no other specification: three, anaplastic astrocytoma: three, glioblastoma multiforme: eight, no histology: five. The most frequent side effects were haematologic and gastrointestinal. There was no toxic death. The response to combined treatment in 12 evaluable patients was: complete response: 0, partial response: three, stable disease: four, and progressive disease: five. All tumours progressed locally and all patients died. The overall median survival was 8 months. The overall survival rates at 1 and 4 years were: 0.4 and 0.05 respectively. This was not different from a control group of patients documented in the same population. Oral trophosphamide in combination with etoposide did not improve survival of pontine glioma patients. The treatment was well tolerated and should be evaluated for more chemoresponsive paediatric malignancies. British Journal of Cancer (2002) 87, 945–949. doi:10.1038/sj.bjc.6600552 www.bjcancer.com © 2002 Cancer Research UK PMID:12434281

  11. Dominant lethal mutations of topoisomerase II inhibitors etoposide and merbarone in male mice: a mechanistic study.

    PubMed

    Attia, Sabry M

    2012-05-01

    Two topoisomerase II inhibitors, etoposide and merbarone, were tested for the induction of dominant lethal mutations in male mice. Etoposide was administered at a dosage of 30 or 60 mg/kg. Merbarone was administered at a dosage of 40 or 80 mg/kg. These males were mated at weekly intervals to virgin females for 6 weeks. In the present experiments, regardless of the agent, spermatids appeared to be the most sensitive germ-cell stage to dominant lethal induction. Etoposide and merbarone clearly induced dominant lethal mutations in the early spermatid stage only with the highest tested doses. The mutagenic effects were also directly correlated with reactive oxygen species accumulation as an obvious increase in 2',7'-dichlorofluorescein fluorescence level was noted in the sperm of animals treated with higher doses of etoposide and merbarone. Treatment of male mice with N-acetylcysteine significantly protected mice from etoposide- and merbarone-induced dominant lethality. Moreover, N-acetylcysteine treatment had no antagonizing effect on etoposide- and merbarone-induced topoisomerase II inhibition. Overall, this study provides for the first time that etoposide and merbarone induce dominant lethal mutations in the early spermatid stage through a mechanism that involves increases in oxidative stress. The demonstrated mutagenicity profile of etoposide and merbarone may support further development of effective chemotherapy with less mutagenicity.

  12. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein.

    PubMed

    Allen, John D; Van Dort, Sonja C; Buitelaar, Marije; van Tellingen, Olaf; Schinkel, Alfred H

    2003-03-15

    The breast cancer resistance protein [BCRP (BCRP/ABCG2)] has not previously been directly identified as a source of resistance to epipodophyllotoxins.However, when P-glycoprotein (P-gp)- and Mrp1-deficient mouse fibroblast and kidney cell lines were selected for resistance to etoposide, amplification and overexpression of Bcrp1 emerged as the dominant resistance mechanism in five of five cases. Resistance was accompanied by reduced intracellular etoposide accumulation. Bcrp1 sequence in all of the resistant lines was wild-type in the region spanning the R482 mutation hot spot known to alter the substrate specificity of mouse Bcrp1 (mouse cognate of BCRP) and human BCRP. Transduced wild-type Bcrp1 cDNA mediated resistance to etoposide and teniposide in fibroblast lines and trans-epithelial etoposide transport in polarized Madin-Darby canine kidney II cells. Bcrp1-mediated etoposide resistance was reversed by two structurally different BCRP/Bcrp1 inhibitors, GF120918 and Ko143. BCRP/Bcrp1 (inhibition) might thus impact on the antitumor activity and pharmacokinetics of epipodophyllotoxins. However, treatment of P-gp-deficient mice with GF120918 did not improve etoposide oral uptake, suggesting that Bcrp1 activity is not a major limiting factor in this process. In contrast, use of GF120918 to inhibit P-gp in wild-type mice increased the plasma levels of etoposide after oral administration 4-5-fold. It may thus be worthwhile to test inhibition of P-gp in humans to improve the oral availability of etoposide.

  13. Theranostic etoposide phosphate/indium nanoparticles for cancer therapy and imaging.

    PubMed

    Srinivas, Ramishetti; Satterlee, Andrew; Wang, Yuhua; Zhang, Yuan; Wang, Yongjun; Huang, Leaf

    2015-11-28

    Etoposide phosphate (EP), a water-soluble anticancer prodrug, is widely used for treatment of many cancers. After administration it is rapidly converted to etoposide, its parent compound, which exhibits anticancer activity. Difficulty in parenteral administration necessitates the development of a suitable nanoparticle delivery system for EP. Here we have used indium both as a carrier to deliver etoposide phosphate to tumor cells and as a SPECT imaging agent through incorporation of (111)In. Etoposide phosphate was successfully encapsulated together with indium in nanoparticles, and exhibited dose dependent cytotoxicity and induction of apoptosis in cultured H460 cancer cells via G2/M cell cycle arrest. In a mouse xenograft lung cancer model, etoposide phosphate/indium nanoparticles induce tumor cell apoptosis, leading to significant enhancement of tumor growth inhibition compared to the free drug.

  14. Theranostic etoposide phosphate/indium nanoparticles for cancer therapy and imaging

    NASA Astrophysics Data System (ADS)

    Srinivas, Ramishetti; Satterlee, Andrew; Wang, Yuhua; Zhang, Yuan; Wang, Yongjun; Huang, Leaf

    2015-11-01

    Etoposide phosphate (EP), a water-soluble anticancer prodrug, is widely used for treatment of many cancers. After administration it is rapidly converted to etoposide, its parent compound, which exhibits anticancer activity. Difficulty in parenteral administration necessitates the development of a suitable nanoparticle delivery system for EP. Here we have used indium both as a carrier to deliver etoposide phosphate to tumor cells and as a SPECT imaging agent through incorporation of 111In. Etoposide phosphate was successfully encapsulated together with indium in nanoparticles, and exhibited dose dependent cytotoxicity and induction of apoptosis in cultured H460 cancer cells via G2/M cell cycle arrest. In a mouse xenograft lung cancer model, etoposide phosphate/indium nanoparticles induce tumor cell apoptosis, leading to significant enhancement of tumor growth inhibition compared to the free drug.

  15. Gemcitabine induced cardiomyopathy: a case of multiple hit cardiotoxicity.

    PubMed

    Mohebali, Donya; Matos, Jason; Chang, James Ducksoon

    2017-02-01

    Gemcitabine is a commonly used antineoplastic agent used to treat a variety of cancers with rarely reported cardiac side effects. We describe a case of a 67-year-old woman with follicular lymphoma who experienced a rarely reported side effect of gemcitabine: cardiomyopathy. This case highlights a multiple hit mechanism of myocyte damage that may occur following the use of multiple cardio-toxic agents despite their administration in doses not associated with cardiotoxicity.

  16. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    PubMed

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.

  17. Gemcitabine plus nedaplatin as salvage therapy is a favorable option for patients with progressive metastatic urothelial carcinoma after two lines of chemotherapy.

    PubMed

    Matsumoto, Kazumasa; Mochizuki, Kohei; Hirayama, Takahiro; Ikeda, Masaomi; Nishi, Morihiro; Tabata, Ken-ichi; Okazaki, Miyoko; Fujita, Tetsuo; Taoka, Yoshinori; Iwamura, Masatsugu

    2015-01-01

    This study was conducted to evaluate the effectiveness of a combination of gemcitabine and nedaplatin therapy among patients with metastatic urothelial carcinoma previously treated with two lines of chemotherapy. Between February 2009 and August 2013, 30 patients were treated with gemcitabine and paclitaxel as a second-line chemotherapy. All had received a first-line chemotherapy consisting of methotrexate, vinblastine, doxorubicin and cisplatin. Ten patients who had measurable histologically proven advanced or metastatic urothelial carcinoma of the urinary bladder and upper urinary tract received gemcitabine 1,000 mg/m2 on days 1, 8 and 15 and nedaplatin 70 mg/m2 on day 2 as a third-line chemotherapy. Tumors were assessed by imaging every two cycles. The median number of treatment cycles was 3.5. One patient had partial response and three had stable disease. The disease-control rate was 40%, the median overall survival was 8.8 months and the median progression-free survival was 5.0 months. The median overall survival times for the first-line and second-line therapies were 29.1 and 13.9 months, respectively. Among disease-controlled patients (n=4), median overall survival was 14.2 months. Myelosuppression was the most common toxicity. There were no therapy-related deaths. Gemcitabine and nedaplatin chemotherapy is a favorable third-line chemotherapeutic option for patients with metastatic urothelial carcinoma. Given the safety and benefit profile seen in this study, further prospective trials are warranted given the implications of our results with regard to strategic chemotherapy for patients with advanced or metastatic urothelial carcinoma.

  18. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth.

    PubMed

    Toyota, Yuka; Iwama, Hisakazu; Kato, Kiyohito; Tani, Joji; Katsura, Akiko; Miyata, Miwa; Fujiwara, Shintaro; Fujita, Koji; Sakamoto, Teppei; Fujimori, Takayuki; Okura, Ryoichi; Kobayashi, Kiyoyuki; Tadokoro, Tomoko; Mimura, Shima; Nomura, Takako; Miyoshi, Hisaaki; Morishita, Asahiro; Kamada, Hideki; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-10-01

    Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose- and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.

  19. Randomized Phase II Trial of Gemcitabine Plus TH-302 Versus Gemcitabine in Patients With Advanced Pancreatic Cancer

    PubMed Central

    Borad, Mitesh J.; Reddy, Shantan G.; Bahary, Nathan; Uronis, Hope E.; Sigal, Darren; Cohn, Allen L.; Schelman, William R.; Stephenson, Joe; Chiorean, E. Gabriela; Rosen, Peter J.; Ulrich, Brian; Dragovich, Tomislav; Del Prete, Salvatore A.; Rarick, Mark; Eng, Clarence; Kroll, Stew; Ryan, David P.

    2015-01-01

    Purpose TH-302 is an investigational hypoxia-activated prodrug that releases the DNA alkylator bromo-isophosphoramide mustard in hypoxic settings. This phase II study (NCT01144455) evaluated gemcitabine plus TH-302 in patients with previously untreated, locally advanced or metastatic pancreatic cancer. Patients and Methods Patients were randomly assigned 1:1:1 to gemcitabine (1,000 mg/m2), gemcitabine plus TH-302 240 mg/m2 (G+T240), or gemcitabine plus TH-302 340 mg/m2 (G+T340). Randomized crossover after progression on gemcitabine was allowed. The primary end point was progression-free survival (PFS). Secondary end points included overall survival (OS), tumor response, CA 19-9 response, and safety. Results Two hundred fourteen patients (77% with metastatic disease) were enrolled between June 2010 and July 2011. PFS was significantly longer with gemcitabine plus TH-302 (pooled combination arms) compared with gemcitabine alone (median PFS, 5.6 v 3.6 months, respectively; hazard ratio, 0.61; 95% CI, 0.43 to 0.87; P = .005; median PFS for metastatic disease, 5.1 v 3.4 months, respectively). Median PFS times for G+T240 and G+T340 were 5.6 and 6.0 months, respectively. Tumor response was 12%, 17%, and 26% in the gemcitabine, G+T240, and G+T340 arms, respectively (G+T340 v gemcitabine, P = .04). CA 19-9 decrease was greater with G+T340 versus gemcitabine (−5,398 v −549 U/mL, respectively; P = .008). Median OS times for gemcitabine, G+T240, and G+T340 were 6.9, 8.7, and 9.2 months, respectively (P = not significant). The most common adverse events (AEs) were fatigue, nausea, and peripheral edema (frequencies similar across arms). Skin and mucosal toxicities (2% grade 3) and myelosuppression (55% grade 3 or 4) were the most common TH-302–related AEs but were not associated with treatment discontinuation. Conclusion PFS, tumor response, and CA 19-9 response were significantly improved with G+TH-302. G+T340 is being investigated further in the phase III MAESTRO study

  20. Gemcitabine Hydrochloride and Cisplatin With or Without Bevacizumab in Treating Patients With Advanced Urinary Tract Cancer

    ClinicalTrials.gov

    2017-04-12

    Bladder Urothelial Carcinoma; Distal Urethral Carcinoma; Infiltrating Bladder Urothelial Carcinoma Associated With Urethral Carcinoma; Metastatic Urothelial Carcinoma of the Renal Pelvis and Ureter; Proximal Urethral Carcinoma; Recurrent Bladder Carcinoma; Recurrent Prostate Carcinoma; Recurrent Urethra Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Regional Urothelial Carcinoma of the Renal Pelvis and Ureter; Stage IV Bladder Cancer; Stage IV Prostate Cancer; Stage IV Urethral Cancer; Ureter Carcinoma

  1. Ricolinostat, Gemcitabine Hydrochloride, and Cisplatin in Treating Patients With Unresectable or Metastatic Cholangiocarcinoma

    ClinicalTrials.gov

    2016-08-02

    Non-Resectable Cholangiocarcinoma; Recurrent Cholangiocarcinoma; Stage III Extrahepatic Bile Duct Cancer; Stage III Intrahepatic Cholangiocarcinoma; Stage IIIA Hilar Cholangiocarcinoma; Stage IIIB Hilar Cholangiocarcinoma; Stage IVA Extrahepatic Bile Duct Cancer; Stage IVA Hilar Cholangiocarcinoma; Stage IVA Intrahepatic Cholangiocarcinoma; Stage IVB Extrahepatic Bile Duct Cancer; Stage IVB Hilar Cholangiocarcinoma; Stage IVB Intrahepatic Cholangiocarcinoma; Unresectable Extrahepatic Bile Duct Carcinoma

  2. Spectroscopic detection of etoposide binding to chromatin components: The role of histone proteins

    NASA Astrophysics Data System (ADS)

    Chamani, Elham; Rabbani-Chadegani, Azra; Zahraei, Zohreh

    2014-12-01

    Chromatin has been introduced as a main target for most anticancer drugs. Etoposide is known as a topoisomerase II inhibitor, but its effect on chromatin components is unknown. This report, for the first time, describes the effect of etoposide on DNA, histones and DNA-histones complex in the structure of nucleosomes employing thermal denaturation, fluorescence, UV absorbance and circular dichroism spectroscopy techniques. The results showed that the binding of etoposide decreased UV absorbance and fluorescence emission intensity, altered secondary structure of chromatin and hypochromicity was occurred in thermal denaturation profiles. The drug exhibited higher affinity to chromatin compared to DNA. Quenching of drug chromophores with tyrosine residues of histones indicated that globular domain of histones is the site of etoposide binding. Moreover, the binding of etoposide to histones altered their secondary structure accompanied with hypochromicity revealing compaction of histones in the presence of the drug. From the results it is concludes that apart from topoisomerase II, chromatin components especially its protein moiety can be introduced as a new site of etoposide binding and histone proteins especially H1 play a fundamental role in this process and anticancer activity of etoposide.

  3. BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer.

    PubMed

    Nakashima, Shinsuke; Kobayashi, Shogo; Nagano, Hiroaki; Tomokuni, Akira; Tomimaru, Yoshito; Asaoka, Tadafumi; Hama, Naoki; Wada, Hiroshi; Kawamoto, Koichi; Marubashi, Shigeru; Eguchi, Hidetoshi; Doki, Yuichiro; Mori, Masaki

    2015-05-01

    The BRCA/Fanconi anemia (FA) pathway plays a key role in the repair of DNA double strand breaks. We focused on this pathway to clarify chemoresistance mechanisms in biliary tract cancer (BTC). We also investigated changes in the CD24(+)/44(+) population that may be involved in chemoresistance, as this population likely includes cancer stem cells. We used three BTC cell lines to establish gemcitabine (GEM)-resistant (GR) cells and evaluated the expression of BRCA/FA pathway components, chemoresistance, and the effect of BRCA/FA pathway inhibition on the CD24(+)/44(+) population. FANCD2 and CD24 expression were evaluated in 108 resected BTC specimens. GR cells highly expressed the BRCA/FA components. The BRCA/FA pathway was upregulated by GEM and cisplatin (CDDP) exposure. Inhibition using siRNA and RAD51 inhibitor sensitized GR cells to GEM or CDDP. The CD24(+)/44(+) population was increased in GR and parent BTC cells treated with GEM or CDDP and highly expressed BRCA/FA genes. FANCD2 was related to CD24 expression in resected BTC specimens. Inhibition of the BRCA/FA pathway under GEM reduced the CD24(+)/44(+) population in MzChA1-GR cells. Thus, high expression of the BRCA/FA pathway is one mechanism of chemoresistance against GEM and/or CDDP and is related to the CD24(+)/44(+) population in BTC.

  4. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    PubMed Central

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future. PMID:28134290

  5. [Level of evidence for therapeutic drug monitoring for etoposide after oral administration].

    PubMed

    Schieveen, Pauline Gerritsen-van; Hulin, Anne; Muret, Patrice; Royer, Bernard

    2010-01-01

    Oral etoposide displays high inter- and intra-variability. Convincing relationships were observed between hematological toxicities and exposure of which total etoposide area under the curve seems the more relevant in routine practice. Linear pharmacokinetics, limited sampling strategies and reduction of variability during concentration-controlled studies argue in favor of therapeutic drug monitoring. For these reasons, such practice can be considered as recommended or potentially useful. Further studies using Bayesian approach are nevertheless needed to definitely state regarding the level of evidence therapeutic drug monitoring of oral etoposide.

  6. Anti-mutagenic activity of Salvia merjamie extract against gemcitabine.

    PubMed

    Alanazi, Khalid Mashay

    2015-01-01

    Gemcitabine is an anti-cancer drug with clinically uses in the treatment of various neoplasms, including breast, ovarian, non-small cell lung, pancreaticand cervical cancers, T-cell malignancies, germ cell tumours, and hepatocellular carcinomas. However, it has also been reported to have many adverse effects. Naturally occurring anti-mutagenic effects, especially those of plant origin, have recently become a subject of intensive research. The present study was therefore designed to investigate the anti-mutagenic effects of Salvia merjamie (Family: Lamiaceae) plant extracts against the mutagenic effects of gemcitabine. The anti-mutagenic properties of Salvia merjamie were tested in Inbred SWR/J male and female mice bone marrow cells. The mice were treated in four groups; a control group treated with 30 mg/kg body weight gemcitabine and three treatment groups, each with 30 mg/kg body weight gemcitabine together with, respectively, 50, 100 and 150 mg/kg body weight Salvia merjamie extract. Chromosomal aberration and mitotic index assays were performed with the results demonstrating that Salvia merjamie extract protects bone marrow cells in mice against gemcitabine induced mutagenicity. This information can be used for the development of a potential therapeutic anti-mutagenic agents.

  7. Inhibition of HAX-1 by miR-125a reverses cisplatin resistance in laryngeal cancer stem cells

    PubMed Central

    Liu, Jiajia; Tang, Qinglai; Li, Shisheng; Yang, Xinming

    2016-01-01

    Chemoresistance is a major obstacle in chemotherapy of laryngeal carcinoma. Recently, studies indicate that cancer stem cells are responsible for chemotherapy failure. In addition, microRNAs play important roles in tumor initiation, development and multidrug resistance. In the present study, we found that the expression of microRNA-125a was decreased in laryngeal carcinoma tissues and Hep-2 laryngeal cancer stem cells (Hep-2-CSCs). MicroRNA-125a gain-of-function significantly increased the sensitivity of Hep-2-CSCs to cisplatin in vitro and in vivo. Combination with microRNA-125a mimics can decrease the half maximal inhibitory concentration of Hep-2-CSCs to cisplatin. Mechanically, we found that microRNA-125a reverses cisplatin resistance in Hep-2-CSCs by targeting Hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1). Inhibition of HAX-1 by microRNA-125a significantly promotes the cisplatin-induced apoptosis in Hep-2-CSCs through mitochondrial pathway. In addition, multidrug resistance of Hep-2-CSCs to vincristine, etoposide and doxorubicin was greatly improved after the cells were transfected with microRNA-125a mimics. These dates strongly suggested the promotion of microRNA-125a/HAX-1 axis on chemotherapy of laryngeal carcinoma. PMID:27880721

  8. Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: A review

    PubMed Central

    Morgan, Meredith A.; Parsels, Leslie A.; Maybaum, Jonathan; Lawrence, Theodore S.

    2009-01-01

    In the last three decades gemcitabine has progressed from the status of a laboratory cytotoxic drug to a standard clinical chemotherapeutic agent and a potent radiation sensitizer. In an effort to improve the efficacy of gemcitabine, additional chemotherapeutic agents have been combined with gemcitabine (both with and without radiation) but with toxicity proving to be a major limitation. Therefore, the integration of molecularly targeted agents, which potentially produce less toxicity than standard chemotherapy, with gemcitabine-radiation is a promising strategy for improving chemoradiation. Two of the most promising targets, described in this review, for improving the efficacy of gemcitabine-radiation are EGFR and Chk1. PMID:18980967

  9. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model.

    PubMed

    Maswadeh, Hamzah M; Aljarbou, Ahmad N; Alorainy, Mohammed S; Alsharidah, Mansour S; Khan, Masood A

    2015-01-01

    Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  10. Etoposide exposure during male mouse pachytene has complex effects on crossing-over and causes nondisjunction.

    PubMed

    Russell, Liane B; Hunsicker, Patricia R; Kerley, Marilyn; Pyle, April; Saxton, Arnold M

    2004-12-31

    In experiments involving different germ-cell stages, we had previously found meiotic prophase of the male mouse to be vulnerable to the induction of several types of genetic damage by the topoisomerase-II inhibitor etoposide. The present study of etoposide effects involved two end points of meiotic events known to occur in primary spermatocytes--chromosomal crossing-over and segregation. By following assortment of 13 microsatellite markers in two chromosomes (Ch 7 and Ch 15) it was shown that etoposide significantly affected crossing-over, but did not do so in a uniform fashion. Treatment generally changed the pattern for each chromosome, leading to local decreases in recombination, a distal shift in locations of crossing-over, and an overall decrease in double crossovers; at least some of these results might be interpreted as evidence for increased interference. Two methods were used to explore etoposide effects on chromosome segregation: a genetic experiment capable of detecting sex-chromosome nondisjunction in living progeny; and the use of FISH (fluorescence in situ hybridization) technology to score numbers of Chromosomes X, Y, and 8 in spermatozoa. Taken together these two approaches indicated that etoposide exposure of pachytene spermatocytes induces malsegregation, and that the findings of the genetic experiment probably yielded a marked underestimate of nondisjunction. As indicated by certain segregants, at least part of the etoposide effect could be due to disrupted pairing of achiasmatic homologs, followed by precocious sister-centromere separation. It has been shown for several organisms that absent or reduced levels of recombination, as well as suboptimally positioned recombination events, may be associated with abnormal segregation. Etoposide is the only chemical tested to date for which living progeny indicates an effect on both male meiotic crossing-over and chromosome segregation. Whether, however, etoposide-induced changes in recombination

  11. DNA-AP sites generation by Etoposide in whole blood cells

    PubMed Central

    2009-01-01

    Background Etoposide is currently one of the most commonly used antitumor drugs. The mechanisms of action proposed for its antitumor activity are based mainly on its interaction with topoisomerase II. Etoposide effects in transformed cells have been described previously. The aim of the present study was to evaluate the genotoxic effects of this drug in non-transformed whole blood cells, such as occurs as collateral damage induced by some chemotherapies. Methods To determine etoposide genotoxicity, we employed Comet assay in two alkaline versions. To evaluate single strand breaks and delay repair sites we use pH 12.3 conditions and pH >13 to evidence alkali labile sites. With the purpose to quantified apurinic or apyrimidine (AP) sites we employed a specific restriction enzyme. Etoposide effects were determined on whole blood cells cultured in absence or presence of phytohemagglutinin (PHA) treated during 2 and 24 hours of cultured. Results Alkaline (pH > 13) single cell gel electrophoresis (SCGE) assay experiments revealed etoposide-induced increases in DNA damage in phytohemaglutinine (PHA)-stimulated blood and non-stimulated blood cells. When the assay was performed at a less alkaline pH, 12.3, we observed DNA damage in PHA-stimulated blood cells consistent with the existence of alkali labile sites (ALSs). In an effort to elucidate the molecular events underlying this result, we applied exonuclease III (Exo III) in conjunction with a SCGE assay, enabling detection of DNA-AP sites along the genome. More DNA AP-sites were revealed by Exo III and ALSs were recognized by the SCGE assay only in the non-stimulated blood cells treated with etoposide. Conclusion Our results indicate that etoposide induces DNA damage specifically at DNA-AP sites in quiescent blood cells. This effect could be involved in the development of secondary malignancies associated with etoposide chemotherapy. PMID:19917085

  12. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells

    PubMed Central

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A.; García-Pérez, Carlos A.; Guerrero-Rodríguez, Sandra L.; Ruiz, Angel J.; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M.; Velasco-Velázquez, Marco A.

    2016-01-01

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24− cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists. PMID:27009862

  13. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells.

    PubMed

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A; García-Pérez, Carlos A; Guerrero-Rodríguez, Sandra L; Ruiz-Moreno, Angel J; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2016-04-26

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24- cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists.

  14. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  15. Matricaria chamomilla attenuates cisplatin nephrotoxicity.

    PubMed

    Salama, Ragaa H M

    2012-07-01

    Matricaria chamomilla is extensively consumed as a tea or tonic. Despite its widespread use as a home remedy, relatively few trials evaluated its benefits in nephro protection. Hence, this study evaluates the protective role of M. chamomilla in cisplatin nephrotoxicity rat model. The study was conducted on 32 rats divided into four groups. The first group (G1) was injected with saline intra-peritoneally (IP); G2 was injected with 5 mg/kg cisplatin on day 0 of the experiment and repeated four times, with five days free interval. G3 and G4 were injected daily with M. chamomilla (50 mg/kg) IP, starting five days before the experiment (-5 day); in addition, G4 was injected with cisplatin. On day 16, animals were scarified and serum and/or kidney tissue was used to determine: (a) kidney function tests (serum urea, creatinine, gamma glutamyl transferase (GGT), NAG, β-gal), (b) oxidative stress indices (NO, LPO), (c) antioxidant activities (SOD, GSH, total thiols), (d) apoptotic indices (Cathepsin D, DNA fragmentation) and (e) mineral (calcium). M. chamomilla significantly increased the body weight, normalized the kidney functions, improved the apoptotic markers, reduced the oxidative stress markers and corrected the hypo-calcemia that resulted from cisplatin nephrotoxicity. M. chamomilla is a promising nephro-protective compound reducing cisplatin nephrotoxicity most probably by its antioxidant activities and inhibition of gamma glutamyl transferase activity.

  16. Efficacy and Safety of Gemcitabine Plus Either Taxane or Carboplatin in the First-Line Setting of Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis.

    PubMed

    Necchi, Andrea; Pond, Gregory R; Raggi, Daniele; Giannatempo, Patrizia; Vogelzang, Nicholas J; Grivas, Petros; Galsky, Matthew D; Bellmunt, Joaquim; Sonpavde, Guru

    2017-02-01

    Although gemcitabine plus carboplatin (GCa) is the conventional first-line chemotherapy for cisplatin-ineligible metastatic urothelial carcinoma, its results are suboptimal. A meta-analysis evaluated the results of gemcitabine with either carboplatin or a taxane (GT). Literature was searched for studies including GT (paclitaxel or docetaxel) and GCa. We pooled trial level data including response-rate, progression-free survival, overall survival (OS), and Grade 3 to 4 side effects. Trial characteristics and outcomes were univariably compared between GT and GCa. Those factors, which were recorded in > 12 trials, were analyzed. Multivariable regression models were used adjusting for Eastern Cooperative Oncology Group performance status 2 and the presence of visceral metastases. Each trial was weighted by its sample size. Twenty-seven arms of trials totaling 1032 patients were selected, of which 13 contained GT (n = 484) and 14 GCa (n = 548). The percentage of patients with Eastern Cooperative Oncology Group performance status 2 was statistically significantly different between the 2 groups (median, 8.7% vs. 23.9%; P = .003). No efficacy outcome was statistically significantly different. Median OS was 13.2 months (range, 10-15.8 months) for GT and 10 months (range, 3.3-20 months) for GCa (P = .12). However, statistically significant increases in the frequency of Grade 3 to 4 anemia (P = .010) and thrombocytopenia (P = .010) for GCa, and neuropathy (P = .040) for GT were observed. No difference in OS according to treatment was found multivariably (P = .79). In this analysis, a similar response rate and survival and worse neurotoxicity were observed with GT compared with GCa, for which hematologic toxicity was more frequent. GT is an alternative to GCa for advanced cisplatin-ineligible urothelial cancer.

  17. [50th anniversary of cisplatin].

    PubMed

    Rancoule, Chloé; Guy, Jean-Baptiste; Vallard, Alexis; Ben Mrad, Majed; Rehailia, Amel; Magné, Nicolas

    2017-02-01

    We have just celebrated the 50th anniversary of cisplatin cytotoxic potential discovery. It is time to take stock… and it seems mainly positive. This drug, that revolutionized the treatment of many cancer types, continues to be the most widely prescribed chemotherapy. Despite significant toxicities, resistance mechanisms associated with treatment failures, and unresolved questions about its mechanism of action, the use of this cytotoxic agent remains unwavering. The interest concerning this "old" invincible drug has not yet abated. Indeed many research axes are in the news. New platinum salts agents are tested, new cisplatin formulations are developed to target tumor cells more efficiently, and new combinations are established to increase the cytotoxic potency of cisplatin or overcome the resistance mechanisms.

  18. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits

    PubMed Central

    Calvani, Maura; Bianchini, Francesca; Taddei, Maria Letizia; Becatti, Matteo; Giannoni, Elisa; Chiarugi, Paola; Calorini, Lido

    2016-01-01

    Tumors contain a sub-population of self-renewing and expanding cells known as cancer stem cells (CSCs). Putative CSCs were isolated from human melanoma cells of a different aggressiveness, Hs294T and A375 cell lines, grown under hypoxia using “sphere-forming assay”, CD133 surface expression and migration ability. We found that a cell sub-population enriched for P1 sphere-initiating ability and CD133 expression also express larger amount of VEGF-R2. Etoposide does not influence phenotype of this sub-population of melanoma cells, while a combined treatment with Etoposide and Bevacizumab significantly abolished P1 sphere-forming ability, an effect associated with apoptosis of this subset of cells. Hypoxic melanoma cells sorted for VEGF-R2/CD133 positivity also undergo apoptosis when exposed to Etoposide and Bevacizumab. When Etoposide and Bevacizumab-treated hypoxic cells were injected intravenously into immunodeficient mice revealed a reduced capacity to induce lung colonies, which also appear with a longer latency period. Hence, our study indicates that a combined exposure to Etoposide and Bevacizumab targets melanoma cells endowed with stem-like properties and might be considered a novel approach to treat cancer-initiating cells. PMID:27303923

  19. Cytotoxic activity of gemcitabine, alone or in combination with mitotane, in adrenocortical carcinoma cell lines.

    PubMed

    Germano, Antonina; Rapa, Ida; Volante, Marco; Lo Buono, Nicola; Carturan, Sonia; Berruti, Alfredo; Terzolo, Massimo; Papotti, Mauro

    2014-01-25

    We aimed at investigating in vitro the cytotoxic activity (determined using WST-1, apoptosis and cell cycle assays) of gemcitabine, alone or in combination with mitotane, in mitotane-sensitive H295R and mitotane-insensitive SW-13 cells. Results of these experiments were compared with drug-induced modulation of RRM1 gene, the specific target of gemcitabine. In H295R cells, mitotane and gemcitabine combinations showed antagonistic effects and interfered with the gemcitabine-mediated inhibition of the S phase of the cell cycle. By contrast, in SW-13 cells, except when mitotane was sequentially administered prior to gemcitabine, the combination of the two drugs was synergistic. Such opposite effects were associated with opposite expression profiles of the target gene, with significant up-modulation in H295R but not in SW-13 under gemcitabine and mitotane combination treatment.

  20. Hyperglucagonemia following cisplatin treatment.

    PubMed

    Goldstein, R S; Mayor, G H; Gingerich, R L; Hook, J B; Robinson, B; Bond, J T

    1983-04-01

    These studies were initiated to determine (1) if cisplatin (cis-DDP)-induced hyperglucagonemia is related to decreased hormone degradation, (2) the relationship between impaired kidney function associated with cis-DDP nephrotoxicity and hyperglucagonemia, and (3) the contribution of cis-DDP-induced hyperglucagonemia to disturbances in glucose metabolism in male F-344 rats. Administration of 5 or 7.5, but not 2.5, mg/kg cis-DDP iv increased fasting plasma immunoreactive glucagon (IRG) concentrations. Hyperglucagonemia following cis-DDP treatment was characterized by an increase in the biologically active or true pancreatic form of IRG as well as an increase in an extrapancreatic component. cis-DDP treatment (5 mg/kg) resulted in a prolonged half-life and a reduced rate of plasma disappearance of exogenous glucagon. Reducing cis-DDP nephrotoxicity, via mannitol pretreatment, resulted in a significant reduction in total, true pancreatic, and extrapancreatic plasma IRG. Other nephrotoxicants, such as glycerol or gentamicin, also resulted in hyperglucagonemia, indicating that the effects of cis-DDP on glucagon metabolism are also characteristic of other nephrotoxicants and, therefore, may be secondary to kidney toxicity. Despite marked hyperglucagonemia following cis-DDP treatment, neither severe fasting hyperglycemia nor increased hepatic and renal gluconeogenic enzyme activity was apparent in treated animals. This apparent discrepancy cannot be attributed to glucagon resistance at the target tissue level since cis-DDP-treated animals responded appropriately to exogenous glucagon. These results indicate that hyperglucagonemia following cis-DDP treatment (1) may be related to decreased glucagon degradation associated with impaired renal function and (2) does not markedly disrupt glucose homeostasis.

  1. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    SciTech Connect

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi; Furukawa, Kaoru; Tanabe, Yamato; Matsugo, Seiichi; Sasaki, Soichiro; Mukaida, Naofumi

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  2. Bortezomib and etoposide combinations exert synergistic effects on the human prostate cancer cell line PC-3

    PubMed Central

    ARAS, BEKIR; YERLIKAYA, AZMI

    2016-01-01

    Novel treatment modalities are urgently required for androgen-independent prostate cancer. In order to develop an alternative treatment for prostate cancer, the cytotoxic effects of the 26S proteasome inhibitor bortezomib, either alone or in combination with the two commonly used chemotherapeutic agents irinotecan and etoposide, on the human prostate cancer cell line PC-3 were evaluated in the present study. The PC-3 cell line was maintained in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and treated with various doses of bortezomib, irinotecan, etoposide or their combinations. The growth inhibitory and cytotoxic effects were determined by water-soluble tetrazolium (WST)-1 assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or iCELLigence system. The combination index values were determined by the Chou-Talalay method. The half maximal inhibitory concentration (IC50) value of bortezomib on the PC-3 cell line was determined to be 53.4 nM by WST-1 assay, whereas the IC50 values of irinotecan and etoposide were determined to be 2.1 and 26.5 µM, respectively. These results suggest that the 26S proteasome inhibitor bortezomib is more potent, compared with irinotecan and etoposide, in the androgen-insensitive and tumor protein p53-null cell line PC-3. The combined effects of bortezomib+irinotecan and bortezomib+etoposide were also tested on PC-3 cells. The effect of bortezomib+irinotecan combination was not significantly different than that produced by either monotherapy, according to the results of iCELLigence system and MTT assay. However, 40 nM bortezomib+5 µM etoposide or 40 nM bortezomib+20 µM etoposide combinations were observed to be more effective than each drug tested alone. The results of the current study suggest that bortezomib and etoposide combination may be additionally evaluated in clinical trials for the treatment of hormone-refractory prostate cancer. PMID:27123085

  3. Antagonism between curcumin and the topoisomerase II inhibitor etoposide

    PubMed Central

    Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.

    2012-01-01

    The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their

  4. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives.

    PubMed

    Federico, Cinzia; Morittu, Valeria M; Britti, Domenico; Trapasso, Elena; Cosco, Donato

    2012-01-01

    This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil(®), Caelyx(®)).

  5. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy.

    PubMed

    Ferreira, Roberta V; Martins, Thaís Maria da Mata; Goes, Alfredo Miranda; Fabris, José D; Cavalcante, Luis Carlos D; Outon, Luis Eugenio Fernandez; Domingues, Rosana Z

    2016-02-26

    The combination of magnetic hyperthermia therapy with the controlled release of chemotherapeutic agents in tumors may be an efficient therapeutic with few side effects because the bioavailability, tolerance and amount of the drug can be optimized. Here, we prepared magnetoliposomes consisting of magnetite nanoparticle cores and the anticancer drug gemcitabine encapsulated by a phospholipid bilayer. The potential of these magnetoliposomes for controlled drug release and cancer treatment via hyperthermic behavior was investigated. The magnetic nanoparticle encapsulation efficiency was dependent on the initial amount of magnetite nanoparticles present at the encapsulation stage; the best formulation was 66%. We chose this formulation to characterize the physicochemical properties of the magnetoliposomes and to encapsulate gemcitabine. The mean particle size and distribution were determined by dynamic light scattering (DLS), and the zeta potential was measured. The magnetoliposome formulations all had acceptable characteristics for systemic administration, with a mean size of approximately 150 nm and a polydispersity index <0.2. The magnetoliposomes were stable in aqueous suspension for at least one week, as determined by DLS. Temperature increases due to the dissipation energy of magnetoliposome suspensions subjected to an applied alternating magnetic field (AMF) were measured at different magnetic field intensities, and the values were appropriated for cancer treatments. The drug release profile at 37 °C showed that 17% of the gemcitabine was released after 72 h. Drug release from magnetoliposomes exposed to an AMF for 5 min reached 70%.

  6. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy

    NASA Astrophysics Data System (ADS)

    Ferreira, Roberta V.; da Mata Martins, Thaís Maria; Goes, Alfredo Miranda; Fabris, José D.; Cavalcante, Luis Carlos D.; Eugenio Fernandez Outon, Luis; Domingues, Rosana Z.

    2016-02-01

    The combination of magnetic hyperthermia therapy with the controlled release of chemotherapeutic agents in tumors may be an efficient therapeutic with few side effects because the bioavailability, tolerance and amount of the drug can be optimized. Here, we prepared magnetoliposomes consisting of magnetite nanoparticle cores and the anticancer drug gemcitabine encapsulated by a phospholipid bilayer. The potential of these magnetoliposomes for controlled drug release and cancer treatment via hyperthermic behavior was investigated. The magnetic nanoparticle encapsulation efficiency was dependent on the initial amount of magnetite nanoparticles present at the encapsulation stage; the best formulation was 66%. We chose this formulation to characterize the physicochemical properties of the magnetoliposomes and to encapsulate gemcitabine. The mean particle size and distribution were determined by dynamic light scattering (DLS), and the zeta potential was measured. The magnetoliposome formulations all had acceptable characteristics for systemic administration, with a mean size of approximately 150 nm and a polydispersity index <0.2. The magnetoliposomes were stable in aqueous suspension for at least one week, as determined by DLS. Temperature increases due to the dissipation energy of magnetoliposome suspensions subjected to an applied alternating magnetic field (AMF) were measured at different magnetic field intensities, and the values were appropriated for cancer treatments. The drug release profile at 37 °C showed that 17% of the gemcitabine was released after 72 h. Drug release from magnetoliposomes exposed to an AMF for 5 min reached 70%.

  7. Chemotherapy for Testicular Cancer

    MedlinePlus

    ... main drugs used to treat testicular cancer are: Cisplatin Etoposide (VP-16) Bleomycin Ifosfamide (Ifex ® ) Paclitaxel (Taxol ® ) ... cancer are: BEP (or PEB): bleomycin, etoposide, and cisplatin EP: etoposide and cisplatin (also known as EP) ...

  8. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro.

    PubMed

    Piskareva, Olga; Harvey, Harry; Nolan, John; Conlon, Ross; Alcock, Leah; Buckley, Patrick; Dowling, Paul; Henry, Michael; O'Sullivan, Finbarr; Bray, Isabella; Stallings, Raymond L

    2015-08-10

    Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relapsing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. In order to investigate the molecular pathways that are involved with drug resistance in neuroblastoma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP-212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide and irinotecan, all of which are drugs in re-initiation therapy. Array CGH analysis indicated that resistant lines have acquired additional genomic imbalances. Differentially expressed proteins were identified by mass spectrometry and classified by bioinformatics tools according to their molecular and cellular functions and their involvement into biological pathways. Significant changes in the expression of proteins involved with pathways such as actin cytoskeletal signalling (p = 9.28E-10), integrin linked kinase (ILK) signalling (p = 4.01E-8), epithelial adherens junctions signalling (p = 5.49E-8) and remodelling of epithelial adherens junctions (p = 5.87E-8) pointed towards a mesenchymal phenotype developed by cisplatin resistant SK-N-ASCis24. Western blotting and confocal microscopy of MYH9, ACTN4 and ROCK1 coupled with invasion assays provide evidence that elevated levels of MYH9 and ACTN4 and reduced levels of ROCK1 contribute to the increased ROCK1-independent migratory potential of SK-N-ASCis24. Therefore, our results suggest that epithelial-to-mesenchymal transition is a feature during the development of drug resistance in neuroblastoma.

  9. Biodegradability of the anticancer drug etoposide and identification of the transformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; Heath, Ester; de Alda, Miren López; Barceló, Damià

    2016-08-01

    Etoposide susceptibility to microbiological breakdown was studied in a batch biotransformation system, in the presence or absence of artificial wastewater containing nutrients, salts and activated sludge at two concentration levels. The primary focus of the present study was to study etoposide transformation products by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry (MS/MS). Data-dependent experiments combining full-scan MS data with product ion spectra were acquired to identify the molecular ions of etoposide transformation products, to propose the molecular formulae and to elucidate their chemical structures. Due to the complexity of the matrix, visual inspection of the chromatograms showed no clear differences between the controls and the treated samples. Therefore, the software package MZmine was used to facilitate the identification of the transformation products and speed up the data analysis. In total, we propose five transformation products; among them, four are described as etoposide transformation products for the first time. Even though the chemical structures of these new compounds cannot be confirmed due to the lack of standards, their molecular formulae can be used to target them in monitoring studies.

  10. EZH2 inhibition re-sensitizes multidrug resistant B-cell lymphomas to etoposide mediated apoptosis

    PubMed Central

    Smonskey, Matthew; Lasorsa, Elena; Rosario, Spencer; Kirk, Jason S.; Hernandez-Ilizaliturri, Francisco J.; Ellis, Leigh

    2016-01-01

    Reactivation of apoptotic pathways is an attractive strategy for patients with treatment-resistant B-cell lymphoma. The tumor suppressor, p53 is central for apoptotic response to multiple DNA damaging agents used to treat aggressive B-cell lymphomas, including etoposide. It has been demonstrated that etoposide induced DNA damage and therapeutic efficacy is enhanced by combination with inhibitors of the histone methyltransferase, enhancer of zeste homolog 2 (EZH2). Further, EZH2 was identified to regulate cell fate decisions in response to DNA damage. Using B-cell lymphoma cell lines resistant to etoposide induced cell death; we show that p53 is dramatically down regulated and MDMX, a negative regulator of p53, is significantly up regulated. However, these cell lines remain responsive to etoposide mediated DNA damage and exhibit cell cycle inhibition and induction of senescence. Furthermore, chemical inhibition of EZH2 directs DNA damage to a predominant p53 dependent apoptotic response associated with loss of MDMX and BCL-XL. These data provide confirmation of EZH2 in determining cell fate following DNA damage and propose a novel therapeutic strategy for patients with aggressive treatment-resistant B-cell lymphoma. PMID:26973857

  11. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer

    PubMed Central

    Espey, Michael Graham; Chen, Ping; Chalmers, Brian; Drisko, Jeanne; Sun, Andrew Y.; Levine, Mark; Chen, Qi

    2012-01-01

    Conventional treatment approaches have had little impact on the course of pancreatic cancer, which has the highest fatality rate among cancers. Gemcitabine, the primary therapeutic agent for pancreatic carcinoma, produces minimal survival benefit as a single agent. Therefore, numerous efforts have focused on gemcitabine combination treatments. Using a ratio design, this study established that combining pharmacologically achievable concentrations of ascorbate with gemcitabine resulted in a synergistic cytotoxic response in eight pancreatic tumor cell lines. Sensitization was evident regardless of inherent gemcitabine resistance and epithelial–mesenchymal phenotype. Our analysis suggested that the promiscuous oxidative actions of H2O2 derived from pharmacologic ascorbate can culminate in synergism independent of the cancer cell's underlying phenotype and resistance to gemcitabine monotherapy. Gemcitabine–ascorbate combinations administered to mice bearing pancreatic tumor xenografts consistently enhanced inhibition of growth compared to gemcitabine alone, produced 50% growth inhibition in a tumor type not responsive to gemcitabine, and demonstrated a gemcitabine dose-sparing effect. These data support the testing of pharmacologic ascorbate in adjunctive treatments for cancers prone to high failure rates with conventional therapeutic regimens, such as pancreatic cancer. PMID:21402145

  12. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir-Blodgett technique.

    PubMed

    Castelli, Francesco; Sarpietro, Maria Grazia; Rocco, Flavio; Ceruti, Maurizio; Cattel, Luigi

    2007-09-01

    The stability and bioavailability of anticancer agents, such as gemcitabine, can be increased by forming prodrugs. Gemcitabine is rapidly deaminated to the inactive metabolite (2('),2(')-difluorodeoxyuridine), thus to improve its stability a series of increasingly lipophilic gemcitabine prodrugs linked through the 4-amino group to valeroyl, lauroyl, and stearoyl acyl chains were synthesized. Studies of monolayer properties are important to improve understanding of biological phenomena involving lipid/gemcitabine or lipid/gemcitabine derivative interactions. The interfacial behavior of monolayers constituted by DMPC plus gemcitabine or lipophilic gemcitabine prodrugs at increasing molar fractions was studied at the air/water interface at temperatures below (10 degrees C) and above (37 degrees C) the lipid phase transition. The effect of the hydrophobic chain length of gemcitabine derivatives on the isotherm of pure DMPC was investigated by surface tension measurement, and the results are reported as molar fractions as a function of mean molecular area per molecule. The results show that the compounds interact with DMPC producing mixed monolayers that are subject to an expansion effect, depending on the prodrug chain length. The results give useful hints of the interaction of these prodrugs with biological membranes and increase knowledge on the incorporation site of such compounds, as a function of their lipophilicity, in a lipid carrier; they may lead to improved liposomal formulation design.

  13. Preparation of hierarchical mesoporous CaCO3 by a facile binary solvent approach as anticancer drug carrier for etoposide

    PubMed Central

    2013-01-01

    To develop a nontoxic system for targeting therapy, a new highly ordered hierarchical mesoporous calcium carbonate nanospheres (CCNSs) as small drug carriers has been synthesized by a mild and facile binary solvent approach under the normal temperature and pressure. The hierarchical structure by multistage self-assembled strategy was confirmed by TEM and SEM, and a possible formation process was proposed. Due to the large fraction of voids inside the nanospheres which provides space for physical absorption, the CCNSs can stably encapsulate the anticancer drug etoposide with the drug loading efficiency as high as 39.7 wt.%, and etoposide-loaded CCNS (ECCNS) nanoparticles can dispersed well in the cell culture. Besides, the drug release behavior investigated at three different pH values showed that the release of etoposide from CCNSs was pH-sensitive. MTT assay showed that compared with free etoposide, ECCNSs exhibited a higher cell inhibition ratio against SGC-7901 cells and also decreased the toxicity of etoposide to HEK 293 T cells. The CLSM image showed that ECCNSs exhibited a high efficiency of intracellular delivery, especially in nuclear invasion. The apoptosis test revealed that etoposide entrapped in CCNSs could enhance the delivery efficiencies of drug to achieve an improved inhibition effect on cell growth. These results clearly implied that the CCNSs are a promising drug delivery system for etoposide in cancer therapy. PMID:23849350

  14. Natural anti-cancer agents: Implications in gemcitabine-resistant pancreatic cancer treatment.

    PubMed

    Marasini, Bishal; Sahu, Ravi P

    2017-03-15

    Pancreatic cancer is one of the most lethal malignancy accounting for the fourth leading cause of cancer-related deaths in the United States. Among several explored anti-cancer agents, Gemcitabine, a nucleoside analogue remained a front line chemotherapeutic agent for the treatment of pancreatic cancer. However, gemcitabine exerts a low response rate with limited progression free survival in cancer patients due to cellular resistance of pancreatic tumors to this therapy. Several chemotherapeutic agents have been explored in combination with gemcitabine against pancreatic cancer with overall mixed responses and survival rates. Naturally occurring dietary agents possess promising anti-cancer properties and have been shown to target various oncogenic signaling pathways in in-vitro and in-vivo pancreatic cancer models. Multiple studies using natural compounds have shown increased therapeutic efficacy of gemcitabine in pancreatic cancer models. This review is focused on recent updates on preclinical and clinical studies utilizing natural anti-cancer agents with gemcitabine against pancreatic cancer.

  15. The Incidence of Cisplatin-induced Hypomagnesemia in Cervical Cancer Patients Receiving Cisplatin Alone.

    PubMed

    Yamamoto, Yoshihiro; Watanabe, Kazushi; Matsushita, Hiroshi; Tsukiyama, Ikuto; Matsuura, Katsuhiko; Wakatsuki, Akihiko

    2017-01-01

     Hypomagnesemia is one side effect in patients receiving cisplatin. However, there are few reports of cisplatin-induced hypomagnesemia in Japan. We retrospectively investigated the incidence of hypomagnesemia and nephrotoxicity in patients undergoing radiation therapy who were treated with cisplatin alone (dosage: 40 mg/m(2), administration interval: 1 week) for cervical cancer. Thirty-two patients undergoing radiation therapy who received cisplatin alone for cervical cancer between January 2012 and May 2016 at Aichi Medical University Hospital were included. We measured patients' serum magnesium and creatinine levels on the day before cisplatin was administered. We utilized the RIFLE criteria (categorized into "risk", "injury", "failure", "loss", and "end-stage kidney disease") to define levels of cisplatin-induced nephrotoxicity, and classified cisplatin-induced nephrotoxicity into "risk" or "injury". Eighteen patients (56.3%) had cisplatin-induced hypomagnesemia, the majority of which occurred after the 4th treatment cycle. The number of patients with moderate renal dysfunction classified as "risk" in the hypomagnesemia group was not significantly higher than in the non-hypomagnesemia group (hypomagnesemia group=27.8%, non-hypomagnesemia group=7.1%; p=0.20). This survey sheds light on the incidence rates of cisplatin-induced hypomagnesemia in patients receiving cisplatin alone. We recommend monitoring the serum magnesium levels during cisplatin administration to prevent hypomagnesemia.

  16. Stereotactic Body Radiotherapy and Gemcitabine for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Mahadevan, Anand; Jain, Sanjay; Goldstein, Michael; Miksad, Rebecca; Pleskow, Douglas; Sawhney, Mandeep; Brennan, Darren M.D.; Callery, Mark; Vollmer, Charles

    2010-11-01

    Purpose: Patients with nonmetastatic locally advanced unresectable pancreatic cancer have a dismal prognosis. Conventional concurrent chemoradiotherapy requires 6 weeks of daily treatment and can be arduous. We explored the safety and effectiveness of a 3-day course of hypofractionated stereotactic body radiotherapy (SBRT) followed by gemcitabine in this population. Patients and Methods: A total of 36 patients with nonmetastatic, locally advanced, unresectable pancreatic cancer with {>=}12 months of follow-up were included. They received three fractions of 8, 10, or 12 Gy (total dose, 24-36 Gy) of SBRT according to the tumor location in relation to the stomach and duodenum, using fiducial-based respiratory motion tracking on a robotic radiosurgery system. The patients were then offered gemcitabine for 6 months or until tolerance or disease progression. Results: With an overall median follow-up of 24 months (range, 12-33), the local control rate was 78%, the median overall survival time was 14.3 months, the median carbohydrate antigen 19-9-determined progression-free survival time was 7.9 months, and the median computed tomography-determined progression-free survival time was 9.6 months. Of the 36 patients, 28 (78%) eventually developed distant metastases. Six patients (17%) were free of progression at the last follow-up visit (range, 13-30 months) as determined by normalized tumor markers with stable computed tomography findings. Nine Grade 2 (25%) and five Grade 3 (14%) toxicities attributable to SBRT occurred. Conclusion: Hypofractionated SBRT can be delivered quickly and effectively in patients with nonmetastatic, locally advanced, unresectable pancreatic cancer with acceptable side effects and minimal interference with gemcitabine chemotherapy.

  17. Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics

    PubMed Central

    2012-01-01

    Background The representation of a biochemical system as a network is the precursor of any mathematical model of the processes driving the dynamics of that system. Pharmacokinetics uses mathematical models to describe the interactions between drug, and drug metabolites and targets and through the simulation of these models predicts drug levels and/or dynamic behaviors of drug entities in the body. Therefore, the development of computational techniques for inferring the interaction network of the drug entities and its kinetic parameters from observational data is raising great interest in the scientific community of pharmacologists. In fact, the network inference is a set of mathematical procedures deducing the structure of a model from the experimental data associated to the nodes of the network of interactions. In this paper, we deal with the inference of a pharmacokinetic network from the concentrations of the drug and its metabolites observed at discrete time points. Results The method of network inference presented in this paper is inspired by the theory of time-lagged correlation inference with regard to the deduction of the interaction network, and on a maximum likelihood approach with regard to the estimation of the kinetic parameters of the network. Both network inference and parameter estimation have been designed specifically to identify systems of biotransformations, at the biochemical level, from noisy time-resolved experimental data. We use our inference method to deduce the metabolic pathway of the gemcitabine. The inputs to our inference algorithm are the experimental time series of the concentration of gemcitabine and its metabolites. The output is the set of reactions of the metabolic network of the gemcitabine. Conclusions Time-lagged correlation based inference pairs up to a probabilistic model of parameter inference from metabolites time series allows the identification of the microscopic pharmacokinetics and pharmacodynamics of a drug with a

  18. Fixed-dose-rate administration of gemcitabine in cancer-bearing cats: A pilot study.

    PubMed

    Garnett, Crystal L; Guerrero, Teri A; Rodriguez, Carlos O

    2016-11-01

    Gemcitabine is an antimetabolite chemotherapy agent with schedule-dependent metabolism and efficacy. The purpose of this study was to identify the fixed-dose-rate (FDR) of gemcitabine administration in cancer-bearing cats that achieved a target plasma concentration (TPC) of 10 to 20 μM. Fifteen client-owned cats received gemcitabine infusions administered at various FDR for 1 to 6 hours. Plasma gemcitabine and dFdU (2',2'-difluorodeoxyuridine), the major gemcitabine metabolite, were quantitated by high performance liquid chromatography. Cats treated with an FDR less than 2.5 mg/m(2) per minute failed to achieve TPC, whereas cats treated with an FDR of 10 mg/m(2) per minute quickly exceeded the target range. An FDR of 5 mg/m(2) per minute provided the longest duration of exposure without exceeding the upper limit of the TPC. Plasma dFdU concentration mirrored plasma gemcitabine concentrations. These data suggest that in order to maintain TPC of gemcitabine in cats the FDR lies between 2.5 and 5 mg/m(2) per minute. A Phase II study to evaluate efficacy and toxicity of this approach is underway.

  19. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis.

    PubMed

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-03-18

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells.

  20. Gemcitabine Based Peptide Conjugate with Improved Metabolic Properties and Dual Mode of Efficacy.

    PubMed

    Karampelas, Theodoros; Skavatsou, Eleni; Argyros, Orestis; Fokas, Demosthenes; Tamvakopoulos, Constantin

    2017-02-01

    Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabine's bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.

  1. Topoisomerase IIalpha-dependent induction of a persistent DNA damage response in response to transient etoposide exposure.

    PubMed

    Soubeyrand, Sébastien; Pope, Louise; Haché, Robert J G

    2010-02-01

    Cytotoxicity of the topoisomerase II (topoII) poison etoposide has been ascribed to the persistent covalent trapping of topoII in DNA cleavage complexes that become lethal as cells replicate their DNA. However, short term etoposide treatment also leads to subsequent cell death, suggesting that the lesions that lead to cytotoxicity arise rapidly and prior to the onset DNA replication. In the present study 1h treatment with 25muM etoposide was highly toxic and initiated a double-stranded DNA damage response as reflected by the recruitment of ATM, MDC1 and DNA-PKcs to gammaH2AX foci. While most DNA breaks were rapidly repaired upon withdrawal of the etoposide treatment, the repair machinery remained engaged in foci for at least 24h following withdrawal. TopoII siRNA ablation showed the etoposide toxicity and gammaH2AX response to correlate with the inability of the cell to correct topoIIalpha-initiated DNA damage. gammaH2AX induction was resistant to the inhibition of DNA replication and transcription, but was increased by pre-treatment with the histone deacetylase inhibitor trichostatin A. These results link the lethality of etoposide to the generation of persistent topoIIalpha-dependent DNA defects within topologically open chromatin domains.

  2. Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Koshiba, Chika; Hirano, Hiroyuki

    2009-08-01

    Etoposide induces apoptotic cell death in normal and cancer cells. This apoptosis plays a role not only in anticancer effects but also in adverse reactions, such as myelosuppression. Because we had previously found that wogonin, a flavone found in a plant, suppresses thymocyte apoptosis induced by etoposide, we examined the effect of this flavone in cancer cells. Wogonin significantly potentiated etoposide-induced apoptosis in HL-60 cells. This flavone impaired the function of P-glycoprotein and then increased cellular content of etoposide in the cells. Thus, this flavone is likely to act as an inhibitor of P-glycoprotein and potentiate the apoptotic action of etoposide. On the other hand, wogonin inhibited etoposide-induced apoptosis in thymocytes, one of the normal cells. The potentiation by wogonin is likely to be a specific action for cancer cells but not normal cells. Therefore, this flavone may be used to reduce the excretion of the anticancer agents via P-glycoprotein and increase the pharmacological action of it in cancer cells. These results suggest that wogonin may play a role in overcoming multidrug resistance.

  3. Cysteine effects on the pharmacokinetics of etoposide in protein-calorie malnutrition rats: increased gastrointestinal absorption by cysteine.

    PubMed

    Suh, J H; Kang, H E; Yoon, I S; Yang, S H; Kim, S H; Lee, H J; Shim, C-K; Lee, M G

    2011-10-01

    Protein-calorie malnutrition (PCM) occurs frequently in advanced cancer patients and has a profound impact on the toxicity of many drugs. Thus, the pharmacokinetics of etoposide were evaluated in control, control with cysteine (CC), PCM, and PCM with cysteine (PCMC) rats. Etoposide was administered intravenously (2 mg/kg) or orally (10 mg/kg). Changes in hepatic and intestinal cytochrome P450s (CYPs) and effects of cysteine on intestinal P-glycoprotein (P-gp)-mediated efflux were also measured. In PCM rats, the CL(NR) (AUC(0-∞)) of intravenous etoposide was significantly slower (greater) than that in controls, because of the significant decrease in the hepatic CYP3A subfamily and P-gp. In PCMC rats, the slowed CL(NR) of etoposide in PCM rats was restored to the control level by cysteine treatment. PCMC rats showed a significantly greater AUC(0-6 h) of oral etoposide than PCM rats, primarily because of the increased gastrointestinal absorption of etoposide as a result of the inhibition of intestinal P-gp by cysteine. The gastrointestinal absorption of an oral anticancer drug, which is a substrate of P-gp, may be improved by co-administration of cysteine in advanced cancer patients if the present rat data can be extrapolated to patients.

  4. Mechanisms of cisplatin-induced muscle atrophy

    SciTech Connect

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  5. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  6. Nephrotoxicity of high-dose ifosfamide/carboplatin/etoposide in adults undergoing autologous stem cell transplantation.

    PubMed

    Agaliotis, D P; Ballester, O F; Mattox, T; Hiemenz, J W; Fields, K K; Zorsky, P E; Goldstein, S C; Perkins, J B; Rosen, R M; Elfenbein, G J

    1997-11-01

    The objective of this study was to evaluate nephrotoxicity in adult patients treated with high-dose ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation. We conducted a retrospective analysis of clinical and laboratory data from 131 patients with various malignancies who received treatment with escalating doses of ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation as part of a phase I/II therapeutic trial. Abnormalities in glomerular filtration were evaluated by measuring peak creatinine levels and tubular dysfunction by the lowest recorded serum levels of potassium, magnesium, and bicarbonate, at different time periods after administration of ifosfamide, carboplatin, and etoposide, and after autologous stem cell transplantation. For the entire group of 131 patients, peak creatinine levels were > 1.5 mg/dL but < 3.0 mg/dL in 37% and levels were > 3.0 mg/dL in 11% at some time during their hospital stay. At the time of discharge, creatinine levels were 1.6 mg/dL to 3.0 mg/dL in 25% of patients and were > 3 mg/dL in 5%. Immediately after high-dose therapy, peak creatinine levels were significantly higher in patients receiving higher doses of ifosfamide compared to those receiving lower doses (P < 0.00001) and those receiving intermediate doses (P < 0.005). There was a dramatic decrease in serum bicarbonate, potassium, and magnesium levels immediately after chemotherapy, and they remained significantly decreased throughout the patient's hospital stay, despite massive replacement efforts (P ranging between < 0.008 and < 0.001). This is the largest adult population study documenting the incidence and severity of ifosfamide/carboplatin/etoposide-associated acute nephrotoxicity. Renal dysfunction was dose related and reversible in the majority of patients.

  7. Stability-Indicating HPLC Determination of Gemcitabine in Pharmaceutical Formulations

    PubMed Central

    Singh, Rahul; Shakya, Ashok K.; Naik, Rajashri; Shalan, Naeem

    2015-01-01

    A simple, sensitive, inexpensive, and rapid stability indicating high performance liquid chromatographic method has been developed for determination of gemcitabine in injectable dosage forms using theophylline as internal standard. Chromatographic separation was achieved on a Phenomenex Luna C-18 column (250 mm × 4.6 mm; 5μ) with a mobile phase consisting of 90% water and 10% acetonitrile (pH 7.00 ± 0.05). The signals of gemcitabine and theophylline were recorded at 275 nm. Calibration curves were linear in the concentration range of 0.5–50 μg/mL. The correlation coefficient was 0.999 or higher. The limit of detection and limit of quantitation were 0.1498 and 0.4541 μg/mL, respectively. The inter- and intraday precision were less than 2%. Accuracy of the method ranged from 100.2% to 100.4%. Stability studies indicate that the drug was stable to sunlight and UV light. The drug gives 6 different hydrolytic products under alkaline stress and 3 in acidic condition. Aqueous and oxidative stress conditions also degrade the drug. Degradation was higher in the alkaline condition compared to other stress conditions. The robustness of the methods was evaluated using design of experiments. Validation reveals that the proposed method is specific, accurate, precise, reliable, robust, reproducible, and suitable for the quantitative analysis. PMID:25838825

  8. Egr-1 regulates the transcription of the BRCA1 gene by etoposide

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Lee, Young Han

    2013-01-01

    The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at −1031, −1005, and −385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide. [BMB Reports 2013; 46(2): 92-96] PMID:23433111

  9. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin.

    PubMed

    Chan, Pan F; Srikannathasan, Velupillai; Huang, Jianzhong; Cui, Haifeng; Fosberry, Andrew P; Gu, Minghua; Hann, Michael M; Hibbs, Martin; Homes, Paul; Ingraham, Karen; Pizzollo, Jason; Shen, Carol; Shillings, Anthony J; Spitzfaden, Claus E; Tanner, Robert; Theobald, Andrew J; Stavenger, Robert A; Bax, Benjamin D; Gwynn, Michael N

    2015-12-07

    New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.

  10. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin

    PubMed Central

    Chan, Pan F.; Srikannathasan, Velupillai; Huang, Jianzhong; Cui, Haifeng; Fosberry, Andrew P.; Gu, Minghua; Hann, Michael M.; Hibbs, Martin; Homes, Paul; Ingraham, Karen; Pizzollo, Jason; Shen, Carol; Shillings, Anthony J.; Spitzfaden, Claus E.; Tanner, Robert; Theobald, Andrew J.; Stavenger, Robert A.; Bax, Benjamin D.; Gwynn, Michael N.

    2015-01-01

    New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a ‘pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested. PMID:26640131

  11. Myeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy

    PubMed Central

    Atwal, Mandeep; Lishman, Emma L.; Austin, Caroline A.

    2017-01-01

    Myeloperoxidase is expressed exclusively in granulocytes and immature myeloid cells and transforms the topoisomerase II (TOP2) poisons etoposide and mitoxantrone to chemical forms that have altered DNA damaging properties. TOP2 poisons are valuable and widely used anticancer drugs, but they are associated with the occurrence of secondary acute myeloid leukemias. These factors have led to the hypothesis that myeloperoxidase inhibition could protect hematopoietic cells from TOP2 poison-mediated genotoxic damage and, therefore, reduce the rate of therapy-related leukemia. We show here that myeloperoxidase activity leads to elevated accumulation of etoposide- and mitoxantrone-induced TOP2A and TOP2B-DNA covalent complexes in cells, which are converted to DNA double-strand breaks. For both drugs, the effect of myeloperoxidase activity was greater for TOP2B than for TOP2A. This is a significant finding because TOP2B has been linked to genetic damage associated with leukemic transformation, including etoposide-induced chromosomal breaks at the MLL and RUNX1 loci. Glutathione depletion, mimicking in vivo conditions experienced during chemotherapy treatment, elicited further MPO-dependent increase in TOP2A and especially TOP2B-DNA complexes and DNA double-strand break formation. Together these results support targeting myeloperoxidase activity to reduce genetic damage leading to therapy-related leukemia, a possibility that is enhanced by the recent development of novel specific myeloperoxidase inhibitors for use in inflammatory diseases involving neutrophil infiltration. PMID:27974636

  12. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity.

    PubMed

    Huang, R Stephanie; Duan, Shiwei; Bleibel, Wasim K; Kistner, Emily O; Zhang, Wei; Clark, Tyson A; Chen, Tina X; Schweitzer, Anthony C; Blume, John E; Cox, Nancy J; Dolan, M Eileen

    2007-06-05

    Large interindividual variance has been observed in sensitivity to drugs. To comprehensively decipher the genetic contribution to these variations in drug susceptibility, we present a genome-wide model using human lymphoblastoid cell lines from the International HapMap consortium, of which extensive genotypic information is available, to identify genetic variants that contribute to chemotherapeutic agent-induced cytotoxicity. Our model integrated genotype, gene expression, and sensitivity of HapMap cell lines to drugs. Cell lines derived from 30 trios of European descent (Center d'Etude du Polymorphisme Humain population) and 30 trios of African descent (Yoruban population) were used. Cell growth inhibition at increasing concentrations of etoposide for 72 h was determined by using alamarBlue assay. Gene expression on 176 HapMap cell lines (87 Center d'Etude du Polymorphisme Humain population and 89 Yoruban population) was determined by using the Affymetrix GeneChip Human Exon 1.0ST Array. We evaluated associations between genotype and cytotoxicity, genotype and gene expression and correlated gene expression of the identified candidates with cytotoxicity. The analysis identified 63 genetic variants that contribute to etoposide-induced toxicity through their effect on gene expression. These include genes that may play a role in cancer (AGPAT2, IL1B, and WNT5B) and genes not yet known to be associated with sensitivity to etoposide. This unbiased method can be used to elucidate genetic variants contributing to a wide range of cellular phenotypes induced by chemotherapeutic agents.

  13. Duration of cisplatin excretion in breast milk.

    PubMed

    Hays, Karen E; Ryu, Rachel J; Swisher, Elizabeth M; Reed, Eddie; McManus, Terry; Rybeck, Blanche; Petros, William P; Hebert, Mary F

    2013-11-01

    Cisplatin, a platinum-based chemotherapy agent, is commonly used in treating cancers that may affect women of childbearing age, including cervical cancer, triple-negative breast cancer, and pediatric tumors in adolescents. The authors found that platinum was undetectable in breast milk at 66 hours and beyond following a 70-mg dose of intravenous cisplatin. Relative infant dose of platinum was calculated to be between 0.29% and 0.40% of the maternal dose corrected for body weight. This case demonstrates minimal exposure to platinum via breast milk, following a single 70-mg intravenous dose of cisplatin.

  14. Concurrent gemcitabine and radiotherapy with and without neoadjuvant gemcitabine for locally advanced unresectable or resected pancreatic cancer: A phase I-II study

    SciTech Connect

    Brade, Anthony . E-mail: anthony.brade@rmp.uhn.on.ca; Brierley, James; Oza, Amit; Gallinger, Steven; Cummings, Bernard; MacLean, Martha; Pond, Gregory R.; Hedley, David; Wong Shun; Townsley, Carol; Brezden-Masley, Christine; Moore, Malcolm

    2007-03-15

    Purpose: To determine the safety, efficacy, and tolerability of biweekly gemcitabine with concurrent radiotherapy (RT) for resected and locally advanced (LA) pancreatic cancer. Methods and Materials: Eligible patients had either LA or resected pancreatic cancer. Between March 1999 and July 2001, 63 patients (31 with LA and 32 with resected disease) were treated. Of the 63 patients, 28 were enrolled in a Phase I study of increasing radiation doses (35 Gy [n = 7], 43.75 Gy [n = 11], and 52.5 Gy [n = 10] given within 4, 5, or 6 weeks, respectively, in 1.75-Gy fractions) concurrently with 40 mg/m{sup 2} gemcitabine biweekly. Subsequently, 35 were enrolled in a Phase II study with the addition of induction gemcitabine 1000 mg/m{sup 2} within 7 or 8 weeks to concurrent biweekly gemcitabine (40 mg/m{sup 2}) and 52.5 Gy RT within 6 weeks. Results: In the LA population, the best response observed was a complete response in 1, partial response in 3, stable disease in 10, and progressive disease in 17. In the phase II trial, gemcitabine plus RT was not delivered to 8 patients because of progression with induction gemcitabine alone (n = 5) or by patient request (n = 3). On intent-to-treat analysis, the median survival in the LA patients was 13.9 months and the 2-year survival rate was 16.1%. In the resected population, the median progression-free survival was 8.3 months, the median survival was 18.4 months, and the 2- and 5-year survival rate was 36% and 19.4%, respectively. The treatment was well tolerated; the median gemcitabine dose intensity was 96% of the planned dose in the neoadjuvant and concurrent portions of the Phase II study. No treatment-related deaths occurred. Conclusion: Biweekly gemcitabine (40 mg/m{sup 2}) concurrently with RT (52.5 Gy in 30 fractions of 1.75 Gy) with or without induction gemcitabine is safe and tolerable and shows efficacy in patients with LA and resected pancreatic cancer.

  15. Simultaneous determination of etoposide and its catechol metabolite in the plasma of pediatric patients by liquid chromatography/tandem mass spectrometry.

    PubMed

    Pang, S; Zheng, N; Felix, C A; Scavuzzo, J; Boston, R; Blair, I A

    2001-07-01

    The anticancer drug etoposide is associated with leukemias with MLL gene translocations and other translocations as a treatment complication. The genotype of cytochrome P450 3A4 (CYP3A4), which converts etoposide to its catechol metabolite, influences the risk. In order to perform pharmacokinetic studies aimed at further elucidation of the translocation mechanism, we have developed and validated a liquid chromatography/electrospray/tandem mass spectrometry assay for the simultaneous analysis of etoposide and its catechol metabolite in human plasma. The etoposide analog teniposide was used as the internal standard. Liquid chromatography was performed on a YMC ODS-AQ column. Simultaneous determination of etoposide and its catechol metabolite was achieved using a small volume of plasma, so that the method is suitable for pediatric patients. The limits of detection were 200 ng ml(-1) etoposide and 10 ng ml(-1) catechol metabolite in human plasma and 25 ng ml(-1) etoposide and 2.5 ng ml(-1) catechol metabolite in protein-free plasma, respectively. Acceptable precision and accuracy were obtained for concentrations in the calibration curve ranges 0.2--100 microg ml(-1) etoposide and 10--5000 ng ml(-1) catechol metabolite in human plasma. Acceptable precision and accuracy for protein-free human plasma in the range 25--15 000 ng ml(-1) etoposide and 2.5--1500 ng ml(-1) etoposide catechol were also achieved. This method was selective and sensitive enough for the simultaneous quantitation of etoposide and its catechol as a total and protein-free fraction in small plasma volumes from pediatric cancer patients receiving etoposide chemotherapy. A pharmacokinetic model has been developed for future studies in large populations.

  16. Nal-IRI With 5-fluorouracil (5-FU) and Leucovorin or Gemcitabine Plus Cisplatin in Advanced Biliary-tract Cancer

    ClinicalTrials.gov

    2017-02-03

    Adenocarcinoma Metastatic; Biliary Tract Cancer; Adenocarcinoma of the Biliary Tract; Adenocarinoma Locally Advanced; Non-Resectable Hepatocellular Carcinoma; Intrahepatic Bile Duct Carcinoma; Extrahepatic Bile Duct Carcinoma

  17. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  18. Suramin protects from cisplatin-induced acute kidney injury.

    PubMed

    Dupre, Tess V; Doll, Mark A; Shah, Parag P; Sharp, Cierra N; Kiefer, Alex; Scherzer, Michael T; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G; Beverly, Levi J; Siskind, Leah J

    2016-02-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer.

  19. Multi-Institutional Assessment of Adverse Health Outcomes Among North American Testicular Cancer Survivors After Modern Cisplatin-Based Chemotherapy.

    PubMed

    Fung, Chunkit; Sesso, Howard D; Williams, Annalynn M; Kerns, Sarah L; Monahan, Patrick; Abu Zaid, Mohammad; Feldman, Darren R; Hamilton, Robert J; Vaughn, David J; Beard, Clair J; Kollmannsberger, Christian K; Cook, Ryan; Althouse, Sandra; Ardeshir-Rouhani-Fard, Shirin; Lipshultz, Steve E; Einhorn, Lawrence H; Fossa, Sophie D; Travis, Lois B

    2017-04-10

    Purpose To provide new information on adverse health outcomes (AHOs) in testicular cancer survivors (TCSs) after four cycles of etoposide and cisplatin (EPX4) or three or four cycles of bleomycin, etoposide, cisplatin (BEPX3/BEPX4). Methods Nine hundred fifty-two TCSs > 1 year postchemotherapy underwent physical examination and completed a questionnaire. Multinomial logistic regression estimated AHOs odds ratios (ORs) in relation to age, cumulative cisplatin and/or bleomycin dose, time since chemotherapy, sociodemographic factors, and health behaviors. Results Median age at evaluation was 37 years; median time since chemotherapy was 4.3 years. Chemotherapy consisted largely of BEPX3 (38.2%), EPX4 (30.9%), and BEPX4 (17.9%). None, one to two, three to four, or five or more AHOs were reported by 20.4%, 42.0%, 25.1%, and 12.5% of TCSs, respectively. Median number after EPX4 or BEPX3 was two (range, zero to nine and zero to 11, respectively; P > .05) and two (range, zero to 10) after BEPX4. When comparing individual AHOs for EPX4 versus BEPX3, Raynaud phenomenon (11.6% v 21.4%; P < .01), peripheral neuropathy (29.2% v 21.4%; P = .02), and obesity (25.5% v 33.0%; P = .04) differed. Larger cumulative bleomycin doses (OR, 1.44 per 90,000 IU) were significantly associated with five or more AHOs. Increasing age was a significant risk factor for one to two, three to four, or five or more AHOs versus zero AHOs (OR, 1.22, 1.50, and 1.87 per 5 years, respectively; P < .01); vigorous physical activity was protective (OR, 0.62, 0.51, and 0.41, respectively; P < .05). Significant risk factors for three to four and five or more AHOs included current (OR, 3.05 and 3.73) or former (OR, 1.61 and 1.76) smoking ( P < .05). Self-reported health was excellent/very good in 59.9% of TCSs but decreased as AHOs increased ( P < .001). Conclusion Numbers of AHOs after EPX4 or BEPX3 appear similar, with median follow-up of 4.3 years. A healthy lifestyle was associated with reduced number of AHOs.

  20. Differential cell cycle-specificity for chromosomal damage induced by merbarone and etoposide in V79 cells.

    PubMed

    Wang, Ling; Roy, Shambhu K; Eastmond, David A

    2007-03-01

    Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.

  1. Etoposide in combination with cyclophosphamide and total body irradiation or busulfan as conditioning for marrow transplantation in adults and children

    SciTech Connect

    Spitzer, T.R.; Ortlieb, M.; Tefft, M.C.; Torrisi, J.; Cahill, R.; Deeg, H.J. ); Peters, C.; Gadner, H. ); Urban, C. )

    1994-04-30

    In an attempt to intensify conditioning therapy for bone marrow transplantation of hematologic malignancies, a retrospective three center evaluation of escalating doses of etoposide added to cyclophosphamide and either total body irradiation or busulfan was undertaken. Seventy-six patients who received etoposide (25-65 mg/kg) added to cyclophosphamide (60-120 mg/kg) and either total body irradiation (12.0-13.2 Gy) or busulfan (12-16 mg/kg) were evaluable for toxicity. Fifty-one of the evaluable patients received allogeneic transplants, while twenty-six received autologous transplants. A comparative analysis of toxicities according to conditioning regimen, donor source and etoposide dose was made. Similar toxicities were observed among the treatment groups with the exception of more frequent skin (p = 0.03) and life threatening hepatic toxicities (p = 0.01) in the busulfan treated patients. Life threatening or fatal toxicities were not influenced by donor source, either when analyzed by treatment group or etoposide dose. Etoposide at a dose of 60-65 mg/kg in combination with TBI and cyclophosphamide was associated with a significantly increased incidence of life threatening or fatal toxicities compared with a combination using a dose of 25-50 mg/kg (15 of 24 vs. 5 of 20; p = 0.013). The maximally tolerated dose of etoposide in combination with busulfan and cyclophosphamide cannot be definitively established in this analysis in part due to the heterogeneity of the patient population and treatment schemes. Although toxicities with bone marrow transplant preparative regimens containing etoposide in combination with cyclophosphamide and total body irradiation or busulfan were frequently severe, treatment related mortality risk was believed to be acceptably low. 27 refs., 3 tabs.

  2. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim

    PubMed Central

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-01-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells. PMID:28105181

  3. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    PubMed

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  4. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    SciTech Connect

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi; Li, Wen-Bao; Qu, Xian-Jun

    2013-08-23

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.

  5. Cisplatin resistance and opportunities for precision medicine.

    PubMed

    Amable, Lauren

    2016-04-01

    Cisplatin is one of the most commonly used chemotherapy drugs, treating a wide range of cancer types. Unfortunately, many cancers initially respond to platinum treatment but when the tumor returns, drug resistance frequently occurs. Resistance to cisplatin is attributed to three molecular mechanisms: increased DNA repair, altered cellular accumulation, and increased drug inactivation. The use of precision medicine to make informed decisions on a patient's cisplatin resistance status and predicting the tumor response would allow the clinician to tailor the chemotherapy program based on the biology of the disease. In this review, key biomarkers of each molecular mechanism will be discussed along with the current clinical research. Additionally, known polymorphisms for each biomarker will be discussed in relation to their influence on cisplatin resistance.

  6. Adjuvant gemcitabine versus NEOadjuvant gemcitabine/oxaliplatin plus adjuvant gemcitabine in resectable pancreatic cancer: a randomized multicenter phase III study (NEOPAC study)

    PubMed Central

    2011-01-01

    Background Despite major improvements in the perioperative outcome of pancreas surgery, the prognosis of pancreatic cancer after curative resection remains poor. Adjuvant chemotherapy increases disease-free and overall survival, but this treatment cannot be offered to a significant proportion of patients due to the surgical morbidity. In contrast, almost all patients can receive (neo)adjuvant chemotherapy before surgery. This treatment is safe and effective, and has resulted in a median survival of 26.5 months in a recent phase II trial. Moreover, neoadjuvant chemotherapy improves the nutritional status of patients with pancreatic cancer. This multicenter phase III trial (NEOPAC) has been designed to explore the efficacy of neoadjuvant chemotherapy. Methods/Design This is a prospective randomized phase III trial. Patients with resectable cytologically proven adenocarcinoma of the pancreatic head are eligible for this study. All patients must be at least 18 years old and must provide written informed consent. An infiltration of the superior mesenteric vein > 180° or major visceral arteries are considered exclusion criteria. Eligible patients will be randomized to surgery followed by adjuvant gemcitabine (1000 mg/m2) for 6 months or neoadjuvant chemotherapy (gemcitabine 1000 mg/m2, oxaliplatin 100 mg/m2) followed by surgery and the same adjuvant treatment. Neoadjuvant chemotherapy is given four times every two weeks. The staging as well as the restaging protocol after neoadjuvant chemotherapy include computed tomography of chest and abdomen and diagnostic laparoscopy. The primary study endpoint is progression-free survival. According to the sample size calculation, 155 patients need to be randomized to each treatment arm. Disease recurrence will be documented by scheduled computed tomography scans 9, 12, 15, 21 and thereafter every 6 months until disease progression. For quality control, circumferential resection margins are marked intraoperatively, and

  7. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    PubMed

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  8. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    PubMed

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  9. Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells.

    PubMed

    Kim, Dong Joon; Park, Young Soo; Kang, Min Gu; You, Yeon-Mi; Jung, Yuri; Koo, Han; Kim, Jung-Ae; Kim, Mi-Ju; Hong, Seung-Mo; Lee, Kyong Bun; Jang, Ja-June; Park, Kyung Chan; Yeom, Young Il

    2015-08-01

    Despite its wide use as a first-line therapeutic agent, gemcitabine has shown limited efficacy in advanced pancreatic cancer due to chemoresistance by as yet unidentified mechanisms. Our goal here was to identify molecular features involved in gemcitabine chemoresistance. Pyruvate kinase M2 (PKM2), a key enzyme of aerobic glycolysis, has recently emerged as an important therapeutic target for cancer treatment. It is involved in the metabolic reprogramming of cancer cells and has previously unexpected non-metabolic functions that are heavily involved in tumor growth and survival. Herein, we report that the chemoresistance of pancreatic cancer to gemcitabine was dependent on PKM2 expression and its non-metabolic function. Knocking-down of PKM2 significantly enhanced gemcitabine-induced cell apoptosis through the activation of caspase 3/7 and PARP cleavage, and this inhibitory activity was associated with p38-mediated activation of p53 phosphorylation at serine 46. Our findings support the potential of PKM2 as a novel target for gemcitabine chemoresistance and suggest the feasibility of combining gemcitabine and PKM2 inhibition for the improved chemotherapy of pancreatic cancer.

  10. Tumor Reduction in Primary and Metastatic Pancreatic Cancer Lesions With nab-Paclitaxel and Gemcitabine

    PubMed Central

    Kunzmann, Volker; Ramanathan, Ramesh K.; Goldstein, David; Liu, Helen; Ferrara, Stefano; Lu, Brian; Renschler, Markus F.; Von Hoff, Daniel D.

    2017-01-01

    Objectives Results from the phase 3 Metastatic Pancreatic Adenocarcinoma Clinical Trial (MPACT) led to approval of nab-paclitaxel plus gemcitabine for first-line treatment of metastatic pancreatic cancer. The current analysis evaluated the effects of nab-paclitaxel plus gemcitabine versus gemcitabine on primary pancreatic and metastatic lesions. Methods In this analysis of the previously described MPACT trial, changes in pancreatic and metastatic tumor burden were assessed using independently measured diameters of lesions on computed tomography or magnetic resonance imaging scans. Changes in the sums of longest tumor diameters were summarized using descriptive statistics and were included in a multivariate analysis of overall survival. Results Primary pancreatic lesion measurement was feasible. Reductions in primary pancreatic tumor burden and metastatic burden from baseline to nadir were significantly greater with nab-paclitaxel plus gemcitabine versus gemcitabine. Baseline pancreatic tumor burden was independently predictive of survival. Both regimens elicited linear reductions in primary pancreatic and metastatic tumor burden through time. There was a high within-patient concordance of tumor changes between primary pancreatic lesions and metastatic lesions. Conclusions This analysis of MPACT demonstrated significant tumor shrinkage benefit for nab-paclitaxel plus gemcitabine in both primary pancreatic and metastatic lesions, supporting ongoing evaluation of this regimen in locally advanced disease. PMID:27841795

  11. H19-Promoter-Targeted Therapy Combined with Gemcitabine in the Treatment of Pancreatic Cancer

    PubMed Central

    Sorin, Vladimir; Ohana, Patricia; Gallula, Jennifer; Birman, Tatiana; Matouk, Imad; Hubert, Ayala; Gilon, Michal; Hochberg, Avraham; Czerniak, Abraham

    2012-01-01

    Pancreatic cancer is the eighth cancer leading cause of cancer-related death in the world and has a 5-year survival rate of 1–4% only. Gemcitabine is a first line agent for advanced pancreatic therapy; however, its efficacy is limited by its poor intracellular metabolism and chemoresistance. Studies have been conducted in an effort to improve gemcitabine treatment results by adding other chemotherapeutic agents, but none of them showed any significant advantage over gemcitabine monotherapy. We found that 85% of human pancreatic tumors analyzed by in situ hybridization analyses showed moderated to strong expression of the H19 gene. We designed a preclinical study combining gemcitabine treatment and a DNA-based therapy for pancreatic cancer using a non viral vector BC-819 (also known as DTA-H19), expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The experiments conducted either in an orthotopic and heterotopic pancreatic carcinoma animal model showed better antitumor activity following the sequential administration of the vector BC-819 and gemcitabine as compared to the effect of each of them alone. The results presented in the current study indicate that treatment with BC-819 in combination with gemcitabine might be a viable new therapeutic option for patients with advanced pancreatic cancer. PMID:22701803

  12. H19-promoter-targeted therapy combined with gemcitabine in the treatment of pancreatic cancer.

    PubMed

    Sorin, Vladimir; Ohana, Patricia; Gallula, Jennifer; Birman, Tatiana; Matouk, Imad; Hubert, Ayala; Gilon, Michal; Hochberg, Avraham; Czerniak, Abraham

    2012-01-01

    Pancreatic cancer is the eighth cancer leading cause of cancer-related death in the world and has a 5-year survival rate of 1-4% only. Gemcitabine is a first line agent for advanced pancreatic therapy; however, its efficacy is limited by its poor intracellular metabolism and chemoresistance. Studies have been conducted in an effort to improve gemcitabine treatment results by adding other chemotherapeutic agents, but none of them showed any significant advantage over gemcitabine monotherapy. We found that 85% of human pancreatic tumors analyzed by in situ hybridization analyses showed moderated to strong expression of the H19 gene. We designed a preclinical study combining gemcitabine treatment and a DNA-based therapy for pancreatic cancer using a non viral vector BC-819 (also known as DTA-H19), expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The experiments conducted either in an orthotopic and heterotopic pancreatic carcinoma animal model showed better antitumor activity following the sequential administration of the vector BC-819 and gemcitabine as compared to the effect of each of them alone. The results presented in the current study indicate that treatment with BC-819 in combination with gemcitabine might be a viable new therapeutic option for patients with advanced pancreatic cancer.

  13. Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation.

    PubMed

    Ju, Huai-Qiang; Li, Hao; Tian, Tian; Lu, Yun-Xin; Bai, Long; Chen, Le-Zong; Sheng, Hui; Mo, Hai-Yu; Zeng, Jun-Bo; Deng, Wuguo; Chiao, Paul J; Xu, Rui-Hua

    2016-01-01

    Constitutive activation and gemcitabine induction of nuclear factor-κB (NF-κB) contribute to the aggressive behavior and chemotherapeutic resistance of pancreatic ductal adenocarcinoma (PDAC). Thus, targeting the NF-κB pathway has proven an insurmountable challenge for PDAC therapy. In this study, we investigated whether the inhibition of NF-κB signaling pathway by melatonin might lead to tumor suppression and overcome gemcitabine resistance in pancreatic tumors. Our results showed that melatonin inhibited activities of NF-κB by suppressing IκBα phosphorylation and decreased the expression of NF-κB response genes in MiaPaCa-2, AsPc-1, Panc-28 cells and gemcitabine resistance MiaPaCa-2/GR cells. Moreover, melatonin not only inhibited cell proliferation and invasion in a receptor-independent manner, but also enhanced gemcitabine cytotoxicity at pharmacologic concentrations in these PDAC cells. In vivo, the mice treated with both agents experienced a larger reduction in tumor burden than the single drug-treated groups in an orthotopic xenograft mouse model. Taken together, these results indicate that melatonin inhibits proliferation and invasion of PDAC cells and overcomes gemcitabine resistance of pancreatic tumors through NF-κB inhibition. Our findings therefore provide novel preclinical knowledge about melatonin inhibition of NF-κB in PDAC and suggest that melatonin should be investigated clinically, alone or in combination with gemcitabine for PDAC treatment.

  14. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs.

    PubMed

    Immordino, Maria Laura; Brusa, Paola; Rocco, Flavio; Arpicco, Silvia; Ceruti, Maurizio; Cattel, Luigi

    2004-12-10

    Gemcitabine is a known anticancer agent rapidly deaminated to the inactive metabolite 2',2'-difluorodeoxyuridine; it must therefore be administered at very high dose. Many different approaches have been tried to improve the metabolic stability; we synthesized a series of increasingly lipophilic prodrugs of gemcitabine by linking the 4-amino group with valeroyl, heptanoyl, lauroyl and stearoyl linear acyl derivatives. We studied their stability at storage, in plasma and with the lysosomal intracellular enzyme cathepsins. We studied incorporation of these lipophilic prodrugs in liposomes, where their encapsulation efficiency (EE) closely depends on the length of the saturated 4-(N)-acyl chain, the phospholipids chosen and the presence of cholesterol. A maximum EE of 98% was determined for 4-(N)-stearoyl-gemcitabine incorporated in DSPC/DSPG 9:1. This formulation was correlated with the highest stability in vitro and in vivo. Cytotoxicity of gemcitabine prodrugs, free or encapsulated in liposomes, was between two- and sevenfold that of free gemcitabine. Encapsulation of long-chain lipophilic prodrugs of gemcitabine in liposomes protected the drug from degradation in plasma, assuring a long plasma half-time and intracellular release of the free drug.

  15. Cisplatin induces stemness in ovarian cancer

    PubMed Central

    Thiagarajan, Praveena S.; Rao, Vinay S.; Hale, James S.; Gupta, Nikhil; Hitomi, Masahiro; Nagaraj, Anil Belur; DiFeo, Analisa; Lathia, Justin D.; Reizes, Ofer

    2016-01-01

    The mainstay of treatment for ovarian cancer is platinum-based cytotoxic chemotherapy. However, therapeutic resistance and recurrence is a common eventuality for nearly all ovarian cancer patients, resulting in poor median survival. Recurrence is postulated to be driven by a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). A current limitation in CSC studies is the inability to interrogate their dynamic changes in real time. Here we utilized a GFP reporter driven by the NANOG-promoter to enrich and track ovarian CSCs. Using this approach, we identified a population of cells with CSC properties including enhanced expression of stem cell transcription factors, self-renewal, and tumor initiation. We also observed elevations in CSC properties in cisplatin-resistant ovarian cancer cells as compared to cisplatin-naïve ovarian cancer cells. CD49f, a marker for CSCs in other solid tumors, enriched CSCs in cisplatin-resistant and -naïve cells. NANOG-GFP enriched CSCs (GFP+ cells) were more resistant to cisplatin as compared to GFP-negative cells. Moreover, upon cisplatin treatment, the GFP signal intensity and NANOG expression increased in GFP-negative cells, indicating that cisplatin was able to induce the CSC state. Taken together, we describe a reporter-based strategy that allows for determination of the CSC state in real time and can be used to detect the induction of the CSC state upon cisplatin treatment. As cisplatin may provide an inductive stress for the stem cell state, future efforts should focus on combining cytotoxic chemotherapy with a CSC targeted therapy for greater clinical utility. PMID:27105520

  16. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  17. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine

    PubMed Central

    Coyne, C. P.; Jones, Toni; Bear, Ryan

    2015-01-01

    The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective “targeted” delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10−12 M and 10−6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine

  18. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.

  19. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

    PubMed

    Huang, Yen Ta; Cheng, Chuan Chu; Chiu, Ted H; Lai, Pei Chun

    2015-11-01

    Controversial effects of thalidomide for solid malignancies have been reported. In the present study, we evaluate the effects of thalidomide for transitional cell carcinoma (TCC), the most common type of bladder cancer. Thalidomide precipitates were observed when its DMSO solution was added to the culture medium. No precipitation was found when thalidomide was dissolved in 45% γ-cyclodextrin, and this concentration of γ-cyclodextrin elicited slight cytotoxicity on TCC BFTC905 and primary human urothelial cells. Thalidomide-γ-cyclodextrin complex exerted a concentration-dependent cytotoxicity in TCC cells, but was relatively less cytotoxic (with IC50 of 200 µM) in BFTC905 cells than the other 3 TCC cell lines, possibly due to upregulation of Bcl-xL and HIF-1α mediated carbonic anhydrase IX, and promotion of quiescence. Gemcitabine-resistant BFTC905 cells were chosen for additional experiments. Thalidomide induced apoptosis through downregulation of survivin and securin. The secretion of VEGF and TNF-α was ameliorated by thalidomide, but they did not affect cell proliferation. Immune-modulating lenalidomide and pomalidomide did not elicit cytotoxicity. In addition, cereblon did not play a role in the thalidomide effect. Oxidative DNA damage was triggered by thalidomide, and anti-oxidants reversed the effect. Thalidomide also inhibited TNF-α induced invasion through inhibition of NF-κB, and downregulation of effectors, ICAM-1 and MMP-9. Thalidomide inhibited the growth of BFTC905 xenograft tumors in SCID mice via induction of DNA damage and suppression of angiogenesis. Higher average body weight, indicating less chachexia, was observed in thalidomide treated group. Sedative effect was observed within one-week of treatment. These pre-clinical results suggest therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

  20. Unlike other chemicals, etoposide (a topoisomerase-II inhibitor) produces peak mutagenicity in primary spermatocytes of the mouse.

    PubMed

    Russell, L B; Hunsicker, P R; Johnson, D K; Shelby, M D

    1998-05-25

    The cancer chemotherapy agent, and topoisomerase-II inhibitor, etoposide (VP-16) produced both recessive mutations at specific loci and dominants at other loci with peak frequencies in primary spermatocytes, a cell type in which the topo-II gene has been shown to be activated. Etoposide thus differs from all other chemicals whose germ-cell-stage specificity has been analyzed. No effects of etoposide exposure of spermatogonial stem cells ( approximately 15, 000 offspring scored) were detectable by either mutagenicity or productivity endpoints. The significant mutagenic response that followed exposure of poststem-cell stages ( approximately 25,000 offspring scored) showed a clear peak, with three of four specific-locus mutants, and three of four dominant mutants conceived during weeks 4 or 5 (days 22-35) post-injection, a period that also encompassed the dominant-lethal peak. For this period, the induced specific-locus rate (with 95% confidence limits) at a weighted-average exposure of 75.1 mg etop/kg was 59.5 (14.6, 170. 9)x10-6/locus. At least 3 of the 4 specific-locus mutations were deletions, paralleling findings with etoposide or analogs in other test systems where a recombinational origin of the deletions has been suggested. Because, unlike other chemicals that induce deletions in male germ cells, etoposide is effective in stages normally associated with recombinational events, it will be of interest to determine whether this chemical can affect meiotic recombination.

  1. Concurrent Chemo-Radiation With or Without Induction Gemcitabine, Carboplatin, and Paclitaxel: A Randomized, Phase 2/3 Trial in Locally Advanced Nasopharyngeal Carcinoma

    SciTech Connect

    Tan, Terence; Lim, Wan-Teck; Fong, Kam-Weng; Cheah, Shie-Lee; Soong, Yoke-Lim; Ang, Mei-Kim; Ng, Quan-Sing; Tan, Daniel; Ong, Whee-Sze; Tan, Sze-Huey; Yip, Connie; Quah, Daniel; Soo, Khee-Chee; Wee, Joseph

    2015-04-01

    Purpose: To compare survival, tumor control, toxicities, and quality of life of patients with locally advanced nasopharyngeal carcinoma (NPC) treated with induction chemotherapy and concurrent chemo-radiation (CCRT), against CCRT alone. Patients and Methods: Patients were stratified by N stage and randomized to induction GCP (3 cycles of gemcitabine 1000 mg/m{sup 2}, carboplatin area under the concentration-time-curve 2.5, and paclitaxel 70 mg/m{sup 2} given days 1 and 8 every 21 days) followed by CCRT (radiation therapy 69.96 Gy with weekly cisplatin 40 mg/m{sup 2}), or CCRT alone. The accrual of 172 was planned to detect a 15% difference in 5-year overall survival (OS) with a 5% significance level and 80% power. Results: Between September 2004 and August 2012, 180 patients were accrued, and 172 (GCP 86, control 86) were analyzed by intention to treat. There was no significant difference in OS (3-year OS 94.3% [GCP] vs 92.3% [control]; hazard ratio 1.05; 1-sided P=.494]), disease-free survival (hazard ratio 0.77, 95% confidence interval 0.44-1.35, P=.362), and distant metastases–free survival (hazard ratio 0.80, 95% confidence interval 0.38-1.67, P=.547) between the 2 arms. Treatment compliance in the induction phase was good, but the relative dose intensity for concurrent cisplatin was significantly lower in the GCP arm. Overall, the GCP arm had higher rates of grades 3 and 4 leukopenia (52% vs 37%) and neutropenia (24% vs 12%), but grade 3 and 4 acute radiation toxicities were not statistically different between the 2 arms. The global quality of life scores were comparable in both arms. Conclusion: Induction chemotherapy with GCP before concurrent chemo-irradiation did not improve survival in locally advanced NPC.

  2. D-allose ameliorates cisplatin-induced nephrotoxicity in mice.

    PubMed

    Miyawaki, Yuki; Ueki, Masaaki; Ueno, Masaki; Asaga, Takehiko; Tokuda, Masaaki; Shirakami, Gotaro

    2012-01-01

    Cisplatin (cis-diamminedichloroplatinum II) is a potent antineoplastic agent widely used to treat various forms of cancer. However, its therapeutic use is limited because of dose-dependent nephrotoxicity. Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin nephrotoxicity. D-allose is an aldo-hexose present in nature that recently has been demonstrated to inhibit production of inflammatory mediators in septic kidneys. The purpose of this study was to determine the protective effects of D-allose on cisplatin-induced nephrotoxicity. Cisplatin (20 mg/kg) was administered by intraperitoneal injection to mice in the cisplatin group and the cisplatin plus D-allose group, as was normal saline to control group mice. D-allose was intraperitoneally administered immediately after cisplatin injection. Serum and renal tumor necrosis factor (TNF)-alpha concentrations, renal monocyte chemoattractant protein-1 (MCP-1; a chemotactic factor for monocytes), renal function, histological changes and renal cortex neutrophil infiltration were determined 72 h after cisplatin injection. The serum TNF-alpha concentration in the cisplatin plus D-allose (400 mg/kg body weight) group significantly decreased in comparison with that in the cisplatin group. The renal TNF-alpha and MCP-1 concentrations in the cisplatin plus D-allose group significantly decreased in comparison with those in the cisplatin group. Neutrophil infiltration in the cisplatin plus D-allose group was significantly lower than that in the cisplatin group. Cisplatin-induced renal dysfunction and renal tubular injury scores were attenuated by D-allose treatment. These results reveal that D-allose attenuates cisplatin-induced nephrotoxicity by suppressing renal inflammation. Hence, D-allose may become a new therapeutic candidate for treatment of cisplatin-induced nephrotoxicity.

  3. Resveratrol Attenuates Cisplatin Renal Cortical Cytotoxicity by Modifying Oxidative Stress

    PubMed Central

    Valentovic, Monica A.; Ball, John G.; Brown, J. Mike; Terneus, Marcus V.; McQuade, Elizabeth; Van Meter, Stephanie; Hedrick, Hayden M.; Roy, Amy Allison; Williams, Tierra

    2014-01-01

    Cisplatin, a cancer chemotherapy drug, is nephrotoxic. The aim of this study was to investigate whether resveratrol (RES) reduced cisplatin cytotoxicity and oxidative stress. Rat renal cortical slices were pre-incubated 30 min with 0 (VEH, ethanol) or 30 μg/ml RES followed by 60, 90 or 120 min co-incubation with 0, 75, or 150 μg/mL cisplatin. Lactate dehydrogenase (LDH) leakage was unchanged at 60 and 90 min by cisplatin. Cisplatin increased (p<0.05) LDH leakage at 120 min which was protected by RES. Cisplatin induced oxidative stress prior to LDH leakage as cisplatin depressed glutathione peroxidase and superoxide dismutase (SOD) activity, increased lipid peroxidation, protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins within 60 min. RES failed to reverse glutathione (GSH) depression by cisplatin. In order to eliminated an extracellular interaction between RES and cisplatin, additional studies (RINSE studies) allowed a 30 min RES uptake into slices, transfer of slices to buffer lacking RES, followed by 120 min cisplatin incubation. RES in the RINSE studies prevented LDH leakage by cisplatin indicating that RES protection was not via a physical interaction with cisplatin in the media. These findings indicate that RES diminished cisplatin in vitro renal toxicity and prevented the development of oxidative stress. PMID:24239945

  4. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment.

    PubMed

    Weylandt, Karsten H; Nebrig, Maxim; Jansen-Rosseck, Nils; Amey, Joanna S; Carmena, David; Wiedenmann, Bertram; Higgins, Christopher F; Sardini, Alessandro

    2007-03-01

    Resistance to anticancer drugs and consequent failure of chemotherapy is a complex problem severely limiting therapeutic options in metastatic cancer. Many studies have shown a role for drug efflux pumps of the ATP-binding cassette transporters family in the development of drug resistance. ClC-3, a member of the CLC family of chloride channels and transporters, is expressed in intracellular compartments of neuronal cells and involved in vesicular acidification. It has previously been suggested that acidification of intracellular organelles can promote drug resistance by increasing drug sequestration. Therefore, we hypothesized a role for ClC-3 in drug resistance. Here, we show that ClC-3 is expressed in neuroendocrine tumor cell lines, such as BON, LCC-18, and QGP-1, and localized in intracellular vesicles co-labeled with the late endosomal/lysosomal marker LAMP-1. ClC-3 overexpression increased the acidity of intracellular vesicles, as assessed by acridine orange staining, and enhanced resistance to the chemotherapeutic drug etoposide by almost doubling the IC(50) in either BON or HEK293 cell lines. Prevention of organellar acidification, by inhibition of the vacuolar H(+)-ATPase, reduced etoposide resistance. No expression of common multidrug resistance transporters, such as P-glycoprotein or multidrug-related protein-1, was detected in either the BON parental cell line or the derivative clone overexpressing ClC-3. The probable mechanism of enhanced etoposide resistance can be attributed to the increase of vesicular acidification as consequence of ClC-3 overexpression. This study therefore provides first evidence for a role of intracellular CLC proteins in the modulation of cancer drug resistance.

  5. OPEC chemotherapy (vincristine, prednisolone, etoposide and chlorambucil) for refractory and recurrent Hodgkin's disease.

    PubMed

    Barnett, M J; Man, A M; Richards, M A; Waxman, J H; Wrigley, P F; Lister, T A

    1987-01-01

    Fifteen adults with refractory or recurrent Hodgkin's disease were treated with a combination of: vincristine, prednisolone, etoposide and chlorambucil (OPEC). All had previously received mustine, vinblastine, procarbazine and prednisolone (MVPP) and seven had subsequently been treated with alternative regimens. Responses were achieved in four, but complete remission in only one. Toxicity was considerable and five died of treatment related complications. Only two are alive (one in complete remission) more than three years after therapy. The toxicity of the OPEC regimen outweighed its benefit in this group of poor prognosis patients.

  6. Supervised classification of etoposide-treated in vitro adherent cells based on noninvasive imaging morphology.

    PubMed

    Mölder, Anna Leida; Persson, Johan; El-Schich, Zahra; Czanner, Silvester; Gjörloff-Wingren, Anette

    2017-04-01

    Single-cell studies using noninvasive imaging is a challenging, yet appealing way to study cellular characteristics over extended periods of time, for instance to follow cell interactions and the behavior of different cell types within the same sample. In some cases, e.g., transplantation culturing, real-time cellular monitoring, stem cell studies, in vivo studies, and embryo growth studies, it is also crucial to keep the sample intact and invasive imaging using fluorophores or dyes is not an option. Computerized methods are needed to improve throughput of image-based analysis and for use with noninvasive microscopy such methods are poorly developed. By combining a set of well-documented image analysis and classification tools with noninvasive microscopy, we demonstrate the ability for long-term image-based analysis of morphological changes in single cells as induced by a toxin, and show how these changes can be used to indicate changes in biological function. In this study, adherent cell cultures of DU-145 treated with low-concentration (LC) etoposide were imaged during 3 days. Single cells were identified by image segmentation and subsequently classified on image features, extracted for each cell. In parallel with image analysis, an MTS assay was performed to allow comparison between metabolic activity and morphological changes after long-term low-level drug response. Results show a decrease in proliferation rate for LC etoposide, accompanied by changes in cell morphology, primarily leading to an increase in cell area and textural changes. It is shown that changes detected by image analysis are already visible on day 1 for [Formula: see text] etoposide, whereas effects on MTS and viability are detected only on day 3 for [Formula: see text] etoposide concentration, leading to the conclusion that the morphological changes observed occur before and at lower concentrations than a reduction in cell metabolic activity or viability. Three classifiers are compared and we

  7. Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines

    PubMed Central

    Mahbub, AA; Le Maitre, CL; Haywood-Small, SL; Cross, NA; Jordan-Mahy, N

    2015-01-01

    The study aimed to assess the effects of polyphenols when used in combination with doxorubicin and etoposide, and to determine whether polyphenols sensitised leukaemia cells, causing inhibition of cell proliferation, cell cycle arrest and induction of apoptosis. This study is based on findings in solid cancer tumours, which have shown that polyphenols can sensitize cells to chemotherapy, and induce apoptosis and/or cell-cycle arrest. This could enable a reduction of chemotherapy dose and off-target effects, whilst maintaining treatment efficacy. Quercetin, apigenin, emodin, rhein and cis-stilbene were investigated alone and in combination with etoposide and doxorubicin in two lymphoid and two myeloid leukaemia cells lines. Measurements were made of ATP levels (using CellTiter-Glo assay) as an indication of total cell number, cell cycle progression (using propidium iodide staining and flow cytometry) and apoptosis (NucView caspase 3 assay and Hoechst 33342/propidium iodide staining). Effects of combination treatments on caspases 3, 8 and 9 activity were determined using Glo luminescent assays, glutathione levels were measured using the GSH-Glo Glutathione Assay and DNA damage determined by anti-γH2AX staining. Doxorubicin and etoposide in combination with polyphenols synergistically reduced ATP levels, induced apoptosis and increased S and/or G2/M phase cell cycle arrest in lymphoid leukaemia cell lines. However, in the myeloid cell lines the effects of the combination treatments varied; doxorubicin had a synergistic or additive effect when combined with quercetin, apigenin, emodin, and cis-stilbene, but had an antagonistic effect when combined with rhein. Combination treatment caused a synergistic downregulation of glutathione levels and increased DNA damage, driving apoptosis via caspase 8 and 9 activation. However, in myeloid cells where antagonistic effects were observed, this was associated with increased glutathione levels and a reduction in DNA damage and

  8. Randomised trial of gemcitabine versus flec regimen given intra-arterially for patients with unresectable pancreatic cancer.

    PubMed

    Cantore, M; Fiorentini, G; Luppi, G; Rosati, G; Caudana, R; Piazza, E; Comella, G; Ceravolo, C; Miserocchi, L; Mambrini, A; Del Freo, A; Zamagni, D; Aitini, E; Marangolo, M

    2003-12-01

    Gemcitabine is considered the golden standard treatment for unresectable pancreatic adenocarcinoma. Intra-arte-rial drug administration had shown a deep rationale with some interesting results. In a multicenter phase III trial, we compared gemcitabine given weekly with a combination of 5-fluoruracil, leucovorin, epirubicin, carboplatin (FLEC) administered intra-arteriously as first-line therapy in unresectable pancreatic adenocarcinoma. Patients were randomly assigned to receive gemcitabine at a dose of 1,000 mg/m2 over 30 minutes intravenously weekly for 7 weeks, followed by 1 week of rest, then weekly for 3 weeks every 4 weeks or 5-fluoruracil 1,000 mg/m2, leucovorin 100 mg/m2, epirubicin 60 mg/m2, carboplatin 300 mg/m2 infused bolus intra-arteriously at three-weekly interval for 3 times. The primary end point was overall survival, while time to treatment failure, response rate, clinical benefit response were secondary endpoints. Sixty-seven patients were randomly allocated gemcitabine and 71 were allocated FLEC intra-arterially. Patients treated with FLEC lived for significantly longer than patients on gemcitabine (p=.036). Survival at 1 year was increased from 21% in the gemcitabine group to 35% in the FLEC group. Median survival was 7.9 months in the FLEC group and 5.8 months in the gemcitabine group. Median time to treatment failure was longer with FLEC (5.3 vs 4.2 months for FLEC vs gemcitabine respectively; p=.013). Clinical benefit was similar in both groups (17.9% for gemcitabine and 26.7% for FLEC; p=NS). CT-scan partial response was similar in both group (5.9% for gemcitabine and 14% for FLEC; p=NS). Toxicity profiles were different. Compared with gemcitabine, FLEC regimen given intra-arteriously, improved survival in patient with unresectable pancreatic adenocarcinoma.

  9. The anti-fibrotic effect of GV1001 combined with gemcitabine on treatment of pancreatic ductal adenocarcinoma

    PubMed Central

    Park, Joo Kyung; Kim, Yejin; Kim, Hyemin; Jeon, Jane; Kim, Tae Wan; Park, Ji-Hong; Hwnag, Young-il; Lee, Wang Jae; Kang, Jae Seung

    2016-01-01

    GV1001 is a telomerase-based cancer vaccine made of a 16-mer telomerase reverse transcriptase (TERT) peptide, and human TERT, the rate-limiting subunit of the telomerase complex, is an attractive target for cancer vaccination. The aim of this study was to evaluate the effect of telomerase peptide vaccination, GV1001 combined with gemcitabine in treatment of pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines were used in vitro experiment and also, PDAC xenograft mice model was established using PANC1, AsPC1 and CD133+ AsPC1 (PDAC stem cell). Treatment groups were divided as follows; control, gemcitabine, GV1001, gemcitabine and GV1001 combination. The inflammatory cytokines were measured from the blood, and xenograft tumor specimens were evaluated. GV1001 treatment alone did not affect the proliferation or the apoptosis of PDAC cells. Gemcitabine alone and gemcitabine with GV1001 groups had significantly reduced in tumor size and showed abundant apoptosis compared to other treatment groups. Surprisingly, xenograft PDAC tumor specimens of gemcitabine alone group had been replaced by severe fibrosis whereas gemcitabine with GV1001 group had significantly less fibrosis. Blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β increased in gemcitabine alone group, however, it was decreased in gemcitabine with GV1001 group. GV1001 combined with gemcitabine treatment showed significant loss of fibrosis in tumor tissue as well as tumor cell death. Therefore, further investigation of GV1001 effect combined with gemcitabine treatment may give us useful insights to overcome the hurdle in anti-cancer drug delivery over massive fibrosis around PDACs. PMID:27655706

  10. Clinical and Immune Effects of Lenalidomide in Combination with Gemcitabine in Patients with Advanced Pancreatic Cancer

    PubMed Central

    Ullenhag, Gustav J.; Mozaffari, Fariba; Broberg, Mats; Mellstedt, Håkan; Liljefors, Maria

    2017-01-01

    Purpose To assess the immunomodulatory and clinical effects of lenalidomide with standard treatment of gemcitabine in patients with advanced pancreatic cancer. Patients and Methods Patients with advanced pancreatic cancer were treated in first line with lenalidomide orally for 21 days of a 28 days cycle and the standard regimen for gemcitabine. In Part I, which we previously have reported, the dose of lenalidomide was defined (n = 12). In Part II, every other consecutive patient was treated with either lenalidomide (Group A, n = 11) or gemcitabine (Group B, n = 10) during cycle 1. From cycle 2 on, all Part II patients received the combination. Results A significant decrease in the proliferative response of peripheral blood mononuclear cells and the frequency of DCs were noted in patients at baseline compared to healthy control donors while the frequencies of CD4+ and CD8+ T cells, NK-cells and MDSCs were significantly higher in patients compared to controls. In Group A, a significant increase in the absolute numbers of activated (HLA-DR+) CD4 and CD8 T cells and CD8 effector memory T cells (p<0.01) was noted during treatment. A statistical increment in the absolute numbers of Tregs were seen after cycle 1 (p<0.05). The addition of gemcitabine, reduced most lymphocyte subsets (p<0.05). In Group B, the proportion of lymphocytes remained unchanged during the study period. There was no difference in overall survival, progression free survival and survival rate at one year comparing the two groups. Discussion Patients with advanced pancreatic carcinoma had impaired immune functions. Lenalidomide augmented T cell reactivities, which were abrogated by gemcitabine. However, addition of lenalidomide to gemcitabine seemed to have no therapeutic impact compared to gemcitabine alone in this non-randomized study. Trial Registration ClinicalTrials.gov NCT01547260 PMID:28099502

  11. Aerosol Gemcitabine: Preclinical Safety and In Vivo Antitumor Activity in Osteosarcoma-Bearing Dogs

    PubMed Central

    Crabbs, Torrie A.; Wilson, Dennis W.; Cannan, Virginia A.; Skorupski, Katherine A.; Gordon, Nancy; Koshkina, Nadya; Kleinerman, Eugenie; Anderson, Peter M.

    2010-01-01

    Abstract Background Osteosarcoma is the most common skeletal malignancy in the dog and in young humans. Although chemotherapy improves survival time, death continues to be attributed to metastases. Aerosol delivery can provide a strategy with which to improve the lung drug delivery while reducing systemic toxicity. The purpose of this study is to assess the safety of a regional aerosol approach to chemotherapy delivery in osteosarcoma-bearing dogs, and second, to evaluate the effect of gemcitabine on Fas expression in the pulmonary metastasis. Methods We examined the systemic and local effects of aerosol gemcitabine on lung and pulmonary metastasis in this relevant large-animal tumor model using serial laboratory and arterial blood gas analysis and histopathology and immunohistochemistry, respectively. Results and Conclusions Six hundred seventy-two 1-h doses of aerosol gemcitabine were delivered. The treatment was well tolerated by these subjects with osteosarcoma (n = 20). Aerosol-treated subjects had metastatic foci that demonstrated extensive, predominately central, intratumoral necrosis. Fas expression was decreased in pulmonary metastases compared to the primary tumor (p = 0.008). After aerosol gemcitabine Fas expression in the metastatic foci was increased compared to lung metastases before treatment (p = 0.0075), and even was higher than the primary tumor (p = 0.025). Increased apoptosis (TUNEL) staining was also detected in aerosol gemcitabine treated metastasis compared to untreated controls (p = 0.028). The results from this pivotal translational study support the concept that aerosol gemcitabine may be useful against pulmonary metastases of osteosarcoma. Additional studies that evaluate the aerosol route of administration of gemcitabine in humans should be safe and are warranted. PMID:19803732

  12. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    SciTech Connect

    Yan, Judy; Tang, Damu

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  13. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  14. Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.

    PubMed

    Kang, Dongxu; Choi, Hye Jin; Kang, Sujin; Kim, So Young; Hwang, Yong-Sic; Je, Suyeon; Han, Zhezhu; Kim, Joo-Hang; Song, Jae J

    2015-04-01

    Gemcitabine has been used most commonly as an anticancer drug to treat advanced pancreatic cancer patients. However, intrinsic or acquired resistance of pancreatic cancer to gemcitabine was also developed, which leads to very low five-year survival rates. Here, we investigated whether cellular levels of HSP27 phosphorylation act as a determinant of cellular fate with gemcitabine. In addition we have demonstrated whether HSP27 downregulation effectively could overcome the acquisition of gemcitabine resistance by using transcriptomic analysis. We observed that gemcitabine induced p38/HSP27 phosphorylation and caused acquired resistance. After acquisition of gemcitabine resistance, cancer cells showed higher activity of NF-κB. NF-κB activity, as well as colony formation in gemcitabine-resistant pancreatic cancer cells, was significantly decreased by HSP27 downregulation and subsequent TRAIL treatment, showing that HSP27 was a common network mediator of gemcitabine/TRAIL-induced cell death. After transcriptomic analysis, gene fluctuation after HSP27 downregulation was very similar to that of pancreatic cancer cells susceptible to gemcitabine, and then in opposite position to that of acquired gemcitabine resistance, which makes it possible to downregulate HSP27 to overcome the acquired gemcitabine resistance to function as an overall survival network inhibitor. Most importantly, we demonstrated that the ratio of phosphorylated HSP27 to nonphosphorylated HSP27 rather than the cellular level of HSP27 itself acts biphasically as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.

  15. Second-line paclitaxel in non-small cell lung cancer initially treated with cisplatin: a study by the European Lung Cancer Working Party

    PubMed Central

    Berghmans, T; Lafitte, J J; Lecomte, J; Alexopoulos, C G; Van Cutsem, O; Giner, V; Efremidis, A; Berchier, M C; Collon, T; Meert, A P; Scherpereel, A; Ninane, V; Leclercq, N; Paesmans, M; Sculier, J P

    2007-01-01

    In the context of a phase III trial comparing in advanced non-small cell lung cancer (NSCLC) sequential to conventional administration of cisplatin-based chemotherapy and paclitaxel, we evaluated the activity of paclitaxel as second-line chemotherapy and investigated any relation of its efficacy with the type of failure after cisplatin. Patients received three courses of induction GIP (gemcitabine, ifosfamide, cisplatin). Non-progressing patients were randomised between three further courses of GIP or three courses of paclitaxel. Second-line paclitaxel was given to patients with primary failure (PF) to GIP and to those progressing after randomisation to further GIP (secondary failure or SF). One hundred sixty patients received second-line paclitaxel. Response rates were 7.7% for PF and 11.6% for SF (P=0.42). Median survival times (calculated from paclitaxel start) were 4.1 and 7.1 months for PF and SF (P=0.002). In multivariate analysis, three variables were independently associated with better survival: SF (hazard ratio (HR)=1.55, 95% confidence interval (CI) 1.08–2.22; P=0.02), normal haemoglobin level (HR=1.56, 95% CI 1.08–2.26; P=0.02) and minimal weight loss (HR=1.79, 95% CI 1.26–2.55; P=0.001). Paclitaxel in NSCLC patients, whether given for primary or for SF after cisplatin-based chemotherapy, demonstrates activity similar to other drugs considered active as second-line therapy. PMID:17473825

  16. Cetuximab intensifies cisplatin-induced testicular toxicity.

    PubMed

    Levi, Mattan; Popovtzer, Aron; Tzabari, Moran; Mizrachi, Aviram; Savion, Naphtali; Stemmer, Salomon M; Shalgi, Ruth; Ben-Aharon, Irit

    2016-07-01

    Epidermal growth factor receptor (EGFR) has proliferative properties in the testis. Cetuximab, an anti-EGFR, is administered together with chemotherapy to patients with various types of cancer. This studies aim was to investigate the effect of cetuximab on testicular function. Adult male mice were injected with cetuximab (10 mg/kg), cisplatin (8 mg/kg) or a combination of both, and killed one week or one month later. The doses were chosen by human equivalent dose calculation. Testicular function was evaluated by epididymal-spermatozoa total motile count and sperm motility, weights of testes and epididymides, and the level of anti-Müllerian hormone (AMH) in the serum. Immunohistochemistry was performed to examine germ cell proliferation (Ki-67), apoptosis (Terminal transferase-mediated deoxyuridine 5-triphosphate nick-end labelling), reserve (DAZL-Deleted in azoospermia-like, Promyelocytic leukaemia zinc-finger), blood vessels (CD34) and Sertoli cells (GATA-4). Administration of cetuximab alone increased testicular apoptosis and decreased epididymal-spermatozoa total motile count over time. When added to cisplatin, cetuximab exacerbated most of the recorded testicular parameters, compared with the effect of cisplatin alone, including testis and epididymis weights, epididymal-spermatozoa total motile count, AMH concentration, meiosis and apoptosis. In conclusion, cetuximab has only a mild effect on testicular reserve, but when added to cisplatin, it exacerbates cisplatin-induced testicular toxicity.

  17. Integrated experimental and simulation study of the response to sequential treatment with erlotinib and gemcitabine in pancreatic cancer

    PubMed Central

    Ubezio, Paolo; Falcetta, Francesca; Carrassa, Laura; Lupi, Monica

    2016-01-01

    The combination of erlotinib with gemcitabine is one of the most promising therapies for advanced pancreatic cancer. Aiming at optimizing this combination, we analyzed in detail the response to sequential treatments with erlotinib → gemcitabine and gemcitabine → erlotinib with an 18 h interval, adopting a previously established experimental/computational approach to quantify the cytostatic and cytotoxic effects at G1, S and G2M checkpoints. This assessment was achieved by contemporary fits of flow cytometric and time-lapse experiments in two human pancreatic cancer cell lines (BxPC-3 and Capan-1) with a mathematical model reproducing the fluxes of cells through the cycle during and after treatment. The S-phase checkpoint contributes in the response to erlotinib, suggesting that the G1 arrest may hamper S-phase cytotoxicity. The response to gemcitabine was driven by the dynamics of the progressive resumption from the S-phase arrest after drug washout. The effects induced by single drugs were used to simulate combined treatments, introducing changes when required. Gemcitabine → erlotinib was more than additive in both cell lines, strengthening the cytostatic effects on cells recovering from the arrest induced by gemcitabine. The interval in the erlotinib → gemcitabine sequence enabled to overcome the antagonist effect of G1 block on gemcitabine efficacy and improved the outcome in Capan-1 cells. PMID:26909860

  18. Synergistic Effect of Immunoliposomal Gemcitabine and Bevacizumab in Glioblastoma Stem Cell-Targeted Therapy.

    PubMed

    Shin, Dae Hwan; Lee, Sang-Jin; Kim, Jung Seok; Ryu, Jae-Ha; Kim, Jin-Seok

    2015-11-01

    Glioblastoma stem cells have been shown to confer chemoresistance and radioresistance, leading to angiogenesis and the recurrence of tumors in glioblastoma multiforme. Combination therapy targeting glioblastoma stem cells and anti-angiogenesis has been a focus of treatment strategies because of the enhanced efficacy achieved by dual inhibition of tumor proliferation and nutrient delivery. In this study, glioblastoma stem cells and glioblastoma stem cell-induced angiogenesis in glioblastoma multiforme were challenged by combined treatment with anti-CD133 monoclonal antibody conjugated liposomes encapsulating gemcitabine and bevacizumab. Both liposomal encapsulation and conjugation of an anti-CD133 antibody significantly enhanced the cytotoxicity of gemcitabine toward glioblastoma stem cells in vitro. Moreover, combined treatment with this gemcitabine formulation and bevacizumab significantly inhibited tube formation, migration, and proliferation of endothelial cells in vitro. The antitumor efficacy of immunoliposomal gemcitabine and bevacizumab combination therapy in a xenograft model was significantly greater than that of monotherapy, presumably reflecting the enhanced effects on glioblastoma stem cells themselves and glioblastoma stem cell-induced angiogenesis caused by synergistic interactions between the two drugs. Moreover, combination therapy prolonged the mean survival time of xenografted mice. Taken altogether, our results suggest that combined therapy with immunoliposomal gemcitabine and bevacizumab shows promise for the treatment of glioblastoma multiforme.

  19. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  20. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer.

    PubMed

    Birhanu, Gebremariam; Javar, Hamid Akbari; Seyedjafari, Ehsan; Zandi-Karimi, Ali

    2017-04-01

    Pancreatic cancer (PC) is one of the most deadly and quickly fatal human cancers with a 5-year mortality rate close to 100%. Its prognosis is very poor, mainly because of its hostile biological behavior and late onset of symptoms for clinical diagnosis; these bring limitations on therapeutic interventions. Factors contributing for the difficulties in treating PC include: high rate of drug resistance, fast metastasis to different organs, poor prognosis and relapse of the tumor after therapy. After being approved by US FDA 1997, Gemcitabine (Gem) is the first line and the gold standard drug for all stages of advanced PC till now. However, its efficacy is unsatisfactory, mainly due to; its chemical instability and poor cellular uptake, resulting in an extremely short half-life and low bioavailability. To solve this drawbacks and increase the therapeutic outcome important progress has been achieved in the field of nanotechnology and offers a promising and effective alternative. This review mainly focus on the most commonly investigated nanoparticle (NP) delivery systems of Gem for PC treatment and the latest progresses achieved. Novel nanocarriers with better tumor targeting efficiencies and maximum treatment outcome to treat this deadly due are given much attention.

  1. Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Ke, Fei; An, Yanli; Hou, Xinxin; Zhang, Hao; Lin, Mei; Zhang, Dongsheng

    2013-03-01

    Eliminating cancer without harming normal body tissue remains a longstanding challenge in medicine. Toward this goal, we prepared nanosized magnetic albumin nanospheres encapsulating magnetic nanoparticles (Fe3O4) and antitumor drugs (Gemcitabine, GEM). Magnetic albumin nanospheres (average size ≈ 224 nm) had good magnetic responsiveness upon exposure to an alternating magnetic field even though Fe3O4 was encased in nanospheres. Thermodynamic test showed that Fe3O4 could serve as a heating source under AMF and lead the nanospheres to reach their steady temperature (45 °C). The release results in vitro indicated that nanospheres had an obvious effect of sustained release of GEM. The result of cytotoxicity assay showed that the toxicity of this material was classified as grade 1, which belongs to no cytotoxicity. The antitumor efficacy of the GEM/Fe3O4 albumin nanospheres combined with magnetic fluid hyperthermia on non-small lung cancer cell line GlC-82 was examined by MTT assay and flow cytometry assay. Compared with nanospheres entrapping GEM group, nanospheres entrapping Fe3O4 combined with MFH group, and GEM/Fe3O4 albumin nanospheres without MFH group, the GEM/Fe3O4 albumin nanospheres exhibited enhanced antitumor efficacy. Thus, the GEM/Fe3O4 albumin nanospheres have promising applications in cancer treatment.

  2. NMR structure of a gemcitabine-substituted model Okazaki fragment.

    PubMed

    Konerding, David; James, Thomas L; Trump, Eric; Soto, Ana Maria; Marky, Luis A; Gmeiner, William H

    2002-01-22

    Gemcitabine (2'-deoxy-2',2'-difluorodeoxycytidine; dFdC) is a potent anticancer drug that exerts cytotoxic activity, in part, through incorporation of the nucleoside triphosphate dFdCTP into DNA and perturbations to DNA-mediated processes. The structure of a model Okazaki fragment containing a single dFdC substitution, [GEM], was determined using NMR spectroscopy and restrained molecular dynamics to understand structural distortions that may be induced in replicating DNA resulting from dFdC substitution. The electrostatic surface of [GEM] was also computed to determine how the geminal difluoro group of dFdC perturbs DNA electrostatics. The stability of [GEM] was investigated using temperature-dependent UV spectroscopy. dFdC adopted a C3'-endo conformation in [GEM] and decreased the melting temperature of the duplex by 4.3 degrees C. dFdC substitution did not decrease helical stacking among adjacent purines in the DNA duplex region. dFdC substitution substantially altered the electrostatic properties of the model Okazaki fragment, with increased electron density in the vicinity of the geminal difluoro group. The results are consistent with dFdC substitution altering the structural, electrostatic, and thermodynamic properties of DNA and interfering in DNA-mediated processes. Interference in DNA-mediated processes due to dFdC substitution likely contributes to the anticancer activity of dFdC.

  3. Low renal toxicity of lipoplatin compared to cisplatin in animals.

    PubMed

    Devarajan, Prasad; Tarabishi, Ridwan; Mishra, Jaya; Ma, Qing; Kourvetaris, Andreas; Vougiouka, Maria; Boulikas, Teni

    2004-01-01

    Cisplatin is one of the most widely used and effective chemotherapeutic agents for the treatment of several human malignancies. Although the effectiveness of cisplatin is high, its toxicities justify the demand for improved formulations of this drug. A liposomal formulation of cisplatin, Lipoplatin, was developed in order to reduce the systemic toxicity of cisplatin. Mice and rats injected with cisplatin developed renal insufficiency with clear evidence of tubular damage, but those injected with the same dose of Lipoplatin were almost completely free of kidney injury. The maximum levels of total platinum in rat kidneys after intraperitoneal bolus injection of cisplatin or Lipoplatin at similar doses were similar, but the steady state accumulation of total platinum in the kidney was 5 times higher for cisplatin compared to Lipoplatin. This is proposed as one mechanism to explain the low renal toxicity of Lipoplatin.

  4. Remarkable shrinkage of sarcomatoid renal cell carcinoma with single-agent gemcitabine.

    PubMed

    Fujiwara, Yoshiro; Kiura, Katsuyuki; Tabata, Masahiro; Takigawa, Nagio; Hotta, Katsuyuki; Umemura, Shigeki; Omori, Masako; Gemba, Kenichi; Ueoka, Hiroshi; Tanimoto, Mitsune

    2008-04-01

    A 60-year-old Japanese man presented to our hospital with a painful left hip. Computed tomography showed a tumor in the left kidney and metastases in the left gluteus maximus muscle and lung. The pathological diagnosis of a biopsy specimen obtained from a metastatic lesion in the left gluteus maximus muscle was sarcomatoid renal cell carcinoma. On admission, his general condition was extremely poor. He was confined to bed because of severe left hip pain and confusion, possibly caused by hypercalcemia. This seriously ill patient suffering from advanced sarcomatoid renal cell carcinoma was treated with single-agent gemcitabine, resulting in symptom relief and a dramatic improvement in his status; all of the tumors had regressed significantly by the 11th dose of gemcitabine. These findings indicate that single-agent gemcitabine is one of the few chemotherapeutic agents effective for palliation in patients with sarcomatoid renal cell carcinoma, even those with poor performance status.

  5. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  6. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    PubMed

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs.

  7. Activation of c-Jun NH2-terminal kinase is required for gemcitabine's cytotoxic effect in human lung cancer H1299 cells.

    PubMed

    Teraishi, Fuminori; Zhang, Lidong; Guo, Wei; Dong, Fengqin; Davis, John J; Lin, Anning; Fang, Bingliang

    2005-12-05

    Although gemcitabine is a potent therapeutic agent in the treatment of human non-small cell lung cancer (NSCLC), resistance to gemcitabine is common. In this study, we investigated the molecular mechanisms involved in acquired gemcitabine resistance against NSCLC cells. Gemcitabine-resistant NSCLC H1299 cells (H1299/GR) were selected by long-term exposure of parental H1299 cells to gemcitabine. The median inhibitory concentrations of gemcitabine in H1299 and H1299/GR cells were 19.4 and 233.1 nM, respectively. Gemcitabine induced activation of c-Jun NH2-terminal kinase (JNK) in parental H1299 cells but not in H1299/GR cells after 48 h. Blocking JNK activation by pretreatment with SP600125, a specific JNK inhibitor, or by transfection with dominant-negative JNK vectors abrogated gemcitabine-induced apoptosis in parental H1299 cells as evidenced by interruption of caspase activation. Transient transfection with a JNKK2-JNK1 plasmid expressing constitutive JNK1 partially restored the effect of gemcitabine in H1299/GR cells. Our results indicate that gemcitabine-induced apoptosis in human NSCLC H1299 cells requires activation of the JNK signaling pathway. Attenuated JNK activation may contribute to development of acquired gemcitabine resistance in cancer cells.

  8. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  9. Characterization of lipophilic gemcitabine prodrug-liposomal membrane interaction by differential scanning calorimetry.

    PubMed

    Castelli, Francesco; Sarpietro, Maria Grazia; Ceruti, Maurizio; Rocco, Flavio; Cattel, Luigi

    2006-01-01

    Gemcitabine is an anticancer agent rapidly deaminated to the inactive metabolite 2',2'-difluorodeoxyuridine. Its stability as well as bioavailability can be increased by making prodrugs. A series of lipophilic prodrugs of gemcitabine were synthesized by linking the 4-amino group with valeroyl, lauroyl, and stearoyl linear acyl derivatives. We studied, by the differential scanning calorimetry technique, and compared the interaction of pure gemcitabine and its prodrugs with dimyristoylphosphatidylcholine and distearoylphosphatidylcholine vesicles with the aim of demonstrating if the gemcitabine prodrug is more able than the pure gemcitabine to interact with lipid vesicles employed both as model biomembranes and as carriers in the transport of antitumor drugs. These studies, carried out by static and kinetic calorimetric measurements, give evidence that the increase of the prodrug's lipophilic character improves the interaction with lipid bilayers, favoring the absorption through the lipid barriers and allowing the liposomes to work (when the prodrug is inserted inside the vesicles) as a lipophilic carrier which is able to deliver the drug near the cell surface. The use of different prodrugs modified in their lipophilic character, of different kinds of vesicles (multilamellar and unilamellar), and of different kinds of vesicles forming phospholipids permitted us to determine the better equilibrium between in-vesicle solubility and through-vesicle diffusion of the drug, important in the preformulative studies of antitumor carriers based on phospholipid formulations. Such studies suggest that the prodrug lipophilic tail should modulate the transport and the release of gemcitabine inside the cellular compartments, and the efficiency of the liposomal system is related to the length of the prodrug's acyl chain which has to match the phospholipid acyl chain allowing or retarding the migration through the lipid release device.

  10. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.

    PubMed

    Fiorini, Claudia; Cordani, Marco; Padroni, Chiara; Blandino, Giovanni; Di Agostino, Silvia; Donadelli, Massimo

    2015-01-01

    Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.

  11. A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer

    PubMed Central

    Friess, Helmut; Langrehr, Jan M; Oettle, Helmut; Raedle, Jochen; Niedergethmann, Marco; Dittrich, Christian; Hossfeld, Dieter K; Stöger, Herbert; Neyns, Bart; Herzog, Peter; Piedbois, Pascal; Dobrowolski, Frank; Scheithauer, Werner; Hawkins, Robert; Katz, Frieder; Balcke, Peter; Vermorken, Jan; van Belle, Simon; Davidson, Neville; Esteve, Albert Abad; Castellano, Daniel; Kleeff, Jörg; Tempia-Caliera, Adrien A; Kovar, Andreas; Nippgen, Johannes

    2006-01-01

    Background Anti-angiogenic treatment is believed to have at least cystostatic effects in highly vascularized tumours like pancreatic cancer. In this study, the treatment effects of the angiogenesis inhibitor Cilengitide and gemcitabine were compared with gemcitabine alone in patients with advanced unresectable pancreatic cancer. Methods A multi-national, open-label, controlled, randomized, parallel-group, phase II pilot study was conducted in 20 centers in 7 countries. Cilengitide was administered at 600 mg/m2 twice weekly for 4 weeks per cycle and gemcitabine at 1000 mg/m2 for 3 weeks followed by a week of rest per cycle. The planned treatment period was 6 four-week cycles. The primary endpoint of the study was overall survival and the secondary endpoints were progression-free survival (PFS), response rate, quality of life (QoL), effects on biological markers of disease (CA 19.9) and angiogenesis (vascular endothelial growth factor and basic fibroblast growth factor), and safety. An ancillary study investigated the pharmacokinetics of both drugs in a subset of patients. Results Eighty-nine patients were randomized. The median overall survival was 6.7 months for Cilengitide and gemcitabine and 7.7 months for gemcitabine alone. The median PFS times were 3.6 months and 3.8 months, respectively. The overall response rates were 17% and 14%, and the tumor growth control rates were 54% and 56%, respectively. Changes in the levels of CA 19.9 went in line with the clinical course of the disease, but no apparent relationships were seen with the biological markers of angiogenesis. QoL and safety evaluations were comparable between treatment groups. Pharmacokinetic studies showed no influence of gemcitabine on the pharmacokinetic parameters of Cilengitide and vice versa. Conclusion There were no clinically important differences observed regarding efficacy, safety and QoL between the groups. The observations lay in the range of other clinical studies in this setting. The

  12. Emodin reverses gemcitabine resistance in pancreatic cancer cells via the mitochondrial apoptosis pathway in vitro

    PubMed Central

    LIU, DIAN-LEI; BU, HEQI; LI, HONG; CHEN, HUI; GUO, HONG-CHUN; WANG, ZHAO-HONG; TONG, HONG-FEI; NI, ZHONG-LIN; LIU, HAI-BIN; LIN, SHENG-ZHANG

    2012-01-01

    Gemcitabine resistance is a common problem of pancreatic cancer chemotherapy, and how to reverse it plays an important role in the treatment of pancreatic cancer. This study investigated the effect of emodin on the gemcitabine-resistant pancreatic cancer cell line SW1990/Gem, and explored the potential mechanism of its action. SW1990/Gem was obtained by culture of the pancreatic cancer cell line SW1990 in vitro by intermittently increasing the concentration of gemcitabine in the culture medium for 10 months, observing the morphology using inverted microscopy. SW1990/Gem cells were pretreated with emodin (10 μM) for different periods followed by treatment with gemcitabine (20 μM) for 48 h; cell proliferation was tested by MTT assay. SW1990/Gem cells were treated by emodin with different concentrations for 48 h, cell apoptosis was detected by flow cytometry (FCM). The expression of gene and protein, such as MDR-1 (P-gp), NF-κB, Bcl-2, Bax, cytochrome-C (cytosol), caspase-9 and -3 were measured by RT-PCR and Western blotting. The function of P-gp in SW1990/Gem cells was checked by FCM. The results showed that the SW1990/Gem cells changed greatly in morphology and the resistance index was 48.63. Emodin promoted cell apoptosis of the gemcitabine-resistant cell line SW1990/Gem in a dose-dependent manner. Emodin enhanced the SW1990/Gem cell sensitivity to gemcitabine in a time-dependent manner. Emodin monotherapy or combination with gemcitabine both decreased the gene and protein expression levels of MDR-1 (P-gp), NF-κB and Bcl-2 and inhibited the function of P-gp, but increased the expression levels of Bax, cytochrome-C (cytosol), caspase-9 and -3, and promoted cell apoptosis. This demonstrated that emodin had a reversing effect on the gemcitabine-resistant cell line SW1990/Gem, possibly via decreasing the function of P-gp and activating the mitochondrial apoptosis pathway in vitro. PMID:22159556

  13. A phase II trial of TIP (paclitaxel, ifosfamide and cisplatin) given as second-line (post-BEP) salvage chemotherapy for patients with metastatic germ cell cancer: a medical research council trial.

    PubMed

    Mead, G M; Cullen, M H; Huddart, R; Harper, P; Rustin, G J S; Cook, P A; Stenning, S P; Mason, M

    2005-07-25

    This phase II trial describes the use of TIP chemotherapy (paclitaxel, ifosfamide and cisplatin) as salvage for patients with metastatic germ cell cancer (GCC) who have failed initial BEP (bleomycin, etoposide and cisplatin) chemotherapy. Patients with first relapse following BEP for metastatic GCC, confirmed by biopsy or sequentially rising markers, received four courses of TIP (paclitaxel 175 mg m(-2) day 1, followed on days 1-5 by ifosfamide 1 g m(-2) intravenously (i.v.) and cisplatin 20 mg2 i.v.) at 3-weekly intervals. The primary outcome measure was response to TIP. In all, 51 patients were registered, of whom 43 were eligible for response assessment. Eight achieved complete remission (CR) and 18 a partial remission with negative markers (PR(-ve)); favourable response rate (FRR = CR + PR(-ve)) 60%, 95% CI (44-75%); survival at 1 year was 70% (56-84%) and failure-free survival 36% (22-50%). In the group of 26 patients meeting the 'good-risk' criteria described by the Memorial Hospital, the FRR was 73% (52-88%) compared with 41% (18-67%) for the 17 'poor-risk' patients. These results are inferior to those previously reported for TIP in a single-centre study when it was given more intensively, at higher dose and with growth factor support. Nonetheless, TIP as described here can cure a substantial proportion of patients.

  14. Cisplatin-induced anorexia and ghrelin.

    PubMed

    Hattori, Tomohisa; Yakabi, Koji; Takeda, Hiroshi

    2013-01-01

    Cisplatin, a formidable anticancer treatment, is used for several varieties of cancer. There are, however, many cases in which treatment must be abandoned due to a decrease in the patient's quality of life from loss of appetite associated with vomiting and nausea. There is a moderate degree of improvement in prevention of cisplatin-induced nausea and vomiting when serotonin (5-HT) 3 receptor antagonists, neurokinin 1 receptor antagonists, and steroids-either alone or in combination-are administered. The mechanism of action for anorexia, which continues during or after treatment, is, however, still unclear. This anorexia is, similar to the onset of vomiting and nausea, caused by the action of large amounts of 5-HT released as a result of cisplatin administration on tissue 5-HT receptors. Among the 5-HT receptors, the activation of 5-HT2b and 5-HT2c receptors, in particular, seems to play a major role in cisplatin-induced anorexia. Following activation of these two receptors, there is reduced gastric and hypothalamic secretion of the appetite-stimulating hormone ghrelin. There is ample evidence of the usefulness of exogenous ghrelin, synthetic ghrelin agonists, and the endogenous ghrelin signal-enhancer rikkunshito, which are expected to play significant roles in the clinical treatment and prevention of anorexia in future.

  15. Paclitaxel and Carboplatin or Bleomycin Sulfate, Etoposide Phosphate, and Cisplatin in Treating Patients With Advanced or Recurrent Sex Cord-Ovarian Stromal Tumors

    ClinicalTrials.gov

    2016-03-16

    Ovarian Granulosa Cell Tumor; Ovarian Gynandroblastoma; Ovarian Sertoli-Leydig Cell Tumor; Ovarian Sex Cord Tumor With Annular Tubules; Ovarian Sex Cord-Stromal Tumor; Ovarian Sex Cord-Stromal Tumor of Mixed or Unclassified Cell Types; Ovarian Steroid Cell Tumor

  16. Cisplatin and Etoposide or Temozolomide and Capecitabine in Treating Patients With Neuroendocrine Carcinoma of the Gastrointestinal Tract or Pancreas That Is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2016-01-05

    Colorectal Large Cell Neuroendocrine Carcinoma; Esophageal Large Cell Neuroendocrine Carcinoma; Gallbladder Large Cell Neuroendocrine Carcinoma; Gastric Large Cell Neuroendocrine Carcinoma; Pancreatic Large Cell Neuroendocrine Carcinoma; Small Intestinal Large Cell Neuroendocrine Carcinoma

  17. Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin

    NASA Astrophysics Data System (ADS)

    Khajavinia, Amir; Varshosaz, Jaleh; Jafarian Dehkordi, Abbas

    2012-10-01

    The aim of the present study was to evaluate the diverse properties of transferrin (Tf)-conjugated nanostructured lipid carriers (NLCs) prepared using three different fatty amines, including stearylamine (SA), dodecylamine (DA) and spermine (SP), and two different methods for Tf coupling. Etoposide-loaded NLCs were prepared by an emulsion-solvent evaporation method followed by probe sonication. Chemical coupling of NLCs with Tf was mediated by an amide linkage between the surface-exposed amino group of the fatty amine and the carboxyl group of the protein. The physical coating was performed in a Ringer-Hepes buffer medium. NLCs were characterized by their particle size, zeta potential, polydispersity index, drug entrapment percentage, drug release profiles and Tf-coupling efficiency. The cytotoxicity of NLCs on K562 acute myelogenous leukaemia cells was studied by MTT assay, and their cellular uptake was studied by a flow cytometry method. SA-containing NLCs showed the lowest particle size, the highest zeta potential and the largest coupling efficiency values. The drug entrapment percentage and the zeta potential decreased after Tf coupling, but the average particle size increased. SP-containing formulations released their drug contents comparatively slower than SA- or DA-containing NLCs. Unconjugated NLCs released moderately more drug than Tf-NLCs. Flow cytometry studies revealed enhanced cellular uptake of Tf-NLCs compared to unconjugated ones. Blocking Tf receptors resulted in a significantly higher cell survival rate for Tf-NLCs. The highest cytotoxic activity was observed in the chemically coupled SA-containing nanoparticles, with an IC50 value of 15-fold lower than free etoposide.

  18. Cisplatin impaired adipogenic differentiation of adipose mesenchymal stem cells.

    PubMed

    Chang, Yu-Hsun; Liu, Hwan-Wun; Chu, Tang-Yuan; Wen, Yao-Tseng; Ding, Dah-Ching

    2017-02-03

    Adipose mesenchymal stem cells (ASCs) were isolated from the adipose tissue and can be induced in vitro to differentiate into osteoblasts, chondroblasts, myocytes, neurons and other cell types. Cisplatin is a commonly used chemotherapy drug for cancer patients. However, the effects of cisplatin on ASC remain elusive. This study found that high-concentration cisplatin affects the viability of ASCs. First, IC50 concentration of cisplatin was evaluated. Proliferation of ASCs assessed by XTT method decreased immediately after cisplatin treatment with various concentrations. ASCs maintained mesenchymal stem cells surface markers evaluating by flow cytometry after cisplatin treatment. Upon differentiation by adding specific chemicals, a significant decrease in adipogenic differentiation (by Oil red staining) and osteogenic differentiation (by Alizarin red staining), and significant chondrogenic differentiation (by Alcian blue staining) were found after cisplatin treatment. Simultaneously, qRT-PCR was also used for evaluating the specific gene expressions after various differentiations. Finally, ASCs from one donor who had received cisplatin showed significantly decreased adipogenic differentiation but increased osteogenic differentiation compared with ASCs derived from one healthy donor. In conclusion, cisplatin affects the viability, proliferation, and differentiation of ASCs both in vitro and in vivo via certain signaling pathway such as p53 and Fas/FasL. The differentiation abilities of ASCs should be evaluated before their transplantation for repairing cisplatin-induced tissue damage.

  19. Calcitriol enhances gemcitabine antitumor activity in vitro and in vivo by promoting apoptosis in a human pancreatic carcinoma model system

    PubMed Central

    Yu, Wei-Dong; Ma, Yingyu; Flynn, Geraldine; Muindi, Josephia R; Kong, Rui-Xian; Trump, Donald L

    2010-01-01

    Gemcitabine is the standard care chemotherapeutic agent to treat pancreatic cancer. Previously we demonstrated that calcitriol (1, 25-dihydroxycholecalciferol) has significant anti-proliferative effects in vitro and in vivo in multiple tumor models and enhances the activity of a variety of chemotherapeutic agents. We therefore investigated whether calcitriol could potentiate the cytotoxic activity of gemcitabine in the human pancreatic cancer Capan-1 model system. Isobologram analysis revealed that calcitriol and gemcitabine had synergistic antiproliferative effect over a wide range of drug concentrations. Calcitriol did not reduce the cytidine deaminase activity in Capan-1 tumors nor in the livers of Capan-1 tumor bearing mice. Calcitriol and gemcitabine combination promoted apoptosis in Capan-1 cells compared with either agent alone. The combination treatment also increased the activation of caspases-8, -9, -6 and -3 in Capan-1 cells. This result was confirmed by substrate-based caspase activity assay. Akt phosphorylation was reduced by calcitriol and gemcitabine combination treatment compared to single agent treatment. However, ERK1/2 phosphorylation was not modulated by either agent alone or by the combination. Tumor regrowth delay studies showed that calcitriol in combination with gemcitabine resulted in a significant reduction of Capan-1 tumor volume compared to single agent treatment. Our study suggests that calcitriol and gemcitabine in combination promotes caspase-dependent apoptosis, which may contribute to increased anti-tumor activity compared to either agent alone. PMID:20699664

  20. Cisplatin loaded albumin mesospheres for lung cancer treatment

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Nasreen, Najmunnisa

    2015-01-01

    The low solubility of cisplatin in aqueous solution limits the treatment effectiveness and the application of cisplatin in various kinds of drug-eluting devices. Although cisplatin has a high solubility in Dimethyl sulfoxide (DMSO), the toxicity of cisplatin can be greatly reduced while dissolved in DMSO. In this study, the solid powder of cisplatin-loaded albumin mesospheres (CDDP/DMSO-AMS), in a size range of 1 to 10 µm, were post-loaded with cisplatin and showed high cisplatin content (16% w/w) and effective cytotoxicity to lung cancer cells. Cisplatin were efficiently absorbed into the albumin mesospheres (AMS) in DMSO and, most importantly, the toxicity of cisplatin was remained at 100% after the loading process. This CDDP/DMSO-AMS was designed for the intratumoral injection through the bronchoscopic catheter or dry powder inhalation (DPI) due to its high stability in air or in solution. This CDDP/DMSO-AMS showed a fast cisplatin release within 24 hours. In the in vitro study, CDDP/DMSO-AMS showed high effectiveness on killing the lung cancer cells including the non-small cell lung cancer (NCL-H23 and A549), malignant mesothelioma (CRL-2081) and the mouse lung carcinoma (Lewis lung carcinoma) cell lines. The albumin based mesospheres provide an ideal loading matrix for cisplatin and other metal-based drugs due to the high swelling degree and fast uptake rate in the organic solvents with high polarity. In addition, to investigate the effects of polysaccharides, such as chitosan and chondroitin, on enhancing loading efficiency and lasting cytotoxicity of cisplatin, the polysaccharide-modified albumin mesospheres were synthesized and loaded with cisplatin in this study. PMID:25973300

  1. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity

    PubMed Central

    Youn, Cha Kyung; Kim, Jun; Jo, Eu-Ri; Oh, Jeonghyun; Do, Nam Yong; Cho, Sung Il

    2016-01-01

    One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity. PMID:27869744

  2. Protective Effect of Tempol against Cisplatin-Induced Ototoxicity.

    PubMed

    Youn, Cha Kyung; Kim, Jun; Jo, Eu-Ri; Oh, Jeonghyun; Do, Nam Yong; Cho, Sung Il

    2016-11-18

    One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.

  3. Potential Combinational Anti-Cancer Therapy in Non-Small Cell Lung Cancer with Traditional Chinese Medicine Sun-Bai-Pi Extract and Cisplatin

    PubMed Central

    Wang, Jhih-Syuan; Chung, Meng-Chi; Chang, Jing-Fen; Chao, Ming-Wei

    2016-01-01

    Traditional lung cancer treatments involve chemical or radiation therapies after surgical tumor removal; however, these procedures often kill normal cells as well. Recent studies indicate that chemotherapies, when combined with Traditional Chinese Medicines, may offer a new way to treat cancer. In vitro tests measuring the induction of autophagy and/or apoptosis were used to examine the cytotoxicity of SBPE, commonly used for lung inflammation on A549 cell line. The results indicated that intercellular levels of p62 and Atg12 were increased, LC3-I was cleaved into LC3-II, and autophagy was induced with SBPE only. After 24 hours, the apoptotic mechanism was induced. If the Cisplatin was added after cells reached the autophagy state, we observed synergistic effects of the two could achieve sufficient death of lung cancer cells. Therefore, the Cisplatin dosage used to induce apoptosis could be reduced by half, and the amount of time needed to achieve the inhibitory concentration of 50% was also half that of the original. In addition to inducing autophagy within a shortened period of time, the SBPE and chemotherapy drug combination therapy was able to achieve the objective of rapid low-dosage cancer cell elimination. Besides, SBPE was applied with Gemcitabine or Paclitaxel, and found that the combination treatment indeed achieve improved lung cancer cell killing effects. However, SBPE may also be less toxic to normal cells. PMID:27171432

  4. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells.

    PubMed

    You, Lei; Chang, De; Du, Hong-Zhen; Zhao, Yu-Pei

    2011-04-01

    Gemcitabine has been a first-line chemotherapy agent for advanced pancreatic cancer, which is associated with one of the lowest 5 years survival rates among human cancers. Due to our lack of understanding of the genetic determinants of Gemcitabine sensitivity in pancreatic cancer, the therapeutic effectiveness of Gemcitabine chemotherapy is typically unpredictable. Using a genome-wide and piggyBac transposon-based genetic screening platform, we identified the PVT1 gene as a regulator of Gemcitabine sensitivity and showed that functional inactivation of the PVT1 gene led to enhanced Gemcitabine sensitivity in human pancreatic cancer ASPC-1 cells. The integration of the piggyBac transposon-based vector system into intron 3 of PVT1 was within a common site of oncogenic retroviral insertions and chromosomal translocations. PVT1 is a non-protein encoding gene; the genomic arrangement of PVT1 and its co-amplification with MYC have been implicated in the tumorigenesis of a variety of cancers. The molecular mechanism of PVT1 transcripts in gene regulation remains a puzzle. We demonstrated that overexpression of a full length PVT1 cDNA in the antisense orientation reconstituted enhanced sensitivity to Gemcitabine in naïve ASPC-1 cells, whereas overexpression of a full length PVT1 cDNA in the sense orientation resulted in decreased sensitivity to Gemcitabine. Our results identified PVT1 as a regulator of Gemcitabine sensitivity in pancreatic cancer cells and validated the genome-wide genetic screening approach for the identification of genetic determinants as well as potential biomarkers for the rational design of Gemcitabine chemotherapies for pancreatic cancer.

  5. Optimal dose of gemcitabine for the treatment of biliary tract or pancreatic cancer in patients with liver dysfunction.

    PubMed

    Shibata, Takashi; Ebata, Tomoki; Fujita, Ken-ichi; Shimokata, Tomoya; Maeda, Osamu; Mitsuma, Ayako; Sasaki, Yasutsuna; Nagino, Masato; Ando, Yuichi

    2016-02-01

    A clear consensus does not exist about whether the initial dose of gemcitabine, an essential anticancer antimetabolite, should be reduced in patients with liver dysfunction. Adult patients with biliary tract or pancreatic cancer were divided into three groups according to whether they had mild, moderate, or severe liver dysfunction, evaluated on the basis of serum bilirubin and liver transaminase levels at baseline. As anticancer treatment, gemcitabine at a dose of 800 or 1000 mg/m(2) was given as an i.v. infusion once weekly for 3 weeks of a 4-week cycle. The patients were prospectively evaluated for adverse events during the first cycle, and the pharmacokinetics of gemcitabine and its inactive metabolite, difluorodeoxyuridine, were studied to determine the optimal initial dose of gemcitabine as monotherapy according to the severity of liver dysfunction. A total of 15 patients were studied. Liver dysfunction was mild in one patient, moderate in six, and severe in eight. All 15 patients had been undergoing biliary drainage for obstructive jaundice when they received gemcitabine. Grade 3 cholangitis developed in one patient with moderate liver dysfunction who received gemcitabine at the dose level of 1000 mg/m(2). No other patients had severe treatment-related adverse events resulting in the omission or discontinuation of gemcitabine treatment. The plasma concentrations of gemcitabine and difluorodeoxyuridine were similar among the groups. An initial dose reduction of gemcitabine as monotherapy for the treatment of biliary tract or pancreatic cancers is not necessary for patients with hyperbilirubinemia, provided that obstructive jaundice is well managed. (Clinical trial registration no. UMIN000005363.)

  6. Paclitaxel plus cisplatin vs. 5-fluorouracil plus cisplatin as first-line treatment for patients with advanced squamous cell esophageal cancer.

    PubMed

    Liu, Ying; Ren, Zhonghai; Yuan, Long; Xu, Shuning; Yao, Zhihua; Qiao, Lei; Li, Ke

    2016-01-01

    Paclitaxel plus cisplatin and 5-fluorouracil plus cisplatin treatments are effective strategies for patients with advanced esophageal squamous cell carcinoma. This study was to evaluate the safety and efficacy of paclitaxel plus cisplatin and 5-fluorouracil plus cisplatin as first-line chemotherapy for patients with advanced esophageal squamous cell carcinoma. A total of 398 patients with advanced esophageal squamous cell carcinoma who received chemotherapy were included and divided into 2 groups: paclitaxel plus cisplatin group and 5-fluorouracil plus cisplatin group. 195 patients received paclitaxel plus cisplatin and 203 patients received 5-fluorouracil plus cisplatin. The objective response rates were 42.5% and 38.4% for paclitaxel plus cisplatin group and 5-fluorouracil plus cisplatin group, respectively (P=0.948). The median progression-free survival was 7.85 months (95% CI, 6.77-8.94 months) for the paclitaxel plus cisplatin group and 6.53 months (95% CI, 5.63-7.43 months) for the 5-fluorouracil plus cisplatin group with significant difference (P=0.02). The median overall survival was 13.46 months (95% CI, 12.01-14.91 months) for the paclitaxel plus cisplatin group and 12.67 months (95% CI, 11.87-13.47 months) for the 5-fluorouracil plus cisplatin group (P=0.204). The first-line chemotherapy of paclitaxel plus cisplatin had better median progression-free survival than 5-fluorouracil plus cisplatin in patients with advanced esophageal squamous cell carcinoma with tolerable toxicities.

  7. Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies.

    PubMed

    Maksimenko, Andrei; Caron, Joachim; Mougin, Julie; Desmaële, Didier; Couvreur, Patrick

    2015-03-30

    Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP). This amphiphilic conjugate self-organized in water into unilamellar vesicles with a mean diameter of 100 nm. In this study the antitumor efficacy of SQdFdC-MP nanoassemblies (NAs) on chemoresistant and chemosensitive pancreatic adenocarcinoma models have been investigated. Cell viability assays showed that SQdFdC-MP NAs displayed higher antiproliferative and cytotoxic effects, particularly in chemoresistant pancreatic tumor cells. In in vivo studies, SQdFdC-MP NAs decreased significantly the growth (∼70%) of human MiaPaCa2 xenografts, also preventing tumor cell invasion, whereas native dFdC did not display any anticancer activity when tumor growth inhibition was only 35% with SQdFdC NAs. These results correlated with a reduction of Ki-67 antigen and the induction of apoptosis mediated by caspase-3 activation in tumor cells. These findings demonstrated the feasibility of utilizing SQdFdC-MP NAs to make tumor cells more sensitive to gemcitabine and thus providing an efficient new therapeutic alternative for pancreatic adenocarcinoma.

  8. Flavonoids, the emerging dietary supplement against cisplatin-induced nephrotoxicity.

    PubMed

    Athira, K V; Madhana, Rajaram Mohanrao; Lahkar, Mangala

    2016-03-25

    The letter illustrates the emerging potential of flavonoids as dietary supplement to ameliorate cisplatin-induced nephrotoxicity and refers to the recent article on ''Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat'' by Chtourou et al. They demonstrated that supplementation of naringin, a flavanone glycoside, found in grape and citrus fruit species, can attenuate cisplatin-induced renal dysfunction via restoration of redox balance and suppression of inflammation, NF-κB activation and apoptosis. The chemotherapeutic efficacy of cisplatin has always compelled the researchers to find solution to ameliorate its side effects. In recent years, numerous candidates have been evaluated for their protective potential against cisplatin-induced nephrotoxicity and flavonoids have come up with promising results. The future prospects might be promising with a proper refinement and collective integration of the preclinical and clinical research in the field of flavonoid supplementation to cisplatin therapy.

  9. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors

    PubMed Central

    Hu, James; Dorff, Tanya B.; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M.; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F.; Bosl, George J.; Quinn, David I.; Motzer, Robert J.

    2016-01-01

    Purpose Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. Patients and Methods In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m2 over 2 days, ifosfamide 6 g/m2 over 5 days with mesna support, and cisplatin 100 mg/m2 over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Results Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. Conclusion TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in

  10. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice

    PubMed Central

    2012-01-01

    Background Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar genotoxic stress on

  11. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    SciTech Connect

    Boal, Amie K.; Rosenzweig, Amy C.

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

  12. Cisplatin-induced peptic ulcers, vagotomy, adrenal and calcium modulation.

    PubMed

    Aggarwal, S K; San Antonio, J D; Sokhansanj, A; Miller, C

    1994-04-01

    Cytochemical and autoradiographic studies in Wistar rats [Crl:(WI)BR] show that cisplatin treatment (9 mg/kg) inhibits the release of acetylcholine from the axonal endings of the stomach smooth muscle resulting in bloating of the stomach and ulceration. Cisplatin also induces corticosteroid release from the adrenal gland stimulating peptic ulceration. Vagotomy helps ameliorate the effect but not eliminate it. Calcium supplementation restores normal neuromuscular function to gastric smooth muscle, thereby eliminating the gastro-intestinal toxicity due to cisplatin.

  13. Pharmacodynamic Modeling of Cell Cycle Effects for Gemcitabine and Trabectedin Combinations in Pancreatic Cancer Cells

    PubMed Central

    Miao, Xin; Koch, Gilbert; Ait-Oudhia, Sihem; Straubinger, Robert M.; Jusko, William J.

    2016-01-01

    Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0–120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations. PMID:27895579

  14. Long-term maintenance combination chemotherapy with OPEC/MPEC (vincristine or methotrexate, prednisolone, etoposide and cyclophosphamide) or with daily oral etoposide and prednisolone can improve survival and quality of life in adult T-cell leukemia/lymphoma.

    PubMed

    Matsushita, K; Matsumoto, T; Ohtsubo, H; Fujiwara, H; Imamura, N; Hidaka, S; Kukita, T; Tei, C; Matsumoto, M; Arima, N

    1999-12-01

    Acute leukemia and lymphoma varieties of adult T-cell leukemia/lymphoma (ATL) usually carry a poor prognosis. While etoposide is generally useful for treating ATL, especially as a daily oral maintenance regimen, etoposide has not proven effective in severe types of ATL efficient in some patients. Of 87 ATL patients whom we have treated, 51 had acute leukemia, 22 lymphoma and 14 progressive chronic leukemia. Seventy-nine patients were treated with a long term maintenance combination protocol, OPEC/MPEC (weekly doses of vincristine, 0.7 mg/m2 or methotrexate, 14 mg/m2; prednisolone, 20 mg/m2; etoposide, 70 mg/m2 and cyclophosphamide, 200 mg/m2). The other 8 patients, 3 with acute leukemia, 2 with lymphoma and 3 with progressive chronic leukemia, were treated with daily oral administration of 25 mg of etoposide and 10 mg of prednisolone (DOEP). The dose administered was modified in individual cases to maintain the granulocyte count and reduce the number of ATL cells. Considering both protocols, a complete response and a partial response were achieved in 31.0% and 58.6% patients, respectively. Median survival times (MST) of all patients and, acute leukemia, lymphoma and progressive chronic leukemia types were 7.5, 6.7, 9.6 and 12.4 months, respectively. Respective MST of patients treated with OPEC/MPEC or DOEP protocols were 7.1 and 18.0 months. Relatively normal WBC counts, lower lactate dehydrogenase concentration and normal calcium concentration, limited numbers of anatomic sites involved, good performance status and good response to chemotherapy were significantly associated with long survival time. Drug toxicity was not apparent, and about half of patients were treated in an outpatient setting.

  15. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity

    PubMed Central

    Karasawa, Takatoshi; Steyger, Peter S.

    2015-01-01

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797

  16. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity.

    PubMed

    Karasawa, Takatoshi; Steyger, Peter S

    2015-09-17

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations.

  17. NHERF1 Enhances Cisplatin Sensitivity in Human Cervical Cancer Cells

    PubMed Central

    Tao, Tao; Yang, Xiaomei; Qin, Qiong; Shi, Wen; Wang, Qiqi; Yang, Ying; He, Junqi

    2017-01-01

    Cervical cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely utilized in locally advanced cervical cancer patients. However, resistance has been the major limitation. In this study, we found that Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) was downregulated in cisplatin-resistant cells. Analysis based on a cervical cancer dataset from The Cancer Genome Atlas (TCGA) showed association of NHERF1 expression with disease-free survival of patients received cisplatin treatment. NHERF1 overexpression inhibited proliferation and enhanced apoptosis in cisplatin-resistant HeLa cells, whereas NHERF1 knockdown had inverse effects. While parental HeLa cells were more resistant to cisplatin after NHERF1 knockdown, NHERF1 overexpression in CaSki cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that NHERF1 significantly inhibited AKT and extracellular signal–regulated kinase (ERK) signaling pathways in cisplatin-resistant cells. Taken together, our results provide the first evidence that NHERF1 can sensitize cisplatin-refractory cervical cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumors. PMID:28085111

  18. C-phycocyanin attenuates cisplatin-induced nephrotoxicity in mice.

    PubMed

    Lim, Beom Jin; Jeong, Jin Young; Chang, Yoon-Kyung; Na, Ki-Ryang; Lee, Kang Wook; Shin, Young-Tai; Choi, Dae Eun

    2012-01-01

    Although cisplatin is a highly effective antineoplastic agent, nephrotoxicity is its major clinical problem. Recently, it was reported that Spirulina, a blue-green algae, has potent antioxidant properties. The aim of this study was to establish the possible protective role of C-phycocyanin (PC), one of the active ingredients of Spirulina, against cisplatin-induced nephrotoxicity. This study was carried out using human kidney-2 (HK-2) cells and male C57BL6 mice. Cells and mice were divided into four groups; untreated control group, PC-treated control group, cisplatin-treated group, and PC plus cisplatin-treated group. The molecular, functional, and structural parameters were measured. PC significantly attenuated blood urea nitrogen, serum creatinine, renal histological damages, and apoptotic cell death in cisplatin-treated mice. The cisplatin-induced cell death was significantly attenuated in cells pretreated with PC. PC also significantly attenuated the elevation of p-ERK, p-JNK, and p-p38 induced by cisplatin treatment. The expression of Bax, caspase-9, and caspase-3 in cisplatin-treated cells were also decreased by PC treatment. In conclusion, PC ameliorates cisplatin-induced nephrotoxicity and, at least in part, suppression of p-ERK, p-JNK, p-p38, Bax, caspase-9, and caspase-3 may be involved in this mechanism.

  19. The Synergism between Belotecan and Cisplatin in Gastric Cancer

    PubMed Central

    Jung, Joo Young; Song, Sang Hyun; Kim, Tae-Young; Park, Jung Hyun; Jong, Hyun-Soon; Im, Seock-Ah; Kim, Tae-You; Kim, Noe Kyoung

    2006-01-01

    Purpose We wanted to demonstrate the anti-cancer effect and interaction between belotecan and cisplatin on gastric cancer cell line and we evaluated the mechanisms of this synergistic effect in vitro. Materials and Methods The growth inhibitory effect of belotocan and cisplatin against several gastric cancer cell lines (SNU-5, SNU-16 and SNU-601) was estimated by tetrazolium dye assay. The effect of a combination treatment was evaluated by the isobologram method. The biochemical mechanisms for the interaction between the drugs were analyzed by measuring the formation of DNA interstrand cross-links (ICLs) and DNA topo-I activity. Results Belotecan showed synergism with cisplatin for growth inhibitory effect on the gastric cancer cell lines SNU-5, and SNU-16, but this was subadditive on the SNU-601 cell line. The formation of DNA ICLs in SNU-16 cells by cisplatin was increased by combination with belotecan, but this was not affected in SNU-601 cells. The topo-I inhibition by belotecan was enhanced at high concentrations of cisplatin in SNU-16, but not in SNU-601 cells. Conclusion Belotecan and cisplatin show various combination effect against gastric cancer cells. The synergism between cisplatin and belotecan could be the result of one of the following mechanisms: the modulating effect of belotecan on the repair of cisplatin-induced DNA adducts and the enhancing effect of cisplatin on the belotecan-induced topo-I inhibitory effect. PMID:19771277

  20. Real-time monitoring of cisplatin-induced cell death.

    PubMed

    Alborzinia, Hamed; Can, Suzan; Holenya, Pavlo; Scholl, Catharina; Lederer, Elke; Kitanovic, Igor; Wölfl, Stefan

    2011-01-01

    Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  1. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    PubMed Central

    Inapurapu, Santhi priya; Kudle, Karunakar Rao; Bodiga, Sreedhar; Bodiga, Vijaya Lakshmi

    2017-01-01

    Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM), although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient. PMID:28133529

  2. Molecular mechanisms of cisplatin resistance in cervical cancer

    PubMed Central

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. PMID:27354763

  3. Lysocellin, a metabolite of the novel drug 'alopestatin', induces G1 arrest and prevents cytotoxicity induced by etoposide.

    PubMed

    Takahara, Yoshinori; Yogosawa, Shingo; Maruyama, Sakiko; Watanabe, Noriko; Yokoyama, Hirofumi; Fukasawa, Kazuteru; Sukenaga, Yoshikazu; Kamiyama, Jun; Izumi, Moriatsu; Wakada, Miki; Zhang, Helin; Yoshizawa, Kaname; Kawa, Shigeyuki; Nikaido, Toshio; Sakai, Toshiyuki

    2006-04-01

    We report here that lysocellin, a polyether antibiotic from a streptomycete, induces G1 phase arrest in human osteosarcoma MG63 cells. Lysocellin up-regulates p21WAF1/Cip1 and down-regulates cyclin D1 at the mRNA level. In addition, cyclin D1 is down-regulated by the proteasome-dependent signal pathway in MG63 cells. In drug combination studies, we found that lysocellin treatment weakened the cytotoxic activity of etoposide in MG63 cells using a colony-formation assay. To study the in vivo efficacy of lysocellin, we isolated a novel compound related to lysocellin from the same streptomycete, and found that the novel drug is converted to lysocellin in vivo and decreases etoposide-induced alopecia in a neonatal rat model. We raise the possibility that this novel drug, named 'alopestatin', may be a promising agent against alopecia.

  4. Apoptosis-inducing activity of cisplatin (CDDP) against human hepatoma and oral squamous cell carcinoma cell lines.

    PubMed

    Okamura, Masahiko; Hashimoto, Ken; Shimada, Jun; Sakagami, Hiroshi

    2004-01-01

    The sensitivity of human hepatoma (HepG2) and oral squamous cell carcinoma (HSC-2) cell lines against various apoptosis-inducing agents was compared. HepG2 cells were generally more resistant to an oxidant (H2O2), antioxidants (sodium ascorbate, gallic acid, epigallocatechin gallate) and anticancer drugs (doxorubicin, methotrexate, cisplatin (CDDP), etoposide, 5-fluoro-2,4(1H,3H)-pyrimidinedione (5-FU), peplomycin sulfate) as compared to HSC-2 cells. Lower concentrations of CDDP, but not other anticancer drugs, induced comparable cytostatic effects on both HSC-2 and HepG2 cells. CDDP induced internucleosomal DNA fragmentation and activation of caspases 3, 8 and 9 in HepG2 cells. On the other hand, CDDP did not induce DNA fragmentation and activated caspase 3 only marginally in HSC-2 cells. Combination treatment with CDDP (10 microM) and 5-FU (100 microM) additively activated all three caspases in HepG2 cells, but not in HSC-2 cells. The present study demonstrated the chemotherapeutic potential of combined treatment of CDDP and 5-FU against hepatoma cells and the considerable variation of drug sensitivity between cancer cell lines.

  5. Efficacy of vincristine and etoposide with escalating cyclophosphamide in poor-prognosis pediatric brain tumors1

    PubMed Central

    Ziegler, David S.; Cohn, Richard J.; McCowage, Geoffrey; Alvaro, Frank; Oswald, Cecilia; Mrongovius, Robert; White, Les

    2006-01-01

    The objective of this study was to assess the efficacy of the VETOPEC regimen, a regimen of vincristine and etoposide with escalating doses of cyclophosphamide (CPA), in pediatric patients with high-risk brain tumors. Three consecutive studies by the Australia and New Zealand Children’s Cancer Study Group—VETOPEC I, Baby Brain 91, and VETOPEC II—have used a specific chemotherapy regimen of vincristine (VCR), etoposide (VP-16) and escalating CPA in patients with relapsed, refractory, or high-risk solid tumors. Patients in the VETOPEC II cohort were treated with very high dose CPA with peripheral blood stem cell (PBSC) rescue. We analyzed the subset of patients with high-risk brain tumors treated with these intensive VETOPEC-based protocols to assess the response, toxicity, and survival. We also assessed whether the use of very high dose chemotherapy with stem cell rescue improved the response rate or affected toxicity. Seventy-one brain tumor patients were treated with VETOPEC-based protocols. Of the 54 patients evaluable for tumor response, 17 had a complete response (CR) and 20 a partial response (PR) to treatment, which yielded an overall response rate of 69%. The CR + PR was 83% (19/23) for medulloblastomas, 56% (5/9) for primitive neuroectodermal tumors, 55% (6/11) for grade 3 and 4 astrocytomas, and 80% (6/8) for ependymomas. At a median follow-up of 36 months, overall survival for the entire cohort of 71 patients was 32%, with event-free survival of 13%. There were no toxic deaths within the PBSC-supported VETOPEC II cohort, despite higher CPA doses, compared with 7% among the non-PBSC patients. This regimen produces high response rates in a variety of very poor prognosis pediatric brain tumors. The maximum tolerated dose of CPA was not reached. Higher escalation in doses of CPA did not deliver a further improvement in response. With PBSC rescue in the VETOPEC II study, hematologic toxicity was no longer a limiting factor. The response rates observed

  6. Efficacy of vincristine and etoposide with escalating cyclophosphamide in poor-prognosis pediatric brain tumors.

    PubMed

    Ziegler, David S; Cohn, Richard J; McCowage, Geoffrey; Alvaro, Frank; Oswald, Cecilia; Mrongovius, Robert; White, Les

    2006-01-01

    The objective of this study was to assess the efficacy of the VETOPEC regimen, a regimen of vincristine and etoposide with escalating doses of cyclophosphamide (CPA), in pediatric patients with high-risk brain tumors. Three consecutive studies by the Australia and New Zealand Children's Cancer Study Group--VETOPEC I, Baby Brain 91, and VETOPEC II--have used a specific chemotherapy regimen of vincristine (VCR), etoposide (VP-16) and escalating CPA in patients with relapsed, refractory, or high-risk solid tumors. Patients in the VETOPEC II cohort were treated with very high dose CPA with peripheral blood stem cell (PBSC) rescue. We analyzed the subset of patients with high-risk brain tumors treated with these intensive VETOPEC-based protocols to assess the response, toxicity, and survival. We also assessed whether the use of very high dose chemotherapy with stem cell rescue improved the response rate or affected toxicity. Seventy-one brain tumor patients were treated with VETOPEC-based protocols. Of the 54 patients evaluable for tumor response, 17 had a complete response (CR) and 20 a partial response (PR) to treatment, which yielded an overall response rate of 69%. The CR + PR was 83% (19/23) for medulloblastomas, 56% (5/9) for primitive neuroectodermal tumors, 55% (6/11) for grade 3 and 4 astrocytomas, and 80% (6/8) for ependymomas. At a median follow-up of 36 months, overall survival for the entire cohort of 71 patients was 32%, with event-free survival of 13%. There were no toxic deaths within the PBSC-supported VETOPEC II cohort, despite higher CPA doses, compared with 7% among the non-PBSC patients. This regimen produces high response rates in a variety of very poor prognosis pediatric brain tumors. The maximum tolerated dose of CPA was not reached. Higher escalation in doses of CPA did not deliver a further improvement in response. With PBSC rescue in the VETOPEC II study, hematologic toxicity was no longer a limiting factor. The response rates observed

  7. Overexpression of IL-7 enhances cisplatin resistance in glioma.

    PubMed

    Cui, Lei; Fu, Jun; Pang, Jesse Chung-Sean; Qiu, Zhi-Kun; Liu, Xiao-Mei; Chen, Fu-Rong; Shi, Hong-Liu; Ng, Ho-Keung; Chen, Zhong-Ping

    2012-05-01

    Cisplatin is one of the most commonly used chemotherapeutic agents for glioma patients. In this study, array comparative genomic hybridization (aCGH) was used to identify genes associated with cisplatin resistance in a human glioma cell line. The cisplatin-resistant U251/CP2 cell line was derived by stepwise selection using cisplatin. The genetic aberrations of the U251 parental cell line and the U251/CP2 cells were analyzed using aCGH. RT-PCR was used to detect the expression of the altered genes revealed by aCGH. The sensitivity of glioma cells to cisplatin was determined by using the MTT assay. Apoptosis was detected using flow cytometry and western blot analysis. The IC 50 value of cisplatin in U251/CP2 cells was five times higher than its IC 50 in U251 cells. The U251 cells lost at least one copy each of the CFHR1 and CFHR3 genes, and both CFHR1 and CFHR3 were homozygously deleted in U251/CP2 cells. The U251/CP2 cells gained two to three copies of C8orf70 and IL-7 genes. IL-7 mRNA expression was studied in 12 glioma cell lines, and expression was positively correlated with the IC 50 of cisplatin. Furthermore, IL-7 mRNA expression was also positively correlated with the IC 50 of cisplatin in 91 clinical glioma specimens. Additionally, treatment with recombinant human IL-7 (rhIL-7) enhanced cisplatin resistance and increased the relative growth rate of the glioma cells. Moreover, the apoptosis induced by cisplatin could be inhibited by IL-7. In conclusion, our results suggest that IL-7 may play an important role in cisplatin resistance in glioma.

  8. Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer.

    PubMed

    Wennier, Sonia Tusell; Liu, Jia; Li, Shoudong; Rahman, Masmudur M; Mona, Mahmoud; McFadden, Grant

    2012-04-01

    Myxoma virus (MYXV) is a novel oncolytic virus that has been shown to replicate in pancreatic cancer cells, but its efficacy in animal models of pancreatic cancer has not been determined. The efficacy of MYXV as monotherapy or in combination with gemcitabine was evaluated in intraperitoneal dissemination (IPD) models of pancreatic cancer. The effects of an intact immune system on the efficacy of MYXV therapy was tested by comparing immunodeficient versus immunocompetent murine models and combination therapy with gemcitabine was also evaluated. In cell culture, MYXV replication was robust in a broad range of pancreatic cancer cells and also showed increased oncolysis in combination with gemcitabine. In animal models, MYXV treatment conferred survival benefits over control or gemcitabine-treated cohorts regardless of the cell line or animal model used. MYXV monotherapy was most effective in an immunocompetent IPD model, and resulted in 60% long-term survivors. In Pan02 engrafted immunocompetent IPD models, sequential treatment in which MYXV was administered first, followed by gemcitabine, was the most effective and resulted in 100% long-term survivors. MYXV is an effective oncolytic virus for pancreatic cancer and can be combined with gemcitabine to enhance survival, particularly in the presence of an intact host immune system.

  9. Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells.

    PubMed

    Celia, Christian; Malara, Natalia; Terracciano, Rosa; Cosco, Donato; Paolino, Donatella; Fresta, Massimo; Savino, Rocco

    2008-06-01

    Gemcitabine-loaded pegylated unilamellar liposomes (200 nm) were proposed for the treatment of multiple myeloma cancer disease. Physicochemical and technological parameters of liposomes were evaluated by using laser light scattering and gel permeation chromatography. The growth-inhibitory activity of gemcitabine-loaded liposomes compared to the free drug was assayed in vitro on U266 (autocrine, interleukin-6-independent) and INA-6 (IL-6-dependent) multiple myeloma cell lines. Liposomes noticeably improved the growth-inhibitory activity of gemcitabine in terms of both dose-dependent and incubation-time effects. Liposomal delivery of gemcitabine consistently and significantly increased induction of apoptosis and caused a complete inhibition of proliferation. Liposomes were able to interact with multiple myeloma cells as demonstrated by confocal laser scanning microscopy and hence to improve the intracellular gemcitabine delivery. Gemcitabine-loaded liposomes were much more effective in vitro than the free drug. This formulation may offer even more in vivo advantages both in terms of drug pharmacokinetic and biodistribution.

  10. Gemcitabine Compared With Gemcitabine and S-1 Combination Therapy in Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Li, Doudou; Chen, Changhao; Zhou, Yu; Chen, Rufu; Fan, Xinxiang; Bi, Zhuofei; Li, Zhihua; Liu, Yimin

    2015-09-01

    Several reports suggest that gemcitabine (GEM) plus S-1 combination (GS) is associated to prolong the survival in patients with unresectable pancreatic cancer (PC). We conducted a systemic review and meta-analysis of studies comparing the safety and efficacy of GS versus GEM.Summary data from randomized trials and retrospective studies were searched in PubMed, EMBASE, Web of Science, and the Cochrane Library. Statistical analyses were conducted to calculate the hazard ratios (HRs) and relative risk (RR) with 95% confidence intervals (CIs) using random-effects models. Subgroup analyses based on the chemotherapy cycles were performed to explore the efficacy and toxicity for therapy. Sensitivity analyses were conducted by removing specific studies to assess the effects of study quality.Between January 2004 and August 2012, 4 RCTs and 2 retrospective studies including a total of 1025 cases were identified. The overall survival (OS) (HR: 0.82; 95% CI, 0.70-0.96; P = 0.01) and progression-free survival (PFS) (HR: 0.65; 95% CI, 0.55-0.77; P < 0.001) for the GS arm were significantly longer than the GEM arm. The differences in objective response rate (ORR) (RR: 1.24; 95% CI, 1.17-1.33; P < 0.001) and disease control rate (DCR) were also better in the GS arm (RR: 1.37; 95% CI, 1.19-1.59; P < 0.001). Grades 3 to 4 toxicities in both the groups were similar except neutropenia and diarrhea, which were more frequent in the GS arm (P < 0.001). In the subgroup analysis, the cycle for chemotherapy every 4 weeks has equivalent efficacy and less toxicity than regimens every 3 weeks in the GS arm.The current meta-analysis suggested that GEM significantly prolonged OS and PFS when added to S-1 combination in patients with unresectable PC. GS therapy also offers better ORR and DCR than GEM monotherapy and no unexpected toxicity was evident.

  11. Src Inhibition Can Synergize with Gemcitabine and Reverse Resistance in Triple Negative Breast Cancer Cells via the AKT/c-Jun Pathway

    PubMed Central

    Liu, Ming-Ming; Zhang, Jian; Tao, Zhong-Hua; Hu, Xi-Chun

    2016-01-01

    Purpose Gemcitabine-based chemotherapy remains one of the standards in management of metastatic breast cancer. However, intrinsic and acquired resistance to gemcitabine inevitably occurs. The aims of this study were to assess the efficacy of the combination of src inhibition and gemcitabine in gemcitabine-resistant breast cancer cells. Methods and Results By using colony formation, sphere forming, flow cytometry, cell counting kit-8 and transwell assays, 231/GEM-res (gemcitabine-resistant) cell line, which was 10 times more resistant, was shown to have elevated drug tolerance, enhanced proliferative and self-renewal abilities, compared with its parental cells. Inhibition of src by both saracatinib (AZD0530) and siRNA could partially reverse gemcitabine resistance and attenuate resistance-associated anti-apoptosis, migration and stem cell capacities. In addition, the combination of src inhibition and gemcitabine had synergistic antitumor effects. Western blot analysis revealed up-regulation of pro-apoptotic protein BAX, along with the down-regulation of anti-apoptotic proteins (BCL-XL, Survivin), migration associated proteins (p-FAK, MMP-3) and cancer stem cell (CSC) markers (CD44, Oct-4), which was probably mediated by AKT/c-Jun pathway. Conclusion In highly gemcitabine-resistant 231 cells, src inhibition can synergize with gemcitabine, reverse drug resistance, inhibit tumor growth/metastasis/stemness of cancer stem cells, possibly via the AKT/c-Jun pathway. PMID:28036386

  12. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Anwar, Muhammad Ayaz; Choi, Sangdun

    2016-01-01

    Etoposide (ETO) is a commonly used chemotherapeutic drug that inhibits topoisomerase II activity, thereby leading to genotoxicity and cytotoxicity. However, ETO has limited application due to its side effects on normal organs, especially the kidney. Here, we report the mechanism of ETO-induced cytotoxicity progression in human kidney proximal tubule (HK-2) cells. Our results show that ETO perpetuates DNA damage, activates mitogen-activated protein kinase (MAPK), and triggers morphological changes, such as cell and nuclear swelling. When NAC, a well-known reactive oxygen species (ROS) scavenger, is co-treated with ETO, it inhibits an ETO-induced increase in mitochondrial mass, mitochondrial DNA (ND1 and ND4) copy number, intracellular ATP level, and mitochondrial biogenesis activators (TFAM, PGC-1α and PGC-1β). Moreover, co-treatment with ETO and NAC inhibits ETO-induced necrosis and cell swelling, but not apoptosis. Studies using MAPK inhibitors reveal that inhibition of extracellular signal regulated kinase (ERK) protects ETO-induced cytotoxicity by inhibiting DNA damage and caspase 3/7 activity. Eventually, ERK inhibitor treated cells are protected from ETO-induced nuclear envelope (NE) rupture and DNA leakage through inhibition of caspase activity. Taken together, these data suggest that ETO mediates cytotoxicity in HK-2 cells through ROS and ERK pathways, which highlight the preventive avenues in ETO-induced cytotoxicity in kidney. PMID:27666530

  13. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    PubMed Central

    Qin, Lili; Wang, Mei; Zhu, Rongrong; You, Songhui; Zhou, Ping; Wang, Shilong

    2013-01-01

    Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16) were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications. PMID:23737669

  14. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  15. Bortezomib, Ifosfamide, Carboplatin, and Etoposide in a Patient with HIV-Negative Relapsed Plasmablastic Lymphoma

    PubMed Central

    Haeri, Mohammad; Perez, Mike; Finch, Christie J.; Udden, Mark M.; Mims, Martha P.

    2016-01-01

    Plasmablastic lymphoma (PBL) is a rare subtype of diffuse large B cell lymphoma (DLBCL), often associated with HIV infection. We present a case of a 53-year-old HIV-negative man with untreated hepatitis C viral infection who presented with abdominal pain and lymphadenopathy. Lymph node and bone marrow biopsies were consistent with plasmablastic lymphoma. He had partial response (PR) to 6 cycles of EPOCH but disease progressed seven weeks later. Repeat biopsy was consistent with plasmablastic lymphoma. Three cycles of bortezomib, ifosfamide, carboplatin, and etoposide (B-ICE) chemotherapy resulted in a partial response (PR). Five months later, he presented with widespread lymphadenopathy and tumor lysis syndrome with circulating blasts. Flow cytometry revealed a different population of lymphoma cells, this time positive for CD5, CD19, CD20, and CD22, with dim expression of CD45 and CD38. The patient died on the first day of ESHAP chemotherapy. There are no treatment recommendations or standard of care for plasmablastic lymphoma. A literature search yielded 10 cases in which bortezomib was administered in either HIV-positive or HIV-negative PBL. Six reported a partial response, 3 reported a complete response, and 1 was a near-complete response. Bortezomib, in combination with chemotherapy, may be an effective treatment option in PBL as reported here. PMID:27957358

  16. CXCL16 regulates cisplatin-induced acute kidney injury.

    PubMed

    Liang, Hua; Zhang, Zhengmao; He, Liqun; Wang, Yanlin

    2016-05-31

    The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin-induced tubular cell apoptosis and inflammation. Wild-type and CXCL16 knockout mice were administrated with vehicle or cisplatin at 20 mg/kg by intraperitoneal injection. CXCL16 knockout mice had lower blood urea nitrogen and less tubular damage following cisplatin-induced AKI as compared with wild-type mice. Genetic disruption of CXCL16 reduced tubular epithelial cell apoptosis and decreased caspase-3 activation. Furthermore, CXCL16 deficiency inhibited infiltration of macrophages and T cells into the kidneys following cisplatin treatment, which was associated with reduced expression of the proinflammatory cytokines in the kidneys. Taken together, our results indicate that CXCL16 plays a crucial role in the pathogenesis of cisplatin-induced AKI through regulation of apoptosis and inflammation and maybe a novel therapeutic target for cisplatin-induced AKI.

  17. Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance.

    PubMed

    Peleg-Shulman, T; Gibson, D; Cohen, R; Abra, R; Barenholz, Y

    2001-02-09

    Extensive scientific efforts are directed towards finding new and improved platinum anticancer agents. A promising approach is the encapsulation of cisplatin in sterically stabilized, long circulating, PEGylated 100 nm liposomes. This liposomal cisplatin (STEALTH cisplatin, formerly known as SPI-77) shows excellent stability in plasma and has a longer circulation time, greater efficacy and lower toxicity than much free cisplatin. However, so far, the physicochemical characterization of STEALTH cisplatin has been limited to size distribution, drug-to-lipid ratio and stability. Information on the physical state of the drug in the liposome aqueous phases and the drug's interaction with the liposome membrane has been lacking. This study was aimed at filling this gap. We report a multinuclear NMR study in which several techniques have been used to assess the physical nature of cisplatin in liposomal formulations and if and to what extent the drug affects the liposome phospholipids. Since NMR detects only the soluble cisplatin in the liposomes and not the insoluble drug, combining NMR and atomic absorption data enables one to determine how much of the encapsulated drug is soluble in the intraliposomal aqueous phase. Our results indicate that almost all of the cisplatin remains intact during the loading process, and that the entire liposomal drug is present in a soluble form in the internal aqueous phase of the liposomes.

  18. Rationally engineered polymeric cisplatin nanoparticle for improved antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu; Soni, Shivani; Basu, Sudipta; Chitra, J; Amarasiriwardena; Lupoli, Nicola; Srivats, Shyam; Roy, Rituparna Sinha; Sengupta, Shiladitya

    2011-01-01

    The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While, this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) co-polymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibit an IC50 = 0.77 ± 0.11μM comparable to that of free cisplatin (IC50 = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and releases cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibited significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy. PMID:21576779

  19. Tempol protects human lymphocytes from genotoxicity induced by cisplatin

    PubMed Central

    Khabour, Omar F; Alzoubi, Karem H; Mfady, Doa’a S; Alasseiri, Mohammed; Hasheesh, Taghrid F

    2014-01-01

    The use of cisplatin in treatments of human malignancies is limited by its side effects that include DNA damage and the subsequent risk of developing secondary cancer. In this study, we examined the possible protective effect of Tempol against DNA damage induced by cisplatin in human lymphocytes using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) assays. Cisplatin induced significant elevation in the frequencies of CAs and SCEs in cultured human lymphocytes (P < 0.01). Treatment of lymphocytes with Tempol significantly lowered CAs and SCEs induced by cisplatin. Tempol alone did not affect spontaneous levels of SCEs and CAs observed in the control group (P > 0.05). In conclusion, Tempol protects human lymphocytes against genotoxicity induced by the anticancer drug cisplatin. PMID:24955171

  20. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer

    PubMed Central

    Deplanque, G.; Demarchi, M.; Hebbar, M.; Flynn, P.; Melichar, B.; Atkins, J.; Nowara, E.; Moyé, L.; Piquemal, D.; Ritter, D.; Dubreuil, P.; Mansfield, C. D.; Acin, Y.; Moussy, A.; Hermine, O.; Hammel, P.

    2015-01-01

    Background Masitinib is a selective oral tyrosine–kinase inhibitor. The efficacy and safety of masitinib combined with gemcitabine was compared against single-agent gemcitabine in patients with advanced pancreatic ductal adenocarcinoma (PDAC). Patients and methods Patients with inoperable, chemotherapy-naïve, PDAC were randomized (1 : 1) to receive gemcitabine (1000 mg/m2) in combination with either masitinib (9 mg/kg/day) or a placebo. The primary endpoint was overall survival (OS) in the modified intent-to-treat population. Secondary OS analyses aimed to characterize subgroups with poor survival while receiving single-agent gemcitabine with subsequent evaluation of masitinib therapeutic benefit. These prospectively declared subgroups were based on pharmacogenomic data or a baseline characteristic. Results Three hundred and fifty-three patients were randomly assigned to receive either masitinib plus gemcitabine (N = 175) or placebo plus gemcitabine (N = 178). Median OS was similar between treatment-arms for the overall population, at respectively, 7.7 and 7.1 months, with a hazard ratio (HR) of 0.89 (95% CI [0.70; 1.13]. Secondary analyses identified two subgroups having a significantly poor survival rate when receiving single-agent gemcitabine; one defined by an overexpression of acyl–CoA oxidase-1 (ACOX1) in blood, and another via a baseline pain intensity threshold (VAS > 20 mm). These subgroups represent a critical unmet medical need as evidenced from median OS of 5.5 months in patients receiving single-agent gemcitabine, and comprise an estimated 63% of patients. A significant treatment effect was observed in these subgroups for masitinib with median OS of 11.7 months in the ‘ACOX1’ subgroup [HR = 0.23 (0.10; 0.51), P = 0.001], and 8.0 months in the ‘pain’ subgroup [HR = 0.62 (0.43; 0.89), P = 0.012]. Despite an increased toxicity of the combination as compared with single-agent gemcitabine, side-effects remained manageable. Conclusions The

  1. Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes.

    PubMed

    Celia, Christian; Calvagno, Maria Grazia; Paolino, Donatella; Bulotta, Stefania; Ventura, Cinzia Anna; Russo, Diego; Fresta, Massimo

    2008-04-01

    Anaplastic thyroid carcinoma is one of the most aggressive and lethal solid carcinomas affecting humans. A major limit of the chemotherapeutic agents is represented by their low therapeutic index. In this work, we investigated the possibility of improving the anti-tumoral activity of gemcitabine by using pegylated unilamellar liposomes. Liposomes were made up of 1,2-dipalmitoyl-sn-glycero-3-phospocholine monohydrate/cholesterol/N-(carbonyl-methoxypolyethylene glycol-2000)-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (6:3:1 molar ratio) and they were prepared with a pH gradient to improve the gemcitabine loading capacity. The anti-tumoral efficacy of the liposomal formulation was tested in vitro on human anaplastic thyroid carcinoma cells (ARO) in culture, comparing the effects with those of the free drug. Gemcitabine-loaded unilamellar liposomes had a mean size approximately 200 nm with a zeta potential approximately -2 mV. The liposomal carrier noticeably improved the anti-tumoral activity of gemcitabine against ARO cells in terms of both dose-dependent cytotoxic effect and of drug exposition effect. Namely, gemcitabine-loaded liposomes showed a cytotoxic effect (58.2% increase of cell mortality at 1 microM with respect to free drug) after 12 h incubation, while the free drug showed a significant activity only after 72 h incubation. Moreover, a significant effect on the cell mortality appeared at 0.1 microM and 100% mortality was detected at a concentration of 1 microM of gemcitabine-loaded liposomes, while the free drug elicited the same effect at a concentration of 100 microM. The improved anti-tumoral activity of gemcitabine determined by the liposomal carrier was due to a greater intracellular uptake. The intracellular gemcitabine levels as a function of time showed a sinusoidal profile with peaks after 2 h, 6 h and 11 h, related to the cellular cycle of ARO. PARP cleavage and DNA fragmentation analysis provided clear evidence of the apoptosis induction in

  2. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    PubMed

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  3. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  4. Efficacy of safranal to cisplatin-induced nephrotoxicity.

    PubMed

    Karafakıoğlu, Yasemin Sunucu; Bozkurt, Mehmet Fatih; Hazman, Ömer; Fıdan, A Fatih

    2017-03-20

    The aim of the present study was to investigate the effects of safranal on cisplatin-induced nephrotoxicity and oxidative stress in rats. Adult male Sprague-Dawley rats were randomly divided into five groups. The control group received physiological saline; animals in Group 2 received only safranal and in Group 3 received only cisplatin; 5 days of safranal treatment was performed following administration of cisplatin for the animals in Group 4; 5 days of safranal pretreatment was applied to the animals in Group 5 before administration of cisplatin. Cisplatin (7 mg/kg) was intraperitoneally injected as a single dose and safranal (200 mg/kg) was administered by gavage. Biochemical and histopathological methods were utilized for evaluation of the nephrotoxicity. The concentrations of creatinine and urea in plasma and levels of malondialdehyde (MDA) and glutathione (GSH) as well as total antioxidant status (TAS) and total oxidant status (TOS) were determined in kidney tissue. Administration of cisplatin to rats induced a marked renal failure, characterized with a significant increase in plasma creatinine and urea concentrations. MDA and TOS levels of rats that received cisplatin alone were not significantly different compared with those of the control group, but GSH and TAS levels in the only cisplatin-administered group were significantly decreased. Safranal administration produced amelioration in biochemical indices of nephrotoxicity in both plasma and kidney tissues when compared with the only cisplatin-administered group, pretreatment with safranal being more effective. As a result, safranal treatment might have a protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat.

  5. Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine

    NASA Astrophysics Data System (ADS)

    Motlagh, N. S. Hosseini; Parvin, P.; Ghasemi, F.; Atyabi, F.; Jelvani, S.; Abolhosseini, S.

    2016-07-01

    The fluorescence nature of chemo-drugs is useful for simultaneous cancer diagnosis and therapy. Here, the laser induced fluorescence (LIF) properties of irinotecan, gemcitabine and navelbine are extensively investigated. The UV photons provoke the desired transitions of the several chemo-drugs by virtue of the XeCl laser at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration, while no spectral shift is measured for irinotecan, gemcitabine and navelbine because of a large Stokes shift. On the other hand, doxorubicin is characterized by a large overlapping between absorption and emission spectra giving rise to a sensible red shift. The fluorescence extinction α and self-quenching k coefficients as well as the quantum yield η f of those chemo-drugs are determined accordingly. In fact, irinotecan shows the highest quantum efficiency among the chemo-drugs of interest.

  6. TM4SF1 Promotes Gemcitabine Resistance of Pancreatic Cancer In Vitro and In Vivo

    PubMed Central

    Ramachandran, Vijaya; Arumugam, Thiruvengadam; Deng, Defeng; Li, Zhaoshen; Xu, Leiming; Logsdon, Craig D.

    2015-01-01

    Background TM4SF1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and affects the development of this cancer. Also, multidrug resistance (MDR) is generally associated with tumor chemoresistance in pancreatic cancer. However, the correlation between TM4SF1 and MDR remains unknown. This research aims to investigate the effect of TM4SF1 on gemcitabine resistance in PDAC and explore the possible molecular mechanism between TM4SF1 and MDR. Methods The expression of TM4SF1 was evaluated in pancreatic cancer cell lines and human pancreatic duct epithelial (HPDE) cell lines by quantitative RT-PCR. TM4SF1 siRNA transfection was carried out using Hiperfect transfection reagent to knock down TM4SF1. The transcripts were analyzed by quantitative RT-PCR, RT-PCR and western blotting for further study. The cell proliferation and apoptosis were obtained to investigate the sensitivity to gemcitabine of pancreatic cancer cells after silencing TM4SF1 in vitro. We demonstrated that cell signaling of TM4SF1 mediated chemoresistance in cancer cells by assessing the expression of multidrug resistance (MDR) genes using quantitative RT-PCR. In vivo, we used orthotopic pancreatic tumor models to investigate the effect of proliferation after silencing TM4SF1 by a lentivirus-mediated shRNA in MIA PaCa-2 cell lines. Results The mRNA expression of TM4SF1 was higher in seven pancreatic cancer cell lines than in HPDE cell lines. In three gemcitabine-sensitive cell lines (L3.6pl, BxPC-3, SU86.86), the expression of TM4SF1 was lower than that in four gemcitabine-resistant cell lines (MIA PaCa-2, PANC-1, Hs766T, AsPC-1). We evaluated that TM4SF1 was a putative target for gemcitabine resistance in pancreatic cancer cells. Using AsPC-1, MIA PaCa-2 and PANC-1, we investigated that TM4SF1 silencing affected cell proliferation and increased the percentages of cell apoptosis mediated by treatment with gemcitabine compared with cells which were treated with negative control. This resistance was

  7. Randomised comparison of cisplatin with cyclophosphamide/cisplatin and with cyclophosphamide/doxorubicin/cisplatin in advanced ovarian cancer. Gruppo Interegionale Cooperativo Oncologico Ginecologia.

    PubMed

    1987-08-15

    565 patients with stage III-IV epithelial ovarian cancer were randomly assigned to receive cisplatin (P), cyclophosphamide and cisplatin (CP), or cyclophosphamide, doxorubicin, and cisplatin (CAP). Data on 531 patients were analysed. Treatment with CAP resulted in a significantly higher overall (complete and partial) response rate (66 vs 56 vs 49% for CAP, CP, and P, respectively), but the rate of complete surgical response for the three treatment arms was similar (26, 21, and 20%). Size of residual tumour after first surgery and Karnofsky index were the best predictors of complete remission. Survival and disease-free survival were not significantly different in the three arms, although progression-free survival was significantly longer after CAP. However, tumour size, cell type, and Karnofsky index, but not therapy, were independent predictors for survival. Haematological toxicity was highest with CAP. The addition of cyclophosphamide or doxorubicin and cyclophosphamide to cisplatin does not substantially increase the number of potentially curable, advanced ovarian cancer patients.

  8. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence; Chang, Stephanie; Kuo, Timothy; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Greco, Ralph; Yang, George P.; Koong, Albert C.

    2008-11-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife. Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.

  9. Growth inhibition of human pancreatic cancer cells by human interferon-beta gene combined with gemcitabine.

    PubMed

    Endou, Masato; Mizuno, Masaaki; Nagata, Takuya; Tsukada, Kazuhiro; Nakahara, Norimoto; Tsuno, Takaya; Osawa, Hirokatsu; Kuno, Tomohiko; Fujita, Mitsugu; Hatano, Manabu; Yoshida, Jun

    2005-02-01

    We examined the anti-tumor effect of cationic multilamellar liposome containing human IFN-beta (huIFN-beta) gene against cultured human pancreatic cancer cells. We also evaluated the combined effect of huIFN-beta gene entrapped in liposomes and gemcitabine. Furthermore, we examined the anti-tumor mechanisms of the therapy, with emphasis on the Ras-related signal pathway. Three human pancreatic cancer cell lines (AsPc-1, MIAPaCa-2, and PANC-1) were used in this study. The growth inhibition together with the therapy were evaluated by WST-1 assay; the production of huIFN-beta protein was measured by ELISA; the cell cycle and apoptosis were analyzed using a FACScan flow cytometer; the protein levels of Son of sevenless (SOS-1) and Ras-GAP were measured by Western blotting; and the activation of Ras-GTP was evaluated by the immunoprecipitation method. As a result, we found that huIFN-beta gene entrapped in liposomes demonstrated a strong anti-tumor effect against human pancreatic cancer cells. The treatment that combined huIFN-beta gene entrapped in liposomes and gemcitabine was more effective than each treatment alone. Although gemcitabine remarkably reduced the level of SOS-1, the above combined therapy reduced the level of SOS-1 even more significantly. Both huIFN-beta gene entrapped in liposomes and the com-bination of huIFN-beta gene entrapped in liposomes and gemcitabine increased the level of Ras-GAP, and decreased the activity of Ras-GTP. These results suggest that this combination therapy can induce strong anti-tumor activity against human pancreatic cancer cells through the regulation of the Ras-related signal pathway.

  10. Mild Hyperthermia Enhances Transport of Liposomal Gemcitabine and Improves in vivo Therapeutic Response

    PubMed Central

    Kirui, Dickson K; Celia, Christian; Molinaro, Roberto; Bansal, Shyam S.; Cosco, Donato; Fresta, Massimo; Shen, Haifa; Ferrari, Mauro

    2015-01-01

    Obstructive biological barriers limit the transport and efficacy of cancer nanotherapeutics. Creative manipulation of tumor microenvironment provides promising avenues towards improving chemotherapeutic response. Such strategies include the use of mechanical stimuli to overcome barriers, and increase drug delivery and therapeutic efficacy. The rational use of gold nanorod-mediated mild hyperthermia treatment (MHT) alters tumor transport properties, increases liposomal gemcitabine (Gem Lip) delivery and anti-tumor efficacy in pancreatic cancer CAPAN-1 tumor model. MHT treatment led to a 3-fold increase in accumulation of 80-nm liposomes and enhanced spatial interstitial distribution. I.v. injection of Gem Lip and MHT treatment led to a 3-fold increase in intratumor gemcitabine concentration compared to chemotherapeutic infusion alone. Furthermore, combination of MHT treatment with infusion of 12 mg/kg Gem Lip led to a 2-fold increase in therapeutic efficacy and inhibition of CAPAN-1 tumor growth when compared to equimolar chemotherapeutic treatment alone. Enhanced therapeutic effect was confirmed by reduction in tumor size and increase in apoptotic index where MHT treatment combined with 12 mg/kg Gem Lip achieved similar therapeutic efficacy as the use of 60 mg/kg free gemcitabine. In conclusion, we demonstrated improvements in vivo efficacy resulting from MHT treatment that overcome transport barriers, promote delivery, improve efficacy of nanomedicines. PMID:25721343

  11. The Blood Flow Shutdown Induced by Combretastatin A4 Impairs Gemcitabine Delivery in a Mouse Hepatocarcinoma

    PubMed Central

    Fruytier, Anne-Catherine; Le Duff, Cecile S.; Po, Chrystelle; Magat, Julie; Bouzin, Caroline; Neveu, Marie-Aline; Feron, Olivier; Jordan, Benedicte F.; Gallez, Bernard

    2016-01-01

    In recent clinical studies, vascular disrupting agents (VDAs) are mainly used in combination with chemotherapy. However, an often overlooked concern in treatment combination is the VDA-induced impairment of chemotherapy distribution in the tumor. The work presented here investigated the impact of blood flow shutdown induced by Combretastatin A4 (CA4) on gemcitabine uptake into mouse hepatocarcinoma. At 2 h after CA4 treatment, using DCE-MRI, a significant decrease in the perfusion-relevant parameters Ktrans and Vp were observed in treated group compared with the control group. The blood flow shutdown was indeed confirmed by a histology study. In a third experiment, the total gemcitabine uptake was found to be significantly lower in treated tumors, as assessed in a separate experiment using ex vivo fluorine nuclear magnetic resonance spectroscopy. The amount of active metabolite gemcitabine triphosphate was also lower in treated tumors. In conclusion, the blood flow shutdown induced by VDAs can impact negatively on the delivery of small cytotoxic agents in tumors. The present study outlines the importance of monitoring the tumor vascular function when designing drug combinations. PMID:28066252

  12. Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine.

    PubMed

    Weiss, Jason T; Dawson, John C; Fraser, Craig; Rybski, Witold; Torres-Sánchez, Carmen; Bradley, Mark; Patton, E Elizabeth; Carragher, Neil O; Unciti-Broceta, Asier

    2014-06-26

    Bioorthogonal chemistry has become one of the main driving forces in current chemical biology, inspiring the search for novel biocompatible chemospecific reactions for the past decade. Alongside the well-established labeling strategies that originated the bioorthogonal paradigm, we have recently proposed the use of heterogeneous palladium chemistry and bioorthogonal Pd(0)-labile prodrugs to develop spatially targeted therapies. Herein, we report the generation of biologically inert precursors of cytotoxic gemcitabine by introducing Pd(0)-cleavable groups in positions that are mechanistically relevant for gemcitabine's pharmacological activity. Cell viability studies in pancreatic cancer cells showed that carbamate functionalization of the 4-amino group of gemcitabine significantly reduced (>23-fold) the prodrugs' cytotoxicity. The N-propargyloxycarbonyl (N-Poc) promoiety displayed the highest sensitivity to heterogeneous palladium catalysis under biocompatible conditions, with a reaction half-life of less than 6 h. Zebrafish studies with allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed N-Poc as the most suitable masking group for implementing in vivo bioorthogonal organometallic chemistry.

  13. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response.

    PubMed

    Kirui, Dickson K; Celia, Christian; Molinaro, Roberto; Bansal, Shyam S; Cosco, Donato; Fresta, Massimo; Shen, Haifa; Ferrari, Mauro

    2015-05-01

    Obstructive biological barriers limit the transport and efficacy of cancer nanotherapeutics. Creative manipulation of tumor microenvironment provides promising avenues towards improving chemotherapeutic response. Such strategies include the use of mechanical stimuli to overcome barriers, and increase drug delivery and therapeutic efficacy. The rational use of gold nanorod-mediated mild hyperthermia treatment (MHT) alters tumor transport properties, increases liposomal gemcitabine (Gem Lip) delivery, and antitumor efficacy in pancreatic cancer CAPAN-1 tumor model. MHT treatment leads to a threefold increase in accumulation of 80-nm liposomes and enhances spatial interstitial distribution. I.v. injection of Gem Lip and MHT treatment lead to a threefold increase in intratumor gemcitabine concentration compared to chemotherapeutic infusion alone. Furthermore, combination of MHT treatment with infusion of 12 mg kg(-1) Gem Lip leads to a twofold increase in therapeutic efficacy and inhibition of CAPAN-1 tumor growth when compared to equimolar chemotherapeutic treatment alone. Enhanced therapeutic effect is confirmed by reduction in tumor size and increase in apoptotic index where MHT treatment combined with 12 mg kg(-1) Gem Lip achieves similar therapeutic efficacy as the use of 60 mg kg(-1) free gemcitabine. In conclusion, improvements in vivo efficacy are demonstrated resulting from MHT treatment that overcome transport barriers, promote delivery, improve efficacy of nanomedicines.

  14. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549).

    PubMed

    Coyne, Cody P; Narayanan, Lakshmi

    2016-08-25

    One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10(-9)  M and 10(-7)  M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.

  15. A Novel Strategy to Improve the Therapeutic Efficacy of Gemcitabine for Non-Small Cell Lung Cancer by the Tumor-Penetrating Peptide iRGD

    PubMed Central

    Li, Ke; Wang, Haiyu; Li, Huizhong; Zheng, Junnian

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, comprising approximately 75–80% of all lung cancers. Gemcitabine is an approved chemotherapy drug for NSCLC. The objective of this study was to develop a novel strategy to improve the therapeutic efficacy of Gemcitabine for NSCLC by the co-administered iRGD peptide. We showed that the rates of positive expression of αvβ3, αvβ5 and NRP-1 in the A549 cell line were 68.5%, 35.3% and 94.5%, respectively. The amount of Evans Blue accumulated in the tumor of Evans Blue+iRGD group was 2.5 times that of Evans Blue group. The rates of growth inhibition of the tumors of the iRGD group, the Gemcitabine group and the Gemcitabine+iRGD group were 8%, 59.8% and 86.9%, respectively. The results of mechanism studies showed that PCNA expression in the Gemcitabine+iRGD group decreased 71.5% compared with that in Gemcitabine group. The rate of apoptosis in the Gemcitabine+iRGD group was 2.2 time that of the Gemcitabine group. Therefore, the tumor-penetrating Peptide iRGD can enhance the tumor-penetrating ability and therapeutic efficacy of Gemcitabine in the A549 xenograft. The combined application of Gemcitabine with iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of Gemcitabine in patients with NSCLC. PMID:26066322

  16. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling

    PubMed Central

    Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-01-01

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer. PMID:27556697

  17. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models

    PubMed Central

    Mazza, Tommaso; Panebianco, Concetta; Saracino, Chiara; Pereira, Stephen P.; Graziano, Paolo; Pazienza, Valerio

    2015-01-01

    Background/aims Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. Short-term fasting cycles have been shown to potentiate the efficacy of chemotherapy against glioma. The aim of this study was to assess the effect of fasting cycles on the efficacy of gemcitabine, a standard treatment for PC patients, in vitro and in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in standard and fasting mimicking culturing condition to evaluate the effects of gemcitabine. Pancreatic cancer xenograft mice were subjected to 24h starvation prior to gemcitabine injection to assess the tumor volume and weight as compared to mice fed ad libitum. Results Fasted pancreatic cancer cells showed increased levels of equilibrative nucleoside transporter (hENT1), the transporter of gemcitabine across the cell membrane, and decreased ribonucleotide reductase M1 (RRM1) levels as compared to those cultured in standard medium. Gemcitabine was more effective in inducing cell death on fasted cells as compared to controls. Consistently, xenograft pancreatic cancer mice subjected to fasting cycles prior to gemcitabine injection displayed a decrease of more than 40% in tumor growth. Conclusion Fasting cycles enhance gemcitabine effect in vitro and in the in vivo PC xenograft mouse model. These results suggest that restrictive dietary interventions could enhance the efficacy of existing cancer treatments in pancreatic cancer patients. PMID:26176887

  18. Replication-dependent and transcription-dependent mechanisms of DNA double-strand break induction by the topoisomerase 2-targeting drug etoposide.

    PubMed

    Tammaro, Margaret; Barr, Peri; Ricci, Brett; Yan, Hong

    2013-01-01

    Etoposide is a DNA topoisomerase 2-targeting drug widely used for the treatment of cancer. The cytoxicity of etoposide correlates with the generation of DNA double-strand breaks (DSBs), but the mechanism of how it induces DSBs in cells is still poorly understood. Catalytically, etoposide inhibits the re-ligation reaction of Top2 after it nicks the two strands of DNA, trapping it in a cleavable complex consisting of two Top2 subunits covalently linked to the 5' ends of DNA (Top2cc). Top2cc is not directly recognized as a true DSB by cells because the two subunits interact strongly with each other to hold the two ends of DNA together. In this study we have investigated the cellular mechanisms that convert Top2ccs into true DSBs. Our data suggest that there are two mechanisms, one dependent on active replication and the other dependent on proteolysis and transcription. The relative contribution of each mechanism is affected by the concentration of etoposide. We also find that Top2α is the major isoform mediating the replication-dependent mechanism and both Top2α and Top2 mediate the transcription-dependent mechanism. These findings are potentially of great significance to the improvement of etoposide's efficacy in cancer therapy.

  19. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma.

    PubMed

    Tsend-Ayush, Altansukh; Zhu, Xiumei; Ding, Yu; Yao, Jianxu; Yin, Lifang; Jianping, Zhou; Yao, Jing

    2017-03-14

    Many effective anticancer drugs are limited to use for hepatocellular carcinoma (HCC) therapy due to drug resistance mechanisms in liver cells. In recent years, tumor-targeted drug delivery and inhibition of drug resistance-related mechanisms become an integrated strategy to combat effectively chemo-resistant cancer. Herein, lactobionic acid-conjugated D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS-LA conjugate) was developed as a potential asialoglycoprotein receptor (ASGPR)-targeted nanocarrier and an efficient inhibitor of P-glycoprotein (P-gp) to enhance etoposide (ETO) efficacy against HCC. Main properties of ETO-loaded TPGS-LA nanoparticles (NPs) were tested through in vitro and in vivo studies after prepared using nanoprecipitation method and characterized by dynamic light scattering (DLS). According to the results, smaller sized (~141.43 nm) and positively charged ETO-loaded TPGS-LA NPs were more suitable to provide an efficient delivery to hepatoma cells by avoiding clearance mechanisms. It was found that ETO-loaded TPGS-LA NPs could enhance noticeably cytotoxicity of ETO in HepG2 cells. Besides, markedly higher internalization by ASGPR-overexpressed HepG2 cells and efficient accumulation at tumor site in vivo were revealed in TPGS-LA NPs group. More importantly, animal studies confirmed that ETO-loaded TPGS-LA NPs achieved the highest therapeutic efficacy against HCC. Interestingly, ETO-loaded TPGS-LA NPs also exhibited a great inhibitory effect on P-gp compared to ETO-loaded TPGS NPs. These results suggest that TPGS-LA NPs could be used as a potential delivery system of ETO against HCC.

  20. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    PubMed Central

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca2+ concentration, including cytosolic and mitochondrial Ca2+ in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca2+ overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance. PMID:27330840

  1. Equitoxicity of bolus and infusional etoposide: results of a multicenter randomised trial of the German High-Grade Non-Hodgkins Lymphoma Study Group (DSHNHL) in elderly patients with refractory or relapsing aggressive non-Hodgkin lymphoma using the CEMP regimen (cisplatinum, etoposide, mitoxantrone and prednisone).

    PubMed

    Zwick, Carsten; Birkmann, Josef; Peter, Norma; Bodenstein, Heinrich; Fuchs, Roland; Hänel, Mathias; Reiser, Marcel; Hensel, Manfred; Clemens, Michael; Zeynalova, Samira; Ziepert, Marita; Pfreundschuh, Michael

    2008-09-01

    To compare toxicity of etoposide bolus with continuous infusion and to assess the efficacy of the CEMP (cisplatinum, etoposide, mitoxantrone, prednisone) regimen, 47 patients with refractory or relapsed aggressive non-Hodgkin's lymphoma older than 60 years (n=43) or not qualifying for high-dose chemotherapy (n=4) received five four-weekly CEMP cycles. Patients were randomised to start with bolus or continuous-infusion etoposide and then received bolus and infusional etoposide in an alternating fashion. The primary objective was the comparison of differences in the course of leukocytopenia and thrombocytopenia between the two application schedules. CEMP was well tolerated with little organ and moderate haematotoxicity. There was no difference in toxicity between bolus and continuous-infusion etoposide. Complete remission rate was 44% in patients relapsing >or=1 year, 27% in patients relapsing within the first year after achieving complete remission and 5% in primary refractory patients. Median event-free and overall survivals for all patients were 3 and 10 months, respectively. The observed equitoxicity and the more challenging logistics of a 60-h infusion make bolus injection the preferred application of etoposide. As the CEMP regimen is well tolerated and efficacious in elderly patients with relapsed or refractory aggressive non-Hodgkin's lymphoma for whom more aggressive therapies are not feasible, a three-weekly modification of CEMP should be tested in combination with rituximab.

  2. New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity

    PubMed Central

    Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su-Bin; Yang, Sei-Hoon; Shim, Hyeok; Cho, Eun-Young; Kwon, Kang-Beom; Kwak, Tae Hwan; So, Hong-Seob

    2016-01-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways. PMID:26881219

  3. Protective effect of thymoquinone against cisplatin-induced ototoxicity.

    PubMed

    Sagit, Mustafa; Korkmaz, Ferhat; Akcadag, Alper; Somdas, Mehmet Akıf

    2013-08-01

    The aim of this study was to investigate the potential protective effect of thymoquinone against cisplatin-induced ototoxicity. This study is a prospective, controlled experimental animal study. Experiments were performed on 30 healthy female Sprague-Dawley rats. Thirty animals were divided into three groups of 10 animals each. Group 1 received an intraperitoneal (i.p.) injection of cisplatin 15 mg/kg. Group 2 received i.p. thymoquinone 40 mg/kg/day for 2 days prior to cisplatin injection and third day i.p. cisplatin 15 mg/kg was administered concomitantly. Group 2 continued to receive i.p. thymoquinone until fifth day. Group 3 received i.p. thymoquinone 40 mg/kg/day for 5 days. Pretreatment distortion product otoacoustic emissions (DPOAE) and auditory brain stem responses (ABR) testing from both ears were obtained from the animals in all groups. After the baseline measurements, drugs were injected intraperitonally. After an observation period of 3 days, DPOAE measurements and ABR testing were obtained again and compared with the pretreatment values. There was no statistically significant difference between pre and post-treatment DPOAE responses and ABR thresholds group 2 and 3. However, group 1 demonstrated significant deterioration of the ABR thresholds and DPOAE responses. Our results suggest that DPOAE responses and ABR thresholds were preserved in the cisplatin plus TQ-treated group when compared with the group receiving cisplatin alone. According to these results, cisplatin-induced ototoxicity may be prevented by thymoquinone use in rats.

  4. Protective role of misoprostol against cisplatin-induced ototoxicity.

    PubMed

    Doğan, Murat; Polat, Halil; Yaşar, Mehmet; Kaya, Altan; Bayram, Ali; Şenel, Fatma; Özcan, İbrahim

    2016-11-01

    Cis-diammineedichloroplatinum (cisplatin) is a chemotherapeutic agent that is widely used in the treatment of many cancers. Nephrotoxicity, ototoxicity and neurotoxicity are dose-limiting adverse effects for cisplatin. The cellular and molecular mechanisms underlying cisplatin-induced ototoxicity aren't fully understood. It has been proposed that cisplatin primarily cause damage at the cochlea, outer hair cells in particular, leading to excessive production of free oxygen radicals in the organ of Corti, stria vascularis, spiral ligament, and spiral ganglionic cells. The cytotoxicity is associated with the generation of reactive oxygen species (ROS); thus, there is an increasing interest on antioxidants with an effort to discover the established protection against cisplatin-induced ototoxicity over time. Misoprostol (MP) has gained considerable interest as a reactive oxygen species scavenger in recent years. To best of our knowledge, there is no study about protective effect of MP, a prostaglandin E1 (PGE1) analogue, on cisplatin-induced ototoxicity. In our study, we show that protective effects of misoprostol on cisplatin-induced ototoxcity on rats.

  5. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  6. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism.

    PubMed

    Kim, Hyung-Jin; Pandit, Arpana; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2016-03-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity.

  7. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail

    PubMed Central

    Fang, Shuo; Yu, Ling; Mei, Hongjun; Yang, Jian; Gao, Tian; Cheng, Anyuan; Guo, Weichun; Xia, Kezhou; Liu, Gaiwei

    2016-01-01

    More than 30% of patients with osteosarcoma succumb to pulmonary metastases. Epithelial-mesenchymal transition (EMT) is a biological process by which tumor cells gain an increased capacity for invasiveness and metastasis. A previous study confirmed the phenomenon of EMT in osteosarcoma, a mesenchymal-derived tumor. However, whether chemotherapy affects EMT remains to be elucidated. In the present study, the osteosarcoma cells were exposed to a sublethal dose of cisplatin, and any surviving cells were assumed to be more resistant to cisplatin. In addition, these cells exhibited a more mesenchymal phenotype. Immunofluorescence analysis revealed that the cisplatin treated cells had an increased long/short axis ratio and increased expression of N-cadherin compared with control cells. A panel of EMT-associated genes was subsequently assessed by quantitative PCR and western blot analysis, and they were observed to be significantly upregulated in the cisplatin treated cells. The in vitro wound healing and Transwell assay indicated that the cisplatin treated cells were more prone to migrate and invade. An in vivo assay showed that the cisplatin-treated xenograft had increased expression of EMT-associated genes, and exhibited increased pulmonary lesions compared with the control, which indicated an elevated capacity to metastasize. The expression of Snail was knocked down by specific small interfering RNA, and it was observed that Snail inhibition promoted cisplatin sensitivity, and cisplatin-induced EMT was significantly blocked. Taken together, the results of the present study supported that idea that Snail participates in cisplatin-induced EMT in osteosarcoma cells, and targeting EMT-transcription factors may offer promise for the therapeutics of osteosarcoma. PMID:28105207

  8. BEX3 contributes to cisplatin chemoresistance in nasopharyngeal carcinoma.

    PubMed

    Gao, Wei; Li, John Zeng-Hong; Chen, Si-Qi; Chu, Chiao-Yun; Chan, Jimmy Yu-Wai; Wong, Thian-Sze

    2017-02-01

    Nasopharyngeal carcinoma (NPC) can develop cisplatin-resistant phenotype. Research has revealed that enriched in cancer stem cell population is involved in developing cisplatin-resistant phenotype. CD271 is a candidate stem cell maker in head and neck cancers. The CD receptor does not possess any enzymatic property. Signal transduction function of CD271 is mediated by the cellular receptor-associated protein. Our data showed that Brain-expressed X-linked 3 (BEX3), a CD271 receptor-associated protein, was overexpressed in NPC. BEX3 overexpression was a unique event in cancer developed in the head and neck regions, especially NPC. BEX3 expression was inducible by cisplatin in NPC. In cisplatin-resistant NPC xenograft, treatment with nontoxic level of cisplatin led to a remarkable increase in BEX3 level. High BEX3 expression was accompanied with high octamer-binding transcription factor 4 (OCT4) expression in cisplatin-resistant NPC. To confirm the inducing role of BEX3 on OCT4 expression, we knockdown BEX3 using siRNA and compared the expression of OCT4 with mock transfectants. Suppressing BEX3 transcripts led to a significant reduction in OCT4. In addition, targeting BEX3 using shRNA could increase the sensitivity of NPC cells to cisplatin. In summary, our results indicated a unique functional role of BEX3 in mediating the sensitivity of NPC cells to cisplatin. Targeting or blocking BEX3 activity might be useful in reversing the cisplatin-resistant phenotype in NPC.

  9. Systems biology of cisplatin resistance: past, present and future

    PubMed Central

    Galluzzi, L; Vitale, I; Michels, J; Brenner, C; Szabadkai, G; Harel-Bellan, A; Castedo, M; Kroemer, G

    2014-01-01

    The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant

  10. Evaluation of nanoparticle delivered cisplatin in beagles

    NASA Astrophysics Data System (ADS)

    Feldhaeusser, Brittany; Platt, Simon R.; Marrache, Sean; Kolishetti, Nagesh; Pathak, Rakesh K.; Montgomery, David J.; Reno, Lisa R.; Howerth, Elizabeth; Dhar, Shanta

    2015-08-01

    Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg

  11. A novel mouse PKC{delta} splice variant, PKC{delta}IX, inhibits etoposide-induced apoptosis

    SciTech Connect

    Kim, Jung D.; Seo, Kwang W.; Lee, Eun A.; Quang, Nguyen N.; Cho, Hong R.; Kwon, Byungsuk

    2011-07-01

    Highlights: {yields} A novel PKC{delta} isoform, named PKC{delta}IX, that lacks the C1 domain and the ATP-binding site is ubiquitously expressed. {yields} PKC{delta}IX inhibits etoposide-induced apoptosis. {yields} PKC{delta}IX may function as an endogenous dominant negative isoform for PKC{delta}. -- Abstract: Protein kinase C (PKC) {delta} plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKC{delta} generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKC{delta} isoform named PKC{delta}IX (Genebank Accession No. (HQ840432)). PKC{delta}IX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKC{delta}. PKC{delta}IX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKC{delta}IX provided a possibility that this PKC{delta} isozyme functions as a novel dominant-negative form for PKC{delta} due to its lack of the ATP-binding domain that is required for the kinase activity of PKC{delta}. Indeed, overexpression of PKC{delta}IX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKC{delta}IX protein could competitively inhibit the kinase activity of PKC{delta}. We conclude that PKC{delta}IX can function as a natural dominant-negative inhibitor of PKC{delta}in vivo.

  12. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  13. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to

  14. Transarterial Chemoembolization Using Cisplatin Powder in a Rabbit Model of Liver Cancer

    SciTech Connect

    Morimoto, Kengo Sakaguchi, Hiroshi; Tanaka, Toshihiro; Yamamoto, Kiyosei; Anai, Hiroshi; Hayashi, Takayuki; Satake, Mitsuo; Kichikawa, Kimihiko

    2008-09-15

    The purpose of this study was to investigate the pharmacological advantages of transarterial chemoembolization (TACE) with cisplatin powder for hypervascular hepatic tumors in animal experiments. VX2 tumors were transplanted to the livers of nine rabbits. Cisplatin (1 mg/kg) was infused into the proper hepatic artery. In the cisplatin-HAI group, cisplatin solution was infused. In the cisplatin-GS-TACE group, after infusion of cisplatin solution, gelatin sponge particles were used for embolization. In the cisplatin-Lp-TACE group, after infusion of a cisplatin powder and lipiodol (10 mg/ml) suspension, gelatin sponge particles were used for embolization. Before and after administration, platinum concentrations in plasma were measured. Using liver specimens that were excised 60 min after infusion, platinum concentrations in tumorous and nontumorous liver tissues were measured. The mean platinum concentration in tumorous tissue was 0.88 {mu}g/ml for the cisplatin-HAI group, 1.23 {mu}g/ml for the cisplatin-GS-TACE group, and 12.65 {mu}g/ml for the cisplatin-Lp-TACE group. The platinum concentration for the cisplatin-Lp-TACE group was significantly higher than that for the cisplatin-HAI group (p = 0.004) and the cisplatin-GS-TAE group (p = 0.004). The mean platinum concentration in nontumorous liver tissue was 0.98 {mu}g/ml for the cisplatin-HAI group, 1.13 {mu}g/ml for the cisplatin-GS-TACE group, and 1.09 {mu}g/ml for the cisplatin-Lp-TACE group; no significant differences were seen. At both 5 and 10 min after infusion, the platinum concentrations for the cisplatin-Lp-TACE group were lower than those for the other two groups. The present results suggest that TACE using cisplatin powder/lipiodol suspension and gelatin sponge for hypervascular hepatic tumors has a number of pharmacological advantages.

  15. BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine.

    PubMed

    Jones, Rebecca M; Kotsantis, Panagiotis; Stewart, Grant S; Groth, Petra; Petermann, Eva

    2014-10-01

    Replication inhibitors cause replication fork stalling and double-strand breaks (DSB) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51 mediates fork restart and DSB repair. HR defects therefore sensitize cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication inhibitor used to treat cancers with mutations in HR genes such as BRCA2. Here, we investigate why, paradoxically, mutations in HR genes protect cells from killing by gemcitabine. Using DNA replication and DNA damage assays in mammalian cells, we show that even short gemcitabine treatments cause persistent replication inhibition. BRCA2 and RAD51 are recruited to chromatin early after removal of the drug, actively inhibit replication fork progression, and promote the formation of MUS81- and XPF-dependent DSBs that remain unrepaired. Our data suggest that HR intermediates formed at gemcitabine-stalled forks are converted into DSBs and thus contribute to gemcitabine-induced cell death, which could have implications for the treatment response of HR-deficient tumors.

  16. Combination therapy of gemcitabine or oral S-1 with the anti-VEGF monoclonal antibody bevacizumab for pancreatic neuroendocrine carcinoma

    PubMed Central

    KASUYA, KAZUHIKO; NAGAKAWA, YUICHI; SUZUKI, MINAKO; SUZUKI, YOSHIAKI; KYO, BUNSO; SUZUKI, SATORU; MATSUDO, TAKAAKI; ITOI, TAKAO; TSUCHIDA, AKIHIKO; AOKI, TATSUYA

    2012-01-01

    We previously reported that the administration of bevacizumab for pancreatic neuroendocrine tumors inhibited angiogenesis in the host, resulting in tumor growth inhibition. In light of these results, we compared the effect of bevacizumab/gemcitabine/S-1 combination therapy vs. bevacizumab monotherapy. The QGP-1 pancreatic neuroendocrine carcinoma cell line and the BxPC-3 ductal cell carcinoma cell line were transplanted into the subcutaneous tissue of mice, and the mice were treated for 3 weeks with bevacizumab [50 mg/kg intraperitoneally (i.p.) twice weekly], gemcitabine (240 mg/kg i.p. once weekly) and S-1 (10 mg/kg orally five times weekly). The antitumor effect and side effects were evaluated by measuring the tumor volume and weight and by changes in body weight, respectively. The tumor volume became smaller (from the maximum volume) in the group treated with bevacizumab, gemcitabine and S-1 (BGS) and the group treated with bevacizumab and gemcitabine (BG). A significant difference was noted in the tumor weight between the BG group and the group treated with bevacizumab alone. A relatively significant decrease in the body weight was observed in the BGS and BG groups. We conclude that gemcitabine is appropriate as a drug used in combination with bevacizumab for pancreatic neuroendocrine tumors. PMID:22969935

  17. Combination therapy of gemcitabine or oral S-1 with the anti-VEGF monoclonal antibody bevacizumab for pancreatic neuroendocrine carcinoma.

    PubMed

    Kasuya, Kazuhiko; Nagakawa, Yuichi; Suzuki, Minako; Suzuki, Yoshiaki; Kyo, Bunso; Suzuki, Satoru; Matsudo, Takaaki; Itoi, Takao; Tsuchida, Akihiko; Aoki, Tatsuya

    2012-04-01

    We previously reported that the administration of bevacizumab for pancreatic neuroendocrine tumors inhibited angiogenesis in the host, resulting in tumor growth inhibition. In light of these results, we compared the effect of bevacizumab/gemcitabine/S-1 combination therapy vs. bevacizumab monotherapy. The QGP-1 pancreatic neuroendocrine carcinoma cell line and the BxPC-3 ductal cell carcinoma cell line were transplanted into the subcutaneous tissue of mice, and the mice were treated for 3 weeks with bevacizumab [50 mg/kg intraperitoneally (i.p.) twice weekly], gemcitabine (240 mg/kg i.p. once weekly) and S-1 (10 mg/kg orally five times weekly). The antitumor effect and side effects were evaluated by measuring the tumor volume and weight and by changes in body weight, respectively. The tumor volume became smaller (from the maximum volume) in the group treated with bevacizumab, gemcitabine and S-1 (BGS) and the group treated with bevacizumab and gemcitabine (BG). A significant difference was noted in the tumor weight between the BG group and the group treated with bevacizumab alone. A relatively significant decrease in the body weight was observed in the BGS and BG groups. We conclude that gemcitabine is appropriate as a drug used in combination with bevacizumab for pancreatic neuroendocrine tumors.

  18. A new liposomal formulation of Gemcitabine is active in an orthotopic mouse model of pancreatic cancer accessible to bioluminescence imaging.

    PubMed

    Bornmann, C; Graeser, R; Esser, N; Ziroli, V; Jantscheff, P; Keck, T; Unger, C; Hopt, U T; Adam, U; Schaechtele, C; Massing, U; von Dobschuetz, E

    2008-03-01

    Despite its rapid enzymatic inactivation and therefore limited activity in vivo, Gemcitabine is the standard drug for pancreatic cancer treatment. To protect the drug, and achieve passive tumor targeting, we developed a liposomal formulation of Gemcitabine, GemLip (Ø: 36 nm: 47% entrapment). Its anti-tumoral activity was tested on MIA PaCa-2 cells growing orthotopically in nude mice. Bioluminescence measurement mediated by the stable integration of the luciferase gene was employed to randomize the mice, and monitor tumor growth. GemLip (4 and 8 mg/kg), Gemcitabine (240 mg/kg), and empty liposomes (equivalent to 8 mg/kg GemLip) were injected intravenously once weekly for 5 weeks. GemLip (8 mg/kg) stopped tumor growth, as measured via in vivo bioluminescence, reducing the primary tumor size by 68% (SD +/- 8%; p < 0.02), whereas Gemcitabine hardly affected tumor size (-7%; +/- 1.5%). In 80% of animals, luciferase activity in the liver indicated the presence of metastases. All treatments, including the empty liposomes, reduced the metastatic burden. Thus, GemLip shows promising antitumoral activity in this model. Surprisingly, empty liposomes attenuate the spread of metastases similar to Gemcitabine and GemLip. Further, luciferase marked tumor cells are a powerful tool to observe tumor growth in vivo, and to detect and quantify metastases.

  19. Antitumor efficacy of combination of interferon-gamma-inducible protein 10 gene with gemcitabine, a study in murine model

    PubMed Central

    Mei, Kai; Wang, Lian; Tian, Ling; Yu, Jingrui; Zhang, Zhixuan; Wei, Yuquan

    2008-01-01

    Background Interferon-γ-inducible protein 10 (IP-10) is a potent inhibitor of tumor angiogenesis. It has been reported that the antiangiogenic therapy combined with chemotherapy has synergistic effects. Methods To elucidate the mechanisms of IP-10 gene combined with a chemotherapy agent, we intramuscularly injected pBLAST-IP-10 expression plasmid combined with gemcitabine into tumor-bearing mice. Results The proliferation of endothelial cells was effectively inhibited by IP-10 combined with gemcitabine in vitro. Treatment with pBLAST-IP-10 twice a week for 4 weeks combined with gemcitabine 10 mg/kg (once a week) resulted in sustained high level of IP-10 protein in serum, inhibition of tumor growth and prolongation of the survival of tumor-bearing mice. Compared with administration of IP-10 plasmid or gemcitabine alone, the angiogenesis in tumors were apparently inhibited, and the numbers of apoptotic cells and lymphocytes in tumor increased in the combination therapy group. Conclusion Our data indicate that the gene therapy of antiangiogenesis by intramuscular delivery of plasmid DNA encoding IP-10 combined with gemcitabine has synergistic effects on tomor by inhibiting the proliferation of endothelail cells, inducing the apoptosis of tumor cells, and recruiting lymphocytes to tumor in murine models. The present findings provided evidence of antitumor effects of genetherapy combined with chemotherapy. PMID:18983688

  20. Probenecid Sensitizes Neuroblastoma Cancer Stem Cells to Cisplatin.

    PubMed

    Campos-Arroyo, Denise; Maldonado, Vilma; Bahena, Ivan; Quintanar, Valeria; Patiño, Nelly; Carlos Martinez-Lazcano, Juan; Melendez-Zajgla, Jorge

    2016-01-01

    We used both in vitro cultures of neuroblastoma cell lines and nude-mice xenotransplants to explore the effects of co-administration of cisplatin and probenecid. Probenecid sensitized neuroblastoma cells, including tumor cells with stem features, to the effects of cisplatin, both in vitro and in vivo. This effect was mediated by an increase in the apoptotic cell death and a concomitant decrease in cell proliferation. This effect is accompanied by modulation of the mRNA and protein of the drug efflux transporters MDR1, MRP2, and BCRP. The co-administration of probenecid with cisplatin should be explored as a possible therapeutic strategy.

  1. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  2. Paclitaxel plus cisplatin vs. 5-fluorouracil plus cisplatin as first-line treatment for patients with advanced squamous cell esophageal cancer

    PubMed Central

    Liu, Ying; Ren, Zhonghai; Yuan, Long; Xu, Shuning; Yao, Zhihua; Qiao, Lei; Li, Ke

    2016-01-01

    Paclitaxel plus cisplatin and 5-fluorouracil plus cisplatin treatments are effective strategies for patients with advanced esophageal squamous cell carcinoma. This study was to evaluate the safety and efficacy of paclitaxel plus cisplatin and 5-fluorouracil plus cisplatin as first-line chemotherapy for patients with advanced esophageal squamous cell carcinoma. A total of 398 patients with advanced esophageal squamous cell carcinoma who received chemotherapy were included and divided into 2 groups: paclitaxel plus cisplatin group and 5-fluorouracil plus cisplatin group. 195 patients received paclitaxel plus cisplatin and 203 patients received 5-fluorouracil plus cisplatin. The objective response rates were 42.5% and 38.4% for paclitaxel plus cisplatin group and 5-fluorouracil plus cisplatin group, respectively (P=0.948). The median progression-free survival was 7.85 months (95% CI, 6.77-8.94 months) for the paclitaxel plus cisplatin group and 6.53 months (95% CI, 5.63-7.43 months) for the 5-fluorouracil plus cisplatin group with significant difference (P=0.02). The median overall survival was 13.46 months (95% CI, 12.01-14.91 months) for the paclitaxel plus cisplatin group and 12.67 months (95% CI, 11.87-13.47 months) for the 5-fluorouracil plus cisplatin group (P=0.204). The first-line chemotherapy of paclitaxel plus cisplatin had better median progression-free survival than 5-fluorouracil plus cisplatin in patients with advanced esophageal squamous cell carcinoma with tolerable toxicities. PMID:27822423

  3. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA

    PubMed Central

    Yadav, Arun A.; Wu, Xing; Patel, Daywin; Yalowich, Jack C.; Hasinoff, Brian B.

    2014-01-01

    Drugs that target DNA topoisomerase II isoforms and alkylate DNA represent two mechanistically distinct and clinically important classes of anticancer drugs. Guided by molecular modeling and docking a series of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds were designed, synthesized and biologically characterized. These hybrids were designed to alkylate nucleophilic protein residues on topoisomerase II and thus produce inactive covalent adducts and to also alkylate DNA. The most potent hybrid had a mean GI50 in the NCI-60 cell screen 17-fold lower than etoposide. Using a variety of in vitro and cell-based assays all of the hybrids tested were shown to target topoisomerase II. A COMPARE analysis indicated that the hybrids had NCI 60-cell growth inhibition profiles matching both etoposide and the N-mustard compounds from which they were derived. These results supported the conclusion that the hybrids displayed characteristics that were consistent with having targeted both topoisomerase II and DNA. PMID:25282653

  4. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1.

    PubMed

    Kollinerová, S; Dostál, Z; Modrianský, M

    2017-04-01

    Etoposide is commonly used as a monotherapy or in combination with other drugs for cancer treatments. In order to increase the drug efficacy, ceaseless search for novel combinations of drugs and supporting molecules is under way. MiRNAs are natural candidates for facilitating drug effect in various cell types. We used several systems to evaluate the effect of miR-29 family on etoposide toxicity in HeLa cells. We show that miR-29b significantly increases etoposide toxicity in HeLa cells. Because Mcl-1 protein has been recognized as a miR-29 family target, we evaluated downregulation of Mcl-1 protein splicing variant expression induced by miR-29 precursors and confirmed a key role of Mcl-1 protein in enhancing etoposide toxicity. Despite downregulation of Mcl-1 by all three miR-29 family members, only miR-29b significantly enhanced etoposide toxicity. We hypothesized that this difference may be linked to the change in Mcl-1L/Mcl-1S ratio induced by miR-29b. We hypothesized that the change could be due to miR-29b nuclear shuttling. Using specifically modified miR-29b sequences with enhanced cytosolic and nuclear localization we show that there is a difference, albeit statistically non-significant. In conclusion, we show that miR-29b has the synergistic effect with etoposide treatment in the HeLa cells and that this effect is linked to Mcl-1 protein expression and nuclear shuttling of miR-29b.

  5. Carmustine, etoposide, cytarabine and melphalan versus a newly designed intravenous busulfan-based Busulfex, etoposide and melphalan conditioning regimen for autologous hematopoietic cell transplant: a retrospective matched-pair analysis in advanced Hodgkin and non-Hodgkin lymphomas.

    PubMed

    Sakellari, Ioanna; Mallouri, Despoina; Batsis, Ioannis; Apostolou, Chrysa; Konstantinou, Varnavas; Abela, Eleni-Maria; Douka, Vasiliki; Marvaki, Anastasia; Karypidis, Kyriakos; Iskas, Michalis; Baliakas, Panayiotis; Kaloyannidis, Panayotis; Yannaki, Evangelia; Sotiropoulos, Damianos; Kouvatseas, Giorgos; Smias, Christos; Anagnostopoulos, Achilles

    2015-01-01

    Optimal conditioning remains a challenge in lymphomas. We designed a regimen consisting of Busulfex, etoposide and melphalan (BuEM). We retrospectively analyzed the outcome of patients conditioned with carmustine, etoposide, cytarabine and melphalan (BEAM) or BuEM in matched-pair analysis on a planned 2:1 ratio. Eighty-seven patients treated with BEAM who fulfilled the matching criteria were randomly selected. Two-year progression-free survival/overall survival (PFS/OS) were 63.2%/76.7% for BEAM vs. 65.6%/79.8% for BuEM after 64.7 and 42.7 months, respectively. Furthermore, marginally better PFS and OS were noted in Hodgkin lymphoma (HL) after BuEM. In multivariate analysis, PFS was superior in HL, chemosensitive disease and complete remission post-transplant. BEAM correlated with faster engraftment, reduced infections, less mucositis and liver toxicity, and BuEM with less need for blood cell and platelet transfusions and granulocyte colony-stimulating factor administration. In conclusion, BuEM was well tolerated and equally highly efficacious as BEAM for non-Hodgkin lymphoma and offered marginally significantly improved PFS and OS in HL with acceptable toxicity and zero mortality.

  6. Combining cisplatin with cationized catalase decreases nephrotoxicity while improving antitumor activity.

    PubMed

    Ma, S-F; Nishikawa, M; Hyoudou, K; Takahashi, R; Ikemura, M; Kobayashi, Y; Yamashita, F; Hashida, M

    2007-12-01

    Cisplatin is frequently used to treat solid tumors; however, nephrotoxicity due to its reactive oxygen species-mediated effect limits its use. We tested the ability of cationized catalase, a catalase derivative, to inhibit nephrotoxicity in cisplatin-treated mice. Immunohistochemical analysis showed that the catalase derivative concentrated in the kidney more efficiently than native catalase. Repeated intravenous doses of cationized catalase significantly decreased cisplatin-induced changes in serum creatinine, blood urea nitrogen, nitrite/nitrate levels, lactic dehydrogenase activity, and renal total glutathione and malondialdehyde contents. In addition, cationized catalase effectively blunted cisplatin-induced proximal tubule necrosis but had no significant effect on the cisplatin-induced inhibition of subcutaneous tumor growth. Repeated doses of catalase, especially cationized catalase, significantly increased the survival of cisplatin-treated tumor-bearing mice preventing cisplatin-induced acute death. Our studies suggest that catalase and its derivatives inhibit cisplatin-induced nephrotoxicity, thus improving the efficiency of cisplatin to treat solid tumors.

  7. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice.

    PubMed

    Ueki, Masaaki; Ueno, Masaki; Morishita, Jun; Maekawa, Nobuhiro

    2013-05-01

    Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Mice were randomly divided into four groups: control, cisplatin, cisplatin + curcumin and curcumin. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without curcumin treatment (100 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). Serum and renal tumor necrosis factor (TNF)-alpha and renal monocyte chemoattractant protein (MCP)-1 concentrations, intercellular adhesion molecule-1 (ICAM-1) mRNA expression in kidney, renal function and histological changes were determined 72 h after cisplatin injection. Serum TNF-alpha concentration in the cisplatin + curcumin group significantly decreased compared with that in the cisplatin group. Renal TNF-alpha and MCP-1 concentrations and ICAM-1 mRNA expression in kidney in the cisplatin + curcumin group also significantly decreased compared with those in the cisplatin group. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis scores were attenuated by curcumin treatment. These results indicate that curcumin acts to reduce cisplatin-induced nephrotoxicity through its anti-inflammatory effects. Thus, curcumin may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

  8. Conjugation of Cisplatin Analogues and Cyclooxygenase Inhibitors to Overcome Cisplatin Resistance

    PubMed Central

    Neumann, Wilma; Crews, Brenda C.; Sárosi, Menyhárt B.; Daniel, Cristina M.; Ghebreselasie, Kebreab; Scholz, Matthias S.; Marnett, Lawrence J.

    2015-01-01

    Cyclooxygenase (COX) is an enzyme involved in tumorigenesis and is associated with tumor cell resistance against platinum-based antitumor drugs. Cisplatin analogues were conjugated with COX inhibitors (indomethacin, ibuprofen) to study the synergistic effects that were previously observed in combination treatments. The conjugates ensure concerted transport of both drugs into cells, and subsequent intracellular cleavage enables a dual-action mode. Whereas the platinum(II) complexes showed cytotoxicities similar to those of cisplatin, the platinum(IV) conjugates revealed highly increased cytotoxic activities and were able to completely overcome cisplatin-related resistance. Although some of the complexes are potent COX inhibitors, the conjugates appear to execute their cytotoxic action via COX-independent mechanisms. Instead, the increased lipophilicity and kinetic inertness of the conjugates seem to facilitate cellular accumulation of the platinum drugs and thus improve the efficacy of the antitumor agents. These conjugates are important tools for the elucidation of the direct influence of COX inhibitors on platinum-based anticancer drugs in tumor cells. PMID:25318459

  9. A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer†

    PubMed Central

    O'Neil, B. H.; Scott, A. J.; Ma, W. W.; Cohen, S. J.; Aisner, D. L.; Menter, A. R.; Tejani, M. A.; Cho, J. K.; Granfortuna, J.; Coveler, L.; Olowokure, O. O.; Baranda, J. C.; Cusnir, M.; Phillip, P.; Boles, J.; Nazemzadeh, R.; Rarick, M.; Cohen, D. J.; Radford, J.; Fehrenbacher, L.; Bajaj, R.; Bathini, V.; Fanta, P.; Berlin, J.; McRee, A. J.; Maguire, R.; Wilhelm, F.; Maniar, M.; Jimeno, A.; Gomes, C. L.; Messersmith, W. A.

    2015-01-01

    Background Rigosertib (ON 01910.Na), a first-in-class Ras mimetic and small-molecule inhibitor of multiple signaling pathways including polo-like kinase 1 (PLK1) and phosphoinositide 3-kinase (PI3K), has shown efficacy in preclinical pancreatic cancer models. In this study, rigosertib was assessed in combination with gemcitabine in patients with treatment-naïve metastatic pancreatic adenocarcinoma. Materials and methods Patients with metastatic pancreatic adenocarcinoma were randomized in a 2:1 fashion to gemcitabine 1000 mg/m2 weekly for 3 weeks of a 4-week cycle plus rigosertib 1800 mg/m2 via 2-h continuous IV infusions given twice weekly for 3 weeks of a 4-week cycle (RIG + GEM) versus gemcitabine 1000 mg/m2 weekly for 3 weeks in a 4-week cycle (GEM). Results A total of 160 patients were enrolled globally and randomly assigned to RIG + GEM (106 patients) or GEM (54). The most common grade 3 or higher adverse events were neutropenia (8% in the RIG + GEM group versus 6% in the GEM group), hyponatremia (17% versus 4%), and anemia (8% versus 4%). The median overall survival was 6.1 months for RIG + GEM versus 6.4 months for GEM [hazard ratio (HR), 1.24; 95% confidence interval (CI) 0.85–1.81]. The median progression-free survival was 3.4 months for both groups (HR = 0.96; 95% CI 0.68–1.36). The partial response rate was 19% versus 13% for RIG + GEM versus GEM, respectively. Of 64 tumor samples sent for molecular analysis, 47 were adequate for multiplex genetic testing and 41 were positive for mutations. The majority of cases had KRAS gene mutations (40 cases). Other mutations detected included TP53 (13 cases) and PIK3CA (1 case). No correlation between mutational status and efficacy was detected. Conclusions The combination of RIG + GEM failed to demonstrate an improvement in survival or response compared with GEM in patients with metastatic pancreatic adenocarcinoma. Rigosertib showed a similar safety profile to that seen in previous trials using the IV

  10. BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation.

    PubMed

    Wei, F; Ojo, D; Lin, X; Wong, N; He, L; Yan, J; Xu, S; Major, P; Tang, D

    2015-06-04

    The BMI1 protein contributes to stem cell pluripotency and oncogenesis via multiple functions, including its newly identified role in DNA damage response (DDR). Although evidence clearly demonstrates that BMI1 facilitates the repair of double-stranded breaks via homologous recombination (HR), it remains unclear how BMI1 regulates checkpoint activation during DDR. We report here that BMI1 has a role in G2/M checkpoint activation in response to etoposide (ETOP) treatment. Ectopic expression of BMI1 in MCF7 breast cancer and DU145 prostate cancer cells significantly reduced ETOP-induced G2/M arrest. Conversely, knockdown of BMI1 in both lines enhanced the arrest. Consistent with ETOP-induced activation of the G2/M checkpoints via the ATM pathway, overexpression and knockdown of BMI1, respectively, reduced and enhanced ETOP-induced phosphorylation of ATM at serine 1981 (ATM pS1981). Furthermore, the phosphorylation of ATM targets, including γH2AX, threonine 68 (T68) on CHK2 (CHK2 pT68) and serine 15 (S15) on p53 were decreased in overexpression and increased in knockdown BMI1 cells in response to ETOP. In line with the requirement of NBS1 in ATM activation, we were able to show that BMI1 associates with NBS1 and that this interaction altered the binding of NBS1 with ATM. BMI1 consists of a ring finger (RF), helix-turn-helix-turn-helix-turn (HT), proline/serine (PS) domain and two nuclear localization signals (NLS). Although deletion of either RF or HT did not affect the association of BMI1 with NBS1, the individual deletions of PS and one NLS (KRMK) robustly reduced the interaction. Stable expression of these BMI1 mutants decreased ETOP-induced ATM pS1981 and CHK2 pT68, but not ETOP-elicited γH2AX in MCF7 cells. Furthermore, ectopic expression of BMI1 in non-transformed breast epithelial MCF10A cells also compromised ETOP-initiated ATM pS1981 and γH2AX. Taken together, we provide compelling evidence that BMI1 decreases ETOP-induced G2/M checkpoint activation via

  11. Physicochemical properties of liposomes as potential anticancer drugs carriers. Interaction of etoposide and cytarabine with the membrane: Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Pentak, Danuta

    2014-03-01

    The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.

  12. Cisplatin and platinum drugs at the molecular level. (Review).

    PubMed

    Boulikas, Teni; Vougiouka, Maria

    2003-01-01

    Over twenty years of intensive work toward improvement of cisplatin, and with hundreds of platinum drugs tested, has resulted in the introduction of the widely used carboplatin and of oxaliplatin used only for a very narrow spectrum of cancers. A number of interesting platinum compounds including the orally administered platinum drug JM216, nedaplatin, the sterically hindered platinum(II) complex ZD0473, the trinuclear platinum complex BBR3464, and the liposomal forms Lipoplatin and SPI-77 are under clinical evaluation. This review summarizes the molecular mechanisms of platinum compounds for DNA damage, DNA repair and induction of apoptosis via activation or modulation of signaling pathways and explores the basis of platinum resistance. Cisplatin, carboplatin, oxaliplatin and most other platinum compounds induce damage to tumors via induction of apoptosis; this is mediated by activation of signal transduction leading to the death receptor mechanisms as well as mitochondrial pathways. Apoptosis is responsible for the characteristic nephrotoxicity, ototoxicity and most other toxicities of the drugs. The major limitation in the clinical applications of cisplatin has been the development of cisplatin resistance by tumors. Mechanisms explaining cisplatin resistance include the reduction in cisplatin accumulation inside cancer cells because of barriers across the cell membrane, the faster repair of cisplatin adducts, the modulation of apoptotic pathways in various cells, the upregulation in transcription factors, the loss of p53 and other protein functions and a higher concentration of glutathione and metallothioneins in some type of tumors. A number of experimental strategies to overcome cisplatin resistance are at the preclinical or clinical level such as introduction of the bax gene, inhibition of the JNK pathway, introduction of a functional p53 gene, treatment of tumors with aldose reductase inhibitors and others. Particularly important are combinations of platinum

  13. Calcium Modulation of Toxicities Due to Cisplatin

    PubMed Central

    Aggarwal, Surinder K.

    1998-01-01

    Cisplatin (CDDP) is a potent anti-neoplastic agent with associated toxicities, especially gastrointestinal and nephrotoxicity that are its dose-limiting factors in clinical oncology. In an attempt to elucidate its mechanism(s) of action, liver and kidney tissues from normal and CDDP treated (1.8 mg/kg) dogs were evaluated for changes in various dehydrogenases [MDH, SDH, β-HBDH, IDH and G-6-PDH] and nonspecific lipase enzymes. CDDP treatment induced an inhibition of all the enzymes studied except G-6-PDH and nonspecific lipases, where there was a significant increase. Supplemental pretreatments with calcium 2.50 mg (150,000 USP units) ergocalciferol plus 1000 mg of elemental calcium as Tums 500 (EffeCal; calcium carbonate)/day seemed to retain enzyme levels close to normal with no apparent toxic side effects observed after CDDP. Calcium supplements post-CDDP treatment did not have any protective effect. PMID:18475826

  14. Computational modeling of apoptotic signaling pathways induced by cisplatin

    PubMed Central

    2012-01-01

    Background Apoptosis is an essential property of all higher organisms that involves extremely complex signaling pathways. Mathematical modeling provides a rigorous integrative approach for analyzing and understanding such intricate biological systems. Results Here, we constructed a large-scale, literature-based model of apoptosis pathways responding to an external stimulus, cisplatin. Our model includes the key elements of three apoptotic pathways induced by cisplatin: death receptor-mediated, mitochondrial, and endoplasmic reticulum-stress pathways. We showed that cisplatin-induced apoptosis had dose- and time-dependent characteristics, and the level of apoptosis was saturated at higher concentrations of cisplatin. Simulated results demonstrated that the effect of the mitochondrial pathway on apoptosis was the strongest of the three pathways. The cross-talk effect among pathways accounted for approximately 25% of the total apoptosis level. Conclusions Using this model, we revealed a novel mechanism by which cisplatin induces dose-dependent cell death. Our finding that the level of apoptosis was affected by not only cisplatin concentration, but also by cross talk among pathways provides in silico evidence for a functional impact of system-level characteristics of signaling pathways on apoptosis. PMID:22967854

  15. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity

    PubMed Central

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin’s ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  16. Identifying microRNA-mRNA regulatory network in gemcitabine-resistant cells derived from human pancreatic cancer cells.

    PubMed

    Shen, Yehua; Pan, Yan; Xu, Litao; Chen, Lianyu; Liu, Luming; Chen, Hao; Chen, Zhen; Meng, Zhiqiang

    2015-06-01

    Pancreatic cancer is unresectable in over 80 % of patients owing to difficulty in early diagnosis. Chemotherapy is the most frequently adopted therapy for advanced pancreatic cancer. The development of drug resistance to gemcitabine (GEM), which is always used in standard chemotherapy, often results in therapeutic failure. However, the molecular mechanisms underlying the gemcitabine resistance remain unclear. Therefore, we sought to explore the microRNA-mRNA network that is associated with the development of gemcitabine resistance and to identify molecular targets for overcoming the gemcitabine resistance. By exposing SW1990 pancreatic cancer cells to long-term gemcitabine with increasing concentrations, we established a gemcitabine-resistant cell line (SW1990/GEM) with a high IC50 (the concentration needed for 50 % growth inhibition, 847.23 μM). The mRNA and microRNA expression profiles of SW1990 cells and SW1990/GEM cells were determined using RNA-seq analysis. By comparing the results in control SW1990 cells, 507 upregulated genes and 550 downregulated genes in SW1990/GEM cells were identified as differentially expressed genes correlated with gemcitabine sensitivity. Gene ontology (GO) analysis showed that the differentially expressed genes were related to diverse biological processes. The upregulated genes were mainly associated with drug response and apoptosis, and the downregulated genes were correlated with cell cycle progression and RNA splicing. Concurrently, the differentially expressed microRNAs, which are the important player in drug resistance development, were also examined in SW1990/GEM cells, and 56 differential microRNAs were identified. Additionally, the expression profiles of selected genes and microRNAs were confirmed by using Q-PCR assays. Furthermore, combining the differentially expressed microRNAs and mRNAs as well as the predicted targets for these microRNAs, a core microRNA-mRNA regulatory network was constructed, which included hub micro

  17. A randomized, multicenter, phase III study of gemcitabine combined with capecitabine versus gemcitabine alone as first-line chemotherapy for advanced pancreatic cancer in South Korea

    PubMed Central

    Lee, Hee Seung; Chung, Moon Jae; Park, Jeong Youp; Bang, Seungmin; Park, Seung Woo; Kim, Ho Gak; Noh, Myung Hwan; Lee, Sang Hyub; Kim, Yong-Tae; Kim, Hyo Jung; Kim, Chang Duck; Lee, Dong Ki; Cho, Kwang Bum; Cho, Chang Min; Moon, Jong Ho; Kim, Dong Uk; Kang, Dae Hwan; Cheon, Young Koog; Choi, Ho Soon; Kim, Tae Hyeon; Kim, Jae Kwang; Moon, Jieun; Shin, Hye Jung; Song, Si Young

    2017-01-01

    Abstract Background: This phase III trial compared the efficacy and safety of gemcitabine plus capecitabine (GemCap) versus single-agent gemcitabine (Gem) in advanced pancreatic cancer as first-line chemotherapy. Methods: A total of 214 advanced pancreatic cancer patients were enrolled from 16 hospitals in South Korea between 2007 and 2011. Patients were randomly assigned to receive GemCap (oral capecitabine 1660 mg/m2 plus Gem 1000 mg/m2 by 30-minute intravenous infusion weekly for 3 weeks followed by a 1-week break every 4 weeks) or Gem (by 30-minute intravenous infusion weekly for 3 weeks every 4 weeks). Results: Median overall survival (OS) time, the primary end point, was 10.3 and 7.5 months in the GemCap and Gem arms, respectively (P = 0.06). Progression-free survival was 6.2 and 5.3 months in the GemCap and Gem arms, respectively (P = 0.08). GemCap significantly improved overall response rate compared with Gem alone (43.7% vs 17.6%; P = 0.001). Overall frequency of grade 3 or 4 toxicities was similar in each group. Neutropenia was the most frequent grade 3 or 4 toxicity in both groups. Conclusion: GemCap failed to improve OS at a statistically significant level compared to Gem treatment. This study showed a trend toward improved OS compared to Gem alone. GemCap and Gem both exhibited similar safety profiles. PMID:28072706

  18. Full-Dose Gemcitabine and Concurrent Radiotherapy for Unresectable Pancreatic Cancer

    SciTech Connect

    Murphy, James D.; Adusumilli, Saroja; Griffith, Kent A.; Ray, Michael E.; Zalupski, Mark M.; Lawrence, Theodore S.; Ben-Josef, Edgar . E-mail: edgarb@med.umich.edu

    2007-07-01

    Purpose: Full-dose gemcitabine and concurrent radiotherapy is a promising treatment approach in unresectable pancreatic cancer. This study was conducted to assess the pattern of failure and toxicity associated with the use of conformal treatment volumes, omitting prophylactic lymph node irradiation. Methods and Materials: Seventy-four patients with locally advanced pancreatic cancer were treated between 1997 and 2005 with full-dose (1000 mg/m{sup 2}, Days 1, 8, and 15) gemcitabine and concurrent radiotherapy (36 Gy [median] in 15 daily fractions). The planning target volume (PTV) was limited to the gross tumor volume (GTV) plus 1-cm margin. Patient computed tomography (CT) scans were systematically reviewed to determine the pattern of failure. Kaplan-Meier and Cox-regression models were used to analyze freedom from local progression (FFLP), distant failure, overall survival (OS), and toxicity. Results: With a median follow-up of 10.6 months (20.6 months in living patients), the 1-year and 2-year FFLP rates were 64% and 38%, respectively. Four patients (5%) failed in the peripancreatic lymph nodes (3 in-field and 1 marginal failure). Median OS was 11.2 months. Analyzed as a time-dependent covariate, local failure was a significant predictor of OS (p = 0.0074). Sixteen patients (22%) had significant gastrointestinal (GI) toxicity ({>=} Grade 3). PTV correlated with significant GI toxicity (p = 0.007). Conclusions: Freedom from local progression in unresectable pancreatic cancer is suboptimal. In conjunction with full-dose gemcitabine, the use of conformal fields encompassing only the GTV helps reduce toxicity and does not result in marginal failures. Our findings provide rationale for intensification of local therapy in conjunction with more effective systemic therapy.

  19. Treatment Options for Testicular Cancer, by Type and Stage

    MedlinePlus

    ... Chemotherapy with the BEP regimen (bleomycin, etoposide, and cisplatin) for 2 cycles. This has a high cure ... BEP or 4 cycles of EP (etoposide and cisplatin). Stage II germ cell tumors Stage IIA seminomas: ...

  20. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism.

    PubMed

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-04-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells toward mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer.

  1. Radiation Therapy With Full-Dose Gemcitabine and Oxaliplatin for Unresectable Pancreatic Cancer

    SciTech Connect

    Hunter, Klaudia U.; Feng, Felix Y.; Griffith, Kent A.; Francis, Isaac R.; Lawrence, Theodore S.; Desai, Sameer; Murphy, James D.; Zalupski, Mark M.; Ben-Josef, Edgar

    2012-07-01

    Purpose: We completed a Phase I trial of gemcitabine and oxaliplatin with concurrent radiotherapy in patients with previously untreated pancreatic cancer. The results of a subset of patients with unresectable disease who went on to receive planned additional therapy are reported here. Methods and Materials: All patients received two 28-day cycles of gemcitabine (1,000 mg/m{sup 2} on Days 1, 8, and 15) and oxaliplatin (40-85 mg/m{sup 2} on Days 1 and 15, per a dose-escalation schema). Radiation therapy was delivered concurrently with Cycle 1 (27 Gy in 1.8-Gy fractions). At 9 weeks, patients were reassessed for resectability. Those deemed to have unresectable disease were offered a second round of treatment consisting of 2 cycles of gemcitabine and oxaliplatin and 27 Gy of radiation therapy (total, 54 Gy). Radiation was delivered to the gross tumor volume plus 1 cm by use of a three-dimensional conformal technique. We used the Common Terminology Criteria for Adverse Events to assess acute toxicity. Late toxicity was scored per the Radiation Therapy Oncology Group scale. Computed tomography scans were reviewed to determine pattern of failure, local response, and disease progression. Kaplan-Meier methodology and Cox regression models were used to evaluate survival and freedom from failure. Results: Thirty-two patients from the Phase I dose-escalation study had unresectable disease, three of whom had low-volume metastatic disease. Of this group, 16 patients went on to receive additional therapy to complete a total of 4 cycles of chemotherapy and 54 Gy of concurrent radiation. For this subset, 38% had at least a partial tumor response at a median of 3.2 months. Median survival was 11.8 months (range, 4.4-26.3 months). The 1-year freedom from local progression rate was 93.8% (95% confidence interval, 63.2-99.1). Conclusions: Radiation therapy to 54 Gy with concurrent full-dose gemcitabine and oxaliplatin is well tolerated and results in favorable rates of local tumor

  2. Complete radiographic response of primary pulmonary angiosarcomas following gemcitabine and taxotere.

    PubMed

    Wilson, Rachel; Glaros, Selina; Brown, Richard K J; Michael, Claire; Reisman, David

    2008-07-01

    A small number of patients with angiosarcoma present each year, even fewer of whom have their primary origin site in the lungs. As such, specific treatments are not well defined for this tumor type. We report that the combination of gemcitabine and docetaxel may be an effective regimen for the treatment of angiosarcoma, as illustrated by the complete radiological response observed. In this case report, we review the clinical characteristics, prevalence and treatment options for angiosarcoma. In particular, we review the potential pitfalls and important attributes that should inform diagnosis.

  3. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  4. Gemcitabine Hydrochloride and Cisplatin With or Without Veliparib or Veliparib Alone in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer

    ClinicalTrials.gov

    2017-02-24

    BRCA1 Mutation Carrier; BRCA2 Mutation Carrier; Metastatic Pancreatic Adenocarcinoma; PALB2 Gene Mutation; Pancreatic Adenocarcinoma; Recurrent Pancreatic Carcinoma; Stage III Pancreatic Cancer; Stage IV Pancreatic Cancer

  5. Gemcitabine adsorbed onto carbon particles increases drug concentrations at the injection site and in the regional lymph nodes in an animal experiment and a clinical study.

    PubMed

    Guo, F; Mao, X; Wang, J; Luo, F; Wang, Z

    2011-01-01

    This study investigated whether gemcitabine, adsorbed onto activated carbon particles (GEM-AC), increased the concentration of gemcitabine at the injection site and in the regional lymph nodes in an experimental animal model and a clinical study. The adsorption isotherm for GEM-AC was defined, and the concentration and distribution of gemcitabine in rats (n = 50) and in patients with pancreatic cancer (n = 8) was investigated. Drug concentrations in plasma, tumour samples, lymph nodes and at the injection site were measured after GEM-AC or gemcitabine solution (GEM-Sol) were subcutaneously injected into the left hind foot pad in rats, or into pancreatic tumours in patients. These experiments showed that GEM-AC was selectively delivered to the regional lymph nodes and the injection site, from which it slowly released greater amounts of gemcitabine to maintain the free concentration of gemcitabine at a relatively high level for a long period of time. The administration of GEM-AC might enhance the anticancer effects of gemcitabine.

  6. Replication-Dependent and Transcription-Dependent Mechanisms of DNA Double-Strand Break Induction by the Topoisomerase 2-Targeting Drug Etoposide

    PubMed Central

    Tammaro, Margaret; Barr, Peri; Ricci, Brett; Yan, Hong

    2013-01-01

    Etoposide is a DNA topoisomerase 2-targeting drug widely used for the treatment of cancer. The cytoxicity of etoposide correlates with the generation of DNA double-strand breaks (DSBs), but the mechanism of how it induces DSBs in cells is still poorly understood. Catalytically, etoposide inhibits the re-ligation reaction of Top2 after it nicks the two strands of DNA, trapping it in a cleavable complex consisting of two Top2 subunits covalently linked to the 5’ ends of DNA (Top2cc). Top2cc is not directly recognized as a true DSB by cells because the two subunits interact strongly with each other to hold the two ends of DNA together. In this study we have investigated the cellular mechanisms that convert Top2ccs into true DSBs. Our data suggest that there are two mechanisms, one dependent on active replication and the other dependent on proteolysis and transcription. The relative contribution of each mechanism is affected by the concentration of etoposide. We also find that Top2α is the major isoform mediating the replication-dependent mechanism and both Top2α and Top2 mediate the transcription-dependent mechanism. These findings are potentially of great significance to the improvement of etoposide’s efficacy in cancer therapy. PMID:24244448

  7. All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase.

    PubMed

    Kuroda, Hiroki; Tachikawa, Masanori; Uchida, Yasuo; Inoue, Koetsu; Ohtsuka, Hideo; Ohtsuki, Sumio; Unno, Michiaki; Terasaki, Tetsuya

    2017-02-12

    We previously showed that gemcitabine resistance in pancreatic cancer chemotherapy correlates with suppressed expression of deoxycytidine kinase (dCK), which catalyzes the rate-limiting step of gemcitabine activation. The purpose of the present study was to find a drug that might be useful to enhance the cytotoxicity of gemcitabine by increasing dCK expression in gemcitabine-resistant human pancreatic cancer cell line AsPC-1. Screening of 40 prescription drugs identified 35 with no intrinsic cytotoxicity towards AsPC-1 cells. When AsPC-1 cells were pre-incubated with these drugs and then incubated with gemcitabine, we found that all-trans retinoic acid (ATRA) significantly decreased the viability by 28% compared with that of non-treated cells. Luciferase assay showed that ATRA transactivated the DCK promoter in AsPC-1 cells by about 2-fold compared with the untreated control, and an increase of dCK protein expression was confirmed by immunoblotting. ATRA decreased the half-maximal inhibitory concentration (IC50) of gemcitabine by 2.8-fold (ATRA-non-treated cells, 28.8nM; ATRA-treated cells, 10.0nM). The ATRA concentration of 0.03μM was sufficient to enhance gemcitabine cytotoxicity, and the effect was well maintained in the concentration range from 0.03 to 50μM. These results indicate that ATRA enhances gemcitabine cytotoxicity by increasing dCK expression in gemcitabine-resistant human pancreatic cancer cells.

  8. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines

    PubMed Central

    Kakar, Sham S.; Jala, Venkatakrishna R.; Fong, Miranda Y.

    2012-01-01

    Cisplatin derivatives are used as the mainline treatment of ovarian cancer, despite their severe side effects and development of resistance. We developed a novel combination therapy by combining cisplatin with withaferin A. Treatment of ovarian cancer cell lines with combination therapy acted synergistically to induce cell death, thus required a lower dose of cisplatin to achieve the same therapeutic effect. WFA and cisplatin combination induced cell death through the generation of reactive oxygen species (ROS) for WFA, while DNA damage for cisplatin, suggesting that cisplatin binds directly to DNA to form adducts while WFA indirectly damages DNA through ROS generation. Our results for the first time suggest that combining low dose of cisplatin with suboptimal dose of WFA can serve as a potential combination therapy for the treatment of ovarian cancer with the potential to minimize/eliminate the side effects associated with high doses of cisplatin. PMID:22713472

  9. Discovery – Cisplatin and The Treatment of Testicular and Other Cancers

    Cancer.gov

    Prior to the discovery of cisplatin in 1965, men with testicular cancer had few medical options. Now, thanks to NCI research, cisplatin and similar chemotherapy drugs are known for curing testicular and other forms of cancer.

  10. Pemirolast reduces cisplatin-induced kaolin intake in rats.

    PubMed

    Tatsushima, Yoko; Egashira, Nobuaki; Matsushita, Naohiro; Kurobe, Kentaro; Kawashiri, Takehiro; Yano, Takahisa; Oishi, Ryozo

    2011-07-01

    Emesis is the most feared side effect in patients who are undergoing cancer chemotherapy. In particular, cisplatin causes severe acute and delayed emesis. Although early vomiting is well controlled by 5-hydroxytryptamine 3 (5-HT(3)) receptor antagonists, delayed-phase vomiting is not sufficiently controlled. Substance P is thought to be involved in the development of emesis, and tachykinin NK(1) receptor antagonists can inhibit delayed vomiting. We previously have reported that substance P is involved in the paclitaxel-induced hypersensitivity reaction in rats, and anti-allergic agent pemirolast reduces these reactions via inhibition of substance P release. In the present study, we investigated the effect of pemirolast on cisplatin-induced kaolin intake, which is an index of nausea/vomiting in the rat. Cisplatin (5 mg/kg, i.p.) induced kaolin intake and reduced normal feed intake from days 1 to 5 after injection. Cisplatin-induced kaolin intake was significantly reduced by co-administration of ondansetron (2 mg/kg, i.p.), a 5-HT(3) receptor antagonist, and dexamethasone (2 mg/kg, i.p.) from days 1 to 5. Similarly, pemirolast (10 mg/kg, p.o.) and the tachykinin NK(1) receptor antagonist aprepitant (10 and 30 mg/kg, p.o.) significantly reduced cisplatin-induced kaolin intake on days 3 and 4. Moreover, pemirolast at the same dose significantly reversed the cisplatin-induced increase in the cerebrospinal fluid level of substance P in rats. These results suggest that substance P is involved in cisplatin-induced kaolin intake in rats, and pemirolast reduces kaolin intake by inhibition of substance P release.

  11. Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes

    PubMed Central

    Bradbury, Penelope A.; Kulke, Matthew H.; Heist, Rebecca S.; Zhou, Wei; Ma, Clement; Xu, Wei; Marshall, Ariela L.; Zhai, Rihong; Hooshmand, Susanne M.; Asomaning, Kofi; Su, Li; Shepherd, Frances A.; Lynch, Thomas J.; Wain, John C.; Christiani, David C.; Liu, Geoffrey

    2011-01-01

    Objectives Genetic variations or polymorphisms within genes of the nucleotide excision repair (NER) pathway alter DNA repair capacity. Reduced DNA repair (NER) capacity may result in tumors that are more susceptible to cisplatin chemotherapy, which functions by causing DNA damage. We investigated the potential predictive significance of functional NER single nucleotide polymorphisms in esophageal cancer patients treated with (n = 262) or without (n = 108) cisplatin. Methods Four NER polymorphisms XPD Asp312Asn; XPD Lys751Gln, ERCC1 8092C/A, and ERCC1 codon 118C/T were each assessed in polymorphism–cisplatin treatment interactions for overall survival (OS), with progression-free survival (PFS) as a secondary endpoint. Results No associations with ERCC1 118 were found. Polymorphism–cisplatin interactions were highly significant in both OS (P = 0.002, P = 0.0001, and P < 0.0001) and PFS (P = 0.006, P = 0.008, and P = 0.0007) for XPD 312, XPD 751, and ERCC1 8092, respectively. In cisplatin-treated patients, variant alleles of XPD 312, XPD 751, and ERCC1 8092 were each associated with significantly improved OS (and PFS): adjusted hazard ratios of homozygous variants versus wild-type ranged from 0.22 [95% confidence interval (CI): 0.1–0.5] to 0.31 (95% CI: 0.1–0.7). In contrast, in patients who did not receive cisplatin, variant alleles of XPD 751 and ERCC1 8092 had significantly worse survival, with adjusted hazard ratios of homozygous variants ranging from 2.47 (95% CI: 1.1–5.5) to 3.73 (95% CI: 1.6–8.7). Haplotype analyses affirmed these results. Conclusion DNA repair polymorphisms are associated with OS and PFS, and if validated may predict for benefit from cisplatin therapy in patients with esophageal cancer. PMID:19620936

  12. Degradation of the cytostatic etoposide in chlorinated water by liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry: identification and quantification of by-products in real water samples.

    PubMed

    Negreira, Noelia; López de Alda, Miren; Barceló, Damià

    2015-02-15

    Once discharged into the sewage system, many pharmaceuticals may undergo degradation reactions in the presence of chemical disinfectants, generating by-products that may possess enhanced toxicity relative to the parent compounds. For this reason, the stability of the widely used cytostatic etoposide in chlorinated water has been investigated for the first time in the present work. Taking advantage of the high-resolution/accurate-mass capabilities of the hybrid quadrupole-Orbitrap mass spectrometer Q Exactive, two new oxidation by-products of etoposide were reliably identified. The time course of etoposide and its by-products was followed at different pH values, free chlorine concentrations and water matrices. Finally, the occurrence of etoposide and its major identified by-product (3'-O-desmethyl etoposide) was investigated in real water samples by on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry using a 4000QTRAP hybrid quadrupole-linear ion trap mass spectrometer. The etoposide by-product was found in various river and wastewater samples at levels between 14 and 33 ng L(-1), whereas etoposide was not detected in any sample.

  13. Sequential (gemcitabine/vinorelbine) and concurrent (gemcitabine) radiochemotherapy with FDG-PET-based target volume definition in locally advanced non-small cell lung cancer: first results of a phase I/II study

    PubMed Central

    Gagel, Bernd; Piroth, Marc; Pinkawa, Michael; Reinartz, Patrick; Krohn, Thomas; Kaiser, Hans J; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Schmachtenberg, Axel; Eble, Michael J

    2007-01-01

    Background The aim of the study was to determine the maximal tolerated dose (MTD) of gemcitabine every two weeks concurrent to radiotherapy, administered during an aggressive program of sequential and simultaneous radiochemotherapy for locally advanced, unresectable non-small cell lung cancer (NSCLC) and to evaluate the efficacy of this regime in a phase II study. Methods 33 patients with histologically confirmed NSCLC were enrolled in a combined radiochemotherapy protocol. 29 patients were assessable for evaluation of toxicity and tumor response. Treatment included two cycles of induction chemotherapy with gemcitabine (1200 mg/m2) and vinorelbine (30 mg/m2) at day 1, 8 and 22, 29 followed by concurrent radiotherapy (2.0 Gy/d; total dose 66.0 Gy) and chemotherapy with gemcitabine every two weeks at day 43, 57 and 71. Radiotherapy planning included [18F] fluorodeoxyglucose positron emission tomography (FDG PET) based target volume definition. 10 patients were included in the phase I study with an initial gemcitabine dose of 300 mg/m2. The dose of gemcitabine was increased in steps of 100 mg/m2 until the MTD was realized. Results MTD was defined for the patient group receiving gemcitabine 500 mg/m2 due to grade 2 (next to grade 3) esophagitis in all patients resulting in a mean body weight loss of 5 kg (SD = 1.4 kg), representing 8% of the initial weight. These patients showed persisting dysphagia 3 to 4 weeks after completing radiotherapy. In accordance with expected complications as esophagitis, dysphagia and odynophagia, we defined the MTD at this dose level, although no dose limiting toxicity (DLT) grade 3 was reached. In the phase I/II median follow-up was 15.7 months (4.1 to 42.6 months). The overall response rate after completion of therapy was 64%. The median overall survival was 19.9 (95% CI: [10.1; 29.7]) months for all eligible patients. The median disease-free survival for all patients was 8.7 (95% CI: [2.7; 14.6]) months. Conclusion After induction

  14. Chemotherapy for Gallbladder Cancer

    MedlinePlus

    ... often used for gallbladder cancer include: Gemcitabine (Gemzar ® ) Cisplatin (Platinol ® ) 5-fluorouracil (5-FU) Capecitabine (Xeloda ® ) Oxaliplatin ( ... them more effective. For example, combining gemcitabine and cisplatin may help people live longer than getting just ...

  15. Etoposide-loaded biodegradable amphiphilic methoxy (poly ethylene glycol) and poly (epsilon caprolactone) copolymeric micelles as drug delivery vehicle for cancer therapy.

    PubMed

    Mohanty, Anjan K; Dilnawaz, Fahima; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-07-01

    Amphiphilic diblock copolymers composed of methoxy poly ethylene glycol (MePEG) and poly epsilon caprolactone (PCL) were synthesized for the formation of micelles by ring opening mechanism using stannous octoate as a catalyst. The effects of the molecular weight of MePEG and the copolymer ratio on the properties of micelles were investigated by Nuclear Magnetic Resonance ((1)H-NMR), Fourier Transform Infrared Spectroscopy (FT-IR), and Gel Permeation Chromatography (GPC). The diblock copolymers were self-assembled to form micelles and their hydrophobic core was used for the encapsulation of the anti-cancer drug (etoposide) in aqueous solution. The sizes of micelles were less than 250 nm with a narrow size distribution with monodispersed unimodal pattern. Differential Scanning Calorimetric (DSC) thermogram was done for etoposide-loaded micelles to understand the crystalline nature of the drug after entrapment. A drug loading capacity up to 60% (w/w) with an entrapment efficiency of 68% was achieved as determined by reverse phase high performance liquid chromatography (RP-HPLC). In vitro release kinetics showed a biphasic release pattern of etoposide for 2 weeks. The cytotoxic efficacy of the etoposide-loaded micelles demonstrated greater anti-proliferative activity (IC(50) = 1.1 microg/ml) as compared to native drug (IC(50) = 6.3 microg/ml) in pancreatic cancer cell line MIA-PaCa-2. Thus, etoposide-loaded MePEG/PCL block copolymeric micelles can be used as an efficient drug delivery vehicle for pancreatic cancer therapy.

  16. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy.

    PubMed

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2016-01-07

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.

  17. Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity.

    PubMed

    Paolino, Donatella; Cosco, Donato; Racanicchi, Leda; Trapasso, Elena; Celia, Christian; Iannone, Michelangelo; Puxeddu, Efisio; Costante, Giuseppe; Filetti, Sebastiano; Russo, Diego; Fresta, Massimo

    2010-06-01

    The systemic efficacy of the chemotherapeutic agents presently used to treat solid tumors is limited by their low therapeutic index. Previously, our research group improved the in vitro antitumoral activity of gemcitabine, an anticancer agent rapidly deaminated to the inactive metabolite 2',2'-difluorodeoxyuridine, entrapping it into unilamellar pegylated liposomes made up of 1,2-dipalmitoyl-snglycero-3-phosphocholine monohydrate/cholesterol/N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (6:3:1 molar ratio). In this work, we investigated the in vivo efficiency of the gemcitabine liposomal formulation (5mg/kg) with respect to the antitumoral commercial product GEMZAR (50mg/kg) on an anaplastic thyroid carcinoma xenograft model obtaining similar effects in terms of inhibition of tumor mass proliferation after 4weeks of treatment. The investigation of the carrier biodistribution and the drug pharmacokinetic profile furnished the rationalization of the efficacy of the vesicular system containing the active compound 10-fold less concentrated; in fact, liposomes promoted the concentration of the drug inside the tumor and they increased its plasmatic half-life. In addition, no signs of blood toxicity were observed when vesicular devices of effective doses of the drug were used.

  18. Synthesis of a Gemcitabine Prodrug for Remote Loading into Liposomes and Improved Therapeutic Effect.

    PubMed

    May, Jonathan P; Undzys, Elijus; Roy, Aniruddha; Li, Shyh-Dar

    2016-01-20

    The chemotherapeutic gemcitabine was actively and stably loaded into lipid nanoparticles through the formation of a prodrug. Gemcitabine was chemically modified to increase the lipophilicity and introduce a weak base moiety for remote loading. Several derivatives were synthesized and screened for their potential to be good liposomal drug candidates for remote loading by studying their solubility, stability, cytotoxicity, and loading efficiency. Two morpholino derivatives of GEM (22 and 23) were chosen as the preferred prodrugs for this purpose as they possessed the best loading efficiencies (100% for drug-to-lipid ratio of 0.36 w/w). This is a considerable improvement over a passive loading strategy where typical loading efficiencies are on the order of ∼10-20% for a drug-to-lipid ratio of ∼0.01. Liposomes loaded with these two prodrugs were studied in an s.c. tumor model in vivo and showed improved therapeutic effect over free GEM (∼2-fold) and saline control (8- to 10-fold). This work demonstrates how chemical modification of a known hydrophilic drug can lead to improved loading, stability, and drug delivery in vivo.

  19. Dabigatran Potentiates Gemcitabine-Induced Growth Inhibition of Pancreatic Cancer in Mice

    PubMed Central

    Shi, Kun; Damhofer, Helene; Daalhuisen, Joost; ten Brink, Marieke; Richel, Dick J; Spek, C Arnold

    2017-01-01

    Pancreatic cancer is one of the most lethal solid malignancies, with few treatment options. We have recently shown that expression of protease activated receptor (PAR)-1 in the tumor microenvironment drives the progression and induces the chemoresistance of pancreatic cancer. As thrombin is the prototypical PAR-1 agonist, here we address the effects of the direct thrombin inhibitor dabigatran on pancreatic cancer growth and drug resistance in an orthotropic pancreatic cancer model. We show that dabigatran treatment did not affect primary tumor growth, whereas it significantly increased tumor dissemination throughout the peritoneal cavity. Increased dissemination was accompanied by intratumoral bleeding and increased numbers of aberrant and/or collapsed blood vessels in the primary tumors. In combination with gemcitabine, dabigatran treatment limited primary tumor growth, did not induce bleeding complications and prevented tumor cell dissemination. Dabigatran was, however, not as efficient as genetic ablation of PAR-1 in our previous study, suggesting that thrombin is not the main PAR-1 agonist in the setting of pancreatic cancer. Overall, we show that dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer but does not affect primary tumor growth when used as monotherapy. PMID:28182192

  20. Stem cell mobilization chemotherapy with gemcitabine is effective and safe in myeloma patients with bortezomib-induced neurotoxicity.

    PubMed

    Mueller, Beatrice U; Keller, Sandra; Seipel, Katja; Mansouri Taleghani, Behrouz; Rauch, Daniel; Betticher, Daniel; Egger, Thomas; Pabst, Thomas

    2016-05-01

    Vinorelbine chemotherapy with granulocyte-colony stimulating factor (G-CSF) stimulation is a widely applied non-myelosuppressive mobilization regimen in Switzerland for myeloma patients, but its neurotoxic potential limits its use in patients with bortezomib-induced polyneuropathy. In this single-center study, we alternatively evaluated safety and effectiveness of gemcitabine chemotherapy with G-CSF for mobilization of autologous stem cells. Between March 2012 and February 2013, all bortezomib-pretreated myeloma patients planned to undergo first-line high-dose melphalan chemotherapy received a single dose of 1250 mg/m2 gemcitabine, with G-CSF started on day 4. The 24 patients in this study had received a median of four cycles of bortezomib-dexamethason-based induction. Bortezomib-related polyneuropathy was identified in 21 patients (88%) by clinical evaluation and a standardized questionnaire. Administration of gemcitabine mobilization did not induce new or aggravate pre-existing neuropathy. Stem cell mobilization was successful in all 24 patients, with a single day of apheresis being sufficient in 19 patients (78%). The median yield was 9.51×10(6) CD34+ cells/kg. Stem collection could be accomplished at day 8 in 67%. Our data suggest that single-dose gemcitabine together with G-CSF is an effective mobilization regimen in myeloma patients and a safe alternative non-myelosuppressive mobilization chemotherapy for myeloma patients with bortezomib-induced polyneuropathy.

  1. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers.

    PubMed

    Öztürk, Kıvılcım; Esendağlı, Güneş; Gürbüz, Mustafa Ulvi; Tülü, Metin; Çalış, Sema

    2017-01-30

    Tumor-targeted delivery of anticancer drugs using dendrimers has been recognized as a promising strategy to increase efficiency and reduce adverse effects of chemotherapy. Herein, we developed a dendrimer-based drug delivery system targeting Flt-1 (a receptor for vascular endothelial growth factors (VEGF)) receptor to improve therapeutic efficacy of gemcitabine in pancreatic cancer. Synthesized polyethylene glycol (PEG)-cored PAMAM dendrimers, which bear anionic carboxylic acid groups on the surface were modified with PEG chains, which were then conjugated with Flt-1 antibody. Following structural and chemical characterization studies, gemcitabine HCl-dendrimer inclusion complexes were successfully prepared. These complexes were efficiently engulfed by Flt-1 expressing pancreatic cancer cells, which enhanced the cytotoxicity of gemcitabine. Moreover, pancreatic tumors established in mice were highly targeted by PEG-cored Flt-1 antibody-conjugated dendrimers and increased accumulation of these gemcitabine-loaded complexes exhibited satisfactory in vivo anti-cancer efficacy. In conclusion, dendrimer-based targeted delivery of chemotherapeutics may serve as a promising approach for the treatment of malignancies such as pancreatic cancer that do not benefit from conventional chemotherapy.

  2. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer.

    PubMed

    Bao, Guo-Qing; Shen, Bai-Yong; Pan, Chun-Peng; Zhang, Ya-Jing; Shi, Min-Min; Peng, Cheng-Hong

    2013-09-12

    Gemcitabine is a first-line drug utilised in the chemotherapy of pancreatic cancer; however, this drug induces chemo-resistance and toxicity to normal tissue during treatment. Here, we firstly report that andrographolide (ANDRO) alone not only has anti-pancreatic cancer activity, but it also potentiates the anti-tumour activity of gemcitabine. Treatment with ANDRO alone inhibits proliferation of the pancreatic cancer cell lines in a dose- and time-dependent manner in vitro. Interestingly, ANDRO induces cell cycle arrest and apoptosis of pancreatic cancer cells by inhibiting STAT3 and Akt activation, upregulating the expression of p21(WAF1) and Bax, and downregulating the expression of cyclinD1, cyclinE, survivin, X-IAP and Bcl-2. Additionally, ANDRO combined with gemcitabine significantly induce stronger cell cycle arrest and more obvious apoptosis than each single treatment. The mechanistic study demonstrates that this synergistic effect is also dependent on the inhibition of STAT3 and Akt activations which subsequently regulates the pathways involved in the apoptosis and cell cycle arrest. Furthermore, both ANDRO alone and the combination treatments exhibit efficacious anti-tumour activity in vivo. Overall, our results provide solid evidence supporting that ANDRO alone or its combination with gemcitabine is a potential chemotherapeutic approach for treating human pancreatic cancer in clinical practice.

  3. Docetaxel versus docetaxel alternating with gemcitabine as treatments of advanced breast cancer: final analysis of a randomised trial

    PubMed Central

    Joensuu, H.; Sailas, L.; Alanko, T.; Sunela, K.; Huuhtanen, R.; Utriainen, M.; Kokko, R.; Bono, P.; Wigren, T.; Pyrhönen, S.; Turpeenniemi-Hujanen, T.; Asola, R.; Leinonen, M.; Hahka-Kemppinen, M.; Kellokumpu-Lehtinen, P.

    2010-01-01

    Background: Alternating administration of docetaxel and gemcitabine might result in improved time-to-treatment failure (TTF) and fewer adverse events compared with single-agent docetaxel as treatment of advanced breast cancer. Patients and methods: Women diagnosed with advanced breast cancer were randomly allocated to receive 3-weekly docetaxel (group D) or 3-weekly docetaxel alternating with 3-weekly gemcitabine (group D/G) until treatment failure as first-line chemotherapy. The primary end point was TTF. Results: Two hundred and thirty-seven subjects were assigned to treatment (group D, 115; group D/G, 122). The median TTF was 5.6 and 6.2 months in groups D and D/G, respectively (hazard ratio 0.85, 95% confidence interval 0.63–1.16; P = 0.31). There was no significant difference in time-to-disease progression, survival, and response rate between the groups. When adverse events were evaluated for the worst toxicity encountered during treatment, there was little difference between the groups, but when they were assessed per cycle, alternating treatment was associated with fewer severe (grade 3 or 4) adverse effects (P = 0.013), and the difference was highly significant for cycles when gemcitabine was administered in group D/G (P < 0.001). Conclusion: The alternating regimen was associated with a similar TTF as single-agent docetaxel but with fewer adverse effects during gemcitabine cycles. PMID:19819914

  4. Targeted therapy for Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation.

    PubMed

    Lee, Hyun Gyu; Kim, Hyemi; Kim, Eun Jung; Park, Pil-Gu; Dong, Seung Myung; Choi, Tae Hyun; Kim, Hyunki; Chong, Curtis R; Liu, Jun O; Chen, Jianmeng; Ambinder, Richard F; Hayward, S Diane; Park, Jeon Han; Lee, Jae Myun

    2015-10-13

    The constant presence of the viral genome in Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) suggests the applicability of novel EBV-targeted therapies. The antiviral nucleoside drug, ganciclovir (GCV), is effective only in the context of the viral lytic cycle in the presence of EBV-encoded thymidine kinase (TK)/protein kinase (PK) expression. In this study, screening of the Johns Hopkins Drug Library identified gemcitabine as a candidate for combination treatment with GCV. Pharmacological induction of EBV-TK or PK in EBVaGC-originated tumor cells were used to study combination treatment with GCV in vitro and in vivo. Gemcitabine was found to be a lytic inducer via activation of the ataxia telangiectasia-mutated (ATM)/p53 genotoxic stress pathway in EBVaGC. Using an EBVaGC mouse model and a [125I] fialuridine (FIAU)-based lytic activation imaging system, we evaluated gemcitabine-induced lytic activation in an in vivo system and confirmed the efficacy of gemcitabine-GCV combination treatment. This viral enzyme-targeted anti-tumor strategy may provide a new therapeutic approach for EBVaGCs.

  5. Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing

    2013-04-01

    With the development of nanotechnology, special attention has been given to the nanomaterial application in tumor treatment. Here, a modified desolvation-cross-linking method was successfully applied to fabricate gemcitabine-loaded albumin nanospheres (GEM-ANPs), with 110 and 406 nm of mean diameter, respectively. The aim of this study was to assess the drug distribution, side effects, and antitumor activity of GEM-ANPs in vivo. The metabolic viability and flow cytometry analysis revealed that both GEM-ANPs, especially 406-nm GEM-ANPs, could effectively inhibit the metabolism and proliferation and promote the apoptosis of human pancreatic carcinoma (PANC-1) in vitro. Intravenous injection of 406-nm GEM-ANPs exhibited a significant increase of gemcitabine in the pancreas, liver, and spleen of Sprague-Dawley rats ( p < 0.05). Moreover, no signs of toxic side effects analyzed by blood parameter changes were observed after 3 weeks of administration although a high dose (200 mg/kg) of GEM-ANPs were used. Additionally, in PANC-1-induced tumor mice, intravenous injection of 406-nm GEM-ANPs also could effectively reduce the tumor volume by comparison with free gemcitabine. With these findings, albumin nanosphere-loading approach might be efficacious to improve the antitumor activity of gemcitabine, and the efficacy is associated with the size of GEM-ANPs.

  6. Pilomatrix carcinoma of the scalp with pulmonary metastasis: A case report of a complete response to oral endoxan and etoposide

    PubMed Central

    ARSLAN, DENIZ; GÜNDÜZ, ŞEYDA; AVCI, FATMA; MERDIN, ALPARSLAN; TATLI, ALI MURAT; UYSAL, MÜKREMIN; TURAL, DENIZ; BAŞSORGUN, CUMHUR İBRAHIM; SAVAŞ, BURHAN

    2014-01-01

    Pilomatrix carcinoma is an extremely rare skin tumor derived from basaloid cells in the hair follicles; it often exhibits locally aggressive behavior with a tendency toward local recurrence. The average age of occurrence is 45 years, and there appears to be a male to female incidence ratio of 4:1. Although pilomatrix carcinomas are predominantly identified in the neck and scalp, there are studies in the literature reporting other tumor development sites, including the upper extremities, torso and popliteal fossa. If diagnosed at an early stage, this malignant tumor is generally treated with wide surgical resection. However, for the advanced-stage tumors, there are no standard treatment procedures known to produce good results. The current study presents the case of a 76-year-old male with pilomatrix carcinoma originating from the scalp with metastases to the lung. The patient had a rapid and complete clinical response following an oral combination chemotherapy regimen of cyclophosphamide and etoposide. PMID:24932268

  7. Interstitial pneumonia following administration of pegfilgrastim during carboplatin and etoposide chemotherapy for small-cell lung cancer

    PubMed Central

    Shirasawa, Masayuki; Nakahara, Yoshiro; Niwa, Hideyuki; Harada, Shinya; Ozawa, Takahiro; Kusuhara, Seiichiro; Kasajima, Masashi; Hiyoshi, Yasuhiro; Sasaki, Jiichiro; Masuda, Noriyuki

    2016-01-01

    Pegfilgrastim is a long-acting granulocyte colony-stimulating factor formulation that has been approved for the prevention of febrile neutropenia. We herein report a case of interstitial pneumonia following administration of pegfilgrastim. A 65-year-old man with stage IV small-cell lung cancer was treated with carboplatin and etoposide as third-line chemotherapy. Pegfilgrastim was administered during the second cycle of chemotherapy. On the day after the administration of pegfilgrastim, interstitial pneumonia developed. The respiratory condition improved with pulse steroid therapy; however, the patient eventually succumbed to cancer progression. In conclusion, interstitial pneumonia due to pegfilgrastim is rare; however, physicians should be aware of the possibility of this adverse effect. PMID:28105350

  8. Optimizing Liposomal Cisplatin Efficacy through Membrane Composition Manipulations.

    PubMed

    Zisman, Natalia; Dos Santos, Nancy; Johnstone, Sharon; Tsang, Alan; Bermudes, David; Mayer, Lawrence; Tardi, Paul

    2011-01-01

    The first liposomal formulation of cisplatin to be evaluated clinically was SPI-077. Although the formulation demonstrated enhanced cisplatin tumor accumulation in preclinical models it did not enhance clinical efficacy, possibly due to limited cisplatin release from the formulation localized within the tumor. We have examined a series of liposomal formulations to address the in vivo relationship between cisplatin release rate and formulation efficacy in the P388 murine leukemia model. The base formulation of phosphatidylcholine: phosphatidylglycerol: cholesterol was altered in the C18 and C16 phospholipid content to influence membrane fluidity and thereby impacting drug circulation lifetime and drug retention. Phase transition temperatures (T(m)) ranged from 42-55°C. The high T(m) formulations demonstrated enhanced drug retention properties accompanied by low antitumor activity while the lowest T(m) formulations released the drug too rapidly in the plasma, limiting drug delivery to the tumor which also resulted in low antitumor activity. A formulation composed of DSPC : DPPC : DSPG : Chol; (35 : 35 : 20 : 10) with an intermediate drug release rate and a cisplatin plasma half-life of 8.3 hours showed the greatest antitumor activity. This manuscript highlights the critical role that drug release rates play in the design of an optimized drug delivery vehicle.

  9. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment

    PubMed Central

    Petryk, Alicia A.; Giustini, Andrew J.; Gottesman, Rachel E.; Kaufman, Peter A.; Hoopes, P. Jack

    2016-01-01

    Purpose The purpose of this study was to examine the therapeutic effect of magnetic nanoparticle hyperthermia (mNPH) combined with systemic cisplatin chemotherapy in a murine mammary adenocarcinoma model (MTGB). Materials and methods An alternating magnetic field (35.8 kA/m at 165 kHz) was used to activate 110 nm hydroxyethyl starch-coated magnetic nanoparticles (mNP) to a thermal dose of 60 min at 43 °C. Intratumoral mNP were delivered at 7.5 mg of Fe/cm3 of tumour (four equal tumour quadrants). Intraperitoneal cisplatin at 5 mg/kg body weight was administered 1 h prior to mNPH. Tumour regrowth delay time was used to assess the treatment efficacy. Results mNP hyperthermia, combined with cisplatin, was 1.7 times more effective than mNP hyperthermia alone and 1.4 times more effective than cisplatin alone (p<0.05). Conclusions Our results demonstrate that mNP hyperthermia can result in a safe and significant therapeutic enhancement for cisplatin cancer therapy. PMID:24144336

  10. Structural changes of linear DNA molecules induced by cisplatin

    SciTech Connect

    Liu, Zhiguo; Liu, Ruisi; Zhou, Zhen; Zu, Yuangang; Xu, Fengjie

    2015-02-20

    Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.

  11. Mass spectrometric studies on the interaction of cisplatin and insulin.

    PubMed

    Li, Jing; Yue, Lei; Liu, Yaqin; Yin, Xinchi; Yin, Qi; Pan, Yuanjiang; Yang, Lirong

    2016-04-01

    The interaction of antitumor drug, cisplatin (cis-[PtCl2(NH3)2], CDDP) with insulin from porcine pancreas has been investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high resolution hybrid ion trap/time-of-flight mass spectrometry (MALIDI-TOF/TOF-MS and ESI-IT/TOF MS). The MALDI-TOF/TOF-MS results demonstrated that the presence of cisplatin complex resulted in the reduction of the disulfide bond in porcine pancreas after the incubations of the two substances were performed in vitro. It indicated that the presence of cisplatin would destroy the native configuration of insulin, which may lead to the inactivation of insulin. High resolution mass values and the characteristic isotopic pattern of the platinated insulin ions allowed the analysis of platinated mono-, di- and triadducts of cisplatin and insulin in the incubations under different conditions. The laser-induced dissociation of the monoadduct obtained in MALDI source was carried out and one platinum was found to bind to insulin B chain was determined. The platinum binding sites were further identified to be the N terminus (B chain), cysteine 7 (B chain) and cysteine 19 (B chain) residues by electrospray ionization tandem mass spectrometry. The identification of the interaction between insulin and cisplatin broadens the horizon of the knowledge in the interaction of the proteins and metallodrugs.

  12. Optimizing Liposomal Cisplatin Efficacy through Membrane Composition Manipulations

    PubMed Central

    Zisman, Natalia; Dos Santos, Nancy; Johnstone, Sharon; Tsang, Alan; Bermudes, David; Mayer, Lawrence; Tardi, Paul

    2011-01-01

    The first liposomal formulation of cisplatin to be evaluated clinically was SPI-077. Although the formulation demonstrated enhanced cisplatin tumor accumulation in preclinical models it did not enhance clinical efficacy, possibly due to limited cisplatin release from the formulation localized within the tumor. We have examined a series of liposomal formulations to address the in vivo relationship between cisplatin release rate and formulation efficacy in the P388 murine leukemia model. The base formulation of phosphatidylcholine: phosphatidylglycerol: cholesterol was altered in the C18 and C16 phospholipid content to influence membrane fluidity and thereby impacting drug circulation lifetime and drug retention. Phase transition temperatures (Tm) ranged from 42–55°C. The high Tm formulations demonstrated enhanced drug retention properties accompanied by low antitumor activity while the lowest Tm formulations released the drug too rapidly in the plasma, limiting drug delivery to the tumor which also resulted in low antitumor activity. A formulation composed of DSPC : DPPC : DSPG : Chol; (35 : 35 : 20 : 10) with an intermediate drug release rate and a cisplatin plasma half-life of 8.3 hours showed the greatest antitumor activity. This manuscript highlights the critical role that drug release rates play in the design of an optimized drug delivery vehicle. PMID:22312548

  13. [Experimental study of protective effect of solcoseryl on cisplatin nephrotoxicity].

    PubMed

    Satoh, H; Mori, Y

    1992-01-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is known to possess nephrotoxicity. Recently, it is said that the nephrotoxicity closely correlated with active oxygen. In the present study, an attempt was made to examine, whether or not solcoseryl, antioxidant like scavenger, decreases the nephrotoxicity. Three groups of Sprague-dawley rats were injected cisplatin (3mg/kg) only (C group), cisplatin and 2 times solcoseryl (8mg/kg), (CS2 group), and cisplatin and 5 times solcoseryl (CS5 group). BUN levels in C and CS2 groups were elevated compared to CS5 group. In the light microscopy, 62.5% to 100% in C and CS2 groups revealed massive necrosis in straight part of the proximal tubules, while the damage in CS5 group was only 25%. In the electron microscopy, these findings were similar to the light microscopic observations. Solcoseryl is known to have several antioxidative effects such as inhibition of superoxide producing and hyperperoxidation. It is suggested that these effects of solcoseryl might decrease the nephrotoxicity. Solcoseryl seems to be a useful drug for reducing nephrotoxicity and also it is a safe drug. Therefore, solcoseryl can be used for the prevention of cisplatin nephrotoxicity.

  14. High-dose ifosfamide/carboplatin/etoposide: maximum tolerable doses, toxicities, and hematopoietic recovery after autologous stem cell reinfusion.

    PubMed

    Fields, K K; Elfenbein, G J; Perkins, J B; Janssen, W E; Ballester, O F; Hiemenz, J W; Zorsky, P E; Kronish, L E; Foody, M C

    1994-10-01

    We treated 115 patients in a phase I/II dose-escalation study of ifosfamide/carboplatin/etoposide (ICE) followed by autologous stem cell rescue. Patients treated had a variety of diagnoses, including breast cancer (high-risk stage II disease with eight or more positive nodes, stage III disease, and responsive metastatic disease), non-Hodgkin's lymphoma, Hodgkin's disease, acute leukemia in first remission, and various solid tumors that were responsive to induction therapy. Patients received autologous bone marrow stem cells or peripheral blood stem cells primed by one of several methods. The maximum tolerated dose of ICE was determined to be ifosfamide 20,100 mg/m2, carboplatin 1,800 mg/m2, and etoposide 3,000 mg/m2 when administered as a 6-day regimen. The dose-limiting toxicities included acute renal failure, severe central nervous system toxicity, and "leaky capillary syndrome" with hypoalbuminemia, profound fluid overload, and pulmonary insufficiency. Analysis of hematologic recovery based on stem cell source and influence of hematopoietic growth factor administration was undertaken. Hematopoietic growth factor use significantly reduced neutrophil engraftment time for patients receiving bone marrow stem cells, with evidence of earlier recovery times for patients receiving granulocyte colony-stimulating factor compared with granulocyte-macrophage colony-stimulating factor. Neutrophil recovery times varied based on the source of stem cells used, with the earliest engraftment times seen for patients receiving peripheral blood stem cells primed with cyclophosphamide and granulocyte colony-stimulating factor. Platelet recovery times were not statistically different for any of the subsets. In conclusion, the maximum tolerated dose of ICE has been defined, and the source of stem cells and the use of hematopoietic growth factors influence hematopoietic recovery.

  15. Profiling ribonucleotide and deoxyribonucleotide pools perturbed by gemcitabine in human non-small cell lung cancer cells

    PubMed Central

    Guo, Jian-Ru; Chen, Qian-Qian; Lam, Christopher Wai Kei; Wang, Cai-Yun; Wong, Vincent Kam Wai; Chang, Zee-Fen; Zhang, Wei

    2016-01-01

    In this study, we investigated the dosage effect of gemcitabine, an inhibitor of ribonucleotide reductase (RR), on cellular levels of ribonucleotides and deoxyribonucleotides using high performance liquid chromatography-electrospray ionization tandem mass spectrometric method. As anticipated, after 4-h incubation of non-small cell lung cancer (A549) cells with gemcitabine at 0.5 and 2 μM, there were consistent reductions in levels of deoxyribonucleoside diphosphates (dNDP) and their corresponding deoxyribonucleoside triphosphates (dNTP). However, after 24-h exposure to 0.5 μM gemcitabine, the amounts of dNTP were increased by about 3 fold, whereas cells after 24-h 2 μM gemcitabine treatment exhibited deoxycytidine diphosphate (dCDP), deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) levels less than 50% of control values, with deoxycytidine triphosphate (dCTP) and deoxyguanosine triphosphate (dGTP) returning to the control level. Using cell cycle analysis, we found that 24-h incubation at 0.5 μM gemcitabine resulted in a significant increase in S phase arrest, while 2 μM treatment increased G0/G1 population. Our data demonstrated the correlation between the level of RR and the increased levels of dNTPs in the group of 0.5 μM treatment for 24-h with a markedly reduced level of dFdCTP. Accordingly, we proposed that the dosage of dFdC could determine the arrested phase of cell cycle, in turn affecting the recovery of dNTPs pools. PMID:27845436

  16. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer.

    PubMed

    Sève, Pascal; Mackey, John R; Isaac, Sylvie; Trédan, Olivier; Souquet, Pierre Jean; Pérol, Maurice; Cass, Carol; Dumontet, Charles

    2005-09-01

    Resistance to gemcitabine is likely to be multifactorial and could involve a number of mechanisms involved in drug penetration, metabolism and targeting. In vitro studies of resistant human cell lines have confirmed that human equilibrative nucleoside transporter 1 (hENT1)-deficient cells display resistance to gemcitabine. Overexpression of certain nucleotidases, such as cN-II, has also been frequently shown in gemcitabine-resistant models. In this study, we applied immunohistochemical methods to assess the protein abundance of cN-II, hENT1, human concentrative nucleoside transporter 3 (hCNT3) and deoxycitidine kinase (dCK) in malignant cells in from 43 patients with treatment-naïve locally advanced or metastatic non-small cell lung cancer (NSCLC). All patients subsequently received gemcitabine-based chemotherapy. Response to chemotherapy, progression-free survival (PFS), and overall survival (OS) were correlated with abundance of these proteins. Among the 43 samples, only 7 (16%) expressed detectable hENT1, with a low percentage of positive cells, 18 expressed hCNT3 (42%), 36 (86%) expressed cN-II and 28 (66%) expressed dCK. In univariate analysis, only cN-II expression levels were correlated with overall survival. None of the parameters were correlated with freedom from progression survival nor with response. Patients with low levels of expression of cN-II (less than 40% positively stained cells) had worse overall survival than patients with higher levels of cN-II expression (6 months and 11 months, respectively). In a multivariate analysis taking into account age, sex, weight loss, stage and immunohistochemical results, cN-II was the only predictive factor associated with overall survival. This study suggests that cN-II nucleotidase expression levels identify subgroups of NSCLC patients with different outcomes under gemcitabine-based therapy. Larger prospective studies are warranted to confirm the predictive value of cN-II in these patients.

  17. Cisplatin Inhibits Bone Healing During Distraction Osteogenesis

    PubMed Central

    Stine, Kimo C.; Wahl, Elizabeth C.; Liu, Lichu; Skinner, Robert A.; Schilden, Jaclyn Vander; Bunn, Robert C.; Montgomery, Corey O.; Suva, Larry J.; Aronson, James; Becton, David L.; Nicholas, Richard W.; Swearingen, Christopher J.; Lumpkin, Charles K.

    2014-01-01

    Osteosarcoma (OS) is the most common malignant bone tumor affecting children and adolescents. Many patients are treated with a combination of chemotherapy, resection, and limb salvage protocols. Surgical reconstructions after tumor resection include structural allografts, non-cemented endoprostheses, and distraction osteogenesis (DO), which require direct bone formation. Although cisplatin (CDP) is extensively used for OS chemotherapy, the effects on bone regeneration are not well studied. The effects of CDP on direct bone formation in DO were compared using two dosing regimens and both C57BL/6 (B6) and tumor necrosis factor receptor 1 knockout (TNFR1KO) mice, as CDP toxicity is associated with elevated TNF levels. Detailed evaluation of the five dose CDP regimen (2mg/kg/day), demonstrated significant decreases in new bone formation in the DO gaps of CDP treated versus vehicle treated mice (P<0.001). Further, no significant inhibitory effects from the 5 dose CDP regimen were observed in TNFR1KO mice. The two dose regimen significantly inhibited new bone formation in B6 mice. These results demonstrate that CDP has profound short term negative effects on the process of bone repair in DO. These data provide the mechanistic basis for modeling peri-operative chemotherapy doses and schedules and may provide new opportunities to identify molecules that spare normal cells from the inhibitory effects of CDP. PMID:24259375

  18. Hydration of Two Cisplatin Aqua-Derivatives Studied by Quantum Mechanics and Molecular Dynamics Simulations.

    PubMed

    Melchior, Andrea; Tolazzi, Marilena; Martínez, José Manuel; Pappalardo, Rafael R; Sánchez Marcos, Enrique

    2015-04-14

    The hydration of the cisplatin aqua-derivatives, cis-[PtCl(H2O)(NH3)2](+) (w-cisplatin) and cis-[Pt(H2O)2(NH3)2](2+) (w2-cisplatin), has been studied by means of classical molecular dynamics simulations. The new platinum complex-water interaction potential, w-cisplatin-W, has been built on the basis of the already obtained cisplatin-water interaction potential (cisplatin-W) [J. Chem. Theory Comput. 2013 9, 4562]. That potential has been then transferred to the w2-cisplatin-W potential. The w-cisplatin and w2-cisplatin atomic charges were specifically derived from their solute's wave functions. Bulk solvent effects on the complex-water interactions have been included by means of a continuum model. Classical MD simulations with 1 platinum complex and 1000 SPC/E water molecules have been carried out. Angle-solved radial distribution functions and spatial distribution functions have been used to provide detailed pictures of the local hydration structure around the ligands (water, chloride, and ammine) and the axial region. A novel definition of a multisite cavity has been employed to compute the hydration number of complexes in order to provide a consistent definition of their first-hydration shell. Interestingly, the hydration number decreases with the increase of the complex net charge from 27 for cisplatin to 23 and 18 for w-cisplatin and w2-cisplatin, respectively. In parallel to this hydration number behavior, the compactness of the hydration shell increases when going from the neutral complex, i.e. cisplatin, to the doubly charged complex, w2-cisplatin. Quantum mechanics estimation of the hydration energies for the platinum complexes allows the computation of the reaction energy for the first- and second-hydrolysis of cisplatin in water. The agreement with experimental data is satisfactory.

  19. Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats.

    PubMed

    Koc, Ahmet; Duru, Mehmet; Ciralik, Harun; Akcan, Ramazan; Sogut, Sadik

    2005-10-01

    Cisplatin, one of the most active cytotoxic agents against cancer, has several toxicities. Hepatotoxicity is one of them occurred during high doses treatment. The aim of this study was to determine the effects of erdosteine against cisplatin-induced liver injury through tissue oxidant/antioxidant parameters and light microscopic evaluation. The rats were randomly divided into three groups: control (n=5), cisplatin (10 mg/kg, n=6) and cisplatin+erdosteine (50 mg/kg/day oral erdosteine, n=8) groups. The rats were sacrificed at the 5th day of cisplatin treatment. The liver tissues were examined with light microscopy and oxidant/antioxidant biochemical parameters. The malondialdehyde (MDA) and nitric oxide (NO) levels were increased in the cisplatin group in comparison with the control and cisplatin+erdosteine groups (p<0.05). There was no significant difference in MDA and NO levels between control and cisplatin+erdosteine groups. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were higher in cisplatin+erdosteine group than cisplatin group (p<0.05). However, the CAT and GSH-Px activities were significantly lower in cisplatin group than in control group (p<0.05). The light microscopic examination revealed that cytoplasmic changes especially around cells of central vein were observed in cisplatin group. Hepatocellular vacuolization was seen in these cells. In the cisplatin plus erdosteine group, a decrease in cytoplasmic changes with the hepatocytes and sinusoidal dilatations around cells of central vein were noticed in as compared to cisplatin group. In the light of microscopic and biochemical results, it was concluded that cisplatin-induced liver damage in high dose and erdosteine prevented this toxic side effect by the way of its antioxidant and radical scavenging effects.

  20. Regulation of Cisplatin cytotoxicity by cu influx transporters.

    PubMed

    Abada, Paolo; Howell, Stephen B

    2010-01-01

    Platinum drugs are an important class of cancer chemotherapeutics. However, the use of these drugs is limited by the development of resistance during treatment with decreased accumulation being a common mechanism. Both Cu transporters CTR1 and CTR2 influence the uptake and cytotoxicity of cisplatin. Although it is structurally similar to CTR1, CTR2 functions in a manner opposite to that of CTR1 with respect to Pt drug uptake. Whereas knockout of CTR1 reduces Pt drug uptake, knockdown of CTR2 enhances cisplatin uptake and cytotoxicity. CTR2 is subject to transcriptional and posttranscriptional regulation by both Cu and cisplatin; this regulation is partly dependent on the Cu chaperone ATOX1. Insight into the mechanisms by which CTR1 and CTR2 regulate sensitivity to the Pt-containing drugs has served as the basis for novel pharmacologic strategies for improving their efficacy.

  1. Regulation of Cisplatin Cytotoxicity by Cu Influx Transporters

    PubMed Central

    Abada, Paolo; Howell, Stephen B.

    2010-01-01

    Platinum drugs are an important class of cancer chemotherapeutics. However, the use of these drugs is limited by the development of resistance during treatment with decreased accumulation being a common mechanism. Both Cu transporters CTR1 and CTR2 influence the uptake and cytotoxicity of cisplatin. Although it is structurally similar to CTR1, CTR2 functions in a manner opposite to that of CTR1 with respect to Pt drug uptake. Whereas knockout of CTR1 reduces Pt drug uptake, knockdown of CTR2 enhances cisplatin uptake and cytotoxicity. CTR2 is subject to transcriptional and posttranscriptional regulation by both Cu and cisplatin; this regulation is partly dependent on the Cu chaperone ATOX1. Insight into the mechanisms by which CTR1 and CTR2 regulate sensitivity to the Pt-containing drugs has served as the basis for novel pharmacologic strategies for improving their efficacy. PMID:21274436

  2. Hyperhomocysteinemia Exacerbates Cisplatin-induced Acute Kidney Injury

    PubMed Central

    Long, Yanjun; Zhen, Xin; Zhu, Fengxin; Hu, Zheng; Lei, Wenjing; Li, Shuang; Zha, Yan; Nie, Jing

    2017-01-01

    Hyperhomocysteinemia (HHcy) has been linked to several clinical manifestations including chronic kidney disease. However, it is not known whether HHcy has a role in the development of acute kidney injury (AKI). In the present study, we reported that HHcy mice developed more severe renal injury after cisplatin injection and ischemia-reperfusion injury shown as more severe renal tubular damage and higher serum creatinine. In response to cisplatin, HHcy mice showed more prevalent tubular cell apoptosis and decreased tubular cell proliferation. Mechanistically, a heightened ER stress and a reduced Akt activity were observed in kidney tissues of HHcy mice after cisplatin injection. Stimulating cultured NRK-52E cells with Hcy significantly increased the fraction of cells in G2/M phase and cell apoptosis together with decreased Akt kinase activity. Akt agonist IGF-1 rescued HHcy-induced cell cycle arrest and cell apoptosis. In conclusion, the present study provides evidence that HHcy increases the sensitivity and severity of AKI. PMID:28255274

  3. Self-assembled drug delivery systems. Part 6: in vitro/in vivo studies of anticancer N-octadecanoyl gemcitabine nanoassemblies.

    PubMed

    Jin, Yiguang; Lian, Yanju; Du, Lina; Wang, Shuangmiao; Su, Chang; Gao, Chunsheng

    2012-07-01

    The nanoassemblies were prepared from N-octadecanoyl gemcitabine (NOG)/cholesteryl succinyl poly(ethylene glycol) 1500 (CHS-PEG(1500)) (5:1, mol/mol). They showed higher cytotoxicity than gemcitabine on HpG2 cell model. The amphiphilicity of NOG may improve permeation of prodrugs and destruction of cell membrane. The nanoassemblies were rapidly eliminated from circulation after bolus intravenous administration to healthy and tumor-bearing mice. The in vivo distribution sites of NOG were mainly liver and spleen though the distribution in tumor was not high. The non-spherical shape and high surface charge of the nanoassemblies may affect distribution. The nanoassemblies had similar anticancer efficacy to free gemcitabine solutions when the former contained about 1/3 dose of the latter in gemcitabine form. The nanoassemblies would be a promising anticancer nanomedicine.

  4. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake.

    PubMed

    Paproski, Robert J; Yao, Sylvia Y M; Favis, Nicole; Evans, David; Young, James D; Cass, Carol E; Zemp, Roger J

    2013-01-01

    Gemcitabine is a hydrophilic clinical anticancer drug that requires nucleoside transporters to cross plasma membranes and enter cells. Pancreatic adenocarcinomas with low levels of nucleoside transporters are generally resistant to gemcitabine and are currently a clinical problem. We tested whether transfection of human concentrative nucleoside transporter 3 (hCNT3) using ultrasound and lipid stabilized microbubbles could increase gemcitabine uptake and sensitivity in HEK293 cells made nucleoside transport deficient by pharmacologic treatment with dilazep. To our knowledge, no published data exists regarding the utility of using hCNT3 as a therapeutic gene to reverse gemcitabine resistance. Our ultrasound transfection system--capable of transfection of cell cultures, mouse muscle and xenograft CEM/araC tumors--increased hCNT3 mRNA and (3)H-gemcitabine uptake by >2,000- and 3,400-fold, respectively, in dilazep-treated HEK293 cells. Interestingly, HEK293 cells with both functional human equilibrative nucleoside transporters and hCNT3 displayed 5% of (3)H-gemcitabine uptake observed in cells with only functional hCNT3, suggesting that equilibrative nucleoside transporters caused significant efflux of (3)H-gemcitabine. Efflux assays confirmed that dilazep could inhibit the majority of (3)H-gemcitabine efflux from HEK293 cells, suggesting that hENTs were responsible for the majority of efflux from the tested cells. Oocyte uptake transport assays were also performed and provided support for our hypothesis. Gemcitabine uptake and efflux assays were also performed on pancreatic cancer AsPC-1 and MIA PaCa-2 cells with similar results to that of HEK293 cells. Using the MTS proliferation assay, dilazep-treated HEK293 cells demonstrated 13-fold greater resistance to gemcitabine compared to dilazep-untreated HEK293 cells and this resistance could be reversed by transfection of hCNT3 cDNA. We propose that transfection of hCNT3 cDNA using ultrasound and microbubbles may be a

  5. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells.

    PubMed

    Chen, Ming; He, Mengye; Song, Yinjing; Chen, Luoquan; Xiao, Peng; Wan, Xiaopeng; Dai, Feng; Shen, Peng

    2014-07-01

    Triple-negative breast cancer (TNBC), which is estrogen receptor (ER)-negative, progesterone receptor‑negative and is also negative for HER2 expression, remains a great clinical challenge due to its strong resistance to chemotherapy at the late stage of treatment and relatively unfavorable prognosis. Gemcitabine has been approved by the FDA/SFDA for use as a first-line therapeutic drug against advanced or metastatic breast cancer. Therefore, the clarification of the mechanisms underlying gemcitabine-acquired resistance is of particular importance for the optimal management of TNBC. A number of studies have revealed that autophagy, which has been found to protect cancer cells from anti-cancer drug-induced death, may contribute to the development of drug resistance. However, the association between autophagy and gemcitabine treatment in TNBC cells has yet to be defined. Our study clearly demonstrates that gemcitabine is able to induce mTOR-independent autophagy in human triple‑negative MDA-MB-231 breast cancer cells. In addition, we demonstrate that autophagy protects MDA-MB-231 cells from gemcitabine-induced cell growth inhibition and apoptosis, indicating that gemcitabine can activate autophagy to impair the sensitivity of MDA-MB‑231 cells. Furthermore, as shown by our results, the inhibition of gemcitabine-induced autophagy by chloroquine shifts the expression of the p53 protein, Bcl-2 family proteins and the relative Bax/Bcl-xL ratio in favor of promoting apoptosis. These results reveal that the inhibition of apoptosis may be one of the mechanisms of autophagy-induced cytoprotection in gemcitabine-treated MDA-MB-231 cells. The apoptotic and autophagic processes constitute a mutual inhibition system and jointly seal the fate of TNBC cells that are exposed to gemcitabine. Thus, our study suggests that the combination of an autophagic inhibitor and gemcitabine as a therapeutic strategy may represent a promising approach with greater clinical efficacy for

  6. Analysis of Novel Prostate Cancer Biomarkers and their Predictive Utility in an Active Surveillance Protocol

    DTIC Science & Technology

    2015-05-01

    Concomitant Chemoradiation by Either BID Irradiation Plus 5-Fluorouracil and Cisplatin or QD Irradiation Plus Gemcitabine Followed by Selective...Bladder Preservation and Gemcitabine/ Cisplatin Adjuvant Chemotherapy 2011-present P.I. Department of Defense Prostate Cancer Research Program - Physician...D, Lee RJ. Pathologic down-staging with gemcitabine and cisplatin neoadjuvant chemotherapy for muscle-invasive urothelial carcinoma of the bladder

  7. Mitochondrial ClpP activity is required for cisplatin resistance in human cells

    PubMed Central

    Zhang, Yang; Maurizi, Michael R.

    2016-01-01

    In human cells ClpP and ClpX are imported into the mitochondrial matrix, where they interact to form the ATP-dependent protease ClpXP and play a role in the mitochondrial unfolded protein response. We find that reducing the levels of mitochondrial ClpP or ClpX renders human cancer cells more sensitive to cisplatin, a widely used anti-cancer drug. Conversely, overexpression of HClpP desensitizes cells to cisplatin. Overexpression of inactive HClpP-S97A had no effect. Cisplatin resistance correlated with decreased cellular accumulation of cisplatin and decreased levels of diguanosine-cisplatin adducts in both mitochondrial and genomic DNA. In contrast, higher levels of cisplatin-DNA adducts were found in cells in which HClpP had been depleted. Changes in the levels of ClpP had no effect on the levels of CTR1, a copper transporter that contributes to cisplatin uptake. However, the levels of ATP7A and ATP7B, copper efflux pumps that help eliminate cisplatin from cells, were increased when HClpP was overexpressed. HClpP levels were elevated in cervical carcinoma cells (KB-CP) and hepatoma cells (BEL-7404) independently selected for cisplatin resistance. The data indicate that robust HClpXP activity positively affects the ability of cells to efflux cisplatin and suggest that targeting HClpP or HClpX would offer a novel mechanism for sensitizing cancer cells to cisplatin. PMID:26675528

  8. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation.

    PubMed

    Hamad, Rania; Jayakumar, Calpurnia; Ranganathan, Punithavathi; Mohamed, Riyaz; El-Hamamy, Mahmoud M I; Dessouki, Amina A; Ibrahim, Abdelazim; Ramesh, Ganesan

    2015-08-01

    Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Honey is a naturally occurring complex liquid and widely used in traditional Ayurvedic medicine to treat many illnesses. However, its effect on cisplatin nephrotoxicity is unknown. To determine the role of honey in cisplatin nephrotoxicity, animals were pretreated orally for a week and then cisplatin was administered. Honey feeding was continued for another 3 days. Our results show that animals with cisplatin-induced kidney dysfunction, as determined by increased serum creatinine, which received honey feeding had less kidney dysfunction. Improved kidney function was associated with better preservation of kidney morphology in honey-treated group as compared to the cisplatin alone-treated group. Interestingly, honey feeding significantly reduced cisplatin-induced tubular epithelial cell death, immune infiltration into the kidney as well as cytokine and chemokine expression and excretion as compared to cisplatin treated animals. Western blot analysis shows that cisplatin-induced increase in phosphorylation of NFkB was completely suppressed with honey feeding. In conclusion, honey feeding protects the kidney against cisplatin nephrotoxicity through suppression of inflammation and NFkB activation.

  9. Depletion of Mitofusin-2 Causes Mitochondrial Damage in Cisplatin-Induced Neuropathy.

    PubMed

    Bobylev, Ilja; Joshi, Abhijeet R; Barham, Mohammed; Neiss, Wolfram F; Lehmann, Helmar C

    2017-01-21

    Sensory neuropathy is a relevant side effect of the antineoplastic agent cisplatin. Mitochondrial damage is assumed to play a critical role in cisplatin-induced peripheral neuropathy, but the pathomechanisms underlying cisplatin-induced mitotoxicity and neurodegeneration are incompletely understood. In an animal model of cisplatin-induced neuropathy, we determined in detail the extent and spatial distribution of mitochondrial damage during cisplatin treatment. Changes in the total number of axonal mitochondria during cisplatin treatment were assessed in intercostal nerves from transgenic mice that express cyan fluorescent protein. Further, we explored the impact of cisplatin on the expression of nuclear encoded molecules of mitochondrial fusion and fission, including mitofusin-2 (MFN2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (DRP1). Cisplatin treatment resulted in a loss of total mitochondrial mass in axons and in an abnormal mitochondrial morphology including atypical enlargement, increased vacuolization, and loss of cristae. These changes were observed in distal and proximal nerve segments and were more prominent in axons than in Schwann cells. Transcripts of fusion and fission proteins were reduced in distal nerve segments. Significant reduced expression levels of the fusion protein MFN2 was detected in nerves of cisplatin-exposed animals. In summary, we provide for the first time an evidence that cisplatin alters mitochondrial dynamics in peripheral nerves. Loss of MFN2, previously implicated in the pathogenesis of other neurodegenerative diseases, also contributes to the pathogenesis in cisplatin-induced neuropathy.

  10. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C

    2013-03-06

    Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.

  11. Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies

    PubMed Central

    Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su Bin; Khadka, Dipendra; Pandit, Arpana

    2014-01-01

    Cisplatin is one of the most widely used and highly effective drug for the treatment of various solid tumors; however, it has dose-dependent side effects on the kidney, cochlear, and nerves. Nephrotoxicity is the most well-known and clinically important toxicity. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced nephrotoxicity. Even though the establishment of cisplatin-induced nephrotoxicity can be alleviated by diuretics and pre-hydration of patients, the prevalence of cisplatin nephrotoxicity is still high, occurring in approximately one-third of patients who have undergone cisplatin therapy. Therefore it is imperative to develop treatments that will ameliorate cisplatin-nephrotoxicity. In this review, we discuss the mechanisms of cisplatin-induced renal toxicity and the new strategies for protecting the kidneys from the toxic effects without lowering the tumoricidal activity. PMID:25606044

  12. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    SciTech Connect

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  13. Inhibition of ERα/ERK/P62 cascades induces “autophagic switch” in the estrogen receptor-positive breast cancer cells exposed to gemcitabine

    PubMed Central

    He, Mengye; Chen, Luoquan; Song, Yinjing; Xiao, Peng; Wan, Xiaopeng; Dai, Feng; Pan, Ting; Wang, Qingqing

    2016-01-01

    Several clinical trials revealed that estrogen receptor (ER) status had relevance to the response of mammary malignancy to chemotherapy. Autophagy has emerged as an important cellular mechanism of tumor cells in response to anticancer therapy. The aim of this study is to investigate whether gemcitabine induces autophagy, and more importantly, whether such autophagy is functional relevant to the therapeutic effects of gemcitabine in breast cancer cells in relation to the ER status. In our study, autophagy was induced both in ER+ MCF-7 and ER− MDA-MB-231 cells by gemcitabine markedly, while the autophagy plays distinct roles – cytoprotective in ER− MDA-MB-231 and cytotoxic in ER+ MCF-7 cells. Gemcitabine treatment leads to the activation of ERα-ERK-P62 signal pathway in MCF-7 cells which may augment the autophagic degradation, thus results in the excessive activation of autophagy and irreversible autophagic cell death eventually. Inhibition of ERα-ERK-P62 cascades in MCF-7 cells by small interfering RNA or PD98059 impairs the autophagic degradation, and leads to “autophagic switch” – from cytotoxic autophagy to cytoprotection. Moreover, stable overexpression of ERα in the ER− BCap37 breast cancer cell line enhances the gemcitabine-induced autophagy flux and switches the autophagic cytoprotection in ER− BCap37 to cytotoxicity effect in ER+ BCap37 cells. Our study firstly demonstrated that ER status influences gemcitabine efficacy via modulating the autophagy in breast cancer cells. PMID:27384485

  14. Cisplatin inhibits MEK1/2

    PubMed Central

    Yamamoto, Tetsu; Tsigelny, Igor F.; Götz, Andreas W.; Howell, Stephen B.

    2015-01-01

    Cisplatin (cDDP) is known to bind to the CXXC motif of proteins containing a ferrodoxin-like fold but little is known about its ability to interact with other Cu-binding proteins. MEK1/2 has recently been identified as a Cu-dependent enzyme that does not contain a CXXC motif. We found that cDDP bound to and inhibited the activity of recombinant MEK1 with an IC50 of 0.28 μM and MEK1/2 in whole cells with an IC50 of 37.4 μM. The inhibition of MEK1/2 was relieved by both Cu+1 and Cu+2 in a concentration-dependent manner. cDDP did not inhibit the upstream pathways responsible for activating MEK1/2, and did not cause an acute depletion of cellular Cu that could account for the reduction in MEK1/2 activity. cDDP was found to bind MEK1/2 in whole cells and the extent of binding was augmented by supplementary Cu and reduced by Cu chelation. Molecular modeling predicts 3 Cu and cDDP binding sites and quantum chemistry calculations indicate that cDDP would be expected to displace Cu from each of these sites. We conclude that, at clinically relevant concentrations, cDDP binds to and inhibits MEK1/2 and that both the binding and inhibitory activity are related to its interaction with Cu bound to MEK1/2. This may provide the basis for useful interactions of cDDP with other drugs that inhibit MAPK pathway signaling. PMID:26155939

  15. Ursolic acid sensitizes cisplatin-resistant HepG2/DDP cells to cisplatin via inhibiting Nrf2/ARE pathway

    PubMed Central

    Wu, Shouhai; Zhang, Tianpeng; Du, Jingsheng

    2016-01-01

    Background Combinations of adjuvant sensitizers with anticancer drugs is a promising new strategy to reverse chemoresistance. Ursolic acid (UA) is one of the natural pentacyclic triterpene compounds known to have many pharmacological characteristics such as anti-inflammatory and anticancer properties. This study investigates whether UA can sensitize hepatocellular carcinoma cells to cisplatin. Materials and methods Cells were transfected with nuclear factor erythroid-2-related factor 2 (Nrf2) small interfering RNA and Nrf2 complementary DNA by using Lipofectin 2000. The cytotoxicity of cells was investigated by Cell Counting Kit 8 assay. Cell apoptosis, cell cycle, reactive oxygen species, and mitochondrial membrane potential were detected by flow cytometry fluorescence-activated cell sorting. The protein level of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and heme oxygenase-1 (HO-1) was detected by Western blot analysis. Results The results showed that the reverse index was 2.9- and 9.69-fold by UA of 1.125 μg/mL and 2.25 μg/mL, respectively, for cisplatin to HepG2/DDP cells. UA–cisplatin combination induced cell apoptosis and reactive oxygen species, blocked the cell cycle in G0/G1 phase, and reduced the mitochondrial membrane potential. Mechanistically, UA–cisplatin dramatically decreased the expression of Nrf2 and its downstream genes. The sensibilization of UA–cisplatin combination was diminished in Nrf2 small interfering RNA-transfected HepG2/DDP cells, as well as in Nrf2 complementary DNA-transfected HepG2/DDP cells. Conclusion The results confirmed the sensibilization of UA on HepG2/DDP cells to cisplatin, which was possibly mediated via the Nrf2/antioxidant response element pathway. PMID:27822011

  16. A randomised trial of three or six courses of etoposide cyclophosphamide methotrexate and vincristine or six courses of etoposide and ifosfamide in small cell lung cancer (SCLC). II: Quality of life. Medical Research Council Lung Cancer Working Party.

    PubMed Central

    Bleehen, N. M.; Girling, D. J.; Machin, D.; Stephens, R. J.

    1993-01-01

    A total of 458 eligible patients, from 21 centres, with microscopically confirmed SCLC were allocated at random to three chemotherapy regimens, each given at 3-week intervals. In two regimens, etoposide, cyclophosphamide, methotrexate and vincristine were given for a total of either three courses (ECMV3) or six courses (ECMV6). In the third regimen, etoposide and ifosfamide were given for six courses (E16). Patients with limited disease also received radiotherapy to the primary site after the third course of chemotherapy in all three groups. As reported by clinicians, 59% of the ECMV3, 67% of the ECMV6 and 63% of the EI6 patients experienced moderate or severe adverse reactions to their chemotherapy. The major symptoms of disease, cough, haemoptysis, chest pain, anorexia, and dysphagia, were palliated in 63% or more of patients and the median duration of palliation was 63% or more of survival, the results being similar in the three groups. Among patients with poor overall condition, physical activity and breathlessness on admission, the proportions who improved were higher in the EI6 group but the differences were small. In all three groups, levels of anxiety fell substantially during treatment. Levels of depression were lower and showed little change. As assessed by patients using a daily diary card, the patterns of nausea, vomiting, activity and mood, associated with courses of chemotherapy were very similar in the three groups. In the EI6 group there was less dysphagia and better overall condition between courses, but these advantages need to be weighed against the inconvenience of the 24-h infusions required, compared with the 30-min infusions of the other two regimens. As reported in the companion paper (MRC Lung Cancer Working Party, 1993a) there was no statistically significant survival advantage to any of the three regimens, although the results do not exclude the possibility of a minor survival advantage with the two six-course regimens. In conclusion

  17. Induction Gemcitabine and Stereotactic Body Radiotherapy for Locally Advanced Nonmetastatic Pancreas Cancer

    SciTech Connect

    Mahadevan, Anand; Miksad, Rebecca; Goldstein, Michael; Sullivan, Ryan; Bullock, Andrea; Buchbinder, Elizabeth; Pleskow, Douglas; Sawhney, Mandeep; Kent, Tara; Vollmer, Charles; Callery, Mark

    2011-11-15

    Purpose: Stereotactic body radiotherapy (SBRT) has been used successfully to treat patients with locally advanced pancreas cancer. However, many patients develop metastatic disease soon after diagnosis and may receive little benefit from such therapy. We therefore retrospectively analyzed a planned strategy of initial chemotherapy with restaging and then treatment for those patients with no evidence of metastatic progression with SBRT. Methods and Materials: Forty-seven patients received gemcitabine (1,000 mg/m{sup 2} per week for 3 weeks then 1 week off) until tolerance, at least six cycles, or progression. Patients without metastases after two cycles were treated with SBRT (tolerance-based dose of 24-36 Gy in 3 fractions) between the third and fourth cycles without interrupting the chemotherapy cycles. Results: Eight of the 47 patients (17%) were found to have metastatic disease after two cycles of gemcitabine; the remaining 39 patients received SBRT. The median follow-up for survivors was 21 months (range, 6-36 months). The median overall survival for all patients who received SBRT was 20 months, and the median progression-free survival was 15 months. The local control rate was 85% (33 of 39 patients); and 54% of patients (21 of 39) developed metastases. Late Grade III toxicities such as GI bleeding and obstruction were observed in 9% (3/39) of patients. Conclusion: For patients with locally advanced pancreas cancer, this strategy uses local therapy for those who are most likely to benefit from it and spares those patients with early metastatic progression from treatment. SBRT delivers such local therapy safely with minimal interruption to systemic chemotherapy, thereby potentially improving the outcome in these patients.

  18. Gemcitabine and oxaliplatin in advanced biliary tract carcinoma: a phase II study

    PubMed Central

    André, T; Reyes-Vidal, J M; Fartoux, L; Ross, P; Leslie, M; Rosmorduc, O; Clemens, M R; Louvet, C; Perez, N; Mehmud, F; Scheithauer, W

    2008-01-01

    Advanced biliary tract carcinomas (BTCs) are often diagnosed at an advanced/metastatic stage and have a poor prognosis. The combination of gemcitabine and oxaliplatin (GEMOX) has shown promising activity in this setting. This international phase II study evaluated the efficacy and safety of GEMOX as first-line therapy in patients with advanced BTCs. Eligible patients with previously untreated locally advanced or metastatic BTC received gemcitabine 1000 mg m−2 (day 1) and oxaliplatin 100 mg m−2 (day 2), every 2 weeks. Seventy patients were enroled; 72.9% had metastatic disease. Sixty-seven patients were treated. There were 10 confirmed partial responses (14.9%; 95% confidence interval (CI), 7.4–25.7%) in the treated population (RECIST). Twenty-four patients (35.8 %) had stable disease. The objective response rate was 20.5% in patients with non-gallbladder cancers (9/44 patients) and 4.3% in patients with gallbladder cancers (1/23). Median overall survival for the intent-to-treat population was 8.8 months (95% CI, 6.9–11.1%) and progression-free survival was 3.4 months (95% CI, 2.5–4.6%). Grade 3/4 toxicities included thrombocytopenia (14.9% of patients), alanine aminotransferase elevation (13.4%), anaemia (10.4%), neutropenia (11.9%) and pain (11.9%). In this study, GEMOX demonstrated activity in non-gallbladder carcinoma, but poor activity in gallbladder carcinoma. GEMOX is well tolerated in advanced BTCs. PMID:19238628

  19. Crizotinib inhibits metabolic inactivation of gemcitabine in c-Met-driven pancreatic carcinoma.

    PubMed

    Avan, Amir; Caretti, Viola; Funel, Niccola; Galvani, Elena; Maftouh, Mina; Honeywell, Richard J; Lagerweij, Tonny; Van Tellingen, Olaf; Campani, Daniela; Fuchs, Dieter; Verheul, Henk M; Schuurhuis, Gerrit-Jan; Boggi, Ugo; Peters, Godefridus J; Würdinger, Thomas; Giovannetti, Elisa

    2013-11-15

    Pancreatic ductal adenocarcinoma (PDAC) remains a major unsolved health problem. Most drugs that pass preclinical tests fail in these patients, emphasizing the need of improved preclinical models to test novel anticancer strategies. Here, we developed four orthotopic mouse models using primary human PDAC cells genetically engineered to express firefly- and Gaussia luciferase, simplifying the ability to monitor tumor growth and metastasis longitudinally in individual animals with MRI and high-frequency ultrasound. In these models, we conducted detailed histopathologic and immunohistochemical analyses on paraffin-embedded pancreatic tissues and metastatic lesions in liver, lungs, and lymph nodes. Genetic characteristics were compared with the originator tumor and primary tumor cells using array-based comparative genomic hybridization, using frozen specimens obtained by laser microdissection. Notably, the orthotopic human xenografts in these models recapitulated the phenotype of human PDACs, including hypovascular and hypoxic areas. Pursuing genomic and immunohistochemical evidence revealed an increased copy number and overexpression of c-Met in one of the models; we examined the preclinical efficacy of c-Met inhibitors in vitro and in vivo. In particular, we found that crizotinib decreased tumor dimension, prolonged survival, and increased blood and tissue concentrations of gemcitabine, synergizing with a cytidine deaminase-mediated mechanism of action. Together, these more readily imaged orthotopic PDAC models displayed genetic, histopathologic, and metastatic features similar to their human tumors of origin. Moreover, their use pointed to c-Met as a candidate therapeutic target in PDAC and highlighted crizotinib and gemcitabine as a synergistic combination of drugs warranting clinical evaluation for PDAC treatment.

  20. Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity

    SciTech Connect

    Johnson, Adam J.; Brown, Melissa N.; Black, Margaret E.

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Goal was to enhance dFdC cytotoxicity by the creation of a UCMK/dCK fusion enzyme. Black-Right-Pointing-Pointer The UCMK/dCK fusion enzyme possesses both native activities. Black-Right-Pointing-Pointer The fusion renders cells equally sensitive to dFdC relative to dCK expression alone. Black-Right-Pointing-Pointer Dual activities of fusion not sufficient to augment cell dFdC sensitivity in vitro. Black-Right-Pointing-Pointer Data may warrant the implementation of UCMK mutagenesis studies. -- Abstract: While gemcitabine (2 Prime -2 Prime -difluoro-2 Prime -deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhance dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.

  1. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide)

    PubMed Central

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez Jimenez, Ana Maria; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL−1, respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene. PMID:26927112

  2. The Broken MLL Gene Is Frequently Located Outside the Inherent Chromosome Territory in Human Lymphoid Cells Treated with DNA Topoisomerase II Poison Etoposide

    PubMed Central

    Glukhov, Sergey I.; Rubtsov, Mikhail A.; Alexeyevsky, Daniil A.; Alexeevski, Andrei V.; Razin, Sergey V.; Iarovaia, Olga V.

    2013-01-01

    The mixed lineage leukaemia (MLL) gene is frequently rearranged in secondary leukaemias, in which it could fuse to a variety of different partners. Breakage in the MLL gene preferentially occurs within a ~8 kb region that possesses a strong DNA topoisomerase II cleavage site. It has been proposed that DNA topoisomerase II-mediated DNA cleavage within this and other regions triggers translocations that occur due to incorrect joining of broken DNA ends. To further clarify a possible mechanism for MLL rearrangements, we analysed the frequency of MLL cleavage in cells exposed to etoposide, a DNA topoisomerase II poison commonly used as an anticancer drug, and positioning of the broken 3’-end of the MLL gene in respect to inherent chromosomal territories. It was demonstrated that exposure of human Jurkat cells to etoposide resulted in frequent cleavage of MLL genes. Using MLL-specific break-apart probes we visualised cleaved MLL genes in ~17% of nuclei. Using confocal microscopy and 3D modelling, we demonstrated that in cells treated with etoposide and cultivated for 1 h under normal conditions, ~9% of the broken MLL alleles were present outside the chromosome 11 territory, whereas in both control cells and cells inspected immediately after etoposide treatment, virtually all MLL alleles were present within the chromosomal territory. The data are discussed in the framework of the “breakage first” model of juxtaposing translocation partners. We propose that in the course of repairing DNA topoisomerase II-mediated DNA lesions (removal of stalled DNA topoisomerase II complexes and non-homologous end joining), DNA ends acquire additional mobility, which allows the meeting and incorrect joining of translocation partners. PMID:24086652

  3. The Effect of Dexpanthenol on Ototoxicity Induced by Cisplatin

    PubMed Central

    Toplu, Yuksel; Sapmaz, Emrah; Parlakpinar, Hakan; Kelles, Mehmet; Kalcioglu, M. Tayyar; Tanbek, Kevser; Kizilay, Ahmet

    2016-01-01

    Objectives This study was aimed to investigate the protective effects of dexpanthenol (Dxp) on against cisplatin-induced ototoxicity. Methods To examine this effect, distortion product otoacoustic emissions (DPOAEs) measurements and serum levels of oxidative and antioxidant status (including malondialdehyde, superoxide dismutase, catalase, glutathione, glutathione peroxidase, total oxidant status, total antioxidant status, and oxidative stress index) were evaluated. Thirty-two adult female Wistar albino rats were randomly divided into 4 equal groups; control (K), cisplatin (C), cisplatin plus Dxp (CD), and Dxp (D). In all groups DPOAEs measurements, between 996 and 10,078 Hz as DPOAEs and input/output functions, were performed on days 0, 1th, 5th, and 12th. Prior to death, the last DPOAEs measurements and blood samples were taken. Results In the C group, statistically significant differences were detected at all frequencies between 0 and 5 days and 0 and 12 days measurements (P<0.05). Serum level of oxidant and antioxidant status were detected statistically significantly changed in this group versus K group (P<0.05). Contrary to the C group, in the CD group hearing ability was seen largely preserved at many frequencies and serum levels of all biochemical parameters were shifted toward normal values, similar to the K group. No significant differences were detected in the either D or K group’s measurements. Conclusion According to these results, Dxp may prevent cisplatin-induced ototoxicity. PMID:26976021

  4. Cisplatin-Associated Ototoxicity: A Review for the Health Professional

    PubMed Central

    Paken, Jessica; Govender, Cyril D.; Pillay, Mershen

    2016-01-01

    Cisplatin is an effective drug used in the treatment of many cancers, yet its ototoxic potential places cancer patients, exposed to this drug, at risk of hearing loss, thus negatively impacting further on a patient's quality of life. It is paramount for health care practitioners managing such patients to be aware of cisplatin's ototoxic properties and the clinical signs to identify patients at risk of developing hearing loss. English peer-reviewed articles from January 1975 to July 2015 were assessed from PubMed, Science Direct, and Ebscohost. Seventy-nine articles and two books were identified for this review, using MeSH terms and keywords such as “ototoxicity”, “cisplatin”, “hearing loss”, and “ototoxicity monitoring”. This review provides an up-to-date overview of cisplatin-associated ototoxicity, namely, its clinical features, incidence rates, and molecular and cellular mechanisms and risk factors, to health care practitioners managing the patient with cancer, and highlights the need for a team-based approach to complement an audiological monitoring programme to mitigate any further loss in the quality of life of affected patients, as there is currently no otoprotective agent recommended routinely for the prevention of cisplatin-associated ototoxicity. It also sets the platform for effective dialogue towards policy formulation and strengthening of health systems in developing countries. PMID:28115933

  5. Transcriptional control of viral gene therapy by cisplatin

    PubMed Central

    Park, James O.; Lopez, Carlos A.; Gupta, Vinay K.; Brown, Charles K.; Mauceri, Helena J.; Darga, Thomas E.; Manan, Abdullah; Hellman, Samuel; Posner, Mitchell C.; Kufe, Donald W.; Weichselbaum, Ralph R.

    2002-01-01

    Ionizing radiation (IR) and radical oxygen intermediates (ROIs) activate the early growth response-1 (Egr1) promoter through specific cis-acting sequences termed CArG elements. Ad.Egr.TNF.11D, a replication-deficient adenoviral vector containing CArG elements cloned upstream of the cDNA for human recombinant TNF-α was used to treat human esophageal adenocarcinoma and rat colon adenocarcinoma cells in culture and as xenografts in athymic nude mice. Cisplatin, a commonly used chemotherapeutic agent, causes tumor cell death by producing DNA damage and generating ROIs. The present studies demonstrate induction of TNF-α production in tumor cells and xenografts treated with the combination of Ad.Egr.TNF.11D and cisplatin. The results show that the Egr1 promoter is induced by cisplatin and that this induction is mediated in part through the CArG elements. These studies also demonstrate an enhanced antitumor response without an increase in toxicity following treatment with Ad.Egr.TNF.11D and cisplatin, compared with either agent alone. Chemo-inducible cancer gene therapy thus provides a means to control transgene expression while enhancing the effectiveness of commonly used chemotherapeutic agents. PMID:12163460

  6. Spectrum of cisplatin-induced mutations in Escherichia coli

    SciTech Connect

    Burnouf, D.; Duane, M.; Fuchs, R.P.

    1987-06-01

    Using a forward-mutation assay based on the inactivation of the tetracycline-resistance gene located on plasmid pBR322, we have determined the mutation spectrum induced in Escherichia coli by cisplatin (cis-diamminedichloroplatinum(II)), a widely used antitumor drug. Cisplatin is known to form mainly intrastrand diadducts at ApG and GpG sites. We found that cisplatin efficiently induces mutations in an SOS-dependent way (i.e., dependent upon UV irradiation of the host bacteria). More than 90% of the mutations are single-base-pair substitutions occurring at the potential sites of cisplatin adducts (ApG and GpG). Taking into account the relative proportions of ApG and GpG adducts, we found that the ApG adducts are at least 5 times more mutagenic than the GpG adducts. Moreover, a strong mutation specificity was seen at the 5' side of the ApG adducts (A X T----T X A transversions). The observation that most mutations occur at the 5' end of the adduct at both ApG and GpG sites is discussed in relation to recent structural data.

  7. Gemcitabine-treated pancreatic cancer cell medium induces the specific CTL antitumor activity by stimulating the maturation of dendritic cells.

    PubMed

    Pei, Qingshan; Pan, Jianmei; Zhu, Hao; Ding, Xiwei; Liu, Wenjia; Lv, Ying; Zou, Xiaoping; Luo, Hesheng

    2014-03-01

    Gemcitabine (GEM) is a first line chemotherapeutic drug for advanced pancreatic cancer. Dendritic cell (DC) vaccine is a promising method of immunotherapy for malignant tumor. Recent research has indicated that gemcitabine can enhance the efficacy of DC vaccine, but precise mechanism is still unknown. Here, we aimed to investigate the effect of GEM on DCs. The results showed that GEM-treated pancreatic cancer cell medium stimulated maturation of DCs. When co-cultured with autologous T lymphocytes, the pulsed DCs promoted the proliferation of T cells, and exhibited specific cytotoxic T lymphocytes (CTLs) antitumor activity. Further research showed that stimulation of DC maturation may be related to the elevated level of Hsp70 induced by GEM. Our study indicates that GEM changes the immunogenicity of tumor cells, and enhances the efficacy of DC based immunotherapy for pancreatic cancer.

  8. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud's phenomenon, positive antinuclear antibodies and hypertensive emergency.

    PubMed

    Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu

    2014-01-01

    A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.

  9. Enhanced gemcitabine-mediated cell killing of human lung adenocarcinoma by vector-based RNA interference against PLK1.

    PubMed

    Zhao, Xin-Yu; Nie, Chun-Lai; Liang, Shu-Fang; Yuan, Zhu; Deng, Hong-Xin; Wei, Yu-Quan

    2012-12-01

    Specific PLK1 silencing may be an effective gene therapy modality of treating PLK1-overexpressed cancers. In this study, we first explored the anticancer efficacy of three different short hairpin-expressing plasmids targeting PLK1 in animal model, and then determined the combination therapy effect of gemcitabine with PLK1-shRNA as an adjuvant. Transfection of the PLK1-shRNAs to A549 lung cancer cells induced significant PLK1 depletion, growth inhibition and apoptosis. In vivo administration of PLK1-shRNA constructs to tumor-bearing mice resulted in xenograft regression. Moreover, the combination of PLK1-shRNA plus low-dose gemcitabine (GEM) produced an additive antitumor activity on the lung tumors owing to an inhibition of cancer cell survival and augmented apoptosis. These results indicated a feasible bio-chemotherapeutic strategy for cancer.

  10. Inhibition of COX-2/PGE2 cascade ameliorates cisplatin-induced mesangial cell apoptosis

    PubMed Central

    Yu, Xiaowen; Yang, Yunwen; Yuan, Hui; Wu, Meng; Li, Shuzhen; Gong, Wei; Yu, Jing; Xia, Weiwei; Zhang, Yue; Ding, Guixia; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2017-01-01

    Cisplatin is one of the most potent cytotoxic drug for the treatment of many types of cancer. However, the side effects on normal tissues, particularly on the kidney, greatly limited its use in clinic. Emerging evidence demonstrated that cisplatin could directly cause mesangial cell apoptosis, while the potential mechanism is still elusive. Here we examined the contribution of COX-2 in cisplatin-induced mesangial cell apoptosis. Firstly, we found cisplatin induced cell apoptosis in mesangial cells shown by increased number of apoptotic cells in parallel with the upregulation of Bax and the downregulation of Bcl-2. Interestingly, cisplatin-induced cell apoptosis was accompanied by an upregulation of COX-2 at both mRNA and protein levels in dose- and time-dependent manners. Importantly, inhibition of COX-2 via a specific COX-2 inhibitor celecoxib markedly blocked cisplatin-induced mesangial cell apoptosis as evidenced by the decreased number of apoptotic cells, blocked increments of cleaved caspase-3 and Bax, and reversed Bcl-2 downregulation. Meanwhile, cisplatin-induced PGE2 production was markedly blocked by the treatment of celecoxib. In conclusion, this study indicated that COX-2/PGE2 cascade activation mediated cisplatin-induced mesangial cell apoptosis. The findings not only offered new insights into the understanding of cisplatin nephrotoxicity but also provided the therapeutic potential by targeting COX-2/PGE2 cascade in treating cisplatin-induced kidney injury. PMID:28386348

  11. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells

    PubMed Central

    Wu, Hui-Mei; Jiang, Zi-Feng; Ding, Pei-Shan; Shao, Li-Jie; Liu, Rong-Yu

    2015-01-01

    Hypoxia which commonly exists in solid tumors, leads to cancer cells chemoresistance via provoking adaptive responses including autophagy. Therefore, we sought to evaluate the role of autophagy and hypoxia as well as the underlying mechanism in the cisplatin resistance of lung cancer cells. Our study demonstrated that hypoxia significantly protected A549 and SPC-A1 cells from cisplatin-induced cell death in a Hif-1α- and Hif-2α- dependent manner. Moreover, compared with normoxia, cisplatin-induced apoptosis under hypoxia was markedly reduced. However, when autophagy was inhibited by 3-MA or siRNA targeted ATG5, this reduction was effectively attenuated, which means autophagy mediates cisplatin resisitance under hypoxia. In parallel, we showed that hypoxia robustly augmented cisplatin-induced autophagy activation, accompanying by suppressing cisplatin-induced BNIP3 death pathways, which was due to the more efficient autophagic process under hypoxia. Consequently, we proposed that autophagy was a protective mechanism after cisplatin incubation under both normoxia and hypoxia. However, under normoxia, autophagy activation ‘was unable to counteract the stress induced by cisplatin, therefore resulting in cell death, whereas under hypoxia, autophagy induction was augmented that solved the cisplatin-induced stress, allowing the cells to survival. In conclusion, augmented induction of autophagy by hypoxia decreased lung cancer cells susceptibility to cisplatin-induced apoptosis. PMID:26201611

  12. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance

    PubMed Central

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-01-01

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance. PMID:28262781

  13. Cisplatin Concentrations in Long and Short Duration Infusion: Implications for the Optimal Time of Radiation Delivery

    PubMed Central

    Mathew, Binu Susan; Das, Saikat; Isaiah, Rajesh; John, Subashini; Prabha, Ratna; Fleming, Denise Helen

    2016-01-01

    Introduction Cisplatin has radiosensitizing properties and the best sensitization to radiotherapy occurs with a higher plasma concentration of cisplatin. To our knowledge the optimal time sequence between chemotherapy and administration of radiation therapy, to obtain maximum effect from concurrent chemoradiation is unclear. Aim The aim of this study was to measure the two cisplatin infusion regimens in order to determine the total and free cisplatin post infusion concentration changes over time. These changes may have clinical implications on the optimum time of administration of post infusion radiation therapy. Materials and Methods Two cohorts of patients were recruited and both, total and free plasma concentration of cisplatin following long and short durations of intravenous infusion was determined. Blood samples were collected at 0.5, 1, 1.5, 2, 3 and 5 hours from the start of the infusion in the 1hour infusion group and at 2, 3, 3.5, 4, 6 and 24 hours from the start of the infusion, in the 3 hour infusion group. Total and free cisplatin concentrations were measured using a validated HPLC-UV method. Results The highest concentration of total and free cisplatin was achieved at the end of the infusion in both regimens. Total cisplatin concentration declined 30 minutes after the end of infusion in both the groups. After 1hour of discontinuing cisplatin, the free cisplatin concentration also declined significantly. Conclusion We conclude that radiation should be administered within 30 minutes of completion of the infusion irrespective of the duration of infusion. PMID:27630935

  14. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    PubMed Central

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  15. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance.

    PubMed

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-03-06

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance.

  16. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation.

    PubMed

    Kulhari, Hitesh; Pooja, Deep; Singh, Mayank K; Chauhan, Abhay S

    2015-02-01

    Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.

  17. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer.

    PubMed

    Han, Xi; Zhou, Yuanyuan; You, Yuanyi; Lu, Jiaojiao; Wang, Lijie; Hou, Huilian; Li, Jing; Chen, Wei; Zhao, Le; Li, Xu

    2017-04-01

    The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer.

  18. Enhancement of Cisplatin Nephrotoxicity by Morphine and Its Attenuation by the Opioid Antagonist Naltrexone.

    PubMed

    Aminian, Atefeh; Javadi, Shiva; Rahimian, Reza; Dehpour, Ahmad Reza; Asadi Amoli, Fahimeh; Moghaddas, Payman; Ejtemaei Mehr, Shahram

    2016-07-01

    Nephrotoxicity is a major side effect of cisplatin, a widely used chemotherapy agent. Morphine and other opioids are also used extensively in different types of cancer for the clinical management of pain associated with local or metastatic neoplastic lesions. In addition to its analgesic effects, morphine has also been reported to possess potential immunomodulatory and antioxidant properties. Herein, we investigated the effects of morphine in a rat model of cisplatin-induced nephrotoxicity. Following administration of a single dose of cisplatin (5 mg/kg), animals received intraperitoneal injections of morphine (5 mg/kg/day) and/or naltrexone (20 mg/kg/day), an opioid antagonist, for 5 days. Cisplatin-induced nephrotoxicity was detected by a significant increase in plasma urea and creatinine levels in addition to alterations in kidney tissue morphology. Levels of TNF-α and IL-1β were significantly increased in the renal tissue in cisplatin group. Moreover, glutathione (GSH) concentration and superoxide dismutase activity were significantly reduced in renal tissue in cisplatin group compared with control animals. Treatment with morphine aggravated the deleterious effects of cisplatin at clinical, biochemical and histopathological levels; whereas naltrexone diminished the detrimental effects of morphine in animals receiving morphine and cisplatin. Morphine or naltrexone alone had no effect on the mentioned parameters. Our findings indicate that concomitant treatment with morphine might intensify cisplatin-induced renal damage in rats. These findings suggest that morphine and other opioids should be administered cautiously in patients receiving cisplatin chemotherapy.

  19. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer

    PubMed Central

    Lee, Kyung Dong; Jeong, Young-Il; Kim, Da Hye; Lim, Gyun-Taek; Choi, Ki-Choon

    2013-01-01

    Background Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate) (PAA-MMA) incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. PMID:23966778

  20. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    PubMed Central

    2009-01-01

    Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin. PMID:19292900

  1. Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors.

    PubMed

    Bagrodia, Aditya; Lee, Byron H; Lee, William; Cha, Eugene K; Sfakianos, John P; Iyer, Gopa; Pietzak, Eugene J; Gao, Sizhi Paul; Zabor, Emily C; Ostrovnaya, Irina; Kaffenberger, Samuel D; Syed, Aijazuddin; Arcila, Maria E; Chaganti, Raju S; Kundra, Ritika; Eng, Jana; Hreiki, Joseph; Vacic, Vladimir; Arora, Kanika; Oschwald, Dayna M; Berger, Michael F; Bajorin, Dean F; Bains, Manjit S; Schultz, Nikolaus; Reuter, Victor E; Sheinfeld, Joel; Bosl, George J; Al-Ahmadie, Hikmat A; Solit, David B; Feldman, Darren R

    2016-11-20

    Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture-based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic

  2. Single-Fraction Stereotactic Body Radiation Therapy and Sequential Gemcitabine for the Treatment of Locally Advanced Pancreatic Cancer

    SciTech Connect

    Schellenberg, Devin; Kim, Jeff; Christman-Skieller, Claudia; Chun, Carlene L.; Columbo, Laurie Ann; Ford, James M.; Fisher, George A.; Kunz, Pamela L.; Van Dam, Jacques; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Hsu, Annie; Maxim, Peter G.; Xing, Lei; Goodman, Karyn A.; Chang, Daniel T.; Koong, Albert C.

    2011-09-01

    Purpose: This Phase II trial evaluated the toxicity, local control, and overall survival in patients treated with sequential gemcitabine and linear accelerator-based single-fraction stereotactic body radiotherapy (SBRT). Methods and Materials: Twenty patients with locally advanced, nonmetastatic pancreatic adenocarcinoma were enrolled on this prospective single-institution, institutional review board-approved study. Gemcitabine was administered on Days 1, 8, and 15, and SBRT on Day 29. Gemcitabine was restarted on Day 43 and continued for 3-5 cycles. SBRT of 25 Gy in a single fraction was delivered to the internal target volume with a 2- 3-mm margin using a nine-field intensity-modulated radiotherapy technique. Respiratory gating was used to account for breathing motion. Follow-up evaluations occurred at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All patients completed SBRT and a median of five cycles of chemotherapy. Follow-up for the 2 remaining alive patients was 25.1 and 36.4 months. No acute Grade 3 or greater nonhematologic toxicity was observed. Late Grade 3 or greater toxicities occurred in 1 patient (5%) and consisted of a duodenal perforation (G4). Three patients (15%) developed ulcers (G2) that were medically managed. Overall, median survival was 11.8 months, with 1-year survival of 50% and 2-year survival of 20%. Using serial computed tomography, the freedom from local progression was 94% at 1 year. Conclusion: Linear accelerator-delivered SBRT with sequential gemcitabine resulted in excellent local control of locally advanced pancreatic cancer. Future studies will address strategies for reducing long-term duodenal toxicity associated with SBRT.

  3. Phase 1 Pharmacogenetic and Pharmacodynamic Study of Sorafenib With Concurrent Radiation Therapy and Gemcitabine in Locally Advanced Unresectable Pancreatic Cancer

    SciTech Connect

    Chiorean, E. Gabriela; Schneider, Bryan P.; Akisik, Fatih M.; Perkins, Susan M.; Anderson, Stephen; Johnson, Cynthia S.; DeWitt, John; Helft, Paul; Clark, Romnee; Johnston, Erica L.; Spittler, A. John; Deluca, Jill; Bu, Guixue; Shahda, Safi; Loehrer, Patrick J.; Sandrasegaran, Kumar; Cardenes, Higinia R.

    2014-06-01

    Purpose: To define the safety, efficacy, and pharmacogenetic and pharmacodynamic effects of sorafenib with gemcitabine-based chemoradiotherapy (CRT) in locally advanced pancreatic cancer. Methods and Materials: Patients received gemcitabine 1000 mg/m{sup 2} intravenously weekly × 3 every 4 weeks per cycle for 1 cycle before CRT and continued for up to 4 cycles after CRT. Weekly gemcitabine 600 mg/m{sup 2} intravenously was given during concurrent intensity modulated radiation therapy of 50 Gy to gross tumor volume in 25 fractions. Sorafenib was dosed orally 400 mg twice daily until progression, except during CRT when it was escalated from 200 mg to 400 mg daily, and 400 mg twice daily. The maximum tolerated dose cohort was expanded to 15 patients. Correlative studies included dynamic contrast-enhanced MRI and angiogenesis genes polymorphisms (VEGF-A and VEGF-R2 single nucleotide polymorphisms). Results: Twenty-seven patients were enrolled. No dose-limiting toxicity occurred during induction gemcitabine/sorafenib followed by concurrent CRT. The most common grade 3/4 toxicities were fatigue, hematologic, and gastrointestinal. The maximum tolerated dose was sorafenib 400 mg twice daily. The median progression-free survival and overall survival for 25 evaluable patients were 10.6 and 12.6 months, respectively. The median overall survival for patients with VEGF-A -2578 AA, -1498 CC, and -1154 AA versus alternate genotypes was 21.6 versus 14.7 months. Dynamic contrast-enhanced MRI demonstrated higher baseline K{sup trans} in responding patients. Conclusions: Concurrent sorafenib with CRT had modest clinical activity with increased gastrointestinal toxicity in localized unresectable pancreatic cancer. Select VEGF-A/VEGF-R2 genotypes were associated with favorable survival.

  4. Pilot Clinical Trial of Hedgehog Pathway Inhibitor GDC-0449 (Vismodegib) in Combination with Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma

    PubMed Central

    Abel, Ethan V.; Griffith, Kent A.; Greenson, Joel K.; Takebe, Naoko; Khan, Gazala N.; Blau, John L.; Craig, Ronald; Balis, Ulysses G.; Zalupski, Mark M.; Simeone, Diane M.

    2014-01-01

    Background The hedgehog (HH) signaling pathway is a key regulator in tumorigenesis of pancreatic adenocarcinoma (PDA) and is up-regulated in PDA cancer stem cells (CSCs). GDC-0449 is an oral small-molecule inhibitor of HH pathway. This study assessed the effect of GDC-0449-mediated HH inhibition in paired biopsies, followed by combined treatment with gemcitabine, in patients with metastatic PDA. Methods Twenty-five patients were enrolled of which 23 underwent core biopsies at baseline and following 3 weeks of GDC-0449. On day 29, 23 patients started weekly gemcitabine while continuing GDC-0449. We evaluated GLI1 and PTCH1 inhibition, change in CSCs, Ki-67, fibrosis, and assessed tumor response, survival and toxicity. Results On pre-treatment biopsy, 75% of patients had elevated sonic hedgehog (SHH) expression. On post-treatment biopsy, GLI1 and PTCH1 decreased in 95.6% and 82.6% of 23 patients, fibrosis decreased in 45.4% of 22 and Ki-67 in 52.9% of 17 evaluable patients. No significant changes were detected in CSCs pre- and post-biopsy. The median progression-free and overall survival for all treated patients was 2.8 and 5.3 months. The response and disease control rate was 21.7% and 65.2%. No significant correlation was noted between CSCs, fibrosis, SHH, Ki-67, GLI1, PTCH1 (baseline values, or relative change on post-treatment biopsy) and survival. Grade >3 adverse events were noted in 56% of patients. Conclusion We show that GDC-0449 for 3 weeks leads to down-modulation of GLI1 and PTCH1, without significant changes in CSCs compared to baseline. GDC-0449 and gemcitabine was not superior to gemcitabine alone in the treatment of metastatic pancreatic cancer. PMID:25278454

  5. Selective disruption of rb-raf-1 kinase interaction inhibits pancreatic adenocarcinoma growth irrespective of gemcitabine sensitivity.

    PubMed

    Treviño, José G; Verma, Monika; Singh, Sandeep; Pillai, Smitha; Zhang, Dongyu; Pernazza, Daniele; Sebti, Said M; Lawrence, Nicholas J; Centeno, Barbara A; Chellappan, Srikumar P

    2013-12-01

    Inactivation of the retinoblastoma (Rb) tumor suppressor protein is widespread in human cancers. Inactivation of Rb is thought to be initiated by association with Raf-1 (C-Raf) kinase, and here we determined how RRD-251, a disruptor of the Rb-Raf-1 interaction, affects pancreatic tumor progression. Assessment of phospho-Rb levels in resected human pancreatic tumor specimens by immunohistochemistry (n = 95) showed that increased Rb phosphorylation correlated with increasing grade of resected human pancreatic adenocarcinomas (P = 0.0272), which correlated with reduced overall patient survival (P = 0.0186). To define the antitumor effects of RRD-251 (50 μmol/L), cell-cycle analyses, senescence, cell viability, cell migration, anchorage-independent growth, angiogenic tubule formation and invasion assays were conducted on gemcitabine-sensitive and -resistant pancreatic cancer cells. RRD-251 prevented S-phase entry, induced senescence and apoptosis, and inhibited anchorage-independent growth and invasion (P < 0.01). Drug efficacy on subcutaneous and orthotopic xenograft models was tested by intraperitoneal injections of RRD-251 (50 mg/kg) alone or in combination with gemcitabine (250 mg/kg). RRD-251 significantly reduced tumor growth in vivo accompanied by reduced Rb phosphorylation and lymph node and liver metastasis (P < 0.01). Combination of RRD-251 with gemcitabine showed cooperative effect on tumor growth (P < 0.01). In conclusion, disruption of the Rb-Raf-1 interaction significantly reduces the malignant properties of pancreatic cancer cells irrespective of their gemcitabine sensitivity. Selective targeting of Rb-Raf-1 interaction might be a promising strategy targeting pancreatic cancer.

  6. MicroRNA Profiling Implies New Markers of Gemcitabine Chemoresistance in Mutant p53 Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Dhayat, Sameer A.; Mardin, Wolf Arif; Seggewiß, Jochen; Ströse, Anda Jana; Matuszcak, Christiane; Hummel, Richard; Senninger, Norbert

    2015-01-01

    Background No reliable predictors of susceptibility to gemcitabine chemotherapy exist in pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miR) are epigenetic gene regulators with tumorsuppressive or oncogenic roles in various carcinomas. This study assesses chemoresistant PDAC for its specific miR expression pattern. Methods Gemcitabine-resistant variants of two mutant p53 human PDAC cell lines were established. Survival rates were analyzed by cytotoxicity and apoptosis assays. Expression of 1733 human miRs was investigated by microarray and validated by qRT-PCR. After in-silico analysis of specific target genes and proteins of dysregulated miRs, expression of MRP-1, Bcl-2, mutant p53, and CDK1 was quantified by Western blot. Results Both established PDAC clones showed a significant resistance to gemcitabine (p<0.02) with low apoptosis rate (p<0.001) vs. parental cells. MiR-screening revealed significantly upregulated (miR-21, miR-99a, miR-100, miR-125b, miR-138, miR-210) and downregulated miRs (miR-31*, miR-330, miR-378) in chemoresistant PDAC (p<0.05). Bioinformatic analysis suggested involvement of these miRs in pathways controlling cell death and cycle. MRP-1 (p<0.02) and Bcl-2 (p<0.003) were significantly overexpressed in both resistant cell clones and mutant p53 (p = 0.023) in one clone. Conclusion Consistent miR expression profiles, in part regulated by mutant TP53 gene, were identified in gemcitabine-resistant PDAC with significant MRP-1 and Bcl-2 overexpression. These results provide a basis for further elucidation of chemoresistance mechanisms and therapeutic approaches to overcome chemoresistance in PDAC. PMID:26606261

  7. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine

    PubMed Central

    Jiang, Zhengdong; Chen, Xin; Chen, Ke; Sun, Liankang; Gao, Luping; Zhou, Cancan; Lei, Meng; Duan, Wanxing; Wang, Zheng; Ma, Qingyong; Ma, Jiguang

    2016-01-01

    Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP) expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK) (Thr172) and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy. PMID:27669292

  8. Zyflamend Suppresses Growth and Sensitizes Human Pancreatic Tumors to Gemcitabine in an Orthotopic Mouse Model Through Modulation of Multiple Targets

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Sung, Bokyung; Ravindran, Jayaraj; Diagaradjane, Parmeswaran; Deorukhkar, Amit; Dey, Sanjit; Koca, Cemile; Tong, Zhimin; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement, Zyflamend, is a polyherbal preparation with potent anti-inflammatory activities, and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1, and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB, and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis. PMID:21935918

  9. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine.

    PubMed

    Jiang, Zhengdong; Chen, Xin; Chen, Ke; Sun, Liankang; Gao, Luping; Zhou, Cancan; Lei, Meng; Duan, Wanxing; Wang, Zheng; Ma, Qingyong; Ma, Jiguang

    2016-09-23

    Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP) expression and that of YAP in pancreatic cancer cells' response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK) (Thr172) and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.

  10. [Effects of magnetic gemcitabine stealth nano-liposomes on the characteristics of breast cancer cell line MCF-7].

    PubMed

    Tong, Qiang; Shu, Xiao-Gang; Lu, Xiao-Ming; Li, Wei-Yong; Tao, Kai-Xiong; Chen, Dao-Da; Wang, Guo-Bin

    2009-02-01

    The magnetic responsibility and antitumor effect of magnetic gemcitabine stealth nano-liposomes (MGSL) on breast cancer cell line MCF-7 in vitro and in vivo was evaluated. The magnetic response and targeting effect of MGSL in vivo were investigated. Morphological feature and ultrastructure changes of apoptosis of MCF-7 cells were observed. The effect of MGSL on proliferation inhibitory rate of MCF-7 cells was measured with MTT method. The FCM analysis was carried out to examine the cell cycle distribution and cell apoptotic rate. The antitumor effect on human breast cancer xenografts in nude mice was also studied. MGSL was able to converge at the targeting tissue under tridimensional magnetic field and the gemcitabine concentration around it increased, while the amount of gemcitabine in other organs decreased, such as in kidneys and heart. MCF-7 cell line was sensitive to MGSL and the cytotoxity was correlated with the loaded drug dose. The effect of MGSL on apoptosis of MCF-7 was obvious and the rate of apoptosis was 51.62%. The growth speed of tumor in the group of MGSL (+) significantly slowed down than that of other groups. MGSL prepared by reverse-phase evaporation method met with the demand of targeted delivery system, and it might be an effective antitumor agent.

  11. Phase II trial of pegylated liposomal doxorubicin (Caelyx) plus Gemcitabine in chemotherapeutically pretreated patients with advanced breast cancer.

    PubMed

    Ulrich-Pur, Herbert; Kornek, Gabriela V; Haider, Karin; Kwasny, Werner; Payrits, Thomas; Dworan, Nina; Vormittag, Laurenz; Depisch, Dieter; Lang, Fritz; Scheithauer, Werner

    2007-01-01

    A phase II trial was performed to investigate the efficacy and tolerance of combined gemcitabine and liposomal doxorubicin +/- recombinant human granulocyte colony-stimulating factor (G-CSF) in patients with chemotherapeutically pretreated metastatic breast cancer. Thirty-four patients were entered in this trial. Chemotherapy consisted of gemcitabine and liposomal doxorubicin +/- G-CSF. Twenty seven patients received this regimen as 2nd line therapy, five patients as 3rd line and two patients as 4th line therapy after having failed taxane- and/or anthracycline-based chemotherapy or other drug combinations. After a median of six courses, an overall response rate of 26% (9 PR in 34 enrolled patients) was observed; 14 patients had disease stabilization (41%), and eight (24%) progressed. Three patients were not evaluable for response due to anaphylaxis after the first course and protracted thrombocytopenia. The median TTP was 7.5 months, and median overall survival was 15 months. Myelosuppression was the most frequently observed toxicity. Non-haematological side effects were generally mild to moderate. Our data suggest that gemcitabine and liposomal doxorubicin +/- G-CSF is an effective and fairly well tolerated regimen for chemotherapeutically pretreated patients with advanced breast cancer.

  12. Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells

    PubMed Central

    Miao, Xin; Koch, Gilbert; Straubinger, Robert M.

    2015-01-01

    Purpose This study investigates the combined effects of gemcitabine and trabectedin (ecteinascidin 743) in two pancreatic cancer cell lines and proposes a pharmacodynamic (PD) model to quantify their pharmacological interactions. Methods Effects of gemcitabine and trabectedin upon the pancreatic cancer cell lines MiaPaCa-2 and BxPC-3 were investigated using cell proliferation assays. Cells were exposed to a range of concentrations of the two drugs, alone and in combination. Viable cell numbers were obtained daily over 5 days. A model incorporating nonlinear cytotoxicity, transit compartments, and an interaction parameter ψ was used to quantify the effects of the individual drugs and combinations. Results Simultaneous fitting of temporal cell growth profiles for all drug concentrations provided reasonable cytotoxicity parameter estimates (the cell killing rate constant Kmax and the sensitivity constant KC50) for each drug. The interaction parameter ψ was estimated as 0.806 for MiaPaCa-2 and 0.843 for BxPC-3 cells, suggesting that the two drugs exert modestly synergistic effects. Conclusions The proposed PD model enables quantification of the temporal profiles of drug combinations over a range of concentrations with drug-specific parameters. Based upon these in vitro studies, trabectedin may have augmented benefit in combination with gemcitabine. The PD model may have general relevance for the study of other cytotoxic drug combinations. PMID:26604207