Sample records for gemini planet imager

  1. First light of the Gemini Planet imager.

    PubMed

    Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-09-02

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

  2. First light of the Gemini Planet Imager

    PubMed Central

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-01-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  3. First light of the Gemini Planet Imager

    DOE PAGES

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; ...

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10 6 at 0.75 arcseconds and 10 5 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, inmore » a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0 +0.8 –0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.« less

  4. The Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (<100 Myr, <75 pc) and adolescent (<300 Myr, <35 pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle

  5. The Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  6. Gemini Planet Imager coronagraph testbed results

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Oppenheimer, Ben R.; Carr, G. Lawrence; Mey, Jacob L.; Brenner, Doug; Mandeville, Charles W.; Zimmerman, Neil; Macintosh, Bruce A.; Graham, James R.; Saddlemyer, Les; Bauman, Brian; Carlotti, Alexis; Pueyo, Laurent; Tuthill, Peter G.; Dorrer, Christophe; Roberts, Robin; Greenbaum, Alexandra

    2010-07-01

    The Gemini Planet Imager (GPI) is an extreme AO coronagraphic integral field unit YJHK spectrograph destined for first light on the 8m Gemini South telescope in 2011. GPI fields a 1500 channel AO system feeding an apodized pupil Lyot coronagraph, and a nIR non-common-path slow wavefront sensor. It targets detection and characterizion of relatively young (<2GYr), self luminous planets up to 10 million times as faint as their primary star. We present the coronagraph subsystem's in-lab performance, and describe the studies required to specify and fabricate the coronagraph. Coronagraphic pupil apodization is implemented with metallic half-tone screens on glass, and the focal plane occulters are deep reactive ion etched holes in optically polished silicon mirrors. Our JH testbed achieves H-band contrast below a million at separations above 5 resolution elements, without using an AO system. We present an overview of the coronagraphic masks and our testbed coronagraphic data. We also demonstrate the performance of an astrometric and photometric grid that enables coronagraphic astrometry relative to the primary star in every exposure, a proven technique that has yielded on-sky precision of the order of a milliarsecond.

  7. Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d

    DOE PAGES

    Ingraham, Patrick; Marley, Mark S.; Saumon, Didier; ...

    2014-09-30

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets’ spectral energy distributions.When combined with the 3 to 4μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. Lastly, the data also provide further evidence that future modeling efforts mustmore » include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.« less

  8. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  9. Gemini planet imager observational calibrations VII: on-sky polarimetric performance of the Gemini planet imager

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane J.; Millar-Blanchaer, Max; Perrin, Marshall D.; Graham, James R.; Fitzgerald, Michael P.; Maire, Jérôme; Ingraham, Patrick; Savransky, Dmitry; Macintosh, Bruce A.; Thomas, Sandrine J.; Chilcote, Jeffrey K.; Draper, Zachary H.; Song, Inseok; Cardwell, Andrew; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Rantakyrö, Fredrik; Sadakuni, Naru

    2014-07-01

    We present on-sky polarimetric observations with the Gemini Planet Imager (GPI) obtained at straight Cassegrain focus on the Gemini South 8-m telescope. Observations of polarimetric calibrator stars, ranging from nearly un- polarized to strongly polarized, enable determination of the combined telescope and instrumental polarization. We find the conversion of Stokes I to linear and circular instrumental polarization in the instrument frame to be I --> (QIP, UIP, PIP, VIP) = (-0.037 +/- 0.010%, +0.4338 +/- 0.0075%, 0.4354 +/- 0.0075%, -6.64 +/- 0.56%). Such precise measurement of instrumental polarization enables ~0.1% absolute accuracy in measurements of linear polarization, which together with GPI's high contrast will allow GPI to explore scattered light from circumstellar disk in unprecedented detail, conduct observations of a range of other astronomical bodies, and potentially even study polarized thermal emission from young exoplanets. Observations of unpolarized standard stars also let us quantify how well GPI's differential polarimetry mode can suppress the stellar PSF halo. We show that GPI polarimetry achieves cancellation of unpolarized starlight by factors of 100-200, reaching the photon noise limit for sensitivity to circumstellar scattered light for all but the smallest separations at which the calibration for instrumental polarization currently sets the limit.

  10. Characterizing Dusty Debris Disks with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Chen, Christine; Arriaga, Pauline; Bruzzone, Sebastian; Choquet, Elodie; Debes, John H.; Donaldson, Jessica; Draper, Zachary; Duchene, Gaspard; Esposito, Thomas; Fitzgerald, Michael P.; Golimowski, David A.; Hines, Dean C.; Hinkley, Sasha; Hughes, A. Meredith; Kalas, Paul; Kolokolova, Ludmilla; Lawler, Samantha; Matthews, Brenda C.; Mazoyer, Johan; Metchev, Stanimir A.; Millar-Blanchaer, Max; Moro-Martin, Amaya; Nesvold, Erika; Padgett, Deborah; Patience, Jenny; Perrin, Marshall D.; Pueyo, Laurent; Rantakyro, Fredrik; Rodigas, Timothy; Schneider, Glenn; Soummer, Remi; Song, Inseok; Stark, Chris; Weinberger, Alycia J.; Wilner, David J.

    2017-01-01

    We have been awarded 87 hours of Gemini Observatory time to obtain multi-wavelength observations of HST resolved debris disks using the Gemini Planet Imager. We have executed ~51 hours of telescope time during the 2015B-2016B semesters observing 12 nearby, young debris disks. We have been using the GPI Spec and Pol modes to better constrain the properties of the circumstellar dust, specifically, measuring the near-infrared total intensity and polarization fraction colors, and searching for solid-state spectral features of nearby beta Pic-like disks. We expect that our observations will allow us to break the degeneracy among the particle properties such as composition, size, porosity, and shape. We present some early results from our observations.

  11. The Gemini Planet Imager: integration and status

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce A.; Anthony, Andre; Atwood, Jennifer; Barriga, Nicolas; Bauman, Brian; Caputa, Kris; Chilcote, Jeffery; Dillon, Daren; Doyon, René; Dunn, Jennifer; Gavel, Donald T.; Galvez, Ramon; Goodsell, Stephen J.; Graham, James R.; Hartung, Markus; Isaacs, Joshua; Kerley, Dan; Konopacky, Quinn; Labrie, Kathleen; Larkin, James E.; Maire, Jerome; Marois, Christian; Millar-Blanchaer, Max; Nunez, Arturo; Oppenheimer, Ben R.; Palmer, David W.; Pazder, John; Perrin, Marshall; Poyneer, Lisa A.; Quirez, Carlos; Rantakyro, Frederik; Reshtov, Vlad; Saddlemyer, Leslie; Sadakuni, Naru; Savransky, Dmitry; Sivaramakrishnan, Anand; Smith, Malcolm; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Weiss, Jason; Wiktorowicz, Sloane

    2012-09-01

    The Gemini Planet Imager is a next-generation instrument for the direct detection and characterization of young warm exoplanets, designed to be an order of magnitude more sensitive than existing facilities. It combines a 1700-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision interferometric infrared wavefront sensor, and a integral field spectrograph. All hardware and software subsystems are now complete and undergoing integration and test at UC Santa Cruz. We will present test results on each subsystem and the results of end-to-end testing. In laboratory testing, GPI has achieved a raw contrast (without post-processing) of 10-6 5σ at 0.4", and with multiwavelength speckle suppression, 2x10-7 at the same separation.

  12. Gemini Planet Imager: Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is

  13. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    This thesis is focused on the development and testing of a new instrument capable of finding and characterizing recently-formed Jupiter-sized planets orbiting other stars. To observe these planets, I present the design, construction and testing of the Gemini Planet Imager (GPI) Integral Field Spectrograph (IFS). GPI is a facility class instrument for the Gemini Observatory with the primary goal of directly detecting young Jovian planets. The GPI IFS utilizes an infrared transmissive lenslet array to sample a rectangular 2.7 x 2.7 arcsecond field of view and provide low-resolution spectra across five bands between 1 and 2.5 mum. The dispersing element can be replaced with a Wollaston prism to provide broadband polarimetry across the same five filter bands. The IFS construction was based at the University of California, Los Angeles in collaboration with the Universite de Montreal, Immervision and Lawrence Livermore National Laboratory. I will present performance results, from in-lab testing, of the Integral Field Spectrograph (IFS) for the Gemini Planet Imager (GPI). The IFS is a large, complex, cryogenic, optical system requiring several years of development and testing. I will present the design and integration of the mechanical and optical performance of the spectrograph optics. The IFS passed its pre-ship review in 2011 and was shipped to University of California, Santa Cruz for integration with the remaining sub-systems of GPI. The UCLA built GPI IFS was integrated with the rest of GPI and is delivering high quality spectral datacubes of GPI's coronagraphic field. Using the NIRC2 instrument located at the Keck Observatory, my collaborators and I observed the planetary companion to beta Pictoris in L' (3.5--4.1mum). Observations taken in the fall of 2009 and 2012 are used to find the location and inclination of the planet relative to the massive debris disk orbiting beta Pictoris. We find that the planet's orbit has a position angle on the sky of 211

  14. PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapson, Valerie A.; Kastner, Joel H.; Millar-Blanchaer, Maxwell A.

    2015-12-20

    We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU,more » with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.« less

  15. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Barman, T.; De Rosa, R. J.; Konopacky, Q.; Marley, M. S.; Marois, C.; Nielsen, E. L.; Pueyo, L.; Rajan, A.; Rameau, J.; Saumon, D.; Wang, J. J.; Patience, J.; Ammons, M.; Arriaga, P.; Artigau, E.; Beckwith, S.; Brewster, J.; Bruzzone, S.; Bulger, J.; Burningham, B.; Burrows, A. S.; Chen, C.; Chiang, E.; Chilcote, J. K.; Dawson, R. I.; Dong, R.; Doyon, R.; Draper, Z. H.; Duchêne, G.; Esposito, T. M.; Fabrycky, D.; Fitzgerald, M. P.; Follette, K. B.; Fortney, J. J.; Gerard, B.; Goodsell, S.; Greenbaum, A. Z.; Hibon, P.; Hinkley, S.; Cotten, T. H.; Hung, L.-W.; Ingraham, P.; Johnson-Groh, M.; Kalas, P.; Lafreniere, D.; Larkin, J. E.; Lee, J.; Line, M.; Long, D.; Maire, J.; Marchis, F.; Matthews, B. C.; Max, C. E.; Metchev, S.; Millar-Blanchaer, M. A.; Mittal, T.; Morley, C. V.; Morzinski, K. M.; Murray-Clay, R.; Oppenheimer, R.; Palmer, D. W.; Patel, R.; Perrin, M. D.; Poyneer, L. A.; Rafikov, R. R.; Rantakyrö, F. T.; Rice, E. L.; Rojo, P.; Rudy, A. R.; Ruffio, J.-B.; Ruiz, M. T.; Sadakuni, N.; Saddlemyer, L.; Salama, M.; Savransky, D.; Schneider, A. C.; Sivaramakrishnan, A.; Song, I.; Soummer, R.; Thomas, S.; Vasisht, G.; Wallace, J. K.; Ward-Duong, K.; Wiktorowicz, S. J.; Wolff, S. G.; Zuckerman, B.

    2015-10-01

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10-6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.

  16. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager.

    PubMed

    Macintosh, B; Graham, J R; Barman, T; De Rosa, R J; Konopacky, Q; Marley, M S; Marois, C; Nielsen, E L; Pueyo, L; Rajan, A; Rameau, J; Saumon, D; Wang, J J; Patience, J; Ammons, M; Arriaga, P; Artigau, E; Beckwith, S; Brewster, J; Bruzzone, S; Bulger, J; Burningham, B; Burrows, A S; Chen, C; Chiang, E; Chilcote, J K; Dawson, R I; Dong, R; Doyon, R; Draper, Z H; Duchêne, G; Esposito, T M; Fabrycky, D; Fitzgerald, M P; Follette, K B; Fortney, J J; Gerard, B; Goodsell, S; Greenbaum, A Z; Hibon, P; Hinkley, S; Cotten, T H; Hung, L-W; Ingraham, P; Johnson-Groh, M; Kalas, P; Lafreniere, D; Larkin, J E; Lee, J; Line, M; Long, D; Maire, J; Marchis, F; Matthews, B C; Max, C E; Metchev, S; Millar-Blanchaer, M A; Mittal, T; Morley, C V; Morzinski, K M; Murray-Clay, R; Oppenheimer, R; Palmer, D W; Patel, R; Perrin, M D; Poyneer, L A; Rafikov, R R; Rantakyrö, F T; Rice, E L; Rojo, P; Rudy, A R; Ruffio, J-B; Ruiz, M T; Sadakuni, N; Saddlemyer, L; Salama, M; Savransky, D; Schneider, A C; Sivaramakrishnan, A; Song, I; Soummer, R; Thomas, S; Vasisht, G; Wallace, J K; Ward-Duong, K; Wiktorowicz, S J; Wolff, S G; Zuckerman, B

    2015-10-02

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter. Copyright © 2015, American Association for the Advancement of Science.

  17. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager

    DOE PAGES

    Macintosh, B.; Graham, J. R.; Barman, T.; ...

    2015-10-02

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less

  18. Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B.; Graham, J. R.; Barman, T.

    Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10 –6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a massmore » twice that of Jupiter. As a result, this planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.« less

  19. Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team

    2018-01-01

    We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.

  20. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  1. The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.

    2013-08-01

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet

  2. Clarifying the Status of HD 100546 as Observed by the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Brittain, Sean; Grady, Carol A.; Kenyon, Scott J.; Muto, Takayuki

    2017-12-01

    HD 100546 is a young, early-type star and key laboratory for studying gas giant planet formation. GPI data taken in 2015 and reported by Currie et al. (2015) recover the previously-identified protoplanet candidate HD 100546 b and identify a second emission source at ~13--14 au: either a disk hot spot or a second protoplanetary candidate (HD 100546 "c"). In this short research note, we update the status of HD 100546 as observed by the Gemini Planet Imager by rereducing our original data using a different PSF subtraction method (KLIP instead of A-LOCI), rereducing recently public GPI Campaign Team (GPIES) data, and comparing the quality of the two data sets. Our results support the original findings in Currie et al. (2015).

  3. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  4. Performance of the Gemini Planet Imager’s adaptive optics system

    DOE PAGES

    Poyneer, Lisa A.; Palmer, David W.; Macintosh, Bruce; ...

    2016-01-07

    The Gemini Planet Imager’s adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. We give a definitive description of the system’s algorithms and technologies as built. Ultimately, the error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

  5. Updated Astrometric Calibration of the Gemini Planet Imager: Application to the Theta1 Orionis B System

    NASA Astrophysics Data System (ADS)

    Tran, Debby; Konopacky, Quinn; GPIES Team

    2018-01-01

    The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of three years, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. One of the calibrators for GPI is Theta1 Orionis B, one of the star systems in the Trapezium Cluster in Orion. Using GPI and Keck measurements taken over the past several years combined with astrometry from the literature spanning two decades, we can place new constraints on the orbital properties of this massive multiple system. We will present the best fit orbital properties for these objects, including updated mass estimates for the components.

  6. The Gemini NICI Planet-Finding Campaign: The Companion Detection Pipeline

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Close, Laird M.; Hayward, Thomas L.; Hartung, Markus; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.

    2013-12-01

    We present high-contrast image processing techniques used by the Gemini NICI Planet-Finding Campaign to detect faint companions to bright stars. The Near-Infrared Coronographic Imager (NICI) is an adaptive optics instrument installed on the 8 m Gemini South telescope, capable of angular and spectral difference imaging and specifically designed to image exoplanets. The Campaign data pipeline achieves median contrasts of 12.6 mag at 0.''5 and 14.4 mag at 1'' separation, for a sample of 45 stars (V = 4.3-13.9 mag) from the early phase of the campaign. We also present a novel approach to calculating contrast curves for companion detection based on 95% completeness in the recovery of artificial companions injected into the raw data, while accounting for the false-positive rate. We use this technique to select the image processing algorithms that are more successful at recovering faint simulated point sources. We compare our pipeline to the performance of the Locally Optimized Combination of Images (LOCI) algorithm for NICI data and do not find significant improvement with LOCI. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  7. Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Wang, Jason J.; Perrin, Marshall D.; Savransky, Dmitry; Arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Millar-Blanchaer, Maxwell A.; Marois, Christian; Rameau, Julien; Wolff, Schuyler G.; Shapiro, Jacob; Ruffio, Jean-Baptiste; Maire, Jérôme; Marchis, Franck; Graham, James R.; Macintosh, Bruce; Ammons, S. Mark; Bailey, Vanessa P.; Barman, Travis S.; Bruzzone, Sebastian; Bulger, Joanna; Cotten, Tara; Doyon, René; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Goodsell, Stephen; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn M.; Larkin, James E.; Marley, Mark S.; Metchev, Stanimir; Nielsen, Eric L.; Oppenheimer, Rebecca; Palmer, David W.; Patience, Jennifer; Poyneer, Lisa A.; Pueyo, Laurent; Rajan, Abhijith; Rantakyrö, Fredrik T.; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.

    2018-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is a multiyear direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines (DRPs) together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our DRPs. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.

  8. Gemini Planet Imager observations of the AU Microscopii debris disk: Asymmetries within one arcsecond

    DOE PAGES

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; ...

    2015-09-23

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  9. The Gemini/NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars

    NASA Astrophysics Data System (ADS)

    Biller, Beth A.; Liu, Michael C.; Wahhaj, Zahed; Nielsen, Eric L.; Hayward, Thomas L.; Males, Jared R.; Skemer, Andrew; Close, Laird M.; Chun, Mark; Ftaclas, Christ; Clarke, Fraser; Thatte, Niranjan; Shkolnik, Evgenya L.; Reid, I. Neill; Hartung, Markus; Boss, Alan; Lin, Douglas; Alencar, Silvia H. P.; de Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane; Toomey, Douglas

    2013-11-01

    We report results of a direct imaging survey for giant planets around 80 members of the β Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini/NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of ΔH = 13.9 mag at 1'' in combined CH4 narrowband ADI+SDI mode and median contrasts of ΔH = 15.1 mag at 2'' in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with Near-Infrared Coronagraphic Imager (NICI) all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI Campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36 ± 6 M Jup, 16.4 ± 1.0 AU), CD-35 2722B (31 ± 8 M Jup, 67 ± 4 AU), HD 12894B (0.46 ± 0.08 M ⊙, 15.7 ± 1.0 AU), and BD+07 1919C (0.20 ± 0.03 M ⊙, 12.5 ± 1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1-20 M Jup companions at semi-major axes from 10-150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models. Our results strongly constrain the frequency of planets within semi-major axes of 50 AU as well. We restrict the frequency of 1-20 M Jup companions at semi-major axes from 10-50 AU to <21% at a 95.4% confidence level using DUSTY models and to <7% at a 95.4% using COND models. This survey is the deepest search to date for giant planets around young moving group stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc

  10. Constraints on the architecture of the HD 95086 planetary system with the Gemini Planet Imager

    DOE PAGES

    Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; ...

    2016-05-06

    Here, we present astrometric monitoring of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager between 2013 and 2016. A small but significant position angle change is detected at constant separation; the orbital motion is confirmed with literature measurements. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. With 68% confidence, a semimajor axis ofmore » $${61.7}_{-8.4}^{+20.7}$$ au and an inclination of $$153° {0}_{-13.5}^{+9.7}$$ are favored, with eccentricity less than 0.21. Under the assumption of a coplanar planet–disk system, the periastron of HD 95086 b is beyond 51 au with 68% confidence. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. We use our sensitivity to additional planets to discuss specific scenarios presented in the literature to explain the geometry of the debris belts. We suggest that either two planets on moderately eccentric orbits or three to four planets with inhomogeneous masses and orbital properties are possible. As a result, the sensitivity to additional planetary companions within the observations presented in this study can be used to help further constrain future dynamical simulations of the planet–disk system.« less

  11. Spectroscopic characterization of HD 95086 b with the Gemini Planet Imager

    DOE PAGES

    De Rosa, Robert J.; Rameau, Julien; Patience, Jenny; ...

    2016-06-21

    Here, we present new H (1.5–1.8 μm) photometric and K 1 (1.9–2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K 1 (more » $$\\lambda /\\delta \\lambda \\approx 66$$) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature $$L^{\\prime} $$ photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in $${K}_{1}-L^{\\prime} $$ color than 2MASS J12073346–3932539 b and HR 8799 c and d, despite having a similar $$L^{\\prime} $$ magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature ($${T}_{{\\rm{eff}}}$$ = 800–1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color–magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.« less

  12. Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Follette, Katherine B.; Weinberger, Alycia; Close, Laird; Hines, Dean C.

    2014-08-01

    When giant planets form, they grow by accreting gas and dust. HD 142527 is a young star that offers a scaled-up view of this process. It has a broad, asymmetric ring of gas and dust beyond ~100 AU and a wide inner gap. Within the gap, a low-mass stellar companion orbits the primary star at just ~12 AU, and both the primary and secondary are accreting gas. In an attempt to directly detect the dusty counterpart to this accreted gas, we have observed HD 142527 with the Gemini Planet Imager in polarized light at Y band (0.95-1.14 μm). We clearly detect the companion in total intensity and show that its position and photometry are generally consistent with the expected values. We also detect a point source in polarized light that may be spatially separated by ~ a few AU from the location of the companion in total intensity. This suggests that dust is likely falling onto or orbiting the companion. Given the possible contribution of scattered light from this dust to previously reported photometry of the companion, the current mass limits should be viewed as upper limits only. If the dust near the companion is eventually confirmed to be spatially separated, this system would resemble a scaled-up version of the young planetary system inside the gap of the transition disk around LkCa 15. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).

  13. RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to youngmore » cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.« less

  14. Resolving the HD 100546 Protoplanetary System with the Gemini Planet Imager: Evidence for Multiple Forming, Accreting Planets

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Cloutier, Ryan; Brittain, Sean; Grady, Carol; Burrows, Adam; Muto, Takayuki; Kenyon, Scott J.; Kuchner, Marc J.

    2015-12-01

    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at rproj ˜ 14 AU, located just interior to or at the inner disk wall consistent with being a <10-20 MJ candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  15. First scattered-light image of the debris disk around HD 131835 with the Gemini Planet Imager

    DOE PAGES

    Hung, Li -Wei; Duchêne, Gaspard; Arriaga, Pauline; ...

    2015-12-09

    Here, we present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ~15 Myr old A2IV star at a distance of ~120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ~75 to ~210 AU in the disk plane with roughlymore » flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  16. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flatmore » surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  17. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physicalmore » mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.« less

  18. Near-infrared detection and characterization of the exoplanet HD 95086 b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Rameau, J.; Bonnefoy, M.; Baudino, J.-L.; Currie, T.; Boccaletti, A.; Chauvin, G.; Lagrange, A.-M.; Marois, C.

    2014-05-01

    HD 95086 is an intermediate-mass debris-disk-bearing star. VLT/NaCo 3.8 μm observations revealed it hosts a 5 ± 2 MJup companion (HD 95086 b) at ≃56 AU. Follow-up observations at 1.66 and 2.18 μm yielded a null detection, suggesting extremely red colors for the planet and the need for deeper direct-imaging data. In this Letter, we report H-(1.7 μm) and K1-(2.05 μm) band detections of HD 95086 b from Gemini Planet Imager (GPI) commissioning observations taken by the GPI team. The planet position in both spectral channels is consistent with the NaCo measurements and we confirm it to be comoving. Our photometry yields colors of H - L' = 3.6 ± 1.0 mag and K1 - L' = 2.4 ± 0.7 mag, consistent with previously reported 5-σ upper limits in H and Ks. The photometry of HD 95086 b best matches that of 2M 1207 b and HR 8799 cde. Comparing its spectral energy distribution with the BT-SETTL and LESIA planet atmospheric models yields Teff ~ 600-1500 K and log g ~ 2.1-4.5. Hot-start evolutionary models yield M = 5 ± 2 MJup. Warm-start models reproduce the combined absolute fluxes of the object for M = 4-14 MJup for a wide range of plausible initial conditions (Sinit = 8-13 kB/baryon). The color-magnitude diagram location of HD 95086 b and its estimated Teff and log g suggest that the planet is a peculiar L - T transition object with an enhanced amount of photospheric dust. Based on public data taken at the GPI commissioning.

  19. Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES

    2016-10-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD

  20. Testing the Planet-Metallicity Correlation in M-dwarfs with Gemini GNIRS Spectra

    NASA Astrophysics Data System (ADS)

    Hobson, M. J.; Jofré, E.; García, L.; Petrucci, R.; Gómez, M.

    2018-04-01

    While the planet-metallicity correlation for FGK main-sequence stars hosting giant planets is well established, it is less clear for M-dwarf stars. We determine stellar parameters and metallicities for 16 M-dwarf stars, 11 of which host planets, with near-infrared spectra from the Gemini Near-Infrared Spectrograph (GNIRS). We find that M-dwarfs with planets are preferentially metal-rich compared to those without planets. This result is supported by the analysis of a larger catalogue of 18 M stars with planets and 213 M stars without known planets T15, and demonstrates the utility of GNIRS spectra to obtain reliable stellar parameters of M stars. We also find that M dwarfs with giant planets are preferentially more metallic than those with low-mass planets, in agreement with previous results for solar-type stars. These results favor the core accretion model of planetary formation.

  1. THE GEMINI/NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF PLANETS AROUND YOUNG MOVING GROUP STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, Beth A.; Ftaclas, Christ; Liu, Michael C.

    2013-11-10

    We report results of a direct imaging survey for giant planets around 80 members of the β Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini/NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of ΔH = 13.9 mag at 1'' in combined CH{sub 4} narrowband ADI+SDI mode and median contrasts of ΔH = 15.1 mag at 2'' in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with Near-Infrared Coronagraphic Imager (NICI)more » all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI Campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36 ± 6 M{sub Jup}, 16.4 ± 1.0 AU), CD–35 2722B (31 ± 8 M{sub Jup}, 67 ± 4 AU), HD 12894B (0.46 ± 0.08 M{sub ☉}, 15.7 ± 1.0 AU), and BD+07 1919C (0.20 ± 0.03 M{sub ☉}, 12.5 ± 1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1-20 M{sub Jup} companions at semi-major axes from 10-150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models. Our results strongly constrain the frequency of planets within semi-major axes of 50 AU as well. We restrict the frequency of 1-20 M{sub Jup} companions at semi-major axes from 10-50 AU to <21% at a 95.4% confidence level using DUSTY models and to <7% at a 95.4% using COND models. This survey is the deepest search to date for giant planets around young moving group stars.« less

  2. Direct imaging of multiple planets orbiting the star HR 8799.

    PubMed

    Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René

    2008-11-28

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

  3. A Combined Very Large Telescope and Gemini Study of the Atmosphere of the Directly Imaged Planet, Beta Pictoris b

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc J.; Matsumura, Soko; hide

    2013-01-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet Beta Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While Beta Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects-i.e., ? And b and 1RXJ 1609B-match Beta Pic b's JHKsL photometry and its 3.1 micron and 5 micron photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (approx. 60 micron)dust grains fail to reproduce the Beta Pic b spectrum. However, models incorporating thick clouds similar to those found forHR8799 bcde, but also with small (a fewmicrons) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles (a = 4 micron), we derive atmosphere parameters of log(g) = 3.8 +/- 0.2 and Teff = 1575-1650 K, an inferred mass of 7+4 -3 MJ, and a luminosity of log(L/L) approx. -3.80 +/- 0.02. The best-estimated planet radius, is approx. equal to 1.65 +/- 0.06 RJ, is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if Beta Pic b is younger than is approx. equal to 7 Myr, consistent with a late formation well after its host star's birth approx. 12+8 -4 Myr ago.

  4. A Combined Very Large Telescope and Gemini Study of the Atmosphere of the Directly Imaged Planet, β Pictoris b

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc; Matsumura, Soko; Jayawardhana, Ray; Chambers, John; Bromley, Ben

    2013-10-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet β Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While β Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects—i.e., κ And b and 1RXJ 1609B—match β Pic b's JHKsL' photometry and its 3.1 μm and 5 μm photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (~60 μm) dust grains fail to reproduce the β Pic b spectrum. However, models incorporating thick clouds similar to those found for HR 8799 bcde, but also with small (a few microns) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles (langarang = 4 μm), we derive atmosphere parameters of log (g) = 3.8 ± 0.2 and T eff = 1575-1650 K, an inferred mass of 7^{+4}_{-3} MJ , and a luminosity of log(L/L ⊙) ~-3.80 ± 0.02. The best-estimated planet radius, ≈1.65 ± 0.06 RJ , is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if β Pic b is younger than ≈7 Myr, consistent with a late formation well after its host star's birth ~12^{+8}_{-4} Myr ago.

  5. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in

  6. The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager

    DOE PAGES

    Draper, Zachary H.; Duchêne, Gaspard; Millar-Blanchaer, Maxwell A.; ...

    2016-07-27

    Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30–100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 themore » most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0".5 to 0".8 from the star. Lastly, the combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.« less

  7. The Gemini NICI Planet-finding Campaign: Discovery of a Close Substellar Companion to the Young Debris Disk Star PZ Tel

    NASA Astrophysics Data System (ADS)

    Biller, Beth A.; Liu, Michael C.; Wahhaj, Zahed; Nielsen, Eric L.; Close, Laird M.; Dupuy, Trent J.; Hayward, Thomas L.; Burrows, Adam; Chun, Mark; Ftaclas, Christ; Clarke, Fraser; Hartung, Markus; Males, Jared; Reid, I. Neill; Shkolnik, Evgenya L.; Skemer, Andrew; Tecza, Matthias; Thatte, Niranjan; Alencar, Silvia H. P.; Artymowicz, Pawel; Boss, Alan; de Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane; Ida, Shigeru; Kuchner, Marc J.; Lin, Douglas; Toomey, Douglas

    2010-09-01

    We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the β Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 ± 1.0 AU (0farcs33 ± 0farcs01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 ± 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12+8 -4 Myr for the system, we estimate a mass of 36 ± 6 M Jup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 μm emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  8. A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Jayawardhana, Ray; Burrows, Adam

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet β Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While β Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects—i.e., κ And b and 1RXJ 1609B—match β Pic b's JHK{sub s}L' photometry and its 3.1 μm and 5 μm photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (∼60 μm) dustmore » grains fail to reproduce the β Pic b spectrum. However, models incorporating thick clouds similar to those found for HR 8799 bcde, but also with small (a few microns) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles ((a) = 4 μm), we derive atmosphere parameters of log (g) = 3.8 ± 0.2 and T{sub eff} = 1575-1650 K, an inferred mass of 7{sup +4}{sub -3} M{sub J} , and a luminosity of log(L/L{sub ☉}) ∼–3.80 ± 0.02. The best-estimated planet radius, ≈1.65 ± 0.06 R{sub J} , is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if β Pic b is younger than ≈7 Myr, consistent with a late formation well after its host star's birth ∼12{sup +8}{sub -4} Myr ago.« less

  9. Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eridani b with the Gemini Planet Imager

    DOE PAGES

    De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.; ...

    2015-11-13

    We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10 –7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis ofmore » $${14}_{-3}^{+7}$$ AU, corresponding to a period of $${41}_{-12}^{+35}$$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of $${138}_{-13}^{+15}$$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.« less

  10. Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eridani b with the Gemini Planet Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rosa, Robert J.; Nielsen, Eric L.; Blunt, Sarah C.

    We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b that provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to 2 × 10 –7, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis ofmore » $${14}_{-3}^{+7}$$ AU, corresponding to a period of $${41}_{-12}^{+35}$$ years (assuming a mass of 1.75 M⊙ for the central star), and an inclination of $${138}_{-13}^{+15}$$ deg. The remaining orbital elements are only marginally constrained by the current measurements. As a result, these preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.« less

  11. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  12. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution andmore » J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.« less

  13. The Gemini NICI Planet-Finding Campaign: The Offset Ring of HR 4796 A

    NASA Technical Reports Server (NTRS)

    Wahhaj, Zahed; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Hayward, Thomas L.; Kuchner, Marc J.; Close, Laird M.; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.

    2014-01-01

    We present J, H, CH4 short (1.578 micrometers), CH4 long (1.652 micrometers) and K(sub s)-band images of the dust ring around the 10 Myr old star HR 4796 A obtained using the Near Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1 m Telescope. Our images clearly show for the first time the position of the star relative to its circumstellar ring thanks to NICI's translucent focal plane occulting mask. We employ a Bayesian Markov chain Monte Carlo method to constrain the offset vector between the two. The resulting probability distribution shows that the ring center is offset from the star by 16.7 +/- 1.3 milliarcseconds along a position angle of 26 +/- 3deg, along the PA of the ring, 26.47 +/- 0.04deg. We find that the size of this offset is not large enough to explain the brightness asymmetry of the ring. The ring is measured to have mostly red reflectivity across the JHKs filters, which seems to indicate micron-sized grains. Just like Neptune's 3:2 and 2:1 mean-motion resonances delineate the inner and outer edges of the classical Kuiper belt, we find that the radial extent of the HR 4796 A and the Fomalhaut rings could correspond to the 3:2 and 2:1 mean-motion resonances of hypothetical planets at 54.7 AU and 97.7 AU in the two systems, respectively. A planet orbiting HR 4796 A at 54.7 AU would have to be less massive than 1.6 Jup mass so as not to widen the ring too much by stirring.

  14. Integral field spectroscopy of the low-mass companion HD 984 B with the Gemini Planet Imager

    DOE PAGES

    Johnson-Groh, Mara; Marois, Christian; De Rosa, Robert J.; ...

    2017-03-31

    We present new observations of the low-mass companion to HD 984 taken with the Gemini Planet Imager (GPI) as a part of the GPI Exoplanet Survey campaign. Images of HD 984 B were obtained in the J (1.12–1.3 μm) and H (1.50–1.80 μm) bands. Combined with archival epochs from 2012 and 2014, we fit the first orbit to the companion to find an 18 au (70-year) orbit with a 68% confidence interval between 14 and 28 au, an eccentricity of 0.18 with a 68% confidence interval between 0.05 and 0.47, and an inclination of 119° with a 68% confidence interval between 114° and 125°. To address the considerable spectral covariance in both spectra, we present a method of splitting the spectra into low and high frequencies to analyze the spectral structure at different spatial frequencies with the proper spectral noise correlation. Using the split spectra, we compare them to known spectral types using field brown dwarf and low-mass star spectra and find a best-fit match of a field gravity M6.5 ± 1.5 spectral type with a corresponding temperature ofmore » $${2730}_{-180}^{+120}$$ K. Photometry of the companion yields a luminosity of $$\\mathrm{log}({L}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-2.88\\pm 0.07$$ dex with DUSTY models. Mass estimates, again from DUSTY models, find an age-dependent mass of 34 ± 1 to 95 ± 4 M Jup. Lastly, these results are consistent with previous measurements of the object.« less

  15. Dynamical mass measurement of the young spectroscopic binary V343 Normae AaAb resolved with the Gemini Planet Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Eric L.; De Rosa, Robert J.; Wang, Jason

    Here, we present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the β Pictoris (β Pic) moving group. V343 Normae comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10'' M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components ofmore » $${M}_{\\mathrm{Aa}}=1.10\\pm 0.10\\,{M}_{\\odot }$$ and $${M}_{\\mathrm{Ab}}=0.290\\pm 0.018\\,{M}_{\\odot }$$. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the β Pic moving group. We derive a model-dependent age for the β Pic moving group of 26 ± 3 Myr by combining our results for V343 Normae with literature measurements for GJ 3305, which is another group member with resolved binary components and dynamical masses.« less

  16. Dynamical mass measurement of the young spectroscopic binary V343 Normae AaAb resolved with the Gemini Planet Imager

    DOE PAGES

    Nielsen, Eric L.; De Rosa, Robert J.; Wang, Jason; ...

    2016-11-22

    Here, we present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the β Pictoris (β Pic) moving group. V343 Normae comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10'' M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components ofmore » $${M}_{\\mathrm{Aa}}=1.10\\pm 0.10\\,{M}_{\\odot }$$ and $${M}_{\\mathrm{Ab}}=0.290\\pm 0.018\\,{M}_{\\odot }$$. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the β Pic moving group. We derive a model-dependent age for the β Pic moving group of 26 ± 3 Myr by combining our results for V343 Normae with literature measurements for GJ 3305, which is another group member with resolved binary components and dynamical masses.« less

  17. An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Follette, Katherine B.; Pueyo, Laurent; Marois, Christian; Macintosh, Bruce; Millar-Blanchaer, Maxwell; Wang, Jason J.; Vega, David; Doyon, René; Lafrenière, David; Nielsen, Eric L.; Bailey, Vanessa; Chilcote, Jeffrey K.; Close, Laird M.; Esposito, Thomas M.; Males, Jared R.; Metchev, Stanimir; Morzinski, Katie M.; Ruffio, Jean-Baptiste; Wolff, Schuyler G.; Ammons, S. M.; Barman, Travis S.; Bulger, Joanna; Cotten, Tara; De Rosa, Robert J.; Duchene, Gaspard; Fitzgerald, Michael P.; Goodsell, Stephen; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall D.; Poyneer, Lisa; Rajan, Abhijith; Rantakyrö, Fredrik T.; Marley, Mark S.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane

    2017-06-01

    We present H band spectroscopic and Hα photometric observations of HD 100546 obtained with the Gemini Planet Imager and the Magellan Visible AO camera. We detect H band emission at the location of the protoplanet HD 100546 b, but show that the choice of data processing parameters strongly affects the morphology of this source. It appears point-like in some aggressive reductions, but rejoins an extended disk structure in the majority of the others. Furthermore, we demonstrate that this emission appears stationary on a timescale of 4.6 years, inconsistent at the 2σ level with a Keplerian clockwise orbit at 59 au in the disk plane. The H band spectrum of the emission is inconsistent with any type of low effective temperature object or accreting protoplanetary disk. It strongly suggests a scattered-light origin, as this is consistent with the spectrum of the star and the spectra extracted at other locations in the disk. A non-detection at the 5σ level of HD 100546 b in differential Hα imaging places an upper limit, assuming the protoplanet lies in a gap free of extinction, on the accretion luminosity of 1.7 × 10-4 L ⊙ and M\\dot{M}< 6.3× {10}-7 {M}{Jup}2 {{yr}}-1 for 1 R Jup. These limits are comparable to the accretion luminosity and accretion rate of T-Tauri stars or LkCa 15 b. Taken together, these lines of evidence suggest that the H band source at the location of HD 100546 b is not emitted by a planetary photosphere or an accreting circumplanetary disk but is a disk feature enhanced by the point-spread function subtraction process. This non-detection is consistent with the non-detection in the K band reported in an earlier study but does not exclude the possibility that HD 100546 b is deeply embedded.

  18. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  19. Photometric Calibrations of Gemini Images of NGC 6253

    NASA Astrophysics Data System (ADS)

    Pearce, Sean; Jeffery, Elizabeth

    2017-01-01

    We present preliminary results of our analysis of the metal-rich open cluster NGC 6253 using imaging data from GMOS on the Gemini-South Observatory. These data are part of a larger project to observe the effects of high metallicity on white dwarf cooling processes, especially the white dwarf cooling age, which have important implications on the processes of stellar evolution. To standardize the Gemini photometry, we have also secured imaging data of both the cluster and standard star fields using the 0.6-m SARA Observatory at CTIO. By analyzing and comparing the standard star fields of both the SARA data and the published Gemini zero-points of the standard star fields, we will calibrate the data obtained for the cluster. These calibrations are an important part of the project to obtain a standardized deep color-magnitude diagram to analyze the cluster. We present the process of verifying our standardization process. With a standardized CMD, we also present an analysis of the cluster's main sequence turn off age.

  20. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  1. Photometric Calibration of the Gemini South Adaptive Optics Imager

    NASA Astrophysics Data System (ADS)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  2. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  3. Polarimetry with the Gemini Planet Imager. Methods, performance at first light, and the circumstellar ring around HR 4796A

    DOE PAGES

    Perrin, Marshall D.; Duchene, Gaspard; Millar-Blanchaer, Max; ...

    2015-01-28

    We report he first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point-spread function (PSF) subtraction via differential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI’s advanced adaptive optics system reveals the disk clearly evenmore » prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. In conclusion, these findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn’s F ring.« less

  4. Polarimetry with the Gemini Planet Imager: methods, performance at first light, and the circumstellar ring around HR 4796A

    DOE PAGES

    Perrin, Marshall D.; Duchene, Gaspard; Millar-Blanchaer, Max; ...

    2015-01-28

    We present the first results from the polarimetry mode of the Gemini Planet Imager (GPI), which uses a new integral field polarimetry architecture to provide high contrast linear polarimetry with minimal systematic biases between the orthogonal polarizations. We describe the design, data reduction methods, and performance of polarimetry with GPI. Point spread function subtraction via di erential polarimetry suppresses unpolarized starlight by a factor of over 100, and provides sensitivity to circumstellar dust reaching the photon noise limit for these observations. In the case of the circumstellar disk around HR 4796A, GPI's advanced adaptive optics system reveals the disk clearlymore » even prior to PSF subtraction. In polarized light, the disk is seen all the way in to its semi-minor axis for the first time. The disk exhibits surprisingly strong asymmetry in polarized intensity, with the west side ≳ 9 times brighter than the east side despite the fact that the east side is slightly brighter in total intensity. Based on a synthesis of the total and polarized intensities, we now believe that the west side is closer to us, contrary to most prior interpretations. Forward scattering by relatively large silicate dust particles leads to the strong polarized intensity on the west side, and the ring must be slightly optically thick in order to explain the lower brightness in total intensity there. These findings suggest that the ring is geometrically narrow and dynamically cold, perhaps shepherded by larger bodies in the same manner as Saturn's F ring.« less

  5. Speckle Imaging at Gemini and the DCT

    NASA Astrophysics Data System (ADS)

    Horch, E. P.; Löbb, J.; Howell, S. B.; van Altena, W. F.; Henry, T. J.; van Belle, G. T.

    2018-01-01

    A program of speckle observations at Lowell Observatory's Discovery Channel Telescope (DCT) and the Gemini North and South Telescopes will be described. It has featured the Differential Speckle Survey Instrument (DSSI), built at Southern Connecticut State University in 2008. DSSI is a dual-port system that records speckle images in two colors simultaneously and produces diffraction limited images to V˜ 16.5 mag at Gemini and V˜ 14.5 mag at the DCT. Of the several science projects that are being pursued at these telescopes, three will be highlighted here. The first is high-resolution follow-up observations for Kepler and K2 exoplanet missions, the second is a study of metal-poor spectroscopic binaries in an attempt to resolve these systems and determine their visual orbits en route to making mass determinations, and the third is a systematic survey of nearby late-type dwarfs, where the multiplicity fraction will be directly measured and compared to that of G dwarfs. The current status of these projects is discussed and some representative results are given.

  6. Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.

    2016-07-01

    Two new instruments are currently being built for the Gemini-North and WIYN telescopes. They are based on the existing DSSI (Differential Speckle Survey Instrument), but the new dual-channel instruments will have both speckle and "wide-field" imaging capabilities. Nearly identical copies of the instrument will be installed as a public access permanent loan at the Gemini-N and WIYN telescopes. Many exoplanet targets will come from the NASA K2 and TESS missions. The faint limiting magnitude, for speckle observations, will remain around 16 to 17th magnitude depending on observing conditions, while wide-field, high speed imaging should be able to go to 21+. For Gemini, the instrument will be remotely operable from either the mid-level facility at Hale Pohaku or the remote operations base in Hilo.

  7. VizieR Online Data Catalog: The Gemini Observation Log (CADC, 2001-)

    NASA Astrophysics Data System (ADS)

    Association of Universities For Research in Astronomy

    2018-01-01

    This database contains a log of the Gemini Telescope observations since 2001, managed by the Canadian Astronomical Data Center (CADC). The data are regularly updated (see the date of the last version at the end of this file). The Gemini Observatory consists of twin 8.1-meter diameter optical/infrared telescopes located on two of the best observing sites on the planet. From their locations on mountains in Hawai'i and Chile, Gemini Observatory's telescopes can collectively access the entire sky. Gemini is operated by a partnership of five countries including the United States, Canada, Brazil, Argentina and Chile. Any astronomer in these countries can apply for time on Gemini, which is allocated in proportion to each partner's financial stake. (1 data file).

  8. Unveiling Uranus' Clouds: New Observations From Gemini-North NIFS And NIRI

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G.; Tice, D.

    2010-10-01

    Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Adaptive optics were used to achieve a spatial resolution of approximately 0.1 arcsec. NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectra (1.49 to 1.79 microns) were obtained with the slit aligned on Uranus’ central meridian. In addition, the NIFS instrument was used to acquire spectra from other points on the planet, stepping the NIFS 3 x 3 arcsec field of view across Uranus’ disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803 microns with a spectral resolution of 5000. The observed spectra along Uranus central meridian were analyzed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45N has continued to steadily brighten while that at 45S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data remove many of the earlier ambiguities inherent in the previous analysis. Overall, Uranus appeared to be less convectively active in 2009 than in the previous 3 years, which suggests that now the equinox (which occurred in 2007) is over the atmosphere is settling back into the quiescent state seen by Voyager 2 in 1986. However, one discrete cloud was captured in the NIFS observations and was estimated to lie at a pressure level of 300-400 mbar.

  9. Planet Imager Discovers Young Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new

  10. Gemini IV Mission Image - EVA over Texas coast

    NASA Image and Video Library

    1965-06-03

    View of Astronaut Edward H. White II, pilot for the Gemini-Titan 4 space flight, as he floats in zero gravity of space. The extravehicular activity was performed during the third revolution of the Gemini 4 spacecraft. White is attached to the spacecraft by a 25-ft. umbilical line and a 23-ft. tether line,both wrapped in gold tape to form one cord. In his right hand White carries a Hand-Held Self-Maneuvering Unit (HHSMU). The visor of his helmet is gold plated to protect him from the unfiltered rays of the sun. Photo was taken on June 3,1965. G.E.T. time was 4:45 / GMT time was 20:00. Original magazine number was GEM04-16-34642, taken with a Hasselblad camera and a 70mm lens. Film type was Kodak Ektachrome MS (S.O. -217). The original photo was a color negative. It's image number is S65-34642.

  11. RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED?) DISK STRUCTURE AT SMALL SEPARATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Kudo, Tomoyuki; Muto, Takayuki

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover ''HD 100546 b'' with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models implymore » a mass of ≈15 M{sub J} . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M{sub J} ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.« less

  12. Planet Formation Instrument for the Thirty Meter Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B; Troy, M; Graham, J

    2006-02-22

    In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. Thesemore » systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.« less

  13. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  14. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  15. What is the Mass of a Gap-opening Planet?

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey

    2017-02-01

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.

  16. What is the Mass of a Gap-opening Planet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruobing; Fung, Jeffrey, E-mail: rdong@email.arizona.edu

    High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, wemore » obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h , and to constrain the quantity M {sub p}{sup 2}/ α , where M {sub p} is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10{sup −3}, the derived planet masses in all cases are roughly between 0.1 and 1 M {sub J}.« less

  17. Evidence That the Directly Imaged Planet HD 131399 Ab Is a Background Star

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric L.; De Rosa, Robert J.; Rameau, Julien; Wang, Jason J.; Esposito, Thomas M.; Millar-Blanchaer, Maxwell A.; Marois, Christian; Vigan, Arthur; Ammons, S. Mark; Artigau, Etienne; Bailey, Vanessa P.; Blunt, Sarah; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, René; Duchêne, Gaspard; Fabrycky, Daniel; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Jensen-Clem, Rebecca; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Macintosh, Bruce; Maire, Jérôme; Marchis, Franck; Metchev, Stanimir; Morzinski, Katie M.; Murray-Clay, Ruth A.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Rafikov, Roman R.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-12-01

    We present evidence that the recently discovered, directly imaged planet HD 131399 Ab is a background star with nonzero proper motion. From new JHK1L‧ photometry and spectroscopy obtained with the Gemini Planet Imager, VLT/SPHERE, and Keck/NIRC2, and a reanalysis of the discovery data obtained with VLT/SPHERE, we derive colors, spectra, and astrometry for HD 131399 Ab. The broader wavelength coverage and higher data quality allow us to reinvestigate its status. Its near-infrared spectral energy distribution excludes spectral types later than L0 and is consistent with a K or M dwarf, which are the most likely candidates for a background object in this direction at the apparent magnitude observed. If it were a physically associated object, the projected velocity of HD 131399 Ab would exceed escape velocity given the mass and distance to HD 131399 A. We show that HD 131399 Ab is also not following the expected track for a stationary background star at infinite distance. Solving for the proper motion and parallax required to explain the relative motion of HD 131399 Ab, we find a proper motion of 12.3 mas yr-1. When compared to predicted background objects drawn from a galactic model, we find this proper motion to be high but consistent with the top 4% fastest-moving background stars. From our analysis, we conclude that HD 131399 Ab is a background K or M dwarf.

  18. Gemini Program Mission Report for Gemini-Titan 1 (GT-1)

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The Gemini-Titan 1 (GT-1) space vehicle was comprised of the Gemini spacecraft and the Gemini launch vehicle. The Gemini launch vehicle is a two-stage modified Titan II ICBM. The major modifications are the addition of a malfunction detection system and a secondary flight controls system. The Gemini spacecraft, designed to carry a crew of two men on earth orbital and rendezvous missions, was unmanned for the flight reported herein (GT-1). There were no complete Gemini flight systems on board; however, the C-band transponder and telemetry transmitters were Gemini flight subsystems. Dummy equipment, having a mass and moment of inertia equal to flight system equipment, was installed in the spacecraft. The Spacecraft was instrumented to obtain data on spacecraft heating, structural loading, vibration, sound pressure levels, and temperature and pressure during the launch phase.

  19. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    NASA Astrophysics Data System (ADS)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~<100Myr) and relatively close (=< 100 pc) stars in the near infrared. Using a combination of adaptive optics (AO) and image processing techniques, the signal of a planet can be differentiated from diffraction in the images. A coronagraph is vital to achieving high contrast images at small angular separations (=<0.2 arcseconds).With the emergence of OIRSETI (Optical and Infrared Search for Extraterrestrial Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  20. Status of the Planet Formation Imager (PFI) concept

    NASA Astrophysics Data System (ADS)

    Ireland, Michael J.; Monnier, John D.; Kraus, Stefan; Isella, Andrea; Minardi, Stefano; Petrov, Romain; ten Brummelaar, Theo; Young, John; Vasisht, Gautam; Mozurkewich, David; Rinehart, Stephen; Michael, Ernest A.; van Belle, Gerard; Woillez, Julien

    2016-08-01

    The Planet Formation Imager (PFI) project aims to image the period of planet assembly directly, resolving structures as small as a giant planet's Hill sphere. These images will be required in order to determine the key mechanisms for planet formation at the time when processes of grain growth, protoplanet assembly, magnetic fields, disk/planet dynamical interactions and complex radiative transfer all interact - making some planetary systems habitable and others inhospitable. We will present the overall vision for the PFI concept, focusing on the key technologies and requirements that are needed to achieve the science goals. Based on these key requirements, we will define a cost envelope range for the design and highlight where the largest uncertainties lie at this conceptual stage.

  1. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  2. Deep thermal infrared imaging of HR 8799 bcde: new atmospheric constraints and limits on a fifth planet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Cloutier, Ryan; Jayawardhana, Ray

    2014-11-10

    We present new L' (3.8 μm) and Brα (4.05 μm) data and reprocessed archival L' data for the young, planet-hosting star HR 8799 obtained with Keck/NIRC2, VLT/NaCo, and Subaru/IRCS. We detect all four HR 8799 planets in each data set at a moderate to high signal-to-noise ratio (S/N ≳ 6-15). We fail to identify a fifth planet, 'HR 8799 f', at r < 15 AU at a 5σ confidence level: one suggestive, marginally significant residual at 0.''2 is most likely a point-spread function artifact. Assuming companion ages of 30 Myr and the Baraffe planet cooling models, we rule out anmore » HR 8799 f with a mass of 5 M{sub J} (7 M{sub J} ), 7 M{sub J} (10 M{sub J} ), or 12 M{sub J} (13 M{sub J} ) at r {sub proj} ∼ 12 AU, 9 AU, and 5 AU, respectively. All four HR 8799 planets have red early T dwarf-like L' – [4.05] colors, suggesting that their spectral energy distributions peak in between the L' and M' broadband filters. We find no statistically significant difference in HR 8799 cde's color. Atmosphere models assuming thick, patchy clouds appear to better match HR 8799 bcde's photometry than models assuming a uniform cloud layer. While non-equilibrium carbon chemistry is required to explain HR 8799 b and c's photometry/spectra, evidence for it from HR 8799 d and e's photometry is weaker. Future, deep-IR spectroscopy/spectrophotometry with the Gemini Planet Imager, SCExAO/CHARIS, and other facilities may clarify whether the planets are chemically similar or heterogeneous.« less

  3. Multi-conjugated adaptive optics imaging of distant galaxies - a comparison of Gemini/GSAOI and VLT/HAWK-I data

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.

    2017-11-01

    Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.

  4. Uranus’ cloud structure and seasonal variability from Gemini-North and UKIRT observations

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G. S.; Tice, D.; Kyffin, A.

    2011-03-01

    Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Observations were acquired in Adaptive Optics mode and have a spatial resolution of approximately 0.1″. NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectroscopy measurements were also made (1.49-1.79 μm) with the entrance slit aligned on Uranus’ central meridian. To acquire spectra from other points on the planet, the NIFS instrument was used and its 3″ × 3″ field of view stepped across Uranus’ disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803 μm. The observed spectra along Uranus central meridian were analysed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45°N has continued to steadily brighten while that at 45°S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data removes some of the earlier ambiguities with our previous analyses and shows that the opacity of clouds deeper than the 2-bar level does indeed diminish towards the poles and also reveals a darkening of the deeper cloud deck near the equator, perhaps coinciding with a region of subduction. We find that the clouds at 45°N,S lie at slightly lower pressures than the clouds at more equatorial latitudes, which suggests that they might possibly be composed of a different condensate, presumably CH4 ice, rather than H2S or NH3 ice, which is assumed for the deeper cloud. In addition, analysis of the centre-to-limb curves of both the Gemini/NIFS and earlier UKIRT/UIST IFU observations shows that

  5. SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.

    2013-09-01

    Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.

  6. Hole-y Debris Disks, Batman! Where are the planets?

    NASA Astrophysics Data System (ADS)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  7. Gemini Space Program emblem

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The insignia of the Gemini space program is a disc of dark blue as a background for a gold Zodiac Gemini symbol. A white star on each of the two vertical curves of the Gemini symbol represent the Gemini twins, Pollux and Castor.

  8. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  9. The International Outer Planets Watch atmospheres node database of giant-planet images

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.

    2011-10-01

    The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.

  10. Direct imaging search for the "missing link" in giant planet formation

    NASA Astrophysics Data System (ADS)

    Ngo, Henry; Mawet, Dimitri; Ruane, Garreth; Xuan, Wenhao; Bowler, Brendan; Cook, Therese; Zawol, Zoe

    2018-01-01

    While transit and radial velocity detection techniques have probed giant planet populations at close separations (within a few au), current direct imaging surveys are finding giant planets at separations of 10s-100s au. Furthermore, these directly imaged planets are very massive, including some with masses above the deuterium burning limit. It is not certain whether these objects represent the high mass end of planet formation scenarios or the low mass end of star formation. We present a direct imaging survey to search for the "missing link" population between the close-in RV and transiting giant planets and the extremely distant directly imaged giant planets (i.e. giant planets between 5-10 au). Finding and characterizing this population allows for comparisons with the formation models of closer-in planets and connects directly imaged planets with closer-in planets in semi-major axis phase space. In addition, microlensing surveys have suggested a large reservoir of giant planets exist in this region. To find these "missing link" giant planets, our survey searches for giant planets around M-stars. The ubiquity of M-stars provide a large number of nearby targets and their L-band contrast with planets allow for sensitivities to smaller planet masses than surveys conducted at shorter wavelengths. Along with careful target selection, we use Keck's L-band vector vortex coronagraph to enable sensitivities of a few Jupiter masses as close as 4 au to their host stars. We present our completed 2-year survey targeting 200 young (10-150 Myr), nearby M-stars and our ongoing work to follow-up over 40 candidate objects.

  11. Gemini Program Mission Report: Gemini IV

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The second manned mission of the Gemini Program, Gemini IV, was launched from Complex 19 at Cape Kennedy, Florida, at 10:16 a.m. e.s.t. on June 3, 1965. The mission was successfully concluded on June 7, 1965, with the recovery of the spacecraft by the prime recovery ship, the aircraft carrier U.S.S. Wasp, at 27 deg 44' N. latitude, 74 deg 11' W. longitude at 2:28 p.m. e.s.t. This manned long-duration flight was accomplished 10 weeks after the three-orbit manned flight which qualified the Gemini spacecraft and systems for orbital flight. The spacecraft was manned by Astronaut James A. McDivitt, command pilot, and Astronaut Edward H. White II, pilot. The flight crew completed the 4-day mission in excellent physical condition, and demonstrated full control of the spacecraft and competent management of all aspects of the mission.

  12. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images

    PubMed Central

    Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-01-01

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745

  13. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    PubMed

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  14. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  15. The Planet Formation Imager (PFI) Project

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John; Kraus, Stefan; Ireland, Michael

    2016-07-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere, which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution I outline the primary science case of PFI and give an overview about the work of the PFI science and technical working group and present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, I give an overview about the technologies that we are investigating in order to meet the specifications.

  16. Imaging Planet Formation Inside the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie Elise

    For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.

  17. Assessment of spatiotemporal fusion algorithms for Planet and Worldview images

    USDA-ARS?s Scientific Manuscript database

    Although Worldview (WV) images (non-pansharpened) have 2-meter resolution, the re-visit times for the same areas may be 7 days or more. In contrast, Planet images using small satellites can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It will be ideal to f...

  18. Gemini Rendezvous Docking Simulator

    NASA Image and Video Library

    1964-05-11

    Gemini Rendezvous Docking Simulator suspended from the roof of the Langley Research Center s aircraft hangar. Francis B. Smith wrote: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  19. Gemini 7 backup crew seen in white room during Gemini 7 simulation activity

    NASA Image and Video Library

    1965-11-27

    S65-61837 (27 Nov. 1965) --- The Gemini-7 backup crew seen in the White Room atop Pad 19 during Gemini-7 simulation flight activity. McDonnell Aircraft Corporation technicians assist in the exercise. Astronaut Edward H. White II (in foreground) is the Gemini-7 backup crew command pilot; and astronaut Michael Collins (right background) is the backup crew pilot. Photo credit: NASA

  20. GEMINI- INSIGNIA - SPACE PROGRAM - MSC

    NASA Image and Video Library

    1965-08-30

    S65-54354 (30 Aug. 1965) --- The insignia of the Gemini Space Program is a disc of dark blue as a background for a gold Zodiac Gemini symbol. A white star on each of the two vertical curves of the Gemini symbol represent the Gemini twins, Pollux and Castor. The NASA insignia design for Gemini flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.

  1. Gemini Program Mission Planning Report

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This report defines the Gemini Program objectives and presents guidelines for the individual Gemini missions. It provides general space vehicle configuration data, and descriptions of planned missions. Contingency mission requirements and extravehicular operations to be performed during specific missions are described in the last two sections of the basic document. Data on spacecraft weights and Gemini Launch Vehicle performance capabilities are provided in Appendix A, while Appendix B provides descriptions of onboard experiments to be conducted during Gemini missions.

  2. Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M.

    2016-09-01

    Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system. Aims: We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. Methods: We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. Results: The JHK-band photometry of the newly identified candidate is at better than 1σ consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky imaging z' photometric detection limit z' = 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (<10 Myr) L - T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). Conclusions: This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 h and about 27

  3. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  4. Bringing "The Moth" to light: A planet-sculpting scenario for the HD 61005 debris disk

    DOE PAGES

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; ...

    2016-09-16

    Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less

  5. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  6. GEMINI-TITAN-8 - PRELAUNCH ACTIVITY

    NASA Image and Video Library

    1966-03-16

    S66-24439 (16 March 1966) --- The Gemini-8 prime crew, along with several fellow astronauts, have a hearty breakfast of steak and eggs on the morning of the Gemini-8 launch. Seated clockwise around the table, starting at lower left, are Donald K. Slayton, Manned Spaceflight Center (MSC) Assistant Director for Flight Crew Operations; astronaut Neil A. Armstrong, Gemini-8 command pilot; scientist-astronaut F. Curtis Michel; astronaut R. Walter Cunningham; astronaut Alan B. Shepard Jr. (face obscured), Chief, MSC Astronaut Office; astronaut David R. Scott, Gemini-8 pilot; and astronaut Roger B. Chaffee. Photo credit: NASA

  7. Imaging plasmas at the Earth and other planets

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2006-05-01

    The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are

  8. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    NASA Astrophysics Data System (ADS)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  9. Index maps for Gemini earth photography

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1975-01-01

    Index maps for the Gemini missions are presented; these are for the Gemini 3 through Gemini 12 missions. The maps are divided into four sections: the whole earth; the Western Hemisphere and eastern Pacific Ocean; Africa, India, and the Near East; and Asia, Australia, and the Pacific Ocean.

  10. Direct imaging of exoplanets around multiple star systems

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine

    2015-01-01

    Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets 10^7 times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved binaries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri.Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  11. Exploiting physical constraints for multi-spectral exo-planet detection

    NASA Astrophysics Data System (ADS)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  12. GEMINI-9 - EARTH SKY - ATDA

    NASA Image and Video Library

    1966-06-06

    S66-37972 (3 June 1966) ?-- The Augmented Target Docking Adapter (ATDA) is photographed from the Gemini-9 spacecraft during one of three rendezvous occasions in space. The ATDA and Gemini-9 spacecraft are 35.5 feet apart in this view. Failure of the docking adapter protective cover on the ATDA to fully separate prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew members as an ?angry alligator.? Photo credit: NASA

  13. A comparison of Gemini and ERTS imagery obtained over southern Morocco

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Anderson, A. T.

    1973-01-01

    A mosaic constructed from three ERTS MSS band 5 images enlarged to 1:500,000 compares favorably with a similar scale geologic map of southern Morocco, and a near-similar scale Gemini 5 photo pair. A comparative plot of lineations and generalized geology on the three formats show that a significantly greater number of probable fractures are visible on the ERTS imagery than on the Gemini photography, and that both orbital formats show several times more lineaments than were previously mapped. A plot of mineral occurrences on the structural overlays indicates that definite structure-mineralization relationships exist; this finding is used to define underdeveloped areas which are prospective for mineralization. More detailed mapping is possible using MSS imagery than on Gemini 5 photographs, and in addition, the ERTS format is not restricted to limited coverage.

  14. GEMINI RENDEZVOUS EVALUATION POD (REP) - ARTIST CONCEPT

    NASA Image and Video Library

    1965-08-01

    S65-28653 (August 1965) --- Rendezvous Evaluation Pod (REP) in orbit is approached by Gemini spacecraft as seen in this artist's concept using an actual photograph taken on the Gemini-4 mission. The REP is superimposed over a Gemini-4 Earth-sky picture of cloud formations over an ocean. The REP will be used by the crew of the Gemini-5 spacecraft to practice rendezvous techniques.

  15. Millimeter image of the HL Tau Disk: gaps opened by planets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui

    2015-10-20

    Several observed features which favor planet-induced gaps in the disk are pointed out. Parameters of a two-fluid simulation model are listed, and some model results are shown. It is concluded that (1) interaction between planets, gas, and dust can explain the main features in the ALMA observation; (2) the millimeter image of a disk is determined by the dust profile, which in turn is influenced by planetary masses, viscosity, disk self-gravity, etc.; and (3) models that focus on the complex physics between gas and dust (and planets) are crucial in interpreting the (sub)millimeter images of disks.

  16. GEMINI-9 - EARTH SKY - ATDA

    NASA Image and Video Library

    1966-06-06

    S66-37943 (3 June 1966) --- The Augmented Target Docking Adapter is photographed against the background of the blackness of space from the Gemini-9 spacecraft during one of their three rendezvous in space. The ATDA and Gemini-9 spacecraft are 71.5 feet apart. Failure of the docking adapter protective cover to fully separate on the ATDA prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew as an ?Angry Alligator.? Photo credit: NASA

  17. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  18. Direct Imaging Of Long Period Radial Velocity Targets With NICI

    NASA Astrophysics Data System (ADS)

    Salter, Graeme S.; Tinney, Chris G.; Wittenmyer, Robert A.; Jenkins, James S.; Jones, Hugh R. A.; O'Toole, Simon J.

    2014-01-01

    We are finally entering an era where radial velocity and direct imaging parameter spaces are starting to overlap. Radial velocity measurements provide us with a minimum mass for an orbiting companion (the mass as a function of the inclination of the system). By following up these long period radial velocity detections with direct imaging we can determine whether a trend seen is due to an orbiting planet at low inclination or an orbiting brown dwarf at high inclination. In the event of a non-detection we are still able to put a limit on the maximum mass of the orbiting body. The Anglo-Australian Planet Search is one of the longest baseline radial velocity planet searches in existence, amongst its targets are many that show long period trends in the data. Here we present our direct imaging survey of these objects with our results to date. ADI Observations have been made using NICI (Near Infrared Coronagraphic Imager) on Gemini South and analysed using an in house, LOCI-like, post processing.

  19. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratiomore » (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.« less

  20. Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Rajan, Abhijith; Gemini Planet Imager, Extrasolar Planets and Systems Imaging Group

    2018-01-01

    I study the structure, composition and dynamic evolution of directly imaged exoplanet and brown dwarf atmospheres, using spectrophotometric data collected from a range of ground and space based instrumentation. As part of my dissertation, I led studies exploring the atmospheres of brown dwarfs to search for weather variations, and characterized the near and mid infrared SEDs of imaged exoplanets to estimate their fundamental parameters. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring of 4 ultracool, T5 - Y0, brown dwarfs in the J-band to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere. The study found that cool brown dwarfs, fit with higher opacity clouds, were more likely to be variable. Through data taken with the Hubble Space Telescope and Gemini telescope we characterized the atmospheres of directly imaged exoplanets. For HR 8799, in near IR wavelengths unobservable from the ground, we constrained the presence of clouds in the outer planets. As a member of the Gemini Planet Imager Exoplanet Survey team, I analyzed archival HST data and examined the near-infrared colors of HD 106906b as seen with GPI, concluding that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, by combining data spanning 1 - 5 um for the low mass Jupiter-like exoplanet, 51 Eri b, we found a cool effective temperature best fit by a patchy cloud atmosphere. This makes the planet an excellent candidate for future variability studies with the James Webb Space Telescope.

  1. Gemini-Titan - Prelaunch

    NASA Image and Video Library

    1966-07-18

    S66-42738 (18 July 1966) --- Astronaut John W. Young, Gemini-10 command pilot, holds a pair of king-size pliers presented to him by the crew at Pad 19 for in-flight first-echelon maintenance of a spacecraft utility power cord Young earlier had difficulty in connecting. Gunther Wendt (right center background), Pad 19 leader, jokes with Young about the pliers. At right is Dr. Donald K. Slayton, MSC Director of Flight Crew Operations. At left is astronaut Michael Collins, Gemini-10 pilot. Photo credit: NASA

  2. The first H-band spectrum of the giant planet β Pictoris b

    DOE PAGES

    Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; ...

    2014-12-12

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). Thesemore » values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr.« less

  3. Gemini rendezvous docking simulator

    NASA Image and Video Library

    1963-11-04

    Multiple exposure of Gemini rendezvous docking simulator. Francis B. Smith wrote in his paper "Simulators for Manned Space Research," "The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. [This figure] illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft." A.W. Vogeley further described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Docking operations are considered to start when the pilot first can discern vehicle target size and aspect and terminate, of course, when soft contact is made. ... This facility enables simulation of the docking operation from a distance of 200 feet to actual contact with the target. A full-scale mock-up of the target vehicle is suspended near one end of the track. ... On [the Agena target] we have mounted the actual Agena docking mechanism and also various types of visual aids. We have been able to devise visual aids which have made it possible to accomplish nighttime docking with as much success as daytime docking." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at

  4. Planet Formation Imager (PFI): science vision and key requirements

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni

    2016-08-01

    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

  5. Self-assembled Gemini surfactant film-mediated dispersion stability.

    PubMed

    Rabinovich, Y I; Kanicky, J R; Pandey, S; Oskarsson, H; Holmberg, K; Moudgil, B M; Shah, D O

    2005-08-15

    The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).

  6. Deep L'- and M-band Imaging for Planets around Vega and epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Heinze, A. N.; Hinz, Philip M.; Kenworthy, Matthew; Miller, Douglas; Sivanandam, Suresh

    2008-11-01

    We have obtained deep adaptive optics (AO) images of Vega and epsilon Eri to search for planetary mass companions. We observed at the MMT in the L' (3.8 μm) and M (4.8 μm) bands using Clio, a recently commissioned imager optimized for these wavelengths. Observing at these long wavelengths represents a departure from the H band (1.65 μm) more commonly used for AO imaging searches for extrasolar planets. The long wavelengths offer better predicted planet/star flux ratios and cleaner (higher Strehl) AO images at the cost of lower diffraction-limited resolution and higher sky background. We have not detected any planets or planet candidates around Vega or epsilon Eri. We report the sensitivities obtained around both stars, which correspond to upper limits on any planetary companions which may exist. The sensitivities of our L'- and M-band observations are comparable to those of the best H-regime observations of these stars. For epsilon Eri, our M-band observations deliver considerably better sensitivity to close-in planets than any previously published results, and we show that the M band is by far the best wavelength choice for attempts at ground-based AO imaging of the known planet epsilon Eri b. The Clio camera itself, with MMTAO, may be capable of detecting epsilon Eri b at its 2010 apastron, given a multinight observing campaign. Clio appears to be the only currently existing AO imager that has a realistic possibility of detecting epsilon Eri b. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  7. PRESS CONFERENCE - GEMINI-TITAN (GT)-11 - MSC

    NASA Image and Video Library

    1966-08-01

    S66-39895 (1 Aug. 1966) --- Panel members of the Gemini-10 news conference held in the Building 1 auditorium were (from left) Dr. Robert C. Seamans Jr., NASA Deputy Administrator; astronaut John W. Young, Gemini-10 command pilot; astronaut Michael Collins, Gemini-10 pilot; and Dr. Robert R. Gilruth, MSC Director. Photo credit: NASA

  8. Gemini-Titan (GT)-9 Test - Training - KSC

    NASA Image and Video Library

    1966-06-10

    S66-33406 (10 May 1966) --- Astronaut Thomas P. Stafford (on left), command pilot, and Eugene A. Cernan, pilot, in Gemini-9 spacecraft in the white room at Pad 19 during a Gemini-9/Agena simultaneous launch demonstration. This test is a coordinated dountdown of the Atlas-Agena and the Gemini-Titan vehicles. Photo credit: NASA

  9. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; hide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  10. The Gemini 8-Meter Telescopes Project

    NASA Astrophysics Data System (ADS)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity <4% (requirement) or <2% (goal) if silver coatings are used. The instrument complement is diverse, including near- and mid-IR imagers, and near-IR and optical spectrographs. Both telescopes are equipped with f/16 articulated secondaries, and a future upgrade path to a wide-field f/6 configuration is provided. The northern telescope also includes a natural-guide-star adaptive optics system. Up to five instruments can be mounted simultaneously on the Cassegrain instrument interface. Approximately 50% of the telescope time will be flexibly scheduled, allowing most efficient utilization of the times of best conditions and facilitating programs which are difficult to schedule, such as synoptic and target-of-opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U

  11. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system

    DOE PAGES

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...

    2015-11-13

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  12. Gemini-IFU Spectroscopy of HH 111

    NASA Astrophysics Data System (ADS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Raga, A. C.; Feitosa, J.; Plana, H.

    2015-03-01

    We present new optical observations of the Herbig-Haro (HH) 111 jet using the Gemini Multi Object Spectrograph in its Integral Field Unit mode. Eight fields of 5\\prime\\prime × 3\\buildrel{\\prime\\prime}\\over{.} 5 have been positioned along and across the HH 111 jet, covering the spatial region from knot E to L in HH 111 (namely, knots E, F, G, H, J, K, and L). We present images and velocity channel maps for the [O i] 6300+6360, Hα, [N ii] 6548+6583, and [S ii] 6716+6730 lines, as well as for the [S ii] 6716/6730 line ratio. We find that the HH 111 jet has an inner region with lower excitation and higher radial velocity, surrounded by a broader region of higher excitation and lower radial velocity. Also, we find higher electron densities at lower radial velocities. These results imply that the HH 111 jet has a fast, axial region with lower velocity shocks surrounded by a lower velocity sheath with higher velocity shocks. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  13. Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.

    1996-09-01

    Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.

  14. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  15. The Gemini NICI Planet-finding Campaign: Discovery of a Substellar L Dwarf Companion to the Nearby Young M Dwarf CD-35 2722

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Biller, Beth A.; Clarke, Fraser; Nielsen, Eric L.; Close, Laird M.; Hayward, Thomas L.; Mamajek, Eric E.; Cushing, Michael; Dupuy, Trent; Tecza, Matthias; Thatte, Niranjan; Chun, Mark; Ftaclas, Christ; Hartung, Markus; Reid, I. Neill; Shkolnik, Evgenya L.; Alencar, Silvia H. P.; Artymowicz, Pawel; Boss, Alan; de Gouveia Dal Pino, Elisabethe; Gregorio-Hetem, Jane; Ida, Shigeru; Kuchner, Marc; Lin, Douglas N. C.; Toomey, Douglas W.

    2011-03-01

    We present the discovery of a wide (67 AU) substellar companion to the nearby (21 pc) young solar-metallicity M1 dwarf CD-35 2722, a member of the ≈100 Myr AB Doradus association. Two epochs of astrometry from the NICI Planet-Finding Campaign confirm that CD-35 2722 B is physically associated with the primary star. Near-IR spectra indicate a spectral type of L4±1 with a moderately low surface gravity, making it one of the coolest young companions found to date. The absorption lines and near-IR continuum shape of CD-35 2722 B agree especially well the dusty field L4.5 dwarf 2MASS J22244381-0158521, while the near-IR colors and absolute magnitudes match those of the 5 Myr old L4 planetary-mass companion, 1RXS J160929.1-210524 b. Overall, CD-35 2722 B appears to be an intermediate-age benchmark for L dwarfs, with a less peaked H-band continuum than the youngest objects and near-IR absorption lines comparable to field objects. We fit Ames-Dusty model atmospheres to the near-IR spectra and find T eff= 1700-1900 K and log(g)= 4.5 ± 0.5. The spectra also show that the radial velocities of components A and B agree to within ±10 km s-1, further confirming their physical association. Using the age and bolometric luminosity of CD-35 2722 B, we derive a mass of 31 ± 8 M Jup from the Lyon/Dusty evolutionary models. Altogether, young late-M to mid-L type companions appear to be overluminous for their near-IR spectral type compared with field objects, in contrast to the underluminosity of young late-L and early-T dwarfs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ci

  16. GEOMETRIC PROCESSING OF DIGITAL IMAGES OF THE PLANETS.

    USGS Publications Warehouse

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformations of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases.

  17. Gemini-Titan (GT)-8 - Lightweight Suit - MSC

    NASA Image and Video Library

    1965-12-06

    S65-60035 (6 Dec. 1965) --- The new light-weight spacesuit planned for possible use during the Gemini-7 mission is modeled by Fred R. Spross, Gemini Support Office, Crew Systems Division. The spacesuit weighs 16 pounds, including the aviator's crash helmet. The suit is designed so that it may be partially or completely removed during flight. It has two layers of material while the previously used Gemini spacesuit has four layers. Photo credit: NASA

  18. A method to directly image exoplanets in multi-star systems such as Alpha-Centauri

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Belikov, Ruslan; Bendek, Eduardo

    2015-09-01

    Direct imaging of extra-solar planets is now a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the Gemini Planet Imager and SPHERE. These systems will allow detection of Jupiter-like planets 107 times fainter than their host star. Obtaining this contrast level and beyond requires the combination of a coronagraph to suppress light coming from the host star and a wavefront control system including a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around single host stars, while several targets or planet candidates are located around nearby binary stars such as our neighboring star Alpha Centauri. Here, we present a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects.

  19. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  20. Observations Of The LCROSS Impact With NIFS On The Gemini North Telescope

    NASA Astrophysics Data System (ADS)

    Roth, Katherine; Stephens, A. W.; Trujillo, C. A.; McDermid, R. M.; Woodward, C. E.; Walls, B. D.; Coulson, D. M.; Matulonis, A. C.; Ball, J. G.; Wooden, D. H.

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) Centaur rocket impacted a permanently shadowed crater near the south pole of the Moon at 11:31 UTC 2009 October 09. Gemini, one of several telescopes in a coordinated network observing the impact, conducted observations using NIFS to obtain 3D K-band imaging spectroscopy to detect water ice in the ejected plume of material. The spectral slope of the NIFS data can constrain the grain size and height distribution as the plume evolves, measuring the total mass and the water ice concentration in the plume. These observations provided an engineering challenge for Gemini, including the need to track non-sidereal with constantly changing track rates and guide on small bright moon craters, in order to keep the impact site within the NIFS field-of-view. High quality images taken by GMOS-N, NIRI and the acquisition camera during engineering periods at specific lunar libration and illumination were also used by the LCROSS ground based observing team to supplement slit positioning and offset plans for other ground based observatories. LCROSS mission support and engineering has resulted in improved telescope functionality for non-sidereal targets, including the ability to upload and import target ephemerides directly into the TCS, starting in semester 2010B. In this poster we present the engineering results and observing improvements which will facilitate enhanced user capabilities of the Gemini telescopes arising from the intensive LCROSS support challenge. Gemini Observatory is operated by AURA, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the STFC (United Kingdom), the NRC (Canada), CONICYT (Chile), the ARC (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). In part this research was supported by NASA through contracts to SWRI and NSF grant AST-0706980 to the U

  1. Gemini 6 prime crew in white room atop Pad 19 during Gemini 6 countdown

    NASA Technical Reports Server (NTRS)

    1965-01-01

    NASA and McDonnell technicians assist the Gemini 6 prime crew into the spacecraft in the White Room atop Pad 19 during the Gemini 6 prelaunch countdown. Astronaut Walter M. Schirra Jr., command pilot, is on left; and Astronaut Thomas P. Stafford, is on the right. Between the two is a note attached to the capsule which reads 'Good Luck from 2nd Shift'. Liftoff was at 8:37 a.m., December 15, 1965.

  2. Women Astronomers at Gemini: A Success Story

    NASA Astrophysics Data System (ADS)

    Rodgers, Bernadette; Jorgensen, I.; Barker, N.; Edwards, M.; Trancho, G.

    2010-01-01

    Gemini Observatory has been very successful at attracting, hiring and retaining female Scientists. We present data on the growth of the scientific staff since the start of the Observatory, and science fellow recruiting from 2006-2008. At Gemini 31% of the Science Staff holding PhDs are female compared with 13.9% within the United States. The Science Management is 75% female, as is 50% of the Gemini Directorate. This critical mass of female representation within the science staff and management appears to have had a positive effect on female recruitment and hiring. The science fellow recruitment during the past 3 years has attracted 21-38% female applicants and 57% of new hires during this period have been female scientists. Perhaps even more significant, the retention rate of female science staff at Gemini is 88%, compared to 64% for male science staff. There are likely many factors that contribute to this success, but the conclusion is that Gemini has earned a reputation in the scientific community as a place where female scientists are valued and can be successful.

  3. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less

  4. A giant planet imaged in the disk of the young star beta Pictoris.

    PubMed

    Lagrange, A-M; Bonnefoy, M; Chauvin, G; Apai, D; Ehrenreich, D; Boccaletti, A; Gratadour, D; Rouan, D; Mouillet, D; Lacour, S; Kasper, M

    2010-07-02

    Here, we show that the approximately 10-million-year-old beta Pictoris system hosts a massive giant planet, beta Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, beta Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.

  5. Docking - Gemini-Titan (GT)-11 - Outer Space

    NASA Image and Video Library

    1966-09-14

    S66-54555 (14 Sept. 1966) --- The Gemini-11 spacecraft is docked to the Agena Target Vehicle in this photograph taken by astronaut Richard F. Gordon Jr., pilot, as he stood in the open hatch of the Gemini-11 spacecraft during his extravehicular activity (EVA). Note Agena's L-band antenna. Taken during Gemini-11's 29th revolution of Earth, using a modified 70mm Hasselblad camera, with Eastman Kodak, Ektachrome, MS (S.O. 368) color film. Photo credit: NASA

  6. Astronauts Grissom and Young in Gemini Mission Simulator

    NASA Image and Video Library

    1964-05-22

    S64-25295 (March 1964) --- Astronauts Virgil I. (Gus) Grissom (right) and John W. Young, prime crew for the first manned Gemini mission (GT-3), are shown inside a Gemini mission simulator at McDonnell Aircraft Corp., St. Louis, MO. The simulator will provide Gemini astronauts and ground crews with realistic mission simulation during intensive training prior to actual launch.

  7. The Planets Around Low-Mass Stars (PALMS) Direct Imaging Survey

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, M. C.; Shkolnik, E.; Mann, A.; Tamura, M.

    2013-01-01

    Direct imaging is the only method to study the outer architecture (>10 AU) of extrasolar planetary systems in a targeted fashion. Previous imaging surveys have primarily focused on intermediate- and high-mass stars because of the relative dearth of known nearby young M dwarfs. As a result, even though M dwarfs make up 70% of stars in our galaxy, there are few constraints on the population of giant planets at moderate separations (10-100 AU) in this stellar mass regime. We present results from an ongoing high-contrast adaptive optics imaging survey targeting newly identified nearby (<35 pc) young (<300 Myr) M dwarfs with Keck-2/NIRC2 and Subaru/HiCIAO. We have already discovered four young brown dwarf companions with masses between 30-70 Mjup; two of these are members of the ~120 Myr AB Dor moving group, and another one will yield a dynamical mass in the near future. Follow-up optical and near-infrared spectroscopy of these companions reveal spectral types of late-M to early-L and spectroscopic indicators of youth such as angular H-band morphologies, weak J-band alkali lines, and Li absorption and Halpha emission in one target. Altogether our survey is sensitive to planet masses a few times that of Jupiter at separations down to ~10 AU. With a sample size of roughly 80 single M dwarfs, this program represents the deepest and most extensive imaging search for planets around young low-mass stars to date.

  8. Measurements of airglow on Maunakea at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Roth, Katherine C.; Smith, Adam; Stephens, Andrew; Smirnova, Olesja

    2016-07-01

    Gemini Observatory on Maunakea has been collecting optical and infrared science data for almost 15 years. We have begun a program to analyze imaging data from two of the original facility instruments, GMOS and NIRI, in order to measure sky brightness levels in multiple infrared and optical broad-band filters. The present work includes data from mid-2016 back through late-2008. We present measured background levels as a function of several operational quantities (e.g. moon phase, hours from twilight, season). We find that airglow is a significant contributor to background levels in several filters. Gemini is primarily a queue scheduled telescope, with observations being optimally executed in order to provide the most efficient use of telescope time. We find that while most parameters are well-understood, the atmospheric airglow remains challenging to predict. This makes it difficult to schedule observations which require dark skies in these filters, and we suggest improvements to ensure data quality.

  9. Liftoff of Gemini-Titan 3 mission

    NASA Image and Video Library

    1965-03-23

    S65-14150 (23 March 1965) --- Launch view of the Gemini-Titan 3 mission. The GT-3 liftoff was at 9:24 a.m. (EST) on March 23, 1965. The Gemini-3 spacecraft "Molly Brown" carried astronauts Virgil I. Grissom, command pilot, and John W. Young, pilot, on three orbits of Earth.

  10. The Transformation of Observatory Newsletters - A Gemini Perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu

    2015-08-01

    Astronomical observatories publish newsletters to communicate the observatory’s new discoveries and activities with its user communities, funding agencies, and general public. Gemini Observatory started publishing the newsletter in March 1992. Over the years, it transformed from a no-frills black and white publication to a full-color magazine type newsletter with a special name “GeminiFocus”. Since 2012, the contents of GeminiFocus moved from print to digital with an additional print issue of the Year in Review. The newsletter transformation is in sync with the rapid development of the internet technologies. We discuss here the evolvement of Gemini newsletter and the lessons learned.

  11. SN 1987A after 18 Years: Mid-Infrared Gemini and Spitzer Observations of the Remnant

    NASA Astrophysics Data System (ADS)

    Bouchet, Patrice; Dwek, Eli; Danziger, John; Arendt, Richard G.; De Buizer, I. James M.; Park, Sangwook; Suntzeff, Nicholas B.; Kirshner, Robert P.; Challis, Peter

    2006-10-01

    Using the Gemini South 8 m telescope, we obtained high-resolution 11.7 and 18.3 μm mid-IR images of SN 1987A on day 6526 since the explosion. All the emission arises from the equatorial ring. Nearly contemporaneous spectra obtained at 5-38 μm with the Spitzer Space Telescope show that this is thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 166+18-12 K, and the emitting dust mass is 2.6+2.0-1.4×10-6 Msolar. Comparison of the Gemini 11.7 μm image with Chandra X-ray images, HST UV-optical images, and ATCA radio synchrotron images shows generally good correlation across all wavelengths. If the dust resides in the diffuse X-ray-emitting gas then it is collisionally heated. The IR emission can then be used to derive the plasma temperature and density, which were found to be in good agreement with those inferred from the X-rays. Alternatively, the dust could reside in the dense UV-optical knots and be heated by the radiative shocks that are propagating through the knots. In either case the dust-to-gas mass ratio in the CSM around the supernova is significantly lower than that in the general interstellar medium of the LMC, suggesting either a low condensation efficiency in the wind of the progenitor star or the efficient destruction of the dust by the SN blast wave. Overall, we are witnessing the interaction of the SN blast wave with its surrounding medium, creating an environment that is rapidly evolving at all wavelengths. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and

  12. Exploring Hitherto Uncharted Planet Territory with Lucky-imaging Microlensing Observations

    NASA Astrophysics Data System (ADS)

    Dominik, Martin; Jørgensen, U. G.; Hessman, F. V.; Horne, K.; Harpsøe, K.; Skottfelt, J.; MiNDSTEp Consortium

    2011-09-01

    Leading the agenda for pushing the planet sensitivity limit towards the mass of the Moon, we will report first results from our 2011 MiNDSTEp (Microlensing Network for the Detection of Small Terrestrial Exoplanets) lucky-imaging microlensing follow-up campaign with the Danish 1.54m at ESO La Silla. It serves as a precursor to observations with a global network comprising the LCOGT/SUPAscope, SONG, and MONET 1m-class robotic telescope networks gradually deployed from 2011 to 2014. As for observations from space, the lucky-imaging technique allows us to get around the atmospheric image blurring and to obtain a resolution near the diffraction limit. This enables high-precision photometry on considerably fainter (smaller) stars in the crowded fields towards the Galactic bulge than obtainable from ground-based surveys. Monitoring smaller source stars in turn provides sensitivity to planets with smaller masses orbiting the lens star. M.D. is supported by a Royal Society University Research Fellowship

  13. Gemini-Titan (GT)-7 of GT-6 Space Photography - Outer Space

    NASA Image and Video Library

    1965-12-04

    S65-64040 (15 Dec. 1965) --- Nose-on view of the Gemini-6 spacecraft against the blackness of space as seen from Gemini-7 spacecraft. The two spacecraft were approximately 38 feet apart. Astronauts Walter M. Schirra and Thomas P. Stafford were onboard the Gemini-6 spacecraft. Astronauts Frank Borman and James A. Lovell Jr. were aboard the Gemini-7 spacecraft. A "Beat Army" sign can be seen in the Gemini-6 window. Photo credit: NASA

  14. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  15. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    NASA Astrophysics Data System (ADS)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  17. Outer planet Pioneer imaging communications system study. [data compression

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.

  18. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE

    NASA Astrophysics Data System (ADS)

    Lamare, F.; Turzo, A.; Bizais, Y.; Cheze LeRest, C.; Visvikis, D.

    2006-02-01

    A newly developed simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop a Monte Carlo simulation of a fully three-dimensional (3D) clinical PET scanner. The Philips Allegro/GEMINI PET systems were simulated in order to (a) allow a detailed study of the parameters affecting the system's performance under various imaging conditions, (b) study the optimization and quantitative accuracy of emission acquisition protocols for dynamic and static imaging, and (c) further validate the potential of GATE for the simulation of clinical PET systems. A model of the detection system and its geometry was developed. The accuracy of the developed detection model was tested through the comparison of simulated and measured results obtained with the Allegro/GEMINI systems for a number of NEMA NU2-2001 performance protocols including spatial resolution, sensitivity and scatter fraction. In addition, an approximate model of the system's dead time at the level of detected single events and coincidences was developed in an attempt to simulate the count rate related performance characteristics of the scanner. The developed dead-time model was assessed under different imaging conditions using the count rate loss and noise equivalent count rates performance protocols of standard and modified NEMA NU2-2001 (whole body imaging conditions) and NEMA NU2-1994 (brain imaging conditions) comparing simulated with experimental measurements obtained with the Allegro/GEMINI PET systems. Finally, a reconstructed image quality protocol was used to assess the overall performance of the developed model. An agreement of <3% was obtained in scatter fraction, with a difference between 4% and 10% in the true and random coincidence count rates respectively, throughout a range of activity concentrations and under various imaging conditions, resulting in <8% differences between simulated and measured noise equivalent count rates performance. Finally, the image quality

  19. Geometric processing of digital images of the planets

    NASA Technical Reports Server (NTRS)

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformation of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases. Completed Sinusoidal databases may be used for digital analysis and registration with other spatial data. They may also be reproduced as published image maps by digitally transforming them to appropriate map projections.

  20. Design and Verification of External Occulters for Direct Imaging of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Cady, Eric

    2011-01-01

    An occulter is an optical element which is placed in front of the telescope to block most of the light from a star before it reaches the optics inside, without blocking the planet.In our case, we use two spacecraft ying in formation: First has its edge shaped to cancel the starlight Second is the telescope which images the star and planet

  1. GEMINI-TITAN (GT)-9 - EARTH-SKY VIEW - PERU - OUTER SPACE

    NASA Image and Video Library

    1966-06-05

    S66-38290 (5 June 1966) --- The north coastal area of Peru looking southeast across the Andes Mountains as seen from the National Aeronautics and Space Administration's Gemini-9A spacecraft. The body of water is the Pacific Ocean. The image was taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  2. Multiple Exposure of Rendezvous Docking Simulator - Gemini Program

    NASA Image and Video Library

    1964-02-07

    Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simulator as follows: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  3. Architecture design study and technology road map for the Planet Formation Imager (PFI)

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Ireland, Michael J.; Kraus, Stefan; Baron, Fabien; Creech-Eakman, Michelle; Dong, Ruobing; Isella, Andrea; Merand, Antoine; Michael, Ernest; Minardi, Stefano; Mozurkewich, David; Petrov, Romain; Rinehart, Stephen; ten Brummelaar, Theo; Vasisht, Gautam; Wishnow, Ed; Young, John; Zhu, Zhaohuan

    2016-08-01

    The Planet Formation Imager (PFI) Project has formed a Technical Working Group (TWG) to explore possible facility architectures to meet the primary PFI science goal of imaging planet formation in situ in nearby starforming regions. The goals of being sensitive to dust emission on solar system scales and resolving the Hill-sphere around forming giant planets can best be accomplished through sub-milliarcsecond imaging in the thermal infrared. Exploiting the 8-13 micron atmospheric window, a ground-based long-baseline interferometer with approximately 20 apertures including 10km baselines will have the necessary resolution to image structure down 0.1 milliarcseconds (0.014 AU) for T Tauri disks in Taurus. Even with large telescopes, this array will not have the sensitivity to directly track fringes in the mid-infrared for our prime targets and a fringe tracking system will be necessary in the near-infrared. While a heterodyne architecture using modern mid-IR laser comb technology remains a competitive option (especially for the intriguing 24 and 40μm atmospheric windows), the prioritization of 3-5μm observations of CO/H2O vibrotational levels by the PFI-Science Working Group (SWG) pushes the TWG to require vacuum pipe beam transport with potentially cooled optics. We present here a preliminary study of simulated L- and N-band PFI observations of a realistic 4-planet disk simulation, finding 21x2.5m PFI can easily detect the accreting protoplanets in both L and N-band but can see non-accreting planets only in L band. We also find that even an ambitious PFI will lack sufficient surface brightness sensitivity to image details of the fainter emission from dust structures beyond 5 AU, unless directly illuminated or heated by local energy sources. That said, the utility of PFI at N-band is highly dependent on the stage of planet formation in the disk and we require additional systematic studies in conjunction with the PFI-SWG to better understand the science capabilities

  4. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  5. Gemini 10 prime crew during post flight press conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    At podium during Gemini 10 press conference are (l-r) Dr. Robert C. Seamans, Astronauts John Young and Michael Collins and Dr. Robert R. Gilruth (39895); Wide angle view of the Manned Spacecraft Center (MSC) News Center during the Gemini 10 prime crew post flight press conference (38786); Astronaut Young draws diagram on chalk board of tethered extravehicular activity accomplished during Gemini 10 flight (39897).

  6. On the Composition of Young, Directly Imaged Giant Planets

    NASA Technical Reports Server (NTRS)

    Moses, J. I.; Marley, M. S.; Zahnle, K.; Line, M. R.; Fortney, J. J.; Barman, T. S.; Visscher, C.; Lewis, N. K.; Wolff, M. J.

    2016-01-01

    The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the typically large orbital distances. Disequilibrium chemical processes such as these can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemical processes affect the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and c and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than; and H2O mixing ratios a factor of a few less than chemical equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a particularly major constituent when stratospheric temperatures are low and recycling of water following H2O photolysis becomes stifled. Young Jupiters with effective temperatures less than 700 degrees Kelvin are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.

  7. Study of spin-scan imaging for outer planets missions. [imaging techniques for Jupiter orbiter missions

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.

    1974-01-01

    The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission.

  8. GEMINI-8 - TRAINING - WATER EGRESS TRAINING - GULF

    NASA Image and Video Library

    1966-01-15

    S66-17288 (15 Jan. 1966) --- Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini-8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise. Photo credit: NASA

  9. Gemini 9 configured extravehicular spacesuit assembly

    NASA Image and Video Library

    1966-05-01

    S66-31019 (May 1966) --- Test subject Fred Spross, Crew Systems Division, wears the Gemini-9 configured extravehicular spacesuit assembly. The legs are covered with Chromel R, which is a cloth woven from stainless steel fibers, used to protect the astronaut and suit from the hot exhaust thrust of the Astronaut Maneuvering Unit (AMU). Astronaut Eugene A. Cernan will wear this spacesuit during his Gemini-9A extravehicular activity (EVA). Photo credit: NASA

  10. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations

    PubMed Central

    Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.

    2013-01-01

    Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191

  11. Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby

    2018-01-01

    We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.

  12. Splashdown - Gemini-Titan (GT-12) Spacecraft - Mission Close - Atlantic

    NASA Image and Video Library

    1966-11-15

    S66-59986 (15 Nov. 1966) --- The Gemini spaceflight program concludes as the Gemini-12 spacecraft, with astronaut James A. Lovell Jr., command pilot, and Edwin E. Aldrin Jr., pilot, aboard, nears touchdown in the Atlantic Ocean 2.5 nautical miles from the prime recovery ship, USS Wasp. Gemini-12 splashed down at 2:21 p.m. (EST), Nov. 11, 1966, to conclude the four-day mission in space. Photo credit: NASA

  13. Gemini analogs of vitamin D.

    PubMed

    Pazos, Gonzalo; Rivadulla, Marcos L; Pérez-García, Xenxo; Gandara, Zoila; Pérez, Manuel

    2014-01-01

    The Gemini analogs are the last significant contribution to the family of vitamin D derivatives in medicine, for the treatment of cancer. The first Gemini analog was characterized by two symmetric side chains at C-20. Following numerous modifications, the most active analog bears a C-23-triple bond, C-26, 27- hexafluoro substituents on one side chain and a terminal trideuteromethylhydroxy group on the other side chain. This progression was possible due to improvements in the synthetic methods for the preparation of these derivatives, which allowed for increasing molecular complexity and complete diastereoselective control at C-20 and the substituted sidechains.

  14. Dicationic Alkylammonium Bromide Gemini Surfactants. Membrane Perturbation and Skin Irritation

    PubMed Central

    Almeida, João A. S.; Faneca, Henrique; Carvalho, Rui A.; Marques, Eduardo F.; Pais, Alberto A. C. C.

    2011-01-01

    Dicationic alkylammonium bromide gemini surfactants represent a class of amphiphiles potentially effective as skin permeation enhancers. However, only a limited number of studies has been dedicated to the evaluation of the respective cytotoxicity, and none directed to skin irritation endpoints. Supported on a cell viability study, the cytotoxicity of gemini surfactants of variable tail and spacer length was assessed. For this purpose, keratinocyte cells from human skin (NCTC 2544 cell line), frequently used as a model for skin irritation, were employed. The impact of the different gemini surfactants on the permeability and morphology of model vesicles was additionally investigated by measuring the leakage of calcein fluorescent dye and analyzing the NMR spectra of 31P, respectively. Detail on the interaction of gemini molecules with model membranes was also provided by a systematic differential scanning calorimetry (DSC) and molecular dynamics (MD) simulation. An irreversible impact on the viability of the NCTC 2544 cell line was observed for gemini concentrations higher than 25 mM, while no cytotoxicity was found for any of the surfactants in a concentration range up to 10 mM. A higher cytotoxicity was also found for gemini surfactants presenting longer spacer and shorter tails. The same trend was obtained in the calorimetric and permeability studies, with the gemini of longest spacer promoting the highest degree of membrane destabilization. Additional structural and dynamical characterization of the various systems, obtained by 31P NMR and MD, provide some insight on the relationship between the architecture of gemini surfactants and the respective perturbation mechanism. PMID:22102870

  15. PRESS CONFERENCE - GEMINI-TITAN (GT)-10 - MSC

    NASA Image and Video Library

    1966-08-01

    S66-39897 (1 Aug. 1966) --- Astronaut John W. Young, Gemini-10 command pilot, uses a chalk drawing on a blackboard to illustrate how astronaut Michael Collins, Gemini-10 pilot, looked when he inspected the Agena Target Docking Vehicle during his extravehicular activity. Young was discussing the mission before a gathering of news media representatives in the Building 1 auditorium. Photo credit: NASA

  16. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  17. GEMINI-TITAN (GT)-12 - EXTRAVEHICULAR (EVA) - MICROMETEOROID PACKAGE - OUTER SPACE

    NASA Image and Video Library

    1966-11-11

    S66-63538 (11 Nov. 1966) --- Astronaut Edwin E. Aldrin Jr., pilot for the Gemini-12 spaceflight, removes micrometeoroid package for return to the spacecraft during extravehicular activity (EVA) on the first day of the four-day mission. Command pilot for the Gemini-12 mission, the last in the Gemini series, was astronaut James A. Lovell Jr. Photo credit: NASA

  18. GEMINI-TITAN (GT)-8 - INSIGNIA - COLOR DESIGN - MSC

    NASA Image and Video Library

    1966-03-01

    S66-23978 (March 1966) --- Color design for the emblem of the Gemini-8 spaceflight. Roman numeral indicates the eighth flight in the Gemini series. Prime crewmen for the mission are astronauts Neil A. Armstrong, command pilot; and David R. Scott, pilot. The NASA insignia design for Gemini flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA

  19. Gemini Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1962-09-21

    A researcher at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a small-scale model of the Gemini capsule in the 10- by 10-Foot Supersonic Wind Tunnel test section. Gemini was added to NASA’s manned space program after its predecessor, Mercury, and its antecedent, Apollo, were already established. Gemini was a transitional mission designed provide the astronauts with practice docking with other spacecraft and withstanding durations in space up to two weeks. The program was officially announced on December 7, 1961, but planning began in mid-1959. It was named Gemini after the zodiac twins because of the spacecraft’s two passenger capacity. The Gemini Program was the first program to start at the new Manned Spacecraft Center in Houston, now the Johnson Space Center. Unlike Mercury and Apollo, Lewis had very little involvement with the Gemini Program. This model was tested in the 10- by 10 tunnel for several weeks in September 1962. Lewis began managing the Agena second-stage rocket program shortly after this photograph was taken. Agenas were used to launch a variety of spacecraft and satellites in the 1960s. They were also used on several Gemini missions to provide targets for the astronauts to practice their rendezvous maneuvers. Gemini had two unmanned and ten manned flights in 1965 and 1966. These yielded the first spacewalks, long-duration space missions, first onboard computer, docking with a second spacecraft, and rendezvous maneuvers.

  20. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well

  1. Grand Tour outer planet missions definition phase. Part 1: Quantitative imaging of the outer planets and their satellites

    NASA Technical Reports Server (NTRS)

    Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.

    1972-01-01

    A recommended imaging system is outlined for use aboard the Outer Planet Grand Tour Explorer. The system features the high angular resolution capacity necessary to accommodate large encounter distances, and to satisfy the demand for a reasonable amount of time coverage. Specifications for all components within the system are provided in detail.

  2. Radiation dosimetry for the Gemini program

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.

    1972-01-01

    The principal source of radiation for low-earth-orbit, low inclination space flights is in the area of the South Atlantic magnetic anomaly. None of the Gemini dose measurements reported in the paper are of high enough intensity to be considered hazardous. There is a trend toward larger doses as missions are flown higher and longer. Extended orbital operations between 1400 and 4400 kilometers would encounter high interior radiation levels. Pronounced spacecraft geometry effects have been measured in manned spacecraft. Instrumentation for radiation measurements on Gemini spacecraft is described.

  3. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  4. Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance

    2010-02-01

    The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.

  5. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C

  6. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  7. Instrument Performance Monitoring at Gemini North

    NASA Astrophysics Data System (ADS)

    Emig, Kimberly; Pohlen, M.; Chene, A.

    2014-01-01

    An instrument performance monitoring (IPM) project at the Gemini North Observatory evaluates the delivered throughput and sensitivity of, among other instruments, the Near-Infrared Integral Field Spectrometer (NIFS), the Gemini Near-Infrared Spectrograph (GNIRS), and the Gemini Multi-Object Spectrograph (GMOS-N). Systematic observations of standard stars allow the quality of the instruments and mirror to be assessed periodically. An automated pipeline has been implemented to process and analyze data obtained with NIFS, GNIRS cross-dispersed (XD) and long slit (LS) modes, and GMOS (photometry and spectroscopy). We focus the discussion of this poster on NIFS and GNIRS. We present the spectroscopic throughput determined for ZJHK bands on NIFS, the XJHKLM band for GNIRS XD mode and the K band for GNIRS LS. Additionally, the sensitivity is available for the JHK bands in NIFS and GNIRS XD, and for the K band in GNIRS LS. We consider data taken as early as March 2011. Furthermore, the pipeline setup and the methods used to determine throughput and sensitivity are described.

  8. Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images

    DOE PAGES

    Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.; ...

    2017-01-11

    A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3-5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (more » $${d}_{9}\\lesssim 430$$ au). In this paper, we develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ~1 day intervals. We apply our methodology to a ~2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. Finally, we anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.« less

  9. GEMINI-TITAN (GT)-9 PREFLIGHT ACTIVITY - ASTRONAUT THOMAS P. STAFFORD - MISC. - KSC

    NASA Image and Video Library

    1969-01-21

    S66-32044 (17 May 1966) --- Astronauts Eugene A. Cernan (left), pilot, and Thomas P. Stafford, command pilot, discuss the postponed Gemini-9 mission just after egressing their spacecraft in the white room atop Pad 19. The Agena Target Vehicle failed to achieve orbit, causing a termination of the mission. The spaceflight (to be called Gemini-9A) has been rescheduled for May 31. A Gemini Augmented Target Docking Adapter will be used as the rendezvous and docking vehicle for the Gemini-9 spacecraft. Photo credit: NASA

  10. Gemini base facility operations environmental monitoring: key systems and tools for the remote operator

    NASA Astrophysics Data System (ADS)

    Cordova, Martin; Serio, Andrew; Meza, Francisco; Arriagada, Gustavo; Swett, Hector; Ball, Jesse; Collins, Paul; Masuda, Neal; Fuentes, Javier

    2016-07-01

    In 2014 Gemini Observatory started the base facility operations (BFO) project. The project's goal was to provide the ability to operate the two Gemini telescopes from their base facilities (respectively Hilo, HI at Gemini North, and La Serena, Chile at Gemini South). BFO was identified as a key project for Gemini's transition program, as it created an opportunity to reduce operational costs. In November 2015, the Gemini North telescope started operating from the base facility in Hilo, Hawaii. In order to provide the remote operator the tools to work from the base, many of the activities that were normally performed by the night staff at the summit were replaced with new systems and tools. This paper describes some of the key systems and tools implemented for environmental monitoring, and the design used in the implementation at the Gemini North telescope.

  11. Novel fluorinated gemini surfactants with γ-butyrolactone segments.

    PubMed

    Kawase, Tokuzo; Okada, Kazuyuki; Oida, Tatsuo

    2015-01-01

    In this work, novel γ-butyrolactone-type monomeric and dimeric (gemini) surfactants with a semifluoroalkyl group [Rf- (CH2)3-; Rf = C4F9, C6F13, C8F17] as the hydrophobic group were successfully synthesized. Dimethyl malonate was dimerized or connected using Br(CH2)sBr (s = 0, 1, 2, 3) to give tetraesters, and they were bis-allylated. Radical addition of fluoroalkyl using Rf-I and an initiator, i.e., 2,2'-azobisisobutyronitrile for C4F9 or di-t-butyl peroxide for C6F13 and C8F17, was perform at high temperature, with prolonged heating, to obtain bis(semifluoroalkyl)-dilactone diesters. These dilactone diesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford γ-butyrolactonetype gemini surfactants. Common 1 + 1 semifluoroalkyl lactone surfactants were synthesized using the same method. Their surfactant properties [critical micelle concentration (CMC), γCMC, pC20, ΓCMC, and AG] were investigated by measuring the surface tension of the γ-hydroxybutyrate form prepared in aqueous tetrabutylammonium hydroxide solution. As expected, the CMC values of the gemini surfactants were more than one order of magnitude smaller than those of the corresponding 1 + 1 surfactants. Other properties also showed the excellent ability of the gemini structure to reduce the surface tension. These surfactants were easily and quantitatively recovered by acidification. The monomeric surfactant was recovered in the γ-hydroxybutyric acid form, and the gemini surfactant as a mixture of γ-butyrolactone and γ-hydroxybutyric acid forms.

  12. MISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-6 ACTIVITY - MSC

    NASA Image and Video Library

    1965-12-12

    S65-62062 (12 Dec. 1965) --- Discussing the scrubbing of the planned National Aeronautics and Space Administration?s Gemini-6 spaceflight are (from left) William C. Schneider (standing), deputy director, Gemini Program Office of Manned Spaceflight, NASA Headquarters, Washington, D.C.; Eugene F. Kranz (seated), white team flight director; Christopher C. Kraft Jr., red team flight director; and John D. Hodge, blue team flight director. The Gemini-6 mission has been rescheduled for Dec. 15, 1965. Photo credit: NASA or National Aeronautics and Space Administration

  13. GEMINI-TITAN (GT)-12 - TRAINING (PRIOR) - MISSION SIMULATOR

    NASA Image and Video Library

    1966-09-06

    S66-45579 (6 Sept. 1966) --- Astronaut James A. Lovell Jr. (right), prime crew command pilot of the Gemini-12 spaceflight, talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division. Lovell was preparing to undergo flight training in the Gemini Mission Simulator in Building 5, Mission Simulation and Training Facility. Photo credit: NASA

  14. GEMINI SPACECRAFT - ARTIST CONCEPT

    NASA Image and Video Library

    1964-01-01

    S64-22331 (1964) --- Artist concept illustrating the relative sizes of the one-man Mercury spacecraft, the two-man Gemini spacecraft, and the three-man Apollo spacecraft. Also shows line drawing of launch vehicles to show their relative size in relation to each other. Photo credit: NASA

  15. PRESS CONFERENCE - PUBLIC AFFAIRS OFFICE (PAO) - GEMINI-TITAN (GT) IX-A

    NASA Image and Video Library

    1966-06-17

    S66-39446 (17 June 1966) --- Movie film of the Gemini-9A and Augmented Target Docking Adapter rendezvous was shown at the Gemini-9A press conference in the MSC auditorium. Astronauts Thomas P. Stafford (left) and Eugene A. Cernan discussed the Gemini-9A/ATDA rendezvous mission during the film. Pictured on the screen, shows a close-up of the ATDA, described by the astronauts as an "angry alligator." Photo credit: NASA

  16. Gemini 9 spacecraft during EVA as seen Astronaut Eugene Cernan

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Eugene A. Cernan took this view of the Gemini 9 spacecraft and his umbilical cord (right) over California, Arizona, and Sonora, Mexico, during his extravehicular activity on the Gemini 9 mission. Taken during the 32nd revolution of the flight.

  17. GEMINI-TITAN (GT)-V - PILOT - SUITING-UP - CAPE

    NASA Image and Video Library

    1965-08-19

    S65-46374 (21 Aug. 1965) --- Astronaut Charles Conrad Jr., Gemini-5 pilot, is pictured during suiting up operations on the morning of the flight of Gemini-5. With him is Dr. Eugene Tubbs, a member of the medical team at Cape Kennedy. The mission was originally set for Aug. 19, 1965, but was scrubbed and reset for Aug. 21. Command pilot for the flight is astronaut L. Gordon Cooper Jr.

  18. Polarimetric Imaging Of Protoplanetary Disks From The Optical To Sub-Mm

    NASA Astrophysics Data System (ADS)

    De Boer, Jos; Ménard, F.; Pinte, C.; van der Plas, G.; Snik, F.

    2017-10-01

    To learn how planets form from the smallest building blocks within protoplanetary disks, we first need to know how dust grains grow from micron to mm sizes. Polarimetry across the spectrum has proven to be sensitive to grain properties like dust size distribution and composition and thus can be used to characterize the scattering grains. However, polarization measured with radio interferometric arrays is rarely studied in concert with optical polarimetry. Our team has successfully calibrated the NIR polarimetric imaging mode of VLT/SPHERE, hence upgrading the instrument from a high-contrast imager to a robust tool for quantitative characterization. In this presentation, we will discuss which lessons can be learned by comparing polarimetry in the optical and sub-mm and explore for which science cases both techniques can complement each other. When we combine the polarimetric capabilities of the most advanced optical high-contrast imagers (e.g., Gemini GPI or VLT SPHERE) with that of ALMA we will be able to study the spatial distribution of an extensive range of different grains, which allows us to take an essential step towards a deeper understanding of planet formation.

  19. Astronaut Eugene Cernan sits in Gemini boilerplate during water egress

    NASA Image and Video Library

    1966-04-09

    S66-29559 (9 April 1966) --- Astronaut Eugene A. Cernan, prime crew pilot of the National Aeronautics and Space Administration?s Gemini-9 spaceflight, sits in Gemini Boiler-plate during water egress training activity in the Gulf of Mexico. Photo credit: NASA

  20. NESSI and `Alopeke: Two new dual-channel speckle imaging instruments

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.

    2018-01-01

    NESSI and `Alopeke are two new speckle imagers built at NASA's Ames Research Center for community use at the WIYN and Gemini telescopes, respectively. The two instruments are functionally similar and include the capability for wide-field imaging in additional to speckle interferometry. The diffraction-limited imaging available through speckle effectively eliminates distortions due to the presence of Earth's atmosphere by `freezing out' changes in the atmosphere by taking extremely short exposures and combining the resultant speckles in Fourier space. This technique enables angular resolutions equal to the theoretical best possible for a given telescope, effectively giving space-based resolution from the ground. Our instruments provide the highest spatial resolution available today on any single aperture telescope.A primary role of these instruments is exoplanet validation for the Kepler, K2, TESS, and many RV programs. Contrast ratios of 6 or more magnitudes are easily obtained. The instrument uses two emCCD cameras providing simultaneous dual-color observations help to characterize detected companions. High resolution imaging enables the identification of blended binaries that contaminate many exoplanet detections, leading to incorrectly measured radii. In this way small, rocky systems, such as Kepler-186b and the TRAPPIST-1 planet family, may be validated and thus the detected planets radii are correctly measured.

  1. Observsational Planet Formation

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  2. PVOL: The Planetary Virtual Observatory & Laboratory. An online database of the Outer Planets images.

    NASA Astrophysics Data System (ADS)

    Morgado, A.; Sánchez-Lavega, A.; Rojas, J. F.; Hueso, R.

    2005-08-01

    The collaboration between amateurs astronomers and the professional community has been fruitful on many areas of astronomy. The development of the Internet has allowed a better than ever capability of sharing information worldwide and access to other observers data. For many years now the International Jupiter Watch (IJW) Atmospheric discipline has coordinated observational efforts for long-term studies of the atmosphere of Jupiter. The International Outer Planets Watch (IOPW) has extended its labours to the four Outer Planets. Here we present the Planetary Virtual Observatory & Laboratory (PVOL), a website database where we integer IJW and IOPW images. At PVOL observers can submit their data and professionals can search for images under a wide variety of useful criteria such as date and time, filters used, observer, or central meridian longitude. PVOL is aimed to grow as an organized easy to use database of amateur images of the Outer Planets. The PVOL web address is located at http://www.pvol.ehu.es/ and coexists with the traditional IOPW site: http://www.ehu.es/iopw/ Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  3. GEMINI-TITAN (GT)-10 (RECOVERY)- ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42787 (21 July 1966) --- Twelve-year -old Billy Doyle of Virginia Beach, VA., shakes hands with astronaut Michael Collins, Gemini-10 pilot, aboard the recovery ship USS Guadalcanal. At right is John W. Young, command pilot of the Gemini-10 spaceflight. Billy represented 41 youngsters permitted aboard the Guadalcanal to witness the recovery with their Naval fathers or close relatives, marking the first time dependents have been permitted aboard a ship during a Gemini recovery operation. Photo credit: NASA

  4. GEMINI-4 - SPACE FOOD - MSC

    NASA Image and Video Library

    1965-05-01

    Food packages for use on the Gemini-Titan 4 (GT-4) flight. Packages include beef and gravy, peaches, strawberry cereal cubes and beef sandwiches. A water gun is used to reconstitute the dehydrated food. MSC, HOUSTON, TX CN

  5. NASA Remembers Gemini, Apollo Astronaut Dick Gordon

    NASA Image and Video Library

    2017-11-07

    Astronaut Dick Gordon, command module pilot on Apollo 12, the second lunar landing mission, died on Monday, November 6 at the age of 88. A native of Seattle, Washington and 1951 graduate of the University of Washington, Gordon became an astronaut in 1963 after a career as a naval aviator. He spent more than 316 hours in space on two missions. He was the pilot for the three-day Gemini 11 mission in 1966 and performed two spacewalks. At the time of the flight, Gemini 11 set the world altitude record of 850 miles. Gordon made a second flight in 1969 as command pilot on Apollo 12 with spacecraft commander, Pete Conrad and lunar module pilot, Alan Bean. Throughout the 31-hour lunar surface stay by Conrad and Bean, Gordon remained in orbit around the moon on the command module, "Yankee Clipper." In November 2005, NASA honored Gordon with an Ambassador of Exploration award. NASA presented these prestigious awards to the astronauts who took part in the nation's Mercury, Gemini and Apollo space programs from 1961 to 1972.

  6. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Singh, Garima; Uyama, Taichi; Kuzuhara, Masayuki; Akiyama, Eiji; Grady, Carol; Hayashi, Saeko; Knapp, Gillian; Kwon, Jung-mi; Oh, Daehyeon; Wisniewski, John; Sitko, Michael; Yang, Yi

    2017-02-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ˜ 0.″3 to r ˜ 1″ (34-114 au). The disk is oriented in a near east-west direction (PA ˜ 75°), is inclined by I ˜ 70°-75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ˜ 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.

  7. Subaru SCExAO First-Light Direct Imaging of a Young Debris Disk around HD 36546

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, TImothy D.; Kuhn, Jonasa; Serabyn, Eugene; hide

    2017-01-01

    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r approximately 0 3 to r approximately 0".3 to r approximately 1" (34-114 au). The disk is oriented in a near east west direction (PA approximately 75deg), is inclined by I approximately 70deg-75deg, and is strongly forward-scattering(g greater than 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t approximately 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (310 Myr) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r greater than 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet disk interactions.

  8. Personnel discussing Gemini 11 space flight in Mission Control

    NASA Image and Video Library

    1966-09-12

    S66-52157 (12 Sept. 1966) --- Discussing the Gemini-11 spaceflight in the Mission Control Center are: (left to right) Christopher C. Kraft Jr., (wearing glasses), Director of Flight Operations; Charles W. Mathews (holding phone), Manager, Gemini Program Office; Dr. Donald K. Slayton (center, checked coat), Director of Flight Crew Operations; astronaut William A. Anders, and astronaut John W. Young. Photo credit: NASA

  9. Catanionic mixtures forming gemini-like amphiphiles.

    PubMed

    Sakai, Hideki; Okabe, Yuji; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

    2011-01-01

    The properties of aqueous mixtures of cationic species with alkyl dicarboxylic acid compounds have been studied. The cationic compounds used in this study were tertiary amine-type N-methyl-N-(2,3-dioxypropyl)hexadecylamine (C16amine) and quaternary ammonium-type N,N-dimethyl-N-(2,3-dioxypropyl)hexadecylammonium chloride (C16Q). The alkyl dicarboxylic acid compounds used were HOOC(CH(2))(10)COOH (C12H) and its sodium salt (C12Na). Three aqueous mixtures were examined in this study: (System I) C16amine + C12H, (System II) C16Q + C12Na, and (System III) C16Q + C12H. The solution pH was set at 12 for System III. The combination of (1)H-NMR and mass spectroscopy data has suggested that a stoichiometric complex is formed in the aqueous solutions at a mole fraction of C12H (or C12Na) = 0.33. Here, the C12H (or C12Na) molecule added to the system bridges two cationic molecules, like a spacer of gemini surfactants. In fact, the static surface tensiometry has demonstrated that the stoichiometric complex behaves as gemini-like amphiphiles in aqueous solutions. Our current study offers a possible way for easily preparing gemini surfactant systems.

  10. LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed

    2015-12-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.

  11. Extreme coronagraphy with an adaptive hologram. Simulations of exo-planet imaging

    NASA Astrophysics Data System (ADS)

    Ricci, D.; Le Coroller, H.; Labeyrie, A.

    2009-08-01

    Aims: We present a solution to improve the performance of coronagraphs for the detection of exo-planets. Methods: We simulate numerically several kinds of coronagraphic systems, with the aim of evaluating the gain obtained with an adaptive hologram. Results: The detection limit in flux ratio between a star and a planet (F_s/F_p) observed with an apodized Lyot coronagraph characterized by wavefront bumpiness imperfections of λ/20 (resp. λ/100) turns out to be increased by a factor of 103.4 (resp. 105.1) when equipped with a hologram. Conclusions: This technique could provide direct imaging of an exo-Earth at a distance of 11 parsec with a 6.5 m space telescope such as the JWST with the optical quality of the HST.

  12. Gemini IV Mission Image - Baja California, Colorado river and Sonora Desert

    NASA Image and Video Library

    1965-06-05

    S65-34673 (3-7 June 1965) --- This photograph shows the north end of the Gulf of California at the mouth of the Colorado River as it was seen from the Gemini-4 spacecraft during orbital flight June 3-7, 1965. This picture was part of the Synoptic Terrain Photography experiments conducted during the flight to obtain high quality photographs of large land areas already mapped by aerial photography. In charge of these experiments was Dr. Paul D. Lowman Jr., NASA geologist from Goddard Space Flight Center, Greenbelt, Md. This picture was taken with a modified 70mm Hasselblad camera using Eastman color film, ASA 64 at a lens setting of 250th of a second at f/11.

  13. Gemini experiment S026

    NASA Technical Reports Server (NTRS)

    Medved, D. B.

    1971-01-01

    The results of the reduction and analysis of data obtained from the S026 experiment from Gemini 10 and 11 flights are presented. The electron and ion sensors were continuously operative throughout both missions from shroud removal (about 6 minutes after Agena liftoff to power-down conditions one week later). Data on ion and electron currents, electron temperature, and vehicle potential were obtained at a sample rate of 32 times per second on positive ions for each of two ion sensors and once every 1.067 seconds for the electron sensor. Only the data reduction of the Gemini plasma wake measurements comprising roughly twenty minutes of data for six maneuvers programed for wake measurements are considered. The intermediate depletion zone, between 1 and 10 vehicle radii downstream from the object, is emphasized. The smallest characteristic radius of interest is 1.34 feet and the largest is 5 feet. This implies a separation span extending from approximately 1.5 feet at the closest approach to at least 50 feet into the far field.

  14. Portrait of Distant Planets

    NASA Image and Video Library

    2010-04-14

    This image taken with the Palomar Observatory Hale Telescope, shows the light from three planets orbiting a star 120 light-years away. The planets star, called HR8799, is located at the spot marked with an X.

  15. LIFTOFF - GEMINI-TITAN (GT)-9A - ATLAS/AGENA - CAPE

    NASA Image and Video Library

    1966-05-17

    S66-34610 (17 May 1966) --- An Agena Target Vehicle atop its Atlas Launch vehicle is launched from the Kennedy Space Center (KSC) Launch Complex 14 at 10:15 am., May 17, 1966. The Agena was intended as a rendezvous and docking vehicle for the Gemini-9 spacecraft. However, since the Agena failed to achieve orbit, the Gemini-9 mission was postponed. Photo credit: NASA

  16. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  17. GORDON, RICHARD F., ASTRONAUT - MISC. - GEMINI-TITAN (GT)-XI - RECOVERY - FROGMEN - ATLANTIC

    NASA Image and Video Library

    1966-09-15

    S66-50759 (15 Sept. 1966) --- Astronaut Richard F. Gordon Jr., pilot of the Gemini-11 spaceflight, is hoisted from the water by a recovery helicopter from the prime recovery ship USS Guam. Gemini-11 splashed down in the western Atlantic recovery area at 9 a.m. (EST), Sept. 15, 1966, to conclude the three-day mission in space. Astronaut Charles Conrad Jr. (out of frame) is the Gemini-11 command pilot. Photo credit: NASA

  18. GEMINI-TITAN (GT)-9 - EARTH-SKY - AUGMENTED TARGET DOCKING ADAPTER (ATDA) - MSC

    NASA Image and Video Library

    1966-06-06

    S66-37923 (3 June 1966) --- The Augmented Target Docking Adapter (ATDA) as seen from the Gemini-9 spacecraft during one of their three rendezvous in space. The ATDA and Gemini-9 spacecraft are 66.5 feet apart. Failure of the docking adapter protective cover to fully separate on the ATDA prevented the docking of the two spacecraft. The ATDA was described by the Gemini-9 crew as an "angry alligator." Photo credit: NASA

  19. Portraits of distant worlds: Characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Knutson, Heather Ann

    2009-06-01

    This thesis presents observational studies of the atmospheres of extrasolar planets, including the first longitudinal temperature profile of an extrasolar planet and the first detection of a temperature inversion in the atmosphere of an extrasolar planet. Our observations target four eclipsing gas-giant planets known as "hot Jupiters"; as a result of their short orbital periods we expect these planets to be tidally locked, with day-night circulation patterns and atmospheric chemistries that differ significantly from those of Jupiter. The first two chapters of this thesis describe infrared observations of the secondary eclipses of HD 209458b and TrES-4 with the Spitzer Space Telescope . By measuring the decrease in flux as the planet passes behind its parent star, we can characterize the infrared emission spectra of these planets and from that learn something about their dayside pressure-temperature profiles. Our observations reveal that these two planets have spectra with water bands in emission, requiring the presence of an atmospheric temperature inversion between 0.1 - 0.01 bars. The third chapter describes a ground-based search for thermal emission from TrES-1 using L -band grism spectroscopy with the NIRI instrument on Gemini North. Unlike Spitzer photometry, which is limited to broad bandpasses at these wavelengths, grism spectroscopy offers the opportunity to resolve specific features in the planetary emission spectrum. We find that our precision is limited by our ability to correct for time-varying slit losses from pointing drift and seeing changes, and place an upper limit on the depth of the planet's secondary eclipse in this band. The fourth and fifth chapters describe observations of the infrared phase variations of the hot Jupiter HD 189733b in the 8 and 24 mm Spitzer bands. By monitoring the changes in the brightness of this planet as it rotates around its parent star we can determine how much energy is circulated from the perpetually-illuminated day

  20. A novel type of highly effective nonionic gemini alkyl O-glucoside surfactants: a versatile strategy of design.

    PubMed

    Liu, Songbai; Sang, Ruocheng; Hong, Shan; Cai, Yujing; Wang, Hua

    2013-07-09

    A novel type of highly effective gemini alkyl glucosides has been rationally designed and synthesized. The gemini surfactants have been readily prepared by glycosylation of the gemini alkyl chains that are synthesized with regioselective ring-opening of ethylene glycol epoxides by the alkyl alcohols. The new gemini alkyl glucosides exhibit significantly better surface activity than the known results. Then rheological, DLS, and TEM studies have revealed the intriguing self-assembly behavior of the novel gemini surfactants. This study has proved the effectiveness of the design of gemini alkyl glucosides which is modular, extendable, and synthetically simple. The new gemini surfactants have great potential as nano carriers in drug and gene delivery.

  1. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  2. Gemini 7 prime crew during suiting up procedures at Launch Complex 16

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr. (left), Gemini 7 prime crew pilot, talks with NASA space suit technician Clyde Teague during suiting up procedures at Launch Complex 16, Kennedy Space Center. Lovell wears the new lightweight space suit planned for use during the Gemini 7 mission (61756); Astronaut Frank Borman, comand pilot of the Gemini 7 space flight, undergoes suiting up operations in Launch Complex 16 during prelaunch countdown. Medical biosensors are attached to his scalp (61757).

  3. Personnel - Gemini-Titan (GT)-10 - Mission Control Center (MCC) - MSC

    NASA Image and Video Library

    1966-07-18

    S66-43377 (18 July 1966) --- Standing at the flight director's console, viewing the Gemini-10 flight display in the Mission Control Center, are (left to right) William C. Schneider, Mission Director; Glynn Lunney, Prime Flight Director; Christopher C. Kraft Jr., MSC Director of Flight Operations; and Charles W. Mathews, Manager, Gemini Program Office. Photo credit: NASA

  4. Gemini Capsule and Rendezvous Docking Simulator

    NASA Image and Video Library

    1962-12-19

    Practicing with a full-scale model of the Gemini Capsule in Langley's Rendezvous Docking Simulator. -- Caption and photograph published in Winds of Change, 75th Anniversary NASA publication, (page 89), by James Schultz.

  5. Confirmation of 5 SN in the Kepler/K2 C16 Field with Gemini

    NASA Astrophysics Data System (ADS)

    Margheim, S.; Tucker, B. E.; Garnavich, P. M.; Rest, A.; Narayan, G.; Smith, K. W.; Smartt, S.; Kasen, D.; Shaya, E.; Mushotzky, R.; Olling, R.; Villar, A.; Forster, F.; Zenteno, A.; James, D.; Smith, R. Chris

    2018-01-01

    We report new spectroscopic classifications by KEGS of supernova discovered by Pan-STARRS1 during a targeted search of the Kepler/K2 Campaign 16 field using the Gemini Multi-Object Spectrograph (GMOS) on both the Gemini North Observatory on Mauna Kea, and the Gemini South Observatory on Cerro Pachon.

  6. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  7. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.

    PubMed

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang

    2016-09-01

    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  8. The Gemini Science User Support Department: A community-centered approach to user support

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  9. Novel gemini cationic lipids with carbamate groups for gene delivery

    PubMed Central

    Zhao, Yi-Nan; Qureshi, Farooq; Zhang, Shu-Biao; Cui, Shao-Hui; Wang, Bing; Chen, Hui-Ying; Lv, Hong-Tao; Zhang, Shu-Fen; Huang, Leaf

    2014-01-01

    To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study. PMID:25045521

  10. Synthesis and aggregation properties of dissymmetric phytanyl-gemini surfactants for use as improved DNA transfection vectors.

    PubMed

    Wang, Haitang; Wettig, Shawn D

    2011-01-14

    Improvements in transfection efficiency are required in order to make the goal of cellular gene delivery by non-viral vectors realizable. Novel derivatives of gemini surfactants having dissymmetric tail groups have been designed specifically as a means to improve DNA transfection; the micelle and interfacial properties are reported herein. The effect of these substitutions on the aggregation properties of the gemini surfactants is discussed in the context of results for the m-3-m gemini series, previously reported in the literature. Phytanyl substitution results in lower cmc and higher micelle ionization. In addition, the phytanyl substituted gemini surfactants form vesicles at room temperature. Preliminary in vitro transfection assays showed the phytanyl substituted gemini surfactants to be more efficient transfection vectors as compared to symmetric gemini surfactants.

  11. Astronaut Virgil Grissom shown through window of open hatch on Gemini craft

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Virgil I. Grissom, the command pilot of the Gemini-Titan 3 three orbit mission, is shown through the window of the open hatch on Gemini spacecraft in the white room on the mornining of the launch.

  12. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NASA Technical Reports Server (NTRS)

    Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; hide

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.

  13. Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Cieza, Lucas A.; Mawet, Dimitri; Yang, Bin; Canovas, Hector; de Boer, Jozua; Casassus, Simon; Ménard, François; Schreiber, Matthias R.; Liu, Michael C.; Biller, Beth A.; Nielsen, Eric L.; Hayward, Thomas L.

    2015-09-01

    We present a new algorithm designed to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.One of our innovations is that we insert simulated point sources into the science images, which we then try to recover with maximum S/N. This improves the S/N of real point sources elsewhere in the field. The algorithm, based on the locally optimized combination of images (LOCI) method, is called Matched LOCI or MLOCI. We show with Gemini Planet Imager (GPI) data on HD 135344 B and Near-Infrared Coronagraphic Imager (NICI) data on several stars that the new algorithm can improve the S/N of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. On the other hand, while non-blind applications may yield linear combinations of science images that seem to increase the S/N of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to redetect point sources found in previous epochs. These findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g., LOCI and principal component analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  14. High-Contrast Imaging of Epsilon Eridani with Ground-Based Instruments

    NASA Technical Reports Server (NTRS)

    Mizuki, T.; Yamada, T.; Carson, J. C.; Kuzuhara, M.; Nakagawa, T.; Nishikawa, J.; Sitko, M. L.; Kudo, T.; Kusakabe, N.; Hashimoto, J.; hide

    2016-01-01

    Epsilon Eridani is one of the nearest solar-type stars. Its proximity and relatively young age allow high-contrast imaging observations to achieve sensitivities to planets at narrow separations down to an inner radius of approximately 5 AU. Previous observational studies of the system report a dust disk with asymmetric morphology as well as a giant planet with large orbital eccentricity, which may require another massive companion to induce the peculiar morphology and to enhance the large orbital eccentricity. In this paper, we report results from deep high-contrast imaging observations to detect the previously reported planet and search for other unseen less massive companions with Subaru/HiCIAO, Gemini-South/NICI, and VLT/NACO. No positive detection was made, but high-contrast measurements with the CH4S narrow-band filter of HiCIAO achieved sensitivities at 14.7 mag differential magnitude level, at an angular separation of 1.0''. In terms of planetary mass, as determined by cooling evolutionary models, the highest sensitivities were achieved by the Lp broad-band filter of NACO, resulting in sensitivities corresponding to 1.8, 2.8, and 4.5 M(sub jup) at the projected separation of 3 AU, if 200, 400, and 800 Myr is assumed for the age of the system, respectively. We also discuss origins of the dust disk from the detection sensitivity in the planetary mass and find that a less massive eccentric planet is preferred for disk stirring, which is consistent with the orbital parameters of epsilon Eri b claimed from the previous long-term radial velocity monitoring.

  15. Gemini 3 prime crew egress throught command pilot's hatch during training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Both members of the Gemini-Titan 3 prime crew egress through the left, or command pilot's hatch, into the Gulf of Mexico during specialized training in egress from the Gemini spacecraft. Astronaut Virgil I. Grissom, the command pilot, has already climbed into a raft, as Astronaut John W. Young, the pilot, egresses from the spacecraft.

  16. Astronaut Gene Cernan poses in front of Gemini Mission Simulator

    NASA Image and Video Library

    1966-08-09

    S66-32698 (17 June 1966) --- Astronaut Eugene A. Cernan discusses his Gemini-9A extravehicular activity before a gathering of news media representatives in the MSC auditorium. In the background is an Astronaut Maneuvering Unit (AMU) mock-up mounted in a mock-up of a Gemini spacecraft adapter equipment section. Astronauts Cernan and Thomas P. Stafford completed their three-day mission in space on June 6, 1966. Photo credit: NASA

  17. The Software Distribution for Gemini Observatory's Science Operations Group

    NASA Astrophysics Data System (ADS)

    Hoenig, M. D.; Clarke, M.; Pohlen, M.; Hirst, P.

    2014-05-01

    Gemini Observatory consists of two telescopes in different hemispheres. It also operates mostly on a queue observing model, meaning observations are performed by staff working shifts as opposed to PIs. For these two reasons alone, maintaining and distributing a diverse software suite is not a trivial matter. We present a way to make the appropriate tools available to staff at Gemini North and South, whether they are working on the summit or from our base facility offices in Hilo, Hawai'i and La Serena, Chile.

  18. OCTOCAM: A Workhorse Instrument for the Gemini Telescopes During the Era of LSST

    NASA Astrophysics Data System (ADS)

    Roming, Peter; van der Horst, Alexander; OCTOCAM Team

    2018-01-01

    The decade of the 2020s are planned to be an era of large surveys and giant telescopes. A trademark of this era will be the large number of interesting objects observed daily by high-cadence surveys, such as the LSST. Because of the sheer numbers, only a very small fraction of these interesting objects will be observed with extremely large telescopes. The follow up workhorses during this era will be the 8-meter class telescopes and corresponding instruments that are prepared to pursue these interesting objects. One such workhorse instrument is OCTOCAM, a highly efficient instrument designed to probe the time domain window with simulatenous broad-wavelength coverage. OCTOCAM optimizes the use of Gemini for broadband imaging and spectroscopic single-target observations. The instrument is designed for high temporal resolution, broad spectral coverage, and moderate spectral resolution. OCTOCAM was selected as part of the Gemini instrumentation program in early 2017. Here we provide a description of the science cases to be addressed, overall instrument design, and current status.

  19. GEMINI: a computationally-efficient search engine for large gene expression datasets.

    PubMed

    DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick

    2016-02-24

    Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query - a text-based string - is mismatched with the form of the target - a genomic profile. To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI, that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an [Formula: see text] expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number of records in practice on genomic data. In a database with 10(5) samples, GEMINI identifies the nearest neighbor in 0.05 sec compared to a brute force search time of 0.6 sec. GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other meta-data information.

  20. GEMINI-TITAN (GT)-10 - EARTH - SKY

    NASA Image and Video Library

    1966-07-01

    S66-46054 (18 July 1966) --- Venezuela, British Guyana, Surinam and Trinidad, as seen from the Gemini-10 spacecraft. On the left is the mouth of the Orinoco River in Venezuela. Mouth of Essequibo River in British Guyana is in right center. Photo credit: NASA

  1. GEMINI-TITAN (GT)-12 - EARTH SKY - NORTHERN SONORA, MEXICO - OUTER SPACE

    NASA Image and Video Library

    1966-11-13

    S66-62794 (13 Nov. 1966) --- Northern portion of Sonora, Mexico; southeastern Arizona and southwestern New Mexico, as seen from the Gemini-12 spacecraft during its 30th revolution of Earth. Includes the Tucson, Phoenix, Mogollon Rim, and Painted Desert areas. A 100-foot tether line connects the Agena Target Docking Vehicle with the Gemini-12 spacecraft. Photo credit: NASA.

  2. Gemini Simulator and Neil Armstrong

    NASA Image and Video Library

    1963-11-06

    Astronaut Neil Armstrong (left) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Armstrong was the first astronaut to participate (November 6, 1963). A.W. Vogeley described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism." Roy F. Brissenden, noted in his paper "Initial Operations with Langley's Rendezvous Docking Facility," "The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission." Francis B. Smith, noted in his paper "Simulators for Manned Space Research," "Some major areas of interest in these flights were fuel requirements, docking accuracies, the development of visual aids to assist alignment of the vehicles, and investigation of alternate control techniques with partial failure modes. However, the familiarization and confidence developed by the astronaut through flying and safely docking the

  3. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. Whilemore » HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.« less

  4. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doveton, John H.; Watney, W. Lynn

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  5. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  6. GEMINI-TITAN (GT)-12 - EARTH SKY - AGENA ON TETHER - OUTER SPACE

    NASA Image and Video Library

    1966-11-13

    S66-63517 (13 Nov. 1966) --- The Gulf of California area as seen from the Gemini-12 spacecraft during its 30th revolution of Earth. Baja California Sur is the peninsula on the left. At lower left is the mainland of Mexico. A 100-foot tether line connects the Agena Target Docking Vehicle with the Gemini-12 spacecraft. View is looking south. Photo credit: NASA

  7. Mexico, Arizona and New Mexico as seen from the Gemini 12 spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Northern portion of Sonora, Mexico; southeastern Arizona and southwestern New Mexico, as seen from the Gemini 12 spacecraft during its 30th revolution of the earth. Includes the Tucson, Phoenix, Mogollon Rim, and Painted Desert areas. A 100 ft. tether line connects the Agena Target Docking Vehicle with the Gemini 12 spacecraft.

  8. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  9. FROGMEN - GEMINI-TITAN (GT)-12 - ATLANTIC

    NASA Image and Video Library

    1966-11-15

    S66-59987 (15 Nov. 1966) --- A Navy frogman leaps from a recovery helicopter into the water to assist in the Gemini-12 recovery operations. Astronauts James A. Lovell Jr., command pilot, and Edwin E. Aldrin Jr., pilot, had just completed their four-day space mission. Photo credit: NASA

  10. Design and analysis of the Gemini chain system in dual clutch transmission of automobile

    NASA Astrophysics Data System (ADS)

    Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang

    2015-01-01

    Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.

  11. The Direct Imaging Search of Exoplanets from Ground and Space

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian

    2015-08-01

    Exoplanets search is one of the hottest topics in both modern astronomy and public domain. Until now over 1990 exoplanets have been confirmed mostly by the indirect radial velocity and transiting approaches, yielding several important physical information such as masses and radius. The study of the physics of planet formation and evolution will focus on giant planets through the direct imaging.However, the direct imaging of exoplanets remains challenging, due to the large flux ratio difference and the nearby angular distance. In recent years, the extreme adaptive optics (Ex-AO) coronagraphic instrumentation has been proposed and developed on 8-meter class telescopes, which is optimized for the high-contrast imaging observation from ground, for the giant exoplanets and other faint stellar companions. Gemini Planet Imager (GPI) has recently come to its first light, with a development period over 10 years. The contrast level has been pushed to 10-6. Due to the space limitation or this or other reasons, none professional adaptive optics is available for most of current 3~4 meter class telescopes, which will limit its observation power to some extent, especially in the research of high-contrast imaging of exoplanets.In this presentation, we will report the latest observation results by using our Extreme Adaptive Optics (Ex-AO) as a visiting instrument for high-contrast imaging on ESO’s 3.58-meter NTT telescope at LSO, and on 3.5-meter ARC telescope at Apache Point Observatory, respectively. It has demonstrated the Ex-AO can be used for the scientific research of exoplanets and brown dwarfs. With a update of the currect configuration with critical hardware, the dedicated instrument called as EDICT for imaging research of young giant exoplanets will be presented. Meanwhile, we have fully demonstrated in the lab a contrast on the order of 10-9 in a large detection area, which is a critical technique for future Earth-like exoplanets imaging space missions. And a space

  12. A Virtual Field Trip to the Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, R. Scott; Michaud, P. D.

    2010-01-01

    Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.

  13. HIGH-CADENCE, HIGH-CONTRAST IMAGING FOR EXOPLANET MAPPING: OBSERVATIONS OF THE HR 8799 PLANETS WITH VLT/SPHERE SATELLITE-SPOT-CORRECTED RELATIVE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apai, Dániel; Skemer, Andrew; Hanson, Jake R.

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysismore » approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.« less

  14. High-cadence, High-contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite-spot-corrected Relative Photometry

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Kasper, Markus; Skemer, Andrew; Hanson, Jake R.; Lagrange, Anne-Marie; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Vigan, Arthur

    2016-03-01

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (˜3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agrees to about 1%.

  15. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  16. Radiation measurements aboard the fourth Gemini flight.

    PubMed

    Janni, J F; Schneider, M F

    1967-01-01

    Two special tissue-equivalent ionization chambers and 5 highly sensitive passive dosimetry packages were flown aboard the recent Gemini 4 flight for the purpose of obtaining precise values of instantaneous dose rate, accumulated dose. and shielding effectiveness. This experiment marked the first time that well-defined tissue dose and radiation survey measurements have been carried out in manned spaceflight operations. Since all measurements were accomplished under normal spacecraft environmental conditions, the biological dose resulted primarily from trapped inner Van Allen Belt radiation encountered by the spacecraft in the South Atlantic Anomaly. The experiment determined the particle type, ionizing and penetrating power, and variation with time and position within the Gemini spacecraft. Measured dose rates ranged from 100 mrad/hr for passes penetrating deeply into the South Atlantic Anomaly to less than 0.1 mrad/hr from lower latitude cosmic radiation. The accumulated tissue dose measured by the active ionization chambers, shielded by 0.4 gm/cm2 for the 4-day mission, was 82 mrad. Since the 5 passive dosimetry packages were each located in different positions within the spacecraft, the total mission surface dose measured by these detectors varied from 73 to 27 mrad, depending upon location and shielding. The particles within the spacecraft were recorded in nuclear emulsion, which established that over 90% of the tissue dose was attributable to penetrating protons. This experiment indicates that the radiation environment under shielded conditions at Gemini altitudes was not hazardous.

  17. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Skemer, A. J.; Hinz, P. M.; Desidera, S.; Esposito, S.; Gratton, R.; Marzari, F.; Skrutskie, M. F.; Biller, B. A.; Defrère, D.; Bailey, V. P.; Leisenring, J. M.; Apai, D.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Claudi, R. U.; Close, L. M.; Crepp, J. R.; De Rosa, R. J.; Eisner, J. A.; Fortney, J. J.; Henning, T.; Hofmann, K.-H.; Kopytova, T. G.; Males, J. R.; Mesa, D.; Morzinski, K. M.; Oza, A.; Patience, J.; Pinna, E.; Rajan, A.; Schertl, D.; Schlieder, J. E.; Su, K. Y. L.; Vaz, A.; Ward-Duong, K.; Weigelt, G.; Woodward, C. E.

    2015-04-01

    Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 μm), including their system architectures. Aims: We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods: We use observations of HR 8799 and the Θ1 Ori C field obtained during the same run in October 2013. Results: We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 ± 0.012 mas/pix and -0.430 ± 0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1'' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT

  18. Requirements management for Gemini Observatory: a small organization with big development projects

    NASA Astrophysics Data System (ADS)

    Close, Madeline; Serio, Andrew; Cordova, Martin; Hardie, Kayla

    2016-08-01

    Gemini Observatory is an astronomical observatory operating two premier 8m-class telescopes, one in each hemisphere. As an operational facility, a majority of Gemini's resources are spent on operations however the observatory undertakes major development projects as well. Current projects include new facility science instruments, an operational paradigm shift to full remote operations, and new operations tools for planning, configuration and change control. Three years ago, Gemini determined that a specialized requirements management tool was needed. Over the next year, the Gemini Systems Engineering Group investigated several tools, selected one for a trial period and configured it for use. Configuration activities including definition of systems engineering processes, development of a requirements framework, and assignment of project roles to tool roles. Test projects were implemented in the tool. At the conclusion of the trial, the group determined that the Gemini could meet its requirements management needs without use of a specialized requirements management tool, and the group identified a number of lessons learned which are described in the last major section of this paper. These lessons learned include how to conduct an organizational needs analysis prior to pursuing a tool; caveats concerning tool criteria and the selection process; the prerequisites and sequence of activities necessary to achieve an optimum configuration of the tool; the need for adequate staff resources and staff training; and a special note regarding organizations in transition and archiving of requirements.

  19. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents.

    PubMed

    Xu, Feng; Hou, Hao; Gao, Zhinong

    2014-12-15

    The preparation of crystalline gold nanowires (NWs) by using gemini surfactants as directing agents through a three-step seed-mediated method is reported. Unlike the nanorods with relatively low aspect ratios (typically below 20) obtained by using cetyltrimethylammonium bromide as a directing agent, the NWs obtained in this investigation can reach up to 4.4 μm, and the largest aspect ratio is calculated to be 210. For this, each of seven different gemini surfactants are utilized as directing agents, and the length and/or aspect ratio of the NWs can be tuned by varying the hydrocarbon chain lengths of the gemini surfactants. Both single and twinned crystalline structures are elucidated by selected-area electron diffraction and high-resolution transmission electron microscopy studies. The use of gemini surfactants not only advances the synthesis of gold nanostructures, but improves the understanding of the growth mechanism for seed-mediated growth. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dietician prepares Gemini 7 crew preflight breakfast

    NASA Image and Video Library

    1965-12-04

    S65-56311 (2 Dec. 1965) --- Kennedy Space Center food specialists prepare an Earth-bound meal for Gemini-7 astronauts. Astronauts' diet is strictly controlled before and during spaceflights to avoid interfering with planned medical experiments. Photo credit: NASA

  1. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. View of the nose of the Gemini 9 spacecraft taken from hatch of spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Eugene A. Cernan, pilot of the Gemini 9-A space flight, took this picture of the nose of the Gemini 9 spacecraft while standing in hatch of spacecraft. Area of earth below is the Pacific Ocean.

  3. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  4. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  5. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  6. DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Lisse, Carey M.; Kuchner, Marc

    2015-07-01

    We describe the discovery of a bright, young Kuiper belt–like debris disk around HD 115600, a ∼1.4–1.5 M{sub ⊙}, ∼15 Myr old member of the Sco–Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the Gemini Planet Imager shows the ring has a (luminosity-scaled) semimajor axis of (∼22 AU) ∼ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral-scattering dust, is eccentric (e ∼ 0.1–0.2), and could be sculpted by analogs to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper beltmore » chemical constituents, where water ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e., SCExAO, GPI, SPHERE), HD 115600's debris ring and planetary system provide a key reference point for the early evolution of the solar system, the structure, and composition of the Kuiper belt and the interaction between debris disks and planets.« less

  7. TRAPPIST-1 Planet Animations

    NASA Image and Video Library

    2018-02-05

    This still from a video shows illustrations of the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. Each planet is shown in sequence, starting with the innermost TRAPPIST-1b and ending with the outermost TRAPPIST-1h. The video presents the planets' relative sizes as well as the relative scale of the central star as seen from each planet. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions our familiar constellations, including Orion and Taurus, are shown as they would appear from the location of TRAPPIST-1 (backdrop image courtesy California Academy of Sciences/Dan Tell). An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22098

  8. Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Jofré, E.; Martioli, E.; Flores, M.; Petrucci, R.; Jaque Arancibia, M.

    2017-07-01

    Aims: We aim to explore the possible chemical signature of planet formation in the binary system HAT-P-4 by studying the trends of abundance vs. condensation temperature Tc. The star HAT-P-4 hosts a planet detected by transits, while its stellar companion does not have any detected planet. We also study the lithium content, which might shed light on the problem of Li depletion in exoplanet host stars. Methods: We derived for the first time both stellar parameters and high-precision chemical abundances by applying a line-by-line full differential approach. The stellar parameters were determined by imposing ionization and excitation equilibrium of Fe lines, with an updated version of the FUNDPAR program, together with ATLAS9 model atmospheres and the MOOG code. We derived detailed abundances of different species with equivalent widths and spectral synthesis with the MOOG program. Results: The exoplanet host star HAT-P-4 is found to be 0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies. We rule out a possible peculiar composition for each star, such as is the case for λ Boötis and δ Scuti, and neither is this binary a blue straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Li abundance in HAT-P-4 is greater than that of its companion by 0.3 dex, which is contrary to the model that explains the Li depletion by the presence of planets. We propose a scenario where at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly as a result of the migration of the giant planet. This explains the higher metallicity, the higher Li content, and the negative Tc trend we

  9. Modern Gemini-Approach to Technology Development for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    White, Harold

    2010-01-01

    In NASA's plan to put men on the moon, there were three sequential programs: Mercury, Gemini, and Apollo. The Gemini program was used to develop and integrate the technologies that would be necessary for the Apollo program to successfully put men on the moon. We would like to present an analogous modern approach that leverages legacy ISS hardware designs, and integrates developing new technologies into a flexible architecture This new architecture is scalable, sustainable, and can be used to establish human exploration infrastructure beyond low earth orbit and into deep space.

  10. GEMINI-6 - EARTH-SKY - ETHIOPIA - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63162 (16 Dec. 1965) --- Central area of Ethiopia, south of Addis Ababa, showing Lakes Zwai, Langana, and Shala, as seen from the Gemini-6 spacecraft during its 14th revolution of Earth. Photo credit: NASA or National Aeronautics and Space Administration

  11. Gemini-Titan (GT)-4 Foods - Documentary Use

    NASA Image and Video Library

    1965-01-07

    S65-10971 (March 1965 ) --- Food packets for use on the Gemini-3 flight including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. Water is being inserted into the pouch of dehydrated food.

  12. Community Exoplanet Follow-up Program

    NASA Technical Reports Server (NTRS)

    Howell, Steve

    2017-01-01

    During the Kepler mission, our team provided the community with the highest resolution images available anywhere of exoplanet host stars. Using speckle interferometry on the 3.5-m WIYN, and 8-m Gemini telescopes, thousands of observations have been obtained reaching the diffraction limit of the telescope. From these public data available at the NASA Exoplanet Archive, numerous publications have resulted and many scientific results have been obtained for exoplanets including the fact that high-resolution imaging is critical to fully characterize the planet host stars and the planets themselves (e.g., planet radius and incident flux). Exoplanet host star observations have also occurred (and continue) for K2 mission candidates with archival data available as well. Observational programs for TESS candidates, WFIRST program stars, and Zodiacal light candidates are currently on-going. Availability to propose or obtain such observations are possible through 1) collaboration with our team, 2) successfully proposing to WIYN or GEMINI for telescope time, or 3) using publically available archival data. This poster will highlight the observational program, how time is allocated and how our queue observational program works, and new features and observational modes that are available now.

  13. Planetcam UPV/EHU - A lucky imaging camera for multi-spectral observations of the Giant Planets in 0.38-1.7 microns

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Mendikoa, I.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Rojas, J. F.; García-Melendo, E.

    2015-10-01

    PlanetCam UPV/EHU [1] is an astronomical instrument designed for high-resolution observations of Solar System planets. The main scientific themes are atmospheric dynamics and the vertical cloud structure of Jupiter and Saturn. The instrument uses a dichroic mirror to separate the light in two beams with spectral ranges from 380 nm to1 micron (visible channel) and from 1 to 1.7 microns (Short Wave InfraRed, SWIR channel) and two detectors working simultaneously with fast acquisition modes. High-resolution images are built using lucky imaging techniques [2]. Several hundred short exposed images are obtained and stored in fits files. Images are automatically reduced by a pipeline called PLAYLIST (written in IDL and requiring no interaction by the user)which selects the best frames and co-registers them using image correlation over several tie-points. The result is a high signal to noise ratio image that can be processed to show the faint structures in the data. PlanetCam is a visiting instrument mainly built for the 1.2 3 and 2.2m telescopes at Calar Alto Observatory in Spain but it has also been tested in the 1.5 m Telescope Carlos Sanchez in Tenerife and the 1.05 m Telescope at the Pic du Midi observatory.

  14. Discovery of a wide planetary-mass companion to the young M3 star GU PSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naud, Marie-Eve; Artigau, Étienne; Malo, Lison

    2014-05-20

    We present the discovery of a comoving planetary-mass companion ∼42'' (∼2000 AU) from a young M3 star, GU Psc, a likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i – z color (>3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5 ± 1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmospheremore » models indicates T {sub eff} = 1000-1100 K and log g = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 M {sub Jup} for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE 9.« less

  15. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Vishvakarma, Vijay K.; Kumari, Kamlesh; Patel, Rajan; Dixit, V. S.; Singh, Prashant; Mehrotra, Gopal K.; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-01

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation.

  16. GEMINI-TITAN (GT)-9A (SUITING-UP) - ASTRONAUT THOMAS P. STAFFORD - MISC. - CAPE

    NASA Image and Video Library

    1966-06-03

    S66-34060 (3 June 1966) --- Astronaut Thomas P. Stafford, Gemini-9A prime crew command pilot, adjusts a sleeve of his spacesuit during suiting up procedures at Launch Complex 16, Kennedy Space Center. The Gemini-9A liftoff was at 8:39 a.m. (EST), June 3, 1966. Photo credit: NASA

  17. SPOTS: The Search for Planets Orbiting Two Stars

    NASA Astrophysics Data System (ADS)

    Thalmann, Christian; Desidera, Silvano; Bergfors, Carolina; Boccaletti, Anthony; Bonavita, Mariangela; Carson, Joseph; Feldt, Markus; Goto, Miwa; Henning, Thomas; Janson, Markus; Klahr, Hubert; Marzari, Francesco; Mordasini, Christoph

    2013-07-01

    Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the frequency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.

  18. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  19. TRAPPIST-1 Planet Lineup - Updated Feb. 2018

    NASA Image and Video Library

    2018-02-05

    This artist's concept shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets' diameters, masses and distances from the host star, as of February 2018. This image represents an updated version of PIA21422, which was created in 2017. The planets' appearances were re-imagined based on a 2018 study using additional observations from NASA's Spitzer and Kepler space telescopes, in addition to previous data from Spitzer, the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope and other ground-based observatories. The system was named for the TRAPPIST telescope. The new analysis concludes that the seven planets of TRAPPIST-1 are all rocky, and some could contain significant amounts of water. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. The form that water would take on TRAPPIST-1 planets would depend on the amount of heat they receive from their star, which is a mere 9 percent as massive as our Sun. Planets closest to the star are more likely to host water in the form of atmospheric vapor, while those farther away may have water frozen on their surfaces as ice. TRAPPIST-1e is the rockiest planet of them all, but still is believed to have the potential to host some liquid water. In this illustration, the relative sizes of the planets and their host star, an ultracool dwarf, are all shown to scale. An annotated image is available at https://photojournal.jpl.nasa.gov/catalog/PIA22093

  20. Exploring Disks Around Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  1. Tenth Planet Discovered

    NASA Image and Video Library

    2005-08-03

    These time-lapse images of a newfound dwarf planet in our solar system, formerly known as 2003 UB313 or Xena, and now called Eris, were taken using the Samuel Oschin Telescope at the Palomar Observatory.

  2. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    NASA Astrophysics Data System (ADS)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  3. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    PubMed

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. GEMINI-TITAN (GT)-3 - RECOVERY (HELICOPTER) - ATLANTIC

    NASA Image and Video Library

    1965-03-23

    S65-19229 (23 March 1965) --- The Gemini-Titan 3 spacecraft is shown in the water after the March 23rd four-hour and 53-minute flight. Two helicopters from the recovery ship, the USS Intrepid, hover over the scene for the pickup of the astronauts.

  5. The Gemini NICI Planet-Finding Campaign: asymmetries in the HD 141569 disc

    NASA Astrophysics Data System (ADS)

    Biller, Beth A.; Liu, Michael C.; Rice, Ken; Wahhaj, Zahed; Nielsen, Eric; Hayward, Thomas; Kuchner, Marc J.; Close, Laird M.; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.

    2015-07-01

    We report here the highest resolution near-IR imaging to date of the HD 141569A disc taken as part of the NICI (near infrared coronagraphic imager) Science Campaign. We recover four main features in the NICI images of the HD 141569 disc discovered in previous Hubble Space Telescope (HST) imaging: (1) an inner ring/spiral feature. Once deprojected, this feature does not appear circular. (2) An outer ring which is considerably brighter on the western side compared to the eastern side, but looks fairly circular in the deprojected image. (3) An additional arc-like feature between the inner and outer ring only evident on the east side. In the deprojected image, this feature appears to complete the circle of the west side inner ring and (4) an evacuated cavity from 175 au inwards. Compared to the previous HST imaging with relatively large coronagraphic inner working angles (IWA), the NICI coronagraph allows imaging down to an IWA of 0.3 arcsec. Thus, the inner edge of the inner ring/spiral feature is well resolved and we do not find any additional disc structures within 175 au. We note some additional asymmetries in this system. Specifically, while the outer ring structure looks circular in this deprojection, the inner bright ring looks rather elliptical. This suggests that a single deprojection angle is not appropriate for this system and that there may be an offset in inclination between the two ring/spiral features. We find an offset of 4 ± 2 au between the inner ring and the star centre, potentially pointing to unseen inner companions.

  6. ASTRONAUT JAMES A. LOVELL, JR. - MEDICAL - GEMINI-TITAN (GT)-7 PRELAUNCH CHECKUP - TEMPERATURE CHECK - PILOT - CAPE

    NASA Image and Video Library

    1965-12-04

    S65-59934 (4 Dec. 1965) --- Gemini-7 pilot James A. Lovell Jr. has a temperature check with an oral temperature probe attached to his spacesuit during a final preflight preparations for the Gemini-7 space mission. The National Aeronautics and Space Administration has planned a 14-day mission for the Gemini-7. The temperature probe allows doctors to monitor astronauts' body temperature at any time during the mission. Photo credit: NASA

  7. Ultra-deep GEMINI Near-infrared Observations of the Bulge Globular Cluster NGC 6624.

    NASA Astrophysics Data System (ADS)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.

    2016-11-01

    We used ultra-deep J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with ESO-VISTA telescope (program ID 179.B-2002).

  8. Seeking Planets in the Dust Artist Concept

    NASA Image and Video Library

    2014-12-02

    A dusty planetary system left is compared to another system with little dust in this artist concept. Dust can make it difficult for telescopes to image planets because light from the dust can outshine that of the planets.

  9. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  10. Directly Imaged Giant Planets: What Do We Hope to Learn?

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2015-01-01

    As we move into an era when GPI and SPHERE are (hopefully) discovering and characterizing new young giant planets, it is worthwhile to step back and review our science goals for young giant planets. Of course for individual planets we ideally would hope to measure mass, radius, atmospheric composition, temperature, and cloud properties, but how do these characteristics fit into our broader understanding of planetary system origin and evolution theories? In my presentation I will review both the specifics of what we hope to learn from newly discovered young worlds as well as how these characteristics inform our broader understanding of giant planets and planetary systems. Finally I will consider the limitations realistic datasets will place on our ability to understand newly discovered planets, illustrating with data from any new such worlds that are available by the conference date.

  11. Gemini 6 crew during press conference

    NASA Image and Video Library

    1965-04-06

    S65-19406 (6 April 1965) --- Astronauts Thomas P. Stafford (left), pilot; and Walter M. Schirra Jr., command pilot, have been named as the prime crew for the Gemini-Titan 6 spaceflight. Schirra and Stafford served as the GT-3 backup crew. Their selection for the GT-6 flight was announced at an MSC news conference on April 6, 1965.

  12. GEMINI-TITAN-8 - TRAINING - WATER EGRESS

    NASA Image and Video Library

    1966-01-15

    S66-17253 (15 Jan. 1966) --- Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott (right), pilot of the Gemini-8 prime crew, are suited up for water egress training aboard the NASA Motor Vessel Retriever in the Gulf of Mexico. At left is Dr. Kenneth N. Beers, M.D., Flight Medicine Branch, Center Medical Office. Photo credit: NASA

  13. GEMINI-6 - EARTH-SKY - CANARY ISLANDS - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63150 (16 Dec. 1965) --- Eddies in stratocumulus clouds over the Canary Islands as seen from the Gemini-6 spacecraft during its 14th revolution of Earth. Photo credit: NASA or National Aeronautics and Space Administration

  14. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA.

    PubMed

    Wettig, Shawn D; Deubry, Rubena; Akbar, Javed; Kaur, Tranum; Wang, Haitang; Sheinin, Tatiana; Joseph, Jamie W; Slavcev, Roderick A

    2010-05-14

    Gemini surfactants have demonstrated significant potential for use in constructing non-viral transfection vectors for the delivery of genes into cells to induce protein expression. Previously, two asymmetric gemini surfactants containing pyrenyl groups in one of the alkyl tails of the surfactants were synthesized as fluorescence probes for use in mechanistic studies of the transfection process. Here we present the results of a thermodynamic investigation of the binding interaction(s) between the pyrenyl-modified surfactants and DNA. The thermodynamics of the interactions have been examined using isothermal titration calorimetry, light scattering, zeta potential, and circular dichroism measurements. Distinct differences are observed between the interaction of 12-s-12 vs. the pyrene modified py-s-12 surfactants with DNA; an intercalated binding is found for the py-s-12 surfactants that disrupts the typical interactions observed between DNA and gemini surfactants.

  15. Building Better Planet Populations for EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2018-01-01

    The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.

  16. Jovian Planet Finder optical system

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Clampin, Mark; Petro, Larry; Woodruff, Robert A.; Ford, Holland C.; Illingworth, Garth D.; Ftaclas, Christ

    2003-02-01

    The Jovian Planet Finder (JPF) is a proposed NASA MIDEX mission to place a highly optimized coronagraphic telescope on the International Space Station (ISS) to image Jupiter-like planets around nearby stars. The optical system is an off-axis, unobscured telescope with a 1.5 m primary mirror. A classical Lyot coronagraph with apodized occulting spots is used to reduce diffracted light from the central star. In order to provide the necessary contrast for detection of a planet, scattered light from mid-spatial-frequency errors is reduced by using super-smooth optics. Recent advances in polishing optics for extreme-ultraviolet lithography have shown that a factor of >30 reduction in midfrequency errors relative to those in the Hubble Space Telescope is possible (corresponding to a reduction in scattered light of nearly 1000x). The low level of scattered and diffracted light, together with a novel utilization of field rotation introduced by the alt-azimuth ISS telescope mounting, will provide a relatively low-cost facility for not only imaging extrasolar planets, but also circumstellar disks, host galaxies of quasars, and low-mass substellar companions such as brown dwarfs.

  17. Unique Spectroscopy and Imaging of Terrestrial Planets with JWST

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo Luis; JWST Mars Team

    2017-06-01

    In this talk, I will present the main capabilities of the James Webb Space Telescope (JWST) for performing observations of terrestrial planets, using Mars as a test case. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the East-West axis) and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.07 arcsec at 2 um). Spectroscopic observations will be achievable in the 0.7-5 um spectral region with NIRSpec at a maximum resolving power of 2700, and with 8000 in the 1-1.25 um range. Imaging will be attainable with NIRCam at 4.3 um and with two narrow filters near 2 um, while the nightside will be accessible with several filters in the 0.5 to 2 um. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars, and terrestrial planets in general. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-LTE CO2 emission at 4.3 um, studies of chemical transport via observations of the O2 nightglow at 1.27 um, high cadence mapping of the variability dust and water ice clouds, and sensitive searches for trace species and hydrated features on the planetary surface.

  18. Measurements of 100 'Critical' Minor Planets from NEAT Archive

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shishir

    2017-07-01

    Uncertainties associated with the orbits of minor planets can be reduced by analyzing archival imagery as attempted in the current investigation. Archival images from NEAT and NASA’s Skymorph database were analyzed using standard software to identify the minor planets listed in the critical list. Findings of each minor planet were submitted to Minor Planet Center (MPC) to offer better orbital solutions.

  19. GEMINI-7 - EARTH-SKY VIEW - LIMB - OUTER SPACE

    NASA Image and Video Library

    1965-12-07

    S65-65257 (4-18 Dec. 1965) --- Sunrise and Earth's limb, as photographed by astronauts Frank Borman and James A. Lovell Jr. during their Earth-orbital 14-day mission in the Gemini-7 (GT-7) spacecraft. Photo credit: NASA

  20. On the Shoulders of Titans: A History of Project Gemini

    NASA Technical Reports Server (NTRS)

    Hacker, B. C.

    1977-01-01

    Gemini was the intermediate manned space flight program between America's first steps into space with Mercury and the manned lunar expeditions of Apollo. Because of its position between these two other efforts, Gemini is probably less remembered. Still, it more than had its place in man's progress into this new frontier. Gemini accomplishments were manyfold. They included many firsts: first astronaut-controlled maneuvering in space; first rendezvous in space of one spacecraft with another; first docking of one spacecraft with a propulsive stage and use of that stage to transfer man to high altitude; first traverse of man into the earth's radiation belts; first extended manned flights of a week or more in duration; first extended stays of man outside his spacecraft; first controlled reentry and precision landing; and many more. These achievements were significant in ways one cannot truly evaluate even today, but two things stand out: (1) it was the time when America caught up and surpassed the Soviet Union in manned space flight, and (2) these demonstrations of capability were an absolute prerequisite to the phenomenal Apollo accomplishments then yet to come.

  1. Simulating Planet-Hunting in a Lab

    NASA Image and Video Library

    2007-04-11

    Three simulated planets -- one as bright as Jupiter, one half as bright as Jupiter and one as faint as Earth -- stand out plainly in this image created from a sequence of 480 images captured by the High Contrast Imaging Testbed at NASA JPL.

  2. GEMINI-TITAN (GT)-4 - EARTH-SKY - OUTER SPACE

    NASA Image and Video Library

    1965-06-03

    S65-34776 (3-7 June 1965) --- This photograph shows the Nile Delta, Egypt, the Suez Canal, Israel, Jordan, Syria, Saudi Arabia, and Iraq as seen from the Gemini-Titan 4 (GT-4) spacecraft during its 12th revolution of Earth.

  3. Indonesian Islands as seen from Gemini 11 spacecraft

    NASA Image and Video Library

    1966-09-14

    S66-54692 (14 Sept. 1966) --- Indonesian Islands (partial cloud cover): Sumatra, Java, Bali, Borneo, and Sumbawa, as photographed from the Gemini-11 spacecraft during its 26th revolution of Earth, at an altitude of 570 nautical miles. Photo credit: NASA

  4. Meeting the challenges of bringing a new base facility operation model to Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot

    2016-08-01

    The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].

  5. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  6. The Gemini-South MCAO operational model: insights on a new era of telescope operation

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Bec, Matthieu; Artigau, Etienne; d'Orgeville, Celine; Gratadour, Damien; Rigaut, Francois J.; Walls, Brian

    2008-07-01

    The Gemini Observatory is implementing a Multi-Conjugate Adaptive Optics (MCAO) system as a facility instrument for the Gemini South telescope (GeMS). The system will include 5 Laser Guide Stars, 3 Natural Guide Stars, and 3 deformable mirrors, optically conjugated at different altitudes, to achieve near-uniform atmospheric compensation over a one arc minute square field of view. This setup implies some level of operational complexity. In this paper we describe how GeMS will be integrated into the flow of Gemini operations, from the observing procedures necessary to execute the programs in the queue (telescope control software, observing tools, sequence executor) to the safety implementation needed such as spotters/ASCAM, space command and laser traffic control software.

  7. Direct imaging and spectroscopy of terrestrial planets with JWST and a starsahde

    NASA Astrophysics Data System (ADS)

    Soummer, R.; Valenti, J.; Brown, R. A.; Seager, S.; Tumlinson, J.; Cash, W.; Jordan, I.; Postman, M.; Mountain, M.; Glassman, T.; Pueyo, L.; Roberge, A.; NWP Team

    2010-10-01

    We present a study for using a starshade with the James Webb Space Telescope (JWST). This concept would enable imaging and spectroscopy of a planet similar to the Earth, the study of its habitability, and the search for signs of alien life. JWST was not specifically designed to observe with a starshade, but its instrumentation and its great sensitivity make it capable of achieving major results in the study of terrestrial-mass exoplanets. However, there are some challenges for the starshade designs mainly due to the very large wavelength sensitivity of the HgCdTe detectors. We discuss the combination of a starshade with internal filters in NIRCam and NIRSpec to optimize both science return and starshade performance. We discuss a possible filter upgrade to enable feasible observations of Earth-like planets and in particular spectroscopic characterization in the near infrared. The new filter would not affect NIRSpec's scientific performance nor its operations, but it would dramatically reduce the risk of adding a starshade to JWST in the future and enhance the performance of any starshade that is built.

  8. Gemini-Titan 3 spacecraft in water after flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The Gemini-Titan 3 spacecraft is shown in the water after the March 23rd four hour and 53 minute flight. Two helicopters from the recovery ship, the U.S.S. Intrepid, hover over the scene for the pickup of the astronauts.

  9. GEMINI-TITAN (GT)-11 - PREFLIGHT PREP - CHECKOUT - CAPE

    NASA Image and Video Library

    1966-07-21

    S66-47635 (21 July 1966) --- McDonnell Aircraft Corporation personnel bolt the Gemini-11 spacecraft to a support ring for bore sighting in the Pyrotechnic Installation Building, Merritt Island, during checkout and preflight preparations at the Kennedy Space Center. Photo credit: NASA

  10. Astronaut Ed White - Gemini-4 Extravehicular Activity (EVA)

    NASA Image and Video Library

    1965-01-01

    S65-30432 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.

  11. Astronaut Edward White - Gemini IV Extravehicular Activity (EVA)

    NASA Image and Video Library

    1965-01-01

    S65-30429 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.

  12. Ancient Planet in a Globular Cluster Core

    NASA Image and Video Library

    2010-03-31

    Release Date: July 10, 2003 A rich starry sky fills the view from an ancient gas-giant planet in the core of the globular star cluster M4, as imagined in this artist's concept. The 13-billion-year-old planet orbits a helium white-dwarf star and the millisecond pulsar B1620-26, seen at lower left. The globular cluster is deficient in heavier elements for making planets, so the existence of such a world implies that planet formation may have been quite efficient and common in the early universe. Object Names: B1620-26, M4 Image Type: Artwork Illustration Credit: NASA and G. Bacon (STScI) To learn more about this image go to: www.nasa.gov/centers/goddard/news/topstory/2003/0709hstss... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. Observations of Rosetta Target (21) Lutetia with Keck and Gemini Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Merline, W. J.; Drummond, J.; Carry, B.; Tamblyn, P. M.; Chapman, C. R.; Dumas, C.; Weaver, H. A.

    2009-12-01

    In support of the NASA/ESA Rosetta mission’s plans to observe asteroid (21) Lutetia during a 2010 July flyby, and in conjunction with a larger ground-based plus HST campaign to support this mission, we observed Lutetia from Keck and Gemini-North during several nights spanning 2008 Oct through 2009 Jan. Observations were made using adaptive optics in the near-IR, primarily at K-band (2.1 micron), and were timed to coincide with the asteroid's most recent opposition at a distance of about 1.4 AU. From these data, we determined Lutetia’s triaxial size and shape to be 132 x 101 x 76 km, with maximum expected uncertainties of 4 x 3 x 31 km. The spin pole is found to be at (RA, Dec) = (48, +9) deg or ecliptic (long, lat) = (49,-8) deg, with a formal uncertainty radius (not including systematics) of 3 deg. We have calibrated our technique of deriving dimensions of asteroids from AO images against Pluto and 4 satellites of Saturn with accurate diameters, and we expect that our systematics (included in the size uncertainties above) are no more than 3%. We also searched for satellites and our preliminary results indicate no detection of a satellite larger than about 1 km over a significant fraction of the Hill sphere (10-240 asteroid radii). Improved limits are expected from a more refined analysis. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of this dataset. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of these observations and for observing time granted at Gemini under NOAO time allocation. Plane-of-sky short and long axes of (21) Lutetia taken from Keck AO images on 2008 Dec 2.

  14. Young family together after the Gemini 3 mission

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini-Titan 3 Astronaut John W. Young is shown with his wife and children after his return to Cape Kennedy, March 25, from the recovery ship, U.S.S. Intrepid. Shown (left to right) are Young's daughter, Sandra; his son, John; and his wife Barbara.

  15. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    PubMed

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20more » are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.« less

  17. Moon Shadow, Planet Shadow

    NASA Image and Video Library

    2010-05-12

    Saturn moon Prometheus casts a narrow shadow on the rings near the much larger shadow cast by the planet in this image taken by NASA Cassini spacecraft about five months after Saturn August 2009 equinox.

  18. Technicians prepare to close hatches on Gemini 12 spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Technicians prepare to close the hatches of the Gemini 12 spacecraft in the White Room atop Pad 19 after insertion of Astronauts James A. Lovell Jr. (leading), command pilot, and Edwin E. Aldrin Jr., pilot.

  19. Technicians close hatches on Gemini 11 spacecraft during countdown

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Technicians in the White Room atop Pad 19 prepare to close hatches on the Gemini 11 spacecraft during prelaunch countdown. Inside the spacecraft are Astronauts Charles Conrad Jr., command pilot, and Richard F. Gordon Jr., pilot.

  20. Food packages for use on the Gemini 4 flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Food packages for use on the Gemini 4 flight. Packages include beef and gravy, peaches, strawberry cereal cubes and beef sandwiches. Water gun is used to reconstitute dehydrated food. Scissors are used to open the packages.

  1. GEMINI-TITAN (GT)-4 - EARTH-SKY - OUTER SPACE

    NASA Image and Video Library

    1965-06-01

    S65-34670 (3-7 June 1965) --- Richat crater in northwest Africa taken from the Gemini-4 spacecraft. Photograph was taken with a modified 70mm Hasselblad camera, using Eastman color film, ASA 64, at a lens setting of 250th of a second at f/11.

  2. GEMINI-TITAN (GT)-10 - EARTH - SKY - OUTER SPACE

    NASA Image and Video Library

    1966-07-01

    S66-45951 (18-21 July 1966) --- China, Fukien and Kwangtung provinces, Formosa Strait, Pescadores Island, Quemoy Island, as seen from the Gemini-10 spacecraft. Taken with a J.A. Maurer 70mm camera, using Eastman Kodak, Ektachrome, MS (S.O. 217) color film. Photo credit: NASA

  3. GEMINI-TITAN (GT)-11 - EARTH SKY - OUTER SPACE

    NASA Image and Video Library

    1966-09-14

    S66-54643 (14 Sept. 1966) --- Western half of Australia, including the coastline from Perth to Port Darwin, looking west, as seen from the Gemini-11 spacecraft at a record-high apogee of 740 nautical miles during its 26th revolution of Earth. Photo credit: NASA

  4. Gemini photographs of the world: A complete index

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1977-01-01

    The most authoritative catalogs of photographs of all Gemini missions are assembled. Included for all photographs are JSC (Johnson Space Center) identification number, percent cloud cover, geographical area in sight, and miscellaneous information. In addition, details are given on cameras, filters, films, and other technical details.

  5. Image Quality and Diagnostic Performance of a Digital PET Prototype in Patients with Oncologic Diseases: Initial Experience and Comparison with Analog PET.

    PubMed

    Nguyen, Nghi C; Vercher-Conejero, Jose L; Sattar, Abdus; Miller, Michael A; Maniawski, Piotr J; Jordan, David W; Muzic, Raymond F; Su, Kuan-Hao; O'Donnell, James K; Faulhaber, Peter F

    2015-09-01

    We report our initial clinical experience for image quality and diagnostic performance of a digital PET prototype scanner with time-of-flight (DigitalTF), compared with an analog PET scanner with time-of-flight (GeminiTF PET/CT). Twenty-one oncologic patients, mean age 58 y, first underwent clinical (18)F-FDG PET/CT on the GeminiTF. The scanner table was then withdrawn while the patient remained on the table, and the DigitalTF was inserted between the GeminiTF PET and CT scanner. The patients were scanned for a second time using the same PET field of view with CT from the GeminiTF for attenuation correction. Two interpreters reviewed the 2 sets of PET/CT images for overall image quality, lesion conspicuity, and sharpness. They counted the number of suggestive (18)F-FDG-avid lesions and provided the TNM staging for the 5 patients referred for initial staging. Standardized uptake values (SUVs) and SUV gradients as a measure of lesion sharpness were obtained. The DigitalTF showed better image quality than the GeminiTF. In a side-by-side comparison using a 5-point scale, lesion conspicuity (4.3 ± 0.6), lesion sharpness (4.3 ± 0.6), and diagnostic confidence (3.4 ± 0.7) were better with DigitalTF than with GeminiTF (P < 0.01). In 52 representative lesions, the lesion maximum SUV was 36% higher with DigitalTF than with GeminiTF, lesion-to-blood-pool SUV ratio was 59% higher, and SUV gradient was 51% higher, with good correlation between the 2 scanners. Lesions less than 1.5 cm showed a greater increase in SUV from GeminiTF to DigitalTF than those lesions 1.5 cm or greater. In 5 of 21 patients, DigitalTF showed an additional 8 suggestive lesions that were not seen using GeminiTF. In the 15 restaging patients, the true-negative rate was 100% and true-positive rate was 78% for both scanners. In the 5 patients for initial staging, DigitalTF led to upstaging in 2 patients and showed the same staging in the other 3 patients, compared with GeminiTF. DigitalTF provides better

  6. Survival of extrasolar giant planet moons in planet-planet scattering

    NASA Astrophysics Data System (ADS)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  7. China, India, and Nepal as seen from Gemini 11

    NASA Image and Video Library

    1966-09-14

    S66-54839 (14 Sept. 1966) --- China, India, and Nepal, looking east, as seen from the Gemini-11 spacecraft during its 37th revolution of Earth. The Great Himalaya Mountain Range is clearly visible. Photo credit: NASA

  8. Food packets for use on the Gemini 3 flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Food packets for use on the Gemini 3 flight including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. Water is being inserted into the pouch of dehydrated food.

  9. Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael

    2008-01-01

    Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.

  10. GPI Calibrations

    NASA Astrophysics Data System (ADS)

    Rantakyrö, Fredrik T.

    2017-09-01

    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  11. ASTRONAUT JAMES A. LOVELL, JR. - MEDICAL - PREFLIGHT (GEMINI-TITAN [GT]-7) - EYES EXAMINED - CAPE

    NASA Image and Video Library

    1965-12-02

    S65-66703 (18 Dec. 1965) --- Astronaut James A. Lovell Jr., pilot of the National Aeronautics and Space Administration's Gemini-7 spaceflight, undergoes an eye examination during a postflight medical checkup aboard the aircraft carrier USS Wasp. Gemini-7 splashed down in the western Atlantic recovery area at 9:05 a.m. (EST) Dec. 16, 1965, after a 14-day mission in space. Photo credit: NASA

  12. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Image and Video Library

    1966-02-01

    S66-19284 (1 Feb. 1966) --- Astronaut David R. Scott practicing for Gemini-8 extravehicular activity (EVA) in building 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the Hand-Held Maneuvering Unit which he will use during the EVA. Photo credit: NASA

  13. GEMINI-TITAN (GT)-11 - EARTH SKY - OUTER SPACE

    NASA Image and Video Library

    1966-09-14

    S66-54548 (12-15 Sept. 1966) --- This photograph, taken during one of the 44 orbits the Gemini-11 crew made around Earth, shows the Indian Ocean west of Australia looking northwest. The crew consisted of astronauts Charles Conrad Jr. and Richard F. Gordon Jr. Photo credit: NASA

  14. GEMINI-TITAN (GT)-9 TEST - TRAINING - GULF OF MEXICO

    NASA Image and Video Library

    1965-05-20

    S65-22656 (14 April 1965) --- The Gemini-Titan 4 prime crew, astronauts Edward H. White II (left), pilot, and James A. McDivitt, command pilot, pictured aboard the NASA Motor Vessel Retriever in the Gulf of Mexico.

  15. GEMINI-TITAN (GT)-9 COMMAND PILOT (FAMILIARIZATION) - ASTRONAUT THOMAS P. STAFFORD - TRAINING - MCDONNELL AIRCRAFT CORP. (MDAC), MO

    NASA Image and Video Library

    1966-02-08

    S66-23592 (8 Feb. 1966) --- Astronaut Thomas P. Stafford, command pilot of the Gemini-9 prime crew, undergoes familiarization training with the Gemini-9 spacecraft at the McDonnell plant in St. Louis. Photo credit: NASA

  16. Multiple spiral patterns in the transitional disk of HD 100546

    NASA Astrophysics Data System (ADS)

    Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.

    2013-12-01

    Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ

  17. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    PubMed

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  18. D-glucose derived novel gemini surfactants: synthesis and study of their surface properties, interaction with DNA, and cytotoxicity.

    PubMed

    Kumar, Vikash; Chatterjee, Amrita; Kumar, Nupur; Ganguly, Anasuya; Chakraborty, Indranil; Banerjee, Mainak

    2014-10-09

    Four new D-glucose derived m-s-m type gemini surfactants with variable spacer and tail length have been synthesized by a simple and efficient synthetic methodology utilizing the free C-3 hydroxy group of diisopropylidene glucose. The synthetic route to these gemini surfactants with a quaternary ammonium group as polar head group involves a sequence of simple reactions including alkylation, imine formation, quaternization of amine etc. The surface properties of the new geminis were evaluated by surface tension and conductivity measurements. These gemini surfactants showed low cytotoxicity by MTT assay on HeLa cell line. The DNA binding capabilities of these surfactants were determined by agarose gel electrophoresis, fluorescence titration, and DLS experiments. The preliminary studies by agarose gel electrophoresis indicated chain length dependent DNA binding abilities, further supported by ethidium bromide exclusion experiments. Two of the D-glucose derived gemini surfactants showed effective binding with pET-28a plasmid DNA (pDNA) at relatively low N/P ratio (i.e., cationic nitrogen/DNA phosphate molar ratio). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tumbling and spaceflight: the Gemini VIII experience.

    PubMed

    Mohler, S R; Nicogossian, A E; McCormack, P D; Mohler, S R

    1990-01-01

    A malfunctioning orbital flight attitude thruster during the flight of Gemini VIII led to acceleration forces on astronauts Neil Armstrong (commander) and David Scott (pilot) that created the potential for derogation of oculo-vestibular and eye-hand coordination effects. The spacecraft attained an axial tumbling rotation of 50 rpm and would have exceeded this had not the commander accurately diagnosed the problem and taken immediate corrective action. By the time counter-measure controls were applied, both astronauts were experiencing vertigo and the physiological effects of the tumbling acceleration. Data from the recorders reveal that one astronaut experienced -Gy of 0.92 G-units, and the other +Gy of 0.92 for approximately 46 s. Both received a -Gz of 0.89 G-units from the waist up with a +Gz of 0.05 from the waist down. A substantial increase of time and/or an increase in rpm would ultimately have produced incapacitation of both astronauts. NASA corrected the Gemini thruster problem by changing the ignition system wiring. Future space-craft undertaking long-term missions could be equipped with unambiguous thruster fault displays and could have computer-controlled automatic cutoffs to control excessive thruster burns.

  20. A Gemini snapshot survey for double degenerates

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Brown, Warren R.; Gianninas, A.; Curd, Brandon; Bell, Keaton J.; Allende Prieto, Carlos

    2017-11-01

    We present the results from a Gemini snapshot radial-velocity survey of 44 low-mass white-dwarf candidates selected from the Sloan Digital Sky Survey (SDSS) spectroscopy. To find sub-hour orbital period binary systems, our time-series spectroscopy had cadences of 2-8 min over a period of 20-30 min. Through follow-up observations at Gemini and the MMT, we identify four double-degenerate binary systems with periods ranging from 53 min to 7 h. The shortest period system, SDSS J123549.88+154319.3, was recently identified as a sub-hour period detached binary by Breedt and collaborators. Here, we refine the orbital and physical parameters of this system. High-speed and time-domain survey photometry observations do not reveal eclipses or other photometric effects in any of our targets. We compare the period distribution of these four systems with the orbital period distribution of known double white dwarfs; the median period decreases from 0.64 to 0.24 d for M = 0.3-0.5 M⊙ to M < 0.3 M⊙ white dwarfs. However, we do not find a statistically significant correlation between the orbital period and white-dwarf mass.

  1. Implementing an Education and Outreach Program for the Gemini Observatory in Chile.

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.

    2006-08-01

    Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.

  2. A Herschel-Detected Correlation between Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.

    2013-01-01

    The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.

  3. Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Artigau, Étienne; Delfosse, Xavier; Malo, Lison; Moutou, Claire; Doyon, René; Donati, Jean-Francois; Cumming, Andrew; Dumusque, Xavier; Hébrard, Élodie; Menou, Kristen

    2018-02-01

    The SPIRou near-infrared spectropolarimeter is destined to begin science operations at the Canada–France–Hawaii Telescope in mid-2018. One of the instrument’s primary science goals is to discover the closest exoplanets to the solar system by conducting a three- to five-year long radial velocity survey of nearby M dwarfs at an expected precision of ∼1 m s‑1, the SPIRou Legacy Survey-Planet Search (SLS-PS). In this study, we conduct a detailed Monte Carlo simulation of the SLS-PS using our current understanding of the occurrence rate of M dwarf planetary systems and physical models of stellar activity. From simultaneous modeling of planetary signals and activity, we predict the population of planets to be detected in the SLS-PS. With our fiducial survey strategy and expected instrument performance over a nominal survey length of ∼3 years, we expect SPIRou to detect {85.3}-12.4+29.3 planets including {20.0}-7.2+16.8 habitable-zone planets and {8.1}-3.2+7.6 Earth-like planets from a sample of 100 M1–M8.5 dwarfs out to 11 pc. By studying mid-to-late M dwarfs previously inaccessible to existing optical velocimeters, SPIRou will put meaningful constraints on the occurrence rate of planets around those stars including the value of {η }\\oplus at an expected level of precision of ≲ 45 % . We also predict that a subset of {46.7}-6.0+16.0 planets may be accessible with dedicated high-contrast imagers on the next generation of extremely large telescopes including {4.9}-2.0+4.7 potentially imagable Earth-like planets. Lastly, we compare the results of our fiducial survey strategy to other foreseeable survey versions to quantify which strategy is optimized to reach the SLS-PS science goals. The results of our simulations are made available to the community on GitHub (https://github.com/r-cloutier/SLSPS_Simulations).

  4. (GEMINI-TITAN [GT]-6 PREFLIGHT ACTIVITY) (PILOT INSIDE SPACECRAFT) - ASTRONAUT THOMAS P. STAFFORD - MISC. - CAPE

    NASA Image and Video Library

    1965-12-15

    S65-59961 (15 Dec. 1965) --- Astronaut Thomas P. Stafford, pilot, is pictured in the Gemini-6 spacecraft in the White Room atop Pad 19 prior to the closing of the hatches during the Gemini-6 prelaunch countdown. In the background (partially out of view) is astronaut Walter M. Schirra Jr., command pilot. Photo credit: NASA or National Aeronautics and Space Administration

  5. ASTRONAUT SCOTT, DAVID R. - INTERIOR - WATER EGRESS TRAINING (GEMINI-TITAN [GT]-8 PRIME CREW) - MSC

    NASA Image and Video Library

    1966-01-05

    S66-15743 (5 Jan. 1966) --- Astronaut David R. Scott, pilot of the Gemini-8 prime crew, undergoes water egress training in a special tank in building 260A at the Manned Spacecraft Center (MSC), Houston, Texas. An MSC swimmer assists in the training exercise. A boilerplate model of a Gemini spacecraft floats in the water beside Scott. Photo credit: NASA

  6. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  7. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-02

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.

  8. Characterizing K2 Planet Discoveries

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team

    2015-01-01

    We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  9. The Terrestrial Planet Finder coronagraph dynamics error budget

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart B.; Marchen, Luis; Green, Joseph J.; Lay, Oliver P.

    2005-01-01

    The Terrestrial Planet Finder Coronagraph (TPF-C) demands extreme wave front control and stability to achieve its goal of detecting earth-like planets around nearby stars. We describe the performance models and error budget used to evaluate image plane contrast and derive engineering requirements for this challenging optical system.

  10. The Near-Earth Encounter of 2005 YU55: Thermal Infrared Observations from Gemini North

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.; Granvik, Mikael

    2012-01-01

    As part of a multi-observatory campaign to observe 2005 YU55 during its November 2011 encounter with the Earth, thermal infrared photometry and spectroscopy (7.9- 14 and 18-22 micron) were conducted using the Michelle instrument at Gemini North. Reduction of the 8.8 flm photometry and the spectroscopy from UT Nov-IO as well as of all the Gemini data from UT Nov-9 is in progress. Results will be discussed.

  11. Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team

    2016-06-01

    We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.

  12. Florida, Bahama Islands, Cuba as seen from Gemini 12 spacecraft

    NASA Image and Video Library

    1966-11-13

    S66-63418 (13 Nov. 1966) --- Florida (south half), Bahamas Islands (Andros-Grand Bahamas-Bimini), and Cuba, looking south as seen from Gemini-12 spacecraft on its 15th revolution of Earth. Photo credit: NASA

  13. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    PubMed

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  14. Microlensing for extrasolar planets : improving the photometry

    NASA Astrophysics Data System (ADS)

    Bajek, David J.

    2013-08-01

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  15. Development of amino acid substituted gemini surfactant-based mucoadhesive gene delivery systems for potential use as noninvasive vaginal genetic vaccination.

    PubMed

    Singh, Jagbir; Michel, Deborah; Getson, Heather M; Chitanda, Jackson M; Verrall, Ronald E; Badea, Ildiko

    2015-02-01

    Recently, we synthesized amino acid- and peptide-substituted gemini surfactants, 'biolipids' that exhibited high transfection efficiency in vitro. In this study, we developed these plasmid DNA and gemini surfactant lipid particles for noninvasive administration in vaginal cavity. Novel formulations of these gene delivery systems were prepared with poloxamer 407 to induce in situ gelling of the formulation and diethylene glycol monoethyl ether to improve their penetration across mucosal tissue. Poloxamer at 16% w/v concentration in diethylene glycol monoethyl ether aqueous solution produced dispersions that gelled near body temperature and had a high yield value, preventing leakage of the formulation from the vaginal cavity. Intravaginal administration in rabbits showed that the glycyl-lysine-substituted gemini surfactant led to a higher gene expression compared with the parent unsubstituted gemini surfactant. This provides a proof-of-concept that amino acid substituted gemini surfactants can be used as noninvasive mucosal (vaginal) gene delivery systems to treat diseases associated with mucosal epithelia.

  16. A NICMOS direct imaging search for giant planets around the seven single white dwarfs in the Hyades

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    2003-07-01

    We propose to use the NIC1 camera on HST to search for massive giant planets around the known seven single white dwarfs in the nearby Hyades cluster at sub-arcsec separations. At an age of 625 Myr, the white dwarfs had protogenitor masses of about 3 solar masses, and massive gaseous giant planets should have formed in the massive circumstellar disks around these ex Herbig A0 stars, probably at orbital separations similar or slightly larger than that of Jupiter {5 AU} in our own solar system. Such planets would have survived the post-Main Sequence mass loss of the parent star, and would have migrated outward adiabatically by a factor 4.5, equal to the ratio of initial to final stellar mass {3Mo/0.66Mo}, due to conservation of orbital angular momentum during the mass loss {AGB and PN} phase. Thus the orbital separation NOW would be 4.5 x 5 AU = 22.5 AU, which at the distance of the Hyades {45 pc} corresponds to 0.50 arcsec. Simulations with TinyTim then show that giant planets at this separation with masses in the range 6-12 Jupiter masses and apparent J and H magnitudes in the range 20.5-23.3 mag {from Baraffe or Burrows models} can be spatially resolved around the Hyades white dwarfs. Their J and H brightnesses are known to be 15 +/- 0.5 mag, implying a median star-planet brightness ratio of 1000:1 {7.5 mag}. This combination of dynamic range and orbital separation is observable with NICMOS, by subtracting images taken at two roll angles. Therefore, the proposed near-IR diffraction-limited observations in the F110W and F160W filters promise to resolve giant planets around low-mass stars for the first time. If successful, the observations would also prove that giant planets do form around early-type stars more massive than the Sun.

  17. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  18. Direct imaging of extra-solar planets in star forming regions. Lessons learned from a false positive around IM Lupi

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Montagnier, G.; Riaud, P.; Surdej, J.; Ducourant, C.; Augereau, J.-C.; Röttinger, S.; Girard, J.; Krist, J.; Stapelfeldt, K.

    2012-08-01

    Context. Most exoplanet imagers consist of ground-based adaptive optics coronagraphic cameras which are currently limited in contrast, sensitivity and astrometric precision, but advantageously observe in the near-infrared window (1-5 μm). Because of these practical limitations, our current observational aim at detecting and characterizing planets puts heavy constraints on target selection, observing strategies, data reduction, and follow-up. Most surveys so far have thus targeted young systems (1-100 Myr) to catch the putative remnant thermal radiation of giant planets, which peaks in the near-infrared. They also favor systems in the solar neighborhood (d < 80 pc), which eases angular resolution requirements but also ensures a good knowledge of the distance and proper motion, which are critical to secure the planet status, and enable subsequent characterization. Aims: Because of their youth, it is very tempting to target the nearby star forming regions, which are typically twice as far as the bulk of objects usually combed for planets by direct imaging. Probing these interesting reservoirs sets additional constraints that we review in this paper by presenting the planet search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup, which is part of the Lupus star forming region (140-190 pc). Methods: We show and discuss why age determination, the choice of evolutionary model for both the central star and the planet, precise knowledge of the host star proper motion, relative or absolute (between different instruments) astrometric accuracy (including plate scale calibration), and patience are the key ingredients for exoplanet searches around more distant young stars. Results: Unfortunately, most of the time, precision and perseverance are not paying off: we discovered a candidate companion around IM Lup in 2008, which we report here to be an unbound background object. We nevertheless review in details the lessons learned from our endeavor, and

  19. Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Rameau, Julien; Rosa, Robert J. De

    Here, we present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10more » $${M}_{\\mathrm{Jup}}$$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated L P (3.76 μm) and new M S (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of –5.83 to –5.93 ($$\\mathrm{log}L/{L}_{\\odot }$$), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 $${M}_{\\oplus }$$.« less

  20. Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet

    DOE PAGES

    Rajan, Abhijith; Rameau, Julien; Rosa, Robert J. De; ...

    2017-06-16

    Here, we present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10more » $${M}_{\\mathrm{Jup}}$$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated L P (3.76 μm) and new M S (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of –5.83 to –5.93 ($$\\mathrm{log}L/{L}_{\\odot }$$), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 $${M}_{\\oplus }$$.« less

  1. First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip M.; Esposito, Simone; Burrows, Adam; Leisenring, Jarron; Skrutskie, Michael; Desidera, Silvano; Mesa, Dino; Arcidiacono, Carmelo; Mannucci, Filippo; Rodigas, Timothy J.; Close, Laird; McCarthy, Don; Kulesa, Craig; Agapito, Guido; Apai, Daniel; Argomedo, Javier; Bailey, Vanessa; Boutsia, Konstantina; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Claudi, Riccardo; Eisner, Joshua; Fini, Luca; Follette, Katherine B.; Garnavich, Peter; Gratton, Raffaele; Guerra, Juan Carlos; Hill, John M.; Hoffmann, William F.; Jones, Terry; Krejny, Megan; Males, Jared; Masciadri, Elena; Meyer, Michael R.; Miller, Douglas L.; Morzinski, Katie; Nelson, Matthew; Pinna, Enrico; Puglisi, Alfio; Quanz, Sascha P.; Quiros-Pacheco, Fernando; Riccardi, Armando; Stefanini, Paolo; Vaitheeswaran, Vidhya; Wilson, John C.; Xompero, Marco

    2012-07-01

    As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H band and 3.3 μm with the new Large Binocular Telescope adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3 μm photometry of the innermost planet (for the first time) and put strong upper limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 μm compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 μm due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres but find that removing CH4 to fit the 3.3 μm photometry increases the predicted L' (3.8 μm) flux enough that it is inconsistent with observations. In an effort to fit the spectral energy distribution of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown dwarfs. Our mixed-cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are as follows: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di AstroÞsica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The

  2. The Chemistry of Planet Formation

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.

    2017-01-01

    Exo-planets are common, and they span a large range of compositions. The origins of the observed diversity of planetary compositions is largely unconstrained, but must be linked to the planet formation physics and chemistry. Among planets that are Earth-like, a second question is how often such planets form hospitable to life. A fraction of exo-planets are observed to be ‘physically habitable’, i.e. of the right temperature and bulk composition to sustain a water-based prebiotic chemistry, but this does not automatically imply that they are rich in the building blocks of life, in organic molecules of different sizes and kinds, i.e. that they are chemically habitable. In this talk I will argue that characterizing the chemistry of protoplanetary disks, the formation sites of planets, is key to address both the origins of planetary bulk compositions and the likelihood of finding organic matter on planets. The most direct path to constrain the chemistry in disks is to directly observe it. In the age of ALMA it is for the first time possible to image the chemistry of planet formation, to determine locations of disk snowlines, and to map the distributions of different organic molecules. Recent ALMA highlights include constraints on CO snowline locations, the discovery of spectacular chemical ring systems, and first detections of more complex organic molecules. Observations can only provide chemical snapshots, however, and even ALMA is blind to the majority of the chemistry that shapes planet formation. To interpret observations and address the full chemical complexity in disks requires models, both toy models and astrochemical simulations. These models in turn must be informed by laboratory experiments, some of which will be shown in this talk. It is thus only when we combine observational, theoretical and experimental constraints that we can hope to characterize the chemistry of disks, and further, the chemical compositions of nascent planets.

  3. GEMINI-TITAN (GT)-12 - EARTH SKY - AGENA RENDEZVOUS - OUTER SPACE

    NASA Image and Video Library

    1966-11-11

    S66-62755 (11 Nov. 1966) --- Excellent stereo and side view of the Agena Target Docking Vehicle as seen from the Gemini-12 spacecraft during rendezvous and docking mission in space. The two spacecraft are 50 feet apart. Photo credit: NASA

  4. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-02-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS

  5. EARTH-SKY - GEMINI-TITAN (GT)-9A - AREAS OF PERU, CHILE AND BOLIVIA

    NASA Image and Video Library

    1966-06-05

    S66-38313 (5 June 1966) --- Areas of Peru (upper right), Chile (top center) and Bolivia as seen from the Gemini-9 spacecraft during its 35th revolution of Earth. The large body of water at lower right is Lake Titicaca. The smaller lake at left edge is Lake Poopo. Salar de Uyuni is the large light-colored area at upper left. At the bottom of the picture is the snow-capped Cordillera Real range of the Andes Mountains. The Pacific coastline of Peru and Chile is at upper right. The range running parallel with the coastline is the Cordillera Occidental. The image was taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  6. Gemini 8 prime and backup crews during press conference

    NASA Image and Video Library

    1966-02-26

    S66-24380 (26 Feb. 1966) --- Gemini-8 prime and backup crews during press conference. Left to right are astronauts David R. Scott, prime crew pilot; Neil A. Armstrong, prime crew command pilot; Charles Conrad Jr., backup crew command pilot; and Richard F. Gordon Jr., backup crew pilot. Photo credit: NASA

  7. HUBBLE OBSERVES THE MOONS AND RINGS OF THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes. Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise). Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin. One of the four

  8. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  9. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  10. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  11. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties

    PubMed Central

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E.; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L.; Ilies, Marc A.

    2014-01-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact towards plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process, and with transfection efficiency, cytotoxicity and internalization mechanism of the resultant nucleic acid complexes. We found that blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. Transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of co-lipids, their nature and amount present into lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically for obtaining efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  12. Structure-delivery relationships of lysine-based gemini surfactants and their lipoplexes.

    PubMed

    Damen, Mark; Cristóbal-Lecina, Edgar; Sanmartí, Glòria Colom; van Dongen, Stijn F M; García Rodríguez, Cristina L; Dolbnya, Igor P; Nolte, Roeland J M; Feiters, Martin C

    2014-08-21

    The synthesis and properties of gemini surfactants of the type (R(1)(CO)-Lys(H)-NH)2(CH2)n are reported. For a spacer length of n = 6, the hydrophobic acyl tail was varied in length (R(1) = C8, C10, C12, C14, C16, and C18) and, for R(1) = C18, the degree of unsaturation. For R(1)(CO) = oleoyl (C18:1 Z) the spacer length (n = 2-8) and the stereochemistry of the lysine building block were varied; a 'half-gemini' derivative with a single oleoyl tail and head group was also prepared. The potential of the gemini surfactants to transfer polynucleotides across a cell membrane was investigated by transfection of HeLa cells with beta-galactosidase, both in the presence and absence of the helper lipid DOPE. Oleoyl was found to be by far the best hydrophobic tail for this biological activity, whereas the effect of the lysine stereochemistry was less pronounced. The effect of an optimum spacer length (n = 6) was observed only in the absence of helper lipid. The most active surfactant, i.e. the one with oleoyl chains and n = 6, formed liposomes with sizes in the range of 60-350 nm, and its lipoplex underwent a transition from a lamellar to a hexagonal morphology upon lowering the pH from 7 to 3.

  13. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  14. How to Directly Image a Habitable Planet Around Alpha Centauri with a 30-45 cm Space Telescope

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan; Bendek, Eduardo; Thomas, Sandrine; Males, Jared

    2015-01-01

    Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are approximately 3x wider in apparent size than around any other FGKM star. This enables a approximately 30-45cm visible light space telescope equipped with a modern high performance coronagraph or star shade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. The raw contrast requirements for such an instrument can be relaxed to 1e-8 if the mission spends 2 years collecting tens of thousands of images on the same target, enabling a factor of 500-1000 speckle suppression in post processing using a new technique called Orbital Difference Imaging (ODI). The raw light leak from both stars is controllable with a special wave front control algorithm known as Multi-Star Wave front Control (MSWC), which independently suppresses diffraction and aberrations from both stars using independent modes on the deformable mirror. This paper will present an analysis of the challenges involved with direct imaging of Alpha Centauri with a small telescope and how the above technologies are used together to solve them. We also show an example of a small coronagraphic mission concepts to take advantage of this opportunity called "ACESat: Alpha Centauri Exoplanet Satellite" submitted to NASA's small Explorer (SMEX) program in December of 2014.

  15. ASTRONAUT WHITE, EDWARD - GEMINI-TITAN (GT)-4 - EXTRAVEHICULAR ACTIVITY (EVA)

    NASA Image and Video Library

    1965-01-01

    S65-30433 (3 June 1965) --- Astronaut Edward H. White II, pilot of the Gemini IV four-day Earth-orbital mission, floats in the zero gravity of space outside the Gemini IV spacecraft. White wears a specially designed spacesuit; and the visor of the helmet is gold plated to protect him against the unfiltered rays of the sun. He wears an emergency oxygen pack, also. He is secured to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped in gold tape to form one cord. In his right hand is a Hand-Held Self-Maneuvering Unit (HHSMU) with which he controls his movements in space. Astronaut James A. McDivitt, command pilot of the mission, remained inside the spacecraft. Photo credit: NASA EDITOR'S NOTE: Astronaut White died in the Apollo/Saturn 204 fire at Cape Kennedy on Jan. 27, 1967.

  16. SN 1987A after 18 Years: Mid-Infrared GEMINI and SPITZER Observations of the Remnant

    NASA Technical Reports Server (NTRS)

    Bouchet, Patrice; Dwek, Eli; Danziger, John; Arendt, Richard G.; DeBuizer, James M.; Park, Sangwook; Suntzeff, Nicholas B.; Kirshner, Robert P.; Challis, Peter

    2007-01-01

    We present high resolution 11.7 and 18.3 micron mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 micron flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 micron, on day 6130 with the IRAC in 3.6- 8 micron region, and on day 6190 with the IRS in the 12-37 micron instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662(sup +18) (sub -12) K, and the emitting dust mass is (2.6(sup +2.0 (sub -1.4)) x 10 (exp -6) M(solar). Lines of [Ne II] 12.82 micron and [Ne III] 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si II] 3 34.8 micron line. We also detect two lines near 26 micron which we tentatively ascribe to [Fe II] 25.99 pm and [0 IV] 25.91 micron. Comparison of the mid-IR Gemini 11.7 micron image with X-ray images obtained by Chandra, UV-optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths. Because of the limited resolution of the mid-IR images we cannot uniquely determine the location. or heating mechanism of the dust giving rise to the emission. The dust could be collisionally heated by the X-ray emitting plasma, providing a unique diagnostic of plasma conditions. Alternatively, the dust could be radiatively heated in the dense UV-optical knots that are overrun by the advancing supernova blast wave. In either case the dust-to-gas mass ratio in the circumstellar medium around the supernova is significantly lower than that in the general interstellar medium of the LMC, suggesting either a

  17. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study

    PubMed Central

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain). PMID:26641889

  18. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  19. Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants.

    PubMed

    Bergström, L Magnus; Tehrani-Bagha, Alireza; Nagy, Gergely

    2015-04-28

    Micelles formed by novel gemini esterquat surfactants have been investigated with small-angle neutron scattering (SANS). The growth behavior of the micelles is found to differ conspicuously depending on the length of the gemini surfactant spacer group. The gemini surfactant with a long spacer form rather small triaxial ellipsoidal tablet-shaped micelles that grow weakly with surfactant concentration in the entire range of measured concentrations. Geminis with a short spacer, on the other hand, form weakly growing oblates or tablets at low concentrations that start to grow much more strongly into polydisperse rodlike or wormlike micelles at higher concentrations. The latter behavior is consistent with the presence of a second CMC that marks the transition from the weakly to the strongly growing regime. It is found that the growth behavior in terms of aggregation number as a function of surfactant concentration always appear concave in weakly growing regimes, while switching to convex behavior in strongly growing regimes. As a result, we are able to determine the second CMC of the geminis with short spacer by means of suggesting a rather precise definition of it, located at the point of inflection of the growth curve that corresponds to the transition from concave to convex growth behavior. Our SANS results are rationalized by comparison with the recently developed general micelle model. In particular, this theory is able to explain and reproduce the characteristic appearances of the experimental growth curves, including the presence of a second CMC and the convex strongly growing regime beyond. By means of optimizing the agreement between predictions from the general micelle model and results from SANS experiments, we are able to determine the three bending elasticity constants spontaneous curvature, bending rigidity, and saddle-splay constant for each surfactant.

  20. Exploring Kepler Giant Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Hill, Michelle L.; Kane, Stephen R.; Seperuelo Duarte, Eduardo; Kopparapu, Ravi K.; Gelino, Dawn M.; Wittenmyer, Robert A.

    2018-06-01

    The Kepler mission found hundreds of planet candidates within the Habitable Zones (HZ) of their host star, including over 70 candidates with radii larger than three Earth radii (R ⊕) within the optimistic HZ (OHZ). These giant planets are potential hosts to large terrestrial satellites (or exomoons) which would also exist in the HZ. We calculate the occurrence rates of giant planets (R p = 3.0–25 R ⊕) in the OHZ, and find a frequency of (6.5 ± 1.9)% for G stars, (11.5 ± 3.1)% for K stars, and (6 ± 6)% for M stars. We compare this with previously estimated occurrence rates of terrestrial planets in the HZ of G, K, and M stars and find that if each giant planet has one large terrestrial moon then these moons are less likely to exist in the HZ than terrestrial planets. However, if each giant planet holds more than one moon, then the occurrence rates of moons in the HZ would be comparable to that of terrestrial planets, and could potentially exceed them. We estimate the mass of each planet candidate using the mass–radius relationship developed by Chen & Kipping. We calculate the Hill radius of each planet to determine the area of influence of the planet in which any attached moon may reside, then calculate the estimated angular separation of the moon and planet for future imaging missions. Finally, we estimate the radial velocity semi-amplitudes of each planet for use in follow-up observations.

  1. The Star, the Dwarf and the Planet

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form. "Such a system is an interesting example that might prove that planets and brown dwarfs can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery. ESO PR Photo 39a/06 ESO PR Photo 39a/06 The Companion to HD 3651 HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days. Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun. HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These

  2. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  3. Planet formation: constraints from transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    Ten extrasolar planets with masses between 105 and 430M⊕ are known to transit their star. The knowledge of their mass and radius allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. This is illustrated by HD209458b and XO-1b, two planets that appear to be larger than models would predict. Using a relatively simple evolution model, we show that the radius anomaly, i.e. the difference between the measured and theoretically calculated radii, is anticorrelated with the metallicity of the parent star. This implies that the present size, structure and composition of these planets is largely determined by the initial metallicity of the protoplanetary disk, and not, or to a lesser extent, by other processes such as the differences in the planets' orbital evolutions, tides due to finite eccentricities/inclinations and planet evaporation. Using evolution models including the presence of a core and parametrized missing physics, we show that all nine planets belong to a same ensemble characterized by a mass of heavy elements MZ that is a steep function of the stellar metallicity: from ˜ 10 M⊕ around a solar composition star, to ˜ 100 M⊕ for twice the solar metallicity. Together with the observed lack of giant planets in close orbits around metal-poor stars, these results imply that heavy elements play a key role in the formation of close-in giant planets. The large values of MZ and of the planet enrichments for metal-rich stars shows the need for alternative theories of planet formation including migration and subsequent collection of planetesimals.

  4. Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph

    NASA Astrophysics Data System (ADS)

    Ruane, G.; Mawet, D.; Kastner, J.; Meshkat, T.; Bottom, M.; Femenía Castellá, B.; Absil, O.; Gomez Gonzalez, C.; Huby, E.; Zhu, Z.; Jenson-Clem, R.; Choquet, É.; Serabyn, E.

    2017-08-01

    Distinct gap features in the nearest protoplanetary disk, TW Hya (distance of 59.5 ± 0.9 pc), may be signposts of ongoing planet formation. We performed long-exposure thermal infrared coronagraphic imaging observations to search for accreting planets, especially within dust gaps previously detected in scattered light and submillimeter-wave thermal emission. Three nights of observations with the Keck/NIRC2 vortex coronagraph in L‧ (3.4-4.1 μm) did not reveal any statistically significant point sources. We thereby set strict upper limits on the masses of non-accreting planets. In the four most prominent disk gaps at 24, 41, 47, and 88 au, we obtain upper mass limits of 1.6-2.3, 1.1-1.6, 1.1-1.5, and 1.0-1.2 Jupiter masses (M J), assuming an age range of 7-10 Myr for TW Hya. These limits correspond to the contrast at 95% completeness (true positive fraction of 0.95) with a 1% chance of a false positive within 1″ of the star. We also approximate an upper limit on the product of the planet mass and planetary accretion rate of {M}{{p}}\\dot{M}≲ {10}-8 {M}{{J}}2 {{yr}}-1 implying that any putative ˜0.1 M J planet, which could be responsible for opening the 24 au gap, is presently accreting at rates insufficient to build up a Jupiter mass within TW Hya’s pre-main-sequence lifetime.

  5. TRAINING - GEMINI-TITAN (GT)-5 - TX

    NASA Image and Video Library

    1965-06-18

    S65-35563 (18 June 1965) --- Astronauts L. Gordon Cooper Jr. (left), command pilot; and Charles Conrad Jr., pilot, the prime crew of the Gemini-5 spaceflight, prepare their cameras while aboard a C-130 aircraft flying near Laredo, Texas. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions. Knowledge gained from these experiments will have later application for space pilots identifying terrestrial features from space. Dr. John Billingham, chief, Environmental Physiology Branch, Crew Systems Division, is in charge of the Visual Acuity Experiments.

  6. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  7. Gemini Observatory Takes its Local Communities on an Expanding Journey

    NASA Astrophysics Data System (ADS)

    Harvey, Janice; Michaud, Peter

    2012-08-01

    Currently in its 7th year (2011) Hawaii's annual Journey through the Universe (JttU) program is a flagship Gemini Observatory public education/outreach initiative involving a broad cross-section of the local Hawai'i Island astronomical community, the public, educators, businesses, local government officials, and thousands of local students. This paper describes the program, its history, planning, implementation, as well as the program's objectives and philosophy. The success of this program is documented here, as measured by continuous and expanding engagement of educators, the community, and the public, along with formal evaluation feedback and selected informal verbal testimony. The program's success also serves as justification for the planned adaptation of a version of the program in Chile in 2011 (adapted for Chilean educational and cultural differences). Finally, lessons learned are shared which have refined the program for Gemini's host communities but can also apply to any institution wishing to initiate a similar program.

  8. GEMINI-TITAN (GT)-11 - EARTH SKY - OUTER SPACE

    NASA Image and Video Library

    1966-09-14

    S66-54706 (14 Sept. 1966) --- Western half of Australia, including the coastline from Perth to Port Darwin, looking west, as seen from the Gemini-11 spacecraft during its 26th revolution of Earth. Photograph was made while the spacecraft was at a record-high apogee of 740 nautical miles. Taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome, MS (S.O. 368) color film. Photo credit: NASA

  9. PRELAUNCH - GEMINI-TITAN (GT)-12 - LEAVE TRAILER - CAPE

    NASA Image and Video Library

    1966-11-11

    S66-59916 (11 Nov. 1966) --- Prime crew for the Gemini-12 spaceflight, astronauts James A. Lovell Jr. (leading), command pilot, and Edwin E. Aldrin Jr., pilot, leave the suiting trailer at Launch Complex 16 during prelaunch countdown. Moments later they entered a transport van which carried them to Pad 19 and their waiting spacecraft. The liftoff was at 3:46 p.m. (EST), Nov. 11, 1966. Photo credit: NASA

  10. Magellan Adaptive Optics First-light Observations of the Exoplanet β Pic B. I. Direct Imaging in the Far-red Optical with MagAO+VisAO and in the Near-ir with NICI

    NASA Astrophysics Data System (ADS)

    Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Wahhaj, Zahed; Liu, Michael C.; Skemer, Andrew J.; Kopon, Derek; Follette, Katherine B.; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Biller, Beth A.; Nielsen, Eric L.; Hinz, Philip M.; Rodigas, Timothy J.; Hayward, Thomas L.; Chun, Mark; Ftaclas, Christ; Toomey, Douglas W.; Wu, Ya-Lin

    2014-05-01

    We present the first ground-based CCD (λ < 1 μm) image of an extrasolar planet. Using the Magellan Adaptive Optics system's VisAO camera, we detected the extrasolar giant planet β Pictoris b in Y-short (YS , 0.985 μm), at a separation of 0.470 ± 0.''010 and a contrast of (1.63 ± 0.49) × 10-5. This detection has a signal-to-noise ratio of 4.1 with an empirically estimated upper limit on false alarm probability of 1.0%. We also present new photometry from the Gemini Near-Infrared Coronagraphic Imager instrument on the Gemini South telescope, in CH 4S,1% (1.58 μm), KS (2.18 μm), and K cont (2.27 μm). A thorough analysis of our photometry combined with previous measurements yields an estimated near-IR spectral type of L2.5 ± 1.5, consistent with previous estimates. We estimate log (L bol/L ⊙) = -3.86 ± 0.04, which is consistent with prior estimates for β Pic b and with field early-L brown dwarfs (BDs). This yields a hot-start mass estimate of 11.9 ± 0.7 M Jup for an age of 21 ± 4 Myr, with an upper limit below the deuterium burning mass. Our L bol-based hot-start estimate for temperature is T eff = 1643 ± 32 K (not including model-dependent uncertainty). Due to the large corresponding model-derived radius of R = 1.43 ± 0.02 R Jup, this T eff is ~250 K cooler than would be expected for a field L2.5 BD. Other young, low-gravity (large-radius), ultracool dwarfs and directly imaged EGPs also have lower effective temperatures than are implied by their spectral types. However, such objects tend to be anomalously red in the near-IR compared to field BDs. In contrast, β Pic b has near-IR colors more typical of an early-L dwarf despite its lower inferred temperature.

  11. Gaps in the HD 169142 Protoplanetary Disk Revealed by Polarimetric Imaging: Signs of Ongoing Planet Formation?

    NASA Astrophysics Data System (ADS)

    Quanz, Sascha P.; Avenhaus, Henning; Buenzli, Esther; Garufi, Antonio; Schmid, Hans Martin; Wolf, Sebastian

    2013-03-01

    We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as ~0.''1 to the star. Our images trace the face-on disk out to ~1.''7 (~250 AU) and reveal distinct substructures for the first time: (1) the inner disk (lsim20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at ~25 AU; (3) an annular gap extends from ~40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of ~85 AU the surface brightness drops off roughly vpropr -3.3, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws vpropr -2.6 and vpropr -3.9 provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is ~4.1 × 10-3. Finally, combining our results with those from the literature, ~40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 089.C-0611(A).

  12. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two

  13. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  14. Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents.

    PubMed

    Singh, Jagbir; Yang, Peng; Michel, Deborah; Verrall, Ronald E; Foldvari, Marianna; Badea, Ildiko

    2011-05-01

    Gene based therapy represents an important advance in the treatment of diseases that heretofore have had either no treatment or cure. To capitalize on the true potential of gene therapy, there is a need to develop better delivery systems that can protect these therapeutic biomolecules and deliver them safely to the target sites. Recently, we have designed and developed a series of novel amino acid-substituted gemini surfactants with the general chemical formula C(12)H(25) (CH(3))(2)N(+)-(CH(2))(3)-N(AA)-(CH(2))(3)-N(+) (CH(3))(2)-C(12)H(25) (AA= glycine, lysine, glycyl-lysine and, lysyl-lysine). These compounds were synthesized and tested in rabbit epithelial cells using a model plasmid and a helper lipid. Plasmid/gemini/lipid (P/G/L) nanoparticles formulated using these novel compounds achieved higher gene expression than the nanoparticles containing the parent unsubstituted compound. In this study, we evaluated the cytotoxicity of P/G/L nanoparticles and explored the relationship between transfection efficiency/toxicity and their physicochemical characteristics (such as size, binding properties, etc.). An overall low toxicity is observed for all complexes with no significant difference among substituted and unsubstituted compounds. An interesting result revealed by the dye exclusion assay suggests a more balanced protection of the DNA by the glycine and glycyl-lysine substituted compounds. Thus, the higher transfection efficiency is attributed to the greater biocompatibility and flexibility of the amino acid/peptide-substituted gemini surfactants and demonstrates the feasibility of using amino acid-substituted gemini surfactants as gene carriers for the treatment of diseases affecting epithelial tissue.

  15. PLANET SHADOWS IN PROTOPLANETARY DISKS. II. OBSERVABLE SIGNATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2009-07-20

    We calculate simulated images of disks perturbed by embedded small planets. These 10-50 M{sub +} bodies represent the growing cores of giant planets. We examine scattered light and thermal emission from these disks over a range of wavelengths, taking into account the wavelength-dependent opacity of dust in the disk. We also examine the effect of inclination on the observed perturbations. We find that the perturbations are best observed in the visible to mid-infrared (mid-IR). Scattered light images reflect shadows produced at the surface of perturbed disks, while the infrared images follow thermal emission from the surface of the disk, showingmore » cooled/heated material in the shadowed/brightened regions. At still longer wavelengths in the submillimeter, the perturbation fades as the disk becomes optically thin and surface features become overwhelmed by emission closer toward the midplane of the disk. With the construction of telescopes such as TMT, GMT, and ALMA due in the next decade, there is a real possibility of observing planets forming in disks in the optical and submillimeter. However, having the angular resolution to observe the features in the mid-IR will remain a challenge.« less

  16. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  17. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  18. Direct imaging of extra-solar planets with stationary occultations viewed by a space telescope

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1978-01-01

    The use of a telescope in space to detect planets outside the solar system by means of imaging at optical wavelengths is discussed. If the 'black' limb of the moon is utilized as an occulting edge, a hypothetical Jupiter-Sun system could be detected at a distance as great as 10 pc, and a signal-to-noise ratio of 9 could be achieved in less than 20 min with a 2.4 m telescope in space. An orbit for the telescope is proposed; this orbit could achieve a stationary lunar occultation of any star for a period of nearly two hours.

  19. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  20. GEMINI-TITAN (GT)-9 - EXTRAVEHICULAR LIFE SUPPORT SYSTEM (ELSS) - ASTRONAUT MANEUVERING UNIT (AMU) - MSC

    NASA Image and Video Library

    1966-05-01

    S66-33162 (May 1966) --- Test subject Fred Spross, Crew Systems Division, wears configured extravehicular spacesuit assembly and Extravehicular Life Support System chest pack. The spacesuit legs are covered with Chromel R, which is a cloth woven from stainless steel fibers, used to protect the suit and astronaut from the hot exhaust thrust of the Astronaut Maneuvering Unit backpack. The Gemini spacesuit, backpack and chest pack comprise the AMU, a system which is essentially a miniature manned spacecraft. Astronaut Eugene A. Cernan will wear the AMU during his Gemini-9A extravehicular activity (EVA). Photo credit: NASA

  1. Trapping Dust to Form Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  2. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  3. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; hide

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  4. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  5. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  6. Astronaut Gordon Cooper receives preflight medical exam for Gemini 5 flight

    NASA Image and Video Library

    1965-08-17

    S65-28710 (17 Aug. 1965) --- Astronaut L. Gordon Cooper Jr., command pilot for the Gemini-5 spaceflight, has his blood pressure checked by Dr. Charles A. Berry, chief, Center Medical Programs, Manned Spacecraft Center, during a preflight physical examination.

  7. GEMINI-TITAN (GT)-9 TEST - ASTRONAUT EUGENE A. WHITE -- PERSONAL - CAPE

    NASA Image and Video Library

    1964-06-03

    S66-34051 (3 June 1966) --- Astronauts Thomas P. Stafford and Eugene A. Cernan arrive in the White Room atop Pad 19 at the Kennedy Space Center in preparation for the launch of the Gemini-9 spaceflight. Photo credit: NASA

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard

    We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ∼50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seenmore » for the HD 15115 debris disk. The planet candidate is oriented ∼21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  10. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  11. Gemini 9 crew in spacecraft with technicians closing hatches

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Technicians prepare to close the hatches on the Gemini 9-A spacecraft in the White Room atop Pad 19 after insertion of Astronauts Thomas P. Stafford (left) and Eugene A. Cernan. Liftoff was at 8:39 a.m., June 3, 1966. Humorous sign from backup crew, James A. Lovell Jr. and Edwin E. Aldrin Jr., was taped to the spacecraft.

  12. Optical Images of an Exosolar Planet 25 Light-Years from Earth

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2008-01-01

    Fomalhaut is a bright star 7.7 parsec (25 light year) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate. Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star, and within 18 All of the dust belt. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 micron flux is also consistent with that of a planet with mass a few limes that of Jupiter. The brightness at 0.6 microns and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 microns.

  13. Optical Images of an Exosolar Planet 25 Light Years from Earth

    NASA Technical Reports Server (NTRS)

    Kalas, Paul; Graham, James R.; Chiang, Eugene; Fitzgerald, Michael P.; Clampin, Mark; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-01-01

    Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

  14. Optical images of an exosolar planet 25 light-years from Earth.

    PubMed

    Kalas, Paul; Graham, James R; Chiang, Eugene; Fitzgerald, Michael P; Clampin, Mark; Kite, Edwin S; Stapelfeldt, Karl; Marois, Christian; Krist, John

    2008-11-28

    Fomalhaut, a bright star 7.7 parsecs (25 light-years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units (AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mum is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mum and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mum.

  15. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  16. Commissioning and performance results of the WFIRST/PISCES integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Saxena, Prabal; Rizzo, Maxime J.; Mejia Prada, Camilo; Llop Sayson, Jorge; Gong, Qian; Cady, Eric J.; Mandell, Avi M.; Groff, Tyler D.; McElwain, Michael W.

    2017-09-01

    Direct imaging of exoplanets has become a priority in the field of exoplanet discovery and characterization due to its ability to directly obtain evidence about a planet's atmosphere and some bulk properties. Features such as atmospheric composition, structure and clouds are just some of the planetary properties obtainable from directly imaged spectra. However, detecting and observing spectra of exoplanets using direct imaging is challenging due to the combination of extreme star to planet contrast ratios and the relatively small apparent physical separation between a host star and an orbiting planet. Detection of Earth-sized planets in reflected visible light requires contrast ratios of 1010, while even detection of Jupiter-sized planets and large young self-luminous planets requires contrast ratios of 108 and 106, respectively. Consequently, direct detection of exoplanets requires observing strategies which push the boundaries of high contrast imaging. The use of coronagraphy to occult a host star has been combined with adaptive optics (AO) technology to yield a particularly promising means of potentially achieving the required contrast ratios in regions close-in enough to the host star. Ground based adaptive optics systems such as The Gemini Planet Imager (GPI)1 and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)2 instrument have been able to achieve contrast ratios nearing 107 using post-processing techniques3, 4 and have yielded a number of direct detections of young self-luminous planets. Advancing these technologies onto a space based platform immune to the difficulties posed by the effects of Earth's atmosphere is the next step in accessing even larger contrast ratios.

  17. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that most single stars should have rocky planets in orbit about them; the frequency of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.

  18. Identifying wide, cold planets within 8pc

    NASA Astrophysics Data System (ADS)

    Deacon, Niall; Kraus, Adam; Crossfield, Ian

    2014-12-01

    Direct imaging exoplanet studies have recently unveiled a previously-unexpected population of massive planets (up to 15 M_Jup) in wide orbits (>100AU). Although most of these discoveries have been around younger stars and have been of similar temperatures to field brown dwarfs, one object (WD 0806-661B), is the coldest planet known outside our solar system. We propose a survey of all stars and brown dwarfs within 8pc to identify massive planetary companions in the 150-1500AU separation range. We will 1) Measure the fraction of wide planetary mass companions to stars in the Solar neighbourhood. 2) Identify all planets within 8 parsecs with masses above 8 Jupiter masses in our chosen projected separation range with lower mass limits for closer and younger stars. 3) Identify approximately 8 planets, four of which will have temperatures below 300K making them ideal targets to study water clouds in cold atmospheres with both JWST and the next generation of ground-based extremely large telescopes. Our survey will be the most complete survey for wide planets to-date and will provide both a measurement of the wide planet population and a legacy of cold, well constrained targets for future observatories.

  19. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-08-20

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less

  20. GEMINI-TITAN (GT)-3 - EARTH- SKY VIEW

    NASA Image and Video Library

    1965-03-23

    S65-18740 (23 March 1965) --- Astronaut John W. Young took this picture during the second orbit of the Gemini-Titan 3 three-orbit mission as the spacecraft "Molly Brown" passed over Northern Mexico at an altitude of 90 miles. The light-brown circular area at the lower right is the Sonoran Desert. The lower portion of the picture is Mexico, and the upper part is California. Young used a hand-held modified 70mm Hasselblad camera with color film. The lens setting was 250th of a second at f/11.

  1. GEMINI-TITAN (GT)-4 - EARTH-SKY VIEW

    NASA Image and Video Library

    1965-06-01

    S65-34661 (3-7 June 1965) --- Among the photographs of Earth's terrain taken from the Gemini-4 spacecraft during its orbital mission was this view of the southeastern tip of the Arabian Peninsula with the Gulf of Oman at upper right. Seif dunes (sand) at lower left. This picture was taken with a modified 70mm Hasselblad camera, using Eastman color film, ASA 64 at a setting of 250th of a second at f/11. Dr. Paul Lowman Jr., NASA geologist, was in charge of the Synoptic Terrain Photography.

  2. GEMINI-TITAN (GT)-3 - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA

    NASA Image and Video Library

    1965-03-01

    S65-18762 (March 1965) --- Effects of the weightless environment on cell division, the basic growth process for living tissue, will be studied during the Gemini-Titan 3 flight scheduled for March 23, 1965. A spiny black sea urchin (upper left) is stimulated by mild electric shock or potassium chloride. As a result it sheds many thousands of eggs. When fertilized, these eggs become actively dividing cells very similar in basic processes to cells of other animals, including humans. These pictures show stages of cell division. At upper right is a single cell; at lower right cell divisions have produced many cells. Cell photos are magnified about 700 times, and all cells shown are too small to be seen by the naked eye. (Photos at upper right and lower left are of sea urchin eggs. Group of cells at lower right are from a sand dollar, which like the sea urchin, is an Echinoderm. Its eggs are virtually identical and are used interchangeably with those of the sea urchin in NASA Ames Center weightlessness experiments.) The Gemini experiment will involve cell division like that shown here. This will take place during several hours of weightlessness aboard the Gemini spacecraft. The experiment will be flown back to laboratories at Cape Kennedy after spacecraft recovery. It has been designed so that any abnormal cell division found by postflight analysis should suggest that the weightless environment has effects on individual cells. This might mean hazards for prolonged periods of manned spaceflight.

  3. Journey to a Star Rich with Planets

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets

    This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own.

    The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri.

    The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit.

    As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days.

    Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life.

    The animation ends with a comparison between 55 Cancri and our solar system.

    The colors of the illustrated planets were chosen to resemble those of our own solar

  4. Flow of Planets, Not Weak Tidal Evolution, Produces the Short-Period Planet Distribution with More Planets than Expected

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2013-01-01

    The most unexpected planet finding is arguably the number of those with shorter periods than theorists had expected, because most such close planets had been expected to migrate into the star in shorter timescales than the ages of the stars. Subsequent effort has been made to show how tidal dissipation in stars due to planets could be weaker than expected, but we show how the occurrence distribution of differently-sized planets is more consistent with the explanation that these planets have more recently arrived as a flow of inwardly migrating planets, with giant planets more likely to be found while gradually going through a short period stage. This continual ``flow'' of new planets arriving from further out is presumably supplied by the flow likely responsible for the short period pileup of giant planets (Socrates+ 2011). We have previously shown that the shortest period region of the exoplanet occurrence distribution has a fall-off shaped by inward tidal migration due to stellar tides, that is, tides on the star caused by the planets (Taylor 2011, 2012). The power index of the fall-off of giant and intermediate radius planet candidates found from Kepler data (Howard+ 2011) is close to the index of 13/3 which is expected for planets in circular orbits undergoing tidal migration. However, there is a discrepancy of the strength of the tidal migration determined using fits to the giant and medium planets distributions. This discrepancy is best resolved by the explanation that more giant than medium radii planets migrate through these short period orbits. We also present a correlation between higher eccentricity of planetary orbits with higher Fe/H of host stars, which could be explained by high eccentricity planets being associated with recent episodes of other planets into stars. By the time these planets migrate to become hot Jupiters, the pollution may be mixed into the star. The clearing of other planets by migrating hot giant planets may result in hot Jupiters

  5. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  6. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  7. Artist's Concept of Exoplanet HR 8799b

    NASA Image and Video Library

    2017-12-08

    Release Date April 1, 2009 This is an artistic illustration of the giant planet HR 8799b. The planet was first discovered in 2007 at the Gemini North observatory. It was identified in the NICMOS archival data in a follow-up search of NICMOS archival data to see if Hubble had also serendipitously imaged it. The planet is young and hot, at a temperature of 1500 degrees Fahrenheit. It is slightly larger than Jupiter and may be at least seven times more massive. Analysis of the NICMOS data suggests the planet has water vapor in its atmosphere and is only partially cloud covered. It is not known if the planet has rings or moons, but circumplanetary debris is common among the outer planets of our solar system. Credit: NASA/Goddard Space Flight Center/ESA/G. Bacon (STScI) To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  8. Transits of extrasolar moons around luminous giant planets

    NASA Astrophysics Data System (ADS)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  9. Space Food Package - Gemini-Titan (GT)-4 Flight - MSC

    NASA Image and Video Library

    1965-05-01

    Food packages of beef and gravy fully reconstituted and ready to eat. An astronaut would squeeze food through opening at right side of package. Water gun is used to reconstitute dehydrated food. Scissors are used to open packages. This is the type of space food which will be used on the Gemini-Titan 4 spaceflight. MSC, Houston, TX *S65-24895 thru S65-24899

  10. Intra-Extra Vehicular Activity (IEVA) Russian and Gemini Spacesuits

    NASA Technical Reports Server (NTRS)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Intra-Extra Vehicular Activity Russian and Gemini spacesuits. While the United States and Russia adapted to existing launch- and reentry-type suits to allow the first human ventures into the vacuum of space, there were differences in execution and capabilities. Mr. Thomas will discuss the advantages and disadvantages of this approach compared to exclusively intra-vehicular or extra-vehicular suit systems.

  11. GEMINI-6 - EARTH-SKY VIEW - AUSTRALIA - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63136 (16 Dec. 1965) --- Shark Bay area on the western coast of Western Australia as seen from the Gemini-6 spacecraft during its 16th revolution of Earth. City of Carnarven, where NASA has a tracking station, is located near the bottom of picture in lower left corner, near mouth of stream. Indian Ocean is body of water at upper right. South is toward top of picture. Photo credit: NASA or National Aeronautics and Space Administration

  12. MISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-6 - SCRUBBED - MSC

    NASA Image and Video Library

    1965-10-25

    S65-44401 (1965) --- A group of National Aeronautics and Space Administration (NASA) and Manned Spacecraft Center (MSC) officials and personnel watch a Cape Kennedy press conference being telecast in the Mission Control Center (MCC) after the Gemini-6 mission was scrubbed due to the apparent failure of the Agena Target Vehicle to attain orbit.

  13. Hot-start Giant Planets Form with Radiative Interiors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berardo, David; Cumming, Andrew, E-mail: david.berardo@mcgill.ca, E-mail: andrew.cumming@mcgill.ca

    In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S {sub min} below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropymore » material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.« less

  14. Astronomers Find Elusive Planets in Decade-Old Hubble Data

    NASA Image and Video Library

    2017-12-08

    NASA image release Oct. 6, 2011 This is an image of the star HR 8799 taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. A mask within the camera (coronagraph) blocks most of the light from the star. In addition, software has been used to digitally subtract more starlight. Nevertheless, scattered light from HR 8799 dominates the image, obscuring the faint planets. Object Name: HR 8799 Image Type: Astronomical Credit: NASA, ESA, and R. Soummer (STScI) To read more go to: www.nasa.gov/mission_pages/hubble/science/elusive-planets... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Shaping HR8799's outer dust belt with an unseen planet

    NASA Astrophysics Data System (ADS)

    Read, M. J.; Wyatt, M. C.; Marino, S.; Kennedy, G. M.

    2018-04-01

    HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semimajor axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semimajor axis of 0.1 MJ and 138 au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only ˜1 per cent of the mass-loss rate of the inner disc can be replenished by inward scattering. However, we find that the higher rate of inward scattering during the first ˜10 Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at ˜10 Myr ages.

  16. U.S. Air Force Radiation in Space experiment for Gemini 6 flight

    NASA Image and Video Library

    1965-12-10

    S65-58941 (27 Aug. 1965) --- U.S. Air Force Weapons Laboratory D-8 (Radiation in Space) experiment for Gemini-6 spaceflight. Kennedy Space Center alternative photo number is 104-KSC-65C-5533. Photo credit: NASA

  17. Gemini 11 prime crew during water egress training in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gemini 11 prime crew, Astronauts Richard F. Gordon Jr. (left), pilot, and Charles Conrad Jr., command pilot, relax on deck of the NASA Motor Vessel Retriever after suiting up for water egress training in Gulf of Mexico.

  18. Gas Velocities Reveal Newly Born Planets in a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    Occasionally, science comes together beautifully for a discovery and sometimes this happens for more than one team at once! Today we explore how two independent collaborations of scientists simultaneously found the very first kinematic evidence for young planets forming in a protoplanetary disk. Though they explored the same disk, the two teams in fact discovered different planets.Evidence for PlanetsALMAs view of the dust in the protoplanetary disk surrounding the young star HD 163296. Todays studies explore not the dust, but the gas of this disk. [ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF)]Over the past three decades, weve detected around 4,000 fully formed exoplanets. Much more elusive, however, are the young planets still in the early stages of formation; only a handful of these have been discovered. More observations of early-stage exoplanets are needed in order to understand how these worlds are born in dusty protoplanetary-disk environments, how they grow their atmospheres, and how they evolve.Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) have produced stunning images of protoplanetary disks. The unprecedented resolution of these images reveals substructure in the form of gaps and rings, hinting at the presence of planets that orbit within the disk and clear out their paths as they move. But there are also non-planet mechanisms that could produce such substructure, like grain growth around ice lines, or hydrodynamic instabilities in the disk.How can we definitively determine whether there are nascent planets embedded in these disks? Direct direction of a point source in a dust gap would be a strong confirmation, but now we have the next best thing: kinematic evidence for planets, from the motion of a disks gas.Observations of carbon monoxide line emission at +1km/s from the systemic velocity (left) vs. the outcome of a computer simulation (right) in the Pinte et al. study. A visible kink occurs in the flow

  19. GEMINI-TITAN (GT)-9- TRAINING - AEROSPACE FLIGHT SIMULATOR - PILOT - TX

    NASA Image and Video Library

    1966-03-01

    S66-27990 (March 1966) --- Astronaut Eugene A. Cernan, pilot for the Gemini-9 spaceflight, works out procedures for his historic space excursion in a unique manned Aerospace Flight Simulator at LTV Corp. at Dallas, Texas. The LTV simulator is used frequently by NASA astronauts for a variety of space programs maneuvers to provide many of the sensations and visual scenes of actual spaceflight. Controlled through a complex of computers, the device makes it possible for the astronauts to work out procedures, solve problems and simulate missions in real time with great accuracy. The astronaut rides in a spacecraft-like gondola which moves in roll, pitch and yaw in response to his controls and accurate computer inputs. The simulator's usual spacecraft displays and canopy have been removed and AMU backpack complete with control electronics installed. The astronaut makes his simulated flight in an inflated pressure suit and with the NASA-developed Extravehicular Life Support system chest pack which will be used in the Gemini flight. Photo credit: NASA

  20. Binding behaviors of p-sulfonatocalix[4]arene with gemini guests.

    PubMed

    Zhao, Hong-Xia; Guo, Dong-Sheng; Liu, Yu

    2013-02-14

    A dozen of homoditopic cations, possessing different spacer lengths and rigidities, as well as sizes, shapes, and charges of terminal groups, were synthesized as candidate gemini guests for the complexation of p-sulfonatocalix[4]arenes (SC4A). The 12 gemini guests are divided into five species according to the different terminal groups: imidazolium (G1-G3), pyridinium (G4-G6), quinolinium (G7), viologen (G8-G11), and 1,4-diazabicyclo[2.2.2]octane (DBO, G12). Their binding structures and stoichiometries with SC4A were examined by NMR spectroscopy, which is helpful to construct diverse highly ordered assemblies. The obtained results show that the length of the linkers, as well as the charge numbers on the end groups have a pronounced effect on the binding stoichiometry, whereas the size and shape of the terminal groups have no significant influence. Furthermore, both the stability constants and thermodynamic parameters of SC4A with the terminal subunits were determined by the isothermal titration calorimetry experiments, which are valuable to understand the binding behavior, giving quantitatively deep insight.

  1. The Anglo-Australian Planet Search. XXII. Two New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Horner, J.; Tuomi, Mikko; Salter, G. S.; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Jenkins, J. S.; Zhang, Z.; Vogt, S. S.; Rivera, Eugenio J.

    2012-07-01

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 ± 427 days, and a minimum mass of 5.3 M Jup. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 ± 0.07). The second planet in the HD 159868 system has a period of 352.3 ± 1.3 days and m sin i = 0.73 ± 0.05 M Jup. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

  2. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems

  3. Hubble Finds Planet Orbiting Pair of Stars

    NASA Image and Video Library

    2017-12-08

    Two's company, but three might not always be a crowd — at least in space. Astronomers using NASA's Hubble Space Telescope, and a trick of nature, have confirmed the existence of a planet orbiting two stars in the system OGLE-2007-BLG-349, located 8,000 light-years away towards the center of our galaxy. The planet orbits roughly 300 million miles from the stellar duo, about the distance from the asteroid belt to our sun. It completes an orbit around both stars roughly every seven years. The two red dwarf stars are a mere 7 million miles apart, or 14 times the diameter of the moon's orbit around Earth. The Hubble observations represent the first time such a three-body system has been confirmed using the gravitational microlensing technique. Gravitational microlensing occurs when the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The particular character of the light magnification can reveal clues to the nature of the foreground star and any associated planets. The three objects were discovered in 2007 by an international collaboration of five different groups: Microlensing Observations in Astrophysics (MOA), the Optical Gravitational Lensing Experiment (OGLE), the Microlensing Follow-up Network (MicroFUN), the Probing Lensing Anomalies Network (PLANET), and the Robonet Collaboration. These ground-based observations uncovered a star and a planet, but a detailed analysis also revealed a third body that astronomers could not definitively identify. Image caption: This artist's illustration shows a gas giant planet circling a pair of red dwarf stars in the system OGLE-2007-BLG-349, located 8,000 light-years away. The Saturn-mass planet orbits roughly 300 million miles from the stellar duo. The two red dwarf stars are 7 million miles apart. Credit: NASA, ESA, and G. Bacon (STScI) Read more: go.nasa.gov/2dcfMns NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four

  4. View of food packets for the Gemini 7 space flight

    NASA Image and Video Library

    1965-12-10

    S65-61653 (1 Dec. 1965) --- Complete food supply for the two-man crew of the National Aeronautics and Space Administration's Gemini-7 spaceflight as it appears prior to stowage in the spacecraft. The food packages are tied in sequence for 28-manned days or a complete supply for two men for a 14-day mission. Photo credit: NASA

  5. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Horner, J.; Salter, G. S.

    2012-07-10

    We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of thesemore » systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.« less

  6. Resolving the cold debris disc around a planet-hosting star . PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Eiroa, C.; Fedele, D.; Augereau, J.-C.; Olofsson, G.; González, B.; Maldonado, J.; Montesinos, B.; Mora, A.; Absil, O.; Ardila, D.; Barrado, D.; Bayo, A.; Beichman, C. A.; Bryden, G.; Danchi, W. C.; Del Burgo, C.; Ertel, S.; Fridlund, C. W. M.; Heras, A. M.; Krivov, A. V.; Launhardt, R.; Lebreton, J.; Löhne, T.; Marshall, J. P.; Meeus, G.; Müller, S.; Pilbratt, G. L.; Roberge, A.; Rodmann, J.; Solano, E.; Stapelfeldt, K. R.; Thébault, Ph.; White, G. J.; Wolf, S.

    2010-07-01

    Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims: The solar-type star q1 Eri is known to be surrounded by debris, extended on scales of ⪉30”. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods: The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6” to 12” over the wavelength range of 60 μm to 210 μm. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results: For the first time has the q1 Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 μm, 100 μm and 160 μm reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53°. The results of image de-convolution indicate that i likely is larger than 63°, where 90° corresponds to an edge-on disc. Conclusions: The observed emission is thermal and

  7. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  8. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; hide

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  9. GEMINI-TITAN (GT-11) - EARTH SKY - OUTER SPACE

    NASA Image and Video Library

    1966-09-14

    S66-54677 (14 Sept. 1966) --- India and Ceylon as seen from the orbiting Gemini-11 spacecraft at an altitude of 410 nautical miles during its 26th revolution of Earth. The Indian Ocean is at bottom of picture; at left center is Arabian Sea; and at upper right is Bay of Bengal. The Maldives Islands are near nose of spacecraft. Taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome, MS. (S.O. 368) color film. Photo credit: NASA

  10. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  11. Northwestern Mexico as seen from the Gemini 12 spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Area of northwestern Mexico as seen from the Gemini 12 spacecraft during its 16th revolution of the earth. View is looking northwest. Body of water in foreground is Gulf of California. Pacific Ocean is in background. Peninsula in center of picture is Baja California. States of Sonora (upper right) and Sinaloa (lower center) of Mexican mainland is in right foreground. City of Guaymas, Sonora, is near center of picture.

  12. Structural, biocomplexation and gene delivery properties of hydroxyethylated gemini surfactants with varied spacer length.

    PubMed

    Zakharova, Lucia Ya; Gabdrakhmanov, Dinar R; Ibragimova, Alsu R; Vasilieva, Elmira A; Nizameev, Irek R; Kadirov, Marsil K; Ermakova, Elena A; Gogoleva, Natalia E; Faizullin, Dzhigangir A; Pokrovsky, Andrey G; Korobeynikov, Vladislav A; Cheresiz, Sergey V; Zuev, Yuriy F

    2016-04-01

    Gemini surfactants with hexadecyl tails and hydroxyethylated head groups bridged with tetramethylene (G4), hexamethylene (G6) and dodecamethylene (G12) spacers were shown to self-assemble at the lower critical micelle concentration compared to their conventional m-s-m analogs. The lipoplex formation and the plasmid DNA transfer into different kinds of host cells were studied. In the case of eukaryotic cells, high transfection efficacy has been demonstrated for DNA-gemini complexes, which increased as follows: G6G4>G12 has been obtained in the case of transformation of bacterial cells with plasmid DNA-gemini complexes, mediated by electroporation technique. Solely G6 shows transformation efficacy exceeding the control result (uncomplexed DNA), while the inhibitory effect occurs for G4 and G12. Analysis of physico-chemical features of single surfactants and lipoplexes shows that compaction and condensation effects change as follows: G6gemini in the case of transformation of bacterial cells. They are (i) an unfavorable influence of cationic surfactants on the electroporation procedure due to depressing the electrophoretic effect; and (ii) antibacterial activity of cationic surfactants that may cause the disruption of integrity of cell membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    NASA Technical Reports Server (NTRS)

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; hide

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.

  14. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  15. Illustration of TRAPPIST-1 Planets as of Feb. 2018

    NASA Image and Video Library

    2018-02-05

    This illustration shows the seven Earth-size planets of TRAPPIST-1, an exoplanet system about 40 light-years away, based on data current as of February 2018. The image shows the planets' relative sizes but does not represent their orbits to scale. The art highlights possibilities for how the surfaces of these intriguing worlds might look based on their newly calculated properties. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. In the background, slightly distorted versions the familiar constellations of Orion and Taurus are shown as they would appear from the location of TRAPPIST-1 (courtesy of California Academy of Sciences/Dan Tell). https://photojournal.jpl.nasa.gov/catalog/PIA22097

  16. Algeria- Gemini 7, Earth-Sky View

    NASA Image and Video Library

    1965-12-05

    S65-63830 (5 Dec. 1965) --- Algeria, south-southeast of the Colomb Bechar area, as seen from the National Aeronautics and Space Administration's Gemini-7 spacecraft. Sand dunes are 200 to 300 feet high in the Grand Erg Occidental area. The Quod Sacura River can be seen in the upper left corner. The white spot in the middle of the picture is the Sebcha el Malah salt beds. It should be noted that the area had just experienced very heavy rains (first in many years) and the stream and salt flat are inundated. This photograph was taken with a modified 70mm Hasselblad camera, with Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  17. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  18. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-09

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. HUNTING FOR PLANETS IN THE HL TAU DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testi, L.; Skemer, A.; Bailey, V.

    2015-10-20

    Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unstable disk. To test this scenario, we searched for young planets by means of direct imaging in the L′ band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ∼70 AU (∼0.″5) from the central star, we reach a contrast level of ∼7.5 mag. We did notmore » detect any point sources at the location of the rings. Using evolutionary models we derive upper limits of ∼10–15 M{sub Jup} at ≤0.5–1 Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at millimeter wavelengths could be gaps in the distributions of large grains on the disk midplane caused by planets not massive enough to fully open the gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.« less

  20. Terrestrial Planet Finder Coronagraph Optical Modeling

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Redding, David C.

    2004-01-01

    The Terrestrial Planet Finder Coronagraph will rely heavily on modeling and analysis throughout its mission lifecycle. Optical modeling is especially important, since the tolerances on the optics as well as scattered light suppression are critical for the mission's success. The high contrast imaging necessary to observe a planet orbiting a distant star requires new and innovative technologies to be developed and tested, and detailed optical modeling provides predictions for evaluating design decisions. It also provides a means to develop and test algorithms designed to actively suppress scattered light via deformable mirrors and other techniques. The optical models are used in conjunction with structural and thermal models to create fully integrated optical/structural/thermal models that are used to evaluate dynamic effects of disturbances on the overall performance of the coronagraph. The optical models we have developed have been verified on the High Contrast Imaging Testbed. Results of the optical modeling verification and the methods used to perform full three-dimensional near-field diffraction analysis are presented.

  1. Terrestrial Planet Finder Coronagraph 2005: Overview of Technology Development and System Design Studies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Technology research, design trades, and modeling and analysis guide the definition of a Terrestrial Planet Finder Coronagraph Mission that will search for and characterize earth-like planets around near-by stars. Operating in visible wavebands, this mission will use coronagraphy techniques to suppress starlight to enable capturing and imaging the reflected light from a planet orbiting in the habitable zone of its parent star. The light will be spectrally characterized to determine the presence of life-indicating chemistry in the planet atmosphere.

  2. The planets and our culture a history and a legacy

    NASA Astrophysics Data System (ADS)

    Clarke, Theodore C.; Bolton, Scott J.

    2010-01-01

    This manuscript relates the great literature, great art and the vast starry vault of heaven. It relates the myths of gods and heroes for whom the planets and the Medicean moons of Jupiter are named. The myths are illustrated by great art works of the Renaissance, Baroque and Rococo periods which reveal poignant moments in the myths. The manuscript identifies constellations spun off of these myths. In addition to the images of great art are associated images of the moons and planets brought to us by spacecraft in our new age of exploration, the New Renaissance, in which we find ourselves deeply immersed.

  3. CHARACTERIZING THE ATMOSPHERES OF THE HR8799 PLANETS WITH HST/WFC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Patience, Jennifer; Barman, Travis

    We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets in the HR8799 system. The images were taken over 15 orbits in three near-infrared (near-IR) medium-band filters—F098M, F127M, and F139M—using the Wide Field Camera 3. One of the three filters is sensitive to a water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging (ADI), and the full data set was analyzed with the Karhunen–Loévemore » Image Projection routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at subarcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered ADI data with an algorithm designed to both improve the image resolution and accurately measure the photometry. The results include F127M (J) detections of the outer planets, HR8799b and c, and the first detection of HR8799b in the water-band (F139M) filter. The F127M photometry for HR8799c agrees well with fitted atmospheric models, resolving the longstanding difficulty in consistently modeling the near-IR flux of the planet.« less

  4. Point source polarimetry with the Gemini planet imager: Sensitivity characterization with T5.5 dwarf companion HD 19467 B

    DOE PAGES

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; ...

    2016-03-29

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization ofmore » $${p}_{\\mathrm{CL}99.73\\%}\\leqslant 2.4\\%$$. In conclusion, we discuss our results in the context of T dwarf cloud models and photometric variability.« less

  5. Probabilistic Assessment of Planet Habitability and Biosignatures

    NASA Astrophysics Data System (ADS)

    Bixel, A.; Apai, D.

    2017-11-01

    We have computed probabilistic constraints on the bulk properties of Proxima Cen b informed by priors from Kepler and RV follow-up. We will extend this approach into a Bayesian framework to assess the habitability of directly imaged planets.

  6. GEMINI-TITAN (GT)-7 - PRELAUNCH ACTIVITY - COMMAND PILOT (LEAVES SUITING TRAILER) - CAPE

    NASA Image and Video Library

    1965-12-04

    S65-59932 (4 Dec. 1965) --- Prime crew for the Gemini-7 spaceflight astronauts James A. Lovell Jr. (front), pilot, and Frank Borman, command pilot, leave the suiting trailer at Launch Complex 16 during prelaunch countdown at Cape Kennedy, Florida. Photo credit: NASA

  7. Northwestern Mexico as seen from the Gemini 9-A spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Northwestern Mexico as seen from the Gemini 9-A spacecraft during its 32nd revolution of the earth. Large peninsula is Baja California. Body of water at lower right is Pacific Ocean. Land mass at upper left is State of Sonora. Gulf of California separates Sonora from peninsula. Nose of spacecraft is at left and at right is open hatch of spacecraft.

  8. Studying the silver nanoparticles influence on thermodynamic behavior and antimicrobial activities of novel amide Gemini cationic surfactants.

    PubMed

    Shaban, Samy M; Abd-Elaal, Ali A

    2017-07-01

    Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging

    NASA Astrophysics Data System (ADS)

    Sahlmann, J.; Lazorenko, P. F.; Ségransan, D.; Astudillo-Defru, N.; Bonfils, X.; Delfosse, X.; Forveille, T.; Hagelberg, J.; Lo Curto, G.; Pepe, F.; Queloz, D.; Udry, S.; Zimmerman, N. T.

    2016-11-01

    The star GJ 676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets that were discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet "b" in a 1052-day orbit. This allows us to determine the mass of this planet to be , which is 40% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets "d" and "e" and we determine the orbital period of the outer giant planet "c" to be Pc = 7340 days under the assumption of a circular orbit. The preliminary minimum mass of planet "c" is Mcsini = 6.8 MJ with an upper limit of 39 MJ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper motions for both GJ 676A and its wide M3 companion GJ 676B. Although the system is probably quite mature, the masses and projected separations ( 0.̋1-0.̋4) of planets "b" and "c" make them promising targets for direct imaging with future instruments in space and on extremely large telescopes. In particular, we estimate that GJ 676A b and GJ 676A c are promising targets for directly detecting their reflected light with the WFIRST space mission. Our study demonstrates the synergy of radial-velocity and astrometric surveys that is necessary to identify the best targets for such a mission. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 385.C-0416 (A,B), 086.C-0515(A), 089.C-0115(D,E), 072.C-0488(E), 180.C-0886(A), 183.C-0437(A), 085.C-0019(A), 091.C-0034(A), 095.C-0551(A), 096.C-0460(A).Full Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A77

  10. Probing LSST's Ability to Detect Planets Around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Cortes, Jorge; Kipping, David

    2018-01-01

    Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.

  11. ISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-IV - MSC

    NASA Image and Video Library

    1965-06-03

    S65-30411 (9 June 1965) --- The families of Gemini 4 astronauts James A. McDivitt and Edward H. White II visited the Mission Control Center in Houston. In the foreground, left to right, are Mrs. Patricia McDivitt, daughter Bonnie White, Mrs. Patricia White, flight director Christopher C. Kraft Jr., and Edward White III. Each of the family members talked with the astronauts as they passed over the United States. Photo credit: NASA

  12. H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun

    2004-12-01

    High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).

  13. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    PubMed

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  14. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  15. Extra Solar Planet Science With a Non Redundant Mask

    NASA Astrophysics Data System (ADS)

    Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi

    2017-01-01

    To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.

  16. Solar Storm Triggers Whole-Planet Aurora at Mars

    NASA Image and Video Library

    2017-09-29

    These images show the sudden appearance of a bright aurora on Mars during a solar storm in September 2017. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side before (left) and during (right) the event. A simulated image of Mars for the same time and orientation has been added, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. The data are from observations by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. https://photojournal.jpl.nasa.gov/catalog/PIA21855

  17. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less

  18. THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Yanxiang; Zhou Jilin; Xie Jiwei

    2013-05-20

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPSmore » is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-search targets. (2) If hot Jupiters formed through PPS, their original moons have little chance of survival. (3) Planets in multiple systems with small eccentricities are more likely to hold their primordial moons. (4) Compared with lower-mass planets, massive planets in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.« less

  19. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    PubMed

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Uranus, towards the planet's pole of rotation.

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These two pictures of Uranus were compiled from images recorded by Voyager 2 on Jan. 1O, 1986, when the NASA spacecraft was 18 million kilometers (11 million miles) from the planet. The images were obtained by Voyager's narrow-angle camera; the view is toward the planet's pole of rotation, which lies just left of center. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view -- including indications of what could be a polar haze of smog-like particles. The true-color picture was made by combining pictures taken through blue, green and orange filters. The dark shading of the upper right edge of the disk is the terminator, or day-night boundary. The blue-green appearance of Uranus results from methane in the atmosphere; this gas absorbs red wavelengths from the incoming sunlight, leaving the predominant bluish color seen here. The picture on the right uses false color and contrast enhancement to bring out subtle details in the polar region of the atmosphere. Images shuttered through different color filters were added and manipulated by computer, greatly enhancing the low-contrast details in the original images. Ultraviolet, violet- and orange-filtered images were displayed, respectively, as blue, green and red to produce this false-color picture. The planet reveals a dark polar hood surrounded by a series of progressively lighter convective bands. The banded structure is real, though exaggerated here. The brownish color near the center of the planet could be explained as being caused by a thin haze concentrated over the pole -- perhaps the product of chemical reactions powered by ultraviolet light from the Sun. One such reaction produces acetylene from methane -- acetylene has been detected on Uranus by an Earth-orbiting spacecraft -- and further reactions involving acetylene are known to

  1. How Bright are Planet-induced Spiral Arms in Scattered Light?

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey

    2017-01-01

    Recently, high angular resolution imaging instruments such as SPHERE and GPI have discovered many spiral-arm-like features in near-infrared scattered-light images of protoplanetary disks. Theory and simulations have suggested that these arms are most likely excited by planets forming in the disks; however, a quantitative relation between the arm-to-disk brightness contrast and planet mass is still missing. Using 3D hydrodynamics and radiative transfer simulations, we examine the morphology and contrast of planet-induced arms in disks. We find a power-law relation for the face-on arm contrast (δmax) as a function of planet mass ({M}{{p}}) and disk aspect ratio (h/r): {δ }\\max ≈ {({({M}{{p}}/{M}{{J}})/(h/r)}1.38)}0.22. With current observational capabilities, at a 30 au separation, the minimum planet mass for driving detectable arms in a disk around a 1 Myr, 1 {M}ȯ star at 140 pc at low inclinations is around Saturn mass. For planets more massive than Neptune masses, they typically drive multiple arms. Therefore, in observed disks with spirals, it is unlikely that each spiral arm originates from a different planet. We also find that only massive perturbers with at least multi-Jupiter masses are capable of driving bright arms with {δ }\\max ≳ 2 as found in SAO 206462, MWC 758, and LkHα 330, and these arms do not follow linear wave propagation theory. Additionally, we find that the morphology and contrast of the primary and secondary arms are largely unaffected by a modest level of viscosity with α ≲ 0.01. Finally, the contrast of the arms in the SAO 206462 disk suggests that the perturber SAO 206462 b at ∼100 au is about 5{--}10 {M}{{J}} in mass.

  2. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  3. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  4. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  5. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  6. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  7. Technicians prepare to close hatches on Gemini 11 spacecraft during countdown

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Technicians in the White Room atop Pad 19 prepare to close hatches on the Gemini 11 spacecraft during prelaunch countdown. Inside the spacecraft are Astronauts Charles Conrad Jr., command pilot, and Richard F. Gordon Jr., pilot. There is a humorous sign stating 'This is ABSOLUTELY your Last Chance' being held by one of the technicians.

  8. Central portion of Florida, Gulf of Mexico seen from Gemini 11

    NASA Image and Video Library

    1966-09-14

    S66-54565 (14 Sept. 1966) --- Central portion of Florida, Gulf of Mexico to Atlantic Ocean, Cape Kennedy is at left center of photo, as seen from the Gemini-11 spacecraft during its 29th revolution of Earth. Photo lacks detail due to low sun angle. Sunglint on lakes is visible. Photo credit: NASA

  9. GEMINI-TITAN (GT)-7 - PREFLIGHT PHYSICAL - ASTRONAUT FRANK BORMAN - CAPE

    NASA Image and Video Library

    1965-12-02

    S65-60603 (2 Dec. 1965) --- Astronaut Frank Borman, Gemini-7 command pilot, sits attentively as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness. The objectives of this in-flight experiment are to assess state of alertness, levels of consciousness, and depth of sleep. Photo credit: NASA

  10. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  11. Recent progress on external occulter technology for imaging exosolar planets

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.

    Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.

  12. Planet Formation - Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2005-01-01

    Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

  13. A Decade of MWC 758 Disk Images: Where Are the Spiral-arm-driving Planets?

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Dong, Ruobing; Esposito, Thomas M.; Pueyo, Laurent; Debes, John H.; Poteet, Charles A.; Choquet, Élodie; Benisty, Myriam; Chiang, Eugene; Grady, Carol A.; Hines, Dean C.; Schneider, Glenn; Soummer, Rémi

    2018-04-01

    Large-scale spiral arms have been revealed in scattered light images of a few protoplanetary disks. Theoretical models suggest that such arms may be driven by and corotate with giant planets, which has called for remarkable observational efforts to look for them. By examining the rotation of the spiral arms for the MWC 758 system over a 10 year timescale, we are able to provide dynamical constraints on the locations of their perturbers. We present reprocessed Hubble Space Telescope (HST)/NICMOS F110W observations of the target in 2005, and the new Keck/NIRC2 L‧-band observations in 2017. MWC 758's two well-known spiral arms are revealed in the NICMOS archive at the earliest observational epoch. With additional Very Large Telescope (VLT)/SPHERE data, our joint analysis leads to a pattern speed of 0\\buildrel{\\circ}\\over{.} {6}-0\\buildrel{\\circ\\over{.} 6}+3\\buildrel{\\circ\\over{.} 3} {yr}}-1 at 3σ for the two major spiral arms. If the two arms are induced by a perturber on a near-circular orbit, its best-fit orbit is at 89 au (0.″59), with a 3σ lower limit of 30 au (0.″20). This finding is consistent with the simulation prediction of the location of an arm-driving planet for the two major arms in the system.

  14. Direct imaging and spectroscopy of habitable planets using JWST and a starshade

    NASA Astrophysics Data System (ADS)

    Soummer, Rémi; Valenti, Jeff; Brown, Robert A.; Seager, Sara; Tumlinson, Jason; Cash, Webster; Jordan, Ian; Postman, Marc; Mountain, Matt; Glassman, Tiffany; Pueyo, Laurent; Roberge, Aki

    2010-07-01

    A starshade with the James Webb Space Telescope (JWST) is the only possible path forward in the next decade to obtain images and spectra of a planet similar to the Earth, to study its habitability, and search for signs of alien life. While JWST was not specifically designed to observe using a starshade, its near-infrared instrumentation is in principle capable of doing so and could achieve major results in the study of terrestrialmass exoplanets. However, because of technical reasons associated with broadband starlight suppression and filter red-leak, NIRSpec would need a slight modification to one of its target acquisition filters to enable feasible observations of Earth-like planets. This upgrade would 1) retire the high risk associated with the effects of the current filter red leak which are difficult to model given the current state of knowledge on instrument stray light and line spread function at large separation angles, 2) enable access to the oxygen band at 0.76 μm in addition to the 1.26 μm band, 3) enable a smaller starshade by relaxing requirements on bandwidth and suppression 4) reduce detector saturation and associated long recovery times. The new filter would not affect neither NIRSpecs scientific performance nor its operations, but it would dramatically reduce the risk of adding a starshade to JWST in the future and enhance the performance of any starshade that is built. In combination with a starshade, JWST could be the most capable and cost effective of all the exoplanet hunting missions proposed for the next decade, including purpose built observatories for medium-size missions.

  15. Egypt, Nile Valley, Gulf of Suez, Sinai as seen from Gemini 12 spacecraft

    NASA Image and Video Library

    1966-11-13

    S66-63477 (13 Nov. 1966) --- United Arab Republic (Egypt), the Nile Valley from Luxor to Cairo, El Payium, Gulf of Suez, Sinai as seen from Gemini-12 spacecraft on its 25th revolution of Earth. Photo credit: NASA

  16. Polarimetry of gas planets

    NASA Astrophysics Data System (ADS)

    Joos, Franco

    The quest for new worlds was not only an adventure at the times of Columbus. Also nowadays mankind searches for new, undiscovered territories. But today they lie no longer only on our Earth, but also well outside the solar system. There, new planets are sought and found. One of the challenges of modern astrophysics is the direct detection of extra- solar planets. To reach this goal, the largest available telescopes and most sophisticated detection techniques are required. A promising method to "see" and analyse extra-solar planets is based on the fact, that light reflected by a planet can be polarised. For its detection, accurate polarisation measurements are needed. This is one of the methods ESO intends to make use of to find new planets outside the solar system. The Institute of Astronomy of ETH Zürich contributes ZIMPOL to this planet-finder project. ZIMPOL is a very sensitive imaging polarimeter. This thesis is situated within the ESO-planet-finder project. It deals with two problems that are crucial for a successful mission: (1) Instrumental polarisation can seriously hamper the performance of the instrument. It is therefore essential, to keep instrumental polarisation very low. (2) A knowledge of the polarisation properties of our targets would be very helpful. For this reason the polarisation properties of our solar system planets are investigated. Promising candidates for a detection with ZIMPOL are large planets with atmospheres similar to those of our giant gas planets Jupiter, Saturn, Uranus and Neptune. In the first part of the thesis the planet-finder project is presented and the role of ZIMPOL is explained. To obtain the instrumental polarisation, the polarimetric properties of mirrors and other optical components of our planet- finder instrument are analysed. The instrumental polarisation for the wavelength range of 600 to 1000 nm and for all zenith distances is calculated with Mueller matrices. Methods for reducing the instrumental polarisation

  17. Suzaku Observations of the Monogem Ring and the Origin of the Gemini Hα Ring

    NASA Astrophysics Data System (ADS)

    Knies, Jonathan R.; Sasaki, Manami; Plucinsky, Paul P.

    2018-04-01

    We present the analysis of Suzaku X-ray observations of the Galactic supernova remnant (SNR) 'Monogem Ring', a large structure observed in X-rays with an extent of ≈ 25°, located at an anti-centre position. One observation close to the shock also coincides with a large ring-like structure observed in Hα, which is called the 'Gemini Hα ring'. We investigate the origin of the ring-like structure and also possible interactions with the SNR. We show that the SNR is expanding in a region with a density gradient, which has an effect on the morphology of the SNR and the properties of the plasma. The X-ray spectra are fit well with a collisional ionisation equilibrium (CIE) model with a temperature of kT ≈ 0.3 keV. The spectra obtained at a position where the SNR coincides with the Gemini Hα ring are better described with non-equilibrium ionisation (NEI) with a temperature of kT ≈ 1.0 keV. Based on the spectral analysis results, we estimate an age of t ≈ 6.8 × 104 yr for a distance of ≈300 pc, using the Sedov-Taylor solution. We have identified several early-type stars in the Hipparcos catalogue at a distance of 200- 300pc, which have most likely formed the 'Gemini Hα ring' by their powerful stellar winds.

  18. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    NASA Technical Reports Server (NTRS)

    Mena-Werth, Jose

    1998-01-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  19. SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark

    2011-01-01

    The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.

  20. A First-look Atmospheric Modeling Study of the Young Directly Imaged Planet-mass Companion, ROXs 42Bb

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Burrows, Adam; Daemgen, Sebastian

    2014-06-01

    We present and analyze JKsL' photometry and our previously published H-band photometry and K-band spectroscopy for ROXs 42Bb, an object Currie et al. first reported as a young directly imaged planet-mass companion. ROXs 42Bb exhibits IR colors redder than field L dwarfs but consistent with other planet-mass companions. From the H2O-2 spectral index, we estimate a spectral type of L0 ± 1; weak detections/non-detections of the CO bandheads, Na I, and Ca I support evidence for a young, low surface gravity object primarily derived from the H2(K) index. ROXs 42Bb's photometry/K-band spectrum are inconsistent with limiting cases of dust-free atmospheres (COND) and marginally inconsistent with the AMES/DUSTY models and the BT-SETTL models. However, ROXS 42Bb data are simultaneously fit by atmosphere models incorporating several micron-sized dust grains entrained in thick clouds, although further modifications are needed to better reproduce the K-band spectral shape. ROXs 42Bb's best-estimated temperature is T eff ~ 1950-2000 K, near the low end of the empirically derived range in Currie et al. For an age of ~1-3 Myr and considering the lifetime of the protostar phase, ROXs 42Bb's luminosity of log(L/L ⊙) ~ -3.07 ± 0.07 implies a mass of 9^{+3}_{-3} MJ , making it one of the lightest planetary-mass objects yet imaged.