Science.gov

Sample records for gender-specific proteomic profiling

  1. Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants.

    PubMed

    Kling, P; Norman, A; Andersson, P L; Norrgren, L; Förlin, L

    2008-10-01

    Proteomic effect screening in zebrafish liver was performed to generate hypotheses following exposure (21 days) to a structurally diverse mixture of brominated flame retardants (BFRs). Fish were exposed to two doses (10 and 100 nmol/g feed). Two-dimensional gel-electrophoresis, image analysis and MALDI-TOF mass-spectrometry revealed 13 and 19 significant responses in males and females, respectively. Effects on proteins related to cellular maintenance and stress were observed in both genders. Regulated proteins were gender-specific, but functionally indicated common protective responses (peroxiredoxin 6 and Zgc:92891 in males and transketolase in females) suggesting oxidative stress. Betaine homocysteine methyltransferase (BHMT) was induced in both genders. In addition a female-specific downregulation of ironhomeostatic proteins (iron-regulatory protein 1 and transferrin) were observed. Our proteomic approach revealed novel responses that suggest important gender-specific sensitivity to BFRs that should be considered when interpreting adverse effects of BFRs. PMID:18258299

  2. Gender-specific profiles of self-reported adolescent HIV risk behaviors.

    PubMed

    Krantz, Steven R; Lynch, Daryl A; Russell, Jan M

    2002-01-01

    The purposes of this study were to (a) identify behaviors that put adolescents at risk for HIV infection by retrospectively comparing a cohort of HIV positive and negative young adults and (b) determine gender-specific high-risk profiles. HIV-positive (n = 61) and HIV-negative (n = 124) individuals from two midwestern cities completed a survey tool prepared by the investigators examining six areas of behavior and activity identified in the literature as high risk. Alcohol use, drug use, and gang-related behaviors were not associated with HIV status in these young adults. Early, frequent, and unprotected sex with large numbers of partners were the predictive risk factors for HIV-seropositive status. Gender profiles, however, differed. Whereas the female profile suggested that early and unprotected sex were the only reliable predictors, HIV-positive male subjects had larger numbers of partners, engaged in more risky sexual behaviors, were more likely to have experienced sexual abuse before and during adolescence, and were more likely to have used cocaine during their adolescence. Conclusions include the confirmation of a resurgence of HIV among young males having sex with males and confirmation of females as the largest growing group of HIV-positive young adults. PMID:12469541

  3. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks

    PubMed Central

    Gómez-Serrano, María; Camafeita, Emilio; García-Santos, Eva; López, Juan A.; Rubio, Miguel A.; Sánchez-Pernaute, Andrés; Torres, Antonio; Vázquez, Jesús; Peral, Belén

    2016-01-01

    Obesity is a main global health issue and an outstanding cause of morbidity and mortality predisposing to type 2 diabetes (T2DM) and cardiovascular diseases. Huge research efforts focused on gene expression, cellular signalling and metabolism in obesity have improved our understanding of these disorders; nevertheless, to bridge the gap between the regulation of gene expression and changes in signalling/metabolism, protein levels must be assessed. We have extensively analysed visceral adipose tissue from age-, T2DM- and gender-matched obese patients using high-throughput proteomics and systems biology methods to identify new biomarkers for the onset of T2DM in obesity, as well as to gain insight into the influence of aging and gender in these disorders. About 250 proteins showed significant abundance differences in the age, T2DM and gender comparisons. In diabetic patients, remarkable gender-specific hallmarks were discovered regarding redox status, immune response and adipose tissue accumulation. Both aging and T2DM processes were associated with mitochondrial remodelling, albeit through well-differentiated proteome changes. Systems biology analysis highlighted mitochondrial proteins that could play a key role in the age-dependent pathophysiology of T2DM. Our findings could serve as a framework for future research in Translational Medicine directed at improving the quality of life of obese patients. PMID:27160966

  4. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks.

    PubMed

    Gómez-Serrano, María; Camafeita, Emilio; García-Santos, Eva; López, Juan A; Rubio, Miguel A; Sánchez-Pernaute, Andrés; Torres, Antonio; Vázquez, Jesús; Peral, Belén

    2016-01-01

    Obesity is a main global health issue and an outstanding cause of morbidity and mortality predisposing to type 2 diabetes (T2DM) and cardiovascular diseases. Huge research efforts focused on gene expression, cellular signalling and metabolism in obesity have improved our understanding of these disorders; nevertheless, to bridge the gap between the regulation of gene expression and changes in signalling/metabolism, protein levels must be assessed. We have extensively analysed visceral adipose tissue from age-, T2DM- and gender-matched obese patients using high-throughput proteomics and systems biology methods to identify new biomarkers for the onset of T2DM in obesity, as well as to gain insight into the influence of aging and gender in these disorders. About 250 proteins showed significant abundance differences in the age, T2DM and gender comparisons. In diabetic patients, remarkable gender-specific hallmarks were discovered regarding redox status, immune response and adipose tissue accumulation. Both aging and T2DM processes were associated with mitochondrial remodelling, albeit through well-differentiated proteome changes. Systems biology analysis highlighted mitochondrial proteins that could play a key role in the age-dependent pathophysiology of T2DM. Our findings could serve as a framework for future research in Translational Medicine directed at improving the quality of life of obese patients. PMID:27160966

  5. An integrated proteomic and metabolomic study on the gender-specific responses of mussels Mytilus galloprovincialis to tetrabromobisphenol A (TBBPA).

    PubMed

    Ji, Chenglong; Li, Fei; Wang, Qing; Zhao, Jianmin; Sun, Zuodeng; Wu, Huifeng

    2016-02-01

    Tetrabromobisphenol A (TBBPA), accounting for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China, is of great concern due to its diverse toxicities. In this study, we focused on the gender-specific responses of TBBPA in mussel Mytilus galloprovincialis using an integrated proteomic and metabolomic approach. After exposure of TBBPA (10 µg L(-1)) for one month, a total of 9 metabolites and 67 proteins were altered in mussel gills from exposed group. The significant changes of metabolites in female mussel gills from exposed group exhibited the disturbances in energy metabolism and osmotic regulation, while in male samples only be found the variation of metabolites related to osmotic regulation. iTRAQ-based proteomic analysis showed biological differences between male and female mussel gills from solvent control group. The higher levels of proteins related to primary and energy metabolism and defense mechanisms in male mussel gills meant a greater anti-stress capability of male mussels. Further analysis revealed that TBBPA exposure affected multiple biological processes consisting of production and development, material and energy metabolism, signal transduction, gene expression, defense mechanisms and apoptosis in both male and female mussels with different mechanisms. Specially, the responsive proteins of TBBPA in male mussels signified higher tolerance limits than those in female individuals, which was consistent with the biological differences between male and female mussel gills from solvent control group. This work suggested that the gender differences should be considered in ecotoxicology.

  6. iTRAQ-based quantitative proteomic analyses on the gender-specific responses in mussel Mytilus galloprovincialis to tetrabromobisphenol A.

    PubMed

    Ji, Chenglong; Wu, Huifeng; Wei, Lei; Zhao, Jianmin

    2014-12-01

    Tetrabromobisphenol A (TBBPA) accounts for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China and is the most widely used BFR in industrial products. It can induce diverse toxicities including hepatotoxicity, nephrotoxicity, neurotoxicity and endocrine disrupting effects in mammalian and fish models. In this work, we applied iTRAQ-based proteomics to investigate the gender-specific responses in mussel Mytilus galloprovincialis to TBBPA. Thirty-one proteins were differentially expressed in hepatopancreas between male and female mussels, which clearly indicated the biological differences between male and female mussels at the protein level. After exposure of TBBPA (18.4 nmol/L) for one month, a total of 60 proteins were differentially expressed in response to the TBBPA treatment in mussel hepatopancreas, among which 33 and 29 proteins were significantly altered in TBBPA-treated male and female mussel samples, respectively. Only two of the 60 proteins were commonly altered in both male and female mussel samples exposed to TBBPA. Based on KEGG analysis, these differentially expressed proteins of TBBPA-induced effects were assigned to several groups, including cytoskeleton, reproduction and development, metabolism, signal transduction, gene expression, stress response and apoptosis. Overall, results indicated that TBBPA exposure could induce apoptosis, oxidative and immune stresses and disruption in energy, protein and lipid metabolisms in both male and female mussels with different mechanisms. This work suggested that the gender differences should be considered in ecotoxicoproteomics.

  7. Proteomic analysis of arsenic-exposed zebrafish (Danio rerio) identifies altered expression in proteins involved in fibrosis and lipid uptake in a gender-specific manner.

    PubMed

    Carlson, Patrick; Smalley, David M; Van Beneden, Rebecca J

    2013-07-01

    The zebrafish (Danio rerio) was used to investigate protein expression in the liver following arsenic exposure. Several disorders have been linked to arsenic exposure, including cancer, diabetes, and cardiovascular disease. The mechanisms of arsenic toxicity are poorly understood. Prior studies have described altered gene expression, inflammation, and mitogenic signaling in acute or chronic exposure models. A proteomic approach was employed to investigate arsenic-induced alteration in the zebrafish liver proteome following a 7-day exposure to 50 ppb sodium arsenite. Over 740 unique proteins were identified, with fewer than 2% showing differential expression. Molecular pathway analysis software identified lipid metabolism and transport as potential molecular targets. Immunoblots were used to confirm protein expression changes, whereas qPCR was employed to investigate gene expression changes. Overall, 25 proteins were differentially expressed in a gender-specific manner, 11 in males and 14 in females. Of these 25, a single protein, hydroxysteroid dehydrogenase like 2, showed decreased expression in both males and females following arsenic exposure. These findings indicate that protein expression is altered following arsenic exposure. The changes presented here seem to be most prevalent in lipid transport and metabolic pathways, suggesting a potential increase in fibrosis in males and decreased lipid accumulation and uptake in females.

  8. Gender-Specific Differences in Clinical Profile and Biochemical Parameters in Patients with Cushing's Disease: A Single Center Experience

    PubMed Central

    Zhu, Xiaoming; Zeng, Meifang; Zhuang, Yan; Zhou, Yiting; Zhang, Zhaoyun; Yang, Yehong; Wang, Yongfei; Ye, Hongying; Li, Yiming

    2015-01-01

    Cushing's disease (CD) is remarkably prevalent among females; however, more severe clinical presentation and adverse outcomes have been found in males. The purpose of this study was to investigate the overall clinical profile and biochemical parameters in patients with CD to identify the gender differences. Here we describe our series of CD patients referred to our medical center during 2012-2013. Among 73 cases, females presented a marked preponderance compared to males. Males had significantly higher ACTH, BMI, HbA1c, systolic blood pressure, and hemoglobin than females. For the first time, the incidence of fatty liver and hepatic function was also shown to be elevated in males. Multiple linear regression analysis was performed to further investigate the correlation of risk factors with hypokalemia, HbA1c, and systolic blood pressure. Gender and serum cortisol were associated with hypokalemia. Age, gender, and serum cortisol were significantly associated with HbA1c. Additionally, only gender was significantly associated with systolic blood pressure. Regarding clinical presentation, purple striae seemed to occur more frequently in males than in females. Thus, more severe clinical presentation, biochemical parameters, and complications were found in males than in females. Clinical professionals should pay more attention to the diagnosis and management of males with CD. PMID:26064114

  9. Profiling of the cell surface proteome.

    PubMed

    Jang, Jun Ho; Hanash, Samir

    2003-10-01

    The in depth-mining of the proteome necessitates the comprehensive analysis of proteins in individual subcellular compartments to uncover interesting patterns of protein expression that include assessment of protein location, trafficking and of post-translational modifications that are location specific. One of the compartments of substantial interest from a diagnostic and therapeutic point of view is the plasma membrane which contains intrinsic membrane proteins and other proteins expressed on the cell surface. Technologies are currently available for the comprehensive profiling of the cell surface proteome that rely on protein tagging of intact cells. Studies are emerging that point to unexpected patterns of expression of specific proteins on the cell surface, with a common occurrence of proteins previously considered to occur predominantly in other compartments, notably the endoplasmic reticulum. The profiling of the cell surface and plasma membrane proteomes will likely provide novel insights and uncover disease related alterations. PMID:14625857

  10. Proteome and peptidome profiling of spider venoms.

    PubMed

    Liang, Songping

    2008-10-01

    Spider venoms are an important source of novel molecules with different pharmacological properties. Recent technological developments of proteomics, especially mass spectrometry, have greatly promoted the systematic analysis of spider venom. The enormous diversity of venom components between spider species and the lack of complete genome sequence, and the limited database of protein and peptide sequences make spider venom profiling a challenging task and special considerations for technical strategies are required. This review highlights recently used methods for spider venom profiling. In general, spider venom profiling can be achieved in two parts: proteome profiling of the components with molecular weights above 10 kDa, and peptidome profiling of the components with a molecular weight of 10 kDa or under through the use of different methods. Venom proteomes are rich in various enzymes, hemocyanins, toxin-like proteins and many unknown proteins. Peptidomes are dominated by peptides with a mass of 3-6 kDa with three to five disulfide bonds. Although there are some similarities in peptide superfamily types of venoms from different spider species, the venom profile of each species is unique. The linkage of the peptidomic data with that of the cDNA approach is discussed briefly. Future challenges and perspectives are also highlighted in this review.

  11. Shotgun proteome profile of Populus developing xylem

    SciTech Connect

    Kalluri, Udaya C; Hurst, Gregory {Greg} B; Lankford, Patricia K; Ranjan, Priya; Pelletier, Dale A

    2009-01-01

    Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here we report the application of shotgun tandem mass spectrometry profiling to the proteome of Populus developing xylem. Additionally, we mined public databases to obtain information in support of subcellular localization, transcript-level expression, and functional categorization of these proteins. Nearly 6000 different proteins were identified from the xylem proteome, with over 4400 proteins identified from one or more unique peptides. In addition to finding protein-level evidence of candidate wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, phenylalanine ammonia-lyase, and 4-coumarate:CoA ligase, several other potentially new candidate genes in the pathway were discovered. In order to identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factor and chromatin remodeling proteins were identified using this method, such as LIM and NAC domain transcription factors and CHB3-SWI/SNF-related proteins. Further application of these proteomics methods will enhance understanding not only of cell wall biosynthesis in system biology modeling, but also other plant developmental and physiological pathways.

  12. Global MS-Based Proteomics Drug Profiling.

    PubMed

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  13. Global MS-Based Proteomics Drug Profiling.

    PubMed

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  14. Distinctive proteomic profiles among different regions of human carotid plaques in men and women

    PubMed Central

    Liang, Wenzhao; Ward, Liam J.; Karlsson, Helen; Ljunggren, Stefan A.; Li, Wei; Lindahl, Mats; Yuan, Xi-Ming

    2016-01-01

    The heterogeneity of atherosclerotic tissue has limited comprehension in proteomic and metabolomic analyses. To elucidate the functional implications, and differences between genders, of atherosclerotic lesion formation we investigated protein profiles from different regions of human carotid atherosclerotic arteries; internal control, fatty streak, plaque shoulder, plaque centre, and fibrous cap. Proteomic analysis was performed using 2-DE with MALDI-TOF, with validation using nLC-MS/MS. Protein mapping of 2-DE identified 52 unique proteins, including 15 previously unmapped proteins, of which 41 proteins were confirmed by nLC-MS/MS analysis. Expression levels of 18 proteins were significantly altered in plaque regions compared to the internal control region. Nine proteins showed site-specific alterations, irrespective of gender, with clear associations to extracellular matrix remodelling. Five proteins display gender-specific alterations with 2-DE, with two alterations validated by nLC-MS/MS. Gender differences in ferritin light chain and transthyretin were validated using both techniques. Validation of immunohistochemistry confirmed significantly higher levels of ferritin in plaques from male patients. Proteomic analysis of different plaque regions has reduced the effects of plaque heterogeneity, and significant differences in protein expression are determined in specific regions and between genders. These proteomes have functional implications in plaque progression and are of importance in understanding gender differences in atherosclerosis. PMID:27198765

  15. Proteomic profiling of hempseed proteins from Cheungsam.

    PubMed

    Park, Seul-Ki; Seo, Jong-Bok; Lee, Mi-Young

    2012-02-01

    Proteomic profiling of hempseed proteins from a non-drug type of industrial hemp (Cannabis sativa L.), Cheungsam, was conducted using two-dimensional gel electrophoresis and mass spectrometry. A total of 1102 protein spots were resolved on pH 3-10 immobilized pH gradient strips, and 168 unique protein spots were identified. The proteins were categorized based on function, including involvement in energy regulation (23%), metabolism (18%), stress response (16%), unclassified (12%), cytoskeleton (11%), binding function (5%), and protein synthesis (3%). These proteins might have important biological functions in hempseed, such as germination, storage, or development.

  16. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer

    PubMed Central

    2014-01-01

    Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research. PMID:24397796

  17. Proteomic profiling of the rat hypothalamus

    PubMed Central

    2012-01-01

    Background The hypothalamus plays a pivotal role in numerous mechanisms highly relevant to the maintenance of body homeostasis, such as the control of food intake and energy expenditure. Impairment of these mechanisms has been associated with the metabolic disturbances involved in the pathogenesis of obesity. Since rodent species constitute important models for metabolism studies and the rat hypothalamus is poorly characterized by proteomic strategies, we performed experiments aimed at constructing a two-dimensional gel electrophoresis (2-DE) profile of rat hypothalamus proteins. Results As a first step, we established the best conditions for tissue collection and protein extraction, quantification and separation. The extraction buffer composition selected for proteome characterization of rat hypothalamus was urea 7 M, thiourea 2 M, CHAPS 4%, Triton X-100 0.5%, followed by a precipitation step with chloroform/methanol. Two-dimensional (2-D) gels of hypothalamic extracts from four-month-old rats were analyzed; the protein spots were digested and identified by using tandem mass spectrometry and database query using the protein search engine MASCOT. Eighty-six hypothalamic proteins were identified, the majority of which were classified as participating in metabolic processes, consistent with the finding of a large number of proteins with catalytic activity. Genes encoding proteins identified in this study have been related to obesity development. Conclusion The present results indicate that the 2-DE technique will be useful for nutritional studies focusing on hypothalamic proteins. The data presented herein will serve as a reference database for studies testing the effects of dietary manipulations on hypothalamic proteome. We trust that these experiments will lead to important knowledge on protein targets of nutritional variables potentially able to affect the complex central nervous system control of energy homeostasis. PMID:22519962

  18. Serum proteomic profiles of depressive subtypes.

    PubMed

    Lamers, F; Bot, M; Jansen, R; Chan, M K; Cooper, J D; Bahn, S; Penninx, B W J H

    2016-01-01

    Depression is a highly heterogeneous disorder. Accumulating evidence suggests biological and genetic differences between subtypes of depression that are homogeneous in symptom presentation. We aimed to evaluate differences in serum protein profiles between persons with atypical and melancholic depressive subtypes, and compare these profiles with serum protein levels of healthy controls. We used the baseline data from the Netherlands Study of Depression and Anxiety on 414 controls, 231 persons with a melancholic depressive subtype and 128 persons with an atypical depressive subtype for whom the proteomic data were available. Depressive subtypes were previously established using a data-driven analysis, and 171 serum proteins were measured on a multi-analyte profiling platform. Linear regression models were adjusted for several covariates and corrected for multiple testing using false discovery rate q-values. We observed differences in analytes between the atypical and melancholic subtypes (9 analytes, q<0.05) and between atypical depression and controls (23 analytes, q<0.05). Eight of the nine markers differing between the atypical and melancholic subtype overlapped with markers from the comparison between atypical subtype and controls (mesothelin, leptin, IGFBP1, IGFBP2, FABPa, insulin, C3 and B2M), and were mainly involved in cellular communication and signal transduction, and immune response. No markers differed significantly between the melancholic subtype and controls. To conclude, although some uncertainties exist in our results as a result of missing data imputation and lack of proteomic replication samples, many of the identified analytes are inflammatory or metabolic markers, which supports the notion of atypical depression as a syndrome characterized by metabolic disturbances and inflammation, and underline the importance and relevance of subtypes of depression in biological and genetic research, and potentially in the treatment of depression. PMID:27404283

  19. Proteomic profiling of the epileptic dentate gyrus

    PubMed Central

    Li, Aiqing; Choi, Yun-Sik; Dziema, Heather; Cao, Ruifeng; Cho, Hee-Yeon; Jung, Yeon Joo; Obrietan, Karl

    2010-01-01

    The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy. Here we used the pilocarpine model of temporal lobe epilepsy in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the pathogenic process. Using a two-dimensional gel electrophoresis-based approach, followed by liquid chromatography-tandem mass spectrometry, 24 differentially expressed proteins, including 9 phosphoproteins, were identified. Functionally, these proteins were organized into several classes, including synaptic physiology, cell structure, cell stress, metabolism and energetics. The altered expression of three proteins involved in synaptic physiology, actin, profilin 1 and α-synuclein, was validated by secondary methods. Interestingly, marked changes in protein expression were detected in the supragranular cell region, an area where robust mossy fibers sprouting occurs. Together, these data provide new molecular insights into the altered protein profile of the epileptogenic dentate gyrus and point to potential pathophysiologic mechanisms underlying epileptogenesis. PMID:20608933

  20. A novel profile biomarker diagnosis for mass spectral proteomics.

    PubMed

    Han, Henry

    2014-01-01

    Mass spectrometry based proteomics technologies have allowed for a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, they face acute challenges from a data reproducibility standpoint, in that no two independent studies have been found to produce the same proteomic patterns. Such reproducibility issues cause the identified biomarker patterns to lose repeatability and prevent real clinical usage. In this work, we propose a profile biomarker approach to overcome this problem from a machine-learning viewpoint by developing a novel derivative component analysis (DCA). As an implicit feature selection algorithm, derivative component analysis enables the separation of true signals from red herrings by capturing subtle data behaviors and removing system noises from a proteomic profile. We further demonstrate its advantages in disease diagnosis by viewing input data as a profile biomarker. The results from our profile biomarker diagnosis suggest an effective solution to overcoming proteomics data's reproducibility problem, present an alternative method for biomarker discovery in proteomics, and provide a good candidate for clinical proteomic diagnosis.

  1. A novel profile biomarker diagnosis for mass spectral proteomics.

    PubMed

    Han, Henry

    2014-01-01

    Mass spectrometry based proteomics technologies have allowed for a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, they face acute challenges from a data reproducibility standpoint, in that no two independent studies have been found to produce the same proteomic patterns. Such reproducibility issues cause the identified biomarker patterns to lose repeatability and prevent real clinical usage. In this work, we propose a profile biomarker approach to overcome this problem from a machine-learning viewpoint by developing a novel derivative component analysis (DCA). As an implicit feature selection algorithm, derivative component analysis enables the separation of true signals from red herrings by capturing subtle data behaviors and removing system noises from a proteomic profile. We further demonstrate its advantages in disease diagnosis by viewing input data as a profile biomarker. The results from our profile biomarker diagnosis suggest an effective solution to overcoming proteomics data's reproducibility problem, present an alternative method for biomarker discovery in proteomics, and provide a good candidate for clinical proteomic diagnosis. PMID:24297560

  2. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots

    PubMed Central

    Sen, Arko; Heredia, Nicole; Senut, Marie-Claude; Hess, Matthew; Land, Susan; Qu, Wen; Hollacher, Kurt; Dereski, Mary O; Ruden, Douglas M

    2015-01-01

    Aims In this paper, we tested the hypothesis that early life lead (Pb) exposure associated DNA methylation (5mC) changes are dependent on the sex of the child and can serve as biomarkers for Pb exposure. Methods In this pilot study, we measured the 5mC profiles of DNA extracted from dried blood spots (DBS) in a cohort of 43 children (25 males and 18 females; ages from 3 months to 5 years) from Detroit. Result & Discussion We found that the effect of Pb-exposure on the 5-mC profiles can be separated into three subtypes: affected methylation loci which are conserved irrespective of the sex of the child (conserved); affected methylation loci unique to males (male-specific); and affected methylation loci unique to females (female-specific). PMID:26077427

  3. Proteomic profile of dormant Trichophyton Rubrum conidia

    PubMed Central

    Leng, Wenchuan; Liu, Tao; Li, Rui; Yang, Jian; Wei, Candong; Zhang, Wenliang; Jin, Qi

    2008-01-01

    Background Trichophyton rubrum is the most common dermatophyte causing fungal skin infections in humans. Asexual sporulation is an important means of propagation for T. rubrum, and conidia produced by this way are thought to be the primary cause of human infections. Despite their importance in pathogenesis, the conidia of T. rubrum remain understudied. We intend to intensively investigate the proteome of dormant T. rubrum conidia to characterize its molecular and cellular features and to enhance the development of novel therapeutic strategies. Results The proteome of T. rubrum conidia was analyzed by combining shotgun proteomics with sample prefractionation and multiple enzyme digestion. In total, 1026 proteins were identified. All identified proteins were compared to those in the NCBI non-redundant protein database, the eukaryotic orthologous groups database, and the gene ontology database to obtain functional annotation information. Functional classification revealed that the identified proteins covered nearly all major biological processes. Some proteins were spore specific and related to the survival and dispersal of T. rubrum conidia, and many proteins were important to conidial germination and response to environmental conditions. Conclusion Our results suggest that the proteome of T. rubrum conidia is considerably complex, and that the maintenance of conidial dormancy is an intricate and elaborate process. This data set provides the first global framework for the dormant T. rubrum conidia proteome and is a stepping stone on the way to further study of the molecular mechanisms of T. rubrum conidial germination and the maintenance of conidial dormancy. PMID:18578874

  4. Proteomic Profiling of Rat Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Marriott, Gerard; Bless, Diane M.

    2006-01-01

    Purpose: Proteomic methodologies offer promise in elucidating the systemwide cellular and molecular processes that characterize normal and diseased thyroarytenoid (TA) muscle. This study examined methodological issues central to the application of 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) to the study of…

  5. Proteome profiling of Leishmania infantum promastigotes.

    PubMed

    Alcolea, Pedro J; Alonso, Ana; Larraga, Vicente

    2011-01-01

    A proteome analysis of the promastigote stage of the trypanosomatid parasite Leishmania infantum (MON-1 zymodeme) is described here for the first time. Total protein extracts were prepared at early logarithmic and stationary phases of replicate axenic cultures and processed by 2D electrophoresis (pH 3-10). A total of 28 differentially regulated proteins were identified by matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry. This approach has revealed that the electron transfer flavoprotein (ETF) and the eukaryotic elongation factor 1α (eEF1α) subunit have the same differential expression pattern at the protein and mRNA levels, up-regulation in the stationary phase. A low-molecular-weight isoform and an alternatively processed form of the eEF1α subunit have been detected. A 51 kDa subunit of replication factor A is up-regulated in dividing logarithmic promastigotes. None of the proteins described here shows opposite differential regulation values with the corresponding mRNA levels. Taken together with previous approaches to the proteome and the transcriptome, this report contributes to the elucidation of the differential regulation patterns of the ETF, the eEF1α subunit, the 40S ribosomal protein S12, α-tubulin and the T-complex protein 1 subunit γ throughout the life cycle of the parasites from the genus Leishmania. PMID:21569158

  6. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    PubMed

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  7. Serum proteomic profiling of major depressive disorder

    PubMed Central

    Bot, M; Chan, M K; Jansen, R; Lamers, F; Vogelzangs, N; Steiner, J; Leweke, F M; Rothermundt, M; Cooper, J; Bahn, S; Penninx, B W J H

    2015-01-01

    Much has still to be learned about the molecular mechanisms of depression. This study aims to gain insight into contributing mechanisms by identifying serum proteins related to major depressive disorder (MDD) in a large psychiatric cohort study. Our sample consisted of 1589 participants of the Netherlands Study of Depression and Anxiety, comprising 687 individuals with current MDD (cMDD), 482 individuals with remitted MDD (rMDD) and 420 controls. We studied the relationship between MDD status and the levels of 171 serum proteins detected on a multi-analyte profiling platform using adjusted linear regression models. Pooled analyses of two independent validation cohorts (totaling 78 MDD cases and 156 controls) was carried out to validate our top markers. Twenty-eight analytes differed significantly between cMDD cases and controls (P<0.05), whereas 10 partly overlapping markers differed significantly between rMDD cases and controls. Antidepressant medication use and comorbid anxiety status did not substantially impact on these findings. Sixteen of the cMDD-related markers had been assayed in the pooled validation cohorts, of which seven were associated with MDD. The analytes prominently associated with cMDD related to diverse cell communication and signal transduction processes (pancreatic polypeptide, macrophage migration inhibitory factor, ENRAGE, interleukin-1 receptor antagonist and tenascin-C), immune response (growth-regulated alpha protein) and protein metabolism (von Willebrand factor). Several proteins were implicated in depression. Changes were more prominent in cMDD, suggesting that molecular alterations in serum are associated with acute depression symptomatology. These findings may help to establish serum-based biomarkers of depression and could improve our understanding of its pathophysiology. PMID:26171980

  8. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    PubMed Central

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  9. Proteomic profiling change during the early development of silicosis disease

    PubMed Central

    Miao, Rongming; Ding, Bangmei; Zhang, Yingyi; Xia, Qian; Li, Yong

    2016-01-01

    Background Silicosis is one of several severe occupational diseases for which effective diagnostic tools during early development are currently unavailable. In this study we focused on proteomic profiling during the early stages of silicosis to investigate the pathophysiology and identify the proteins involved. Methods Two-dimensional (2D) gel electrophoresis and MALDI-TOF-MS were used to assess the proteomic differences between healthy individuals (HI), dust-exposed workers without silicosis (DEW) and silicosis patients (SP). Proteins abundances that differed by a factor of two-fold or greater were subjected to more detailed analysis, and enzyme linked to immunosorbent assay (ELISA) was employed to correlate with protein expression data. Results Compared with HI, 42 proteins were more abundant and 8 were less abundant in DEW, and these were also differentially accumulated in SP. Closer inspection revealed that serine protease granzyme A, alpha-1-B-glycoprotein (A1BG) and the T4 surface glycoprotein precursor (TSGP) were among the up-regulated proteins in DEW and SP. Significant changes in serine proteases, glycoproteins and proto-oncogenes may be associated with the response to cytotoxicity and infectious pathogens by activation of T cells, positive regulation of extracellular matrix structural constituents and immune response, and fibroblast proliferation. Up-regulation of cytokines included TNFs, interferon beta precursor, interleukin 6, atypical chemokine receptor 2, TNFR13BV, and mutant IL-17F may be involved in the increased and persistent immune response and fibrosis that occurred during silicosis development. Conclusions Granzymes, glycoproteins, cytokines and immune factors were dramatically involved in the immune response, metabolism, signal regulation and fibrosis during the early development of silicosis. Proteomic profiling has expanded our understanding of the pathogenesis of silicosis, and identified a number of targets that may be potential

  10. Comparative proteomic profiling of Hodgkin lymphoma cell lines.

    PubMed

    Vergara, D; Simeone, P; De Matteis, S; Carloni, S; Lanuti, P; Marchisio, M; Miscia, S; Rizzello, A; Napolitano, R; Agostinelli, C; Maffia, M

    2016-01-01

    Classical Hodgkin lymphoma (cHL) is a malignancy with complex pathogenesis. The hallmark of the disease is the presence of large mononucleated Hodgkin and bi- or multinucleated Reed/Sternberg (H/RS) cells. The origin of HRS cells in cHL is controversial as these cells show the coexpression of markers of several lineages. Using a proteomic approach, we compared the protein expression profile of cHL models of T- and B-cell derivation to find proteins differentially expressed in these cell lines. A total of 67 proteins were found differentially expressed between the two cell lines including metabolic proteins and proteins involved in the regulation of the cytoskeleton and/or cell migration, which were further validated by western blotting. Additionally, the expression of selected B- and T-cell antigens was also assessed by flow cytometry to reveal significant differences in the expression of different surface markers. Bioinformatics analysis was then applied to our dataset to find enriched pathways and networks, and to identify possible key regulators. In the present study, a proteomic approach was used to compare the protein expression profiles of two cHL cell lines. The identified proteins and/or networks, many of which not previously related to cHL, may be important to better define the pathogenesis of the disease, to identify novel diagnostic markers, and to design new therapeutic strategies. PMID:26588820

  11. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles.

    PubMed

    Ortiz, Pedro A; Bruno, Maribel E; Moore, Tanya; Nesnow, Stephen; Winnik, Witold; Ge, Yue

    2010-03-01

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we identified 62 proteins that were altered. Several of these protein changes detected by 2-DE/MS were verified by Western blot analyses. These differentially expressed proteins were mapped using Ingenuity Pathway Analyses (IPA) canonical pathways and IPA tox lists. Forty-four pathways/lists were identified. IPA was also used to create networks of interacting protein clusters. The protein-generated IPA canonical pathways and IPA tox lists were compared to those pathways and lists previously generated from genomic analyses from livers of mice treated with propiconazole under the same experimental conditions. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data with 27 pathways common to both proteomic and genomic analyses. However, there were also 17 pathways/lists identified only by proteomics analysis and 21 pathways/lists only identified by genomic analysis. The protein network analysis produced interacting subnetworks centered around hepatocyte nuclear factor 4 alpha (HNF4 alpha), MYC, proteasome subunit type 4 alpha, and glutathione S-transferase (GST). The HNF4 alpha network hub was also identified by genomic analysis. Five GST isoforms were identified by proteomic analysis and GSTs were present in 10 of the 44 protein-based pathways/lists. Hepatic GST activities were compared between mice treated with propiconazole and 2 additional conazoles and higher GST activities were found to be associated with the tumorigenic conazoles. Overall, this comparative proteomic and genomic study has revealed a series of alterations in livers induced by propiconazole: nuclear receptor

  12. Proteomic profiling of rat lung epithelial cells induced by acrolein

    PubMed Central

    Sarkar, Poonam; Hayes, Barbara E.

    2009-01-01

    Aims Acrolein is a highly toxic unsaturated aldehyde and is also an endogenous byproduct produced from lipid peroxidation. It can be formed from the breakdown of certain pollutants in outdoor air or from burning tobacco or gasoline. Inhalation and dermal exposure to acrolein are extremely toxic to human tissue. Although it is known that acrolein is toxic to lung tissue, no studies have attempted to address the changes induced by acrolein on a global scale. Main methods In the present study we have attempted to address the changes in global protein expression induced by acrolein using proteomics analysis in rat lung epithelial cells. Key findings Our analysis reveals a comprehensive profiling of the proteins that includes a heterogeneous class of proteins and this compels one to consider that the toxic response to acrolein is very complex. There were 34 proteins that showed changes between the control cells and after acrolein treatment. The expression of 18 proteins was increased and the expression of 16 proteins was decreased following exposure to acrolein. We have further validated two differentially expressed proteins namely annexin II (ANXII) and prohibitin (PHB) in lung epithelial cells treated with acrolein. Significance Based on the results of the overall proteomic analysis, acrolein appears to induce changes in a diverse range of proteins suggesting a complex mechanism of acrolein-induced toxicity in lung epithelial cells. PMID:19490921

  13. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    PubMed Central

    Prado, Renata S.; Bailão, Alexandre M.; Silva, Lívia C.; de Oliveira, Cecília M. A.; Marques, Monique F.; Silva, Luciano P.; Silveira-Lacerda, Elisângela P.; Lima, Aliny P.; Soares, Célia M.; Pereira, Maristela

    2015-01-01

    The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied. PMID:26150808

  14. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    PubMed

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. PMID:27612743

  15. Microbial Proteome Profiling and Systems Biology: Applications to Mycobacterium tuberculosis.

    PubMed

    Schubert, Olga T; Aebersold, Ruedi

    2015-01-01

    Each year, 1.3 million people die from tuberculosis, an infectious disease caused by Mycobacterium tuberculosis. Systems biology-based strategies might significantly contribute to the knowledge-guided development of more effective vaccines and drugs to prevent and cure infectious diseases. To build models simulating the behaviour of a system in response to internal or external stimuli and to identify potential targets for therapeutic intervention, systems biology approaches require the acquisition of quantitative molecular profiles on many perturbed states. Here we review the current state of proteomic analyses in Mycobacterium tuberculosis and discuss the potential of recently emerging targeting mass spectrometry-based techniques which enable fast, sensitive and accurate protein measurements.

  16. Dataset of target mass spectromic proteome profiling for human chromosome 18.

    PubMed

    Ilgisonis, Ekaterina V; Kopylov, Arthur T; Zgoda, Victor G

    2016-09-01

    Proteome profiling is a type of quantitative analysis that reveals level of protein expression in the sample. Proteome profiling by using selected reaction monitoring is an approach for the Chromosome-centric Human Proteome Project (C-HPP). Here we describe dataset generated in the course of the pilot phase of Russian part of C-HPP, which was focused on human Chr 18 proteins. Proteome profiling was performed using stable isotope-labeled standards (SRM/SIS) for plasma, liver tissue and HepG2 cells. Dataset includes both positive and negative results of protein detection. These data were partly discussed in recent publications, "Chromosome 18 Transcriptome Profiling and Targeted Proteome Mapping in Depleted Plasma, Liver Tissue and HepG2 Cells" [1] and "Chromosome 18 transcriptoproteome of liver tissue and HepG2 Cells and targeted proteome mapping in depleted plasma: Update 2013" [2], supporting the accompanying publication "State of the Chromosome 18-centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells" [3], and are deposited at the ProteomeXchange via the PASSEL repository with the dataset identifier PASSEL: PASS00697 for liver and HepG2 cell line.

  17. Dataset of target mass spectromic proteome profiling for human chromosome 18.

    PubMed

    Ilgisonis, Ekaterina V; Kopylov, Arthur T; Zgoda, Victor G

    2016-09-01

    Proteome profiling is a type of quantitative analysis that reveals level of protein expression in the sample. Proteome profiling by using selected reaction monitoring is an approach for the Chromosome-centric Human Proteome Project (C-HPP). Here we describe dataset generated in the course of the pilot phase of Russian part of C-HPP, which was focused on human Chr 18 proteins. Proteome profiling was performed using stable isotope-labeled standards (SRM/SIS) for plasma, liver tissue and HepG2 cells. Dataset includes both positive and negative results of protein detection. These data were partly discussed in recent publications, "Chromosome 18 Transcriptome Profiling and Targeted Proteome Mapping in Depleted Plasma, Liver Tissue and HepG2 Cells" [1] and "Chromosome 18 transcriptoproteome of liver tissue and HepG2 Cells and targeted proteome mapping in depleted plasma: Update 2013" [2], supporting the accompanying publication "State of the Chromosome 18-centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells" [3], and are deposited at the ProteomeXchange via the PASSEL repository with the dataset identifier PASSEL: PASS00697 for liver and HepG2 cell line. PMID:27595127

  18. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis.

    PubMed

    Lourido, Lucía; Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Fernández-Tajes, Juan; Blanco, Francisco J; Ruiz-Romero, Cristina

    2014-12-01

    Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.

  19. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    PubMed Central

    Kawaguchi, Nanako; Machida, Mitsuyo; Nakanishi, Toshio

    2013-01-01

    Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions. PMID:24073335

  20. Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells

    PubMed Central

    Ghosh, Santosh K.; Yohannes, Elizabeth; Bebek, Gurkan; Weinberg, Aaron; Jiang, Bin; Willard, Belinda; Chance, Mark R.; Kinter, Michael T.; McCormick, Thomas S.

    2012-01-01

    Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached. Combining 2D gel electrophoresis with shotgun proteomics resulted in identification of 1662 NHOEC proteins. Proteome annotations were performed based on protein classes, molecular functions, disease association and membership in canonical and metabolic signaling pathways. Comparing the NHOEC proteome with a database of innate immunity-relevant interactions (InnateDB) identified 64 common proteins associated with innate immunity. Comparison with published salivary proteomes revealed that 738/1662 NHOEC proteins were common, suggesting that significant numbers of salivary proteins are of epithelial origin. Gene ontology analysis showed similarities in the distributions of NHOEC and saliva proteomes with regard to biological processes, and molecular functions. We also assessed the inter-individual variability of the NHOEC proteome and observed it to be comparable with other primary cells. The baseline proteome described in this study should serve as a resource for proteome studies of the oral mucosa, especially in relation to disease processes. PMID:23035736

  1. Proteomic Profiling of a Biomimetic Drug Delivery Platform

    PubMed Central

    Corbo, Claudia; Parodi, Alessandro; Evangelopoulos, Michael; Engler, David A.; Matsunami, Risë K.; Engler, Anthony C.; Molinaro, Roberto; Scaria, Shilpa; Salvatore, Francesco; Tasciotti, Ennio

    2014-01-01

    Current delivery platforms are typically designed for prolonged circulation that favors superior accumulation of the payload in the targeted tissue. The design of efficient surface modifications determines both a longer circulation time and targeting abilities of particles. The optimization of synthesis protocols to efficiently combine targeting molecules and elements that allow for an increased circulation time can be challenging and almost impossible when several functional elements are needed. On the other hand, in the last decade, the development of bioinspired technologies was proposed as a new approach with which to increase particle safety, biocompatibility and targeting, while maintaining the synthesis protocols simple and reproducible. Recently, we developed a new drug delivery system inspired by the biology of immune cells called leukolike vector (LLV) and formed by a nanoporous silicon core and a shell derived from the leucocyte cell membrane. The goal of this study is to investigate the protein content of the LLV. Here we report the proteomic profiling of the LLV and demonstrate that our approach can be used to modify the surface of synthetic particles with more than 150 leukocyte membrane-associated proteins that determine particle safety, circulation time and targeting abilities towards inflamed endothelium. PMID:25382209

  2. Proteomic profile of Aspergillus flavus in response to water activity.

    PubMed

    Zhang, Feng; Zhong, Hong; Han, Xiaoyun; Guo, Zhenni; Yang, Weiqiang; Liu, Yongfeng; Yang, Kunlong; Zhuang, Zhenhong; Wang, Shihua

    2015-03-01

    Aspergillus flavus, a common contaminant of crops and stored grains, can produce aflatoxins that are harmful to humans and other animals. Water activity (aw) is one of the key factors influencing both fungal growth and mycotoxin production. In this study, we used the isobaric tagging for relative and absolute quantitation (iTRAQ) technique to investigate the effect of aw on the proteomic profile of A. flavus. A total of 3566 proteins were identified, of which 837 were differentially expressed in response to variations in aw. Among these 837 proteins, 403 were over-expressed at 0.99 aw, whereas 434 proteins were over-expressed at 0.93 aw. According to Gene Ontology (GO) analysis, the secretion of extracellular hydrolases increased as aw was raised, suggesting that extracellular hydrolases may play a critical role in induction of aflatoxin biosynthesis. On the basis of Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categorizations, we identified an exportin protein, KapK, that may down-regulate aflatoxin biosynthesis by changing the location of NirA. Finally, we considered the role of two osmotic stress-related proteins (Sln1 and Glo1) in the Hog1 pathway and investigated the expression patterns of proteins related to aflatoxin biosynthesis. The data uncovered in this study are critical for understanding the effect of water stress on toxin production and for the development of strategies to control toxin contamination of agricultural products.

  3. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients

    PubMed Central

    Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets’ tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight

  4. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    PubMed

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  5. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    PubMed Central

    Perroud, Bertrand; Lee, Jinoo; Valkova, Nelly; Dhirapong, Amy; Lin, Pei-Yin; Fiehn, Oliver; Kültz, Dietmar; Weiss, Robert H

    2006-01-01

    Background Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls. Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids

  6. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    PubMed

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  7. The Urine Proteome Profile Is Different in Neuromyelitis Optica Compared to Multiple Sclerosis: A Clinical Proteome Study

    PubMed Central

    Kristensen, Lars P.; Burton, Mark; Csepany, Tunde; Simo, Magdolna; Dioszeghy, Peter; Sejbaek, Tobias; Grebing, Manuela; Heegaard, Niels H. H.; Illes, Zsolt

    2015-01-01

    Objectives Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO), NMO spectrum disorders (NMO-SD) and multiple sclerosis (MS). Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS. Methods The proteins in urine samples from anti-aquaporin 4 (AQP4) seropositive NMO/NMO-SD patients (n = 32), patients with MS (n = 46) and healthy subjects (HS, n = 31) were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig) in the urine were validated by nephelometry in an independent cohort (n = 9–10 pr. groups). Results The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002). Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD. Conclusion The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS. PMID:26460890

  8. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.

    PubMed

    Dubois, Louise; Ronquist, Karl K Göran; Ek, Bo; Ronquist, Gunnar; Larsson, Anders

    2015-11-01

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  9. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  10. Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein-Profiling Technologies

    PubMed Central

    Bruce, Can; Stone, Kathryn; Gulcicek, Erol; Williams, Kenneth

    2013-01-01

    Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass-to-charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post-translational modifications and a greater sensitivity in the quantitation of targeted proteins. PMID:23504934

  11. Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational research

    PubMed Central

    Hughes, Christopher S.; McConechy, Melissa K.; Cochrane, Dawn R.; Nazeran, Tayyebeh; Karnezis, Anthony N.; Huntsman, David G.; Morin, Gregg B.

    2016-01-01

    Although re-sequencing of gene panels and mRNA expression profiling are now firmly established in clinical laboratories, in-depth proteome analysis has remained a niche technology, better suited for studying model systems rather than challenging materials such as clinical trial samples. To address this limitation, we have developed a novel and optimized platform called SP3-Clinical Tissue Proteomics (SP3-CTP) for in-depth proteome profiling of practical quantities of tumour tissues, including formalin fixed and paraffin embedded (FFPE). Using single 10 μm scrolls of clinical tumour blocks, we performed in-depth quantitative analyses of individual sections from ovarian tumours covering the high-grade serous, clear cell, and endometrioid histotypes. This examination enabled the generation of a novel high-resolution proteome map of ovarian cancer histotypes from clinical tissues. Comparison of the obtained proteome data with large-scale genome and transcriptome analyses validated the observed proteome biology for previously validated hallmarks of this disease, and also identified novel protein features. A tissue microarray analysis validated cystathionine gamma-lyase (CTH) as a novel clear cell carcinoma feature with potential clinical relevance. In addition to providing a milestone in the understanding of ovarian cancer biology, these results show that in-depth proteomic analysis of clinically annotated FFPE materials can be effectively used as a biomarker discovery tool and perhaps ultimately as a diagnostic approach. PMID:27713570

  12. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  13. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  14. Functional Proteomic Profiling of Phosphodiesterases Using SeraFILE Separations Platform

    PubMed Central

    Oka, Amita R.; Kuruc, Matthew P.; Gujarathi, Ketan M.; Roy, Swapan

    2012-01-01

    Functional proteomic profiling can help identify targets for disease diagnosis and therapy. Available methods are limited by the inability to profile many functional properties measured by enzymes kinetics. The functional proteomic profiling approach proposed here seeks to overcome such limitations. It begins with surface-based proteome separations of tissue/cell-line extracts, using SeraFILE, a proprietary protein separations platform. Enzyme kinetic properties of resulting subproteomes are then characterized, and the data integrated into proteomic profiles. As a model, SeraFILE-derived subproteomes of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs) from bovine brain homogenate (BBH) and rat brain homogenate (RBH) were characterized for cAMP hydrolysis activity in the presence (challenge condition) and absence of cGMP. Functional profiles of RBH and BBH were compiled from the enzyme activity response to the challenge condition in each of the respective subproteomes. Intersample analysis showed that comparable profiles differed in only a few data points, and that distinctive subproteomes can be generated from comparable tissue samples from different animals. These results demonstrate that the proposed methods provide a means to simplify intersample differences, and to localize proteins attributable to sample-specific responses. It can be potentially applied for disease and nondisease sample comparison in biomarker discovery and drug discovery profiling. PMID:23227336

  15. Proteomic profiling reveals insights into Triticeae stigma development and function.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S

    2014-11-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  16. Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein–protein interactions

    PubMed Central

    Borner, Georg H. H.; Hein, Marco Y.; Hirst, Jennifer; Edgar, James R.; Mann, Matthias; Robinson, Margaret S.

    2014-01-01

    We developed “fractionation profiling,” a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps. PMID:25165137

  17. The proteome of Hypobaric Induced Hypoxic Lung: Insights from Temporal Proteomic Profiling for Biomarker Discovery

    PubMed Central

    Ahmad, Yasmin; Sharma, Narendra K.; Ahmad, Mohammad Faiz; Sharma, Manish; Garg, Iti; Srivastava, Mousami; Bhargava, Kalpana

    2015-01-01

    Exposure to high altitude induces physiological responses due to hypoxia. Lungs being at the first level to face the alterations in oxygen levels are critical to counter and balance these changes. Studies have been done analysing pulmonary proteome alterations in response to exposure to hypobaric hypoxia. However, such studies have reported the alterations at specific time points and do not reflect the gradual proteomic changes. These studies also identify the various biochemical pathways and responses induced after immediate exposure and the resolution of these effects in challenge to hypobaric hypoxia. In the present study, using 2-DE/MS approach, we attempt to resolve these shortcomings by analysing the proteome alterations in lungs in response to different durations of exposure to hypobaric hypoxia. Our study thus highlights the gradual and dynamic changes in pulmonary proteome following hypobaric hypoxia. For the first time, we also report the possible consideration of SULT1A1, as a biomarker for the diagnosis of high altitude pulmonary edema (HAPE). Higher SULT1A1 levels were observed in rats as well as in humans exposed to high altitude, when compared to sea-level controls. This study can thus form the basis for identifying biomarkers for diagnostic and prognostic purposes in responses to hypobaric hypoxia. PMID:26022216

  18. Proteomic Profiling of Macrophages by 2D Electrophoresis

    PubMed Central

    Bouvet, Marion; Turkieh, Annie; Acosta-Martin, Adelina E.; Chwastyniak, Maggy; Beseme, Olivia; Amouyel, Philippe; Pinet, Florence

    2014-01-01

    The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins. PMID:25408153

  19. Proteomic Profiling of Bladders from Mice Exposed with Sodium Arsenite

    EPA Science Inventory

    Arsenic, an environmental contaminant, has been linked with cancer of the bladder in humans. To study the mode of action of arsenic, female CH3 mice were exposed to 85 ppm sodium arsenite in their drinking water for 30 days. Following the exposure a comparative proteomic analysis...

  20. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  1. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development

    PubMed Central

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  2. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.

  3. Proteomic profiling of the human T-cell nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology.

  4. Proteomic profile of an acute partial bladder outlet obstruction

    PubMed Central

    Alsaikhan, Bader; Fahlman, Richard; Ding, Jie; Tredget, Edward; Metcalfe, Peter D.

    2015-01-01

    Introduction: Partial bladder outlet obstruction (pBOO) is a ubiquitous problem in urology. From posterior urethral valves to prostatic hypertrophy, pBOO results in significant morbidity and mortality. However, the pathophysiology is not completely understood. Proteomics uses mass spectrometry to accurately quantify change in tissue protein concentration. Therefore, we have applied proteomic analysis to a rodent model to assess for protein changes after a surgically induced pBOO. We hypothesize that proteomic analysis after an acute obstruction will determine the most prevalent initial protein response and, potentially, novel molecular pathways. Methods: Sprague Dawley rats underwent a surgically induced pBOO (n = 3 per group) for 3, 7, or 14 days. Bladders were assessed for weight and urodynamic parameters. Proteomics used liquid-chromatography based mass spectrometry. Polymerase chain reaction (PCR) was performed on tissue samples to confirm increased mRNA transcription. Results: Bladder weight and capacity increased over the experimental period, but no changes were seen in bladder pressure. Statistically significant increases in protein quantities were seen in 3 proteins related to endoplasmic reticulum stress: GRP-78 (3.66-fold), RhoA (1.90-fold), and RhoA-GDP (1.95-fold), and 2 cytoskeleton molecules: actin (1.7-fold) and tubulin a/b (3.01-fold). Decorin and lumican, members of the small leucine rich proteoglycan (SLRP) family, were also elevated (0.35- and 0.34-fold, respectively). Real-time PCR data confirmed protein elevation. Conclusion: Our experiment confirms that molecular changes occur very soon after the initiation of pBOO, and implicates several molecular pathways. We believe these insights may provide insight into novel prevention and treatment strategies targeted at the pathophysiology of pBOO. PMID:25844096

  5. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-01

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations. PMID:26303878

  6. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling.

    PubMed

    Chen, Wendong; Wang, Shuai; Adhikari, Subash; Deng, Zuhui; Wang, Lingjue; Chen, Lan; Ke, Mi; Yang, Pengyuan; Tian, Ruijun

    2016-05-01

    Great efforts have been taken for developing high-sensitive mass spectrometry (MS)-based proteomic technologies, among which sample preparation is one of the major focus. Here, a simple and integrated spintip-based proteomics technology (SISPROT) consisting of strong cation exchange beads and C18 disk in one pipet tip was developed. Both proteomics sample preparation steps, including protein preconcentration, reduction, alkylation, and digestion, and reversed phase (RP)-based desalting and high-pH RP-based peptide fractionation can be achieved in a fully integrated manner for the first time. This easy-to-use technology achieved high sensitivity with negligible sample loss. Proteomic analysis of 2000 HEK 293 cells readily identified 1270 proteins within 1.4 h of MS time, while 7826 proteins were identified when 100000 cells were processed and analyzed within only 22 h of MS time. More importantly, the SISPROT can be easily multiplexed on a standard centrifuge with good reproducibility (Pearson correlation coefficient > 0.98) for both single-shot analysis and deep proteome profiling with five-step high-pH RP fractionation. The SISPROT was exemplified by the triplicate analysis of 100000 stem cells from human exfoliated deciduous teeth (SHED). This led to the identification of 9078 proteins containing 3771 annotated membrane proteins, which was the largest proteome data set for dental stem cells reported to date. We expect that the SISPROT will be well suited for deep proteome profiling for fewer than 100000 cells and applied for translational studies where multiplexed technology with good label-free quantification precision is required. PMID:27062885

  7. Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium.

    PubMed

    Carvalhais, Virginia; França, Angela; Pier, Gerald B; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-01-01

    Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), associated with two distinct detergent extraction buffers, namely SDS and CHAPS. Based on gel electrophoresis-LC-MS/MS, we identified a total of 453 proteins. While lysis with glass beads provided greater amounts of protein, CHAPS extraction buffer allowed identification of a higher number of proteins compared to SDS. Our data shows the impact of different protein isolation methods in the characterization of the S. epidermidis biofilm proteome. Furthermore, the correlation between proteomic and transcriptomic profiles was evaluated. The results confirmed that proteomic and transcriptomic data should be analyzed simultaneously in order to have a comprehensive understanding of a specific microbiological condition. PMID:25476368

  8. Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium.

    PubMed

    Carvalhais, Virginia; França, Angela; Pier, Gerald B; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-01-01

    Staphylococcus epidermidis is an important nosocomial agent among carriers of indwelling medical devices, due to its strong ability to form biofilms on inert surfaces. Contrary to some advances made in the transcriptomic field, proteome characterization of S. epidermidis biofilms is less developed. To highlight the relation between transcripts and proteins of S. epidermidis biofilms, we analyzed the proteomic profile obtained by two mechanical lysis methods (sonication and bead beating), associated with two distinct detergent extraction buffers, namely SDS and CHAPS. Based on gel electrophoresis-LC-MS/MS, we identified a total of 453 proteins. While lysis with glass beads provided greater amounts of protein, CHAPS extraction buffer allowed identification of a higher number of proteins compared to SDS. Our data shows the impact of different protein isolation methods in the characterization of the S. epidermidis biofilm proteome. Furthermore, the correlation between proteomic and transcriptomic profiles was evaluated. The results confirmed that proteomic and transcriptomic data should be analyzed simultaneously in order to have a comprehensive understanding of a specific microbiological condition.

  9. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  10. Proteomic profiling of follicular and papillary thyroid tumors

    PubMed Central

    Sofiadis, Anastasios; Becker, Susanne; Hellman, Ulf; Hultin-Rosenberg, Lina; Dinets, Andrii; Hulchiy, Mykola; Zedenius, Jan; Wallin, Göran; Foukakis, Theodoros; Höög, Anders; Auer, Gert; Lehtiö, Janne; Larsson, Catharina

    2012-01-01

    Objective Thyroid proteomics is a new direction in thyroid cancer research aiming at etiological understanding and biomarker identification for improved diagnosis. Methods Two-dimensional electrophoresis was applied to cytosolic protein extracts from frozen thyroid samples (ten follicular adenomas, nine follicular carcinomas, ten papillary carcinomas, and ten reference thyroids). Spots with differential expression were revealed by image and multivariate statistical analyses, and identified by mass spectrometry. Results A set of 25 protein spots significant for discriminating between the sample groups was identified. Proteins identified for nine of these spots were studied further including 14-3-3 protein beta/alpha, epsilon, and zeta/delta, peroxiredoxin 6, selenium-binding protein 1, protein disulfide-isomerase precursor, annexin A5 (ANXA5), tubulin alpha-1B chain, and α1-antitrypsin precursor. This subset of protein spots carried the same predictive power in differentiating between follicular carcinoma and adenoma or between follicular and papillary carcinoma, as compared with the larger set of 25 spots. Protein expression in the sample groups was demonstrated by western blot analyses. For ANXA5 and the 14-3-3 proteins, expression in tumor cell cytoplasm was demonstrated by immunohistochemistry both in the sample groups and an independent series of papillary thyroid carcinomas. Conclusion The proteins identified confirm previous findings in thyroid proteomics, and suggest additional proteins as dysregulated in thyroid tumors. PMID:22275472

  11. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes.

    PubMed

    Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C; Mato, Jose M; Falcon-Perez, Juan M

    2008-12-01

    Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study, we described and characterized for the first time exosome secretion in nontumoral hepatocytes, and with the use of a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express nonexosomal proteins into exosomes with therapeutic purposes.

  12. Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga.

    PubMed

    Caumo, Karin Silva; Monteiro, Karina Mariante; Ott, Thiely Rodrigues; Maschio, Vinicius José; Wagner, Glauber; Ferreira, Henrique Bunselmeyer; Rott, Marilise Brittes

    2014-12-01

    Acanthamoeba polyphaga is a free-living protozoan pathogen, whose infective trophozoite form is capable of causing a blinding keratitis and fatal granulomatous encephalitis in humans. The damage caused by A. polyphaga trophozoites in human corneal or brain infections is the result of several different pathogenic mechanisms that have not yet been elucidated at the molecular level. We performed a comprehensive analysis of the proteins expressed by A. polyphaga trophozoites, based on complementary 2-DE MS/MS and gel-free LC-MS/MS approaches. Overall, 202 non-redundant proteins were identified. An A. polyphaga proteomic map in the pH range 3-10 was produced, with protein identification for 184 of 370 resolved spots, corresponding to 142 proteins. Additionally, 94 proteins were identified by gel-free LC-MS/MS. Functional classification revealed several proteins with potential importance for pathogen survival and infection of mammalian hosts, including surface proteins and proteins related to defense mechanisms. Our study provided the first comprehensive proteomic survey of the trophozoite infective stage of an Acanthamoeba species, and established foundations for prospective, comparative and functional studies of proteins involved in mechanisms of survival, development, and pathogenicity in A. polyphaga and other pathogenic amoebae.

  13. Methods for Investigation of Targeted Kinase Inhibitor Therapy using Chemical Proteomics and Phosphorylation Profiling

    PubMed Central

    Fang, Bin; Haura, Eric B.; Smalley, Keiran S.; Eschrich, Steven A.; Koomen, John M.

    2010-01-01

    Phosphorylation acts as a molecular switch for many regulatory events in signaling pathways that drive cell division, proliferation, and apoptosis. Because of the critical nature of these protein post-translational modifications in cancer, drug development programs often focus on inhibitors for kinases and phosphatases, which control protein phosphorylation. Numerous kinase inhibitors have entered clinical use, but prediction of their efficacy and a molecular basis for patient response remain uncertain. Chemical proteomics, the combination of drug affinity chromatography with mass spectrometry, identifies potential target proteins that bind to the drugs. Phosphorylation profiling can complement chemical proteomics by cataloging modifications in the target kinases and their downstream substrates using phosphopeptide enrichment and quantitative mass spectrometry. These experiments shed light on the mechanism of disease development and illuminate candidate biomarkers to guide personalized therapeutic strategies. In this review, commonly applied technologies and workflows are discussed to illustrate the role of proteomics in examining tumor biology and therapeutic intervention using kinase inhibitors. PMID:20361944

  14. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions

    PubMed Central

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U.; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  15. Unravelling the proteomic profile of rice meiocytes during early meiosis

    PubMed Central

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  16. Unravelling the proteomic profile of rice meiocytes during early meiosis.

    PubMed

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  17. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.

    PubMed

    Tan, Wee-Kee; Ang, Yiqian; Lim, Teck-Kwang; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong; Lin, Qingsong

    2015-10-01

    Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691.

  18. Willems II. Non-gender-specific dental maturity scores.

    PubMed

    Willems, G; Thevissen, P W; Belmans, A; Liversidge, H M

    2010-09-10

    Demirjian's dental maturity scoring system has been adapted for a Belgian Caucasian population for males and females. The purpose of this study was to adapt Demirjian's dental maturity scoring system from a Belgian Caucasian population to provide non-gender-specific scores. We selected 2116 orthopantomograms of 1029 boys and 1087 girls aged 3-16 years. A weighted ANOVA was performed in order to adapt the scoring system for this Belgian population. A second test sample of 273 orthopantomograms of individuals with immature dentitions aged 3-16 years was used to evaluate the accuracy of the original method, gender-specific scores and non-gender-specific scores of the adapted method. Mean/median difference between dental age and real age was calculated as well as other measures of accuracy. The adapted scoring system resulted in new age scores expressed in years and in a higher accuracy compared to the original method in Belgian Caucasians. PMID:20483551

  19. Targeting hepatocytes from liver tissue by laser capture microdissection and proteomics expression profiling.

    PubMed

    Marko-Varga, György; Berglund, Magnus; Malmström, Johan; Lindberg, Henrik; Fehniger, Thomas E

    2003-11-01

    A tissue proteomics process is presented where hepatocyte cell isolation in combination with two-dimensional (2-D) gel electrophoresis and mass spectrometric identification were used to annotate the liver proteome. Laser microdissection of 8 microm liver tissue sections was performed and protein expression profiling was compared using a variety of quantities of input cells, and gel separation conditions. The 30 microm diameter laser generated the highest protein yields from the polymer coated caps following microsolubilization. We found that 6000 laser pulses (approximately 7200 hepatocytes) were required in order to generate high-resolution gel maps. Within homogeneous tissue samples, this could be accomplished in a total cycle time of 20 min using an automated dissection procedure. Close to 1000 high-quality gel annotations were generated from the corresponding 2-D gel expression profiles which matched closely the corresponding patterns of analytical-scale liver preparations detected by silver staining.

  20. The impact of blood on liver metabolite profiling - a combined metabolomic and proteomic approach.

    PubMed

    Ly-Verdú, Saray; Schaefer, Alexander; Kahle, Melanie; Groeger, Thomas; Neschen, Susanne; Arteaga-Salas, Jose M; Ueffing, Marius; de Angelis, Martin Hrabe; Zimmermann, Ralf

    2014-02-01

    Metabolomics has entered the well-established omic sciences as it is an indispensable information resource to achieve a global picture of biological systems. The aim of the present study was to estimate the influence of blood removal from mice liver as part of sample preparation for metabolomic and proteomic studies. For this purpose, perfused mice liver tissue (i.e. with blood removed) and unperfused mice liver tissue (i.e. containing blood) were compared by two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-TOFMS) for the metabolomic part, and by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the proteomic part. Our data showed significant differences between the unperfused and perfused liver tissue samples. Furthermore, we also observed an overlap of blood and tissue metabolite profiles in our data, suggesting that the perfusion of liver tissue prior to analysis is beneficial for an accurate metabolic profile of this organ.

  1. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    PubMed

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-01

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy.

  2. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    PubMed

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-01

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy. PMID:25873154

  3. Proteomic profiling of lymphedema development in mouse model.

    PubMed

    Lee, Joomin; Song, Haeun; Roh, Kangsan; Cho, Sungrae; Lee, Sukchan; Yeom, Chang-Hwan; Park, Seyeon

    2016-07-01

    The lymphatic vascular system plays an important role in tissue fluid homeostasis. Lymphedema is a chronic, progressive, and incurable condition that leads to lymphatic fluid retention; it may be primary (heritable) or secondary (acquired) in nature. Although there is a growing understanding of lymphedema, methods for the prevention and treatment of lymphedema are still limited. In this study, we investigated differential protein expressions in sham-operated and lymphedema-operated mice for 3 days, using two-dimensional gel electrophoresis (2-DE) and mass spectrometry analysis. Male improved methodology for culturing noninbred (ICR) mice developed lymphedema in the right hindlimb. Twenty functional proteins were found to be differentially expressed between lymphedema induced-right leg tissue and normal left leg tissue. Out of these proteins, the protein levels of apolipoprotein A-1 preprotein, alpha-actinin-3, mCG21744, parkinson disease, serum amyloid P-component precursor, annexin A8, mKIAA0098 protein, and fibrinogen beta chain precursor were differentially upregulated in the lymphedema mice compared with the sham-operated group. Western blotting analysis was used to validate the proteomics results. Our results showing differential up-regulation of serum amyloid P-component precursor, parkinson disease, and apolipoprotein A-1 preprotein in lymphedema model over sham-operated model suggest important insights into pathophysiological target for lymphedema. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151289

  4. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets.

  5. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

    PubMed Central

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M.; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  6. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach. PMID:27020565

  7. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    SciTech Connect

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  8. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing twodimensional...

  9. Proteomic Analysis of Propiconazole Responses in Mouse Liver-Comparison of Genomic and Proteomic Profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this commonly used fungicide. Utilizing t...

  10. Smoking among Dutch Elementary Schoolchildren: Gender-Specific Predictors

    ERIC Educational Resources Information Center

    Ausems, M.; Mesters, I.; van Breukelen, G.; De Vries, H.

    2009-01-01

    Higher rates of smoking initiation and continuation by female compared with male adolescents, as found in many developed countries, may call for gender-specific prevention programs. Risk factors of smoking initiation and continuation were examined prospectively (1997-2002) among 3205 Dutch elementary schoolchildren (mean age 11.64) in an…

  11. Gender Specific Differences in the Perceived Antecedents of Academic Stress.

    ERIC Educational Resources Information Center

    Jones, Russell W.

    This document consists of the report of a study undertaken to establish the existence of any gender specific differences in the perceived antecedents of academic stress. The definition of stress as a negative emotion strongly associated with doubt about coping is suggested to be particularly relevant to the academic arena where students…

  12. PROTEOMIC PROFILING OF URINE IDENTIFIES SPECIFIC FRAGMENTS OF SERPINA-1 AND ALBUMIN AS BIOMARKERS OF PREECLAMPSIA

    PubMed Central

    Buhimschi, Irina A.; Zhao, Guomao; Funai, Edmund F.; Harris, Nathan; Sasson, Isaac E.; Bernstein, Ira M.; Saade, George R.; Buhimschi, Catalin S.

    2008-01-01

    Objective The cause of preeclampsia remains unknown and the diagnosis can be uncertain. We used proteomic-based analysis of urine to improve disease classification and extend the pathophysiological understanding of preeclampsia. Study design Urine samples from 284 women were analyzed by mass spectrometry-based proteomics (SELDI). In the exploratory phase, 59 samples were used to extract the proteomic fingerprint characteristic of severe preeclampsia requiring mandated delivery and develop a diagnostic algorithm. In the challenge phase we sought to prospectively validate the algorithm in 225 women screened for a variety of high and low-risk conditions, including preeclampsia. Of these, 19 women were followed longitudinally throughout pregnancy. Presence of biomarkers was interpreted relative to clinical classification, need for delivery and other urine laboratory measures (ratios of protein-to-creatinine and soluble fms-like tyrosine kinase-1-to-placental growth factor). In the translational phase biomarker identification by tandem mass spectrometry and validation experiments in urine, serum and placenta were employed to identify, quantify and localize the biomarkers or related proteins. Results We report that women with preeclampsia appear to present a unique urine proteomic fingerprint which predicts preeclampsia in need for mandated delivery with highest accuracy. This characteristic proteomic profile also has the ability to distinguish preeclampsia from other hypertensive or proteinuric disorders in pregnancy. Pregnant women followed longitudinally who developed preeclampsia displayed abnormal urinary profiles >10 weeks prior to clinical manifestation. Tandem mass spectrometry followed by de-novo sequencing identified the biomarkers as non-random cleavage products of SERPINA-1 and albumin. Of these, the 21-aminoacid C-terminus fragment of SERPINA-1 was highly associated with severe forms of preeclampsia requiring early delivery. In preeclampsia, increased and

  13. Proteomic profiling of salivary gland after nonviral gene transfer mediated by conventional plasmids and minicircles

    PubMed Central

    Geguchadze, Ramaz; Wang, Zhimin; Zourelias, Lee; Perez-Riveros, Paola; Edwards, Paul C; Machen, Laurie; Passineau, Michael J

    2014-01-01

    In this study, we compared gene transfer efficiency and host response to ultrasound-assisted, nonviral gene transfer with a conventional plasmid and a minicircle vector in the submandibular salivary glands of mice. Initially, we looked at gene transfer efficiency with equimolar amounts of the plasmid and minicircle vectors, corroborating an earlier report showing that minicircle is more efficient in the context of a physical method of gene transfer. We then sought to characterize the physiological response of the salivary gland to exogenous gene transfer using global proteomic profiling. Somewhat surprisingly, we found that sonoporation alone, without a gene transfer vector present, had virtually no effect on the salivary gland proteome. However, when a plasmid vector was used, we observed profound perturbations of the salivary gland proteome that compared in magnitude to that seen in a previous report after high doses of adeno-associated virus. Finally, we found that gene transfer with a minicircle induces only minor proteomic alterations that were similar to sonoporation alone. Using mass spectrometry, we assigned protein IDs to 218 gel spots that differed between plasmid and minicircle. Bioinformatic analysis of these proteins demonstrated convergence on 68 known protein interaction pathways, most notably those associated with innate immunity, cellular stress, and morphogenesis. PMID:25414909

  14. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology

    PubMed Central

    ARDITO, FATIMA; PERRONE, DONATELLA; COCCHI, ROBERTO; LO RUSSO, LUCIO; DE LILLO, ALFREDO; GIANNATEMPO, GIOVANNI; LO MUZIO, LORENZO

    2016-01-01

    There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis. PMID:26998108

  15. Proteomic profiles of mesenchymal stem cells induced by a liver differentiation protocol.

    PubMed

    Leelawat, Kawin; Narong, Siriluck; Chaijan, Suthidarak; Sa-Ngiamsuntorn, Khanit; Disthabanchong, Sinee; Wongkajornsilp, Adisak; Hongeng, Suradej

    2010-01-01

    The replacement of disease hepatocytes and the stimulation of endogenous or exogenous regeneration by human mesenchymal stem cells (MSCs) are promising candidates for liver-directed cell therapy. In this study, we isolated MSCs from adult bone marrow by plastic adhesion and induced differentiation with a liver differentiation protocol. Western blot analyses were used to assess the expression of liver-specific markers. Next, MSC-specific proteins were analyzed with two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). To confirm the results from the proteomic study, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed. We demonstrated that MSCs treated with the liver differentiation protocol expressed significantly more albumin, CK19 and CK20, than did undifferentiated cells. In addition the results of proteomic study demonstrated increases expression of FEM1B, PSMC2 and disulfide-isomerase A3 in MSCs treated with the liver differentiation protocol. These results from proteomic profiling will not only provide insight into the global responses of MSCs to hepatocyte differentiation, but will also lead to in-depth studies on the mechanisms of proteomic changes in MSCs.

  16. Distinct protein classes in human red cell proteome revealed by similarity of phylogenetic profiles.

    PubMed

    Szczesny, Paweł; Mykowiecka, Agnieszka; Pawłowski, Krzysztof; Grynberg, Marcin

    2013-01-01

    The minimal set of proteins necessary to maintain a vertebrate cell forms an interesting core of cellular machinery. The known proteome of human red blood cell consists of about 1400 proteins. We treated this protein complement of one of the simplest human cells as a model and asked the questions on its function and origins. The proteome was mapped onto phylogenetic profiles, i.e. vectors of species possessing homologues of human proteins. A novel clustering approach was devised, utilising similarity in the phylogenetic spread of homologues as distance measure. The clustering based on phylogenetic profiles yielded several distinct protein classes differing in phylogenetic taxonomic spread, presumed evolutionary history and functional properties. Notably, small clusters of proteins common to vertebrates or Metazoa and other multicellular eukaryotes involve biological functions specific to multicellular organisms, such as apoptosis or cell-cell signaling, respectively. Also, a eukaryote-specific cluster is identified, featuring GTP-ase signalling and ubiquitination. Another cluster, made up of proteins found in most organisms, including bacteria and archaea, involves basic molecular functions such as oxidation-reduction and glycolysis. Approximately one third of erythrocyte proteins do not fall in any of the clusters, reflecting the complexity of protein evolution in comparison to our simple model. Basically, the clustering obtained divides the proteome into old and new parts, the former originating from bacterial ancestors, the latter from inventions within multicellular eukaryotes. Thus, the model human cell proteome appears to be made up of protein sets distinct in their history and biological roles. The current work shows that phylogenetic profiles concept allows protein clustering in a way relevant both to biological function and evolutionary history. PMID:23349899

  17. Genetic differences in the serum proteome of horses, donkeys and mules are detectable by protein profiling.

    PubMed

    Henze, Andrea; Aumer, Franziska; Grabner, Arthur; Raila, Jens; Schweigert, Florian J

    2011-10-01

    Although horses and donkeys belong to the same genus, their genetic characteristics probably result in specific proteomes and post-translational modifications (PTM) of proteins. Since PTM can alter protein properties, specific PTM may contribute to species-specific characteristics. Therefore, the aim of the present study was to analyse differences in serum protein profiles of horses and donkeys as well as mules, which combine the genetic backgrounds of both species. Additionally, changes in PTM of the protein transthyretin (TTR) were analysed. Serum protein profiles of each species (five animals per species) were determined using strong anion exchanger ProteinChips® (Bio-Rad, Munich, Germany) in combination with surface-enhanced laser desorption ionisation-time of flight MS. The PTM of TTR were analysed subsequently by immunoprecipitation in combination with matrix-assisted laser desorption ionisation-time of flight MS. Protein profiling revealed species-specific differences in the proteome, with some protein peaks present in all three species as well as protein peaks that were unique for donkeys and mules, horses and mules or for horses alone. The molecular weight of TTR of horses and donkeys differed by 30 Da, and both species revealed several modified forms of TTR besides the native form. The mass spectra of mules represented a merging of TTR spectra of horses and donkeys. In summary, the present study indicated that there are substantial differences in the proteome of horses and donkeys. Additionally, the results probably indicate that the proteome of mules reveal a higher similarity to donkeys than to horses.

  18. Elucidation of Xenobiotic Metabolism Pathways in Human Skin and Human Skin Models by Proteomic Profiling

    PubMed Central

    van Eijl, Sven; Zhu, Zheying; Cupitt, John; Gierula, Magdalena; Götz, Christine; Fritsche, Ellen; Edwards, Robert J.

    2012-01-01

    Background Human skin has the capacity to metabolise foreign chemicals (xenobiotics), but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. Methodology/Principal Findings Label-free proteomic analysis of whole human skin (10 donors) was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4–10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. Conclusions/Significance The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these results provide a

  19. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    PubMed

    Mulvey, Claire M; Schröter, Christian; Gatto, Laurent; Dikicioglu, Duygu; Fidaner, Isik Baris; Christoforou, Andy; Deery, Michael J; Cho, Lily T Y; Niakan, Kathy K; Martinez-Arias, Alfonso; Lilley, Kathryn S

    2015-09-01

    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.

  20. Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Krovvidi, Ravi K.; Gritsenko, Marina A.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2011-12-01

    Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis reveals fundamental insights into the control and regulation of these functions. To expand upon the current knowledge of protein expression patterns in Cyanothece ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Analysis of protein functions revealed that the expression of nitrogenase in the dark is mediated by higher respiration and glycogen metabolism. We have also shown that Cyanothece ATCC51142 utilizes alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand. In conclusion, this study provides a deeper insight into how Cyanothece ATCC51142 modulates cellular functions to accommodate photosynthesis and N2-fixation within the single cell.

  1. Proteomic profile of saliva and plasma from women with impalpable breast lesions

    PubMed Central

    Delmonico, Lucas; Bravo, Maryah; Silvestre, Rafaele Tavares; Ornellas, Maria Helena Faria; De Azevedo, Carolina Maria; Alves, Gilda

    2016-01-01

    The present study evaluated the proteomic profile of saliva and plasma from women with impalpable breast lesions using nano-liquid chromatography-quadrupole-time-of-flight (nLC-Q-TOF) technology. Plasma and saliva from patients with fibroadenoma (n=10), infiltrating ductal carcinoma (n=10) and healthy control groups (n=8) were assessed by combinations of inter/intra-group analyses, revealing significant quantitative and qualitative differences. The major differentially-expressed proteins in the saliva of patients compared with the controls were α2-macroglobulin and ceruloplasmin, but the proteins that met the minimum fold-change and P-value cut-offs were leukocyte elastase inhibitor and α-enolase, and deleted in malignant brain tumors 1. Concerning plasma, α-2-macroglobulin and ceruplasmin were upregulated, while other proteins such as haptoglobin, hemopexin and vitamin D-binding protein were downregulated compared with the control. The changes in immune, molecular transport and signaling pathways were the most representative in the proteomic profile of the saliva and plasma. This is the first study to describe the proteome of saliva and plasma from the same women with impalpable breast lesions.

  2. Proteomic profile of saliva and plasma from women with impalpable breast lesions

    PubMed Central

    Delmonico, Lucas; Bravo, Maryah; Silvestre, Rafaele Tavares; Ornellas, Maria Helena Faria; De Azevedo, Carolina Maria; Alves, Gilda

    2016-01-01

    The present study evaluated the proteomic profile of saliva and plasma from women with impalpable breast lesions using nano-liquid chromatography-quadrupole-time-of-flight (nLC-Q-TOF) technology. Plasma and saliva from patients with fibroadenoma (n=10), infiltrating ductal carcinoma (n=10) and healthy control groups (n=8) were assessed by combinations of inter/intra-group analyses, revealing significant quantitative and qualitative differences. The major differentially-expressed proteins in the saliva of patients compared with the controls were α2-macroglobulin and ceruloplasmin, but the proteins that met the minimum fold-change and P-value cut-offs were leukocyte elastase inhibitor and α-enolase, and deleted in malignant brain tumors 1. Concerning plasma, α-2-macroglobulin and ceruplasmin were upregulated, while other proteins such as haptoglobin, hemopexin and vitamin D-binding protein were downregulated compared with the control. The changes in immune, molecular transport and signaling pathways were the most representative in the proteomic profile of the saliva and plasma. This is the first study to describe the proteome of saliva and plasma from the same women with impalpable breast lesions. PMID:27602154

  3. O-GlcNAc profiling: from proteins to proteomes

    PubMed Central

    2014-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases. PMID:24593906

  4. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  6. Proteomic profile of Ortleppascaris sp.: A helminth parasite of Rhinella marina in the Amazonian region

    PubMed Central

    e Silva, Jefferson Pereira; Furtado, Adriano Penha; dos Santos, Jeannie Nascimento

    2014-01-01

    Ortleppascaris sp. is a helminth that, in its larval stage, infects the liver parenchyma of the amphibian Rhinella marina, resulting in severe physiological and pathological changes. This study used a proteomic approach to determine the overall profile of proteins expressed in a somatic extract from the nematodes to investigate the relationship between the parasite and its host. A total of 60 abundant proteins were selected from the two-dimensional electrophoresis, identified by peptide mass fingerprinting, and grouped based on their Gene Ontology by the biological processes in which they are potentially involved. Important helminthic derivatives, such as the immunoreactive As37 antigen, guanylyl cyclases, proteolytic enzymes, and other proteins conserved among different parasites, were identified through homology. This study represents a new approach to helminth-related proteomic studies using an amphibian animal model. Furthermore, this study identified protein markers that are important to the host–parasite relationship and the viability, development, infectivity, and virulence of helminths. PMID:25161903

  7. Proteomic profiling of the influence of iron availability on Cryptococcus gattii

    PubMed Central

    Crestani, Juliana; Carvalho, Paulo Costa; Han, Xuemei; Seixas, Adriana; Broetto, Leonardo; de Saldanha da Gama Fischer, Juliana; Staats, Charley Christian; Schrank, Augusto; Yates, John R; Vainstein, Marilene Henning

    2011-01-01

    Iron is essential and ubiquitous in living organisms. The competition for this micronutrient between the host and its pathogens has been related to disease establishment. Cryptococcus gattii is an encapsulated yeast that causes cryptococcosis mainly in immunocompetent individuals. In this study, we analyzed the proteomic profile of the C. gattii R265 Vancouver Island isolate under iron-depleted and –replete conditions by Multidimensional Protein Identification Technology (MudPIT) and by 2D-GE. Proteins and key mechanisms affected by alteration of iron levels such as capsule production, cAMP-signaling pathway, response to stress, and metabolic pathways related to mitochondrial function were identified. Our results also show both proteomic methodologies employed to be complementary. PMID:21970549

  8. A framework for personalized medicine: prediction of drug sensitivity in cancer by proteomic profiling

    PubMed Central

    2012-01-01

    Background The goal of personalized medicine is to provide patients optimal drug screening and treatment based on individual genomic or proteomic profiles. Reverse-Phase Protein Array (RPPA) technology offers proteomic information of cancer patients which may be directly related to drug sensitivity. For cancer patients with different drug sensitivity, the proteomic profiling reveals important pathophysiologic information which can be used to predict chemotherapy responses. Results The goal of this paper is to present a framework for personalized medicine using both RPPA and drug sensitivity (drug resistance or intolerance). In the proposed personalized medicine system, the prediction of drug sensitivity is obtained by a proposed augmented naive Bayesian classifier (ANBC) whose edges between attributes are augmented in the network structure of naive Bayesian classifier. For discriminative structure learning of ANBC, local classification rate (LCR) is used to score augmented edges, and greedy search algorithm is used to find the discriminative structure that maximizes classification rate (CR). Once a classifier is trained by RPPA and drug sensitivity using cancer patient samples, the classifier is able to predict the drug sensitivity given RPPA information from a patient. Conclusion In this paper we proposed a framework for personalized medicine where a patient is profiled by RPPA and drug sensitivity is predicted by ANBC and LCR. Experimental results with lung cancer data demonstrate that RPPA can be used to profile patients for drug sensitivity prediction by Bayesian network classifier, and the proposed ANBC for personalized cancer medicine achieves better prediction accuracy than naive Bayes classifier in small sample size data on average and outperforms other the state-of-the-art classifier methods in terms of classification accuracy. PMID:22759571

  9. Next generation chemical proteomic tools for rapid enzyme profiling.

    PubMed

    Uttamchandani, Mahesh; Lu, Candy H S; Yao, Shao Q

    2009-08-18

    powerful means to study, profile, and discover potent small molecules that can modulate enzyme activity. This Account will describe the concepts involved in designing chemical probes and libraries for comparative enzyme screening and drug discovery applications, as well as highlight how these technologies are changing the way in which enzymes may be rapidly profiled and characterized.

  10. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution.

    PubMed

    Jun, Se-Ran; Sims, Gregory E; Wu, Guohong A; Kim, Sung-Hou

    2010-01-01

    We present a whole-proteome phylogeny of prokaryotes constructed by comparing feature frequency profiles (FFPs) of whole proteomes. Features are l-mers of amino acids, and each organism is represented by a profile of frequencies of all features. The selection of feature length is critical in the FFP method, and we have developed a procedure for identifying the optimal feature lengths for inferring the phylogeny of prokaryotes, strictly speaking, a proteome phylogeny. Our FFP trees are constructed with whole proteomes of 884 prokaryotes, 16 unicellular eukaryotes, and 2 random sequences. To highlight the branching order of major groups, we present a simplified proteome FFP tree of monophyletic class or phylum with branch support. In our whole-proteome FFP trees (i) Archaea, Bacteria, Eukaryota, and a random sequence outgroup are clearly separated; (ii) Archaea and Bacteria form a sister group when rooted with random sequences; (iii) Planctomycetes, which possesses an intracellular membrane compartment, is placed at the basal position of the Bacteria domain; (iv) almost all groups are monophyletic in prokaryotes at most taxonomic levels, but many differences in the branching order of major groups are observed between our proteome FFP tree and trees built with other methods; and (v) previously "unclassified" genomes may be assigned to the most likely taxa. We describe notable similarities and differences between our FFP trees and those based on other methods in grouping and phylogeny of prokaryotes.

  11. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure.

    PubMed

    Koo, Sue-Jie; Spratt, Heidi M; Soman, Kizhake V; Stafford, Susan; Gupta, Shivali; Petersen, John R; Zago, Maria P; Kuyumcu-Martinez, Muge N; Brasier, Allan R; Wiktorowicz, John E; Garg, Nisha Jain

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure. PMID:27635260

  12. Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease.

    PubMed

    Cao, Hongxin; Zhang, Aihua; Sun, Hui; Zhou, Xiaohang; Guan, Yu; Liu, Qi; Kong, Ling; Wang, Xijun

    2015-11-01

    Kidney fibrosis (KF) is a common process that leads to the progression of various types of kidney disease including kidney-yang deficiency syndrome, however, little is known regarding the underlying biology of this disorder. Fortunately, integrated omics approaches provide the molecule fingerprints related to the disease. In an attempt to address this issue, we integrated metabolomics-proteomics profiles analyzed pathogenic mechanisms of KF based on rat model. A total 37 serum differential metabolites were contributed to KF progress, involved several important metabolic pathways. Using iTRAQ-based quantitative proteomics analysis, 126 differential serum proteins were identified and provide valuable insight into the underlying mechanisms of KF. These proteins appear to be involved in complement and coagulation cascades, regulation of actin cytoskeleton, MAPK signaling pathway, RNA transport, etc. Interestingly, pathway/network analysis of integrated proteomics and metabolomics data firstly reveals that these signaling pathways were closely related with KF. It further indicated that most of these proteins play a pivotal role in the regulation of metabolism pathways.

  13. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.

  14. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure. PMID:27635260

  15. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure.

  16. Affinity proteomic profiling of plasma, cerebrospinal fluid, and brain tissue within multiple sclerosis.

    PubMed

    Byström, Sanna; Ayoglu, Burcu; Häggmark, Anna; Mitsios, Nicholas; Hong, Mun-Gwan; Drobin, Kimi; Forsström, Björn; Fredolini, Claudia; Khademi, Mohsen; Amor, Sandra; Uhlén, Mathias; Olsson, Tomas; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M

    2014-11-01

    The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.

  17. Effects of a Terrified-Sound Stress on Serum Proteomic Profiling in Mice.

    PubMed

    Yang, Juan; Zhang, Xin; Xiong, Xiaofan; Wu, Qiuhua; Zhao, Lingyu; Liu, Liying; Qin, Yannan; Song, Tusheng; Huang, Chen

    2015-10-01

    The serum proteomic profiles of mice exposed to terrified-sound-induced stress and after stress release were investigated. Serum samples from 32 mice were divided into four groups (n = 8 each) and analyzed using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry techniques (MALDI-TOF MS) combined with magnetic bead-based weak cation-exchange chromatography. ClinProTools software identified several distinct markers that differed between the stressed and control groups and between the stress released and stressed released controls. Of 33 m/z peaks that differed among the four groups, 17 were significantly different (P < 0.05). Five peaks (m/z: 2793.37, 2924.86, 1979.90, 3492.49, 3880.24) showed significant differences in expression after exposure to terrified-sound stress and returned to control levels after stress release. These were sequence identified as peptide regions of dimethylaniline monooxygenase, myosin-9, uncharacterized protein in Rattus norvegicus, apolipoprotein C-I, and plasma serine protease inhibitor (Serpina 5). Our study provides the first evidence of significant changes in serum proteomic profiles in mice exposed to terrified-sound stress, which suggests that protein expression profiles are affected by the stress. Normal expression levels were restored after stress release, suggesting the activation of self-adjustment mechanisms for the recovery of protein expression levels altered by this stress.

  18. Proteome profile and biological activity of caprine, bovine and human milk fat globules.

    PubMed

    Spertino, Stefano; Cipriani, Valentina; De Angelis, Chiara; Giuffrida, Maria Gabriella; Marsano, Francesco; Cavaletto, Maria

    2012-04-01

    Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.

  19. Effect of Coenzyme Q10 on Proteomic Profile of Rat Brain Amygdala during Acute Metabolic Stress.

    PubMed

    Kirbaeva, N V; Sharanova, N E; Zhminchenko, V M; Toropygin, I Yu; Koplik, E V; Pertsov, S S; Vasil'ev, A V

    2016-08-01

    Differences in the proteomic profiles of the brain amygdala in rats with different prognostic resistance to stress were found on the model of metabolic stress. Differential expression of tropomodulin-2, GTP-binding protein SAR1, peroxiredoxin-2, calcineurin B homologous protein 1, Ras-related protein Rab-14, glutathione S-transferase omega-1, Tcrb protein, and NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 (mitochondrial) was shown to depend on the behavioral pattern of animals and stage of the study. Specific features were observed in the involvement of the amygdala in the stress response of specimens with various behavioral characteristics. PMID:27590759

  20. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans.

    PubMed

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli H; Xu, Ying; He, Li-Sheng; Ravasi, Timothy; Qian, Pei-Yuan

    2014-09-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  1. Proteomic and functional profiles of a follicle-stimulating hormone positive human nonfunctional pituitary adenoma.

    PubMed

    Wang, Xiaowei; Guo, Tianyao; Peng, Fang; Long, Ying; Mu, Yun; Yang, Haiyan; Ye, Ningrong; Li, Xuejun; Zhan, Xianquan

    2015-06-01

    Nonfunctional pituitary adenoma (NFPA) is highly heterogeneous with different hormone-expressed subtypes in NFPA tissues including follicle-stimulating hormone (FSH) positive, luteinizing hormone-positive, FSH/luteinizing hormone-positive, and negative types. To analyze in-depth the variations in the proteomes among different NFPA subtypes for our long-term goal to clarify molecular mechanisms of NFPA and to detect tumor biomarker for personalized medicine practice, a reference map of proteome of a human FSH-expressed NFPA tissue was described here. 2DE and PDQuest image analysis were used to array each protein. MALDI-TOF PMF and human Swiss-Prot databases with MASCOT search were used to identify each protein. A good 2DE pattern with high level of between-gel reproducibility was attained with an average positional deviation 1.98 ± 0.75 mm in the IEF direction and 1.62 ± 0.68 mm in the SDS-PAGE direction. Approximately 1200 protein spots were 2DE-detected and 192 redundant proteins that were contained in 141 protein spots were PMF-identified, representing 107 nonredundant proteins. Those proteins were located in cytoplasm, nucleus, plasma membrane, extracellular space, and so on, and those functioned in transmembrane receptor, ion channel, transcription/translation regulator, transporter, enzyme, phosphatase, kinase, and so on. Several important pathway networks were characterized from those identified proteins with DAVID and Ingenuity Pathway Analysis systems, including gluconeogenesis and glycolysis, mitochondrial dysfunction, oxidative stress, cell-cycle alteration, MAPKsignaling system, immune response, TP53-signaling, VEGF-signaling, and inflammation signaling pathways. Those resulting data contribute to a functional profile of the proteome of a human FSH-positive NFPA tissue, and will serve as a reference for the heterogeneity analysis of NFPA proteomes. PMID:25809007

  2. Proteomic profiling reveals a severely perturbed protein expression pattern in aged skeletal muscle.

    PubMed

    O'Connell, Kathleen; Gannon, Joan; Doran, Philip; Ohlendieck, Kay

    2007-08-01

    in aged muscle by proteomic profiling approaches may lead to the cataloguing of a cohort of novel therapeutic targets to treat muscular weakness in the aging population. PMID:17611631

  3. [Direct proteome profiling of human blood serum in the experiment with 5-day dry immersion].

    PubMed

    Pastushkova, L Kh; Pakharukova, N A; Trifonova, O P; Dobrokhotov, I V; Valeeva, O A; Larina, I M

    2011-01-01

    Purpose of the investigation was to determine changes in blood plasma proteome in healthy human subjects (n = 14, 19 to 26 y.o.) in an experiment with dry immersion (DI). Plasma samples were drawn 7 and 2 days before the exposure, on DI days 2, 3 and 5, and on days 1, 3, 7 and 15 after the experiment. Previous to direct MALDI-TOF mass-spectrometric profiling, serum samples were pre-fractionated and enriched with magnetic particles MB WCX (WCX--a weak cation exchanger) on ClinProt (Bruker Daltonics). In each spectrum, 175 MS-peaks were detected on average within the mass range from 1000 to 17,000 Da with the signal/noise ratio = 5. Student's criterion (p < 0.05) was used to define reliable differences between DI and baseline samples from 48 peaks (27.4 % of all the proteome profile peaks). On DI days 2 and 3, growth of peak areas was observed in fragments of complement system proteins C3 and C4, high-molecular kininogen and fibrinogen that can be attributed to organism adaptation to conditions of the experiment. Significant increases of the peak area of apolipoprotein CI (reduced form with segregated threonine and proline) and C4 enzymes of the complement system, and fibrinogen on the first day after the experiment can be related to changes in motor activities of the subjects.

  4. Effects of tetracycline administration on the proteomic profile of pig muscle samples (L. dorsi).

    PubMed

    Gratacós-Cubarsí, M; Castellari, M; Hortós, M; García-Regueiro, J A; Lametsch, R; Jessen, F

    2008-10-01

    Effect of tetracycline (TC) administration on the proteomic profile of pig muscle was evaluated by 2D electrophoresis and MALDI-TOF mass spectrometry. The TC content at slaughter was determined in L. dorsi samples by HPLC-DAD. Mean residual concentration of TC in the muscle of treated animals, calculated as the sum of TC and epi-TC was 126.3 microg/kg, indicating a rapid elimination of TC in this tissue. Several differential spots (n = 54, p < 0.05) were observed in protein profiles from control and treated animals. MALDI-TOF identification gave a positive match for 5 differential spots, that is, glycerol-3-phosphate dehydrogenase 1 (G3PD1), phosphoglycerate kinase 1, novelprotein (0610037L13Rik), leucine aminopeptidase 3 (LAP), and hypothetical protein isoform 2. Results show that proteomics could be a useful tool to reveal pharmacological treatments with TC, even if the possible uses of differential spots as biomarkers to detect illegal administration of TC require further studies. Different spot patterns as a consequence of TC treatments seem to be another interesting issue for the consequences on tissue metabolism and meat quality. PMID:18778074

  5. Comparative proteomic analysis of four Bacillus clausii strains: proteomic expression signature distinguishes protein profile of the strains.

    PubMed

    Lippolis, Rosa; Gnoni, Antonio; Abbrescia, Anna; Panelli, Damiano; Maiorano, Stefania; Paternoster, Maria Stefania; Sardanelli, Anna Maria; Papa, Sergio; Gaballo, Antonio

    2011-11-18

    A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains. PMID:21810490

  6. Age and gender specific biokinetic model for strontium in humans.

    PubMed

    Shagina, N B; Tolstykh, E I; Degteva, M O; Anspaugh, L R; Napier, B A

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on (90)Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0-80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes.

  7. Age and gender specific biokinetic model for strontium in humans

    SciTech Connect

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.

  8. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    SciTech Connect

    Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde; Russel, Frans G.M.

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  9. Proteome Profile of Swine Testicular Cells Infected with Porcine Transmissible Gastroenteritis Coronavirus

    PubMed Central

    Ma, Ruili; Zhang, Yanming; Liu, Haiquan; Ning, Pengbo

    2014-01-01

    The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis. PMID:25333634

  10. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  11. Proteomic profiling of the signal crayfish Pacifastacus leniusculus egg and spermatophore.

    PubMed

    Niksirat, Hamid; Andersson, Liselotte; James, Peter; Kouba, Antonín; Kozák, Pavel

    2014-10-01

    Proteins of the signal crayfish Pacifastacus leniusculus egg and spermatophore were identified using in-gel digestion, mass spectrometry, and Mascot search. Forty-one and one-hundred-fifty proteins were identified in egg and spermatophore, respectively. The proteins were classified into nine categories including cell defence, cell signaling, cytoskeleton, DNA related activity, metabolism and energy production, protease and protease inhibitor, respiration, transportation, and others and unknown. Twenty-two proteins were found in both egg and spermatophore. The respiration and cytoskeleton groups are the most diverse categories in the protein profiles of the egg and spermatophore, respectively. No protein was assigned to DNA related activity and cell defence categories in the protein profile of the crayfish egg. Differences between protein profiles of the crayfish egg and spermatophore show different functional priorities for each of gametes. Several proteins having possible roles in gametogenesis, capacitation, acrosome reaction, and fertilization were identified. This proteomic profile of signal crayfish gametes provides a basis for further investigation of functional roles of the identified proteins in aspects of reproduction such as capacitation and fertilization.

  12. Analysis of biostimulated microbial communities from two field experiments reveals temporal and spatial differences in proteome profiles

    SciTech Connect

    Callister, S.J.; Wilkins, M.J.; Nicora, C.D.; Williams, K.H.; Banfield, J.F.; VerBerkmoes, N.C.; Hettich, R.L.; NGuessan, A.L.; Mouser, P.J.; Elifantz, H.; Smith, R.D.; Lovley, D.R.; Lipton, M.S.; Long, P.E.

    2010-07-15

    Stimulated by an acetate-amendment field experiment conducted in 2007, anaerobic microbial populations in the aquifer at the Rifle Integrated Field Research Challenge site in Colorado reduced mobile U(VI) to insoluble U(IV). During this experiment, planktonic biomass was sampled at various time points to quantitatively evaluate proteomes. In 2008, an acetate-amended field experiment was again conducted in a similar manner to the 2007 experiment. As there was no comprehensive metagenome sequence available for use in proteomics analysis, we systematically evaluated 12 different organism genome sequences to generate sets of aggregate genomes, or “pseudo-metagenomes”, for supplying relative quantitative peptide and protein identifications. Proteomics results support previous observations of the dominance of Geobacteraceae during biostimulation using acetate as sole electron donor, and revealed a shift from an early stage of iron reduction to a late stage of iron reduction. Additionally, a shift from iron reduction to sulfate reduction was indicated by changes in the contribution of proteome information contributed by different organism genome sequences within the aggregate set. In addition, the comparison of proteome measurements made between the 2007 field experiment and 2008 field experiment revealed differences in proteome profiles. These differences may be the result of alterations in abundance and population structure within the planktonic biomass samples collected for analysis.

  13. Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.

    PubMed

    Liu, Ningning; Xiong, Yun; Ren, Yiran; Zhang, Linlin; He, Xianfei; Wang, Xincheng; Liu, Min; Li, Dengwen; Shui, Wenqing; Zhou, Jun

    2015-08-01

    Tubulin is known to undergo unique post-translational modifications (PTMs), such as detyrosination and polyglutamylation, particularly in the unstructured carboxy-terminal tails (CTTs). However, more conventional PTMs of tubulin and their roles in the regulation of microtubule properties and functions remain poorly defined. Here, we report the comprehensive profiling of tubulin phosphorylation, acetylation, ubiquitylation, and O-GlcNAcylation in HeLa cells with a proteomic approach. Our tubulin-targeted analysis has identified 80 residues bearing single or multiple conventional PTMs including 24 novel PTM sites not covered in previous global proteomic surveys. By using a series of PTM-deficient or PTM-mimicking mutants, we further find that tubulin phosphorylation and acetylation play important roles in the control of microtubule assembly and stability. In addition, these tubulin PTMs have distinct effects on the retrograde transport of adenoviruses along microtubules. These findings thus enlarge the repertoire of tubulin PTMs and foster our understanding of their versatile roles in the regulation of microtubule dynamics and cellular functions.

  14. Proteomic Profiling of Aging in Glomeruli of Mice by using Two-Dimensional Differential Gel Electrophoresis

    PubMed Central

    Liu, Xiaodan; Fan, Qiuling; Yang, Gang; Wang, Lining

    2015-01-01

    Background Glomerular proteins were analyzed by proteomics to screen proteins participating in maturation of glomeruli before senescence and to find key proteins involved in the aging process. Material/Methods Glomeruli of C57BL/6 mice at 8 and 20 weeks were separated by kidney perfusion. Proteomic profiles of glomeruli were investigated by using two-dimensional differential gel electrophoresis and MALDI-TOF mass spectrometry. Results We identified 22 differentially expressed proteins. Among them, 3 proteins were significantly up-regulated and 19 proteins were significantly down-regulated in mature mice. Out of these 22 proteins, 18% take part in protein transport, protein targeting, and proteolysis; 5% in glycolysis; 14% in transcription; 9% in electron transport; 9% were chaperones; and 9% were hydrolases. Conclusions Our results provide insights into the glomerular differentially expressed proteins correlated with renal aging. In this study we found that aging altered the expression of ATP synthase subunit beta. Further studies on this protein might help to understand the mechanism of renal aging. PMID:25659849

  15. Profiling the erythrocyte membrane proteome isolated from patients diagnosed with chronic obstructive pulmonary disease.

    PubMed

    Alexandre, Bruno M; Charro, Nuno; Blonder, Josip; Lopes, Carlos; Azevedo, Pilar; Bugalho de Almeida, António; Chan, King C; Prieto, DaRue A; Issaq, Haleem; Veenstra, Timothy D; Penque, Deborah

    2012-12-01

    Structural and metabolic alterations in erythrocytes play an important role in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). Whether these dysfunctions are related to the modulation of erythrocyte membrane proteins in patients diagnosed with COPD remains to be determined. Herein, a comparative proteomic profiling of the erythrocyte membrane fraction isolated from peripheral blood of smokers diagnosed with COPD and smokers with no COPD was performed using differential (16)O/(18)O stable isotope labeling. A total of 219 proteins were quantified as being significantly differentially expressed within the erythrocyte membrane proteomes of smokers with COPD and healthy smokers. Functional pathway analysis showed that the most enriched biofunctions were related to cell-to-cell signaling and interaction, hematological system development, immune response, oxidative stress and cytoskeleton. Chorein (VPS13A), a cytoskeleton related protein whose defects had been associated with the presence of cell membrane deformation of circulating erythrocytes was found to be down-regulated in the membrane fraction of erythrocytes obtained from COPD patients. Methemoglobin reductase (CYB5R3) was also found to be underexpressed in these cells, suggesting that COPD patients may be at higher risk for developing methemoglobinemia. This article is part of a Special Issue entitled: Integrated omics.

  16. Profiling the erythrocyte membrane proteome isolated from patients diagnosed with chronic obstructive pulmonary disease.

    PubMed

    Alexandre, Bruno M; Charro, Nuno; Blonder, Josip; Lopes, Carlos; Azevedo, Pilar; Bugalho de Almeida, António; Chan, King C; Prieto, DaRue A; Issaq, Haleem; Veenstra, Timothy D; Penque, Deborah

    2012-12-01

    Structural and metabolic alterations in erythrocytes play an important role in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). Whether these dysfunctions are related to the modulation of erythrocyte membrane proteins in patients diagnosed with COPD remains to be determined. Herein, a comparative proteomic profiling of the erythrocyte membrane fraction isolated from peripheral blood of smokers diagnosed with COPD and smokers with no COPD was performed using differential (16)O/(18)O stable isotope labeling. A total of 219 proteins were quantified as being significantly differentially expressed within the erythrocyte membrane proteomes of smokers with COPD and healthy smokers. Functional pathway analysis showed that the most enriched biofunctions were related to cell-to-cell signaling and interaction, hematological system development, immune response, oxidative stress and cytoskeleton. Chorein (VPS13A), a cytoskeleton related protein whose defects had been associated with the presence of cell membrane deformation of circulating erythrocytes was found to be down-regulated in the membrane fraction of erythrocytes obtained from COPD patients. Methemoglobin reductase (CYB5R3) was also found to be underexpressed in these cells, suggesting that COPD patients may be at higher risk for developing methemoglobinemia. This article is part of a Special Issue entitled: Integrated omics. PMID:22538302

  17. Effect of hypoxia on lung gene expression and proteomic profile: insights into the pulmonary surfactant response

    PubMed Central

    Olmeda, Bárbara; Umstead, Todd M.; Silveyra, Patricia; Pascual, Alberto; López-Barneo, José; Phelps, David S.; Floros, Joanna; Pérez-Gil, Jesús

    2014-01-01

    Exposure of lung to hypoxia has been previously reported to be associated with significant alterations in the protein content of bronchoalveolar lavage (BAL) and lung tissue. In the present work we have used a proteomic approach to describe the changes in protein complement induced by moderate long-term hypoxia (rats exposed to 10% O2 for 72 hours) in BAL and lung tissue, with a special focus on the proteins associated with pulmonary surfactant, which could indicate adaptation of this system to limited oxygen availability. The analysis of the general proteomic profile indicates a hypoxia-induced increase in proteins associated with inflammation both in lavage and lung tissue. Analysis at mRNA and protein levels revealed no significant changes induced by hypoxia on the content in surfactant proteins or their apparent oligomeric state. In contrast, we detected a hypoxia-induced significant increase in the expression and accumulation of hemoglobin in lung tissue, at both mRNA and protein levels, as well as an accumulation of hemoglobin both in BAL and associated with surface-active membranes of the pulmonary surfactant complex. Evaluation of pulmonary surfactant surface activity from hypoxic rats showed no alterations in its spreading ability, ruling out inhibition by increased levels of serum or inflammatory proteins. PMID:24576641

  18. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery

    PubMed Central

    Lin, Xiangmin; Shi, Min; Gunasingh Masilamoni, Jeyaraj; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing

    2015-01-01

    Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661

  19. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis.

    PubMed

    Conde, João; Larguinho, Miguel; Cordeiro, Ana; Raposo, Luís R; Costa, Pedro M; Santos, Susana; Diniz, Mário S; Fernandes, Alexandra R; Baptista, Pedro V

    2014-08-01

    Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3'-Cy3 and 5'-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.

  20. Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging.

    PubMed

    Laimer, Martin; Kocher, Thomas; Chiocchetti, Andreas; Trost, Andrea; Lottspeich, Friedrich; Richter, Klaus; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2010-10-01

    Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from 'young' and 'old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1).

  1. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair

    PubMed Central

    Schiller, Herbert B; Fernandez, Isis E; Burgstaller, Gerald; Schaab, Christoph; Scheltema, Richard A; Schwarzmayr, Thomas; Strom, Tim M; Eickelberg, Oliver; Mann, Matthias

    2015-01-01

    The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies. PMID:26174933

  2. Gender-specific medicine in the genomic era.

    PubMed

    Legato, Marianne J

    2016-01-01

    This article is intended to illuminate several important changes in our concept of gender-specific medicine in the genomic era. It reviews the history of gender-specific medicine, pointing out the changes in our perception of the nature of biological sex and our expanding knowledge of how it affects the phenotype. The old debate about 'nature versus nurture' is now largely resolved; the two are inextricably intertwined as a result of epigenomic regulation of gene expression; many of the resulting phenotypic changes are inherited and affect future generations. More accurate, rapid and cheaper methods of editing genomic composition are implementing a more sophisticated understanding of how genes function and how individual components of the genome might be added or eliminated to maintain health and prevent disease. As Venter predicted, the new discipline of synthetic biology, based on the creation and use of novel 'designer' chromosomes is an inevitable expansion of our ability to decipher the naturally occurring genome and the factors that control its expression. As we move with unexpected and stunning rapidity into our exploration and manipulation of the genetic code, our investigations must acknowledge the solidly established fact that biological sex will have a profound impact on the interventions we have made and will make in the future. Unfortunately, in spite of the recent urging of the National Institutes of Health (NIH) that sex be included as an essential variable in all levels of scientific investigation, genuine issues remain to be resolved before all scientists accept not only the importance of doing this, but also how to implement it. PMID:26586840

  3. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling.

    PubMed

    Singec, Ilyas; Crain, Andrew M; Hou, Junjie; Tobe, Brian T D; Talantova, Maria; Winquist, Alicia A; Doctor, Kutbuddin S; Choy, Jennifer; Huang, Xiayu; La Monaca, Esther; Horn, David M; Wolf, Dieter A; Lipton, Stuart A; Gutierrez, Gustavo J; Brill, Laurence M; Snyder, Evan Y

    2016-09-13

    Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt. PMID:27569059

  4. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems.

    PubMed

    Murray, Evan; Cho, Jae Hun; Goodwin, Daniel; Ku, Taeyun; Swaney, Justin; Kim, Sung-Yon; Choi, Heejin; Park, Young-Gyun; Park, Jeong-Yoon; Hubbert, Austin; McCue, Margaret; Vassallo, Sara; Bakh, Naveed; Frosch, Matthew P; Wedeen, Van J; Seung, H Sebastian; Chung, Kwanghun

    2015-12-01

    Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels. PMID:26638076

  5. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound.

    PubMed

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q

    2015-06-24

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.

  6. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants.

    PubMed

    Mol, Juliana P S; Pires, Simone F; Chapeaurouge, Alexander D; Perales, Jonas; Santos, Renato L; Andrade, Hélida M; Lage, Andrey P

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation.

  7. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    PubMed Central

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-01-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail. PMID:26105662

  8. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants

    PubMed Central

    Mol, Juliana P. S.; Pires, Simone F.; Chapeaurouge, Alexander D.; Perales, Jonas; Santos, Renato L.; Andrade, Hélida M.; Lage, Andrey P.

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation. PMID:27104343

  9. DEVELOPMENTAL CIGARETTE SMOKE EXPOSURE: HIPPOCAMPUS PROTEOME AND METABOLOME PROFILES IN LOW BIRTH WEIGHT PUPS

    PubMed Central

    Neal, Rachel E.; Chen, Jing; Jagadapillai, Rekha; Jang, HyeJeong; Abomoelak, Bassam; Brock, Guy; Greene, Robert M.; Pisano, M. Michele

    2014-01-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. However, brain region specific biomolecular alterations induced by developmental cigarette smoke exposure (CSE) remain largely unexplored. In the current molecular phenotyping study, a mouse model of ‘active’ developmental CSE (serum cotinine>50 ng/mL) spanning pre-implantation through third trimester-equivalent brain development (gestational day (GD) 1 through postnatal day (PD) 21) was utilized. Hippocampus tissue collected at the time of cessation of exposure was processed for gel-based proteomic and non-targeted metabolomic profiling with Partial Least Squares-Discriminant Analysis (PLS-DA) for selection of features of interest. Ingenuity Pathway Analysis was utilized to identify candidate molecular and metabolic pathways impacted within the hippocampus. CSE impacted glycolysis, oxidative phosphorylation, fatty acid metabolism, and neurodevelopment pathways within the developing hippocampus. PMID:24486158

  10. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  11. Developmental cigarette smoke exposure: hippocampus proteome and metabolome profiles in low birth weight pups.

    PubMed

    Neal, Rachel E; Chen, Jing; Jagadapillai, Rekha; Jang, Hyejeong; Abomoelak, Bassam; Brock, Guy; Greene, Robert M; Pisano, M Michele

    2014-03-20

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. However, brain region specific biomolecular alterations induced by developmental cigarette smoke exposure (CSE) remain largely unexplored. In the current molecular phenotyping study, a mouse model of 'active' developmental CSE (serum cotinine > 50 ng/mL) spanning pre-implantation through third trimester-equivalent brain development (gestational day (GD) 1 through postnatal day (PD) 21) was utilized. Hippocampus tissue collected at the time of cessation of exposure was processed for gel-based proteomic and non-targeted metabolomic profiling with partial least squares-discriminant analysis (PLS-DA) for selection of features of interest. Ingenuity pathway analysis was utilized to identify candidate molecular and metabolic pathways impacted within the hippocampus. CSE impacted glycolysis, oxidative phosphorylation, fatty acid metabolism, and neurodevelopment pathways within the developing hippocampus.

  12. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    NASA Astrophysics Data System (ADS)

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-06-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.

  13. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction.

    PubMed

    Genshaft, Alex S; Li, Shuqiang; Gallant, Caroline J; Darmanis, Spyros; Prakadan, Sanjay M; Ziegler, Carly G K; Lundberg, Martin; Fredriksson, Simon; Hong, Joyce; Regev, Aviv; Livak, Kenneth J; Landegren, Ulf; Shalek, Alex K

    2016-01-01

    We present a scalable, integrated strategy for coupled protein and RNA detection from single cells. Our approach leverages the DNA polymerase activity of reverse transcriptase to simultaneously perform proximity extension assays and complementary DNA synthesis in the same reaction. Using the Fluidigm C1™ system, we profile the transcriptomic and proteomic response of a human breast adenocarcinoma cell line to a chemical perturbation, benchmarking against in situ hybridizations and immunofluorescence staining, as well as recombinant proteins, ERCC Spike-Ins, and population lysate dilutions. Through supervised and unsupervised analyses, we demonstrate synergies enabled by simultaneous measurement of single-cell protein and RNA abundances. Collectively, our generalizable approach highlights the potential for molecular metadata to inform highly-multiplexed single-cell analyses. PMID:27640647

  14. Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: a comparative analysis

    PubMed Central

    Miao, Rongming; Ding, Bangmei; Zhang, Yingyi; Xia, Qian; Li, Yong

    2016-01-01

    Background Silicosis is a severe occupational disease characterized by pulmonary fibrosis, whereas chronic bronchitis (CB) is an acute inflammation of the airways. Differences in the mechanisms of pathogenesis of these diseases are not well understood, therefore we performed proteomic profiling of silicosis and CB patients and, compared the results. Methods Two-dimensional gel electrophoresis and MALDI-TOF-MS (matrix assisted laser desorption ionization time of flight mass spectrometry) were used to identify differentially accumulated proteins in stage I of silicosis (SI), stage II of silicosis (SII) and CB. Enzyme linked immunosorbent assay (ELISA) was employed to validate protein expression data. Results A total of 28 and 10 proteins were up- and down-regulated in SI, and 21 and 9 proteins were up- and down-regulated SII, compared with CB. Transforming growth factor beta-1 precursor and interferon beta precursor were up-regulated in CB, while interleukin 6, tumor necrosis factor (TNF) and a variant TNF receptor 13B were down-regulated in CB. Additionally, glycoprotein- and apolipoprotein-associated proteins including apolipoprotein A-IV and α-1-B-glycoprotein were up-regulated in CB, indicating an involvement in the pathogenesis of CB but not silicosis. By contrast, HLA-DRB1, medullasin and the proto-oncogene c-Fos were up-regulated in CB. Conclusions The immune, metabolism and apolipoprotein-related proteins were identified as playing specific and different roles in silicosis and CB. These proteomic profiling differences would facilitate further studies on the mechanisms underlying silicosis and CB, and may also prove useful to disease diagnosis and treatments. PMID:27076939

  15. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  16. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20.

    PubMed

    M, Saritha; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2016-11-01

    The present study reports the diversity in extracellular proteins expressed by the filamentous fungus, Aspergillus terreus CM20 with respect to differential hydrolytic enzyme production profiles in submerged fermentation (SmF) and solid-state fermentation (SSF) conditions, and analysis of the extracellular proteome. The SSF method was superior in terms of increase in enzyme activities resulting in 1.5-3 fold enhancement as compared to SmF, which was explained by the difference in growth pattern of the fungus under the two culture conditions. As revealed by zymography, multiple isoforms of endo-β-glucanase, β-glucosidase and xylanase were expressed in SSF, but not in SmF. Extracellular proteome profiling of A. terreus CM20 under SSF condition using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) identified 63 proteins. Functional classification revealed the hydrolytic system to be composed of glycoside hydrolases (56%), proteases (16%), oxidases and dehydrogenases (6%), decarboxylases (3%), esterases (3%) and other proteins (16%). Twenty families of glycoside hydrolases (GH) (1, 3, 5, 7, 10, 11, 12, 15, 16, 28, 30, 32, 35, 43, 54, 62, 67, 72, 74 and 125), and one family each of auxiliary activities (AA7) and carbohydrate esterase (CE1) were detected, unveiling the vast diversity of synergistically acting biomass-cleaving enzymes expressed by the fungus. Saccharification of alkali-pretreated paddy straw with A. terreus CM20 proteins released high amounts of glucose (439.63±1.50mg/gds), xylose (121.04±1.25mg/gds) and arabinose (56.13±0.56mg/gds), thereby confirming the potential of the enzyme cocktail in bringing about considerable conversion of lignocellulosic polysaccharides to sugar monomers. PMID:27664725

  17. Comprehensive Analysis of the Triterpenoid Saponins Biosynthetic Pathway in Anemone flaccida by Transcriptome and Proteome Profiling

    PubMed Central

    Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo

    2016-01-01

    Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e-5) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. Conclusion: A

  18. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human

    PubMed Central

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  19. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human.

    PubMed

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  20. Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development.

    PubMed

    Brown, Kristine E; Chagoya, Gustavo; Kwatra, Shawn G; Yen, Timothy; Keir, Stephen T; Cooter, Mary; Hoadley, Katherine A; Rasheed, Ahmed; Lipp, Eric S; Mclendon, Roger; Ali-Osman, Francis; Bigner, Darell D; Sampson, John H; Kwatra, Madan M

    2015-06-01

    The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre-clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR. The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. We validated proteomic profiles using patient-derived glioblastoma xenografts (PDGX), characterizing 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. Proteins found to be associated with high EGFR activity represent potential

  1. Data for proteomic profiling of Anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Ji; Pang, Chaoyou; Wei, Hengling; Song, Meizhen; Meng, Yanyan; Ma, Jianhui; Fan, Shuli; Yu, Shuxun

    2015-09-01

    Cotton is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To study the male sterile mechanisms of CCRI9106, histological and iTRAQ-facilitated proteomic analyses of anthers were performed. This data article contains data related to the research article titled iTRAQ-Facilitated Proteomic Profiling of Anthers From a Photosensitive Male Sterile Mutant and Wild-type Cotton (Gossypium hirsutum L.)[1]. This research article describes the iTRAQ-facilitated proteomic analysis of the wild-type and a photosensitive male sterile mutant in cotton. The report indicated that exine formation defect is the key reason for male sterility in mutant plant. The information presented here represents the tables and figures that detail the processing of the raw data obtained from iTRAQ analysis. PMID:26958592

  2. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts. PMID:26867748

  3. Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays*

    PubMed Central

    Lu, Kuan-Yi; Tao, Sheng-Ce; Yang, Tzu-Ching; Ho, Yu-Hsuan; Lee, Chia-Hsien; Lin, Chen-Ching; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Yang, Chin-Yu; Chen, Ming-Shuo; Lin, Yu-Yi; Lu, Jin-Ying; Zhu, Heng; Chen, Chien-Sheng

    2012-01-01

    Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 μm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid

  4. Proteomic Profiling of Rabbit Embryonic Stem Cells Derived from Parthenotes and Fertilized Embryos

    PubMed Central

    Hsieh, Ya-Chen; Lo, Neng-Wen; Lee, Kun-Hsiung; Huang, San-Yuan; Ju, Jyh-Cherng

    2013-01-01

    Rabbit embryonic stem (rES) cells can be derived from various sources of embryos. However, understanding of the gene expression profile, which distincts embryonic stem (ES) cells from other cell types, is still extremely limited. In this study, we compared the protein profiles of three independent lines of rabbit cells, i.e., fibroblasts, fertilized embryo-derived stem (f-rES) cells, and parthenote-derived ES (p-rES) cells. Proteomic analyses were performed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Collectively, the expression levels of 100 out of 284 protein spots differed significantly among these three cell types (p<0.05). Of those differentially expressed spots, 91% were identified in the protein database and represented 63 distinct proteins. Proteins with known identities are mainly localized in the cytoplasmic compartments (48%), nucleus (14%), and cytoskeletal machineries (13%). These proteins were majorly involved in biological functions of energy and metabolic pathways (25%), cell growth and maintenance (25%), signal transduction (14%), and protein metabolisms (10%). When protein expression levels among cell types were compared, six proteins associated with a variety of cellular activities, including structural constituents of the cytoskeleton (tubulins), structural molecule (KRT8), catalytic molecules (α-enolase), receptor complex scaffold (14-3-3 protein sigma), microfilament motor proteins (Myosin-9), and heat shock protein (HSP60), were found highly expressed in p-rES cells. Two proteins related to HSP activity and structural constituent of cytoskeleton in f-rES cells, and one structural molecule activity protein in fibroblasts showed significantly higher expression levels (p<0.05). Marker protein expressions in f-rES and p-rES cells were further confirmed by Western blotting and immunocytochemical staining. This study demonstrated unique proteomic profiles of the three rabbit cell types and revealed some novel proteins

  5. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    SciTech Connect

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.

    2011-04-01

    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  6. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells

    PubMed Central

    Zhou, Quan; Guo, Yueshuai; Zheng, Bo; Shao, Binbin; Jiang, Min; Wang, Gaigai; Zhou, Tao; Wang, Lei; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan

    2015-01-01

    Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs. PMID:25352495

  7. Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

    PubMed

    Pickering, Christina M; Grady, Cameron; Medvar, Barbara; Emamian, Milad; Sandoval, Pablo C; Zhao, Yue; Yang, Chin-Rang; Jung, Hyun Jun; Chou, Chung-Lin; Knepper, Mark A

    2016-02-01

    The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

  8. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  9. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves.

    PubMed

    Dong, Chun-Juan; Cao, Ning; Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  10. Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer.

    PubMed

    Zhang, Hua; Angelopoulos, Nicos; Xu, Yichen; Grothey, Arnhild; Nunes, Joao; Stebbing, Justin; Giamas, Georgios

    2015-06-01

    Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer. PMID:26022350

  11. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy

    PubMed Central

    Kaya, Namik; Muiya, Nzioka P.; AlHarazi, Olfat; Shinwari, Zakia; Andres, Editha

    2016-01-01

    Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease. PMID:27711126

  12. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  13. Proteomic profile of carbonylated proteins in rat liver: discovering possible mechanisms for tetracycline-induced steatosis.

    PubMed

    Deng, Zhenglu; Yan, Siyu; Hu, Hui; Duan, Zhigui; Yin, Lanxuan; Liao, Shenke; Sun, Yubai; Yin, Dazhong; Li, Guolin

    2015-01-01

    To investigate biochemical mechanisms for the tetracycline-induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long-chain specific acyl-CoA dehydrogenase was one of the key enzymes regulating fatty acid β-oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline-induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline-induced steatosis.

  14. Alteration of protein profile in rat liver of animals exposed to subacute diazinon: a proteomic approach.

    PubMed

    Lari, Parisa; Rashedinia, Marzieh; Abnous, Khalil; Hosseinzadeh, Hossein

    2014-05-01

    Diazinon, an organophosphorus insecticide, is employed to control pests in agriculture. Diazinon may contaminate the environment during the manufacturing process or agricultural application. Previous studies have revealed that diazinon may induce alteration in the protein profile of the liver. Here, a proteomics approach was used to investigate the effects on the protein profile in the liver of rats of subacute oral exposures at 15 mg/kg of diazinon. Liver proteins were separated using 2D-PAGE, and stained by MS-compatible silver staining and/or the fluorescent SYPRO® Ruby protein gel stain. Gels were scanned and analyzed using the Image Master software. Differentially displayed protein species were identified using MALDI-TOF/TOF and MASCOT software. Significantly altered protein species were identified to be involved in apoptosis, cell metabolism, transport, and antioxidant systems. Exposure to diazinon decreased levels of some species of catalase, peroxiredoxin-6, 3-ketoacyl-CoA thiolase, and glucose regulated protein78, whereas the level of protein disulfide-isomerase A3 increased. Our results suggested that diazinon may induce hepatotoxicity through oxidative stress, apoptosis, and metabolic disorders in rat liver.

  15. No clinical benefit of gender-specific total knee arthroplasty

    PubMed Central

    Zhu, Chen; Wang, Jiaxing; Cheng, Mengqi; Peng, Xiaochun; Wang, Qi; Zhang, Xianlong

    2014-01-01

    Background and purpose There is no consensus regarding the clinical relevance of gender-specific prostheses in total knee arthroplasty (TKA). We summarize the current best evidence in a comparison of clinical and radiographic outcomes between gender-specific prostheses and standard unisex prostheses in female patients. Methods We used the PubMed, Embase, Cochrane, Science Citation Index, and Scopus databases. We included randomized controlled trials published up to January 2013 that compared gender-specific prostheses with standard unisex prostheses in female patients who underwent primary TKAs. Results 6 trials involving 423 patients with 846 knee joints met the inclusion criteria. No statistically significant differences were observed between the 2 designs regarding pain, range of motion (ROM), knee scores, satisfaction, preference, complications, and radiographic results. The gender-specific design (Gender Solutions; Zimmer Inc, Warsaw, Indiana) reduced the prevalence of overhang. However, it had less overall coverage of the femoral condyles compared to the unisex group. In fact, the femoral prosthesis in the standard unisex group matched better than that in the gender-specific group. Interpretation Gender-specific prostheses do not appear to confer any benefit in terms of clinician- and patient-reported outcomes for the female knee. PMID:24954488

  16. Gender-Specific Effects of Cognitive Load on Social Discounting

    PubMed Central

    Strombach, Tina; Margittai, Zsofia; Gorczyca, Barbara; Kalenscher, Tobias

    2016-01-01

    We live busy, social lives, and meeting the challenges of our complex environments puts strain on our cognitive systems. However, cognitive resources are limited. It is unclear how cognitive load affects social decision making. Previous findings on the effects of cognitive load on other-regarding preferences have been ambiguous, allowing no coherent opinion whether cognitive load increases, decreases or does not affect prosocial considerations. Here, we suggest that social distance between individuals modulates whether generosity towards a recipient increases or decreases under cognitive load conditions. Participants played a financial social discounting task with several recipients at variable social distance levels. In this task, they could choose between generous alternatives, yielding medium financial rewards for the participant and recipient at variable social distances, or between a selfish alternative, yielding larger rewards for the participant alone. We show that the social discount function of male participants was significantly flattened under high cognitive load conditions, suggesting they distinguished less between socially close and socially distant recipients. Unexpectedly, the cognitive-load effect on social discounting was gender-specific: while social discounting was strongly dependent on cognitive load in men, women were nearly unaffected by cognitive load manipulations. We suggest that cognitive load leads men, but not women to simplify the decision problem by neglecting the social distance information. We consider our study a good starting point for further experiments exploring the role of gender in prosocial choice. PMID:27788192

  17. Key players in neurodegenerative disorders in focus-New insights into the proteomic profile of Alzheimer's disease, schizophrenia, ALS, and multiple sclerosis-24th HUPO BPP Workshop: September 29, 2015, Vancouver, Canada.

    PubMed

    Schrötter, Andreas; Park, Young Mok; Marcus, Katrin; Martins-de-Souza, Daniel; Nilsson, Peter; Magraoui, Fouzi El; Meyer, Helmut E; Grinberg, Lea T

    2016-04-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 24th workshop in Vancouver, Canada, September 29, 2015. The focus of the autumn workshop was on new insights into the proteomic profile of Alzheimer's disease, schizophrenia, ALS and multiple sclerosis.

  18. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.

    PubMed

    Mohanty, Bimal Prasanna; Bhattacharjee, Soma; Das, Manas Kumar

    2011-02-01

    Crystallins are a diverse group of proteins that constitute nearly 90% of the total soluble proteins of the vertebrate eye lens and these tightly packed crystallins are responsible for transparency of the lens. These proteins have been studied in different model and non-model species for understanding the modifications they undergo with ageing that lead to cataract, a disease of protein aggregation. In the present investigation, we studied the lens crystallin profile of the tropical freshwater catfish Rita rita. Profiles of lens crystallins were analyzed and crystallin proteome maps of Rita rita were generated for the first time. alphaA-crystallins, member of the alpha-crystallin family, which are molecular chaperons and play crucial role in maintaining lens transparency were identified by 1- and 2-D immunoblot analysis with anti-alphaA-crystallin antibody. Two protein bands of 19-20 kDa were identified as alphaA-crystallins on 1-D immunoblots and these bands separated into 10 discrete spots on 2-D immunoblot. However, anti-alphaB-crystallin and antiphospho-alphaB-crystallin antibodies were not able to detect any immunoreactive bands on 1- and 2-D immunoblots, indicating alphaB-crystallin was either absent or present in extremely low concentration in Rita rita lens. Thus, Rita rita alpha-crystallins are more like that of the catfish Clarias batrachus and the mammal kangaroo in its alphaA- and alphaB-crystallin content (contain low amount from 5-9% of alphaB-crystallin) and unlike the dogfish, zebrafish, human, bovine and mouse alpha-crystallins (contain higher amount of alphaB-crystallin from 25% in mouse and bovine to 85% in dogfish). Results of the present study can be the baseline information for stimulating further investigation on Rita rita lens crystallins for comparative lens proteomics. Comparing and contrasting the alpha-crystallins of the dogfish and Rita rita may provide valuable information on the functional attributes of alphaA- and alphaB-isoforms, as

  19. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics.

    PubMed

    Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel

    2011-05-01

    Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters.

  20. [Changes in proteome profiles of rat liver microsomes induced by silicon dioxide nanoparticles].

    PubMed

    Tananova, O N; Arianova, E A; Gmoshinskii, I V; Toropygin, I Yu; Khryapova, E V; Trusov, N V; Khotimchenko, S A; Tutel'yan, V A

    2015-01-01

    The effect of daily intragastric administration of an aqueous dispersion of silicon nanoparticles (NPs) (the dose range from 1.0 mg/kg to 100 mg/kg body weight for 28 days) to rats on the proteomic profile of liver microsomes has been investigated by 2D-electrophoresis followed by subsequent mass spectrometry identification. The liver microsomal fraction was isolated by differential centrifugation and its protein composition was analyzed by 2D-polyacrylamide gel electrophoresis. Identification of protein spots was carried out using MALDI-TOF mass spectrometric analysis. The mass spectrometry analysis revealed the protein GRP78 (78 kD glucose-regulated protein precursor), belonging to the family of heat shock proteins. This protein present in animals of the control group was not detected in NP-treated rats of group 2 (1 mg/kg body weight/day) and group 3 (10 mg/kg body weight/day). This protein predominantly localized in the liver cell endoplasmic reticulum and plasma membrane has the chaperone biological activity. Possible mechanisms of the effects of engineered nanoparticles on biosynthetic processes in the body are discussed.

  1. Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes

    PubMed Central

    Cox, Brian; Kislinger, Thomas; Wigle, Dennis A; Kannan, Anitha; Brown, Kevin; Okubo, Tadashi; Hogan, Brigid; Jurisica, Igor; Frey, Brendan; Rossant, Janet; Emili, Andrew

    2007-01-01

    Although microarray analysis has provided information regarding the dynamics of gene expression during development of the mouse lung, no extensive correlations have been made to the levels of corresponding protein products. Here, we present a global survey of protein expression during mouse lung organogenesis from embryonic day E13.5 until adulthood using gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry (MudPIT). Mathematical modeling of the proteomic profiles with parallel DNA microarray data identified large groups of gene products with statistically significant correlation or divergence in coregulation of protein and transcript levels during lung development. We also present an integrative analysis of mRNA and protein expression in Nmyc loss- and gain-of-function mutants. This revealed a set of 90 positively and negatively regulated putative target genes. These targets are evidence that Nmyc is a regulator of genes involved in mRNA processing and a repressor of the imprinted gene Igf2r in the developing lung. PMID:17486137

  2. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate

    PubMed Central

    Rejón, Juan David; Delalande, François; Castro, Antonio Jesús

    2013-01-01

    Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma. PMID:24151302

  3. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    PubMed

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  4. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

    PubMed Central

    Kawamura, Tatsuro; Kawatani, Makoto; Muroi, Makoto; Kondoh, Yasumitsu; Futamura, Yushi; Aono, Harumi; Tanaka, Miho; Honda, Kaori; Osada, Hiroyuki

    2016-01-01

    Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival. PMID:27210421

  5. Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts.

    PubMed

    Pucci-Minafra, Ida; Cancemi, Patrizia; Marabeti, Maria Rita; Albanese, Nadia Ninfa; Di Cara, Gianluca; Taormina, Pietra; Marrazzo, Antonio

    2007-01-01

    According to recent statistics, breast cancer remains one of the leading causes of death among women in Western countries. Breast cancer is a complex and heterogeneous disease, presently classified into several subtypes according to their cellular origin. Among breast cancer histotypes, infiltrating ductal carcinoma represents the most common and potentially aggressive form. Despite the current progress achieved in early cancer detection and treatment, including the new generation of molecular therapies, there is still need for identification of multiparametric biomarkers capable of discriminating between cancer subtypes and predicting cancer progression for personalized therapies. One established step in this direction is the proteomic strategy, expected to provide enough information on breast cancer profiling. To this aim, in the present study we analyzed 13 breast cancer tissues and their matched non-tumoral tissues by 2-DE. Collectively, we identified 51 protein spots, corresponding to 34 differentially expressed proteins, which may represent promising candidate biomarkers for molecular-based diagnosis of breast cancer and for pattern discovery. The relevance of these proteins as factors contributing to breast carcinogenesis is discussed. PMID:21136615

  6. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics.

    PubMed

    Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel

    2011-05-01

    Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters. PMID:21413151

  7. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.

    PubMed

    Andrade-Silva, Débora; Zelanis, André; Kitano, Eduardo S; Junqueira-de-Azevedo, Inácio L M; Reis, Marcelo S; Lopes, Aline S; Serrano, Solange M T

    2016-08-01

    Snake venoms are biological weapon systems composed of secreted proteins and peptides that are used for immobilizing or killing prey. Although post-translational modifications are widely investigated because of their importance in many biological phenomena, we currently still have little understanding of how protein glycosylation impacts the variation and stability of venom proteomes. To address these issues, here we characterized the venom proteomes of seven Bothrops snakes using a shotgun proteomics strategy. Moreover, we compared the electrophoretic profiles of native and deglycosylated venoms and, in order to assess their subproteomes of glycoproteins, we identified the proteins with affinity for three lectins with different saccharide specificities and their putative glycosylation sites. As proteinases are abundant glycosylated toxins, we examined the effect of N-deglycosylation on their catalytic activities and show that the proteinases of the seven venoms were similarly affected by removal of N-glycans. Moreover, we prospected putative glycosylation sites of transcripts of a B. jararaca venom gland data set and detected toxin family related patterns of glycosylation. Based on our global analysis, we report that Bothrops venom proteomes and glycoproteomes contain a core of components that markedly define their composition, which is conserved upon evolution in parallel to other molecular markers that determine their phylogenetic classification. PMID:27297130

  8. Plasma proteomic profiles from disease-discordant monozygotic twins suggest that molecular pathways are shared in multiple systemic autoimmune diseases*

    PubMed Central

    2011-01-01

    Introduction Although systemic autoimmune diseases (SAID) share many clinical and laboratory features, whether they also share some common features of pathogenesis remains unclear. We assessed plasma proteomic profiles among different SAID for evidence of common molecular pathways that could provide insights into pathogenic mechanisms shared by these diseases. Methods Differential quantitative proteomic analyses (one-dimensional reverse-phase liquid chromatography-mass spectrometry) were performed to assess patterns of plasma protein expression. Monozygotic twins (four pairs discordant for systemic lupus erythematosus, four pairs discordant for juvenile idiopathic arthritis and two pairs discordant for juvenile dermatomyositis) were studied to minimize polymorphic gene effects. Comparisons were also made to 10 unrelated, matched controls. Results Multiple plasma proteins, including acute phase reactants, structural proteins, immune response proteins, coagulation and transcriptional factors, were differentially expressed similarly among the different SAID studied. Multivariate Random Forest modeling identified seven proteins whose combined altered expression levels effectively segregated affected vs. unaffected twins. Among these seven proteins, four were also identified in univariate analyses of proteomic data (syntaxin 17, α-glucosidase, paraoxonase 1, and the sixth component of complement). Molecular pathway modeling indicated that these factors may be integrated through interactions with a candidate plasma biomarker, PON1 and the pro-inflammatory cytokine IL-6. Conclusions Together, these data suggest that different SAID may share common alterations of plasma protein expression and molecular pathways. An understanding of the mechanisms leading to the altered plasma proteomes common among these SAID may provide useful insights into their pathogeneses. PMID:22044644

  9. The human pancreas proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Danielsson, Angelika; Pontén, Fredrik; Fagerberg, Linn; Hallström, Björn M; Schwenk, Jochen M; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.

  10. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome

    PubMed Central

    2012-01-01

    Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly

  11. Proteomic profiles of the embryonic chorioamnion and uterine caruncles in buffaloes (Bubalus bubalis) with normal and retarded embryonic development.

    PubMed

    Balestrieri, Maria Luisa; Gasparrini, Bianca; Neglia, Gianluca; Vecchio, Domenico; Strazzullo, Maria; Giovane, Alfonso; Servillo, Luigi; Zicarelli, Luigi; D'Occhio, Michael J; Campanile, Giuseppe

    2013-05-01

    The aim of this study was to compare the proteome profiles of the chorioamnion and corresponding caruncle for buffalo embryos that had either normal or retarded development on Day 25 after artificial insemination (AI). In experiment 1, embryos that were to subsequently undergo late embryonic mortality had a smaller width on Day 25 after AI than embryos associated with pregnancy on Day 45 after AI. In experiment 2, 25 Italian Mediterranean buffaloes underwent transrectal ultrasonography on Day 25 after AI, and pregnant animals were categorized as one of two groups based on embryonic width: normal embryos (embryonic width > 2.7 mm) and retarded embryos (embryonic width < 2.7 mm). Three buffaloes of each group were slaughtered on Day 27 after AI to collect chorioamnion and caruncle tissues for subsequent proteomic analyses. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometer analysis were used to ascertain the proteomic profiles. To confirm 2D-DIGE-results, three selected proteins were analyzed by Western blot. The proteomic profiles of the chorioamnion of retarded embryos and the corresponding caruncles showed differences in the expression of several proteins compared to normal embryos. In particular, a down-regulation was observed for proteins involved in protein folding (HSP 90-alpha, calreticulin), calcium binding (annexin A1, annexin A2), and coagulation (fibrinogen alpha-chain) (P < 0.05), whereas proteins involved in protease inhibition (alpha-1-antiproteinase, serpin H1, serpin A3-8), DNA and RNA binding (heterogeneous nuclear ribonucleoproteins A2/B1 and K), chromosome segregation (serine/threonine-protein phosphatase 2A), cytoskeletal organization (ezrin), cell redox homeostasis (amine oxidase-A), and hemoglobin binding (haptoglobin) were up-regulated (P < 0.05). PMID:23575152

  12. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury).

    PubMed

    de Oliveira Souza, Vanessa Cristina; de Marco, Kátia Cristina; Laure, Hélen Julie; Rosa, José Cesar; Barbosa, Fernando

    2016-01-01

    Exposure to organomercurials has been associated with harmful effects on the central nervous system (CNS). However, the mechanisms underlying organomercurial-mediated neurotoxic effects need to be elucidated. Exposure to toxic elements may promote cellular modifications such as alterations in protein synthesis in an attempt to protect tissues and organs from damage. In this context, the use of a "proteomic profile" is an important tool to identify potential early biomarkers or targets indicative of neurotoxicity. The aim of this study was to investigate potential modifications in rat cerebral cell proteome following exposure to methylmercury (MeHg) or ethylmercury (EtHg). For MeHg exposure, animals were administered by gavage daily 140 µg/kg/d of Hg (as MeHg) for 60 d and sacrificed 24 h after the last treatment. For EtHg exposure, 800 µg/kg/d of Hg (as EtHg) was given intramuscularly (im) in a single dose and rats were sacrificed after 4 h. Control groups received saline either by gavage or im. After extraction of proteins from whole brain samples and separation by two-dimensional electrophoresis (2-DE), 26 differentially expressed proteins were identified from exposed animals by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF). Both MeHg and EtHg exposure induced an overexpression of calbindin, a protein that acts as a neuroprotective agent by (1) adjusting the concentration of Ca(2+) within cells and preventing neurodegenerative diseases and (2) decreasing expression of glutamine synthetase, a crucial protein involved in regulation of glutamate concentration in synaptic cleft. In contrast, expression of superoxide dismutase (SOD), a protein involved in antioxidant defense, was elevated in brain of MeHg-exposed animals. Taken together, our data provide new valuable information on the possible molecular mechanisms associated with MeHg- and EtHg-mediated toxicity in cerebral tissue. These observed protein alterations may be considered as

  13. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    SciTech Connect

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  14. An Integrated Quantitative Proteomics and Systems Biology Approach to Explore Synaptic Protein Profile Changes During Morphine Exposure

    PubMed Central

    Stockton, Steven D; Devi, Lakshmi A

    2014-01-01

    Morphine is a classic analgesic for the treatment of chronic pain. However, its repeated use is known to produce tolerance, physical dependence, and addiction; these properties limit its long-term therapeutic use and this has led to a quest for therapeutics without these unwanted side effects. Understanding the molecular changes in response to long-term use of morphine is likely to aid in the development of novel therapeutics for the treatment of pain. Studies examining the effects of chronic morphine administration have reported alterations in gene expression, synapse morphology, and synaptic transmission implying changes in synaptic protein profile. To fully understand the changes in protein profiles, proteomic techniques have been used. Studies using two-dimensional gel electrophoresis of various brain regions combined with mass spectrometry have found alterations in the levels of a number of proteins. However, neither the changes in brain regions relevant to morphine effects nor changes in the abundance of synaptic proteins have been clearly delineated. Recent studies employing subcellular fractionation to isolate the striatal synapse, combined with quantitative proteomics and graph theory-inspired network analyses, have begun to quantify morphine-regulated changes in synaptic proteins and facilitate the generation of networks that could serve as targets for the development of novel therapeutics for the treatment of chronic pain. Thus, an integrated quantitative proteomics and systems biology approach can be useful to identify novel targets for the treatment of pain and other disorders of the brain. PMID:24045585

  15. Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential biomarkers.

    PubMed

    Zhai, Rihong; Su, Suhua; Lu, Xin; Liao, Ruiqing; Ge, Xianmin; He, Min; Huang, Yuanjiao; Mai, Sui; Lu, Xi; Christiani, David

    2005-12-01

    Arsenic (As) and lead (Pb) are important inorganic toxicants in the environment. Frequently, humans are exposed to the mixtures of As and Pb, but little is known about the expression of biomarkers resulting from such mixed exposures. In this study, we analyzed serum proteomic profiles in a group of smelter workers with the aim of identifying protein biomarkers of mixed As and Pb exposure. Forty-six male workers co-exposed to As and Pb were studied. Forty-five age-matched male office workers were chosen as controls. Urine As and blood Pb concentrations were determined. Serum proteomic profiles were analyzed by Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) mass spectrometer on the WCX2 ProteinChip. Using Recursive support vector machine (RSVM) algorithm, a panel of five peptides/proteins (2097 Da, 2953 Da, 3941 Da, 5338 Da, and 5639 Da) was selected based on their collective contribution to the optional separation between higher metal mixture exposure and non-exposure controls. Among these five selected markers, the 3941 Da was down-regulated and the four other proteins were up-regulated. Descriptive statistics confirmed that these five proteins differed significantly between metal exposure and non-exposure. Interestingly, the combined use of the five selected biomarkers could achieve higher discriminative power than single marker. These results demonstrated that proteomic technology, in conjunction with bioinformatics tools, could facilitate the discovery of new and better biomarkers of mixed metal exposure.

  16. Proteomic profiling of serologic response to Candida albicans during host-commensal and host-pathogen interactions.

    PubMed

    Pitarch, Aida; Nombela, César; Gil, Concha

    2009-01-01

    Candida albicans is a commensal inhabitant of the normal human microflora that can become pathogenic and invade almost all body sites and organs in response to both host-mediated and fungus-mediated mechanisms. Serologic responses to C. albicans that underlie its dichotomist relationship with the host (host-commensal and host-pathogen interactions) display a high degree of heterogeneity, resulting in distinct serum anti-Candida antibody signatures (molecular fingerprints of anti-Candida antibodies in serum) that can be used to discriminate commensal colonization from invasive disease. We describe the typical proteomic strategy to globally and integratively profile these host antibody responses and determine serum antibody signatures. This approach is based on the combination of classic immunoproteomics or serologic proteome analysis (two-dimensional electrophoresis followed by quantitative Western blotting and mass spectrometry) with data mining procedures. This global proteomic stratagem is a useful tool not only for obtaining an overview of different anti-Candida antibodies that are being elicited during the host-fungus interaction and, consequently, of the complex C. albicans immunome (the subset of the C. albicans proteome targeted by the immune system), but also for evaluating how this pathogen organism interacts with its host to trigger infection. In contrast with genomics and transcriptomics, this proteomic technology has the potential to detect antigenicity associated with posttranslational modification, subcellular localization, and other functional aspects that can be relevant in the host immune response. Furthermore, this strategy to define molecular fingerprints of serum anti-Candida antibodies may hopefully bring to light potential candidates for diagnosis, prognosis, risk stratification, clinical follow-up, therapeutic monitoring, and/or immunotherapy of candidiasis, especially of its life-threatening systemic forms. PMID:19089396

  17. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  18. Quantitative Proteomic Profiling of Prostate Cancer Reveals a Role for miR-128 in Prostate Cancer*

    PubMed Central

    Khan, Amjad P.; Poisson, Laila M.; Bhat, Vadiraja B.; Fermin, Damian; Zhao, Rong; Kalyana-Sundaram, Shanker; Michailidis, George; Nesvizhskii, Alexey I.; Omenn, Gilbert S.; Chinnaiyan, Arul M.; Sreekumar, Arun

    2010-01-01

    Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion. PMID:19955085

  19. Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling.

    PubMed

    Dimayacyac-Esleta, Baby Rorielyn T; Tsai, Chia-Feng; Kitata, Reta Birhanu; Lin, Pei-Yi; Choong, Wai-Kok; Lin, Tai-Du; Wang, Yi-Ting; Weng, Shao-Hsing; Yang, Pan-Chyr; Arco, Susan D; Sung, Ting-Yi; Chen, Yu-Ju

    2015-12-15

    Membrane proteins are crucial targets for cancer biomarker discovery and drug development. However, in addition to the inherent challenges of hydrophobicity and low abundance, complete membrane proteome coverage of clinical specimen is usually hindered by the requirement of large amount of starting materials. Toward comprehensive membrane proteomic profiling for small amounts of samples (10 μg), we developed high-pH reverse phase (Hp-RP) combined with stop-and-go extraction tip (StageTip) technique, as a fast (∼15 min.), sensitive, reproducible, high-resolution and multiplexed fractionation method suitable for accurate quantification of the membrane proteome. This approach provided almost 2-fold enhanced detection of peptides encompassing transmembrane helix (TMH) domain, as compared with strong anion exchange (SAX) and strong cation exchange (SCX) StageTip techniques. Almost 5000 proteins (∼60% membrane proteins) can be identified in only 10 μg of membrane protein digests, showing the superior sensitivity of the Hp-RP StageTip approach. The method allowed up to 9- and 6-fold increase in the identification of unique hydrophobic and hydrophilic peptides, respectively. The Hp-RP StageTip method enabled in-depth membrane proteome profiling of 11 lung cancer cell lines harboring different EGFR mutation status, which resulted in the identification of 3983 annotated membrane proteins. This provides the largest collection of reference peptide spectral data for lung cancer membrane subproteome. Finally, relative quantification of membrane proteins between Gefitinib-resistant and -sensitive lung cancer cell lines revealed several up-regulated membrane proteins with key roles in lung cancer progression.

  20. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  1. Serum Proteome Profiling Identifies Novel and Powerful Markers of Cystic Fibrosis Liver Disease

    PubMed Central

    Kügler, Marion; Menendez Menendez, Katrin; Zachoval, Reinhart; Naehrlich, Lutz; Schulz, Richard; Roderfeld, Martin; Roeb, Elke

    2013-01-01

    Background and Aims Cystic Fibrosis associated liver disease (CFLD) develops in approximately 30% of CF patients. However, routine sensitive diagnostic tools for CFLD are lacking. Within this study, we aimed to identify new experimental biomarkers for the detection of CFLD. Methods 45 CF patients were included in the study and received transient elastography. Differential regulation of 220 different serum proteins was assessed in a subgroup of patients with and without CFLD. Most interesting candidate proteins were further quantified and validated by ELISA in the whole patient cohort. To assess a potential relation of biomarker expression to the degree of hepatic fibrosis, serum biomarkers were further determined in 18 HCV patients where liver histology was available. Results 43 serum proteins differed at least 2-fold in patients with CFLD compared to those without liver disease as identified in proteome profiling. In ELISA quantifications, TIMP-4 and Endoglin were significantly up-regulated in patients with CFLD as diagnosed by clinical guidelines or increased liver stiffness. Pentraxin-3 was significantly decreased in patients with CFLD. Serum TIMP-4 and Endoglin showed highest values in HCV patients with liver cirrhosis compared to those with fibrosis but without cirrhosis. At a cut-off value of 6.3 kPa, transient elastography compassed a very high diagnostic accuracy and specificity for the detection of CFLD. Among the biomarkers, TIMP-4 and Endoglin exhibited a high diagnostic accuracy for CFLD. Diagnostic sensitivities and negative predictive values were increased when elastography and TIMP-4 and Endoglin were combined for the detection of CFLD. Conclusions Serum TIMP-4 and Endoglin are increased in CFLD and their expression correlates with hepatic staging. Determination of TIMP-4 and Endoglin together with transient elastography can increase the sensitivity for the non-invasive diagnosis of CFLD. PMID:23516586

  2. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    PubMed

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  3. Proteomic and Transcriptomic Profiling of Staphylococcus aureus Surface LPXTG-proteins: Correlation with agr Genotypes and Adherence Phenotypes*

    PubMed Central

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-01-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  4. [Direct proteomic profiling of human urine and blood serum in an experiment with 5-day dry immersion].

    PubMed

    2012-01-01

    Changes in proteome of urine and blood serum obtained from 14 healthy humans (age 21-29 yrs) medically certified for an experiment with dry immersion were analyzed. Urine and serum samples were pre-fractionated and enriched with magnetic particles MB-WCX and MB-HIC, respectively, on robot ClinProt (Bruker Daltonics) for direct mass-spectrometry profiling by MALDI-TOF. As a result, 143 protein peaks on the average were identified in urine samples. It was shown that a high variation coefficient in 23.7% of protein peaks, i.e. double technical, points to the most plastic fraction of the urine proteome. In blood serum, 175 peaks were identified in a sample on the average. Comparison of baseline and immersion mass-spectra of the blood proteome revealed significant differences. Increased peak areas of several protein fragments--C3 and C4 fragments of complement system, high-molecular kininogen and fibrinogen--can be ascribed to human body adaptation to the experimental conditions.

  5. PiB-PET Imaging-Based Serum Proteome Profiles Predict Mild Cognitive Impairment and Alzheimer's Disease.

    PubMed

    Kang, Seokjo; Jeong, Hyobin; Baek, Je-Hyun; Lee, Seung-Jin; Han, Sun-Ho; Cho, Hyun Jin; Kim, Hee; Hong, Hyun Seok; Kim, Young Ho; Yi, Eugene C; Seo, Sang Won; Na, Duk L; Hwang, Daehee; Mook-Jung, Inhee

    2016-07-01

    Development of a simple, non-invasive early diagnosis platform of Alzheimer's disease (AD) using blood is urgently required. Recently, PiB-PET imaging has been shown to be powerful to quantify amyloid-β plaque loads leading to pathophysiological alterations in AD brains. Thus, there has been a need for serum biomarkers reflecting PiB-PET imaging data as an early diagnosis platform of AD. Here, using LC-MS/MS analysis coupled with isobaric tagging, we performed comprehensive proteome profiling of serum samples from cognitively normal controls, mild cognitive impairment (MCI), and AD patients, who were selected using PiB-PET imaging. Comparative analysis of the proteomes revealed 79 and 72 differentially expressed proteins in MCI and AD, respectively, compared to controls. Integrated analysis of these proteins with genomic and proteomic data of AD brain tissues, together with network analysis, identified three biomarker candidates representing the altered proteolysis-related process in MCI or AD: proprotein convertase subtilisin/kexin type 9 (PCSK9), coagulation factor XIII, A1 polypeptide (F13A1), and dermcidin (DCD). In independent serum samples of MCI and AD, we confirmed the elevation of the candidates using western blotting and ELISA. Our results suggest that these biomarker candidates can serve as a potential non-invasive early diagnosis platform reflecting PiB-PET imaging for MCI and AD. PMID:27392853

  6. Temperature Dependence of the Proteome Profile of the Psychrotolerant Pathogenic Food Spoiler Bacillus weihenstephanensis Type Strain WSBC 10204.

    PubMed

    Stelder, Sacha K; Mahmud, Siraje A; Dekker, Henk L; de Koning, Leo J; Brul, Stanley; de Koster, Chris G

    2015-05-01

    Bacillus weihenstephanensis is a subspecies of the Bacillus cereus sensu lato group of spore-forming bacteria known to cause food spoilage or food poisoning. The key distinguishing phenotype of B. weihenstephanensis is its ability to grow below 7 °C or, from a food safety perspective, to grow and potentially produce toxins in a refrigerated environment. Comparison of the proteome profile of B. weihenstephanensis upon its exposure to different culturing conditions can reveal clues to the mechanistic basis of its psychrotolerant phenotype as well as elucidate relevant aspects of its toxigenic profile. To this end, the genome of the type strain B. weihenstephanensis WSBC 10204 was sequenced and annotated. Subsequently, the proteome profiles of cells grown at either 6 or 30 °C were compared, which revealed considerable differences and indicated several hundred (uncharacterized) proteins as being subproteome- and/or temperature-specific. In this manner, several processes were newly indicated to be dependent on growth temperature, such as varying carbon flux routes and a different role for the urea cycle. Furthermore, a possible post-translational regulatory function for acetylation was suggested. Toxin production was determined to be largely independent of growth temperature.

  7. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  8. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution. PMID:25156487

  9. Proteomic profiles of five strains of oxygenic photosynthetic cyanobacteria of the genus Cyanothece

    SciTech Connect

    Aryal, Uma K.; Callister, Stephen J.; McMahon, Benjamin H.; McCue, Lee Ann; Brown, Joseph N.; Stockel, Jana; Liberton, Michelle L.; Mishra, Sujata; Zhang, Xiaohui; Nicora, Carrie D.; Angel, Thomas E.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Sherman, Louis A.

    2014-07-03

    Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex (http://sequedex.lanl.gov), an annotationindependent method for ascribing gene functions, we confirmed significant speciesspecific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ~28-48% of the theoretical Cyanothece proteome depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their protein abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein and RNA metabolism, photosynthesis, respiration and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682),

  10. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.

  11. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds

    PubMed Central

    Tripathi, Utkarsh K.; Aslam, Muhammad K. M.; Pandey, Shashank; Nayak, Samiksha; Chhillar, Shivani; Srinivasan, A.; Mohanty, T. K.; Kadam, Prashant H.; Chauhan, M. S.; Yadav, Savita; Kumaresan, Arumugam

    2014-01-01

    Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds. PMID:25364731

  12. GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT

    EPA Science Inventory

    GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT

    Sally D. Perreault, U. S. Environmental Toxicology Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC 27711

  13. Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1

    PubMed Central

    Colquhoun, David R.; Hartmann, Erica M.; Halden, Rolf U.

    2012-01-01

    Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to identify proteomic changes induced by growth on dibenzofuran, a surrogate for dioxin, as compared to acetate. Approximately 10% of the entire putative proteome of RW1 could be observed. Several components of the dioxin and dibenzofuran degradation pathway were shown to be upregulated, thereby highlighting the utility of using proteomic analyses for studying bioremediation agents. This is the first global protein analysis of a microorganism capable of utilizing the carbon backbone of both polychlorinated dioxins and dibenzofurans as the sole source for carbon and energy. PMID:23091346

  14. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele

    PubMed Central

    Camargo, Mariana; Intasqui, Paula; Bertolla, Ricardo Pimenta

    2016-01-01

    Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a “silent” varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome. PMID:26643563

  15. Proteomic profiling: a novel approach to understanding the biological causes of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Doerr, Stefan H.; Urbanek, Emilia; Jones, Alun; Dudley, Ed

    2010-05-01

    conditions rendering them hydrophilic. The dynamics of production of these proteins and the formation of these hydrophobic protein surfaces in soils are not known. Other, yet unknown, proteins may also contribute to development, reduction and temporal variability of soil water repellency. Here we present the first steps of a new NERC funded project aimed at exploring the relationship between the presence and/or absence of (hydrophobic) protein and soil water repellency. It involves isolation and characterisation of hydrophobic protein and the temporal metaproteomic profiles in UK grassland and dune soils with varying degrees of water repellency. This contributes to identifying the proteomic dynamics, which may influence soil hydrology and structure, and ultimately the ability of soils to absorb water, support biomass growth, store carbon, and to capture and degrade pollutants.

  16. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection.

    PubMed

    Xu, Dan; Song, Lang; Wang, Hao; Xu, Xiaoyan; Wang, Tu; Lu, Liqun

    2015-06-01

    Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic

  17. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.

    PubMed

    Vincent, A; Louveau, I; Gondret, F; Tréfeu, C; Gilbert, H; Lefaucheur, L

    2015-06-01

    Improving feed efficiency is a relevant strategy to reduce feed cost and environmental waste in livestock production. Selection experiments on residual feed intake (RFI), a measure of feed efficiency, previously indicated that low RFI was associated with lower feed intake, similar growth rate, and greater lean meat content compared with high RFI. To gain insights into the molecular mechanisms underlying these differences, 24 Large White females from 2 lines divergently selected for RFI were examined. Pigs from a low-RFI ("efficient") and high-RFI ("inefficient") line were individually fed ad libitum from 67 d of age (27 kg BW) to slaughter at 115 kg BW (n = 8 per group). Additional pigs of the high-RFI line were feed restricted to the daily feed intake of the ad libitum low-RFI pigs (n = 8) to investigate the impact of selection independently of feed intake. Global gene and protein expression profiles were assessed in the LM collected at slaughter. The analyses involved a porcine commercial microarray and 2-dimensional gel electrophoresis. About 1,000 probes were differentially expressed (P < 0.01) between RFI lines. Only 10% of those probes were also affected by feed restriction. Gene functional classification indicated a greater expression of genes involved in protein synthesis and a lower expression of genes associated with mitochondrial energy metabolism in the low-RFI pigs compared with the high-RFI pigs. At the protein level, 11 unique identified proteins exhibited a differential abundance (P < 0.05) between RFI lines. Differentially expressed proteins were generally not significantly affected by feed restriction. Mitochondrial oxidative proteins such as aconitase hydratase, ATP synthase subunit α, and creatine kinase S-type had a lower abundance in the low-RFI pigs, whereas fructose-biphosphate aldolase A and glyceraldehyde-3-phosphate dehydrogenase, 2 proteins involved in glycolysis, had a greater abundance in those pigs compared with high-RFI pigs

  18. Identification of novel translational urinary biomarkers for acetaminophen-induced acute liver injury using proteomic profiling in mice.

    PubMed

    van Swelm, Rachel P L; Laarakkers, Coby M M; van der Kuur, Ellen C; Morava-Kozicz, Eva; Wevers, Ron A; Augustijn, Kevin D; Touw, Daan J; Sandel, Maro H; Masereeuw, Rosalinde; Russel, Frans G M

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced by acetaminophen (APAP). Mice were given a single intraperitoneal dose of APAP (0-350 mg/kg bw) followed by 24 h urine collection. Doses of ≥275 mg/kg bw APAP resulted in hepatic centrilobular necrosis and significantly elevated plasma alanine aminotransferase (ALT) values (p<0.0001). Proteomic profiling resulted in the identification of 12 differentially excreted proteins in urine of mice with acute liver injury (p<0.001), including superoxide dismutase 1 (SOD1), carbonic anhydrase 3 (CA3) and calmodulin (CaM), as novel biomarkers for APAP-induced liver injury. Urinary levels of SOD1 and CA3 increased with rising plasma ALT levels, but urinary CaM was already present in mice treated with high dose of APAP without elevated plasma ALT levels. Importantly, we showed in human urine after APAP intoxication the presence of SOD1 and CA3, whereas both proteins were absent in control urine samples. Urinary concentrations of CaM were significantly increased and correlated well with plasma APAP concentrations (r = 0.97; p<0.0001) in human APAP intoxicants, who did not present with elevated plasma ALT levels. In conclusion, using this urinary proteomics approach we demonstrate CA3, SOD1 and, most importantly, CaM as potential human biomarkers for APAP-induced liver injury.

  19. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    PubMed Central

    Loiola, Rodrigo Azevedo; dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2. PMID:27292372

  20. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood*

    PubMed Central

    Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.

    2015-01-01

    Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294

  1. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  2. Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach

    PubMed Central

    Su, Ying; Pan, Sijun; Li, Zhengqiu; Li, Lin; Wu, Xiaoyuan; Hao, Piliang; Sze, Siu Kwan; Yao, Shao Q.

    2015-01-01

    MLN8237 is a highly potent and presumably selective inhibitor of Aurora kinase A (AKA) and has shown promising antitumor activities. Like other kinase inhibitors which target the ATP-binding site of kinases, MLN8237 might be expected to have potential cellular off-targets. Herein, we report the first photoaffinity-based, small molecule AKA probe capable of both live-cell imaging of AKA activities and in situ proteome profiling of potential off-targets of MLN8237 (including AKA-associating proteins). By using two mutually compatible, bioorthogonal reactions (copper-catalyzed azide-alkyne cycloaddition chemistry and TCO-tetrazine ligation), we demostrate small molecule-based multiplex bioimaging for simultaneous in situ monitoring of two important cell-cycle regulating kinases (AKA and CDK1). A broad range of proteins, as potential off-targets of MLN8237 and AKA's-interacting partners, is subsequently identified by affinity-based proteome profiling coupled with large-scale LC-MS/MS analysis. From these studies, we discover novel AKA interactions which were further validated by cell-based immunoprecipitation (IP) experiments. PMID:25579846

  3. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine?

    PubMed

    Colvin, Kelley L; Yeager, Michael E

    2015-02-01

    Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies. PMID:25408474

  4. Proteome profiling of seed from inbred and mutant line of sorghum (Sorghum bicolor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain sorghum is a major staple food, with fifth rank among the cereals world-wide, considering its importance for food and feed applications. Cereals are main part of human nutrition and strategic resources. In this study, we executed a comprehensive proteomic study to investigate the seed storage ...

  5. Transcript profile of barley aleurone differs between total and polysomal RNAs: Implications for proteome modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray analysis of mRNA populations is routinely conducted with total RNA. However, such analyses would probably represent the translated genome (proteome) more accurately if conducted with polysomal RNA. In order to determine whether significant variation occurs between these two populations,...

  6. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  7. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.

    PubMed

    Aoki, Wataru; Ueda, Tomomi; Tatsukami, Yohei; Kitahara, Nao; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-02-01

    Candida albicans is a commensal organism; however, it causes fatal diseases if the host immunity is compromised. The mortality rate is very high due to the lack of effective treatment, leading to ceaseless demand for novel pharmaceuticals. In this study, time-course proteomics of C. albicans during adaptation to fetal bovine serum (FBS) was described. Time-course proteomics is a promising way to understand the exact process of going adaptation in dynamically changing environments. Candida albicans was cultivated in yeast nitrogen base (YNB) ± FBS media, and we identified 1418 proteins in the endpoint samples incubated for 0 or 60 min by a LC-MS/MS system with a long monolithic silica capillary column. Next, we carried out time-course proteomics of the YNB + FBS samples to identify top-priority proteins for adaption to FBS. We identified 16 proteins as nascent/newly synthesized proteins, and they were recognized as candidates of important virulent factors. Gene ontology analysis revealed that transport-related proteins were enriched in the 16 proteins, indicating that C. albicans probably put priority in time on the acquisition of essential elements. Time-course proteomics of C. albicans revealed the order of priority to adapt to FBS. Depicting time-course dynamics will lead to profound understandings of virulence of C. albicans. PMID:23620121

  8. Proteomic Profiling of the Outer Membrane Fraction of the Obligate Intracellular Bacterial Pathogen Ehrlichia ruminantium

    PubMed Central

    Moumène, Amal; Marcelino, Isabel; Ventosa, Miguel; Gros, Olivier; Lefrançois, Thierry; Vachiéry, Nathalie

    2015-01-01

    The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia’s OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs

  9. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    PubMed

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. PMID:26790989

  10. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  11. Worms from venus and mars: proteomics profiling of sexual differences in Caenorhabditis elegans using in vivo 15N isotope labeling.

    PubMed

    Tops, Bastiaan B J; Gauci, Sharon; Heck, Albert J R; Krijgsveld, Jeroen

    2010-01-01

    Hermaphrodites of the nematode Caenorhabditis elegans produce both sperm and oocytes in the same germline. To investigate the process underlying spermatogenesis and oogenesis separately, we used a quantitative proteomics approach applied to two mutant worm lines (fem-3(q20) and fem-1(hc17)) developing only male and female germlines, respectively. We used stable isotopic labeling of whole animals by feeding them either (14)N or (15)N labeled Escherichia coli. This way, we could confidently identify and quantify 1040 proteins in two independent experiments. Of these, approximately 400 proteins showed significant differential expression between female-like and male-like animals. As expected, proteins linked to oogenesis were found to be highly upregulated in the feminized worms, whereas proteins involved in spermatogenesis were found to be highly upregulated in the masculinized worms. This was complemented by many proteins strongly enriched in either mutant. Although the function of the majority of these proteins is unknown, their expression profile indicates that they have an as yet unrecognized role in the development and/or function of the female- and male germline in C. elegans. We show that members of several protein complexes as well as functionally similar proteins show comparable abundance ratios, indicating coregulation of protein expression. Additional analysis comparing our protein data to a previously published microarray data set shows that mRNA and protein expression are poorly correlating. We provide one of the first examples of a large-scale quantitative proteomics experiment in C. elegans and show the potential and feasibility of an approach enabling system-wide accurate quantitative proteomics experiments in this model organism. PMID:19916504

  12. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    SciTech Connect

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  13. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice.

    PubMed

    Hernandez, Juan P; Chapman, Laura M; Kretschmer, Xiomara C; Baldwin, William S

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16alpha-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females. PMID:16828826

  14. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    SciTech Connect

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S. . E-mail: wbaldwin@utep.edu

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16{alpha}-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.

  15. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa.

    PubMed

    Kwon, Woo-Sung; Oh, Shin-Ae; Kim, Ye-Ji; Rahman, Md Saidur; Park, Yoo-Jin; Pang, Myung-Geol

    2015-01-01

    The ability to predict male fertility is of paramount importance for animal breeding industries and for human reproduction. Conventional semen analysis generally provides information on the quantitative parameters of spermatozoa, but yields no information concerning its functional competence. Proteomics have identified candidates for male fertility biomarkers, but no studies have clearly identified the relationship between the proteome and sperm fertility. Therefore, we performed a proteomic analysis to investigate small and large litter size boar spermatozoa and identify proteins related to male fertility. In this study, 20 proteins showed differential expression levels in small and large litter size groups. Nineteen of these proteins exhibited decreased expression in large litter size samples and increased expression in the small litter group. Interestingly, only one protein was highly expressed in the large litter size spermatozoa. We then identified signaling pathways associated with the differentially expressed protein markers. Glutathione S-transferase Mu3 and glutathione peroxidase 4 were related to the glutathione metabolic pathway and arginine vasopressin receptor 2 was linked to vasopressin R2/STAT. In summary, this is the first study to consider negative fertility biomarkers, and the identified proteins could potentially be used as biomarkers for the detection of inferior male fertility.

  16. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  17. Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket

    PubMed Central

    Bao, Kai; Belibasakis, Georgios N.; Selevsek, Nathalie; Grossmann, Jonas; Bostanci, Nagihan

    2015-01-01

    Periodontal infections cause inflammatory destruction of the tooth supporting tissues. We recently developed a dynamic, in vitro periodontal organotypic tissue model in a perfusion bioreactor system, in co-culture with an 11-species subgingival biofilm, which may recapitulate early events during the establishment of periodontal infections. This study aimed to characterize the global proteome regulations in this host-biofilm interaction model. Semi-quantitative shotgun proteomics were applied for protein identification and quantification in the co-culture supernatants (human and bacterial) and the biofilm lysates (bacterial). A total of 896 and 3363 proteins were identified as secreted in the supernatant and expressed in the biofilm lysate, respectively. Enriched gene ontology analysis revealed that the regulated secreted human tissue proteins were related to processes of cytoskeletal rearrangement, stress responses, apoptosis, and antigen presentation, all of which are commensurate with deregulated host responses. Most secreted bacterial biofilm proteins derived from their cytoplasmic domain. In the presence of the tissue, the levels of Fusobacterium nucleatum, Actinomyces oris and Campylobacter rectus proteins were significantly regulated. The functions of the up-regulated intracellular (biofilm lysate) proteins were associated with cytokinesis. In conclusion, the proteomic overview of regulated pathways in this host-biofilm interaction model provides insights to the early events of periodontal pathogenesis. PMID:26525412

  18. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver.

    PubMed

    Wu, Peng; Zhang, Hongyu; Lin, Weiran; Hao, Yunwei; Ren, Liangliang; Zhang, Chengpu; Li, Ning; Wei, Handong; Jiang, Ying; He, Fuchu

    2014-05-01

    Comprehensively identifying gene expression in both transcriptomic and proteomic levels of one tissue is a prerequisite for a deeper understanding of its biological functions. Alternative splicing and RNA editing, two main forms of transcriptional processing, play important roles in transcriptome and proteome diversity and result in multiple isoforms for one gene, which are hard to identify by mass spectrometry (MS)-based proteomics approach due to the relative lack of isoform information in standard protein databases. In our study, we employed MS and RNA-Seq in parallel into mouse liver tissue and captured a considerable catalogue of both transcripts and proteins that, respectively, covered 60 and 34% of protein-coding genes in Ensembl. We then developed a bioinformatics workflow for building a customized protein database that for the first time included new splicing-derived peptides and RNA-editing-caused peptide variants, allowing us to more completely identify protein isoforms. Using this experimentally determined database, we totally identified 150 peptides not present in standard biological databases at false discovery rate of <1%, corresponding to 72 novel splicing isoforms, 43 new genetic regions, and 15 RNA-editing sites. Of these, 11 randomly selected novel events passed experimental verification by PCR and Sanger sequencing. New discoveries of gene products with high confidence in two omics levels demonstrated the robustness and effectiveness of our approach and its potential application into improve genome annotation. All the MS data have been deposited to the iProx ( http://ww.iprox.org ) with the identifier IPX00003601.

  19. Novel alternative splicing isoform biomarkers identification from high-throughput plasma proteomics profiling of breast cancer

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing. Results Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers. Conclusions We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer. PMID:24565027

  20. Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced vero cells.

    PubMed

    Blonder, Josip; Hale, Martha L; Chan, King C; Yu, Li-Rong; Lucas, David A; Conrads, Thomas P; Zhou, Ming; Popoff, Michel R; Issaq, Haleem J; Stiles, Bradley G; Veenstra, Timothy D

    2005-01-01

    Enzyme-mediated 18O/16O differential labeling of proteome samples often suffers from incomplete exchange of the carboxy-terminus oxygen atoms, resulting in ambiguity in the measurable abundance differences. In this study, an 18O/16O labeling strategy was optimized for and applied to the solution-based comparative analysis of the detergent-resistant membrane proteome (DRMP) of untreated and Iota-b (Ib)-induced Vero cells. Solubilization and tryptic digestion of the DRMP was conducted in a buffer containing 60% methanol. Unfortunately, the activity of trypsin is attenuated at this methanol concentration hampering the ability to obtain complete oxygen atom turnover. Therefore, the incorporation of the 18O atoms was decoupled from the protein digestion step by carrying out the trypsin-mediated heavy atom incorporation in a buffer containing 20% methanol; a concentration at which trypsin activity is enhanced compared to purely aqueous conditions. After isotopic labeling, the samples were combined, fractionated by strong cation exchange and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. In total, over 1400 unique peptides, corresponding to almost 600 proteins, were identified and quantitated, including all known caveolar and lipid raft marker proteins. The quantitative profiling of Ib-induced DRMP from Vero cells revealed several proteins with altered expression levels suggesting their possible role in Ib binding/uptake.

  1. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit.

    PubMed

    Simmons, Denina B D; Sherry, James P

    2016-09-01

    There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease. PMID:27013027

  2. Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies.

    PubMed

    Carvalhais, Virginia; Cerca, Nuno; Vilanova, Manuel; Vitorino, Rui

    2015-03-01

    Staphylococcus epidermidis is an important nosocomial bacterium among carriers of indwelling medical devices, since it has a strong ability to form biofilms. The presence of dormant bacteria within a biofilm is one of the factors that contribute to biofilm antibiotic tolerance and immune evasion. Here, we provide a detailed characterization of the quantitative proteomic profile of S. epidermidis biofilms with different proportions of dormant bacteria. A total of 427 and 409 proteins were identified by label-free and label-based quantitative methodologies, respectively. From these, 29 proteins were found to be differentially expressed between S. epidermidis biofilms with prevented and induced dormancy. Proteins overexpressed in S. epidermidis with prevented dormancy were associated with ribosome synthesis pathway, which reflects the metabolic state of dormant bacteria. In the opposite, underexpressed proteins were related to catalytic activity and ion binding, with involvement in purine, arginine, and proline metabolism. Additionally, GTPase activity seems to be enhanced in S. epidermidis biofilm with induced dormancy. The role of magnesium in dormancy modulation was further investigated with bioinformatics tool based in predicted interactions. The main molecular function of proteins, which strongly interact with magnesium, was nucleic acid binding. Different proteomic strategies allowed to obtain similar results and evidenced that prevented dormancy led to an expression of a markedly different repertoire of proteins in comparison to the one of dormant biofilms.

  3. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus

    PubMed Central

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  4. Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies.

    PubMed

    Carvalhais, Virginia; Cerca, Nuno; Vilanova, Manuel; Vitorino, Rui

    2015-03-01

    Staphylococcus epidermidis is an important nosocomial bacterium among carriers of indwelling medical devices, since it has a strong ability to form biofilms. The presence of dormant bacteria within a biofilm is one of the factors that contribute to biofilm antibiotic tolerance and immune evasion. Here, we provide a detailed characterization of the quantitative proteomic profile of S. epidermidis biofilms with different proportions of dormant bacteria. A total of 427 and 409 proteins were identified by label-free and label-based quantitative methodologies, respectively. From these, 29 proteins were found to be differentially expressed between S. epidermidis biofilms with prevented and induced dormancy. Proteins overexpressed in S. epidermidis with prevented dormancy were associated with ribosome synthesis pathway, which reflects the metabolic state of dormant bacteria. In the opposite, underexpressed proteins were related to catalytic activity and ion binding, with involvement in purine, arginine, and proline metabolism. Additionally, GTPase activity seems to be enhanced in S. epidermidis biofilm with induced dormancy. The role of magnesium in dormancy modulation was further investigated with bioinformatics tool based in predicted interactions. The main molecular function of proteins, which strongly interact with magnesium, was nucleic acid binding. Different proteomic strategies allowed to obtain similar results and evidenced that prevented dormancy led to an expression of a markedly different repertoire of proteins in comparison to the one of dormant biofilms. PMID:25672847

  5. Amyloid-like IgM deposition neuropathy: a distinct clinico-pathologic and proteomic profiled disorder

    PubMed Central

    Figueroa, Juan J.; Bosch, E. Peter; Dyck, P. James B.; Singer, Wolfgang; Vrana, Julie A.; Theis, Jason D.; Dogan, Ahmet; Klein, Christopher J.

    2014-01-01

    Some patients with immunoglobulin paraproteinemic neuropathy have intra-nerve deposits that morphologically mimick amyloid, but do no stain with Congo red. Patients with amyloid-like deposits were identified. The nerve amyloid-like aggregates were studied by laser microdissection and dual mass spectrometry. Three male patients, all with IgM gammopathy, and neuropathy were identified. Follow-up, disease duration was 5, 19, and 7 years, respectively. All had progressive asymmetric sensory-onset distal axonal polyneuropathy with late motor involvement. Autonomic symptoms occurred in only one after 13 years of symptoms. None had clinical cardio-renal involvement. One had skin papules with dermal amyloid-like deposits. Endoneurial amyloid-like deposits had granulo-fibrillar ultrastructure. Mass spectrometry of laser-dissected deposits identified IgM pentameric macroglobulin (heavy, light, and joining chains) without amyloid-associated proteins including absent apolipoprotein E and serum amyloid P-component. Amyloid-like neuropathy has distinct clinical, pathologic, and proteomic features which expand the spectrum of IgM neuropathies. Patients have favorable survival, relative absence of autonomic features, and distinct proteomic profiles of the infiltrative protein in nerve. PMID:22734903

  6. iTRAQ-based proteomic profiling of the barnacle Balanus amphitrite in response to the antifouling compound meleagrin.

    PubMed

    Han, Zhuang; Sun, Jin; Zhang, Yu; He, Fei; Xu, Ying; Matsumura, Kiyotaka; He, Li-Sheng; Qiu, Jian-Wen; Qi, Shu-Hua; Qian, Pei-Yuan

    2013-05-01

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite . Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism.

  7. Gender-specific Issues in Traumatic Injury and Resuscitation: Consensus-based Recommendations for Future Research

    PubMed Central

    Sethuraman, Kinjal N.; Marcolini, Evie G.; McCunn, Maureen; Hansoti, Bhakti; Vaca, Federico E.; Napolitano, Lena M.

    2015-01-01

    Traumatic injury remains an unacceptably high contributor to morbidity and mortality rates across the United States. Gender-specific research in trauma and emergency resuscitation has become a rising priority. In concert with the 2014 Academic Emergency Medicine consensus conference “Gender-specific Research in Emergency Care: Investigate, Understand, and Translate How Gender Affects Patient Outcomes,” a consensus-building group consisting of experts in emergency medicine, critical care, traumatology, anesthesiology, and public health convened to generate research recommendations and priority questions to be answered and thus move the field forward. Nominal group technique was used for the consensus-building process and a combination of face-to-face meetings, monthly conference calls, e-mail discussions, and preconference surveys were used to refine the research questions. The resulting research agenda focuses on opportunities to improve patient outcomes by expanding research in sex- and gender-specific emergency care in the field of traumatic injury and resuscitation. PMID:25420732

  8. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis)

    PubMed Central

    2013-01-01

    Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species. PMID:24224955

  9. Serum Proteome Profiles in Stricturing Crohn’s Disease: A pilot study.

    SciTech Connect

    Townsend, Peter; Zhang, Qibin; Shapiro, Jason; Webb-Robertson, Bobbie-Jo M.; Bramer, Lisa M.; Schepmoes, Athena A.; Weitz, Karl K.; Mallette, Meaghan; Moniz, Heather; Bright, Renee; Merrick, Marjorie; Shah, Samir A.; Sands, Bruce E.; Leleiko, Neal

    2015-08-01

    Background: Crohn’s disease (CD) is a form of inflammatory bowel disease (IBD) with different described behaviors, including stricture. At present, there are no laboratory studies that can differentiate stricturing CD from other phenotypes of IBD. We performed a pilot study to examine differences in the proteome among patients with stricturing Crohn’s disease, non-stricturing Crohn’s disease, and ulcerative colitis (UC). Methods: Serum samples were selected from the Ocean State Crohn’s and Colitis Area Registry (OSCCAR), an established cohort of patients with IBD. Crohn’s disease patients with surgically-resected stricture were matched with similar patients with Crohn’s disease without known stricture, and with UC. Serum samples from each patient were digested and analyzed using liquid chromatography-mass spectrometry to characterize the proteome. Statistical analyses were performed to identify peptides and proteins that can differentiate CD with stricture. Results: Samples from 9 patients in each group (27 total patients) were analyzed. Baseline demographic characteristics were similar among the three groups. We quantified 7668 peptides and 897 proteins for analysis. ROC analysis identified a subset of peptides with an area under the curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant analysis was able to distinguish among the three groups with up to 70% accuracy by peptides, and up to 80% accuracy by proteins. We identified the significantly different proteins and peptides, and determined their function based on previously published literature. Conclusions: The serum of patients with stricturing CD, non-stricturing CD, and UC are distinguishable via proteomic analysis. Some of the proteins that differentiate the stricturing phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte adhesion.

  10. Proteome profiling reveals regional protein alteration in cerebrum of common marmoset (Callithrix jacchus) exposed to methylmercury.

    PubMed

    Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man

    2016-03-10

    Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans. PMID:27012723

  11. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.

    PubMed

    Pang, Zhili; Chen, Lei; Miao, Jianqiang; Wang, Zhiwen; Bulone, Vincent; Liu, Xili

    2015-09-01

    Pyrimorph is a novel fungicide from the carboxylic acid amide (CAA) family used to control plant-pathogenic oomycetes such as Phytophthora capsici. The proteomic response of P. capsici to pyrimorph was investigated using the iTRAQ technology to determine the target site of the fungicide and potential biomarker candidates of drug efficacy. A total of 1336 unique proteins were identified from the mycelium of wild-type P. capsici isolate (Hd3) and two pyrimorph-resistant mutants (R3-1 and R3-2) grown in the presence or absence of pyrimorph. Comparative analysis revealed that the three P. capsici isolates Hd3, R3-1, and R3-2 produced 163, 77, and 13 unique proteins, respectively, which exhibited altered levels of abundance in response to the pyrimorph treatment. Further investigations, using Cluster of Orthologous Groups of Proteins (COG) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 35 proteins related to the mode of action of pyrimorph against P. capsici and 62 proteins involved in the stress response of P. capsici to pyrimorph. Many of the proteins with altered expression were associated with glucose and energy metabolism. Biochemical analysis using d-[U-(14) C]glucose verified the proteomics data, suggesting that the major mode of action of pyrimorph in P. capsici is the inhibition of cell wall biosynthesis. These results also illustrate that proteomics approaches are useful tools for determining the pathways targeted by novel fungicides as well as for evaluating the tolerance of plant pathogens to environmental challenges, such as the presence of fungicides.

  12. Proteome profiling reveals regional protein alteration in cerebrum of common marmoset (Callithrix jacchus) exposed to methylmercury.

    PubMed

    Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man

    2016-03-10

    Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans.

  13. Investigation of urine proteomic profile of cosmonauts after long-term space flight

    NASA Astrophysics Data System (ADS)

    Obraztcova, Olga; Liudmila Pastushkova, MRS.; Larina, Irina; Dobrokhotov, Igor; Kononikhin, Alexey; Nikolaev, Eugene

    The main interest is the study of changes in the protein composition of urine caused by aggressive factors of space flight. To analyze these changes, we investigated the proteome of urine obtained from cosmonauts after long-term spaceflight. We studied the protein composition of the second morning urine fractions obtained from six Russian cosmonauts aged 35 to 51 years, whose mission at the International Space Station continued from 169 to 199 days. Were used proteomic data acquisition technology and advanced bioinformatics analysis approaches. Collection of biomaterial was held within the space experiment "Proteome" before the flight, on the first and seventh day after landing. Urine protein was not detected spectrophotometrically in the majority of the urine samples before the flight, but on the first day after landing it was detected in four cosmonauts, and later - in two cosmonauts. By liquid chromatography (Agilent Technologies Inc., USA) - mass-spectrometry (Thermo, Germany) technic, proteins in urine samples were detected in all periods of observation. As a result of our analysis, we have determined that the detected proteins had different origin. There were identified proteins synthesized in the kidney, liver and prostate. There was observed the drift of the protein composition in urine. One of the hallmarks of this drift was the disappearance of the five proteins in urine samples during the first day after the flight, despite their presence in the samples pre-flight period. They were: receptor tyrosine kinases, cytoskeletal keratin-1, G-protein-coupled receptors, inter-alpha (globulin) inhibitor H4. Such changes could be explained by the influence of factors of space flight, as well as the individual response of each cosmonaut’ organism when they return to the Earth conditions. Also, there was detected the trend to activate proteolysis of proteins in post-flight period, based on the identified secretory proteins with protease activity (cystatin M

  14. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation.

    PubMed

    Walker, Andreas; Russmann, Vera; Deeg, Cornelia A; von Toerne, Christine; Kleinwort, Kristina J H; Szober, Christoph; Rettenbeck, Maruja L; von Rüden, Eva-Lotta; Goc, Joanna; Ongerth, Tanja; Boes, Katharina; Salvamoser, Josephine D; Vezzani, Annamaria; Hauck, Stefanie M; Potschka, Heidrun

    2016-03-01

    Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis

  15. Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in Chlorella sorokiniana.

    PubMed

    Ma, Qian; Wang, Jiangxin; Lu, Shuhuan; Lv, Yajin; Yuan, Yingjin

    2013-03-01

    High density cultivation is essential to industrial production of biodiesel from microalgae, which involves in variations of micro-environment around individual cells, including light intensity, nutrition distribution, other abiotic stress and so on. To figure out the main limit factor in high inoculum cultivation, a quantitative proteomic analysis (iTRAQ-on-line 2-D nano-LC/MS) in a non-model green microalga, Chlorella sorokiniana, under different inoculum sizes was conducted. The resulting high-quality proteomic dataset consisted of 695 proteins. Using a cutoff of P < 0.05, 241 unique proteins with differential expression levels were identified between control and different inoculum sizes. Functional analysis showed that proteins participating in photosynthesis (light reaction) and Calvin cycle (carbon reaction pathway) had highest expression levels under inoculum size of 1 × 10(6) cells mL(-1), and lowest levels under 1 × 10(7) cells mL(-1). Canonical correlation analysis of the photosynthesis related proteins and metabolites biomarkers showed that a good correlation existed between them (canonical coefficient was 0.987), suggesting photosynthesis process greatly affected microalgae biodiesel productivity and quality. Proteomic study of C. sorokiniana under different illuminations was also conducted to confirm light intensity as a potential limit factor of high inoculum size. Nearly two thirds of proteins showed up-regulation under the illumination of 70-110 µmol m(-2) s(-1), compared to those of 40 µmol m(-2) s(-1). This result suggested that by elegantly adjusting light conditions, high cell density cultivation and high biodiesel production might be achieved.

  16. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    PubMed

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; Fitzhugh, William; He, Tao; Ruben, Steve; Moore, Paul A

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  17. Identification and Characterization of Angiogenesis Targets through Proteomic Profiling of Endothelial Cells in Human Cancer Tissues

    PubMed Central

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; FitzHugh, William; He, Tao; Ruben, Steve; Moore, Paul A.

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3. PMID:24236063

  18. Contributions of Immunoaffinity Chromatography to Deep Proteome Profiling of Human Biofluids

    PubMed Central

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D.; Qian, Wei-Jun

    2016-01-01

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed. PMID:26868616

  19. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids.

    PubMed

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D; Qian, Wei-Jun

    2016-05-15

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed. PMID:26868616

  20. Effect of N′-nitrosodimethylamine on red blood cell rheology and proteomic profiles of brain in male albino rats

    PubMed Central

    Ahmad, Areeba; Fatima, Ravish; Maheshwari, Veena; Ahmad, Riaz

    2011-01-01

    We investigated the effects of N'-nitrosodimethylamine (NDMA) induced toxicity on red blood cell rheology in male rats and identified bands in proteomic profiles of brain which can be used as novel markers. Polyacrylamide gel electrophoresis (PAGE) profiles exhibited constitutive as well as induced expression of the polypeptides. Remarkably, the molecular weight range of the polypeptides (8–150 kDa) corresponded to that of the family of heat shock proteins. Our results revealed significant changes in blood parameters and showed the presence of acanthocytes, tear drop cells, spicules and cobot rings in the treated categories. Lactate dehydrogenase and esterase zymograms displayed a shift to anaerobic metabolism generating hypoxia-like conditions. This study strongly suggests that NDMA treatment causes acute toxicity leading to cell membrane destruction and alters protein profiles in rats. It is therefore recommended that caution should be exercised in using NDMA to avoid risks, and if at all necessary strategies should be designed to combat such conditions. PMID:22058653

  1. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line

    PubMed Central

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-01-01

    Wolbachia pipientis a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein “footprint” dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulfurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  2. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Jayapalan, Jaime J; Abdul-Rahman, Puteri S; Arumugam, Manjula; Hashim, Onn H

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.

  3. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae

    PubMed Central

    Paulo, Joao A.; O’Connell, Jeremy D.; Gaun, Aleksandr; Gygi, Steven P.

    2015-01-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  4. The Kidney Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Kampf, Caroline; Edlund, Karolina; Sivertsson, Åsa; Yamamoto, Tadashi; Pontén, Fredrik; Uhlén, Mathias; Odeberg, Jacob

    2014-01-01

    To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease. PMID:25551756

  5. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  6. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  7. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  8. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.

    PubMed

    Paulo, Joao A; O'Connell, Jeremy D; Gaun, Aleksandr; Gygi, Steven P

    2015-11-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry-based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid-related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production.

  9. Proteomic CNS profile of delayed cognitive impairment in mice exposed to Gulf War agents.

    PubMed

    Abdullah, Laila; Crynen, Gogce; Reed, Jon; Bishop, Alex; Phillips, John; Ferguson, Scott; Mouzon, Benoit; Mullan, Myles; Mathura, Venkatarajan; Mullan, Michael; Ait-Ghezala, Ghania; Crawford, Fiona

    2011-12-01

    Gulf War Illness (GWI) is a chronic multisymptom condition with a central nervous system (CNS) component, for which there is no treatment available. It is now believed that the combined exposure to Gulf War (GW) agents, including pyridostigmine bromide (PB) and pesticides, such as permethrin (PER), was a key contributor to the etiology of GWI. In this study, a proteomic approach was used to characterize the biomolecular disturbances that accompany neurobehavioral and neuropathological changes associated with combined exposure to PB and PER. Mice acutely exposed to PB and PER over 10 days showed an increase in anxiety-like behavior, psychomotor problems and delayed cognitive impairment compared to control mice that received vehicle only. Proteomic analysis showed changes in proteins associated with lipid metabolism and molecular transport in the brains of GW agent-exposed mice compared to controls. Proteins associated with the endocrine and immune systems were also altered, and dysfunction of these systems is a prominent feature of GWI. The presence of astrogliosis in the GW agent-exposed mice compared to control mice further suggests an immune system imbalance, as is observed in GWI. These studies provide a broad perspective of the molecular disturbances driving the late pathology of this complex illness. Evaluation of the potential role of these biological functions in GWI will be useful in identifying molecular pathways that can be targeted for the development of novel therapeutics against GWI.

  10. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-01

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  11. Are There Gender-Specific Risk Factors for Suicidal Activity among Patients with Schizophrenia and Depression?

    ERIC Educational Resources Information Center

    Kaplan, Kalman J.; Harrow, Martin; Faull, Robert N.

    2012-01-01

    Are there gender-specific risk factors for suicidal activity among patients with schizophrenia and depression? A total of 74 schizophrenia patients (51 men, 23 women) and 77 unipolar nonpsychotic depressed patients (26 men, 51 women) from the Chicago Follow-up Study were studied prospectively at 2 years posthospitalization and again at 7.5 years.…

  12. Gender-Specific or Common Classroom Norms? Examining the Contextual Moderators of the Risk for Victimization

    ERIC Educational Resources Information Center

    Isaacs, Jenny; Voeten, Marinus; Salmivalli, Christina

    2013-01-01

    We tested whether gender-specific vs. common classroom norms were more powerful moderators of the association between a risk factor (rejection) and peer victimization among girls and boys. The participants were 1220 elementary schoolchildren from grades 4-6 (with 10-13 years of age). We compared different multilevel models including combined vs.…

  13. Better Educational Website Interface Design: The Implications from Gender-Specific Preferences in Graduate Students

    ERIC Educational Resources Information Center

    Hsu, Yu-chang

    2006-01-01

    This study investigated graduate students gender-specific preferences for certain website interface design features, intending to generate useful information for instructors in choosing and for website designers in creating educational websites. The features investigated in this study included colour value, major navigation buttons placement, and…

  14. The Utility of a Gender-Specific Definition of Binge Drinking on the AUDIT

    ERIC Educational Resources Information Center

    Olthuis, Janine V.; Zamboanga, Byron L.; Ham, Lindsay S.; Van Tyne, Kathryne

    2011-01-01

    Objective: Although binge drinking is commonly defined as the consumption of at least 5 drinks in 1 sitting for men and 4 for women, the Alcohol Use Disorders Identification Test (AUDIT) defines binge drinking as the consumption of 6 or more drinks in 1 sitting for both men and women. This study examined the effect of using gender-specific binge…

  15. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    ERIC Educational Resources Information Center

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  16. Emotional Intelligence and Negative Feelings: A Gender Specific Moderated Mediation Model

    ERIC Educational Resources Information Center

    Karakus, Mehmet

    2013-01-01

    This study aims to clarify the effect of emotional intelligence (EI) on negative feelings (stress, anxiety, burnout and depression) in a gender specific model. Four hundred and twenty-five primary school teachers (326 males, 99 females) completed the measures of EI, stress, anxiety, burnout and depression. The multi-group analysis was performed…

  17. Going against the Grain: Gender-Specific Media Education in Catholic High Schools

    ERIC Educational Resources Information Center

    Lapayese, Yvette V.

    2012-01-01

    The Catholic Church has addressed the power of media, as well as the critical importance of understanding and educating Catholic youth on the media's role and place in modern culture. In this article, the narratives of female Catholic teachers are prioritized to illustrate how gender-specific media education influences the schooling experiences of…

  18. Examining gender specificity of sexual response with concurrent thermography and plethysmography.

    PubMed

    Huberman, Jackie S; Chivers, Meredith L

    2015-10-01

    Men's genital responses are significantly greater to sexual stimuli of their preferred gender compared to their nonpreferred gender (gender-specific), whereas androphilic (i.e., sexually attracted to men) women's genital responses are similar to sexual stimuli depicting either women or men (gender-nonspecific). This gendered pattern of genital response has only been demonstrated using vaginal photoplethysmography (VPP) in women and primarily penile plethysmography (PPG) in men. These measures assess different aspects of genital vasocongestion, thereby limiting comparisons between genders. Thermography is a newer sexual psychophysiology methodology that measures genital vasocongestion via temperature change and is better suited to assess sexual response between genders because the dependent measure, change in genital temperature, is similar for women and men. Further, previous studies have assessed gender specificity of sexual response across relatively short sexual stimuli, allowing only the examination of initial phases of sexual response. We examined gender specificity of sexual arousal by measuring women's and men's genital responses to lengthier stimuli with concurrent thermography and VPP/PPG. Gynephilic men (i.e., sexually attracted to women; n = 27) and androphilic women (n = 28) viewed 10-min films depicting men masturbating, women masturbating, and a nonsexual film, and reported feelings of sexual arousal while genital responses were assessed. Across measures, men's sexual responses were gender-specific and women's responses were gender-nonspecific, indicating that the gender difference in gender specificity of arousal is robust to methodology and stimulus duration. These findings replicate previous research, extend knowledge of gendered sexual response, and highlight the utility of multimethod approaches in sexual psychophysiology.

  19. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    PubMed

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.

  20. Constructing support vector machine ensembles for cancer classification based on proteomic profiling.

    PubMed

    Mao, Yong; Zhou, Xiao Bo; Pi, Dao Ying; Sun, You Xian

    2005-11-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  1. Proteomic profiling of expression of proteasomal subunits from livers of mice treated with diethylnitrosamine.

    PubMed

    Yuan, Fuqiang; Lu, Jia; You, Pan; Yang, Zengming; Yang, Pengyuan; Ma, Qiling; Tao, Tao

    2013-01-01

    The liver plays a central role in transforming and clearing chemicals and is susceptible to the toxicity from these agents. Diethylnitrosamine is metabolized primarily in the liver by cytochrome P-450 and can cause DNA damage. The 26S proteasome is a large proteolytic complex that degrades ubiquitinated proteins, and regulates many physiological processes. We used proteomics-based approaches to examine expressional differences of liver proteasomal subunits from diethylnitrosamine-treated mice. The expression of most proteasomal subunits was observed to be upregulated in the analysis of 2DE and MALDI-TOF MS/MS. Some of these differentially expressed proteasomal subunits were further confirmed by Western blot, RT-PCR, and immunohistochemistry. Our results provided useful information on the relationship between the proteasomal complex and related diseases.

  2. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids

    DOE PAGESBeta

    Wu, Chaochao; Duan, Jicheng; Liu, Tao; Smith, Richard D.; Qian, Wei -Jun

    2016-01-12

    Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methodsmore » are also discussed.« less

  3. A chemical proteomics approach for global analysis of lysine monomethylome profiling.

    PubMed

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-02-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. PMID:25505155

  4. Proteomic profiling of cellular targets of lipopolysaccharide-induced signalling in Nicotiana tabacum BY-2 cells.

    PubMed

    Gerber, Isak B; Laukens, Kris; De Vijlder, Thomas; Witters, Erwin; Dubery, Ian A

    2008-11-01

    Plants constantly monitor for pathogen challenge and utilize a diverse array of adaptive defense mechanisms, including differential protein regulation, during pathogen attack. A proteomic analysis of Nicotiana tabacum BY-2 cells was performed in order to investigate the dynamic changes following perception of bacterial lipopolysaccharides. A multiplexed proteome analysis, employing two-dimensional difference-in-gel-electrophoresis with CyDye DIGE fluors, as well as Ruthenium II tris (bathophenanthroline disulfonate) fluorescence staining and Pro-Q Diamond phosphoprotein-specific gel staining, monitored over 1500 proteins and resulted in the identification of 88 differentially regulated proteins and phosphoproteins responsive to LPS(B.cep.)-elicitation. Functional clustering of the proteins both at the level of their abundance and phosphorylation status, revealed 9 proteins involved in transport, ion homeostasis and signal transduction. A large number of responsive proteins were found to be involved in metabolism- and energy-related processes (36), representing various metabolic pathways. Another abundant category corresponded to proteins classified as molecular chaperones and involved in protein destination/targeting (12). Other categories of proteins found to be LPS(B.cep.)-responsive and differentially regulated include cell structure- and cytoskeletal rearrangement proteins (8) and proteins involved in transcription and translation as well as degradation (11). The results indicate that LPS(B.cep.) induces metabolic reprogramming and changes in cellular activities supporting protein synthesis, -folding, vesicle trafficking and secretion; accompanied by changes to the cytoskeleton and proteosome function. Many of the identified proteins are known to be interconnected at various levels through a complex web of activation/deactivation, complex formation, protein-protein interactions, and chaperoning reactions. The presented data offers novel insights and further

  5. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Jayapalan, Jaime J; Abdul-Rahman, Puteri S; Arumugam, Manjula; Hashim, Onn H

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock. PMID:27257555

  6. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    PubMed

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  7. Developmental cigarette smoke exposure: liver proteome profile alterations in low birth weight pups.

    PubMed

    Canales, Lorena; Chen, Jing; Kelty, Elizabeth; Musah, Sadiatu; Webb, Cindy; Pisano, M Michele; Neal, Rachel E

    2012-10-01

    Cigarette smoke is composed of over 4000 chemicals many of which are strong oxidizing agents and chemical carcinogens. Chronic cigarette smoke exposure (CSE) induces mild alterations in liver histology indicative of toxicity though the molecular pathways underlying these alterations remain to be explored. Utilizing a mouse model of 'active' developmental CSE (gestational day (GD) 1 through postnatal day (PD) 21; cotinine >50ng/mL) characterized by low birth weight offspring, the impact of developmental CSE on liver protein abundances was determined. On PD21, liver tissue was collected from pups for 2D SDS-PAGE based proteome analysis with statistical analysis by Partial Least Squares-Discriminant Analysis (PLS-DA). Protein spots of interest were identified by ESI-MS/MS with impacted molecular pathways identified by Ingenuity Pathway Analysis. Developmental CSE decreased the abundance of proteins associated with the small molecule biochemistry (includes glucose metabolism), lipid metabolism, amino acid metabolism, and inflammatory response pathways. Decreased gluconeogenic enzyme activity and lysophosphatidylcholine availability following developmental CSE were found and supports the impact of CSE on these pathways. Proteins with increased abundance belonged to the cell death and drug metabolism networks. Liver antioxidant enzyme abundances [glutathione-S-transferase (GST) and peroxiredoxins] were also altered by CSE, but GST enzymatic activity was unchanged. In summary, cigarette smoke exposure spanning pre- and post-natal development resulted in persistent decreased offspring weights, decreased abundances of liver metabolic proteins, decreased gluconeogenic activity, and altered lipid metabolism. The companion paper details the kidney proteome alterations in the same offspring.

  8. Proteomic and metabolic profiles of Cakile maritima Scop. Sea Rocket grown in the presence of cadmium.

    PubMed

    Taamalli, Manel; D'Alessandro, Angelo; Marrocco, Cristina; Gevi, Federica; Timperio, Anna Maria; Zolla, Lello

    2015-04-01

    Recent physiological reports have documented how Cakile maritima Scop. Sea Rocket could accumulate high doses of Cd without altering its physiological parameters. In the present study, we performed an integrated proteomics (2DE) and metabolomics (HPLC-MS) investigation to determine the molecular mechanisms underlying cadmium (Cd) tolerance of this halophyte. Peculiar features were observed: (i) up-regulation of thiol compound anabolism, including glutathione and phytochelatin homeostasis, which allows an intracellular chelation of Cd and its compartmentalization into vacuole by a significant up-regulation of vacuolar transporters; (ii) up-regulation of the PPP and Calvin cycle (both at the enzyme and metabolite level), which utterly promoted the maintenance of NADPH/NADP(+) homeostasis, other than the accumulation of triose-phosphates (serving as anabolic intermediates for triacylglycerol biosynthesis) and the glyoxylate precursor phosphoglycolate, to promote photorespiration and consequently CO2 release. An up-regulation of carbonic anhydrase was also observed. This halophyte is also correlated with a highly efficient antioxidant system, especially a high up-regulation of SOD1, resulting more efficient in coping with heavy metals stress than common plants. Interestingly, exposure to high Cd concentrations partly affected photosystem integrity and metabolic activity, through the up-regulation of enzymes from the Calvin cycle and glutathione-ascorbate homeostasis and PAP3 which stabilizes thylakoid membrane structures. In addition, up-regulation of Peptidyl-prolyl isomerase CYP38 increases stability and biogenesis of PSII. Finally, metabolomics results confirmed proteomics and previous physiological evidence, also suggesting that osmoprotectants, betaine and proline, together with plant hormones, methyl jasmonate and salicylic acid, might be involved in mediating responses to Cd-induced stress. Taken together, these peculiar features confirm that Cakile maritima

  9. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  10. Proteomic Profiles in Acute Respiratory Distress Syndrome Differentiates Survivors from Non-Survivors

    PubMed Central

    Bhargava, Maneesh; Becker, Trisha L.; Viken, Kevin J.; Jagtap, Pratik D.; Dey, Sanjoy; Steinbach, Michael S.; Wu, Baolin; Kumar, Vipin; Bitterman, Peter B.; Ingbar, David H.; Wendt, Christine H.

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS. PMID:25290099

  11. Proteomic profiling and functional characterization of early and late shoulder osteoarthritis

    PubMed Central

    2013-01-01

    Introduction The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the 'whole joint’, the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable 'snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF. Methods A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines. Results Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA. Conclusions The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a 'chronic wound’ that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which

  12. A targeted proteomics approach for profiling murine cytochrome P450 expression.

    PubMed

    Hersman, Elisabeth M; Bumpus, Namandjé N

    2014-05-01

    The cytochrome P450 (P450) superfamily of enzymes plays a prominent role in drug metabolism. Although mice are a widely used preclinical model in pharmacology, the expression of murine P450 enzymes at the protein level has yet to be fully defined. Twenty-seven proteins belonging to P450 subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J, 2U, 3A, 4A, 4B, 4F, and 4V were readily detectable in Balb/c mouse tissue using a global mass spectrometry-based proteomics approach. Subsequently, a targeted mass spectrometry-based assay was developed to simultaneously quantify these enzymes in ranges of femtomoles of P450 per microgram of total protein concentration range. This screen was applied to mouse liver microsomes and tissue lysates of kidney, lung, intestine, heart, and brain isolated from mixed-sex fetuses; male and female mice that were 3-4 weeks, 9-10 weeks, and 8-10 months of age; and pregnant mice. CYP1A2 was consistently more abundant in male mouse liver microsomes compared with age-matched females. Hepatic expression of CYP2B9 was more abundant in 3- to 4-week-old male and female mice than in mice of other ages; in addition, CYP2B9 was the only enzyme that was detectable at higher levels in pregnant mouse liver microsomes compared with age-matched females. Interestingly, sexually dimorphic expression of CYP2B9, 2D26, 2E1, and 4B1 was observed in kidney only. The targeted proteomics assay described here can be broadly used as a tool for investigating the expression patterns of P450 enzymes in mice.

  13. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster

    PubMed Central

    Jayapalan, Jaime J.; Abdul-Rahman, Puteri S.; Arumugam, Manjula; Hashim, Onn H.

    2016-01-01

    Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock. PMID:27257555

  14. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn's disease and ulcerative colitis.

    PubMed

    Berndt, Uta; Bartsch, Sebastian; Philipsen, Lars; Danese, Silvio; Wiedenmann, Bertram; Dignass, Axel U; Hämmerle, Marcus; Sturm, Andreas

    2007-07-01

    Although Crohn's disease (CrD) and ulcerative colitis (UC) share several clinical features, the mechanisms of tissue injury differ. Because the global cellular function depends upon the protein network environment as a whole, we explored changes in the distribution and association of mucosal proteins to define key events involved in disease pathogenesis. Endoscopic biopsies were taken from CrD, UC, and control colonic mucosa, and Multi-Epitope-Ligand-Cartographie immunofluorescence microscopy with 32 different Abs was performed. Multi-Epitope-Ligand-Cartographie is a novel, highly multiplexed robotic imaging technology which allows integrating cell biology and biomathematical tools to visualize dozens of proteins simultaneously in a structurally intact cell or tissue. In CrD, the number of CD3+CD45RA+ naive T cells was markedly increased, but only activated memory, but not naive, T cells expressed decreased levels of Bax, active caspase-3 or -8. In UC, only CD4+ T cells coexpressing NF-kappaB were caspase-8 and poly(ADP-ribose)-polymerase positive. Furthermore, the number of CD4+CD25+ T cells was elevated only in UC, whereas in CrD and controls, the number of these cells was similar. By using hub analysis, we also identified that the colocalization pattern with NF-kappaB+ and poly(ADP-ribose)-polymerase+ as base motifs distinguished CrD from UC. High-content proteomic analysis of the intestinal mucosa demonstrated for the first time that different T cell populations within the intestinal mucosa express proteins translating distinct biological functions in each form of inflammatory bowel disease. Thus, topological proteomic analysis may help to unravel the pathogenesis of inflammatory bowel disease by defining distinct immunopathogenic profiles in CrD and UC. PMID:17579049

  15. Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae).

    PubMed

    Rocha, Iara Fernanda; Maller, Alexandre; de Cássia Garcia Simão, Rita; Kadowaki, Marina Kimiko; Angeli Alves, Luis Francisco; Huergo, Luciano Fernandes; da Conceição Silva, José Luis

    2016-04-29

    Insects are organisms extremely well adapted to diverse habitats, primarily due to their innate immune system, which provides them with a range of cellular and humoral responses against microorganisms. Lepidoptera hemolymph proteins involved in humoral responses are well known; however, there is a lack of knowledge about the sugarcane borer Diatraea saccharalis. In this present work, the hemolymph proteins of this pest insect were studied by applying proteomic methodologies. Two-dimensional electrophoresis (2-DE) gels of proteins extracted from naive larvae and larvae challenged with Escherichia coli (ATCC 11224) and Bacillus subtilis (ATCC 6623) showed an average of 300 spots, and 92 of these spots corresponded in all three 2-DE gels. Forty-one spots were excised and digested with trypsin and analyzed using mass spectrometry. After analysis, 10 proteins were identified, including some proteins of the immune system: β-defensin-like protein, Turandot A-like protein, attacin-like protein, peptidoglycan recognition protein and cyclophilin-like protein. Nine proteins were present in both experimental conditions; however, β-defensin-like protein was present only in hemolymph challenged by B. subtilis. Notably, attacin-like protein was strongly induced by challenge with E. coli, suggesting an immune response against the infection. However, antimicrobial activity was observed in the test zone of microbial growth inhibition of B. subtilis solely with the hemolymph extract of the larvae challenged with B. subtilis. We made for the first time a proteomic profile of the hemolymph of D. saccharalis in which it was possible to identify the presence of important proteins involved in the immune response.

  16. Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS

    PubMed Central

    Tchapyjnikov, Dmitry; Li, Yuedan; Pisitkun, Trairak; Hoffert, Jason D.; Yu, Ming-Jiun

    2010-01-01

    Vasopressin is a peptide hormone that regulates renal water excretion in part through its actions on the collecting duct. The regulation occurs in part via control of transcription of genes coding for the water channels aquaporin-2 (Aqp2) and aquaporin-3 (Aqp3). To identify transcription factors expressed in collecting duct cells, we have carried out LC-MS/MS-based proteomic profiling of nuclei isolated from native rat inner medullary collecting ducts (IMCDs). To maximize the number of proteins identified, we matched spectra to rat amino acid sequences using three different search algorithms (SEQUEST, InsPecT, and OMSSA). All searches were coupled to target-decoy methodology to limit false-discovery identifications to 2% of the total for single-peptide identifications. In addition, we developed a computational tool (ProMatch) to identify and eliminate ambiguous identifications. With this approach, we identified >3,500 proteins, including 154 proteins classified as “transcription factor” proteins (Panther Classification System). Among these, are members of CREB, ETS, RXR, NFAT, HOX, GATA, EBOX, EGR, MYT1, KLF, and CP2 families, which were found to have evolutionarily conserved putative binding sites in the 5′-flanking region or first intron of the Aqp2 gene, as well as members of EBOX, NR2, GRE, MAZ, KLF, and SP1 families corresponding to conserved sites in the 5′-flanking region of the Aqp3 gene. In addition, several novel phosphorylation sites in nuclear proteins were identified using the neutral loss-scanning LC-MS3 technique. The newly identified proteins have been incorporated into the IMCD Proteome Database (http://dir.nhlbi.nih.gov/papers/lkem/imcd/). PMID:19996160

  17. Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis

    PubMed Central

    Abul-Husn, Noura S.; Annangudi, Suresh P.; Ma'ayan, Avi; Ramos-Ortolaza, Dinah L.; Stockton, Steven D.; Gomes, Ivone; Sweedler, Jonathan V.; Devi, Lakshmi A.

    2011-01-01

    Opiates produce significant and persistent changes in synaptic transmission; knowledge of the proteins involved in these changes may help to understand the molecular mechanisms underlying opiate dependence. Using an integrated quantitative proteomics and systems biology approach, we explored changes in the presynaptic protein profile following a paradigm of chronic morphine administration that leads to the development of dependence. For this, we isolated presynaptic fractions from the striata of rats treated with saline or escalating doses of morphine, and analyzed the proteins in these fractions using differential isotopic labeling. We identified 30 proteins that were significantly altered by morphine and integrated them into a protein-protein interaction (PPI) network representing potential morphine-regulated protein complexes. Graph theory-based analysis of this network revealed clusters of densely connected and functionally related morphine-regulated clusters of proteins. One of the clusters contained molecular chaperones thought to be involved in regulation of neurotransmission. Within this cluster, cysteine-string protein (CSP) and the heat shock protein Hsc70 were downregulated by morphine. Interestingly, Hsp90, a heat shock protein that normally interacts with CSP and Hsc70, was upregulated by morphine. Moreover, treatment with the selective Hsp90 inhibitor, geldanamycin, decreased the somatic signs of naloxone-precipitated morphine withdrawal, suggesting that Hsp90 upregulation at the presynapse plays a role in the expression of morphine dependence. Thus, integration of proteomics, network analysis, and behavioral studies has provided a greater understanding of morphine-induced alterations in synaptic composition, and identified a potential novel therapeutic target for opiate dependence. PMID:22043286

  18. Contribution of antibody-based protein profiling to the human Chromosome-centric Proteome Project (C-HPP).

    PubMed

    Fagerberg, Linn; Oksvold, Per; Skogs, Marie; Algenäs, Cajsa; Lundberg, Emma; Pontén, Fredrik; Sivertsson, Asa; Odeberg, Jacob; Klevebring, Daniel; Kampf, Caroline; Asplund, Anna; Sjöstedt, Evelina; Al-Khalili Szigyarto, Cristina; Edqvist, Per-Henrik; Olsson, Ingmarie; Rydberg, Urban; Hudson, Paul; Ottosson Takanen, Jenny; Berling, Holger; Björling, Lisa; Tegel, Hanna; Rockberg, Johan; Nilsson, Peter; Navani, Sanjay; Jirström, Karin; Mulder, Jan; Schwenk, Jochen M; Zwahlen, Martin; Hober, Sophia; Forsberg, Mattias; von Feilitzen, Kalle; Uhlén, Mathias

    2013-06-01

    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).

  19. Proteomic profiling of gill GSTs in Mytilus galloprovincialis from the North of Portugal and Galicia evidences variations at protein isoform level with a possible relation with water quality.

    PubMed

    Azevedo, Catarina C; Guzmán-Guillén, Remédios; Martins, José C; Osório, Hugo; Vasconcelos, Vitor; da Fonseca, Rute R; Campos, Alexandre

    2015-09-01

    Glutathione transferases (GSTs) are key for xenobiotic detoxification at the molecular level across phyla. These enzymes are therefore likely to be part of the defence mechanisms used by marine organisms, such as mussels, that thrive in highly polluted environments. Taking this hypothesis into account, we used proteomics to characterize the profile of GSTs from the gills of marine mussel Mytilus galloprovincialis in order to discriminate natural mussel populations exposed to different levels of pollution. Samples were collected between Cabo Home (Spain) and Matosinhos (Portugal) covering a north-south transect of approximately 122 Km of the Atlantic Ocean along the Western Coast of the Iberian Peninsula. GSTs from mussel gills were extracted and purified by affinity chromatography with glutathione as the binding substrate to the solid medium. We studied the abundance of GST isoforms by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight mass spectrometry and assessed total activity. Eleven putative individual GSTs from classes Mu, Pi and Sigma were identified by proteomics. Few variations were observed in total GST activity of post-mitochondrial samples between sampling sites, with animals from Matosinhos (polluted site) showing highest GST activity and Cabo Home (clean site) showing lowest. This contrasts with the increased number of differences in the individual GST isoforms. Each mussel population showed unique GST proteomic profiles. Based on the results we conclude that proteomics surpasses the conventional GST enzymatic activity method to discriminate natural mussel populations and has potential application in environmental monitoring. It is reasonable to suggest that the GST proteomic profiles observed may reflect differences in contamination levels.

  20. Correlation between phylogroups and intracellular proteomes of Propionibacterium acnes and differences in the protein expression profiles between anaerobically and aerobically grown cells.

    PubMed

    Dekio, Itaru; Culak, Renata; Fang, Min; Ball, Graham; Gharbia, Saheer; Shah, Haroun N

    2013-01-01

    Propionibacterium acnes is one of the dominant commensals on the human skin and also an opportunistic pathogen in relation to acne, sarcoidosis, prostate cancer, and various infections. Recent investigations using housekeeping and virulence genes have revealed that the species consists of three major evolutionary clades (types I, II, and III). In order to investigate protein expression differences between these phylogroups, proteomic profiles of 21 strains of P. acnes were investigated. The proteins extracted from cells cultured under anaerobic and aerobic conditions were analysed using a SELDI-TOF mass spectrometer, high-resolution capillary gel electrophoresis, and LC-MS/ MS. The SELDI spectral profiles were visualised as a heat map and a dendrogram, which resulted in four proteomic groups. Strains belonging to type I were represented in the proteome Group A, while Group B contained type III strains. Groups C and D contained mixtures of types I and II. Each of these groups was not influenced by differences in culture conditions. Under anoxic growth conditions, a type IB strain yielded high expressions of some proteins, such as methylmalonyl-CoA epimerase and the Christie-Atkins-Munch-Petersen (CAMP) factor. The present study revealed good congruence between genomic and proteomic data suggesting that the microenvironment of each subtype may influence protein expression. PMID:23878795

  1. N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men*

    PubMed Central

    Van Damme, Petra; Gawron, Daria; Van Criekinge, Wim; Menschaert, Gerben

    2014-01-01

    Usage of presumed 5′UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification. PMID:24623590

  2. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

    PubMed

    Garg, Nisha Jain; Soman, Kizhake V; Zago, Maria P; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R; Wiktorowicz, John E

    2016-02-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive

  3. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease

    PubMed Central

    Soman, Kizhake V.; Zago, Maria P.; Koo, Sue-Jie; Spratt, Heidi; Stafford, Susan; Blell, Zinzi N.; Gupta, Shivali; Nuñez Burgos, Julio; Barrientos, Natalia; Brasier, Allan R.

    2016-01-01

    Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30–40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting

  4. Alzheimer Disease Periventricular White Matter Lesions Exhibit Specific Proteomic Profile Alterations

    PubMed Central

    Castaño, Eduardo M.; Maarouf, Chera L.; Wu, Terence; Leal, Maria Celeste; Whiteside, Charisse M.; Lue, Lih-Fen; Kokjohn, Tyler A.; Sabbagh, Marwan N.; Beach, Thomas G.; Roher, Alex E.

    2013-01-01

    The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer’s disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes. In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n = 4) and NDC (n = 5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases. Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α-and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools. Our

  5. Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations.

    PubMed

    Castaño, Eduardo M; Maarouf, Chera L; Wu, Terence; Leal, Maria Celeste; Whiteside, Charisse M; Lue, Lih-Fen; Kokjohn, Tyler A; Sabbagh, Marwan N; Beach, Thomas G; Roher, Alex E

    2013-01-01

    The white matter (WM) represents approximately half the cerebrum volume and is profoundly affected in Alzheimer's disease (AD). However, both the WM responses to AD as well as potential influences of this compartment to dementia pathogenesis remain comparatively neglected. Neuroimaging studies have revealed WM alterations are commonly associated with AD and renewed interest in examining the pathologic basis and importance of these changes. In AD subjects, immunohistochemistry and electron microscopy revealed changes in astrocyte morphology and myelin loss as well as up to 30% axonal loss in areas of WM rarefaction when measured against non-demented control (NDC) tissue. Comparative proteomic analyses were performed on pooled samples of periventricular WM (PVWM) obtained from AD (n=4) and NDC (n=5) subjects with both groups having a mean age of death of 86 years. All subjects had an apolipoprotein E ε3/3 genotype with the exception of one NDC subject who was ε2/3. Urea-detergent homogenates were analyzed using two different separation techniques: 2-dimensional isoelectric focusing/reverse-phase chromatography and 2-dimensional difference gel electrophoresis (2D-DIGE). Proteins with different expression levels between the 2 diagnostic groups were identified using MALDI-Tof/Tof mass spectrometry. In addition, Western blots were used to quantify proteins of interest in individual AD and NDC cases. Our proteomic studies revealed that when WM protein pools were loaded at equal amounts of total protein for comparative analyses, there were quantitative differences between the 2 groups. Molecules related to cytoskeleton maintenance, calcium metabolism and cellular survival such as glial fibrillary acidic protein, vimentin, tropomyosin, collapsin response mediator protein-2, calmodulin, S100-P, annexin A1, α-internexin, α- and β-synuclein, α-B-crystalline, fascin-1, ubiquitin carboxyl-terminal esterase and thymosine were altered between AD and NDC pools. Our

  6. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations.

    PubMed

    Sassi, Mauro; Arena, Simona; Scaloni, Andrea

    2015-07-15

    Adulteration of ovine, caprine, and buffalo milks with more common bovine material occurs for economic reasons and seasonal availability. Frauds are also associated with the use of powdered milk instead of declared, fresh material. In this context, various analytical methods have been adapted to dairy science applications with the aim to evaluate adulteration of milk samples, although time-consuming, suitable only for speciation or thermal treatment analysis, or useful for a specific fraud type. An integrated MALDI-TOF-MS platform for the combined peptidomic and proteomic profiling of milk samples is here presented, which allows rapid detection of illegal adulterations due to the addition of either nondeclared bovine material to water buffalo, goat, and ovine milks or of powdered bovine milk to the fresh counterpart. Peptide and protein markers of each animal milk were identified after direct analysis of a large number of diluted skimmed and/or enriched diluted skimmed filtrate samples. In parallel, markers of thermal treatment were characterized in different types of commercial milks. Principal components scores of ad hoc prepared species- or thermal treatment-associated adulterated milk samples were subjected to partial least-squares regression, permitting a fast accurate estimate of the fraud extents in test samples at either protein and peptide level. With respect to previous reports on MALDI-TOF-MS protein profiling methodologies for milk speciation, this study extends that approach to the analysis of the thermal treatment and introduces an independent, complementary peptide profiling measurement, which integrates protein data with additional information on peptides, validating final results and ultimately broadening the method applicability.

  7. Feeding milk replacer instead of whole milk affects blood plasma proteome and lipid profile in preruminant calves.

    PubMed

    Lepczyński, A; Herosimczyk, A; Ożgo, M; Skrzypczak, W F

    2015-01-01

    The study was undertaken to determine the effect of feeding milk or milk-replacer on the blood plasma proteome and lipid profile in calves during the second week of life. Feeding milk-replacer significantly decreased the expression of plasma apoA-I. Age of calves affected apoA-I expression, which was higher on the 8th than on the 11th and 14th day of life. A significant effect of interaction between diet and age was also observed. The expression of apoA-IV, was significantly affected by diet and was lower in calves fed milk replacer. Expression of this protein was significantly lower at the 8th day of life and was up-regulated in the calves fed milk-replacer at the second week of life. Calves fed milk-replacer had greater expression of haptoglobin, which differed significantly between days of blood sampling, being higher on the 8th than on the 11th and 14th day. The interactive effect of diet and age affected haptoglobin expression, which was successively down-regulated in calves fed milk re- placer. Diet had a significant effect on the plasma lipid profile. Animals fed milk had a greater concentration of TC, HDLC and LDLC. The composition of milk-replacer, especially fat source, is probably the main factor that affects expression of proteins involved in cholesterol metabolism and level of components of lipid profile in calves fed formula. We claim that the initially increased level of haptoglobin, followed by its decrease during the second week of life in calves fed milk-replacer may indicate the presence of short-term stress induced by changes in the feeding system. PMID:25928915

  8. Disruption of the S41 Peptidase Gene in Mycoplasma mycoides capri Impacts Proteome Profile, H2O2 Production, and Sensitivity to Heat Shock

    PubMed Central

    Allam, Ayman B.; Brown, Mary B.; Reyes, Leticia

    2012-01-01

    Members of the Mycoplasma mycoides cluster are among the most virulent of the mycoplasmas, causing worldwide economically significant diseases of cattle and goats. A distinguishing phenotype among the members of the cluster is the ability to degrade casein. The MMCAP2_0241 gene, an S41 peptidase, confers the proteolytic phenotype in Mycoplasma mycoides subsp. capri GM12. In order to determine the impact of disruption of the gene, we used differential proteome profiling to compare the M. mycoides subsp. capri wild type with a mutant lacking the proteolytic phenotype. Disruption of MMCAP2_0241 resulted in altered phenotypes reminiscent of M. mycoides subsp. mycoides SC and had significant impacts on the proteome profile of the microbe. The mutant exhibited increased production of hydrogen peroxide, decreased lactate dehydrogenase activity, and increased sensitivity to heat shock. PMID:23300541

  9. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  10. Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays

    PubMed Central

    Syed, Parvez; Gupta, Shabarni; Choudhary, Saket; Pandala, Narendra Goud; Atak, Apurva; Richharia, Annie; KP, Manubhai; Zhu, Heng; Epari, Sridhar; Noronha, Santosh B.; Moiyadi, Aliasgar; Srivastava, Sanjeeva

    2015-01-01

    The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma. PMID:26370624

  11. Proteomic profiling of microbial transglutaminase-induced polymerization of milk proteins.

    PubMed

    Hsieh, J F; Pan, P H

    2012-02-01

    Microbial transglutaminase (MTGase)-induced polymerization of individual milk proteins during incubation was investigated using a proteomics-based approach. The addition of MTGase (0.25-2.0 units/mL) caused the milk proteins to polymerize after a 3-h incubation period. Sodium dodecyl sulfate-PAGE analysis showed that the total intensities of the protein bands that corresponded to α(S)-casein, β-casein, and κ-casein decreased from 8,245.6, 6,677.2, and 586.6 arbitrary units to 1,911.7, 0.0, and 66.2 arbitrary units, respectively. Components with higher molecular weights were observed, and the intensity of these proteins increased after 3h of incubation. These results support that inter- or intramolecular crosslinking occurred in the casein proteins of MTGase-treated milk. Two-dimensional electrophoresis analysis indicated that isomers of β-casein, κ-casein, a fraction of serum albumin, α(S1)-casein, α(S2)-casein, β-lactoglobulin, and α-lactalbumin in the milk were polymerized following incubation with MTGase. In addition, MTGase-induced polymerization occurred earlier for β-casein and κ-casein isomers than for other milk proteins.

  12. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    PubMed Central

    Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It’s crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer. PMID:27684953

  13. Comparative analysis of viperidae venoms antibacterial profile: a short communication for proteomics.

    PubMed

    Ferreira, Bruno L; Santos, Dilvani O; Dos Santos, André Luis; Rodrigues, Carlos R; de Freitas, Cícero C; Cabral, Lúcio M; Castro, Helena C

    2011-01-01

    Bacterial infections involving multidrug-resistant strains are one of the ten leading causes of death and an important health problem in need for new antibacterial sources and agents. Herein, we tested and compared four snake venoms (Agkistrodon rhodostoma, Bothrops jararaca, B. atrox and Lachesis muta) against 10 Gram-positive and Gram-negative drug-resistant clinical bacteria strains to identify them as new sources of potential antibacterial molecules. Our data revealed that, as efficient as some antibiotics currently on the market (minimal inhibitory concentration (MIC) = 1-32 μg mL(-1)), A. rhodostoma and B. atrox venoms were active against Staphylococcus epidermidis and Enterococcus faecalis (MIC = 4.5 μg mL(-1)), while B. jararaca inhibited S. aureus growth (MIC = 13 μg ml(-1)). As genomic and proteomic technologies are improving and developing rapidly, our results suggested that A. rhodostoma, B. atrox and B. jararaca venoms and glands are feasible sources for searching antimicrobial prototypes for future design new antibiotics against drug-resistant clinical bacteria. They also point to an additional perspective to fully identify the pharmacological potential of these venoms by using different techniques. PMID:18955360

  14. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  15. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  16. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification.

    PubMed

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  17. Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2015-10-01

    Dictyostelium discoideum has historically served as a model system for cell and developmental biology, but recently it has gained increasing attention as a model for the study of human diseases. The extracellular matrix (ECM) of this eukaryotic microbe serves multiple essential functions during development. It not only provides structural integrity to the moving multicellular pseudoplasmodium, or slug, it also provides components that regulate cell motility and differentiation. An LC/MS/MS analysis of slug ECM revealed the presence of a large number of proteins in two wild-type strains, NC4 and WS380B. GO annotation identified a large number of proteins involved in some form of binding (e.g. protein, polysaccharide, cellulose, carbohydrate, ATP, cAMP, ion, lipid, vitamin), as well as proteins that modulate metabolic processes, cell movement, and multicellular development. In addition, this proteomic analysis identified numerous expected (e.g. EcmA, EcmD, discoidin I, discoidin II), as well as unexpected (e.g. ribosomal and nuclear proteins) components. These topics are discussed in terms of the structure and function of the ECM during the development of this model amoebozoan and their relevance to ongoing biomedical research.

  18. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    PubMed Central

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  19. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification.

    PubMed

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection.

  20. Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein.

    PubMed

    Kang, Su-Min; Shin, Min-Jung; Kim, Jung-Hee; Oh, Jong-Won

    2005-05-01

    Hepatitis C virus (HCV) is a causative agent of chronic hepatitis and hepatocellular carcinoma. The core protein of HCV packages the viral RNA genome to form a nucleocapsid. In addition to its function as a structural protein, core protein is involved in regulation of cellular transcription, virus-induced transformation, and pathogenesis. To gain insights into cellular functions of the core protein by identification of cellular proteins interacting with the core protein, we employed a proteomic approach. Hepatocytes soluble cytoplasmic proteins were applied to the core proteins immobilized on Ni-nitrilotriacetic resin and total bound cellular proteins were resolved by 2-DE. Analyses of interacting proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry allowed identification of 14 cellular proteins binding to the core protein. These proteins include DEAD-box polypeptide 5, similar in function to a known protein identified previously by yeast two-hybrid screening and 13 newly identified cellular proteins. Interestingly, nine protein spots were identified as intermediate microfilament proteins, including cytokeratins (five spots for cytokeratin 8, two for cytokeratin 19, and one for cytokeratin 18) and vimentin. Cytokeratin 8 and vimentin, which were previously shown to be involved in the infection processes of other viruses, were further analyzed to confirm their in vivo interactions with the core protein by immunoblotting and immunofluorescence microscopy. We discuss the functional implications of the interactions of the core protein with newly identified cellular proteins in HCV infection and pathogenesis.

  1. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl

    PubMed Central

    2010-01-01

    Background Restoration of rooting competence is important for rejuvenation in Sequoia sempervirens (D. Don) Endl and is achieved by repeatedly grafting Sequoia shoots after 16 and 30 years of cultivation in vitro. Results Mass spectrometry-based proteomic analysis revealed three proteins that differentially accumulated in different rejuvenation stages, including oxygen-evolving enhancer protein 2 (OEE2), glycine-rich RNA-binding protein (RNP), and a thaumatin-like protein. OEE2 was found to be phosphorylated and a phosphopeptide (YEDNFDGNSNVSVMVpTPpTDK) was identified. Specifically, the protein levels of OEE2 increased as a result of grafting and displayed a higher abundance in plants during the juvenile and rejuvenated stages. Additionally, SsOEE2 displayed the highest expression levels in Sequoia shoots during the juvenile stage and less expression during the adult stage. The expression levels also steadily increased during grafting. Conclusion Our results indicate a positive correlation between the gene and protein expression patterns of SsOEE2 and the rejuvenation process, suggesting that this gene is involved in the rejuvenation of Sequoia sempervirens. PMID:21143964

  2. Translational Targeted Proteomics Profiling of Mitochondrial Energy Metabolic Pathways in Mouse and Human Samples.

    PubMed

    Wolters, Justina C; Ciapaite, Jolita; van Eunen, Karen; Niezen-Koning, Klary E; Matton, Alix; Porte, Robert J; Horvatovich, Peter; Bakker, Barbara M; Bischoff, Rainer; Permentier, Hjalmar P

    2016-09-01

    Absolute measurements of protein abundance are important in the understanding of biological processes and the precise computational modeling of biological pathways. We developed targeted LC-MS/MS assays in the selected reaction monitoring (SRM) mode to quantify over 50 mitochondrial proteins in a single run. The targeted proteins cover the tricarboxylic acid cycle, fatty acid β-oxidation, oxidative phosphorylation, and the detoxification of reactive oxygen species. Assays used isotopically labeled concatemers as internal standards designed to target murine mitochondrial proteins and their human orthologues. Most assays were also suitable to quantify the corresponding protein orthologues in rats. After exclusion of peptides that did not pass the selection criteria, we arrived at SRM assays for 55 mouse, 52 human, and 51 rat proteins. These assays were optimized in isolated mitochondrial fractions from mouse and rat liver and cultured human fibroblasts and in total liver extracts from mouse, rat, and human. The developed proteomics approach is suitable for the quantification of proteins in the mitochondrial energy metabolic pathways in mice, rats, and humans as a basis for translational research. Initial data show that the assays have great potential for elucidating the adaptive response of human patients to mutations in mitochondrial proteins in a clinical setting.

  3. Quantitative Profiling of Brain Lipid Raft Proteome in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Kalinowska, Magdalena; Castillo, Catherine; Francesconi, Anna

    2015-01-01

    Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders. PMID:25849048

  4. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  5. Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2015-10-01

    Dictyostelium discoideum has historically served as a model system for cell and developmental biology, but recently it has gained increasing attention as a model for the study of human diseases. The extracellular matrix (ECM) of this eukaryotic microbe serves multiple essential functions during development. It not only provides structural integrity to the moving multicellular pseudoplasmodium, or slug, it also provides components that regulate cell motility and differentiation. An LC/MS/MS analysis of slug ECM revealed the presence of a large number of proteins in two wild-type strains, NC4 and WS380B. GO annotation identified a large number of proteins involved in some form of binding (e.g. protein, polysaccharide, cellulose, carbohydrate, ATP, cAMP, ion, lipid, vitamin), as well as proteins that modulate metabolic processes, cell movement, and multicellular development. In addition, this proteomic analysis identified numerous expected (e.g. EcmA, EcmD, discoidin I, discoidin II), as well as unexpected (e.g. ribosomal and nuclear proteins) components. These topics are discussed in terms of the structure and function of the ECM during the development of this model amoebozoan and their relevance to ongoing biomedical research. PMID:26152465

  6. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  7. Effect of Acute Emotional Stress on Proteomic Profile of Selected Brain Areas and Lysosomal Proteolysis in Rats with Different Behavioral Activity.

    PubMed

    Sharanova, N E; Kirbaeva, N V; Toropygin, I Yu; Khryapova, E V; Koplik, E V; Soto, C Kh; Pertsov, S S; Vasiliev, A V

    2016-07-01

    We compared proteome profiles of selected brain areas (cortex, amygdala, hippocampus, and reticular formation) and measured cathepsins B and D activity in liver lysosomal fraction in rats with different behavioral activity under conditions of emotional stress. In passive rats, the expression of some proteins in various brain regions was changed and baseline cathepsin B activity was higher than in active animals. Taken together, the results attest to differences in the adaptive response formation in rats, depending on behavioral features. PMID:27502534

  8. Gender-specific statistical models of pathological coronary arteries for generating simulated angiograms

    NASA Astrophysics Data System (ADS)

    Kyprianou, Iacovos S.; Thompson, Laura; Banh, Diem Phuc; Pritchard, William; Karanian, John; Rosen, Lee; Myers, Kyle J.

    2006-03-01

    Cardiovascular disease is considered the leading cause of death in the US, accounting for 38% of all deaths. There are gender differences in the size of coronary arteries and in the character and location of atherosclerotic lesions that affect the detection of coronary artery disease with the medical imaging modalities currently used (e.g. angiography, computed tomography). These differences also affect the safety and effectiveness of image-guided interventions using therapeutic devices. For the optimization of the medical imaging modalities used for this specific task we require the generation of clinically-realistic, gender-specific images of healthy and pathological coronary angiograms. For this purpose we have created a gender-specific statistical model of a pathological coronary artery tree. Starting from "healthy" heart-phantoms created from high resolution CT scans of cadaver hearts of both genders, the model uses prevalence data obtained from clinical studies of patients with significant (>50% stenosis) coronary artery disease (CAD). The model determines the plaque deposit locations and character (length, percent stenosis) for each case, based on a flow model. These data are then used to generate artificially diseased artery trees, embedded in a gender-specific torso model. Using an x-ray and optical photon Monte-Carlo simulation program, we then generate simulated angiograms exhibiting realistic disease patterns. The severity of each angiogram is determined from a set of rules that combines the geometrically increasing severity of lesions, the cumulative effects of multiple obstructions, the significance of their locations, the modifying influence of the collaterals, and the size and quality of the distal vessels. The simulated angiograms will consequently be read by model and human observers. The probability of detection derived in combination with the severity score will be used as a figure of merit for the patient- and gender-specific optimization of

  9. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  10. Integration of gender-specific aspects into medical curricula--status quo and future perspectives.

    PubMed

    Pfleiderer, Bettina; Burghaus, Désirée; Bayer, Gudrun; Kindler-Röhrborn, Andrea; Heue, Matthias; Becker, Jan Carl

    2012-01-01

    The consideration of gender aspects in clinical routine is of high importance towards an individualized patient care and a starting point of diversity medicine. Gender-specific awareness is an indispensable basis for an optimized medical treatment. A current study at the medical faculties of Muenster and Duisburg-Essen University (Germany) revealed an insufficient knowledge among students and lecturers in this area. An interdisciplinary, international workshop took place in Muenster (Germany) in May 2012 on the topic how to integrate gender aspects into medical curricula in the future aiming at a better health care for both sexes in long term. This position paper summarizes the conclusions. It was suggested to teach gender-specific contents from the first semester comprehensively - using standardized definitions and a gender-neutral language, since it is crucial not to increase the students' workload any further. The key to success is to implement gender aspects by using meaningful examples on a regular basis - ideally in a longitudinal manner. The content of teaching should be selected by the lecturers and full professors and be considered within students´ exams. To reach these goals, an absolute support of the respective medical faculties as well as the integration of these gender-specific learning objectives into the national competence-based learning catalogue for medical education (NKLM) is obligatory. PMID:23255960

  11. Gender-specific Regulatory Challenges to Product Approval: A Panel Discussion

    PubMed Central

    McGregor, Alyson J.; Barr, Helen; Greenberg, Marna Rayl; Safdar, Basmah; Wildgoose, Peter; Wright, David W.; Hollander, Judd E.

    2015-01-01

    On May 13, 2014, a 1-hour panel discussion session titled “Gender-Specific Regulatory Challenges to Product Approval” was held during the Academic Emergency Medicine consensus conference, “Gender-Specific Research in Emergency Medicine: Investigate, Understand, and Translate How Gender Affects Patient Outcomes.” The session sought to bring together leaders in emergency medicine (EM) research, authors, and reviewers in EM research publications, as well as faculty, fellows, residents, and students engaged in research and clinical practice. A panel was convened involving a representative from the Office of Women’s Health of the U.S. Food and Drug Administration, two pharmaceutical executives, and a clinical EM researcher. The moderated discussion also involved audience members who contributed significantly to the dialogue. Historical background leading up to the session along with the main themes of the discussion are reproduced in this article. These revolve around sex- and gender-specific research, statistical analysis of sex and gender, clinical practice, financial costs associated with pharmaceutical development, adaptive design, and specific recommendations on the regulatory process as it affects the specialty of EM. PMID:25443664

  12. Gender-Specificity in Sexual Interest in Bisexual Men and Women.

    PubMed

    Rullo, Jordan E; Strassberg, Donald S; Miner, Michael H

    2015-07-01

    The present study assessed the gender-specificity of sexual interest of bisexually-identified men and women, compared to gay men and lesbian women. Utilizing viewing time as a measure of sexual interest, self-identified bisexual men (N = 50) and women (N = 54) rated the sexual appeal of sexually provocative pictures while the amount of time spent viewing each picture was inconspicuously measured. As hypothesized, bisexual men and women demonstrated a pattern of sexual interest that was significantly less gender-specific than that of a gay/lesbian sample. That is, bisexual men and women (1) viewed other-sex pictures significantly longer than gay men/lesbian women viewed other-sex pictures and (2) rated other sex pictures significantly more sexually appealing than gay men/lesbians rated other-sex pictures. Additionally, the difference in viewing times and appeal ratings between male and female sexual stimuli for bisexuals was significantly less than the difference evidenced by gay men and lesbians. These findings suggest that self-identified bisexual men and women demonstrate a truly bisexual pattern of sexual interest, characterized by greater other-sex attraction and less gender-specificity than is true for gay men and lesbians. PMID:25323942

  13. Gender-specific normative perceptions of alcohol-related protective behavioral strategies.

    PubMed

    Lewis, Melissa A; Rees, Michiko; Lee, Christine M

    2009-09-01

    The present research aimed (a) to determine whether students underestimate gender-specific descriptive normative perceptions for protective behavioral strategies; (b) to evaluate the relationships among perceived gender-specific descriptive and injunctive drinking norms and perceived gender-specific descriptive norms for protective behavioral strategies; and (c) to examine whether normative perceptions for protective behavioral strategies relate to use of these strategies when controlling for relevant drinking behavior factors (i.e., alcohol consumption, negative consequences, and attitude toward drinking behavior) and social norms factors (i.e., perceived descriptive and injunctive norms). Students (N = 666; 56.6% men) completed measures assessing drinking behavior and attitudes toward drinking, perceived descriptive and injunctive norms, perceived protective behavioral strategies, and protective behavioral strategies. Findings demonstrated that students consistently underestimated the use of strategies for the typical male student, whereas results were less consistent for the typical female student. In addition, results indicated that same-sex normative perceptions for protective behavioral strategies were associated with personal use of these strategies, even when controlling for relevant drinking behavior and social norms factors. Results stress the importance of evaluating factors that are associated with use of protective behavioral strategies. Implications for social norms preventative interventions are discussed.

  14. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    PubMed

    te Pas, Marinus F W; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P L; Smits, Mari A

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  15. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress.

    PubMed

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R; Sivonen, Kaarina

    2015-08-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.

  16. Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-B1

    SciTech Connect

    Kurpinski, Kyle; Chu, Julia; Wang, Daojing; Li, Song

    2009-10-12

    Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor {beta}1 (TGF-{beta}1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-{beta}1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-{beta}1-induced protein ig-h3 (BGH3) protein levels by TGF-{beta}1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-{beta}1, but calponin 3 was not significantly regulated by mechanical strain or TGF-{beta}1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-{beta}1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-{beta}1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation.

  17. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    PubMed

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each P<0.05. One fifth of these proteins were previously associated with age-progressive neurodegenerative or cardiovascular diseases, or both (eg, ApoE, ApoJ, ApoAIV, clusterin, complement C3, and others involved in stress-response and protein-homeostasis pathways). Because fibrosis is a characteristic of both aged and hypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual.

  18. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  19. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation.

    PubMed

    Wang, Yue-Ting; Piyankarage, Sujeewa C; Williams, David L; Thatcher, Gregory R J

    2014-03-21

    Reversible chemical modifications of protein cysteine residues by S-nitrosylation and S-oxidation are increasingly recognized as important regulatory mechanisms for many protein classes associated with cellular signaling and stress response. Both modifications may theoretically occur under cellular nitrosative or nitroxidative stress. Therefore, a proteomic isotope-coded approach to parallel, quantitative analysis of cysteome S-nitrosylation and S-oxidation was developed. Modifications of cysteine residues of (i) human glutathione-S-transferase P1-1 (GSTP1) and (ii) the schistosomiasis drug target thioredoxin glutathione reductase (TGR) were studied. Both S-nitrosylation (SNO) and S-oxidation to disulfide (SS) were observed for reactive cysteines, dependent on concentration of added S-nitrosocysteine (CysNO) and independent of oxygen. SNO and SS modifications of GSTP1 were quantified and compared for therapeutically relevant NO and HNO donors from different chemical classes, revealing oxidative modification for all donors. Observations on GSTP1 were extended to cell cultures, analyzed after lysis and in-gel digestion. Treatment of living neuronal cells with CysNO, to induce nitrosative stress, caused levels of S-nitrosylation and S-oxidation of GSTP1 comparable to those of cell-free studies. Cysteine modifications of PARK7/DJ-1, peroxiredoxin-2, and other proteins were identified, quantified, and compared to overall levels of protein S-nitrosylation. The new methodology has allowed identification and quantitation of specific cysteome modifications, demonstrating that nitroxidation to protein disulfides occurs concurrently with S-nitrosylation to protein-SNO in recombinant proteins and living cells under nitrosative stress.

  20. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    PubMed Central

    Xu, Yan-Ming; Yu, Fei-Yuan; Yang, Feng; Yao, Yue; Zhou, Yuan; Ching, Yick-Pang; Lau, Andy T. Y.

    2016-01-01

    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells. PMID:26716417

  1. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi

    PubMed Central

    Val, Stéphanie; Burgett, Katelyn; Brown, Kristy J.; Preciado, Diego

    2016-01-01

    Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level. PMID:26859300

  2. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress

    PubMed Central

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R.

    2015-01-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone. PMID:26025890

  3. Metabolic and Proteomic Profiling of Diapause in the Aphid Parasitoid Praon volucre

    PubMed Central

    Colinet, Hervé; Renault, David; Charoy-Guével, Blandine; Com, Emmanuelle

    2012-01-01

    Background Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. Methodology/Principal Findings In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. Conclusions/Significance The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations. PMID:22389713

  4. Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles.

    PubMed

    Ledgard, A M; Smolenski, G A; Henderson, H; Lee, R S F

    2015-01-01

    In the first 2-3 weeks after parturition >90% of dairy cows will have some form of uterine infection. Uterine contamination with pathogens, such as Trueperella (formerly Arcanobacterium) pyogenes increases the risk of developing more severe endometritis, which can reduce conception rates. In this study, we compared the uterine proteome of cows infected with Trueperella pyogenes with that of uninfected cows, using 2D gel electrophoresis, and identified annexins A1 and A2 (ANXA1 and ANXA2), apolipoprotein A-1, calprotectin (S100A9), cathelicidin, enolase 1 (ENO1), peptidoglycan recognition protein 1 (PGLYRP1), phosphoglycerate mutase 1 (PGAM1), serine dehydratase (SDS) and serine protease inhibitors (SERPIN) B1, B3 and B4 proteins as differing in abundance in endometritis. Subsequently, levels of ten of these proteins were monitored in uterine samples collected from a herd of lactating, dairy cows at 15 and 42 days post-partum (DPP). The levels were compared with the cytology scores of the samples and the bacterial species isolated from the uterus. Cathelicidin, PGLYRP1, SERPINB1 and S100A9 levels at 15DPP showed strong positive correlations (r=0.78, 0.80, 0.79, and 0.68 respectively; P<0.001) with % of polymorphonuclear neutrophils (PMN). When compared with other bacterial pathogens identified, Streptococcus agalactiae and Truperella pyogenes induced increased expression of the indicator proteins, suggesting that these organisms may adversely affect the subsequent ability of the cow to conceive. Interestingly, there was no difference in the proportion of cows pregnant at 6 and 17 weeks after start of mating between the cows with high or low %PMN. PMID:24331367

  5. Genomic and Proteomic Profiles Reveal the Association of Gelsolin to TP53 Status and Bladder Cancer Progression

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Richstone, Lee; Corton, Marta; Behrendt, Nille; Wulkfuhle, Julia; Bochner, Bernard; Petricoin, Emmanuel; Cordon-Cardo, Carlos

    2007-01-01

    Bladder cancer transformation and immortalization require the inactivation of key regulatory genes, including TP53. Genotyping of a large cohort of bladder cancer patients (n = 256) using the TP53 GeneChip showed mutations in 103 cases (40.2%), the majority of them mapping to the DNA-binding core domain. TP53 mutation status was significantly associated with tumor stage (P = 0.0001) and overall survival for patients with advanced disease (P = 0.01). Transcript profiling using oligonucleotide arrays was performed on a subset of these cases (n = 46). Supervised analyses identified genes differentially expressed between invasive bladder tumors with wild-type (n = 24) and mutated TP53 (n = 22). Pathway analyses of top-ranked genes supported the central role of TP53 in the functional network of such gene patterns. A proteomic strategy using reverse phase arrays with protein extracts of bladder cancer cell lines validated the association of identified differentially expressed genes, such as gelsolin, to TP53 status. Immunohistochemistry on tissue microarrays (n = 294) revealed that gelsolin was associated with tumor stage and overall survival, correlating positively with TP53 status in a subset of these patients. This study further reveals that TP53 mutations are frequent events in bladder cancer progression and identified gelsolin related to TP53 status, tumor staging, and clinical outcome by independent high-throughput strategies. PMID:17982131

  6. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.

    PubMed

    Ibebunjo, Chikwendu; Chick, Joel M; Kendall, Tracee; Eash, John K; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P; Glass, David J

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.

  7. Quantitative proteome profiling of human myoma and myometrium tissue reveals kinase expression signatures with potential for therapeutic intervention.

    PubMed

    Lemeer, Simone; Gholami, Amin Moghaddas; Wu, Zhixiang; Kuster, Bernhard

    2015-01-01

    Uterine leiomyomas are benign tumors affecting a large proportion of the female population. Despite the very high prevalence, the molecular basis for understanding the onset and development of the disease are still poorly understood. In this study, we profiled the proteomes and kinomes of leiomyoma as well as myometrium samples from patients to a depth of >7000 proteins including 200 kinases. Statistical analysis identified a number of molecular signatures distinguishing healthy from diseased tissue. Among these, nine kinases (ADCK4, CDK5, CSNK2B, DDR1, EPHB1, MAP2K2, PRKCB, PRKG1, and RPS6KA5) representing a number of cellular signaling pathways showed particularly strong discrimination potential. Preliminary statistical analysis by receiver operator characteristics plots revealed very good performance for individual kinases (area under the curve, AUC of 0.70-0.94) as well as binary combinations thereof (AUC 0.70-1.00) that might be used to assess the activity of signaling pathways in myomas. Of note, the receptor tyrosine kinase DDR1 holds future potential as a drug target owing to its strong links to collagen signaling and the excessive formation of extracellular matrix typical for leiomyomas in humans. PMID:25327614

  8. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.

    PubMed

    Hu, Xiaofei; Duan, Zhigui; Hu, Hui; Li, Guolin; Yan, Siyu; Wu, Jinfeng; Wang, Jun; Yin, Dazhong; Xie, Qingji

    2013-05-01

    To screen target proteins of oxidative stress which mediate the effects of exercise on preventing nonalcoholic fatty liver disease (NAFLD), the methods for selecting carbonylated proteins were modified, and carbonylated proteins were profiled. The results showed that treadmill training reduced oxidative stress and the levels of intrahepatic triglyceride (IHTG). The changes in IHTG showed a significant positive correlation with oxidative stress as indicated by malondialdehyde level. Further results from proteomics illustrated that 17 functional proteins were susceptible to oxidative modification, and exercise protected three proteins from carbonylation. The latter three proteins may serve as both direct target proteins of oxidative stress and mediators contributing to the beneficial effects of exercise. In particular, a long-chain specific acyl-CoA dehydrogenase (ACADL) which was a key enzyme in lipid metabolism was not carbonylated and with higher activities in exercise group. These findings indicate that this modified technique is practical and powerful in selecting carbonylated proteins. Long-term treadmill training is effective in ameliorating oxidative stress and preventing the accumulation of IHTG. Among the 17 target proteins of oxidative modification, three proteins contribute to the beneficial effects of exercise. Preventing ACADL from carbonylation may be involved in the physiological mechanism of exercise-induced NAFLD improvement.

  9. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    PubMed Central

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  10. Relationships between hematopoiesis and hepatogenesis in the midtrimester fetal liver characterized by dynamic transcriptomic and proteomic profiles.

    PubMed

    Guo, Yuanbiao; Zhang, Xuequn; Huang, Jian; Zeng, Yan; Liu, Wei; Geng, Chao; Li, Ka Wan; Yang, Dong; Wu, Songfeng; Wei, Handong; Han, Zeguang; Qian, Xiaohong; Jiang, Ying; He, Fuchu

    2009-10-28

    In fetal hematopoietic organs, the switch from hematopoiesis is hypothesized to be a critical time point for organogenesis, but it is not yet evidenced. The transient coexistence of hematopoiesis will be useful to understand the development of fetal liver (FL) around this time and its relationship to hematopoiesis. Here, the temporal and the comparative transcriptomic and proteomic profiles were observed during the critical time points corresponding to the initiation (E11.5), peak (E14.5), recession (E15.5), and disappearance (3 ddp) of mouse FL hematopoiesis. We found that E11.5-E14.5 corresponds to a FL hematopoietic expansion phase with distinct molecular features, including the expression of new transcription factors, many of which are novel KRAB (Kruppel-associated box)-containing zinc finger proteins. This time period is also characterized by extensive depression of some liver functions, especially catabolism/utilization, immune and defense, classical complement cascades, and intrinsic blood coagulation. Instead, the other liver functions increased, such as xenobiotic and sterol metabolism, synthesis of carbohydrate and glycan, the alternate and lectin complement cascades and extrinsic blood coagulation, and etc. Strikingly, all of the liver functions were significantly increased at E14.5-E15.5 and thereafter, and the depression of the key pathways attributes to build the hematopoietic microenvironment. These findings signal hematopoiesis emigration is the key to open the door of liver maturation.

  11. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  12. Effect of taurine on the proteomic profile of the cytosolic and microsomal fractions of rat hepatocytes during ontogeny.

    PubMed

    Sharanova, N E; Vasilyev, A V; Gapparov, M M G

    2012-06-01

    The proteomic features of the cytosolic and microsomal fractions of rat hepatocytes were studied during long-term dietary consumption of taurine (12 months) as a modulator of energy homeostasis. We identified proteomic markers of the effect of taurine on regulation of cell homeostasis. A protein with unknown biological function was revealed.

  13. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper-excitable nerves.

    PubMed

    Huang, Hong-Lei; Cendan, Cruz-Miguel; Roza, Carolina; Okuse, Kenji; Cramer, Rainer; Timms, John F; Wood, John N

    2008-01-01

    Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha2delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S35methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability. PMID:18700027

  14. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study

  15. LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia

    PubMed Central

    Fröhlich, Thomas; Arnold, Georg J; Fritsch, Rainer; Mayr, Tobias; Laforsch, Christian

    2009-01-01

    Background Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article. Results A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from Daphnia pulex, was generated, which lead to the identification of 531 proteins. To measure the impact of the Daphnia pulex filtered models database for mass spectrometry based Daphnia protein identification, this result was compared with results obtained with the Swiss-Prot and the Drosophila melanogaster database. To further validate the utility of the Daphnia pulex database for research on other Daphnia species, additional 407,778 peptide tandem-mass-spectra, obtained from Daphnia longicephala, were generated and evaluated, leading to the identification of 317 proteins. Conclusion Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the Daphnia genome. Furthermore it could be demonstrated that identification of Daphnia longicephala proteins using the Daphnia pulex protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the Daphnia genome database is the key for mass spectrometry based high throughput proteomics in Daphnia. PMID:19383153

  16. Funding mechanisms for gender-specific research: proceedings from a panel discussion at the 2014 Academic Emergency Medicine consensus conference.

    PubMed

    Safdar, Basmah; Greenberg, Marna R; Anise, Ayodola; Brown, Jeremy; Conwit, Robin; Filart, Rosemarie; Scott, Jane; Choo, Esther K

    2014-12-01

    As part of the 2014 Academic Emergency Medicine (AEM) consensus conference "Gender-Specific Research in Emergency Care: Investigate, Understand, and Translate How Gender Affects Patient Outcomes," we assembled a diverse panel of representatives from federal and nonfederal funding agencies to discuss future opportunities for sex- and gender-specific research. The discussion revolved around the mission and priorities of each organization, as well as its interest in promoting sex- and gender-specific research. The panelists were asked to provide specific examples of funding lines generated or planned for as pertinent to emergency care. Training opportunities for future researchers in this area were also discussed. PMID:25413301

  17. Funding Mechanisms for Gender-Specific Research: Proceedings from a Panel Discussion at the 2014 AEM Consensus Conference

    PubMed Central

    Safdar, Basmah; Greenberg, Marna R.; Anise, Ayodola; Brown, Jeremy; Conwit, Robin; Filart, Rosemarie; Scott, Jane; Choo, Esther K.

    2014-01-01

    As part of the 2014 Academic Emergency Medicine consensus conference “Gender-Specific Research in Emergency Care: Investigate, Understand, and Translate How Gender Affects Patient Outcomes,” we assembled a diverse panel of representatives from federal and non-federal funding agencies to discuss future opportunities for sex- and gender-specific research. The discussion revolved around the mission and priorities of each organization, as well as its interest in promoting sex- and gender-specific research. The panelists were asked to provide specific examples of funding lines generated or planned for as pertinent to emergency care. Training opportunities for future researchers in this area were also discussed. PMID:25413301

  18. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  19. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems12

    PubMed Central

    Goodwin, C. Rory; Woodard, Crystal L.; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M.; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-01-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  20. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems.

    PubMed

    Goodwin, C Rory; Woodard, Crystal L; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-04-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  1. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges.

    PubMed

    Johnson, Philip E; Sayers, Rebekah L; Gethings, Lee A; Balasundaram, Anuradha; Marsh, Justin T; Langridge, James I; Mills, E N Clare

    2016-06-01

    Profiling allergens in complex food ingredients used in oral food challenges and immunotherapy is crucial for regulatory acceptance. Mass spectrometry based analysis employing data-independent acquisition coupled with ion mobility mass spectrometry-mass spectrometry (DIA-IM-MS) was used to investigate the allergen composition of raw peanuts and roasted peanut flour ingredients used in challenge meals. This comprehensive qualitative and quantitative analysis using label-free approaches identified and quantified 123 unique protein accessions. Semiquantitative analysis indicated that allergens Ara h 1 and Ara h 3 were the most abundant proteins and present in approximately equal amounts and were extracted in reduced amounts from roasted peanut flours. The clinically significant allergens Ara h 2 and 6 were less abundant, but relative quantification was unaffected by roasting. Ara h 5 was undetectable in any peanut sample, while the Bet v 1 homologue Ara h 8 and the lipid transfer protein allergen, Ara h 9, were detected in low abundance. The oleosin allergens, Ara h 10 and 11, were moderately abundant in the raw peanuts but were 100-fold less abundant in the defatted roasted peanut flour than the major allergens Ara h 1, 3, 2, and 6. Certain isoforms of the major allergens dominated the profile. The relative quantitation of the major peanut allergens showed little variation between different batches of roasted peanut flour. These data will support future development of targeted approaches for absolute quantification of peanut allergens which can be applied to both food ingredients used in clinical studies and extracts used for skin testing and to identify trace levels of allergens in foods. PMID:27064171

  2. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges.

    PubMed

    Johnson, Philip E; Sayers, Rebekah L; Gethings, Lee A; Balasundaram, Anuradha; Marsh, Justin T; Langridge, James I; Mills, E N Clare

    2016-06-01

    Profiling allergens in complex food ingredients used in oral food challenges and immunotherapy is crucial for regulatory acceptance. Mass spectrometry based analysis employing data-independent acquisition coupled with ion mobility mass spectrometry-mass spectrometry (DIA-IM-MS) was used to investigate the allergen composition of raw peanuts and roasted peanut flour ingredients used in challenge meals. This comprehensive qualitative and quantitative analysis using label-free approaches identified and quantified 123 unique protein accessions. Semiquantitative analysis indicated that allergens Ara h 1 and Ara h 3 were the most abundant proteins and present in approximately equal amounts and were extracted in reduced amounts from roasted peanut flours. The clinically significant allergens Ara h 2 and 6 were less abundant, but relative quantification was unaffected by roasting. Ara h 5 was undetectable in any peanut sample, while the Bet v 1 homologue Ara h 8 and the lipid transfer protein allergen, Ara h 9, were detected in low abundance. The oleosin allergens, Ara h 10 and 11, were moderately abundant in the raw peanuts but were 100-fold less abundant in the defatted roasted peanut flour than the major allergens Ara h 1, 3, 2, and 6. Certain isoforms of the major allergens dominated the profile. The relative quantitation of the major peanut allergens showed little variation between different batches of roasted peanut flour. These data will support future development of targeted approaches for absolute quantification of peanut allergens which can be applied to both food ingredients used in clinical studies and extracts used for skin testing and to identify trace levels of allergens in foods.

  3. Impact of a New Gender-Specific Definition for Binge Drinking on Prevalence Estimates for Women

    PubMed Central

    Chavez, Pollyanna R.; Nelson, David E.; Naimi, Timothy S.; Brewer, Robert D.

    2011-01-01

    Background Binge drinking accounts for more than half of the 79,000 deaths due to excessive drinking in the U.S. each year. In 2006, the Behavioral Risk Factor Surveillance System (BRFSS) lowered the threshold for defining binge drinking among women from ≥5 drinks to ≥4 drinks per occasion, in accordance with national recommendations. Purpose To assess changes in binge-drinking prevalence among women. Methods The relative and absolute change in binge drinking among U.S. adult women was assessed using pooled BRFSS data from the 2 years before (2004–2005) and after (2006–2007) the implementation of the new gender-specific definition. Analyses were conducted in 2008–2009. Results Binge-drinking prevalence among women increased 2.6 percentage points (from 7.3% in 2004–2005 to 9.9% in 2006–2007), a 35.6% relative increase. The percentage of women who reported consuming exactly 4 drinks in 2006 (3.6%) was similar to the increase in the prevalence of binge drinking among women that was observed from 2005 to 2006 (absolute change, 2.9 percentage points). Conclusions The new gender-specific definition of binge drinking significantly increased the identification of women drinking at dangerous levels. The change in prevalence among women was primarily due to the change in the definition and not to actual changes in drinking behavior. The new gender-specific definition of binge drinking can increase the usefulness of this measure for public health surveillance, and support the planning and implementation of effective prevention strategies (e.g., increasing alcohol excise taxes). PMID:21406282

  4. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi.

    PubMed

    Liu, Xiaoli; Sun, Hushan; Wang, Yiyan; Ma, Mengwen; Zhang, Yuemei

    2014-10-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish and frequently studied in shellfish immunology. In this work, the gender-specific metabolic responses induced by Vibrio harveyi in hepatopancreas from M. galloprovincialis were characterized using NMR-based metabolomics. In details, V. harveyi challenge increased the levels of amino acids including (valine, leucine, isoleucine, threonine, alanine, arginine and tyrosine) and ATP, and decreased the level of glucose in male mussel hepatopancreas. In V. harveyi-challenged female mussel hepatopancreas, both threonine and AMP were significantly elevated, and choline, phoshphocholine, sn-glycero-3-phosphocholine, taurine, betaine and ATP were depleted. Obviously, only threonine was similarly altered to that in V. harveyi-challenged male mussel hepatopancreas. These findings confirmed the gender-specific metabolic responses in mussels challenged by V. harveyi. Overall, V. harveyi induced an enhanced energy demand through activated glycolysis and immune response indicated by increased BCAAs in male mussel hepatopancreas. In female mussel hepatopancreas, V. harveyi basically caused disturbances in both osmotic regulation and energy metabolism through the metabolic pathways of conversions of phosphocholine and ADP to choline and ATP, and sn-glycero-3-phosphocholine and H2O into choline and sn-glycerol 3-phosphate. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, lysozyme and defensin) suggested that V. harveyi induced obvious oxidative and immune stresses in both male and female mussel hepatopancreas. This work demonstrated that V. harveyi could induce gender-specific metabolic responses in mussel M. galloprovincialis hepatopancreas using NMR-based metabolomics.

  5. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  6. Zn-Responsive Proteome Profiling and Time-Dependent Expression of Proteins Regulated by MTF-1 in A549 Cells

    PubMed Central

    Zhao, Wen-jie; Song, Qun; Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Lian, Hong-zhen; Zheng, Wei-juan; Hua, Zi-chun

    2014-01-01

    Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways. PMID:25162517

  7. Proteomics reveals differences in protein abundance and highly similar antigenic profiles between Besnoitia besnoiti and Besnoitia tarandi.

    PubMed

    García-Lunar, P; Regidor-Cerrillo, J; Ortega-Mora, L M; Gutiérrez-Expósito, D; Alvarez-García, G

    2014-10-15

    Besnoitia besnoiti and Besnoitia tarandi are two cyst-forming apicomplexan parasites of the genus Besnoitia. B. besnoiti uses cattle as an intermediate host, in which it causes a disease that progresses in two sequential phases: the acute anasarca stage and the chronic scleroderma stage. Reindeer and caribou act as intermediate hosts for B. tarandi, which causes clinical signs similar to those caused by B. besnoiti. Previous studies demonstrated high molecular similarity, as determined by 18S and ITS-1 RNA sequences, between these Besnoitia spp., and strong serological cross-reactivity between these species has recently been demonstrated. Thus, a difference gel electrophoresis approach and mass spectrometry analysis were used to describe the proteomes and explore differences in protein abundance between B. besnoiti and B. tarandi in tachyzoite extracts. Immunoproteomes were also compared using 2-DE immunoblotting with polyclonal sera from experimentally infected rabbits. From approximately 1400 spots detected in DIGE-gels, 28 and 29 spots were differentially abundant in B. besnoiti and B. tarandi tachyzoites, respectively (± 1.5-fold, p<0.05). Four and 13 spots were exclusively detected in B. besnoiti and B. tarandi, respectively. Of the 32 differentially abundant spots analyzed by MALDI-TOF/MS, 6 up-regulated B. besnoiti proteins (LDH; HSP90; purine nucleoside phosphorylase and 3 hypothetical proteins) and 6 up-regulated B. tarandi proteins (G3PDH; LDH; PDI; mRNA decapping protein and 2 hypothetical proteins) were identified. Interestingly, no specific antigen spots were recognized by sera on any of the Besnoitia species studied and a similar antigen profile has been observed for B. tarandi and B. besnoiti sera when cross reactions were studied. This fact corroborates the difficulty in discerning Besnoitia infections using current serological assays. The present study underscores the importance of sequencing the B. besnoiti genome for species diversity studies of

  8. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa.

  9. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE

    PubMed Central

    Choudhary, Mani K.; Nomura, Yuko; Shi, Hua; Nakagami, Hirofumi; Somers, David E.

    2016-01-01

    Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism. PMID:27462335

  10. Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry

    SciTech Connect

    Sharma, Seema; Simpson, David C.; Tolic, Nikola; Jaitly, Navdeep; Mayampurath, Anoop M.; Smith, Richard D.; Pasa-Tolic, Liljiana

    2007-02-01

    We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.

  11. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency

    PubMed Central

    Morán, María; López-Bernardo, Elia; Cadenas, Susana; Hidalgo, Beatriz; Sánchez, Ricardo; Seneca, Sara; Arenas, Joaquín; Martín, Miguel A.; Ugalde, Cristina

    2014-01-01

    We have analyzed the cellular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in BCS1L, a major genetic cause of mitochondrial complex III enzyme deficiency. Mutant fibroblasts exhibited low oxygen consumption rates and intracellular ATP levels, indicating that the main altered molecular event probably is a limited respiration-coupled ATP production through the OXPHOS system. Two-dimensional DIGE and MALDI-TOF/TOF mass spectrometry analyses unambiguously identified 39 proteins whose expression was significantly altered in complex III-deficient fibroblasts. Extensive statistical and cluster analyses revealed a protein profile characteristic for the BCS1L mutant fibroblasts that included alterations in energy metabolism, cell signaling and gene expression regulation, cytoskeleton formation and maintenance, and intracellular stress responses. The physiological validation of the predicted functional adaptations of human cultured fibroblasts to complex III deficiency confirmed the up-regulation of glycolytic enzyme activities and the accumulation of branched-chain among other amino acids, suggesting the activation of anaerobic glycolysis and cellular catabolic states, in particular protein catabolism, together with autophagy as adaptive responses to mitochondrial respiratory chain dysfunction and ATP deficiency. Our data point to an overall metabolic and genetic reprogramming that could contribute to explain the clinical manifestations of complex III deficiency in patients. PMID:25239759

  12. Correlation of Phenotypic Profiles Using Targeted Proteomics Identifies Mycobacterial Esx-1 Substrates

    PubMed Central

    2015-01-01

    The Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes that promote protein translocation across the cytoplasmic membrane in a diverse range of pathogenic and nonpathogenic bacterial species. The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation in mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis. Although several genes have been associated with Esx-1-mediated transport and virulence, the contribution of individual Esx-1 genes to export is largely undefined. A unique aspect of Esx-1 export is that several substrates require each other for export/stability. We exploited substrate “codependency” to identify Esx-1 substrates. We simultaneously quantified changes in the levels of 13 Esx-1 proteins from both secreted and cytosolic protein fractions generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry. This expansion of measurable Esx-1 proteins allowed us to define statistical rules for assigning novel substrates using phenotypic profiles of known Esx-1 substrates. Using this approach, we identified three additional Esx-1 substrates encoded by the esx-1 region. Our studies begin to address how disruption of specific genes affects several proteins in the Esx-1 complex. Overall, our findings illuminate relationships between Esx-1 proteins and create a framework for the identification of secreted substrates applicable to other protein exporters and pathways. PMID:25106450

  13. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.

    PubMed

    Choudhary, Mani K; Nomura, Yuko; Shi, Hua; Nakagami, Hirofumi; Somers, David E

    2016-01-01

    Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism. PMID:27462335

  14. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  15. Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals123

    PubMed Central

    Chacko, Sara A; Sul, James; Song, Yiqing; Li, Xinmin; LeBlanc, James; You, Yuko; Butch, Anthony; Liu, Simin

    2011-01-01

    Background: Dietary magnesium intake has been favorably associated with reduced risk of metabolic outcomes in observational studies; however, few randomized trials have introduced a systems-biology approach to explore molecular mechanisms of pleiotropic metabolic actions of magnesium supplementation. Objective: We examined the effects of oral magnesium supplementation on metabolic biomarkers and global genomic and proteomic profiling in overweight individuals. Design: We undertook this randomized, crossover, pilot trial in 14 healthy, overweight volunteers [body mass index (in kg/m2) ≥25] who were randomly assigned to receive magnesium citrate (500 mg elemental Mg/d) or a placebo for 4 wk with a 1-mo washout period. Fasting blood and urine specimens were collected according to standardized protocols. Biochemical assays were conducted on blood specimens. RNA was extracted and subsequently hybridized with the Human Gene ST 1.0 array (Affymetrix, Santa Clara, CA). Urine proteomic profiling was analyzed with the CM10 ProteinChip array (Bio-Rad Laboratories, Hercules, CA). Results: We observed that magnesium treatment significantly decreased fasting C-peptide concentrations (change: −0.4 ng/mL after magnesium treatment compared with +0.05 ng/mL after placebo treatment; P = 0.004) and appeared to decrease fasting insulin concentrations (change: −2.2 μU/mL after magnesium treatment compared with 0.0 μU/mL after placebo treatment; P = 0.25). No consistent patterns were observed across inflammatory biomarkers. Gene expression profiling revealed up-regulation of 24 genes and down-regulation of 36 genes including genes related to metabolic and inflammatory pathways such as C1q and tumor necrosis factor–related protein 9 (C1QTNF9) and pro-platelet basic protein (PPBP). Urine proteomic profiling showed significant differences in the expression amounts of several peptides and proteins after treatment. Conclusion: Magnesium supplementation for 4 wk in overweight

  16. SELDI-TOF-MS Proteomic Profiling of Serum, Urine, and Amniotic Fluid in Neural Tube Defects

    PubMed Central

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection. PMID:25054433

  17. Parental overprotection engenders dysfunctional attitudes about achievement and dependency in a gender-specific manner

    PubMed Central

    2013-01-01

    Background It has been suggested that dysfunctional attitudes, cognitive vulnerability to depression, have developmental origins. The present study examined the effects of parental rearing on dysfunctional attitudes in three areas of life with special attention to gender specificity. Methods The subjects were 665 Japanese healthy volunteers. Dysfunctional attitudes were assessed by the 24-item Dysfunctional Attitude Scale, which has the Achievement, Dependency and Self-control subscales. Perceived parental rearing was assessed by the Parental Bonding Instrument, which has the Care and Protection subscales. Results Higher scores of the Achievement (β = 0.293, p < 0.01) and Dependency (β = 0.224, p < 0.05) subscales were correlated with higher scores of the Protection subscale in the combination of mother and daughter, but not in other combinations of parents and recipients. Scores of the Self-control subscale were not correlated with paternal or maternal rearing scores. Conclusions The present study suggests that parental overprotection engenders dysfunctional attitudes about achievement and dependency in a gender-specific manner. PMID:24365104

  18. Dysfunctional remembered parenting in oncology outpatients affects psychological distress symptoms in a gender-specific manner.

    PubMed

    Kouzoupis, Anastasios V; Lyrakos, Dimitrios; Kokras, Nikolaos; Panagiotarakou, Meropi; Syrigos, Kostas N; Papadimitriou, George N

    2012-12-01

    Evidence suggests that gender differences appear in a variety of biological and psychological responses to stress and perhaps in coping with acute and chronic illness as well. Dysfunctional parenting is also thought to be involved in the process of coping with stress and illness; hence, the present study aimed to verify whether dysfunctional remembered parenting would influence psychological distress in a gender-specific manner in patients suffering from cancer. Patients attending an outpatient oncology clinic completed the Remembered Relationships with Parents (RRP), Hospital Anxiety and Depression and Spielberger's State-Trait Anxiety Inventory scales and the National Cancer Center Network Distress Thermometer. Although no baseline gender differences were detected, a multivariate analysis confirmed that anxiety and depression symptoms of men and women suffering from cancer are differentially affected by the RRP Control and Alienation scores. Women with remembered parental alienation and overprotection showed significantly more anxiety symptoms than men, whereas men were more vulnerable to remembered alienation than overprotection with regard to the Distress Thermometer scores. These results suggest that remembered dysfunctional parenting is crucially, and in a gender-specific manner, involved in the coping strategy adopted by male and female cancer patients.

  19. Gender-specific expression of the DRD4 gene on adolescent delinquency, anger and thrill seeking

    PubMed Central

    Chen, Chuansheng; Greenberger, Ellen; Ogunseitan, Oladele; Ding, Yuan-Chun

    2011-01-01

    The present study investigated gender differences in the associations between the DRD4 variable number tandem repeat (VNTR) polymorphism and adolescent delinquency, short temper and thrill seeking. We also explored whether the gender-specific expression of the DRD4 can be explained by gender differences in the exposure to psychosocial risks, such as poor parent–child relationship. Participants were 263 14- to 17-year olds (50% males) living in Russia. DNA was extracted from saliva samples and the VNTR DRD4 polymorphisms were genotyped using polymerase chain reaction. Participants reported on the extent of their delinquent behaviour, short temper, thrill seeking and exposure to psychosocial risk (i.e. poor parental monitoring of adolescent behaviour, exposure to violence and peer delinquency). Compared to individuals with the 4/4 genotype, males, but not females, with the 7-repeat allele (7R) had significantly higher delinquency, short temper and thrill seeking. This interaction effect, however, was completely explained by males’ higher exposure to psychosocial risk factors. When parental monitoring of youths’ activities and youth exposure to violence were included in the model, the 7R × gender interaction was no longer significant. Thus, social context plays an important role in explaining gender-specific phenotypic expression of the DRD4 gene. PMID:20203140

  20. Child Maltreatment and Offending Behavior: Gender-Specific Effects and Pathways

    PubMed Central

    Topitzes, James; Mersky, Joshua P.; Reynolds, Arthur J.

    2016-01-01

    Although expected, distinct gender-specific trajectories from early victimization to later offending have not been well explored. Consequently, this study assessed the association between child maltreatment (ages 0–11) and offending behavior within gender-specific models. Prospectively collected data, including official measures of maltreatment and offending, derived from the Chicago Longitudinal Study, a panel study of 1,539 low-income minority participants, Multivariate probit analyses revealed that maltreatment significantly predicted delinquency for males but not females yet forged a significant relation to adult crime for both genders. Exploratory confirmatory and comparative analyses suggested that mechanisms linking maltreatment to adult crime primarily differed across gender. For males, childhood-era externalizing behavior and school commitment along with adolescent-era socioemotional skills, delinquency, and educational attainment fully explained the maltreatment-crime nexus. For females, childhood-era parent factors along with adolescent indicators of externalizing behavior, cognitive performance, mobility and educational attainment partially mediated the maltreatment-crime relation. Implications of results were explored. PMID:27667868

  1. Child Maltreatment and Offending Behavior: Gender-Specific Effects and Pathways

    PubMed Central

    Topitzes, James; Mersky, Joshua P.; Reynolds, Arthur J.

    2016-01-01

    Although expected, distinct gender-specific trajectories from early victimization to later offending have not been well explored. Consequently, this study assessed the association between child maltreatment (ages 0–11) and offending behavior within gender-specific models. Prospectively collected data, including official measures of maltreatment and offending, derived from the Chicago Longitudinal Study, a panel study of 1,539 low-income minority participants, Multivariate probit analyses revealed that maltreatment significantly predicted delinquency for males but not females yet forged a significant relation to adult crime for both genders. Exploratory confirmatory and comparative analyses suggested that mechanisms linking maltreatment to adult crime primarily differed across gender. For males, childhood-era externalizing behavior and school commitment along with adolescent-era socioemotional skills, delinquency, and educational attainment fully explained the maltreatment-crime nexus. For females, childhood-era parent factors along with adolescent indicators of externalizing behavior, cognitive performance, mobility and educational attainment partially mediated the maltreatment-crime relation. Implications of results were explored.

  2. Comparative Proteomics Profile of Lipid-Cumulating Oleaginous Yeast: An iTRAQ-Coupled 2-D LC-MS/MS Analysis

    PubMed Central

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts. PMID:24386479

  3. Comparative proteomics profile of lipid-cumulating oleaginous yeast: an iTRAQ-coupled 2-D LC-MS/MS analysis.

    PubMed

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts.

  4. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment

    PubMed Central

    2013-01-01

    Background From field harvest to the consumer’s table, fresh citrus fruit spends a considerable amount of time in shipment and storage. During these processes, physiological disorders and pathological diseases are the main causes of fruit loss. Heat treatment (HT) has been widely used to maintain fruit quality during postharvest storage; however, limited molecular information related to this treatment is currently available at a systemic biological level. Results Mature ‘Kamei’ Satsuma mandarin (Citrus unshiu Marc.) fruits were selected for exploring the disease resistance mechanisms induced by HT during postharvest storage. Proteomic analyses based on two-dimensional gel electrophoresis (2-DE), and metabolomic research based on gas chromatography coupled to mass spectrometry (GC-MS), and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) were conducted. The results show resistance associated proteins were up-regulated in heat treated pericarp, such as beta-1, 3-glucanase, Class III chitinase, 17.7 kDa heat shock protein and low molecular weight heat-shock protein. Also, redox metabolism enzymes were down-regulated in heat treated pericarp, including isoflavone reductase, oxidoreductase and superoxide dismutase. Primary metabolic profiling revealed organic acids and amino acids were down-regulated in heat treated pericarp; but significant accumulation of metabolites, including tetradecanoic acid, oleic acid, ornithine, 2-keto-d-gluconic acid, succinic acid, turanose, sucrose, galactose, myo-inositol, glucose and fructose were detected. Noticeably, H2O2 content decreased, while, lignin content increased in heat treated pericarp compared to the control, which might increase fruit resistibility in response to external stress. Also, flavonoids, substances which are well-known to be effective in reducing external stress, were up-regulated in heat treated pericarp. Conclusions This study provides a broad picture of differential

  5. Ion Current-Based Proteomic Profiling for Understanding the Inhibitory Effect of Tumor Necrosis Factor Alpha on Myogenic Differentiation.

    PubMed

    Tu, Chengjian; Bu, Yahao; Vujcic, Marija; Shen, Shichen; Li, Jun; Qu, Miao; Hangauer, David; Clements, James L; Qu, Jun

    2016-09-01

    Despite a demonstrated role for TNF-α in promoting muscle wasting and cachexia, the associated molecular mechanisms and signaling pathways of myoblast differentiation dysregulated by TNF-α remain poorly understood. This study presents well-controlled proteomic profiling as a means to investigate the mechanisms of TNF-α-regulated myogenic differentiation. Primary human muscle precursor cells (MPCs) cultured in growth medium (GM), differentiation medium (DM) to induce myogenic differentiation, and DM with 20 ng/mL of TNF-α (n = 5/group) were comparatively analyzed by an ion current-based quantitative platform consisting of reproducible sample preparation/on-pellet digestion, a long-column nano-LC separation, and ion current-based differential analysis. The inhibition of myogenic differentiation by TNF-α was confirmed by reduced formation of multinucleated myotubes and the recovered expression of altered myogenic proteins such as MYOD and myogenin during myogenic differentiation. Functional analysis and validation by immunoassay analysis suggested that the cooperation of NF-κB and STAT proteins is responsible for dysregulated differentiation in MPCs by TNF-α treatment. Increased MHC class I components such as HLA-A, HLA-B, HLA-C, and beta-2-microglobulin were also observed in cultures in DM treated with TNF-α. Interestingly, inhibition of the cholesterol biosynthesis pathway during myogenic differentiation induced by serum starvation was not recovered by TNF-α treatment, which combined with previous reports, implies that this process may be an early event of myogenesis. This finding could lay the foundation for the potential use of statins in modulating myogenesis through cholesterol, for example, in stem cell-based myocardial infarction treatment, where differentiation of myoblasts and stem cells into force-generating mature muscle cells is a key step to the therapeutic capacity. In conclusion, the landscapes of altered transcription regulators, metabolic

  6. Gender specificity in the neural regulation of the response to stress: new leads from classical paradigms.

    PubMed

    Patchev, V K; Almeida, O F

    1998-02-01

    Pronounced gender-related differences are observable in the regulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) activity under basal and stress-related conditions, and by circulating glucocorticoid levels. This article reviews recent studies that have unequivocally demonstrated that these differences emerge from the organizational effects of gonadal steroids during early brain development. Although largely masked by the dominating role of glucocorticoids in maintaining feedback thresholds, gonadal steroids continue to exert gender-specific activational effects on the LHPA axis through adulthood. The importance of these modulatory effects of gonadal steroids may be reflected in gender differences in the incidence of psychopathologies that are accompanied by symptoms of LHPA dysregulation. One goal of this review is to highlight the need for further investigations into the (still elusive) cellular and molecular mechanisms underlying the activational effects of sex steroids, which may provide leads for neuroprotective hormone replacement strategies.

  7. Gender-specific physiology: how real is it? How important is it?

    PubMed

    Legato, M J

    1997-01-01

    A predominantly male model of disease, and thus a tendency to restrict medical investigation to men, has led to a skewing of our perceptions of both normal human physiology and the pathophysiology of illness. Because of social and economic factors, research programs focused on aspects of women's health and disease (other than reproductive) have become more common over the past decade. The present literature review of gender-specific physiology covers the roles of gonadal hormones, especially in the nervous system; depression; the cytochrome P-450 system; the cardiovascular system, the immune system; saliva; and the gastrointestinal tract. All in all, there are revealed important differences, and some surprising similarities, between the genders in disease conditions and drug responses. PMID:9113832

  8. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque.

    PubMed

    Pincivero, Danny M; Salfetnikov, Yuliya; Campy, Robert M; Coelho, Alan J

    2004-11-01

    The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.

  9. Metabolic Changes in Klebsiella oxytoca in Response to Low Oxidoreduction Potential, as Revealed by Comparative Proteomic Profiling Integrated with Flux Balance Analysis

    PubMed Central

    Zhu, Yan; Li, Dan; Bao, Guanhui; Wang, Shaohua; Mao, Shaoming; Song, Jiangning; Li, Yin

    2014-01-01

    Oxidoreduction potential (ORP) is an important physiological parameter for biochemical production in anaerobic or microaerobic processes. However, the effect of ORP on cellular physiology remains largely unknown, which hampers the design of engineering strategies targeting proteins associated with ORP response. Here we characterized the effect of altering ORP in a 1,3-propanediol producer, Klebsiella oxytoca, by comparative proteomic profiling combined with flux balance analysis. Decreasing the extracellular ORP from −150 to −240 mV retarded cell growth and enhanced 1,3-propanediol production. Comparative proteomic analysis identified 61 differentially expressed proteins, mainly involved in carbohydrate catabolism, cellular constituent biosynthesis, and reductive stress response. A hypothetical oxidoreductase (HOR) that catalyzes 1,3-propanediol production was markedly upregulated, while proteins involved in biomass precursor synthesis were downregulated. As revealed by subsequent flux balance analysis, low ORP induced a metabolic shift from glycerol oxidation to reduction and rebalancing of redox and energy metabolism. From the integrated protein expression profiles and flux distributions, we can construct a rational analytic framework that elucidates how (facultative) anaerobes respond to extracellular ORP changes. PMID:24584239

  10. Metabolic changes in Klebsiella oxytoca in response to low oxidoreduction potential, as revealed by comparative proteomic profiling integrated with flux balance analysis.

    PubMed

    Zhu, Yan; Li, Dan; Bao, Guanhui; Wang, Shaohua; Mao, Shaoming; Song, Jiangning; Li, Yin; Zhang, Yanping

    2014-05-01

    Oxidoreduction potential (ORP) is an important physiological parameter for biochemical production in anaerobic or microaerobic processes. However, the effect of ORP on cellular physiology remains largely unknown, which hampers the design of engineering strategies targeting proteins associated with ORP response. Here we characterized the effect of altering ORP in a 1,3-propanediol producer, Klebsiella oxytoca, by comparative proteomic profiling combined with flux balance analysis. Decreasing the extracellular ORP from -150 to -240 mV retarded cell growth and enhanced 1,3-propanediol production. Comparative proteomic analysis identified 61 differentially expressed proteins, mainly involved in carbohydrate catabolism, cellular constituent biosynthesis, and reductive stress response. A hypothetical oxidoreductase (HOR) that catalyzes 1,3-propanediol production was markedly upregulated, while proteins involved in biomass precursor synthesis were downregulated. As revealed by subsequent flux balance analysis, low ORP induced a metabolic shift from glycerol oxidation to reduction and rebalancing of redox and energy metabolism. From the integrated protein expression profiles and flux distributions, we can construct a rational analytic framework that elucidates how (facultative) anaerobes respond to extracellular ORP changes.

  11. A rapid high throughput proteomic method based on profiling of proteolytic free peptides to assess post-delivery degradation of placental tissue.

    PubMed

    Heywood, Wendy E; Pryce, Jeremy; Virasami, Alex; Preece, Rhian Lauren; Dezateux, Carol; Mills, Kevin; Sebire, Neil J

    2016-08-01

    A rapid method to determine quality for placental proteomic studies is required due to varying lengths of time between delivery and sampling in routine protocols. We developed a rapid 10 min LC-MS based scanning method to profile free peptides liberated from natural proteolytic degradation. The assay was applied to placenta samples obtained following refrigeration for varying time periods post-delivery (12 h, +24 h, +48 h and +72 h). Analysis reveals time dependant overlapping profiles for groups <24 to +48 h with greatest variation in the +72 h group, indicating that significant proteolysis affects tissue integrity between 48 and 72 h. PMID:27161200

  12. Proteomic Profiling of Cranial (Superior) Cervical Ganglia Reveals Beta-Amyloid and Ubiquitin Proteasome System Perturbations in an Equine Multiple System Neuropathy*

    PubMed Central

    McGorum, Bruce C.; Pirie, R. Scott; Eaton, Samantha L.; Keen, John A.; Cumyn, Elizabeth M.; Arnott, Danielle M.; Chen, Wenzhang; Lamont, Douglas J.; Graham, Laura C.; Llavero Hurtado, Maica; Pemberton, Alan; Wishart, Thomas M.

    2015-01-01

    Equine grass sickness (EGS) is an acute, predominantly fatal, multiple system neuropathy of grazing horses with reported incidence rates of ∼2%. An apparently identical disease occurs in multiple species, including but not limited to cats, dogs, and rabbits. Although the precise etiology remains unclear, ultrastructural findings have suggested that the primary lesion lies in the glycoprotein biosynthetic pathway of specific neuronal populations. The goal of this study was therefore to identify the molecular processes underpinning neurodegeneration in EGS. Here, we use a bottom-up approach beginning with the application of modern proteomic tools to the analysis of cranial (superior) cervical ganglion (CCG, a consistently affected tissue) from EGS-affected patients and appropriate control cases postmortem. In what appears to be the proteomic application of modern proteomic tools to equine neuronal tissues and/or to an inherent neurodegenerative disease of large animals (not a model of human disease), we identified 2,311 proteins in CCG extracts, with 320 proteins increased and 186 decreased by greater than 20% relative to controls. Further examination of selected proteomic candidates by quantitative fluorescent Western blotting (QFWB) and subcellular expression profiling by immunohistochemistry highlighted a previously unreported dysregulation in proteins commonly associated with protein misfolding/aggregation responses seen in a myriad of human neurodegenerative conditions, including but not limited to amyloid precursor protein (APP), microtubule associated protein (Tau), and multiple components of the ubiquitin proteasome system (UPS). Differentially expressed proteins eligible for in silico pathway analysis clustered predominantly into the following biofunctions: (1) diseases and disorders, including; neurological disease and skeletal and muscular disorders and (2) molecular and cellular functions, including cellular assembly and organization, cell

  13. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes.

    PubMed

    Walker, John; Vasquez, Juan-José; Gomez, Maria Adelaida; Drummelsmith, Jolyne; Burchmore, Richard; Girard, Isabelle; Ouellette, Marc

    2006-05-01

    We have employed proteomics to identify proteins upregulated in the amastigote life-stage of Leishmaniapanamensis, using axenically-differentiated forms as models of authentic intracellular parasites. Resolution of the soluble proteomes of axenic amastigotes and promastigotes by two-dimensional electrophoresis (2DE) in the neutral pI range (5-7) revealed equivalent numbers of protein spots in both life-stages (644-682 using Coomassie Blue and 851-863 by silver staining). Although representing a relatively low proportion (8.1-10.8%) of the predicted 8000 gene products of Leishmania, these proteome maps enabled the reproducible detection of 75 differentially-regulated protein spots in amastigotes, comprising 24 spots "uniquely" expressed in this life-stage and 51 over-expressed by 1.2-5.7-fold compared to promastigotes. Of the 11 amastigote-specific spots analysed by mass spectrometry (MS), 5 yielded peptide sequences with no orthologues in Leishmania major, and the remaining 6 were identified as 7 distinct proteins (some of which were truncated isoforms) representing several functional classes: carbohydrate/energy metabolism (fructose 1,6-bisphosphate aldolase, glucose 6-phosphate dehydrogenase, pyruvate dehydrogenase), stress response (heat shock protein [HSP] 83), cell membrane/cytoskeleton (beta-tubulin), amino acid metabolism (cysteine synthase) and cell-cycle (ran-binding protein). Four additional over-expressed spots were tentatively identified as HSPs 60 and 70 and HSP 70-related proteins -1 and -4 by positional analogy with these landmark proteins in the Leishmania guyanensis proteome. Our data demonstrate the feasibility of proteomics as an approach to identify novel developmentally-regulated proteins linked to Leishmania differentiation and intracellular survival, while simultaneously pinpointing therapeutic targets. In particular, the amastigote-specific expression of cysteine synthase underlines the importance of de novo cysteine synthesis both as a

  14. Gender-specific socioeconomic impacts of development programs in Sri Lanka.

    PubMed

    Stoeckel, J; Sirisena, N L

    1988-10-01

    Data from a Sri Lanka national sample survey -- 3597 households stratified on the basis of development program areas -- were analyzed to compare impacts of 3 national development programs and their combinations upon the occupational and income status of females and males in Sri Lanka. These programs, implemented over the last 30 years, are guaranteed price schemes that develop markets for agricultural produce, land settlement schemes that include irrigation, and rural electrification. To date, no attempt has been made to assess the gender-specific socioeconomic impacts of these individual programs and their combinations. It was hypothesized that the utilization of development program outputs will exert a gender-differential impact upon occupational and income status, but the magnitude and direction of the impacts remain to be determined. Path analysis was applied to estimate the model for each development program and their mixes for males and females separated. A multistage stratified sampling design was utilized. All of the development programs and their mixes exhibited significant effect of educational attainment upon participation in nonagricultural occupations. Rural electrification (RE) was the only program whose effect was positive; in combinations with education it accounted for 15% of the variation in occupation. Among the programs that were negatively related to male participation in nonagricultural occupations, the most important predictors were the land settlement (LS) and guarantee price scheme (GPS) programs. Each program contributed to over 1/5 of the variation in occupation net of educational attainment. RE was the only program that was not significantly related to female participation in nonhousehold occupations. All of the remaining programs exerted a positive effect upon occupation. 3 of these programs -- RE + LS, GPS, and LS + GPS -- were of almost equally high importance in predicting participation of females in nonhousehold occupations, and in

  15. Application of GelC-MS/MS to Proteomic Profiling of Chikungunya Virus Infection: Preparation of Peptides for Analysis.

    PubMed

    Paemanee, Atchara; Wikan, Nitwara; Roytrakul, Sittiruk; Smith, Duncan R

    2016-01-01

    Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) is a labor intensive, but relatively straightforward methodology that generates high proteome coverage which can be applied to the proteome analysis of a range of starting materials such as cells or patient specimens. Sample proteins are resolved electrophoretically in one dimension through a sodium dodecyl sulfate (SDS) polyacrylamide gel after which the lanes are sliced into sections. The sections are further diced and the gel cubes generated are subjected to in-gel tryptic digestion. The resultant peptides can then be analyzed by tandem mass spectroscopy to identify the proteins by database searching. The methodology can routinely detect several thousand proteins in one analysis. The protocol we describe here has been used with both cells in culture that have been infected with chikungunya virus and specimens from Chikungunya fever patients. This protocol details the process for generating peptides for subsequent mass spectroscopic and bioinformatic analysis. PMID:27233271

  16. Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain.

    PubMed

    Kähne, Thilo; Richter, Sandra; Kolodziej, Angela; Smalla, Karl-Heinz; Pielot, Rainer; Engler, Alexander; Ohl, Frank W; Dieterich, Daniela C; Seidenbecher, Constanze; Tischmeyer, Wolfgang; Naumann, Michael; Gundelfinger, Eckart D

    2016-07-01

    Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing. PMID

  17. Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins.

    PubMed

    Siljamäki, Pia; Varmanen, Pekka; Kankainen, Matti; Pyörälä, Satu; Karonen, Taru; Iivanainen, Antti; Auvinen, Petri; Paulin, Lars; Laine, Pia K; Taponen, Suvi; Simojoki, Heli; Sukura, Antti; Nyman, Tuula A; Savijoki, Kirsi

    2014-08-01

    The present study reports a comparative proteome cataloging of a bovine mastitis and a human-associated Staphylococcus epidermidis strain with a specific focus on surfome (cell-wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC-MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house-keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy-metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein- and DNA-mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 (http://proteomecentral.proteomexchange.org/dataset/PXD000404).

  18. Comparison of gender-specific human embryo development characteristics by time-lapse technology.

    PubMed

    Serdarogullari, Munevver; Findikli, Necati; Goktas, Cihan; Sahin, Oya; Ulug, Ulun; Yagmur, Erbil; Bahceci, Mustafa

    2014-08-01

    Numerous studies indicate that there might be differences in embryo growth dynamics between male and female embryos. However, current data in humans are scarce and the results are inconclusive or conflicting. This study asks whether there exist gender-specific embryo development kinetics or parameters between human male and female embryos that can be observed by time-lapse technology. Study included data from 139 consecutive cycles (177 embryos transferred, 179 sacs analysed) with positive pregnancy that resulted in 100% implantation. Single- or double-embryo transfers were performed. Cases were analysed for parameters including cleavage time points and duration in each cleavage from two cells to hatching blastocyst stages and time interval between cleavages. Morphokinetic parameters of 78 female and 60 male embryos from a total of 119 cycles (139 sacs were examined after transfer of 138 embryos) were processed for data analysis according to the gender group. A detailed analysis of the data regarding each time point or interval between consecutive events according to these groups showed them to be similar in cell division kinetics, from the early cleavage through their development to blastocyst stage. However, female embryos showed earlier cavitation than male embryos, but the results did not reach statistical significance.

  19. Gender Specific Mutation Incidence and Survival Associations in Clear Cell Renal Cell Carcinoma (CCRCC).

    PubMed

    Ricketts, Christopher J; Linehan, W Marston

    2015-01-01

    Renal cell carcinoma (RCC) is diagnosed in >200,000 individuals worldwide each year, accounting for ~2% of all cancers, but the spread of this disease amongst genders is distinctly uneven. In the U.S. the male:female incidence ratio is approximately 2:1. A potential hypothesis is mutation spectra may differ between tumors dependent upon the gender of the patient, such as mutations of X chromosome encoded genes being more prevalent in male-derived tumors. Combined analysis of three recent large-scale clear cell renal cell carcinoma (CCRCC) mutation sequencing projects identified a significantly increased mutation frequency of PBRM1 and the X chromosome encoded KDM5C in tumors from male patients and BAP1 in tumors from female patients. Mutation of BAP1 had previously been significantly associated with poorer overall survival; however, when stratified by gender, mutation of BAP1 only significantly affected overall survival in female patients. Mutation of chromatin remodeling genes alters gene regulation, but the overall effect of these alterations may also be modified by the presence of other gender specific factors. Thus, the combination of gender and mutation of a specific gene, such as BAP1, may have implications not only for prognosis but also for understanding the role of chromatin remodeling gene mutations in kidney cancer progression.

  20. Gender-Specific Associations of Serum Antibody to Porphyromonas gingivalis and Inflammatory Markers

    PubMed Central

    Furuta, Michiko; Shimazaki, Yoshihiro; Tanaka, Shunichi; Takeuchi, Kenji; Shibata, Yukie; Takeshita, Toru; Nishimura, Fusanori; Yamashita, Yoshihisa

    2015-01-01

    It remains unclear whether serum antibody titer against Porphyromonas gingivalis (Pg) and inflammatory components lead to periodontal deterioration in each gender, as periodontal and systemic status is influenced by gender. The present study investigates the gender-specific probable effects of titer against Pg and inflammatory markers on periodontal health status in a longitudinal study. A retrospective study design was used. At two time points over an 8-year period (in 2003 and 2011), 411 individuals (295 males with a mean age of 57.6 ± 11.2 years and 116 females with a mean age of 59.2 ± 10.3 years) were surveyed. Periodontal status, serum antibody titer against Pg, and high-sensitive C-reactive protein (hsCRP) were evaluated. Poisson regression analyses revealed that the elevated titer against Pg and hsCRP significantly predicted the persistence of periodontal disease 8 years later in females with periodontal disease in 2003. Elevated hsCRP was significantly associated with the incidence of periodontal disease 8 years later in females who were periodontally healthy in 2003. Males had a weaker association among titer against Pg, inflammatory markers, and periodontal disease. These findings suggest that immune response to Pg infection in addition to inflammatory components affects periodontal deterioration in females. PMID:25756052

  1. Physical models have gender-specific effects on student understanding of protein structure-function relationships.

    PubMed

    Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A

    2016-07-01

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. PMID:26923186

  2. Gender specific changes in cortical activation patterns during exposure to artificial gravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Robinson, Ryan; Smith, Craig; von der Wiesche, Melanie; Goswami, Nandu

    2014-11-01

    Keeping astronauts healthy during long duration spaceflight remains a challenge. Artificial gravity (AG) generated by a short arm human centrifuges (SAHC) is proposed as the next generation of integrated countermeasure devices that will allow human beings to safely spend extended durations in space, although comparatively little is known about any psychological side effects of AG on brain function. 16 participants (8 male and 8 female, GENDER) were exposed to 10 min at a baseline gravitational load (G-Load) of +.03 Gz, then 10 min at +.6 Gz for females and +.8 Gz for males, before being exposed to increasing levels of AG in a stepped manner by increasing the acceleration by +.1 Gz every 3 min until showing signs of pre-syncope. EEG recordings were taken of brain activity during 2 min time periods at each AG level. Analysing the results of the mixed total population of participants by two way ANOVA, a significant effect of centrifugation on alpha and beta activity was found (p<.01). Furthermore results revealed a significant interaction between G-LOAD and GENDER alpha-activity (p<.01), but not for beta-activity. Although the increase in alpha and beta activity with G-LOAD does not reflect a general model of cortical arousal and therefore cannot support previous findings reporting that AG may be a cognitively arousing environment, the gender specific responses identified in this study may have wider implications for EEG and AG research.

  3. Gender-specific differences in risk for intimate partner violence in South Korea

    PubMed Central

    2014-01-01

    Background Various risk factors of intimate partner violence (IPV) have been found to vary by gender. South Korea has one of the highest prevalences of IPV in the world; however, little is known about potential risk factors of IPV and whether gender influences this relationship. Methods Using data from the 2006 Korea Welfare Panel Study, 8,877 married participants (4,545 men and 4,332 women) aged ≥30 years were included. Reported IPV was categorized as verbal or physical IPV and the association between IPV and related factors was assessed by multivariate logistic regression analysis. Results Women were significantly more likely than men were to report IPV victimization (verbal 28.2% vs. 24.4%; physical 6.9% vs. 3.4%). Wor odds of physical perpetration than women satisfied with their family. Moreover, alcohol intake was significantly associated with IPV perpetration and victimization in both genders. Conclusion Significant gender-specific differences were found among factors related to perpetrating violence and being a victim of violence among adults in heterosexual relationships in South Korea. PMID:24885985

  4. Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient.

    PubMed

    Barman, Adriana; Richter, Sylvia; Soch, Joram; Deibele, Anna; Richter, Anni; Assmann, Anne; Wüstenberg, Torsten; Walter, Henrik; Seidenbecher, Constanze I; Schott, Björn H

    2015-11-01

    Autism spectrum disorder refers to a neurodevelopmental condition primarily characterized by deficits in social cognition and behavior. Subclinically, autistic features are supposed to be present in healthy humans and can be quantified using the Autism Quotient (AQ). Here, we investigated a potential relationship between AQ and neural correlates of social and monetary reward processing, using functional magnetic resonance imaging in young, healthy participants. In an incentive delay task with either monetary or social reward, reward anticipation elicited increased ventral striatal activation, which was more pronounced during monetary reward anticipation. Anticipation of social reward elicited activation in the default mode network (DMN), a network previously implicated in social processing. Social reward feedback was associated with bilateral amygdala and fusiform face area activation. The relationship between AQ and neural correlates of social reward processing varied in a gender-dependent manner. In women and, to a lesser extent in men, higher AQ was associated with increased posterior DMN activation during social reward anticipation. During feedback, we observed a negative correlation of AQ and right amygdala activation in men only. Our results suggest that social reward processing might constitute an endophenotype for autism-related traits in healthy humans that manifests in a gender-specific way.

  5. Gender-specific regulation of response to thyroid hormone in aging

    PubMed Central

    2012-01-01

    Background Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for the assessment of thyroid hormone action is TSH level. Although age and gender are believed to modify the pituitary set point or response to free thyroid hormone concentration, the precise age- and gender-dependent responses to thyroid hormone have yet to be reported. Methods We analyzed the results of 3564 thyroid function tests obtained from patients who received medication at both out- and inpatient clinics of Shinshu University Hospital. Subjects were from among those with thyroid function test results in the normal or mildly abnormal range. Based on a log-linear relationship between the concentrations of FHs and TSH, we established the putative resistance index to assess the relation between serum FH and TSH levels. Results Free thyroid hormone and TSH concentration showed an inverse log-linear relation. In males, there was a negative relationship between the free T3 resistance index and age. In females, although there were no relationships between age and FHs, the indices were positively related to age. Conclusions These findings indicated that there is a gender-specific response to thyroid hormone with aging. Although the TSH level is a useful marker for the assessment of peripheral thyroid hormone action, the values should be interpreted carefully, especially with regard to age- and gender-related differences. PMID:22280879

  6. Gender-specific differences in PPARγ regulation of follicular helper T cell responses with estrogen

    PubMed Central

    Park, Hong-Jai; Park, Hyeon-Soo; Lee, Jae-Ung; Bothwell, Alfred L. M.; Choi, Je-Min

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ), a master regulator of adipocyte differentiation, has recently been connected with effector T cells, though its role is still not clear. Here, we investigated the roles of PPARγ in follicular helper T (TFH) cell responses regarding gender specificity. NP-OVA immunization in female but not male CD4-PPARγKO mice induced higher proportions of TFH cells and germinal center (GC) B cells following immunization than were seen in wild type mice. Treatment with the PPARγ agonist pioglitazone significantly reduced TFH cell responses in female mice while pioglitazone and estradiol (E2) co-treatment ameliorated TFH cells and GC responses in male mice. E2 treatment significantly enhanced PPARγ expression in male T cells, while T cell activation in the estrus but not in the diestrus stage of the menstrual cycle of females was inhibited by pioglitazone, suggesting that an estrogen-sufficient environment is important for PPARγ-mediated T cell regulation. These results demonstrate gender-based differences in sensitivities of PPARγ in TFH responses. These findings suggest that appropriate function of PPARγ is required in the regulation of female GC responses and that therapeutic strategies for autoimmune diseases using PPARγ agonists need to be tailored accordingly. PMID:27335315

  7. Physical models have gender-specific effects on student understanding of protein structure-function relationships

    PubMed Central

    Harris, Michelle A.; Chang, Wesley S.; Dent, Erik W.; Nordheim, Erik V.; Franzen, Margaret A.

    2016-01-01

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional (3D) mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional (2D) representations. We used a controlled, backwards design approach to investigate how hand-held physical molecular model use affected students’ ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. PMID:26923186

  8. Gender-Specific Differences in the Relationship between Autobiographical Memory and Intertemporal Choice in Older Adults

    PubMed Central

    Seinstra, Maayke; Grzymek, Katharina; Kalenscher, Tobias

    2015-01-01

    As the population of older adults grows, their economic choices will have increasing impact on society. Research on the effects of aging on intertemporal decisions shows inconsistent, often opposing results, indicating that yet unexplored factors might play an essential role in guiding one's choices. Recent studies suggest that episodic future thinking, which is based on the same neural network involved in episodic memory functions, leads to reductions in discounting of future rewards. As episodic memory functioning declines with normal aging, but to greatly variable degrees, individual differences in delay discounting might be due to individual differences in the vitality of this memory system in older adults. We investigated this hypothesis, using a sample of healthy older adults who completed an intertemporal choice task as well as two episodic memory tasks. We found no clear evidence for a relationship between episodic memory performance and delay discounting in older adults. However, when additionally considering gender differences, we found an interaction effect of gender and autobiographical memory on delay discounting: while men with higher memory scores showed less delay discounting, women with higher memory scores tended to discount the future more. We speculate that this gender effect might stem from the gender-specific use of different modal representation formats (i.e. temporal or visual) during assessment of intertemporal choice options. PMID:26335426

  9. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    PubMed

    Andrade, Andre; Costa, Marcelo; Paolucci, Leopoldo; Braga, Antônio; Pires, Flavio; Ugrinowitsch, Herbert; Menzel, Hans-Joachim

    2015-01-01

    The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

  10. The Effectiveness of a Culture- and Gender-Specific Intervention for Increasing Resiliency among African American Preadolescent Females.

    ERIC Educational Resources Information Center

    Belgrave, Faye Z.; Chase-Vaughn, Gretchen; Gray, Famebridge; Addison, Jerveada Dixon; Cherry, Valerie R.

    2000-01-01

    Assessed the impact of a culture- and gender-specific intervention on strengthening resiliency among poor African American preadolescent girls. The intervention used a relational Afrocentric focus and activities to increase self-worth and ethnic and gender identity. Intervention girls scored significantly higher on measures of Afrocentric values,…

  11. A Study of the Gender-Specific Mortality Rates in Korea and Japan for the Formation of Health Promotion Policy

    ERIC Educational Resources Information Center

    Nam, Eun-Woo; Song, Yea-Li-A

    2007-01-01

    Objective: This study attempts to provide fundamental information to help with the development of health policy and health services by looking at the trends of the gender-specific mortality rates in Korea and Japan. Design: The death statistics of Korea and Japan over the 21-year period from 1983 to 2003 are analyzed. Setting: We used the death…

  12. Gender-Specific HIV Prevention with Urban Early-Adolescent Girls: Outcomes of the Keepin' It Safe Program

    ERIC Educational Resources Information Center

    Di Noia, Jennifer; Schinke, Steven P.

    2007-01-01

    This study evaluates the efficacy of Keepin' It Safe, a theory-based, gender-specific, CD-ROM-mediated HIV prevention program for urban, early adolescent girls. Intervention effects were examined in a randomized, pretest-posttest wait-list control-group design. Changes in HIV/AIDS knowledge, protective attitudes, and skills for reducing HIV…

  13. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes.

    PubMed

    Oberbach, Andreas; Blüher, Matthias; Wirth, Henry; Till, Holger; Kovacs, Peter; Kullnick, Yvonne; Schlichting, Nadine; Tomm, Janina M; Rolle-Kampczyk, Ulrike; Murugaiyan, Jayaseelan; Binder, Hans; Dietrich, Arne; von Bergen, Martin

    2011-10-01

    , RBP4, PEDF, GLN, and C18:2 showed the strongest correlation to changes in body fat mass. The combined serum proteomic and metabolomic profiling reveals a link between the complement system and obesity and identifies both novel (C3b, CLU, VDBP, and all metabolites) and confirms previously discovered markers (PEDF, RBP4, C3, ATIII, and SAP) of body fat mass changes. PMID:21823675

  14. A Pathway Proteomic Profile of Ischemic Stroke Survivors Reveals Innate Immune Dysfunction in Association with Mild Symptoms of Depression – A Pilot Study

    PubMed Central

    Nguyen, Vinh A.; Carey, Leeanne M.; Giummarra, Loretta; Faou, Pierre; Cooke, Ira; Howells, David W.; Tse, Tamara; Macaulay, S. Lance; Ma, Henry; Davis, Stephen M.; Donnan, Geoffrey A.; Crewther, Sheila G.

    2016-01-01

    Depression after stroke is a common occurrence, raising questions as to whether depression could be a long-term biological and immunological sequela of stroke. Early explanations for post-stroke depression (PSD) focused on the neuropsychological/psychosocial effects of stroke on mobility and quality of life. However, recent investigations have revealed imbalances of inflammatory cytokine levels in association with PSD, though to date, there is only one published proteomic pathway analysis testing this hypothesis. Thus, we examined the serum proteome of stroke patients (n = 44, mean age = 63.62 years) and correlated these with the Montgomery–Åsberg Depression Rating Scale (MADRS) scores at 3 months post-stroke. Overall, the patients presented with mild depression symptoms on the MADRS, M = 6.40 (SD = 7.42). A discovery approach utilizing label-free relative quantification was employed utilizing an LC-ESI–MS/MS coupled to a LTQ-Orbitrap Elite (Thermo-Scientific). Identified peptides were analyzed using the gene set enrichment approach on several different genomic databases that all indicated significant downregulation of the complement and coagulation systems with increasing MADRS scores. Complement and coagulation systems are traditionally thought to play a key role in the innate immune system and are established precursors to the adaptive immune system through pro-inflammatory cytokine signaling. Both systems are known to be globally affected after ischemic or hemorrhagic stroke. Thus, our results suggest that lowered complement expression in the periphery in conjunction with depressive symptoms post-stroke may be a biomarker for incomplete recovery of brain metabolic needs, homeostasis, and inflammation following ischemic stroke damage. Further proteomic investigations are now required to construct the temporal profile, leading from acute lesion damage to manifestation of depressive symptoms. Overall, the findings provide support for the

  15. ZipperDB: Predictions of Fibril-forming Segments within Proteins Identified by the 3D Profile Method (from the UCLA-DOE Institute for Genomics and Proteomics)

    DOE Data Explorer

    Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D.

    ZipperDB contains predictions of fibril-forming segments within proteins identified by the 3D Profile Method. The UCLA-DOE Institute for Genomics and Proteomics has analyzed over 20,000 putative protein sequences for segments with high fibrillation propensity that could form a "steric zipper"ùtwo self-complementary beta sheets, giving rise to the spine of an amyloid fibril. The approach is unique in that structural information is used to evaluate the likelihood that a particular sequence can form fibrils. [copied with edits from http://www.doe-mbi.ucla.edu/]. In addition to searching the database, academic and non-profit users may also submit their protein sequences to the database.

  16. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Zhang Bo; Huang Bo; Guan Hua; Zhang Shimeng; Xu Qinzhi; He Xingpeng; Liu Xiaodan; Wang Yu; Shang Zengfu; Zhou Pingkun

    2011-05-01

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.

  17. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    PubMed

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots < 66 kDa with a pI > 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P < 0·05, q < 0·30), and eighteen of these were identified. In each trout group, ten spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect.

  18. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    PubMed

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots < 66 kDa with a pI > 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P < 0·05, q < 0·30), and eighteen of these were identified. In each trout group, ten spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect. PMID:25622825

  19. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.

    PubMed

    Triplett, Judy C; Zhang, Zhaoshu; Sultana, Rukhsana; Cai, Jian; Klein, Jon B; Büeler, Hansruedi; Butterfield, David Allan

    2015-06-01

    Parkinson's disease (PD) is an age-related, neurodegenerative motor disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of α-synuclein-containing protein aggregates. Mutations in the mitochondrial Ser/Thr kinase PTEN-induced kinase 1 (PINK1) are associated with an autosomal recessive familial form of early-onset PD. Recent studies have suggested that PINK1 plays important neuroprotective roles against mitochondrial dysfunction by phosphorylating and recruiting Parkin, a cytosolic E3 ubiquitin ligase, to facilitate elimination of damaged mitochondria via autophagy-lysosomal pathways. Loss of PINK1 in cells and animals leads to various mitochondrial impairments and oxidative stress, culminating in dopaminergic neuronal death in humans. Using a 2-D polyacrylamide gel electrophoresis proteomics approach, the differences in expressed brain proteome and phosphoproteome between 6-month-old PINK1-deficient mice and wild-type mice were identified. The observed changes in the brain proteome and phosphoproteome of mice lacking PINK1 suggest that defects in signaling networks, energy metabolism, cellular proteostasis, and neuronal structure and plasticity are involved in the pathogenesis of familial PD. Mutations in PINK1 are associated with an early-onset form of Parkinson's disease (PD). This study examines changes in the proteome and phosphoproteome of the PINK1 knockout mouse brain. Alterations were noted in several key proteins associated with: increased oxidative stress, aberrant cellular signaling, altered neuronal structure, decreased synaptic plasticity, reduced neurotransmission, diminished proteostasis networks, and altered metabolism. 14-3-3ε, 14-3-3 protein epsilon; 3-PGDH, phosphoglycerate dehydrogenase; ALDOA, aldolase A; APT1, acyl-protein thioesterase 1; CaM, calmodulin; CBR3, carbonyl reductase [NADPH] 3; ENO2, gamma-enolase; HPRT, hypoxanthine-guanine phosphoribosyltransferase; HSP70

  20. Gender-specific protective effect of hemoglobin on arsenic-induced skin lesions.

    PubMed

    Breton, Carrie V; Houseman, E Andres; Kile, Molly L; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C

    2006-05-01

    Chronic arsenic poisoning remains a public health crisis in Bangladesh. As arsenic has been shown to bind to human hemoglobin (Hb), hematologic mechanisms may play a role in the pathway through which arsenic exerts its toxicity. Two separate studies, a case-control and a cohort, were conducted to investigate the role of Hb in the development of arsenic-induced skin lesions. In the first, conditional logistic regression was used to investigate the effect of Hb on skin lesions among 900 case-control pairs from Pabna, Bangladesh, in which individuals were matched on gender, age, and location. In the second, mixed linear regression models were used to examine the association between toenail arsenic, urinary arsenic, and Hb within a cohort of 184 individuals from 50 families in the same region who did not have arsenic-induced skin lesions. Hb was significantly associated with skin lesions but this association was gender specific. In males, a 40% reduction in the odds of skin lesions occurred for every 1 g/dL increase in Hb (odds ratio, 0.60; 95% confidence interval, 0.49-0.73). No effect was observed for females (odds ratio, 1.16; 95% confidence interval, 0.92-1.46). In the cohort of 184 individuals, no associations between toenail arsenic or urinary arsenic species and Hb levels were observed. Low Hb levels may exacerbate the detrimental health effects of chronic arsenic poisoning. Whereas providing clean water remains the optimal solution to Bangladesh's problem of arsenic poisoning, improving nutrition and reducing iron-deficiency anemia may ameliorate negative health effects, such as skin lesions in individuals who have been exposed.

  1. Gender-specific factors associated with shorter sleep duration at age 3 years.

    PubMed

    Plancoulaine, Sabine; Lioret, Sandrine; Regnault, Nolwenn; Heude, Barbara; Charles, Marie-Aline

    2015-12-01

    Total sleep duration has been decreasing among children in the last decades. Short sleep duration (SSD) has been associated with deleterious health consequences, such as excess weight/obesity. Risk factors for SSD have already been studied among school-aged children and adolescents, but inconsistent results have been reported regarding possible gender differences. Studies reporting such relationships are scarce in preschoolers, despite the importance of this period for adopting healthy behaviour. We aimed to investigate factors associated with SSD in 3-year-old boys (n = 546) and girls (n = 482) in a French Mother-Child Cohort (EDEN Study). Children were born between 2003 and 2006 in two French university hospitals. Clinical examinations and parent self-reported questionnaires allowed us to collect sociodemographic (e.g. income, education, family situation, child-minding system), maternal [e.g. body mass index (BMI), parity, depression, breastfeeding duration] and child's characteristics (e.g. gender, birth weight, term, physical activity and TV viewing duration, food consumption, usual sleep time). Sleep duration/24-h period was calculated and SSD was defined as <12 h. Analyses were performed using logistic regression. The mean sleep duration was 12 h 35 ± 56 min, with 91% of the children napping. Patterns of risk factors associated with SSD differed according to gender. In addition to parental presence when falling asleep, short sleep duration was associated strongly positively with high BMI Z-score and TV viewing duration among boys and with familial home child-minding and lower scores on the 'fruits and vegetables' dietary pattern among girls. These results suggest either a patterning of parental behaviours that differs according to gender, or a gender-specific sleep physiology, or both.

  2. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids.

    PubMed

    Roussel, S; Boissy, A; Montigny, D; Hemsworth, P H; Duvaux-Ponter, C

    2005-03-01

    The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details.

  3. Putative effectors for prognosis in lung adenocarcinoma are ethnic and gender specific.

    PubMed

    Woolston, Andrew; Sintupisut, Nardnisa; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chuang, Eric Y; Yeang, Chen-Hsiang

    2015-08-14

    Lung adenocarcinoma possesses distinct patterns of EGFR/KRAS mutations between East Asian and Western, male and female patients. However, beyond the well-known EGFR/KRAS distinction, gender and ethnic specific molecular aberrations and their effects on prognosis remain largely unexplored. Association modules capture the dependency of an effector molecular aberration and target gene expressions. We established association modules from the copy number variation (CNV), DNA methylation and mRNA expression data of a Taiwanese female cohort. The inferred modules were validated in four external datasets of East Asian and Caucasian patients by examining the coherence of the target gene expressions and their associations with prognostic outcomes. Modules 1 (cis-acting effects with chromosome 7 CNV) and 3 (DNA methylations of UBIAD1 and VAV1) possessed significantly negative associations with survival times among two East Asian patient cohorts. Module 2 (cis-acting effects with chromosome 18 CNV) possessed significantly negative associations with survival times among the East Asian female subpopulation alone. By examining the genomic locations and functions of the target genes, we identified several putative effectors of the two cis-acting CNV modules: RAC1, EGFR, CDK5 and RALBP1. Furthermore, module 3 targets were enriched with genes involved in cell proliferation and division and hence were consistent with the negative associations with survival times. We demonstrated that association modules in lung adenocarcinoma with significant links of prognostic outcomes were ethnic and/or gender specific. This discovery has profound implications in diagnosis and treatment of lung adenocarcinoma and echoes the fundamental principles of the personalized medicine paradigm. PMID:26160836

  4. Identification of Gender-Specific Genetic Variants in Patients With Bicuspid Aortic Valve.

    PubMed

    Dargis, Natasha; Lamontagne, Maxime; Gaudreault, Nathalie; Sbarra, Laura; Henry, Cyndi; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-02-01

    Bicuspid aortic valve (BAV) is the most frequent congenital heart defect and has a male predominance of 3 to 1. A large proportion of patients develop valvular and aortic complications. Despite the high prevalence of BAV, its cause and genetic origins remain elusive. The goal of this study was to identify genetic variants associated with BAV. Nine genes previously associated with BAV (NOTCH1, AXIN1, EGFR, ENG, GATA5, NKX2-5, NOS3, PDIA2, and TGFBR2) were sequenced in 48 patients with BAV using the Ion Torrent Personal Genome Machine. Pathogenicity of genetic variants was evaluated with the Combined Annotation Dependent Depletion framework. A selection of 89 variants identified by sequencing or in previous BAV genetic studies was genotyped, and allele frequencies were compared in 323 patients with BAV confirmed at surgery and 584 controls. Analyses were also performed by gender. Nine novel and 19 potentially pathogenic variants were identified by next-generation sequencing and confirmed by Sanger sequencing, but they were not associated with BAV in the case-control population. A significant association was observed between an in silico-predicted benign EGFR intronic variant (rs17290301) and BAV. Analyses performed by gender revealed different variants associated with BAV in men (EGFR rs533525993 and TEX26 rs12857479) and women (NOTCH1 rs61751489, TGFBR2 rs1155705, and NKX2-5 rs2277923). In conclusion, these results constitute the first association between EGFR genetic variants and BAV in humans and support a possible role of gender-specific polymorphisms in the development of BAV. PMID:26708639

  5. Autonomy, Positive Relationships, and IL-6: Evidence for Gender-Specific Effects

    PubMed Central

    Eisenlohr-Moul, Tory A.; Segerstrom, Suzanne C.

    2014-01-01

    Objectives A body of evidence indicates that women value relationship-centered aspects of well-being more than men do, while men value autonomy-centered aspects of well-being more than women do. The current study examined whether gender moderates relations between autonomy and positive relationships and interleukin-6 (IL-6), a cytokine associated with inflammatory processes. Aspects of well-being consistent with gender-linked values were expected to be most health-protective such that positive relationships would predict lower IL-6 only or more strongly in women, and autonomy would predict lower IL-6 only or more strongly in men. Methods In the first study, a sample of 119 older adults (55% female) living in Kentucky were visited in their homes for interviews and blood draws. In the second study, a sample of 1,028 adults (45% female) living across the United States (U.S.) underwent a telephone interview followed by a visit to a research center for blood draws. Results In the Kentucky sample, autonomy was quadratically related to IL-6 such that average autonomy predicted higher IL-6; this effect was stronger in men, providing support for our hypothesis only at above average levels of IL-6. In the U.S. national sample, more positive relationships were associated with lower IL-6 in women only. When the national sample was restricted to match the Kentucky sample, higher autonomy was associated with lower IL-6 in men only. Conclusions Results provide preliminary evidence for gender-specific effects of positive relationships and autonomy on IL-6. Further work is needed to establish the generalizability of these effects to different ages, cultures, and health statuses. PMID:22908985

  6. Gender-specific effects of prenatal stress on emotional reactivity and stress physiology of goat kids.

    PubMed

    Roussel, S; Boissy, A; Montigny, D; Hemsworth, P H; Duvaux-Ponter, C

    2005-03-01

    The aims of this study were to investigate the effects of maternal stress during pregnancy on the emotional reactivity, the hypothalamo-pituitary-adrenocortical (HPA) axis, and the sympatho-adrenomedullary (SAM) system of goat offspring according to their gender, and to investigate the role of maternal cortisol in prenatal stress effects. Goats were exposed to ten transports in isolation or ten ACTH injections (0.125 IU/kg body weight) during the last third of pregnancy. Control goats remained undisturbed. No effect of repeated transport during the last third of pregnancy was found on basal cortisol concentrations of the offspring. However, an increase in phenylethanolamine N-methyl transferase activity in the adrenals was observed in prenatally stressed kids compared to control kids (P = 0.031). In the presence of novelty, prenatally stressed female kids were more active (P = 0.049) than control females; they also showed more signs of arousal (P = 0.039) and tended to explore more of their environment (P = 0.053) in reaction to a startling stimulus. On the contrary, prenatally stressed male kids tended to be less active (P = 0.051) than control male kids but showed more signs of distress (P = 0.047) in the presence of novelty. Intermediate effects were found on the emotional reactivity to novelty of kids born from dams given injections of ACTH. In conclusion, transport stress in pregnant goats affects the sympatho-adrenomedullary system and the emotional reactivity of their offspring in a gender-specific manner. Moreover, the effects of prenatal transport and ACTH injections showed some similarities but differed in some critical details. PMID:15708753

  7. Disease and gender-specific dysregulation of NGAL and MMP-9 in type 1 diabetes mellitus.

    PubMed

    Thrailkill, Kathryn M; Moreau, Cynthia S; Cockrell, Gael E; Jo, Chan-Hee; Bunn, Robert C; Morales-Pozzo, Alba E; Lumpkin, Charles K; Fowlkes, John L

    2010-04-01

    Neutrophil gelatinase-associated lipocalin (NGAL), a biomarker of renal injury, can bind matrix metalloproteinase-9 (MMP-9) and inhibit its degradation, thereby sustaining MMP-9 proteolytic activity. MMP-9 is produced by renal podocytes, and podocyte MMP production can be modified by high ambient glucose levels. Moreover, dysregulation of MMP-9 activity, gene expression, or urine concentrations has been demonstrated in T2DM-associated nephropathy and in non-diabetic proteinuric renal diseases. Our objective was to determine whether NGAL/MMP-9 dysregulation might contribute to or serve as a biomarker of diabetic nephropathy in type 1 DM (T1DM). Plasma MMP-9, and urine NGAL and MMP-9 concentrations were measured in 121 T1DM and 55 control subjects and examined relative to indicators of glycemia, renal function, and degree of albuminuria. T1DM was associated with a significant increase in urinary excretion of both NGAL and MMP-9, and urine NGAL:Cr (NGAL corrected to urine creatinine) and urine MMP-9:Cr concentrations were highly correlated with each other. Both were also positively correlated with measurements of glycemic control and with albuminuria. Plasma MMP-9, urine MMP-9, and urine NGAL concentrations were significantly higher in females compared to males, and urine MMP-9:Cr concentrations displayed a menstrual cycle specific pattern. Increased urinary excretion of NGAL and MMP-9 supports a role for NGAL/MMP-9 dysregulation in renal dysfunction; moreover, gender-specific differences could support a gender contribution to pathological mechanisms or susceptibility for the development of renal complications in diabetes mellitus.

  8. Gender-specific factors associated with shorter sleep duration at age 3 years.

    PubMed

    Plancoulaine, Sabine; Lioret, Sandrine; Regnault, Nolwenn; Heude, Barbara; Charles, Marie-Aline

    2015-12-01

    Total sleep duration has been decreasing among children in the last decades. Short sleep duration (SSD) has been associated with deleterious health consequences, such as excess weight/obesity. Risk factors for SSD have already been studied among school-aged children and adolescents, but inconsistent results have been reported regarding possible gender differences. Studies reporting such relationships are scarce in preschoolers, despite the importance of this period for adopting healthy behaviour. We aimed to investigate factors associated with SSD in 3-year-old boys (n = 546) and girls (n = 482) in a French Mother-Child Cohort (EDEN Study). Children were born between 2003 and 2006 in two French university hospitals. Clinical examinations and parent self-reported questionnaires allowed us to collect sociodemographic (e.g. income, education, family situation, child-minding system), maternal [e.g. body mass index (BMI), parity, depression, breastfeeding duration] and child's characteristics (e.g. gender, birth weight, term, physical activity and TV viewing duration, food consumption, usual sleep time). Sleep duration/24-h period was calculated and SSD was defined as <12 h. Analyses were performed using logistic regression. The mean sleep duration was 12 h 35 ± 56 min, with 91% of the children napping. Patterns of risk factors associated with SSD differed according to gender. In addition to parental presence when falling asleep, short sleep duration was associated strongly positively with high BMI Z-score and TV viewing duration among boys and with familial home child-minding and lower scores on the 'fruits and vegetables' dietary pattern among girls. These results suggest either a patterning of parental behaviours that differs according to gender, or a gender-specific sleep physiology, or both. PMID:26041449

  9. Putative effectors for prognosis in lung adenocarcinoma are ethnic and gender specific.

    PubMed

    Woolston, Andrew; Sintupisut, Nardnisa; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chuang, Eric Y; Yeang, Chen-Hsiang

    2015-08-14

    Lung adenocarcinoma possesses distinct patterns of EGFR/KRAS mutations between East Asian and Western, male and female patients. However, beyond the well-known EGFR/KRAS distinction, gender and ethnic specific molecular aberrations and their effects on prognosis remain largely unexplored. Association modules capture the dependency of an effector molecular aberration and target gene expressions. We established association modules from the copy number variation (CNV), DNA methylation and mRNA expression data of a Taiwanese female cohort. The inferred modules were validated in four external datasets of East Asian and Caucasian patients by examining the coherence of the target gene expressions and their associations with prognostic outcomes. Modules 1 (cis-acting effects with chromosome 7 CNV) and 3 (DNA methylations of UBIAD1 and VAV1) possessed significantly negative associations with survival times among two East Asian patient cohorts. Module 2 (cis-acting effects with chromosome 18 CNV) possessed significantly negative associations with survival times among the East Asian female subpopulation alone. By examining the genomic locations and functions of the target genes, we identified several putative effectors of the two cis-acting CNV modules: RAC1, EGFR, CDK5 and RALBP1. Furthermore, module 3 targets were enriched with genes involved in cell proliferation and division and hence were consistent with the negative associations with survival times. We demonstrated that association modules in lung adenocarcinoma with significant links of prognostic outcomes were ethnic and/or gender specific. This discovery has profound implications in diagnosis and treatment of lung adenocarcinoma and echoes the fundamental principles of the personalized medicine paradigm.

  10. The National Trajectory Project of Individuals Found Not Criminally Responsible on Account of Mental Disorder. Part 5: How Essential Are Gender-Specific Forensic Psychiatric Services?

    PubMed Central

    Nicholls, Tonia L; Crocker, Anne G; Seto, Michael C; Wilson, Catherine M; Charette, Yanick; Côté, Gilles

    2015-01-01

    Objective: To state the sociodemographic characteristics, mental health histories, index offence characteristics, and criminal histories of male and female forensic psychiatric patients. Clinicians and researchers advocate that mental health and criminal justice organizations implement gender-specific services; however, few studies have sampled forensic patients to evaluate the extent to which men’s and women’s treatment and management needs are different. Method: Data were collected from Review Board files from May 2000 to April 2005 in the 3 largest Canadian provinces. Using official criminal records, participants were followed for 3 to 8 years, until December 2008. The final sample comprised 1800 individuals: 15.6% were women and 84.4% were men. Results: There were few demographic differences, but women had higher psychosocial functioning than men. Both men and women had extensive mental health histories; women were more likely diagnosed with mood disorders and PDs and men were more likely diagnosed with schizophrenia spectrum disorders and SUDs. The nature of the index offence did not differ by gender, except women were more likely to have perpetrated murders and attempted murders. For offences against a person, women were more likely to offend against offspring and partners and less likely to offend against strangers, compared with men. Women had significantly less extensive criminal histories than men. Conclusions: Not criminally responsible on account of mental disorder–accused women have a distinct psychosocial, clinical, and criminological profile from their male counterparts, which may suggest gender-specific assessment, risk management, and treatment in forensic services could benefit patients. The findings are also consistent with traditional models (Risk-Need-Responsivity) and ultimately demonstrate the importance of individual assessment and client-centred services. PMID:25886689

  11. Proteomic profiling of occupational medicamentosa-like dermatitis induced by trichloroethylene in serum based on MALDI-TOF MS.

    PubMed

    Liu, Wei; Hong, Wen-Xu; Zhang, Yanfang; Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Huang, Haiyan; Liu, Jianjun

    2015-11-01

    Trichloroethylene (TCE) has long been well known as a major pollutant that affects both occupational and general environments. Occupational medicamentosa-like dermatitis induced by TCE (OMLDT) is an autoimmune disease, which has become one of the critical occupational health issues in China. In this study, we analyzed 18 OMLDT patients and 29 professional TCE contact people on serum proteomic analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and ClinProTools bioinformatics software. The intensities of 35 protein/peptide peaks were significantly different between TCE contact controls and OMLDT patients. A pattern of six peaks (m/z 1,450.33, 1,866.16, 3,262.39, 4,109.55, 5,064.85 and 5,956.57) were selected to construct a diagnostic model to discriminate the OMLDT patients from controls with sensitivity and specificity of both 93.8 %. Our findings provide an alternative proteomic approach to differentiate the OMLDT patients from TCE contact workers with high sensitivity and high specificity, which will be of potential value in clinical diagnosis for occupational disease.

  12. Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins.

    PubMed

    Alcolea, Pedro J; Alonso, Ana; García-Tabares, Francisco; Mena, María del Carmen; Ciordia, Sergio; Larraga, Vicente

    2016-06-01

    Leishmaniasis is a term that encompasses a compendium of neglected tropical diseases caused by dimorphic and digenetic protozoan parasites from the genus Leishmania (Kinetoplastida: Trypanosomatidae). The clinical manifestations of neotropical cutaneous leishmaniasis (NCL) caused by Leishmania pifanoi and other species of the "Leishmania mexicana complex" mainly correspond to anergic diffuse cutaneous leishmaniasis (ADCL), which is the origin of considerable morbidity. Despite the outstanding advances in the characterization of the trypanosomatid genomes and proteomes, the biology of this species has been scarcely explored. However, the close relation of L. pifanoi to the sequenced species L. mexicana and others included in the "L. mexicana complex" allowed us to perform a two-dimension electrophoresis (2DE) approach to the promastigote proteome at the differential expression level. Protein identifications were performed by matrix-assisted laser desorption-ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF). This insight has revealed similarities and differences between L. pifanoi and other species responsible for cutaneous and visceral leishmaniasis. Interestingly, certain proteins that were previously described as immunostimulatory (elongation factor 1β, trypanothione peroxidase, heat shock protein 70, enolase, GDP-forming succinyl-CoA and aldehyde dehydrogenase) are more abundant in the final growth stages of promastigotes (late-logarithmic and/or stationary phase) in the case of L. pifanoi. PMID:26992294

  13. Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: Role of myeloperoxidase and arylamine free radicals.

    PubMed

    Khan, Saifur R; Baghdasarian, Argishti; Nagar, Prarthna H; Fahlman, Richard; Jurasz, Paul; Michail, Karim; Aljuhani, Naif; Siraki, Arno G

    2015-09-01

    In this study, the cellular effects resulting from the metabolism of aminoglutethimide by myeloperoxidase were investigated. Human promyelocytic leukemia (HL-60) cells were treated with aminoglutethimide (AG), an arylamine drug that has a risk of adverse drug reactions, including drug-induced agranulocytosis. HL-60 cells contain abundant amounts of myeloperoxidase (MPO), a hemoprotein, which catalyzes one-electron oxidation of arylamines using H2O2 as a cofactor. Previous studies have shown that arylamine metabolism by MPO results in protein radical formation. The purpose of this study was to determine if pathways associated with a toxic response could be determined from conditions that produced protein radicals. Conditions for AG-induced protein radical formation (with minimal cytotoxicity) were optimized, and these conditions were used to carry out proteomic studies. We identified 43 proteins that were changed significantly upon AG treatment among which 18 were up-regulated and 25 were down-regulated. The quantitative proteomic data showed that AG peroxidative metabolism led to the down-regulation of critical anti-apoptotic proteins responsible for inhibiting the release of pro-apoptotic factors from the mitochondria as well as cytoskeletal proteins such as nuclear lamina. This overall pro-apoptotic response was confirmed with flow cytometry which demonstrated apoptosis to be the main mode of cell death, and this was attenuated by MPO inhibition. This response correlated with the intensity of AG-induced protein radical formation in HL-60 cells, which may play a role in cell death signaling mechanisms.

  14. Proteomic and profile analysis of the proteins laced with aragonite and vaterite in the freshwater mussel Hyriopsis cumingii shell biominerals.

    PubMed

    Berland, Sophie; Ma, Yufei; Marie, Arul; Andrieu, Jean-Pierre; Bedouet, Laurent; Feng, Qingling

    2013-10-01

    Hyriopsis cumingii (Lea, Unionidae), a freshwater bivalve species widely distributed in China and commercially exploited for freshwater pearl production, was chosen as the reference model to investigate the protein signature in the organic scaffold matching calcium carbonate crystallization mode. This study takes advantage of different calcium carbonate habits production by the organism: aragonite in shell and pearl and vaterite in alternative pearl formation. Amino acid global composition and proteomics analysis have been undertaken to study the amino acid imbalance with respect to biominerals and microstructures. Forty peptides sequences were obtained by proteomics, of which ten are shared by all the different samples, nine are laced with aragonite; another nine with vaterite and twelve are related to pearls. Bioinformatics analysis allowed the peptides to be matched to the deduced protein sequences from EST databases and allowed functional assignment (e.g. scaffolding, strain strength, chitin binding or carbonic anhydrase function) to the proteins found in the different materials. Such panel of motifs tailored in vaterite and aragonite habits produced in a freshwater mollusk gives food for thought about organic control of the biomineralization processes.

  15. Proteome profiling for assessing diversity: analysis of individual heads of Drosophila melanogaster using LC-ion mobility-MS.

    PubMed

    Taraszka, John A; Gao, Xinfeng; Valentine, Stephen J; Sowell, Renã A; Koeniger, Stormy L; Miller, David F; Kaufman, Thomas C; Clemmer, David E

    2005-01-01

    The proteomes of three heads of individual Drosophila melanogaster organisms have been analyzed and compared by a combination of liquid chromatography, ion mobility spectrometry, and mass spectrometry approaches. In total, 197 proteins are identified among all three individuals (an average of 120 +/- 20 proteins per individual), of which at least 101 proteins are present in all three individuals. Within all three datasets, more than 25 000 molecular ions (an average of 9000 +/- 2000 per individual) corresponding to protonated precursor ions of individual peptides have been observed. A comparison of peaks among the datasets reveals that peaks corresponding to protonated peptides that are found in all heads are more intense than those features that appear between pairs of or within only one of the individuals. Moreover, there is little variability in the relative intensities of the peaks common among all individuals. It appears that it is the lower abundance components of the proteome that play the most significant role in determining unique features of individuals.

  16. Proteomic profiling of eggs from a hybrid abalone and its parental lines: Haliotis discus hannai Ino and Haliotis gigantea.

    PubMed

    Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan

    2015-12-01

    Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization. PMID:26447358

  17. Proteomic profiling of eggs from a hybrid abalone and its parental lines: Haliotis discus hannai Ino and Haliotis gigantea.

    PubMed

    Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan

    2015-12-01

    Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization.

  18. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.

    PubMed

    Sheng, Yao; Yang, Xuan; Lian, Yuanyuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-09-01

    Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed. PMID:27522548

  19. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    PubMed Central

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-01

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism. PMID:24473139

  20. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.

    PubMed

    Sheng, Yao; Yang, Xuan; Lian, Yuanyuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-09-01

    Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed.

  1. Reversed-Phase Chromatography with Multiple Fraction Concatenation Strategy for Proteome Profiling of Human MCF10A Cells

    SciTech Connect

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese RW; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-05-01

    Two dimensional liquid chromatography (2D LC) is commonly used for shotgun proteomics to improve the analysis dynamic range. Reversed phase liquid chromatography (RPLC) has been routinely employed as the second dimensional separation prior to the mass spectrometric analysis. Construction of 2D separation with RP-RP arises a concern for the separation orthogonality. In this study, we applied a novel concatenation strategy to improve the orthogonality of 2D RP-RP formed by low pH (i.e., pH 3) and high pH (i.e., pH 10) RPLC. We confidently identified 3753 proteins (18570 unique peptides) and 5907 proteins (37633 unique peptides) from low pH RPLC-RP and high pH RPLC-RP, respectively, for a trypsin-digested human MCF10A cell sample. Compared with SCX-RP, the high pH-low pH RP-RP approach resulted in 1.8-fold and 1.6-fold in the number of peptide and protein identifications, respectively. In addition to the broader identifications, the High pH-low pH RP-RP approach has advantages including the improved protein sequence coverage, the simplified sample processing, and the reduced sample loss. These results demonstrated that the concatenation high pH-low pH RP-RP strategy is an attractive alternative to SCX for 2D LC shotgun proteomic analysis.

  2. Gender-specific influences of balance, speed, and power on agility performance.

    PubMed

    Sekulic, Damir; Spasic, Miodrag; Mirkov, Dragan; Cavar, Mile; Sattler, Tine

    2013-03-01

    The quick change of direction (i.e., agility) is an important athletic ability in numerous sports. Because of the diverse and therefore hardly predictable manifestations of agility in sports, studies noted that the improvement in speed, power, and balance should result in an improvement of agility. However, there is evident lack of data regarding the influence of potential predictors on different agility manifestations. The aim of this study was to determine the gender-specific influence of speed, power, and balance on different agility tests. A total of 32 college-aged male athletes and 31 college-aged female athletes (age 20.02 ± 1.89 years) participated in this study. The subjects were mostly involved in team sports (soccer, team handball, basketball, and volleyball; 80% of men, and 75% of women), martial arts, gymnastics, and dance. Anthropometric variables consisted of body height, body weight, and the body mass index. Five agility tests were used: a t-test (T-TEST), zig-zag test, 20-yard shuttle test, agility test with a 180-degree turn, and forward-backward running agility test (FWDBWD). Other tests included 1 jumping ability power test (squat jump, SQJ), 2 balance tests to determine the overall stability index and an overall limit of stability score (both measured by Biodex Balance System), and 2 running speed tests using a straight sprint for 10 and 20 m (S10 and S20, respectively). A reliability analysis showed that all the agility tests were reliable. Multiple regression and correlation analysis found speed and power (among women), and balance (among men), as most significant predictors of agility. The highest Pearson's correlation in both genders is found between the results of the FWDBWD and S10M tests (0.77 and 0.81 for men and women, respectively; p < 0.05). Power, measured using the SQJ, is significantly (p < 0.05) related to FWDBWD and T-TEST results but only for women (-0.44; -0.41). The balance measures were significantly related to the agility

  3. Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression *

    PubMed Central

    Dutta, Bamaprasad; Ren, Yan; Hao, Piliang; Sim, Kae Hwan; Cheow, Esther; Adav, Sunil; Tam, James P.; Sze, Siu Kwan

    2014-01-01

    The chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1–S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity. PMID:24830416

  4. Preoperative protein profiles in cerebrospinal fluid in elderly hip fracture patients at risk for delirium: A proteomics and validation study

    PubMed Central

    Westhoff, Dunja; Witlox, Joost; van Aalst, Corneli; Scholtens, Rikie M.; de Rooij, Sophia E.; van Munster, Barbara C.; de Jonghe, Jos F.M.; Houdijk, Alexander P.J.; Eikelenboom, Piet; van Westerloo, David J.; van de Beek, Diederik; van Gool, Willem A.; Koenderman, Leo

    2015-01-01

    Background A neuroinflammatory response is suggested to play an important role in delirium, a common complication in older hospitalized patients. We examined whether hip fracture patients who develop postoperative delirium have a different proteome in cerebrospinal fluid (CSF) prior to surgery. Methods Patients (≥ 75 years) were admitted for hip fracture surgery. CSF was collected during spinal anaesthesia; proteins were separated using gel electrophoresis and identified with mass spectrometry. We compared the proteome of patients with and without postoperative delirium. Findings were validated in an independent, comparable cohort using immuno-assays. Results In the derivation cohort 53 patients were included, 35.8% developed postoperative delirium. We identified differences in levels of eight CSF proteins between patients with and without subsequent delirium: complement factor C3, contactin-1, fibulin-1 and I-beta-1,3-N-acetylglucosaminyltransferase were significantly lower in patients with postoperative delirium, while neural cell adhesion molecule-2, fibrinogen, zinc-α-2-glycoprotein and haptoglobin levels were significantly higher. In the validation cohort 21.2% of 52 patients developed postoperative delirium. Immuno-assays confirmed contactin-1 results although not statistically significant. Complement factor C3 was significantly higher in patients with postoperative delirium. Conclusion Our results show the complexity of pathophysiological mechanisms involved in delirium and emphasizes the need of independent validation of findings. General significance This study highlights the challenges and inconsistent findings in studies of delirium, a serious complication in older patients. We analysed proteins in CSF, the most proximal fluid to the brain. All patients were free from delirium at the time of sampling. PMID:26675981

  5. Proteomic profiling of renal allograft rejection in serum using magnetic bead-based sample fractionation and MALDI-TOF MS.

    PubMed

    Sui, Weiguo; Huang, Liling; Dai, Yong; Chen, Jiejing; Yan, Qiang; Huang, He

    2010-12-01

    Proteomics is one of the emerging techniques for biomarker discovery. Biomarkers can be used for early noninvasive diagnosis and prognosis of diseases and treatment efficacy evaluation. In the present study, the well-established research systems of ClinProt Micro solution incorporated unique magnetic bead sample preparation technology, which, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), have become very successful in bioinformatics due to its outstanding performance and reproducibility for discovery disease-related biomarker. We collected fasting blood samples from patients with biopsy-confirmed acute renal allograft rejection (n = 12), chronic rejection (n = 12), stable graft function (n = 12) and also from healthy volunteers (n = 13) to study serum peptidome patterns. Specimens were purified with magnetic bead-based weak cation exchange chromatography and analyzed with a MALDI-TOF mass spectrometer. The results indicated that 18 differential peptide peaks were selected as potential biomarkers of acute renal allograft rejection, and 6 differential peptide peaks were selected as potential biomarkers of chronic rejection. A Quick Classifier Algorithm was used to set up the classification models for acute and chronic renal allograft rejection. The algorithm models recognize 82.64% of acute rejection and 98.96% of chronic rejection episodes, respectively. We were able to identify serum protein fingerprints in small sample sizes of recipients with renal allograft rejection and establish the models for diagnosis of renal allograft rejection. This preliminary study demonstrated that proteomics is an emerging tool for early diagnosis of renal allograft rejection and helps us to better understand the pathogenesis of disease process.

  6. Randomized Trial of Glucosamine and Chondroitin Supplementation on Inflammation and Oxidative Stress Biomarkers and Plasma Proteomics Profiles in Healthy Humans

    PubMed Central

    Navarro, Sandi L.; White, Emily; Kantor, Elizabeth D.; Zhang, Yuzheng; Rho, Junghyun; Song, Xiaoling; Milne, Ginger L.; Lampe, Paul D.; Lampe, Johanna W.

    2015-01-01

    Background Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. Methods We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0–32.5 kg/m2) adults, aged 20–55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. Results Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the “cytokine activity” pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. Conclusion Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. Trial Registration ClinicalTrials.gov NCT01682694 PMID

  7. Injury Due to Mechanical Falls: Future Directions in Gender-Specific Surveillance, Screening, and Interventions in Emergency Department Patients

    PubMed Central

    Greenberg, Marna Rayl; Kane, Bryan G.; Totten, Vicken Y.; Raukar, Neha P.; Moore, Elizabeth C.; Sanson, Tracy; Barraco, Robert D.; Nguyen, Michael C.; Vaca, Federico E.

    2014-01-01

    The Centers for Disease Control and Prevention report that among older adults (≥65 years), falls are the leading cause of injury-related death. Fall-related fractures among older women are more than twice as frequent as those for men. Gender-specific evidence-based fall prevention strategy and intervention studies that show improved patient-centered outcomes are elusive. There is a paucity of emergency medicine literature on the topic. As part of the 2014 Academic Emergency Medicine consensus conference on “Gender-Specific Research in Emergency Care: Investigate, Understand and Translate How Gender Affects Patient Outcomes,” a breakout group convened to generate a research agenda on priority questions to be answered on this topic. The consensus-based priority research agenda is presented in this article. PMID:25491707

  8. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response.

    PubMed

    Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, Vitor

    2015-02-01

    The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In

  9. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with

  10. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.

    PubMed

    Liu, Dawei; Ford, Kristina L; Roessner, Ute; Natera, Siria; Cassin, Andrew M; Patterson, John H; Bacic, Antony

    2013-06-01

    Salinity is one of the major abiotic stresses affecting plant productivity but surprisingly, a thorough understanding of the salt-responsive networks responsible for sustaining growth and maintaining crop yield remains a significant challenge. Rice suspension culture cells (SCCs), a single cell type, were evaluated as a model system as they provide a ready source of a homogenous cell type and avoid the complications of multicellular tissue types in planta. A combination of growth performance, and transcriptional analyses using known salt-induced genes was performed on control and 100 mM NaCl cultured cells to validate the biological system. Protein profiling was conducted using both DIGE- and iTRAQ-based proteomics approaches. In total, 106 proteins were identified in DIGE experiments and 521 proteins in iTRAQ experiments with 58 proteins common to both approaches. Metabolomic analysis provided insights into both developmental changes and salt-induced changes of rice SCCs at the metabolite level; 134 known metabolites were identified, including 30 amines and amides, 40 organic acids, 40 sugars, sugar acids and sugar alcohols, 21 fatty acids and sterols, and 3 miscellaneous compounds. Our results from proteomic and metabolomic studies indicate that the salt-responsive networks of rice SCCs are extremely complex and share some similarities with thee cellular responses observed in planta. For instance, carbohydrate and energy metabolism pathways, redox signaling pathways, auxin/indole-3-acetic acid pathways and biosynthesis pathways for osmoprotectants are all salt responsive in SCCs enabling cells to maintain cellular function under stress condition. These data are discussed in the context of our understanding of in planta salt-responses. PMID:23661342

  11. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.

    PubMed

    Liu, Dawei; Ford, Kristina L; Roessner, Ute; Natera, Siria; Cassin, Andrew M; Patterson, John H; Bacic, Antony

    2013-06-01

    Salinity is one of the major abiotic stresses affecting plant productivity but surprisingly, a thorough understanding of the salt-responsive networks responsible for sustaining growth and maintaining crop yield remains a significant challenge. Rice suspension culture cells (SCCs), a single cell type, were evaluated as a model system as they provide a ready source of a homogenous cell type and avoid the complications of multicellular tissue types in planta. A combination of growth performance, and transcriptional analyses using known salt-induced genes was performed on control and 100 mM NaCl cultured cells to validate the biological system. Protein profiling was conducted using both DIGE- and iTRAQ-based proteomics approaches. In total, 106 proteins were identified in DIGE experiments and 521 proteins in iTRAQ experiments with 58 proteins common to both approaches. Metabolomic analysis provided insights into both developmental changes and salt-induced changes of rice SCCs at the metabolite level; 134 known metabolites were identified, including 30 amines and amides, 40 organic acids, 40 sugars, sugar acids and sugar alcohols, 21 fatty acids and sterols, and 3 miscellaneous compounds. Our results from proteomic and metabolomic studies indicate that the salt-responsive networks of rice SCCs are extremely complex and share some similarities with thee cellular responses observed in planta. For instance, carbohydrate and energy metabolism pathways, redox signaling pathways, auxin/indole-3-acetic acid pathways and biosynthesis pathways for osmoprotectants are all salt responsive in SCCs enabling cells to maintain cellular function under stress condition. These data are discussed in the context of our understanding of in planta salt-responses.

  12. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    PubMed

    Weiszenstein, Martin; Pavlikova, Nela; Elkalaf, Moustafa; Halada, Petr; Seda, Ondrej; Trnka, Jan; Kovar, Jan; Polak, Jan

    2016-01-01

    Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  13. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware