Sample records for gene amplification method

  1. [Principle of LAMP method--a simple and rapid gene amplification method].

    PubMed

    Ushikubo, Hiroshi

    2004-06-01

    So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.

  2. Non-biased and efficient global amplification of a single-cell cDNA library

    PubMed Central

    Huang, Huan; Goto, Mari; Tsunoda, Hiroyuki; Sun, Lizhou; Taniguchi, Kiyomi; Matsunaga, Hiroko; Kambara, Hideki

    2014-01-01

    Analysis of single-cell gene expression promises a more precise understanding of molecular mechanisms of a living system. Most techniques only allow studies of the expressions for limited numbers of gene species. When amplification of cDNA was carried out for analysing more genes, amplification biases were frequently reported. A non-biased and efficient global-amplification method, which uses a single-cell cDNA library immobilized on beads, was developed for analysing entire gene expressions for single cells. Every step in this analysis from reverse transcription to cDNA amplification was optimized. By removing degrading excess primers, the bias due to the digestion of cDNA was prevented. Since the residual reagents, which affect the efficiency of each subsequent reaction, could be removed by washing beads, the conditions for uniform and maximized amplification of cDNAs were achieved. The differences in the amplification rates for randomly selected eight genes were within 1.5-folds, which could be negligible for most of the applications of single-cell analysis. The global amplification gives a large amount of amplified cDNA (>100 μg) from a single cell (2-pg mRNA), and that amount is enough for downstream analysis. The proposed global-amplification method was used to analyse transcript ratios of multiple cDNA targets (from several copies to several thousand copies) quantitatively. PMID:24141095

  3. Quantification and clinical relevance of gene amplification at chromosome 17q12-q21 in human epidermal growth factor receptor 2-amplified breast cancers

    PubMed Central

    2011-01-01

    Introduction Human epidermal growth factor receptor 2 (HER2)-amplified breast cancers represent a tumor subtype with chromosome 17q rearrangements that lead to frequent gene amplifications. The aim of this study was to quantify the amplification of genes located on chromosome 17q and to analyze the relations between the pattern of gene amplifications and the patients' characteristics and survival. Methods Patients with HER2-positive breast tumors (HER2 score of 3+ by immunohistochemistry or positive for HER2 amplification by fluorescence in situ hybridization (FISH)) (n = 86) and with HER2-negative breast tumors (n = 40) (negative controls) were included in this study. Using a quantitative polymerase chain reaction method and DNA extracted from frozen tumor specimens, 11 genes (MED1, STARD3, HER2, GRB7, THRA, RARA, TOP2A, IGFBP4, CCR7, KRT20, KRT19 and GAS), which are localized within Chr17q12-q21 and have a putative role in breast cancer development, were quantified. Relapse-free and overall survival rates were estimated from the date of surgery to the date of the event of interest (recurrence or death) using the Kaplan-Meier method. Results Gene amplification was observed only in HER2-positive tumors, and the frequency of amplification decreased with the distance of the gene from HER2. HER2 presented the highest level of amplification. TOP2A was not included in the smallest region of amplification involving HER2. Amplification of RARA, KRT20 and KRT19 was significantly associated with node-positive breast cancer (P = 0.030, P = 0.002 and P = 0.033, respectively). During a median follow-up period of 55 months (range, 6 to 81 months), the subgroup of patients with hormone receptor-negative cancer and without TOP2A amplification showed the worst survival (relapse-free survival: hazard ratio (HR) = 0.29, 95% confidence interval (95% CI), 0.13 to 0.65, P = 0.001; and overall survival: HR = 0.28, 95% CI, 0.10 to 0.76, P = 0.008). Conclusions HER2 amplification seems to drive genomic instability along chromosome 17q, leading to different patterns of gene amplification. This study confirms the clinical importance of identifying, among patients with HER2-positive breast tumors, the subgroup of patients with hormone receptor-negative and nonamplified TOP2A cancers as they have the worst prognosis. PMID:21288332

  4. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  5. A method for release and multiple strand amplification of small quantities of DNA from endospores of the fastidious bacterium Pasteuria penetrans.

    PubMed

    Mauchline, T H; Mohan, S; Davies, K G; Schaff, J E; Opperman, C H; Kerry, B R; Hirsch, P R

    2010-05-01

    To establish a reliable protocol to extract DNA from Pasteuria penetrans endospores for use as template in multiple strand amplification, thus providing sufficient material for genetic analyses. To develop a highly sensitive PCR-based diagnostic tool for P. penetrans. An optimized method to decontaminate endospores, release and purify DNA enabled multiple strand amplification. DNA purity was assessed by cloning and sequencing gyrB and 16S rRNA gene fragments obtained from PCR using generic primers. Samples indicated to be 100%P. penetrans by the gyrB assay were estimated at 46% using the 16S rRNA gene. No bias was detected on cloning and sequencing 12 housekeeping and sporulation gene fragments from amplified DNA. The detection limit by PCR with Pasteuria-specific 16S rRNA gene primers following multiple strand amplification of DNA extracted using the method was a single endospore. Generation of large quantities DNA will facilitate genomic sequencing of P. penetrans. Apparent differences in sample purity are explained by variations in 16S rRNA gene copy number in Eubacteria leading to exaggerated estimations of sample contamination. Detection of single endospores will facilitate investigations of P. penetrans molecular ecology. These methods will advance studies on P. penetrans and facilitate research on other obligate and fastidious micro-organisms where it is currently impractical to obtain DNA in sufficient quantity and quality.

  6. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization.

    PubMed

    Pauletti, G; Godolphin, W; Press, M F; Slamon, D J

    1996-07-04

    Amplification and overexpression of the HER-2/neu gene occurs in 25-30% of human breast cancers. This genetic alteration is associated with a poor clinical prognosis in women with either node negative or node positive breast cancers. The initial studies testing this association were somewhat controversial and this controversy was due in large part to significant heterogeneity in both the methods and/or reagents used in testing archival material for the presence of the alteration. These methods included a number of solid matrix blotting techniques for DNA, RNA and protein as well as immunohistochemistry. Fluorescence in situ hybridization (FISH) represents the newest methodologic approach for testing for this genetic alteration. In this study, FISH is compared to Southern, Northern and Western blot analyses as well as immunohistochemistry in a large cohort of archival human breast cancer specimens. FISH was found to be superior to all other methodologies tested in assessing formalin fixed, paraffin embedded material for HER-2/neu amplification. The results from this study also confirm that overexpression of HER-2/neu rarely occurs in the absence of gene amplification in breast cancer (approximately 3% of cases). This method of analysis is rapid, reproducible and extremely reliable in detecting presence of HER-2/neu gene amplification and should have clinical utility.

  7. Simultaneous amplification of two bacterial genes: more reliable method of Helicobacter pylori detection in microbial rich dental plaque samples.

    PubMed

    Chaudhry, Saima; Idrees, Muhammad; Izhar, Mateen; Butt, Arshad Kamal; Khan, Ayyaz Ali

    2011-01-01

    Polymerase Chain reaction (PCR) assay is considered superior to other methods for detection of Helicobacter pylori (H. pylori) in oral cavity; however, it also has limitations when sample under study is microbial rich dental plaque. The type of gene targeted and number of primers used for bacterial detection in dental plaque samples can have a significant effect on the results obtained as there are a number of closely related bacterial species residing in plaque biofilm. Also due to high recombination rate of H. pylori some of the genes might be down regulated or absent. The present study was conducted to determine the frequency of H. pylori colonization of dental plaque by simultaneously amplifying two genes of the bacterium. One hundred dental plaque specimens were collected from dyspeptic patients before their upper gastrointestinal endoscopy and presence of H. pylori was determined through PCR assay using primers targeting two different genes of the bacterium. Eighty-nine of the 100 samples were included in final analysis. With simultaneous amplification of two bacterial genes 51.6% of the dental plaque samples were positive for H. pylori while this prevalence increased to 73% when only one gene amplification was used for bacterial identification. Detection of H. pylori in dental plaque samples is more reliable when two genes of the bacterium are simultaneously amplified as compared to one gene amplification only.

  8. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis.

    PubMed

    Zhang, Hui; Wang, Zhen; Cao, Xudong; Wang, Zhengrong; Sheng, Jinliang; Wang, Yong; Zhang, Jing; Li, Zhiqiang; Gu, Xinli; Chen, Chuangfu

    2016-11-01

    Loop-mediated isothermal amplification (LAMP) is a highly sensitive, rapid, cost-effective nucleic acid amplification method. Tuberculosis (TB) is widely popular in the world and it is difficult to cure. The fundamental treatment is to clear the types of TB pathogens such as Mycobacterium bovis (M. bovis), Mycobacterium tuberculosis (M. tuberculosis). In order to detect and diagnose TB early, we constructed the differential diagnostic method of TB. In this study, we used LAMP for detection of M. bovis, based on amplification of the mpb70 gene which is a unique gene in M. bovis strain. The LAMP assay was able to detect only seven copies of the gene per reaction, whereas for the conventional PCR, it was 70 copies. The LAMP was evaluated for its specificity using six strains of five Mycobacterium species and 18 related non-Mycobacterium microorganism strains as controls. The target three Mycobacterium strains were all amplified, and no cross-reaction was found with 18 non-Mycobacterium microorganism strains. TB was detected by two methods, LAMP and conventional PCR (based on mpb70 gene); the positive rates of the two methods were 9.55 and 7.01 %, respectively. Our results indicate that the LAMP method should be a potential tool with high convenience, rapidity, sensitivity and specificity for the diagnosis of TB caused by M. bovis. Most importance is that the use of LAMP as diagnostic method in association with diagnostic tests based on mpb70 gene would allow the differentiation between M. bovis and other Mycobacterium in humans or animals. The LAMP method is actually in order to detect human TB, and it can be used for differential diagnosis in this paper.

  9. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    PubMed

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  10. MET expression and amplification in patients with localized gastric cancer

    PubMed Central

    Janjigian, Yelena Y.; Tang, Laura H.; Coit, Daniel G.; Kelsen, David P.; Francone, Todd D.; Weiser, Martin R.; Jhanwar, Suresh C.; Shah, Manish A.

    2013-01-01

    Background MET, the receptor for hepatocyte growth factor has been proposed as a therapeutic target in gastric cancer. This study assessed the incidence of MET expression and gene amplification in tumors of Western patients with gastric cancer. Methods Tumor specimens from patients enrolled on a preoperative chemotherapy study (NCI 5700) were examined for presence of MET gene amplification by fluorescence in situ hybridization (FISH), MET mRNA expression by quantitative polymerase chain reaction, MET overexpression by immunohistochemistry (IHC), and for evidence of MET pathway activation by p-MET IHC. Results Although high-level of MET protein and mRNA were commonly encountered (in 63% and 50% of resected tumor specimens, respectively), none of these tumors had MET gene amplification by FISH, and only 6.6% had evidence of MET tyrosine kinase activity by p-MET IHC. Conclusions In this cohort of patients with localized gastric cancer, the presence of high MET protein and RNA expression does not correlate with MET gene amplification or pathway activation as evidenced by the absence of amplification by FISH and negative p-MET IHC analysis. Impact This paper demonstrates a lack of MET amplification and pathway activation in a cohort of 38 patients with localized gastric cancer, suggesting that MET-driven gastric cancers are relatively rare in Western patients. PMID:21393565

  11. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  12. Towards in vivo amplification: Overcoming hurdles in the use of hematopoietic stem cells in transplantation and gene therapy

    PubMed Central

    Nagree, Murtaza S; López-Vásquez, Lucía; Medin, Jeffrey A

    2015-01-01

    With the advent of safer and more efficient gene transfer methods, gene therapy has become a viable solution for many inherited and acquired disorders. Hematopoietic stem cells (HSCs) are a prime cell compartment for gene therapy aimed at correcting blood-based disorders, as well as those amenable to metabolic outcomes that can effect cross-correction. While some resounding clinical successes have recently been demonstrated, ample room remains to increase the therapeutic output from HSC-directed gene therapy. In vivo amplification of therapeutic cells is one avenue to achieve enhanced gene product delivery. To date, attempts have been made to provide HSCs with resistance to cytotoxic drugs, to include drug-inducible growth modules specific to HSCs, and to increase the engraftment potential of transduced HSCs. This review aims to summarize amplification strategies that have been developed and tested and to discuss their advantages along with barriers faced towards their clinical adaptation. In addition, next-generation strategies to circumvent current limitations of specific amplification schemas are discussed. PMID:26730268

  13. Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication.

    PubMed

    Sasaki, Yohei; Fushimi, Hirotoshi; Cao, Hui; Cai, Shao-Qing; Komatsu, Katsuko

    2002-12-01

    The botanical origins of Chinese and Japanese Curcuma drugs were determined to be Curcuma longa, C. phaeocaulis, the Japanese population of C. zedoaria, C. kwangsiensis, C. wenyujin, and C. aromatica based on a comparison of their 18S rRNA gene and trnK gene sequences with those of six Curcuma species reported previously. Moreover, to develop a more convenient identification method, amplification-refractory mutation system (ARMS) analysis of both gene regions was performed on plants. The ARMS method for the 18S rRNA gene was established using two types of forward primers designed based on the nucleotide difference at position 234. When DNAs of four Curcuma species were used as templates, PCR amplification with either of the two primers only generated a fragment of 912 base pairs (bp). However, when DNAs of the purple-cloud type of C. kwangsiensis and C. wenyujin were used, PCR amplifications with both primers unexpectedly generated the fragment, suggesting that these two were heterozygotes. The ARMS method for the trnK gene was also established using a mixture of four types of specific reverse primers designed on the basis of base substitutions and indels among six species, and common reverse and forward primers. C. phaeocaulis or the Chinese population of C. zedoaria, the Japanese population of C. zedoaria or the purple-cloud type of C. kwangsiensis, the pubescent type of C. kwangsiensis or C. wenyujin, and C. aromatica were found to show specific fragments of 730, 185, 527 or 528, and 641 or 642 bp, respectively. All species including C. longa also showed a common fragment of 897-904 bp. Using both ARMS methods, together with information on producing areas, the identification of Curcuma plants was achieved. Moreover, the ARMS method for the trnK gene was also useful for authentication of Curcuma drugs.

  14. [Assessment of two DNA extraction methods to amplify the pneumolysin gene (PLY) from blood culture samples of Streptococcus pneumoniae].

    PubMed

    Hernández, Carolina; Durán, Claudia; Ulloa, María Teresa; Prado, Valeria

    2004-05-01

    Streptococcus pneumoniae is a common etiologic agent of invasive respiratory infections among children under 5 years of age and older adults. Isolation rates of S. pneumoniae by traditional culture techniques are low. To study the sensitivity and specificity of two different DNA extraction methods to amplify the ply gene, applied to three different types of blood culture broths, experimentally inoculated with S. pneumoniae. DNA was extracted from the cultures using an organic method or a technique that consists in dilution, washing with NaOH and concentration of the sample. This was followed by PCR amplification of a 355 pb fragment of the pneumolysin gene (ply). The organic DNA extraction method inhibited the PCR reaction at all concentrations studied (0.6 to 10(6) colony forming units/mL). Using the NaOH extraction, ply gene amplification was positive in all three blood culture broths, but only at concentrations of 10(3) colony forming units/mL, or higher. Using the same DNA extraction method, PCR was negative when the broths were inoculated with seven other related bacterial species, which results in a 100% specificity. Detection of S. pneumoniae by amplification of ply gene from blood cultures using the protocol of NaOH for DNA extraction is specific and provides results in a short lapse. However, the diagnostic sensitivity is not optimal, which limits its clinical use.

  15. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    PubMed

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Application of heteroduplex analysis for detecting variation within the growth hormone 2 gene in Salmo trutta L. (brown trout).

    PubMed

    Gross, R; Nilsson, J

    1995-03-01

    A new method to detect variation at a single copy nuclear gene in brown trout, Salmo trutta L., is provided. The technique entails (i) selective gene amplification by the polymerase chain reaction (PCR), (ii) digestion of amplification products by restriction endonucleases to obtain fragments of suitable size, (iii) hybridization with heterologous DNA followed by denaturation and reannealing to obtain heteroduplex molecules, and (iv) screening for variation in polyacrylamide gels. Variation was studied within a growth hormone 2 gene 1489 bp segment and polymorphism was detected in two HinfI-digested fragments. Formation of different heteroduplex patterns in experimental mixtures of digested amplification products from brown trout and Atlantic salmon, Salmo salar L., allowed us to determine the genotype of the brown trout. Polymorphism was observed in four out of six studied populations.

  17. Evaluating whole transcriptome amplification for gene profiling experiments using RNA-Seq.

    PubMed

    Faherty, Sheena L; Campbell, C Ryan; Larsen, Peter A; Yoder, Anne D

    2015-07-30

    RNA-Seq has enabled high-throughput gene expression profiling to provide insight into the functional link between genotype and phenotype. Low quantities of starting RNA can be a severe hindrance for studies that aim to utilize RNA-Seq. To mitigate this bottleneck, whole transcriptome amplification (WTA) technologies have been developed to generate sufficient sequencing targets from minute amounts of RNA. Successful WTA requires accurate replication of transcript abundance without the loss or distortion of specific mRNAs. Here, we test the efficacy of NuGEN's Ovation RNA-Seq V2 system, which uses linear isothermal amplification with a unique chimeric primer for amplification, using white adipose tissue from standard laboratory rats (Rattus norvegicus). Our goal was to investigate potential biological artifacts introduced through WTA approaches by establishing comparisons between matched raw and amplified RNA libraries derived from biological replicates. We found that 93% of expressed genes were identical between all unamplified versus matched amplified comparisons, also finding that gene density is similar across all comparisons. Our sequencing experiment and downstream bioinformatic analyses using the Tuxedo analysis pipeline resulted in the assembly of 25,543 high-quality transcripts. Libraries constructed from raw RNA and WTA samples averaged 15,298 and 15,253 expressed genes, respectively. Although significant differentially expressed genes (P < 0.05) were identified in all matched samples, each of these represents less than 0.15% of all shared genes for each comparison. Transcriptome amplification is efficient at maintaining relative transcript frequencies with no significant bias when using this NuGEN linear isothermal amplification kit under ideal laboratory conditions as presented in this study. This methodology has broad applications, from clinical and diagnostic, to field-based studies when sample acquisition, or sample preservation, methods prove challenging.

  18. Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP).

    PubMed

    Chen, Changguo; Zhao, Qiangyuan; Guo, Jianwei; Li, Yanjun; Chen, Qiuyuan

    2017-08-01

    The aim of this study was to develop a rapid detection assay to identify methicillin-resistant Staphylococcus aureus by simultaneous testing for the mecA, nuc, and femB genes using the loop-mediated isothermal amplification (LAMP) method. LAMP primers were designed using online bio-software ( http://primerexplorer.jp/e/ ), and amplification reactions were performed in an isothermal temperature bath. The products were then examined using 2% agarose gel electrophoresis. MecA, nuc, and femB were confirmed by triplex TaqMan real-time PCR. For better naked-eye inspection of the reaction result, hydroxy naphthol blue (HNB) was added to the amplification system. Within 60 min, LAMP successfully amplified the genes of interest under isothermal conditions at 63 °C. The results of 2% gel electrophoresis indicated that when the Mg 2+ concentration in the reaction system was 6 μmol, the amplification of the mecA gene was relatively good, while the amplification of the nuc and femB genes was better at an Mg 2+ concentration of 8 μmol. Obvious color differences were observed by adding 1 μL (3.75 mM) of HNB into 25 μL reaction system. The LAMP assay was applied to 128 isolates cases of methicillin-resistant Staphylococcus aureus, which were separated from the daily specimens and identified by Vitek microbial identification instruments. The results were identical for both LAMP and PCR. LAMP offers an alternative detection assay for mecA, nuc, and femB and is faster than other methods.

  19. HER-2 amplification in tubular carcinoma of the breast.

    PubMed

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  20. Assessment of ERBB2 and EGFR gene amplification and protein expression in gastric carcinoma by immunohistochemistry and fluorescence in situ hybridization

    PubMed Central

    2011-01-01

    Background The goal of this study was to investigate ERBB2(HER2) and EGFR gene amplification and protein expression in gastric cancer. Fluorescence in situ hybridization (FISH) and immunohistochemistry were used to analyze ERBB2 and EGFR gene amplification and protein expression in 69 cases of gastric cancer. Results FISH analysis revealed that 20.3% of the cases exhibited ERBB2 gene amplification. Increases in ERBB2 copy number and gene amplification were present in 52.2% of the samples. Expression of the ERBB2 protein was observed in 42.0% of cases. FISH analysis detected EGFR gene amplification in 29.0% of samples. Increases in EGFR copy number and gene amplification occurred in 57.9% of samples, and EGFR protein expression was present in 52.2% of samples. Both ERBB2 and EGFR gene amplification were 3 cases (4.3%), but abnormalities in both ERBB2 and EGFR gene copy number were present 36.2% of samples. ERBB2 and EGFR gene amplification were significantly associated with the depth of tumor invasion (P < 0.05) and lymph node metastasis (P < 0.05), but not with sex, age, or histological type (P > 0.05). Conclusions Our data indicated that ERBB2 and EGFR genetic abnormalities were associated with the prognosis of gastric cancer. Clinical assessment of ERBB2 and EGFR amplification may represent an important factor for the development of personalized treatment programs for gastic cancer. PMID:21689422

  1. Isolation, amplification and characterization of foodborne pathogen disease bacteria gene for rapid kit test development

    NASA Astrophysics Data System (ADS)

    Nurjayadi, M.; Santoso, I.; Kartika, I. R.; Kurniadewi, F.; Saamia, V.; Sofihan, W.; Nurkhasanah, D.

    2017-07-01

    There is a lot of public concern over food safety. Food-safety cases recently, including many food poisoning cases in both the developed and developing countries, considered to be the national security threats which involved police investigation. Quick and accurate detection methods are needed to handle the food poisoning cases with a big number of sufferers at the same time. Therefore, the research is aimed to develop a specific, sensitive, and rapid result molecular detection tool for foodborne pathogen bacteria. We, thus, propose genomic level approach with Polymerase Chain Reaction. The research has successfully produced a specific primer to perform amplification to fim-C S. typhi, E. coli, and pef Salmonella typhimurium genes. The electrophoresis result shows that amplification products are 95 base pairs, 121 base pairs, and 139 base pairs; and all three genes are in accordance with the size of the in silico to third genes bacteria. In conclusion, the research has been successfully designed a specific detection tool to three foodborne pathogen bacteria genes. Further stages test and the uses of Real-time PCR in the detection are still in the trial process for better detection method.

  2. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    PubMed

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  3. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients

    PubMed Central

    Heestand, Gregory M.; Schwaederle, Maria; Gatalica, Zoran; Arguello, David; Kurzrock, Razelle

    2017-01-01

    Background Topoisomerase I (TOPO1) and topoisomerase IIα (TOP2A) are specific targets of multiple chemotherapy drugs. Increased expression of TOPO1 protein and amplification of the TOP2A gene have been associated with treatment response in colorectal and breast cancers, respectively. TOPO1 and TOP2A may be potential therapeutic targets in other malignancies as well. Summary of methods We analysed TOPO1 protein expression and TOP2A gene amplification in patients (n = 24,262 specimens) with diverse cancers. Since HER2 and TOP2A co-amplification have been investigated for predictive value regarding anthracycline benefit, we analysed specimens for HER2 amplification as well. Results Overexpressed TOPO1 protein was present in 51% of the tumours. Four percent of the tumours had TOP2A amplification, with gallbladder tumours and gastroesophageal/oesophageal tumours having rates over 10%. Overall, 4903 specimens were assessed for both TOP2A and HER2 amplification; 129 (2.6%) had co-amplification. High rates (>40%) of HER2 amplification were seen in patients with TOP2A amplification in breast, ovarian, gastroesophageal/oesophageal and pancreatic cancer. Conclusion Our data indicate that increased TOPO1 expression and TOP2A amplification, as well as HER2 co-alterations, are present in multiple malignancies. The implications of these observations regarding sensitivity to chemotherapy not traditionally administered to these tumour types merits investigation. PMID:28728050

  4. Lung-MAP: AZD4547 as Second-Line Therapy in Treating FGFR Positive Patients With Recurrent Stage IV Squamous Cell Lung Cancer

    ClinicalTrials.gov

    2017-12-13

    FGFR1 Gene Amplification; FGFR1 Gene Mutation; FGFR2 Gene Amplification; FGFR2 Gene Mutation; FGFR3 Gene Amplification; FGFR3 Gene Mutation; Recurrent Squamous Cell Lung Carcinoma; Stage IV Squamous Cell Lung Carcinoma AJCC v7

  5. Functional characterization of the 19q12 amplicon in grade III breast cancers

    PubMed Central

    2012-01-01

    Introduction The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. Methods We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. Results 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. Conclusions The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a rationale for the testing of these chemical inhibitors in a subgroup of patients with ER-negative grade III breast cancers. PMID:22433433

  6. Single-molecule dilution and multiple displacement amplification for molecular haplotyping.

    PubMed

    Paul, Philip; Apgar, Josh

    2005-04-01

    Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.

  7. Copy number gain of MYCN gene is a recurrent genetic aberration and favorable prognostic factor in Chinese pediatric neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Amplification of MYCN oncogene is an established marker indicating aggressive tumor progression of neuroblastoma (NBL). But copy number analyses of MYCN gene in ganglioneuroblastoma (GNBL) and ganglioneuroma(GN) is poorly described in the literature. In the study, we evaluated the copy number aberrations of MYCN gene in clinical samples of NBLs, GNBLs and GNs and analyzed their association with clinical outcome of the patients. Methods In this study, we analyzed MYCN gene and chromosome 2 aneusomy by using fluorescence in situ hybridization (FISH) method in a total of 220 patients with NBL, GNBL and GN cases. Kaplan-Meier curves were generated by using SPSS 12.0 software. Results Of 220 patients, 178 (81.0%) were NBLs, 32 (14.5%) were GNBLs and 10 (4.5%) were GNs. MYCN gain is a recurrent genetic aberration of neuroblastic tumors (71.8%, 158/220), which was found in 129 NBLs (58.6%, 129/220), 25 GNBLs (11.4%, 25/220) and 4 GN cases (1.8%, 4/220). However, MYCN amplification was only present in 24 NBL tumors (13.5%, 24/178) and 1 GNBL case (3.1%, 1/32). Kaplan-Meier survival analysis indicated that MYCN amplification is significantly correlated with decreased overall survival in NBLs (P=0.017). Furthermore, a better prognosis trend was observed in patients with MYCN gain tumors compared with those with MYCN gene normal copy number tumors and MYCN amplification tumors (P=0.012). Conclusions In summary, the frequency of MYCN amplification in NBLs is high and is rarely observed in GNBLs and GNs, which suggest MYCN plays an important role in neuroblastic tumors differentiation. MYCN gain appeared to define a subgroup of NBLs with much better outcome and classification of MYCN gene copy number alteration as three groups (amplification, gain and normal) can provide a powerful prognostic indicator in NBLs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6417541528559124 PMID:23320395

  8. BGJ398 in Treating Patients With FGFR Positive Recurrent Head and Neck Cancer

    ClinicalTrials.gov

    2018-06-05

    FGFR Gene Amplification; FGFR1 Gene Amplification; FGFR2 Gene Amplification; FGFR2 Gene Mutation; FGFR3 Gene Mutation; Head and Neck Squamous Cell Carcinoma; Human Papillomavirus Infection; Recurrent Head and Neck Carcinoma; Recurrent Nasopharynx Carcinoma; Recurrent Oropharyngeal Squamous Cell Carcinoma

  9. Amplification of Genomic DNA for Decoy Receptor 3 Predicts Post-Resection Disease Recurrence in Breast Cancer Patients.

    PubMed

    Kanbayashi, Chizuko; Koyama, Yu; Ichikawa, Hiroshi; Sakata, Eiko; Hasegawa, Miki; Toshikawa, Chie; Manba, Naoko; Ikarashi, Mayuko; Kobayashi, Takashi; Minagawa, Masahiro; Kosugi, Shin-Ichi; Wakai, Toshifumi

    2014-02-01

    Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, shows inhibitory effects on Fas-mediated apoptosis. Currently, data are lacking on the correlation between DcR3 and the recurrence of breast cancer. The authors examined DcR3 mRNA expression and genomic amplification in breast cancer, and investigated the effect of DcR3 gene amplification on prognosis of patients. A total of 95 patients formed the basis of the current retrospective study. DcR3 mRNA expression in breast cancer tissues was examined by RNase protection assay and in situ hybridization. DcR3 gene amplification was examined by quantitative polymerase chain reaction. The correlation between DcR3 gene amplification status and clinicopathological factors was examined and also the relationship between DcR3-Amp and relapse and survival. The relative copy numbers of DcR3 genomic DNA correlated significantly with the levels of DcR3 mRNA expression (ρ = 0.755, P = 0.0067). In addition, lymphatic invasion correlated significantly with DcR3 gene amplification (P = 0.012). However, there was no correlation between the remaining clinicopathological factors and DcR3 gene amplification. In the univariate analysis, the recurrence-free survival (RFS) rate of patients who were positive for DcR3 gene amplification was significantly lower than that of patients who were negative for DcR3 gene amplification (P = 0.0271). Multivariate analysis showed that DcR3 gene amplification (P = 0.028) and disease stage (P < 0.001) remained significant independent predictors of RFS. DcR3 gene amplification was significantly correlated with lymphatic invasion, and also DcR3 gene amplification predicts recurrence after resection, which may be an important prognostic factor in breast cancer patients.

  10. Microarray-based comparison of three amplification methods for nanogram amounts of total RNA

    PubMed Central

    Singh, Ruchira; Maganti, Rajanikanth J.; Jabba, Sairam V.; Wang, Martin; Deng, Glenn; Heath, Joe Don; Kurn, Nurith; Wangemann, Philine

    2007-01-01

    Gene expression profiling using microarrays requires microgram amounts of RNA, which limits its direct application for the study of nanogram RNA samples obtained using microdissection, laser capture microscopy, or needle biopsy. A novel system based on Ribo-SPIA technology (RS, Ovation-Biotin amplification and labeling system) was recently introduced. The utility of the RS system, an optimized prototype system for picogram RNA samples (pRS), and two T7-based systems involving one or two rounds of amplification (OneRA, Standard Protocol, or TwoRA, Small Sample Prototcol, version II) were evaluated in the present study. Mouse kidney (MK) and mouse universal reference (MUR) RNA samples, 0.3 ng to 10 μg, were analyzed using high-density Affymetrix Mouse Genome 430 2.0 GeneChip arrays. Call concordance between replicates, correlations of signal intensity, signal intensity ratios, and minimal fold increase necessary for significance were determined. All systems amplified partially overlapping sets of genes with similar signal intensity correlations. pRS amplified the highest number of genes from 10-ng RNA samples. We detected 24 of 26 genes verified by RT-PCR in samples prepared using pRS. TwoRA yielded somewhat higher call concordances than did RS and pRS (91.8% vs. 89.3% and 88.1%, respectively). Although all target preparation methods were suitable, pRS amplified the highest number of targets and was found to be suitable for amplification of as little as 0.3 ng of total RNA. In addition, RS and pRS were faster and simpler to use than the T7-based methods and resulted in the generation of cDNA, which is more stable than cRNA. PMID:15613496

  11. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    PubMed

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  12. An electrochemical biosensor for double-stranded Wnt7B gene detection based on enzymatic isothermal amplification.

    PubMed

    Li, Junlong; Chen, Zhongping; Xiang, Yu; Zhou, Lili; Wang, Ting; Zhang, Zhang; Sun, Kexin; Yin, Dan; Li, Yi; Xie, Guoming

    2016-12-15

    Wnt7B gene plays an important role in the development and progression of breast cancer, gastric cancer, esophageal cancer and pancreatic cancer. While, the natural state of DNA is double stranded, which makes it difficult to be directly detected. Here, we develop an electrochemical biosensor method for Wnt7B gene detection without the need to denature the target. This method firstly used nicking enzyme for exploiting in the double-stranded DNA (dsDNA). Then, long single-stranded DNA (ssDNA) was generated from the cutting site through polymerase extension reaction. Whereafter, the long ssDNA triggered a hairpin self-assembly recycling reaction, which gave rise to another isothermal amplification reaction. Last, short ssDNA was formed after the this amplification process, which could hybridize with the capture probe immobilized on Au electrode and result in signal variation. This method showed excellent analytical performance for dsDNA, of which the linear range was 2fM to 500pM and the detection limit was 1.6fM (S/N=3). It also showed an good results when applied to the real sample of Wnt7B gene detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing.

    PubMed

    Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit

    2018-04-20

    Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

  14. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  15. Use of droplet digital PCR for quantitative and automatic analysis of the HER2 status in breast cancer patients.

    PubMed

    Otsuji, Kazutaka; Sasaki, Takeshi; Tanaka, Atsushi; Kunita, Akiko; Ikemura, Masako; Matsusaka, Keisuke; Tada, Keiichiro; Fukayama, Masashi; Seto, Yasuyuki

    2017-02-01

    Digital polymerase chain reaction (dPCR) has been used to yield an absolute measure of nucleic acid concentrations. Recently, a new method referred to as droplet digital PCR (ddPCR) has gained attention as a more precise and less subjective assay to quantify DNA amplification. We demonstrated the usefulness of ddPCR to determine HER2 gene amplification of breast cancer. In this study, we used ddPCR to measure the HER2 gene copy number in clinical formalin-fixed paraffin-embedded samples of 41 primary breast cancer patients. To improve the accuracy of ddPCR analysis, we also estimated the tumor content ratio (TCR) for each sample. Our determination method for HER2 gene amplification using the ddPCR ratio (ERBB2:ch17cent copy number ratio) combined with the TCR showed high consistency with the conventionally defined HER2 gene status according to ASCO-CAP (American Society of Clinical Oncology/College of American Pathologists) guidelines (P<0.0001, Fisher's exact test). The equivocal area was established by adopting 99% confidence intervals obtained by cell line assays, which made it possible to identify all conventionally HER2-positive cases with our method. In addition, we succeeded in automating a major part of the process from DNA extraction to determination of HER2 gene status. The introduction of ddPCR to determine the HER2 gene status in breast cancer is feasible for use in clinical practice and might complement or even replace conventional methods of examination in the future.

  16. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method.

    PubMed

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498-1.000; P <0.001). The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.

  17. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments.

    PubMed

    Tumen-Velasquez, Melissa; Johnson, Christopher W; Ahmed, Alaa; Dominick, Graham; Fulk, Emily M; Khanna, Payal; Lee, Sarah A; Schmidt, Alicia L; Linger, Jeffrey G; Eiteman, Mark A; Beckham, Gregg T; Neidle, Ellen L

    2018-06-18

    Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi , EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes ( gcoAB ) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.

  18. Comparison of isothermal helicase-dependent amplification and PCR for the detection of Mycobacterium tuberculosis by an electrochemical genomagnetic assay.

    PubMed

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, M Jesús

    2016-12-01

    Methods for the early and sensitive detection of pathogenic bacteria suited to low-resource settings could impact diagnosis and management of diseases. Helicase-dependent isothermal amplification (HDA) is an ideal tool for this purpose, especially when combined with a sequence-specific detection method able to improve the selectivity of the assay. The implementation of this approach requires that its analytical performance is shown to be comparable with the gold standard method, polymerase chain reaction (PCR). In this study, we optimize and compare the asymmetric amplification of an 84-base-long DNA sequence specific for Mycobacterium tuberculosis by PCR and HDA, using an electrochemical genomagnetic assay for hybridization-based detection of the obtained single-stranded amplicons. The results indicate the generalizability of the magnetic platform with electrochemical detection for quantifying amplification products without previous purification. Moreover, we demonstrate that under optimal conditions the same gene can be amplified by either PCR or HDA, allowing the detection of as low as 30 copies of the target gene sequence with acceptable reproducibility. Both assays have been applied to the detection of M. tuberculosis in sputum, urine, and pleural fluid samples with comparable results. Simplicity and isothermal nature of HDA offer great potential for the development of point-of-care devices. Graphical Abstract Comparative evaluation of isothermal helicase-dependent amplification and PCR for electrochemical detection of Mycobacterium tuberculosis.

  19. Frequent amplification of receptor tyrosine kinase genes in welldifferentiated/ dedifferentiated liposarcoma.

    PubMed

    Asano, Naofumi; Yoshida, Akihiko; Mitani, Sachiyo; Kobayashi, Eisuke; Shiotani, Bunsyo; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Chuman, Hirokazu; Morioka, Hideo; Matsumoto, Morio; Nakamura, Masaya; Kubo, Takashi; Kato, Mamoru; Kohno, Takashi; Kawai, Akira; Kondo, Tadashi; Ichikawa, Hitoshi

    2017-02-21

    Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are closely related tumors commonly characterized by MDM2/CDK4 gene amplification, and lack clinically effective treatment options when inoperable. To identify novel therapeutic targets, we performed targeted genomic sequencing analysis of 19 WDLPS and 37 DDLPS tumor samples using a panel of 104 cancer-related genes (NCC oncopanel v3) developed specifically for genomic testing to select suitable molecular targeted therapies. The results of this analysis indicated that these sarcomas had very few gene mutations and a high frequency of amplifications of not only MDM2 and CDK4 but also other genes. Potential driver mutations were found in only six (11%) samples; however, gene amplification events (other than MDM2 and CDK4 amplification) were identified in 30 (54%) samples. Receptor tyrosine kinase (RTK) genes in particular were amplified in 18 (32%) samples. In addition, growth of a WDLPS cell line with IGF1R amplification was suppressed by simultaneous inhibition of CDK4 and IGF1R, using palbociclib and NVP-AEW541, respectively. Combination therapy with CDK4 and RTK inhibitors may be an effective therapeutic option for WDLPS/DDLPS patients with RTK gene amplification.

  20. Recombinase Polymerase Amplification (RPA) of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    PubMed Central

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-01-01

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647

  1. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    PubMed

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  2. Loop Mediated Isothermal Amplification (LAMP) for Embryo Sex Determination in Pregnant Women at Eight Weeks of Pregnancy.

    PubMed

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-01-01

    In human, SRY (sex-determining region of the Y chromosome) is the major gene for the testis-determining factor which is found in normal XY males and in the rare XX males, and it is absent in normal XX females and many XY females. There are several methods which can indicate a male genotype by the presence of the amplified product of SRY gene. The aim of this study was to identify the SRY gene for embryo sex determination in human during pregnancy using loop mediated isothermal amplification (LAMP) method. A total of 15 blood samples from pregnant women at eight weeks of pregnancy were collected, and Plasma DNA was extracted. LAMP assay was performed using DNA obtained for detection of SRY gene. Furthermore, colorimetric LAMP assay for rapid and easy detection of SRY gene was developed. LAMP results revealed that the positive reaction was highly specific only with samples containing XY chromosomes, while no amplification was found in samples containing XX chromosomes. A total of 15 blood samples from pregnant women were seven male embryos (46.6%) and eight female embryos (53.4%). All used visual components in the colorimetric assay could successfully make a clear distinction between positive and negative ones. The LAMP assay developed in this study is a valuable tool capable of monitoring the purity and detection of SRY gene for sex determination.

  3. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products.

    PubMed

    Ferrara, M; Perrone, G; Gallo, A; Epifani, F; Visconti, A; Susca, A

    2015-06-02

    The need of powerful diagnostic tools for rapid, simple, and cost-effective detection of food-borne fungi has become very important in the area of food safety. Currently, several isothermal nucleic acid amplification methods have been developed as an alternative to PCR-based analyses. Loop-mediated isothermal amplification (LAMP) is one of these innovative methods; it requires neither gel electrophoresis to separate and visualize the products nor expensive laboratory equipment and it has been applied already for detection of pathogenic organisms. In the current study, we developed a LAMP assay for the specific detection of Penicillium nordicum, the major causative agent of ochratoxin A contamination in protein-rich food, especially dry-cured meat products. The assay was based on targeting otapksPN gene, a key gene in the biosynthesis of ochratoxin A (OTA) in P. nordicum. Amplification of DNA during the reaction was detected directly in-tube by color transition of hydroxynaphthol blue from violet to sky blue, visible to the naked eye, avoiding further post amplification analyses. Only DNAs isolated from several P. nordicum strains led to positive results and no amplification was observed from non-target OTA and non OTA-producing strains. The assay was able to detect down to 100 fg of purified targeted genomic DNA or 10(2) conidia/reaction within 60 min. The LAMP assay for detection and identification of P. nordicum was combined with a rapid DNA extraction method set up on serially diluted conidia, providing an alternative rapid, specific and sensitive DNA-based method suitable for application directly "on-site", notably in key steps of dry-cured meat production. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Rare MDM4 gene amplification in colorectal cancer: The principle of a mutually exclusive relationship between MDM alteration and TP53 inactivation is not applicable.

    PubMed

    Suda, Tetsuji; Yoshihara, Mitsuyo; Nakamura, Yoshiyasu; Sekiguchi, Hironobu; Godai, Ten-I; Sugano, Nobuhiro; Tsuchida, Kazuhito; Shiozawa, Manabu; Sakuma, Yuji; Tsuchiya, Eiju; Kameda, Yoichi; Akaike, Makoto; Matsukuma, Shoichi; Miyagi, Yohei

    2011-07-01

    MDM4, a homolog of MDM2, is considered a key negative regulator of p53. Gene amplification of MDM4 has been identified in a variety of tumors. MDM2 or MDM4 gene amplification is only associated with the wild-type TP53 gene in retinoblastomas, thus the amplification of the two genes is mutually exclusive. Previously, we demonstrated that MDM2 amplification and TP53 alteration were not mutually exclusive in colorectal cancer, and we identified a subset of colorectal cancer patients without alterations in either the TP53 or the MDM2 gene. In this study, we investigated the gene amplification status of MDM4 in the same set of colorectal cancer cases. Unexpectedly, MDM4 amplification was rare, detected in only 1.4% (3 out of 211) of colorectal cancer cases. All the three gene-amplified tumors also harbored TP53-inactivating mutations. This contradicts the simple mutually exclusive relationship observed in retinoblastomas. Surprisingly, two of the three MDM4-amplified tumors also demonstrated MDM2 amplification. Paradoxically, the MDM4 protein levels were decreased in the tumor tissue of the gene-amplified cases compared with levels in the matched normal mucosa. We speculate that MDM4 might play a role in colorectal carcinogenesis that is not limited to negative regulation of p53 in combination with MDM2. The functional significance of MDM4 is still unclear and further studies are needed.

  5. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  6. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    PubMed Central

    2009-01-01

    Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild-type KRAS resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity. Conclusion Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of KRAS amplification and overexpression. PMID:19545448

  7. Development of NIST standard reference material 2373: Genomic DNA standards for HER2 measurements.

    PubMed

    He, Hua-Jun; Almeida, Jamie L; Lund, Steve P; Steffen, Carolyn R; Choquette, Steve; Cole, Kenneth D

    2016-06-01

    NIST standard reference material (SRM) 2373 was developed to improve the measurements of the HER2 gene amplification in DNA samples. SRM 2373 consists of genomic DNA extracted from five breast cancer cell lines with different amounts of amplification of the HER2 gene. The five components are derived from the human cell lines SK-BR-3, MDA-MB-231, MDA-MB-361, MDA-MB-453, and BT-474. The certified values are the ratios of the HER2 gene copy numbers to the copy numbers of selected reference genes DCK, EIF5B, RPS27A, and PMM1. The ratios were measured using quantitative polymerase chain reaction and digital PCR, methods that gave similar ratios. The five components of SRM 2373 have certified HER2 amplification ratios that range from 1.3 to 17.7. The stability and homogeneity of the reference materials were shown by repeated measurements over a period of several years. SRM 2373 is a well characterized genomic DNA reference material that can be used to improve the confidence of the measurements of HER2 gene copy number.

  8. A one-step molecular biology method for simple and rapid detection of grass carp Ctenopharyngodon idella reovirus (GCRV) HZ08 strain

    USDA-ARS?s Scientific Manuscript database

    Six reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primers designed against conserved regions of segment 6 (s6) gene were used for the detection of grass carp Ctenopharyngodon idella reovirus (GCRV) HZ08 subtype. The entire amplification could be completed within 40 min at 62...

  9. One-step reverse transcription loop mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...

  10. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    PubMed

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  11. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  12. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  13. The First Report of a 290-bp Deletion in β-Globin Gene in the South of Iran

    PubMed Central

    Hamid, Mohammad; Nejad, Ladan Dawoody; Shariati, Gholamreza; Galehdari, Hamid; Saberi, Alihossein; Mohammadi-Anaei, Marziye

    2017-01-01

    Background: β-thalassemia is one of the most widespread diseases in the world, including Iran. In this study, we reported, for the first time, a 290-bp β-globin gene deletion in the south of Iran. Methods: Four individuals from three unrelated families with Arabic ethnic background were studied in Khuzestan Province. Red blood cell indices and hemoglobin analysis were carried out according to the standard methods. Genomic DNA was obtained from peripheral blood cells by salting out procedures. β-globin gene amplification, multiplex ligation-dependent probe amplification (MLPA), and DNA sequencing were performed. Results: The PCR followed by sequencing and MLPA test of the β-globin gene confirmed the presence of a 290-bp deletion in the heterozygous form, along with -88C>A mutation. All the individuals had elevated hemoglobin A2 and normal fetal hemoglobin levels. Conclusions: This mutation causes β0-thalassemia and can be highly useful for prenatal diagnosis in compound heterozygous condition with different β-globin gene mutations. PMID:26948378

  14. Prognostic significance of ESR1 gene amplification, mRNA/protein expression and functional profiles in high-risk early breast cancer: a translational study of the Hellenic Cooperative Oncology Group (HeCOG).

    PubMed

    Pentheroudakis, George; Kotoula, Vassiliki; Eleftheraki, Anastasia G; Tsolaki, Eleftheria; Wirtz, Ralph M; Kalogeras, Konstantine T; Batistatou, Anna; Bobos, Mattheos; Dimopoulos, Meletios A; Timotheadou, Eleni; Gogas, Helen; Christodoulou, Christos; Papadopoulou, Kyriaki; Efstratiou, Ioannis; Scopa, Chrisoula D; Papaspyrou, Irene; Vlachodimitropoulos, Dimitrios; Linardou, Helena; Samantas, Epaminontas; Pectasides, Dimitrios; Pavlidis, Nicholas; Fountzilas, George

    2013-01-01

    Discrepant data have been published on the incidence and prognostic significance of ESR1 gene amplification in early breast cancer. Formalin-fixed paraffin-embedded tumor blocks were collected from women with early breast cancer participating in two HeCOG adjuvant trials. Messenger RNA was studied by quantitative PCR, ER protein expression was centrally assessed using immunohistochemistry (IHC) and ESR1 gene copy number by dual fluorescent in situ hybridization probes. In a total of 1010 women with resected node-positive early breast adenocarcinoma, the tumoral ESR1/CEP6 gene ratio was suggestive of deletion in 159 (15.7%), gene gain in 551 (54.6%) and amplification in 42 cases (4.2%), with only 30 tumors (3%) harboring five or more ESR1 copies. Gene copy number ratio showed a significant, though weak correlation to mRNA and protein expression (Spearman's Rho <0.23, p = 0.01). ESR1 clusters were observed in 9.5% (57 gain, 38 amplification) of cases. In contrast to mRNA and protein expression, which were favorable prognosticators, gene copy number changes did not obtain prognostic significance. When ESR1/CEP6 gene ratio was combined with function (as defined by ER protein and mRNA expression) in a molecular classifier, the Gene Functional profile, it was functional status that impacted on prognosis. In univariate analysis, patients with functional tumors (positive ER protein expression and gene ratio normal or gain/amplification) fared better than those with non-functional tumors with ESR1 gain (HR for relapse or death 0.49-0.64, p = 0.003). Significant interactions were observed between gene gain/amplification and paclitaxel therapy (trend for DFS benefit from paclitaxel only in patients with ESR1 gain/amplification, p = 0.066) and Gene Functional profile with HER2 amplification (Gene Functional profile prognostic only in HER2-normal cases, p = 0.029). ESR1 gene deletion and amplification do not constitute per se prognostic markers, instead they can be classified to distinct prognostic groups according to their protein-mediated functional status.

  15. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer.

    PubMed

    Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M

    1998-11-23

    Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.

  16. DNA sequence responsible for the amplification of adjacent genes.

    PubMed

    Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K

    1987-10-01

    A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.

  17. Chemical Communications

    DTIC Science & Technology

    2012-04-27

    TOTAL: Patents Submitted Submitted: "Systems and Methods for Amplification and Phage Display", Derda, R., Tang, S.K.Y., Whitesides, G.M. PCT/US11...College 60 Oxford Street Cambridge MA 02138 5a: 5f-1a: 5f-c: Systems and Methods for Amplification and Phage Display Patent Filed in US? (5d-1) Y NPatent...the bacteriophage- T7 promoter (See S.I. for details). This series of FP encoding vectors contain the ampicillin-resistant gene as a selective marker

  18. Development of a quantitative fluorescence single primer isothermal amplification-based method for the detection of Salmonella.

    PubMed

    Wang, Jianchang; Li, Rui; Hu, Lianxia; Sun, Xiaoxia; Wang, Jinfeng; Li, Jing

    2016-02-16

    Food-borne disease caused by Salmonella has long been, and continues to be, an important global public health problem, necessitating rapid and accurate detection of Salmonella in food. Real time PCR is the most recently developed approach for Salmonella detection. Single primer isothermal amplification (SPIA), a novel gene amplification technique, has emerged as an attractive microbiological testing method. SPIA is performed under a constant temperature, eliminating the need for an expensive thermo-cycler. In addition, SPIA reactions can be accomplished in 30 min, faster than real time PCR that usually takes over 2h. We developed a quantitative fluorescence SPIA-based method for the detection of Salmonella. Using Salmonella Typhimurium genomic DNA as template and a primer targeting Salmonella invA gene, we showed the detection limit of SPIA was 2.0 × 10(1)fg DNA. Its successful amplification of different serotypic Salmonella genomic DNA but not non-Salmonella bacterial DNA demonstrated the specificity of SPIA. Furthermore, this method was validated with artificially contaminated beef. In conclusion, we showed high sensitivity and specificity of SPIA in the detection of Salmonella, comparable to real time PCR. In addition, SPIA is faster and more cost-effective (non-use of expensive cyclers), making it a potential alternative for field detection of Salmonella in resource-limited settings that are commonly encountered in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. HER2 and TOP2A amplification in a hospital-based cohort of breast cancer patients: associations with patient and tumor characteristics.

    PubMed

    Fasching, Peter A; Weihbrecht, Sebastian; Haeberle, Lothar; Gasparyan, Armen; Villalobos, Ivonne E; Ma, Yanling; Ekici, Arif B; Wachter, David L; Hartmann, Arndt; Beckmann, Matthias W; Slamon, Dennis J; Press, Michael F

    2014-05-01

    Gene amplification is an important factor for altered gene expression in breast cancers. TOP2A-amplification often occurs concomitantly with HER2 amplification, and it has been suggested to be predictive for the response to anthracycline chemotherapy. This study assessed the correlation between HER2 status and TOP2A co-amplification, the possible association of TOP2A single-nucleotide polymorphisms with the frequency of this co-amplification as well as confirmation of association with outcome. HER2 and TOP2A amplification were analyzed in a tissue microarray from a clinical cohort study. Additionally, a common genetic variant (rs13695) in the TOP2A gene was genotyped in germline DNA. HER2 gene amplification was compared with HER2-IHC findings assessed during clinical routine work, and the association between all the biomarkers analyzed and the clinical outcome was determined. As an exploratory aim, rs13695 genotypes were compared with TOP2A amplification status. HER2 amplification was seen in 101 of 628 (16.1 %) and TOP2A amplification in 32 (5.1 %) cancers. No TOP2A amplification occurred without HER2 co-amplification. HER2 amplification was found in 8, 13.6, and 55.1 % of patients with HER2-IHC 0/1+, 2+, and 3+ tumors, respectively. HER2-IHC was not associated with an effect on the prognosis, but HER2-FISH was. There was an association between the rs13695 genotype and TOP2A amplification status (P = 0.03). Although there was a significant correlation between HER2 status determined by IHC and HER2 by FISH, only HER2 gene amplification status by FISH was correlated with outcome indicating greater utility for FISH in routine clinical settings.

  20. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  1. Clinical significance of hTERC gene amplification detection by FISH in the screening of cervical lesions.

    PubMed

    Zhang, Yuan; Wang, Xiaobei; Ma, Ling; Wang, Zehua; Hu, Lihua

    2009-06-01

    This study evaluated the clinical significance of hTERC gene amplification detection by fluorescence in situ hybridization (FISH) in the screening of cervical lesions. Cervical specimens of 50 high risk patients were detected by thin liquid-based cytology. The patients whose cytological results were classified as ASCUS or above were subjected to the subsequent colposcopic biopsies. Slides prepared from these 50 cervical specimens were analyzed for hTERC gene amplification using interphase FISH with the two-color hTERC probe. The results of the cytological analysis and those of subsequent biopsies, when available, were compared with the FISH-detected hTERC abnormalities. It was found that the positive rates of hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 28.57%, 57.14%, 100%, and 100%, respectively. The positive rates of hTERC gene amplification in HSIL and SCC groups were significantly higher than those in NILM, ASCUS and LSIL groups (all P<0.05). The mean percentages of cells with hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 10.50%, 36.00%, 79.00%, and 96.50%, respectively. Patients with HSIL or SCC cytological diagnoses had significantly higher mean percentages of cells with hTERC gene amplification than did patients with NILM, ASCUS or LSIL cytological diagnoses (all P<0.05). It was concluded that two-color interphase FISH could detect hTERC gene amplification to accurately distinguish HSIL and ISIL of cervical cells. It may be an adjunct to cytology screening, especially high-risk patients.

  2. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  3. Development of a Novel Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Rickettsia spp.

    PubMed

    Hanaoka, Nozomu; Matsutani, Minenosuke; Satoh, Masaaki; Ogawa, Motohiko; Shirai, Mutsunori; Ando, Shuji

    2017-01-24

    We developed a novel loop-mediated isothermal amplification (LAMP) method to detect Rickettsia spp., including Rickettsia prowazekii and R. typhi. Species-specific LAMP primers were developed for orthologous genes conserved among Rickettsia spp. The selected modified primers could detect all the Rickettsia spp. tested. The LAMP method was successfully used to detect 100 DNA copies of Rickettsia spp. within approximately 60 min at 63℃. Therefore, this method may be an excellent tool for the early diagnosis of rickettsiosis in a laboratory or in the field.

  4. Detection of Pneumocystis jirovecii dihydropteroate synthase polymorphisms in patients with Pneumocystis pneumonia.

    PubMed

    Costa, M C; Gaspar, J; Mansinho, K; Esteves, F; Antunes, F; Matos, O

    2005-01-01

    In the present study, in order to improve the detection of Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations in pulmonary specimens of HIV-infected patients with P. jirovecii pneumonia, we evaluated a microfiltration procedure for the removal of human cell contamination and a nested-PCR method, for amplification in specimens with low parasite load. In the studied population, PCR amplification of the DHPS gene was more successful in unfiltered than in filtered specimens, with both touchdown-PCR and nested-PCR procedures (p<0.05 and p<0.001, respectively), but the amount of host DNA in the samples analysed seems to be inversely related with the successful PCR parasite detection. Amplification of P. jirovecii DHPS gene with nested-PCR was achieved in 77.5% of the specimens studied, demonstrating that this is a useful method for the identification of mutations in pulmonary specimens, including samples with low parasite loads, and will facilitate the evaluation of the relationship between the P. jirovecii DHPS polymorphisms and clinical resistance to sulfa drugs.

  5. Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing

    PubMed Central

    Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José

    2013-01-01

    Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859

  6. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    PubMed

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1-5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step. © 2015 John Wiley & Sons Ltd.

  7. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    PubMed

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    PubMed

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  10. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    PubMed

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  11. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference.

    PubMed

    Wimmer, Katharina; Wernstedt, Annekatrin

    2014-01-01

    The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.

  12. Method for analyzing microbial communities

    DOEpatents

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  13. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay

    PubMed Central

    Goud, Kalal Iravathy; Dayakar, Seetha; Vijayalaxmi, Kolanupaka; Babu, Saidam Jangu; Vijay, Anand Reddy P.

    2012-01-01

    Background & objectives: Fluorescence in situ hybridization (FISH) is increasingly being recognized as the most accurate and predictive test for HER2/neu gene amplification and response to therapy in breast cancer. In the present study we investigated HER-2/neu gene amplification by FISH in breast carcinoma tissue specimens and compared the results with that of immunohistochemical (IHC) analysis. Methods: A total of 90 breast carcinoma tissue samples were used for immunohistochemical (IHC) and FISH analysis. IHC was performed by using mouse monoclonal antibody to the intracellular domain of HER-2/neu protein. Each slide was scored in a blinded fashion by two pathologists according to the manufacturer's recommended criteria. FISH analysis was performed on paraffin embedded breast tumour tissue sections. The polysomy for centromere 17 (Spec green signal) was read as green signals less than 4 as moderate polysomy, and more than 4 as highly polysomy. Results: Thirty of the 90 patients had negative results by IHC and FISH. Of the 28 patients with the score of 2+ by IHC, 20 were FISH positive for HER-2/neu gene amplification, three were FISH negative and five patients showed equivocal (1.8-2.2) results by FISH. These five cases were retested for IHC and FISH on different paraffin embedded tissue blocks, and all five were found positive for HER-2/neu gene amplification. Twenty five patients with the score of 3+ by IHC were FISH positive for HER-2/neu gene amplification (>2.2). Seven cases with the score of 3+ by IHC were FISH negative for HER-2/neu gene amplification (>2.2), and showed polysomy of chromosome number 17 high polysomy > 4. Interpretation & conclusions: Our results indicated that HER-2/neu status by FISH should be performed in all cases of breast tumour with a 2+ score by IHC. Cases demonstrating a 3+ score by IHC may be subjected to FISH to rule out polysomy of chromosome 17 which could be falsely interpreted as HER-2/neu overexpression by IHC analysis. There is also a need for establishing a clinically validated cut-off value for HER-2/neu FISH amplification against IHC which may be further compared and calibrated. PMID:22561616

  14. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinION™ nanopore sequencer.

    PubMed

    Imai, Kazuo; Tarumoto, Norihito; Misawa, Kazuhisa; Runtuwene, Lucky Ronald; Sakai, Jun; Hayashida, Kyoko; Eshita, Yuki; Maeda, Ryuichiro; Tuda, Josef; Murakami, Takashi; Maesaki, Shigefumi; Suzuki, Yutaka; Yamagishi, Junya; Maeda, Takuya

    2017-09-13

    A simple and accurate molecular diagnostic method for malaria is urgently needed due to the limitations of conventional microscopic examination. In this study, we demonstrate a new diagnostic procedure for human malaria using loop mediated isothermal amplification (LAMP) and the MinION™ nanopore sequencer. We generated specific LAMP primers targeting the 18S-rRNA gene of all five human Plasmodium species including two P. ovale subspecies (P. falciparum, P. vivax, P. ovale wallikeri, P. ovale curtisi, P. knowlesi and P. malariae) and examined human blood samples collected from 63 malaria patients in Indonesia. Additionally, we performed amplicon sequencing of our LAMP products using MinION™ nanopore sequencer to identify each Plasmodium species. Our LAMP method allowed amplification of all targeted 18S-rRNA genes of the reference plasmids with detection limits of 10-100 copies per reaction. Among the 63 clinical samples, 54 and 55 samples were positive by nested PCR and our LAMP method, respectively. Identification of the Plasmodium species by LAMP amplicon sequencing analysis using the MinION™ was consistent with the reference plasmid sequences and the results of nested PCR. Our diagnostic method combined with LAMP and MinION™ could become a simple and accurate tool for the identification of human Plasmodium species, even in resource-limited situations.

  15. EGFR gene amplification is relatively common and associates with outcome in intestinal adenocarcinoma of the stomach, gastro-oesophageal junction and distal oesophagus.

    PubMed

    Birkman, Eva-Maria; Ålgars, Annika; Lintunen, Minnamaija; Ristamäki, Raija; Sundström, Jari; Carpén, Olli

    2016-07-07

    Approximately 50 % of gastric adenocarcinomas belong to a molecular subgroup characterised by chromosomal instability and a strong association with the intestinal histological subtype. This subgroup typically contains alterations in the receptor tyrosine kinase-RAS pathway, for example EGFR or HER2 gene amplifications leading to protein overexpression. In clinical practice, HER2 overexpressing metastatic gastric cancer is known to respond to treatment with anti-HER2 antibodies. By contrast, anti-EGFR antibodies have not been able to provide survival benefit in clinical trials, which, however, have not included patient selection based on the histological subtype or EGFR gene copy number analysis of the tumours. To examine the role of EGFR as a potential biomarker, we studied the prevalence, clinicopathological associations as well as prognostic role of EGFR and HER2 expression and gene amplification in intestinal adenocarcinomas of the stomach, gastro-oesophageal junction and distal oesophagus. Tissue samples from 220 patients were analysed with EGFR and HER2 immunohistochemistry. Those samples with moderate/strong staining intensity were further analysed with silver in situ hybridization to quantify gene copy numbers. The results were associated with clinical patient characteristics and survival. Moderate/strong EGFR protein expression was found in 72/220 (32.7 %) and EGFR gene amplification in 31/220 (14.1 %) of the tumours, while moderate/strong HER2 protein expression was detected in 31/220 (14.1 %) and HER2 gene amplification in 29/220 (13.2 %) of the tumours. EGFR and HER2 genes were co-amplified in eight tumours (3.6 %). EGFR gene amplification was more common in tumours of distal oesophagus/gastro-oesophageal junction/cardia than in those of gastric corpus (p = 0.013). It was associated with shortened time to cancer recurrence (p = 0.026) and cancer specific survival (p = 0.033). EGFR gene amplification is relatively common in intestinal adenocarcinomas and associates with decreased survival. It is rarely concurrent with HER2 gene amplification, suggesting that anti-EGFR therapies might be applicable to some patients not eligible for anti-HER2 treatment. Analogous to HER2 testing, determination of EGFR gene amplification status in concert with immunohistochemistry could improve the specificity of patient selection when investigating the possible benefits of anti-EGFR therapies in the treatment of gastric adenocarcinomas.

  16. Visualization and Enumeration of Bacteria Carrying a Specific Gene Sequence by In Situ Rolling Circle Amplification

    PubMed Central

    Maruyama, Fumito; Kenzaka, Takehiko; Yamaguchi, Nobuyasu; Tani, Katsuji; Nasu, Masao

    2005-01-01

    Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 106-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria. PMID:16332770

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizhkov, B. N.; Drobyshev, A. L.; Mikhailovich, V. M.

    PCR amplification on a microarray of gel-immobilized primers (microchip) has been developed. One of a pair of PCR primers was immobilized inside a separate microchip polyacrylamide porous gel pad of 0.1 x 0.1 x 0.02 (or 0.04) micron in size and 0.2 (or 0.4) nL in volume. The amplification was carried out simultaneously both in solution covering the microchip array and inside gel pads. Each gel pad contained the immobilized forward primers, while the fluorescently labeled reverse primers, as well as all components of the amplification reaction, diffused into the gel pads from the solution. To increase the amplification efficiency,more » the forward primers were also added into the solution. The kinetics of amplification was measured in real time in parallel for all gel pads with a fluorescent microscope equipped with a charge-coupled device (CCD) camera. The accuracy of the amplification was assessed by using the melting curves obtained for the duplexes formed by the labeled amplification product and the gel-immobilized primers during the amplification process; alternatively, the duplexes were produced by hybridization of the extended immobilized primers with labeled oligonucleotide probes. The on-chip amplification was applied to detect the anthrax toxin genes and the plasmid-borne beta-lactamase gene responsible for bacterial ampicillin resistance. The allele-specific type of PCR amplification was used to identify the Shiga toxin gene and discriminate it from the Shiga-like one. The genomic mutations responsible for rifampicin resistance of the Mycobacterium tuberculosis strains were detected by the same type of PCR amplification of the rpoB gene fragment isolated from sputum of tuberculosis patients. The on-chip PCR amplification has been shown to be a rapid, inexpensive and powerful tool to test genes responsible for bacterial toxin production and drug resistance, as well as to reveal point nucleotide mutations.« less

  18. Pre-amplification in the context of high-throughput qPCR gene expression experiment.

    PubMed

    Korenková, Vlasta; Scott, Justin; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjöback, Robert

    2015-03-11

    With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.

  19. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control.

    PubMed

    Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang

    2018-04-01

    A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.

  20. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

    PubMed Central

    Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S

    2002-01-01

    Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333

  1. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  2. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  3. groEL is a suitable genetic marker for detecting Vibrio parahaemolyticus by loop-mediated isothermal amplification assay.

    PubMed

    Siddique, M P; Jang, W J; Lee, J M; Ahn, S H; Suraiya, S; Kim, C H; Kong, I S

    2017-08-01

    A groEL gene-based loop-mediated isothermal amplification (LAMP) assay was developed to detect Vibrio parahaemolyticus in contaminated seafood and water. The assay was optimized and conducted at 63°C for 40 min using Bacillus stearothermophilus (Bst) DNA polymerase, large fragment. Amplification was analysed via multiple detection methods, including opacity, formation of white precipitate, DNA intercalating dyes (ethidium bromide and SYBR Green I), metal ion-binding indicator dye, calcein, and 2% agarose gel electrophoresis. A characteristic ladder-like band pattern on agarose gel and the desired colour changes when using different dyes were observed in positive cases, and these were species-specific for V. parahaemolyticus when compared with other closely related Vibrio spp. The limit of detection (LoD) of this assay was 100 fg per reaction, 100-fold higher than that for conventional polymerase chain reaction (PCR). When tested on artificially contaminated seafood and seawater, the LoDs of the LAMP assay were 120 and 150 fg per reaction respectively, and those of conventional PCR were 120 and 150 pg per reaction respectively. Based on our results, the groEL gene-based LAMP assay is rapid, specific, sensitive, and reliable for detecting V. parahaemolyticus, and it could be used in field diagnosis. The loop-mediated isothermal amplification (LAMP) assay using groEL gene (an abundant, highly conserved gene and member of the groESL chaperone gene family) provided rapid, species-specific and highly sensitive method for detecting Vibrio parahaemolyticus, the leading causal agent of seafood-borne diseases worldwide. Moreover, groEL LAMP revealed high efficiency than conventional PCR assay for V. parahaemolyticus using template both from pure culture and artificially contaminated seafood and water, which indicated the applicability in the field and environmental screening purpose for the organism. © 2017 The Society for Applied Microbiology.

  4. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Erwinia amylovora loop-mediated isothermal amplification (LAMP) assay for rapid pathogen detection and on-site diagnosis of fire blight.

    PubMed

    Bühlmann, Andreas; Pothier, Joël F; Rezzonico, Fabio; Smits, Theo H M; Andreou, Michael; Boonham, Neil; Duffy, Brion; Frey, Jürg E

    2013-03-01

    Several molecular methods have been developed for the detection of Erwinia amylovora, the causal agent of fire blight in pear and apple, but none are truly applicable for on-site use in the field. We developed a fast, reliable and field applicable detection method using a novel target on the E. amylovora chromosome that we identified by applying a comparative genomic pipeline. The target coding sequences (CDSs) are both uniquely specific for and all-inclusive of E. amylovora genotypes. This avoids potential false negatives that can occur with most commonly used methods based on amplification of plasmid gene targets, which can vary among strains. Loop-mediated isothermal AMPlification (LAMP) with OptiGene Genie II chemistry and instrumentation proved to be an exceptionally rapid (under 15 min) and robust method for detecting E. amylovora in orchards, as well as simple to use in the plant diagnostic laboratory. Comparative validation results using plant samples from inoculated greenhouse trials and from natural field infections (of regional and temporal diverse origin) showed that our LAMP had an equivalent or greater performance regarding sensitivity, specificity, speed and simplicity than real-time PCR (TaqMan), other LAMP assays, immunoassays and plating, demonstrating its utility for routine testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A multiplex primer design algorithm for target amplification of continuous genomic regions.

    PubMed

    Ozturk, Ahmet Rasit; Can, Tolga

    2017-06-19

    Targeted Next Generation Sequencing (NGS) assays are cost-efficient and reliable alternatives to Sanger sequencing. For sequencing of very large set of genes, the target enrichment approach is suitable. However, for smaller genomic regions, the target amplification method is more efficient than both the target enrichment method and Sanger sequencing. The major difficulty of the target amplification method is the preparation of amplicons, regarding required time, equipment, and labor. Multiplex PCR (MPCR) is a good solution for the mentioned problems. We propose a novel method to design MPCR primers for a continuous genomic region, following the best practices of clinically reliable PCR design processes. On an experimental setup with 48 different combinations of factors, we have shown that multiple parameters might effect finding the first feasible solution. Increasing the length of the initial primer candidate selection sequence gives better results whereas waiting for a longer time to find the first feasible solution does not have a significant impact. We generated MPCR primer designs for the HBB whole gene, MEFV coding regions, and human exons between 2000 bp to 2100 bp-long. Our benchmarking experiments show that the proposed MPCR approach is able produce reliable NGS assay primers for a given sequence in a reasonable amount of time.

  7. Rapid ABO genotyping by high-speed droplet allele-specific PCR using crude samples.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Takeichi, Naoya; Furukawa, Satomi; Sugano, Mitsutoshi; Uehara, Takeshi; Okumura, Nobuo; Honda, Takayuki

    2018-01-01

    ABO genotyping has common tools for personal identification of forensic and transplantation field. We developed a new method based on a droplet allele-specific PCR (droplet-AS-PCR) that enabled rapid PCR amplification. We attempted rapid ABO genotyping using crude DNA isolated from dried blood and buccal cells. We designed allele-specific primers for three SNPs (at nucleotides 261, 526, and 803) in exons 6 and 7 of the ABO gene. We pretreated dried blood and buccal cells with proteinase K, and obtained crude DNAs without DNA purification. Droplet-AS-PCR allowed specific amplification of the SNPs at the three loci using crude DNA, with results similar to those for DNA extracted from fresh peripheral blood. The sensitivity of the methods was 5%-10%. The genotyping of extracted DNA and crude DNA were completed within 8 and 9 minutes, respectively. The genotypes determined by the droplet-AS-PCR method were always consistent with those obtained by direct sequencing. The droplet-AS-PCR method enabled rapid and specific amplification of three SNPs of the ABO gene from crude DNA treated with proteinase K. ABO genotyping by the droplet-AS-PCR has the potential to be applied to various fields including a forensic medicine and transplantation medical care. © 2017 Wiley Periodicals, Inc.

  8. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    PubMed

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (P<0.05). In a glutamine-free medium, the GS activity of HEK293E cells was approximately 4.8 times higher than that in CHOK1 cells. Accordingly, it is inferred that high GS activity of HEK293E cells results in elevated resistance to MSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cloning and sequencing of an alkaline protease gene from Bacillus lentus and amplification of the gene on the B. lentus chromosome by an improved technique.

    PubMed

    Jørgensen, P L; Tangney, M; Pedersen, P E; Hastrup, S; Diderichsen, B; Jørgensen, S T

    2000-02-01

    A gene encoding an alkaline protease was cloned from an alkalophilic bacillus, and its nucleotide sequence was determined. The cloned gene was used to increase the copy number of the protease gene on the chromosome by an improved gene amplification technique.

  10. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; hide

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  12. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Dreyfus, P.; Soreq, H.

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genesmore » in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor.« less

  13. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy.

    PubMed

    Wang, Xiaoying; Shu, Guofang; Gao, Chanchan; Yang, Yu; Xu, Qian; Tang, Meng

    2014-12-01

    An electrochemical biosensor based on functional composite nanofibers for hybridization detection of specific K-ras gene that is highly associated with colorectal cancer via multiple signal amplification strategy has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped nylon 6 (PA6) composite nanofibers (MWCNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for thionine (TH) electropolymerization. The functional composite nanofibers [MWCNTs-PA6-PTH, where PTH is poly(thionine)] used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. Through the hybridization reaction, a sandwich format of ssDNA1/K-ras gene/gold nanoparticle-labeled ssDNA2 (AuNPs-ssDNA2) was fabricated, and the AuNPs offered excellent electrochemical signal transduction. The signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles (TA/AuNPs). A significant sensitivity enhancement was obtained; the detection limit was down to 30fM, and the discriminations were up to 54.3 and 51.9% between the K-ras gene and the one-base mismatched sequences including G/C and A/T mismatched bases, respectively. The amenability of this method to the analyses of K-ras gene from the SW480 colorectal cancer cell lysates was demonstrated. The results are basically consistent with those of the K-ras Kit (HRM: high-resolution melt). The method holds promise for the diagnosis and management of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Mechanisms of Drug Resistance in Plasmodium falciparum

    DTIC Science & Technology

    1992-09-11

    parasites. With the collaboration of Dr. Esther Orozco, we cloned two mdr-like genes from Entamoeba histolytica and demonstrated an association of...are described in experimental methods. 4 The observation that amplification and increased expression of mdr-like genes in Leishmania sp . is associated...of our development of a transfection system for Leishmania sp . thus providing the opportunity for functional analysis of putative mdr genes, we

  15. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    PubMed

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

  16. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    PubMed Central

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096

  17. Optimization of whole-transcriptome amplification from low cell density deep-sea microbial samples for metatranscriptomic analysis.

    PubMed

    Wu, Jieying; Gao, Weimin; Zhang, Weiwen; Meldrum, Deirdre R

    2011-01-01

    Limitation in sample quality and quantity is one of the big obstacles for applying metatranscriptomic technologies to explore gene expression and functionality of microbial communities in natural environments. In this study, several amplification methods were evaluated for whole-transcriptome amplification of deep-sea microbial samples, which are of low cell density and high impurity. The best amplification method was identified and incorporated into a complete protocol to isolate and amplify deep-sea microbial samples. In the protocol, total RNA was first isolated by a modified method combining Trizol (Invitrogen, CA) and RNeasy (QIAGEN, CA) method, amplified with a WT-Ovation™ Pico RNA Amplification System (NuGEN, CA), and then converted to double-strand DNA from single-strand cDNA with a WT-Ovation™ Exon Module (NuGEN, CA). The products from the whole-transcriptome amplification of deep-sea microbial samples were assessed first through random clone library sequencing. The BLAST search results showed that marine-based sequences are dominant in the libraries, consistent with the ecological source of the samples. The products were then used for next-generation Roche GS FLX Titanium sequencing to obtain metatranscriptome data. Preliminary analysis of the metatranscriptomic data showed good sequencing quality. Although the protocol was designed and demonstrated to be effective for deep-sea microbial samples, it should be applicable to similar samples from other extreme environments in exploring community structure and functionality of microbial communities. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  19. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  20. Natural genomic amplification of cholinesterase genes in animals.

    PubMed

    Chatonnet, Arnaud; Lenfant, Nicolas; Marchot, Pascale; Selkirk, Murray E

    2017-08-01

    Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  1. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification

    PubMed Central

    Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130

  2. Development and Application of a Loop-Mediated Isothermal Amplification (LAMP) Approach for the Rapid Detection of Dirofilaria repens from Biological Samples

    PubMed Central

    Raele, Donato Antonio; Pugliese, Nicola; Galante, Domenico; Latorre, Laura Maria; Cafiero, Maria Assunta

    2016-01-01

    Dirofilariasis by Dirofilaria repens is an important mosquito vector borne parasitosis, and the dog represents the natural host and reservoir of the parasite. This filarial nematode can also induce disease in humans, and in the last decades an increasing number of cases have been being reported. The present study describes the first loop mediated isothermal amplification (LAMP) assay to detect D. repens DNA in blood and mosquitoes. Two versions of the technique have been developed and described: in the first, the amplification is followed point by point through a real time PCR instrument (ReT-LAMP); in the second, the amplification is visualized by checking UV fluorescence of the reaction mixture after addition of propidium iodide (PI-LAMP). The two variants use the same set of 4 primers targeting the D. repens cytochrome oxidase subunit I (COI) gene. To assess the specificity of the method, reactions were carried out by using DNA from the major zoonotic parasites of the family of Onchocercidae, and no amplification was observed. The lower limit of detection of the ReT-LAMP assay was 0.15 fg/μl (corresponding to about 50 copy of COI gene per μl). Results suggest that the described assay is specific, and its sensitivity is higher than the conventional PCR based on the same gene. It is also provide a rapid and cost-effective molecular detection of D. repens, mainly when PI-LAMP is applied, and it should be performed in areas where this emerging parasitosis is endemic. PMID:27341205

  3. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review.

    PubMed

    Chen, Ying-Xu; Huang, Ke-Jing; Niu, Ke-Xin

    2018-01-15

    MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis. Hence, it's necessary to fabricate accurate and sensitive biosensing platform for miRNAs detection. Up to now, researchers have developed many signal-amplification strategies for miRNAs detection, including hybridization chain reaction, nuclease amplification, rolling circle amplification, catalyzed hairpin assembly amplification and nanomaterials based amplification. These methods are typical, feasible and frequently used. In this review, we retrospect recent advances in signal amplification strategies for detecting miRNAs and point out the pros and cons of them. Furthermore, further prospects and promising developments of the signal-amplification strategies for detecting miRNAs are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Digital detection of multiple minority mutants and expression levels of multiple colorectal cancer-related genes using digital-PCR coupled with bead-array.

    PubMed

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed "multiplex ligation-dependent probe amplification-digital amplification coupled with hydrogel bead-array" (MLPA-DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA-DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA-DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC.

  5. Quantification of HER2/neu gene amplification by competitive pcr using fluorescent melting curve analysis.

    PubMed

    Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T

    2001-05-01

    Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.

  6. Duplication and amplification of antibiotic resistance genes enable increased resistance in isolates of multidrug-resistant Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    During normal bacterial DNA replication, gene duplication and amplification (GDA) events occur randomly at a low frequency in the genome throughout a population. In the absence of selection, GDA events that increase the number of copies of a bacterial gene (or a set of genes) are lost. Antibiotic ...

  7. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168.

  8. No control genes required: Bayesian analysis of qRT-PCR data.

    PubMed

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  9. Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification†

    PubMed Central

    Wu, Liyou; Liu, Xueduan; Schadt, Christopher W.; Zhou, Jizhong

    2006-01-01

    Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment. PMID:16820490

  10. Detection of Giardia in environmental waters by immuno-PCR amplification methods.

    PubMed

    Mahbubani, M H; Schaefer, F W; Jones, D D; Bej, A K

    1998-02-01

    Genomic DNA was extracted either directly from Giardia muris cysts seeded into environmental surface waters or from cysts isolated by immunomagnetic beads (IMB). A 0.171-kbp segment of the giardin gene was PCR-amplified following "direct extraction" of Giardia DNA from seeded Cahaba river water concentrate with moderate turbidity (780 JTU's), but DNA purified from seeded Colorado river water concentrates with high turbidity (2 x 10(5) JTUs) failed to amplify. However, if the cysts were first separated by the IMB approach from seeded Cahaba or Colorado river waters, and the DNA released by a freeze-boil Chelex(R)100 treatment, detection of G. muris by PCR amplification could be achieved at a sensitivity of 3 x 10(0) or 3 x 10(1) cysts/ml, respectively. If, however, the G. muris cysts used to seed even moderately turbid river waters (780 JTUs) were formalin treated (which is conventionally used for microscopic examination), neither direct extraction nor IMB purification methods yielded amplifiable DNA. Use of immunomagnetic beads to separate Giardia cysts from complex matrices of environmental surface waters followed by DNA release and PCR amplification of the target giardin gene improved the reliability of detection of this pathogen with the required sensitivity.

  11. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    PubMed

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  12. One-step multiplex PCR method for the determination of pecan and Brazil nut allergens in food products.

    PubMed

    Hubalkova, Zora; Rencova, Eva

    2011-10-01

    A one-step polymerase chain reaction (PCR) method for the simultaneous detection of the major allergens of pecan and Brazil nuts was developed. Primer pairs for the amplification of partial sequences of genes encoding the allergens were designed and tested for their specificity on a range of food components. The targeted amplicon size was 173 bp of Ber e 1 gene of Brazil nuts and 72 bp of vicilin-like seed storage protein gene in pecan nuts. The primer pair detecting the noncoding region of the chloroplast DNA was used as the internal control of amplification. The intrinsic detection limit of the PCR method was 100 pg mL(-1) pecan or Brazil nuts DNA. The practical detection limit was 0.1% w/w (1 g kg(-1)). The method was applied for the investigation of 63 samples with the declaration of pecans, Brazil nuts, other different nut species or nuts generally. In 15 food samples pecans and Brazil nuts allergens were identified in the conformity with the food declaration. The presented multiplex PCR method is specific enough and can be used as a fast approach for the detection of major allergens of pecan or Brazil nuts in food. Copyright © 2011 Society of Chemical Industry.

  13. Generation of Envelope-Modified Baculoviruses for Gene Delivery into Mammalian Cells.

    PubMed

    Hofmann, Christian

    2016-01-01

    Genetically modified baculoviruses can efficiently deliver and express genes in mammalian cells. The major prerequisite for the expression of a gene transferred by baculovirus is its control by a promoter that is active in mammalian cells. This chapter describes methods for producing second generation baculovirus vectors through modification of their envelope. Envelope modified baculoviruses offer additional new applications of the system, such as their use in in vivo gene delivery, targeting, and vaccination. Methods of generating a recombinant baculovirus vector with a modified envelope and its amplification and purification, including technical scale production, are discussed. A variety of notes give clues regarding specific technical procedures. Finally, methods to analyze the virus and transduction procedures are presented.

  14. Estrogen receptor alpha gene amplification in breast cancer: 25 years of debate

    PubMed Central

    Holst, Frederik

    2016-01-01

    Twenty-five years ago, Nembrot and colleagues reported amplification of the estrogen receptor alpha gene (ESR1) in breast cancer, initiating a broad and still ongoing scientific debate on the prevalence and clinical significance of this genetic aberration, which affects one of the most important genes in breast cancer. Since then, a multitude of studies on this topic has been published, covering a wide range of divergent results and arguments. The reported prevalence of this alteration in breast cancer ranges from 0% to 75%, suggesting that ESR1 copy number analysis is hampered by technical and interpreter issues. To date, two major issues related to ESR1 amplification remain to be conclusively addressed: (1) The extent to which abundant amounts of messenger RNA can mimic amplification in standard fluorescence in situ hybridization assays in the analysis of strongly expressed genes like ESR1, and (2) the clinical relevance of ESR1 amplification: Such relevance is strongly disputed, with data showing predictive value for response as well as for resistance of the cancer to anti-estrogen therapies, or for subsequent development of cancers in the case of precursor lesions that display amplification of ESR1. This review provides a comprehensive summary of the various views on ESR1 amplification, and highlights explanations for the contradictions and conflicting data that could inform future ESR1 research. PMID:27081639

  15. Development of fluorescent methods for DNA methyltransferase assay

    NASA Astrophysics Data System (ADS)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  16. Loop-mediated amplification of the Clavibacter michiganensis subsp. michiganensis micA gene is highly specific.

    PubMed

    Yasuhara-Bell, Jarred; Kubota, Ryo; Jenkins, Daniel M; Alvarez, Anne M

    2013-12-01

    Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.

  17. CDK4 Amplification Predicts Recurrence of Well-Differentiated Liposarcoma of the Abdomen

    PubMed Central

    Ha, Sang Yun; Paik, Kwang Yeol; Lee, Seung Eun; Kim, Jong Man; Park, Jae Berm; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Yoon-La; Kim, Sung Joo

    2014-01-01

    Background The absence of CDK4 amplification in liposarcomas is associated with favorable prognosis. We aimed to identify the factors associated with tumor recurrence in patients with well-differentiated (WD) and dedifferentiated (DD) liposarcomas. Methods From 2000 to 2010, surgical resections for 101 WD and DD liposarcomas were performed. Cases in which complete surgical resections with curative intent were carried out were selected. MDM2 and CDK4 gene amplification were analyzed by quantitative real-time polymerase chain reaction (Q-PCR). Results There were 31 WD and 17 DD liposarcomas. Locoregional recurrence was observed in 11 WD and 3 DD liposarcomas. WD liposarcomas showed better patient survival compared to DD liposarcomas (P<0.05). Q-PCR analysis of the liposarcomas revealed the presence of CDK4 amplification in 44 cases (91.7%) and MDM2 amplification in 46 cases (95.8%). WD liposarcomas with recurrence after surgical resection had significantly higher levels of CDK4 amplification compared to those without recurrence (P = 0.041). High level of CDK4 amplification (cases with CDK4 amplification higher than the median 7.54) was associated with poor recurrence-free survival compared to low CDK4 amplification in both univariate (P = 0.012) and multivariate analyses (P = 0.020). Conclusions Level of CDK4 amplification determined by Q-PCR was associated with the recurrence of WD liposarcomas after surgical resection. PMID:25121597

  18. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  19. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.

    PubMed

    Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M

    2016-07-01

    The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.

  20. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane

    PubMed Central

    Zhou, Dinggang; Guo, Jinlong; Xu, Liping; Gao, Shiwu; Lin, Qingliang; Wu, Qibin; Wu, Luguang; Que, Youxiong

    2014-01-01

    To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane. PMID:24810230

  1. Absence of estrogen receptor alpha (ESR1) gene amplification in a series of breast cancers in Taiwan.

    PubMed

    Chen, Jim-Ray; Hsieh, Tsan-Yu; Chen, Huang-Yang; Yeh, Kun-Yan; Chen, Kuo-Su; ChangChien, Yi-Che; Pintye, Mariann; Chang, Liang-Che; Hwang, Cheng-Cheng; Chien, Hui-Ping; Hsu, Yuan-Chun

    2014-06-01

    Immunohistochemical expression of ERα, encoded by the ESR1 (estrogen receptor 1) gene located at 6q25.1, is the most important determinant of responsiveness to endocrine therapy in breast cancer. The prevalence and significance of ESR1 amplification in breast cancer remain controversial. We set out to assess ESR1 status and its relevance in breast cancer in Taiwan. We tested tissue samples from 311 invasive carcinomas in a tissue microarray for ESR1 status by fluorescent in situ hybridization (FISH) and chromogenic in situ hybridization (CISH). In order to examine its association with ERα and ESR1 status, HER2 status was determined by FISH. Of the carcinomas, 58.8 % (183/311) was ERα positive. None of the carcinomas showed amplification of ESR1 by either method, whereas 24.1 % (75/311) of the carcinomas harbored HER2 amplification. Of the carcinomas, 9.6 % (26/301) showed ESR1 gain (1.3 ≤ ratio ESR1/chromosome 6 < 2) by FISH and 10 % (24/299) by CISH. FISH and CISH results showed a good correlation (κ-coefficient = 0.786). ESR1 gain by FISH and CISH was significantly associated with high-grade (P = 0.0294 and 0.0417, respectively) but not with ERα expression, HER2 status, or overall survival. ERα positivity was significantly associated with better overall survival (P = 0.039). HER2 amplification was significantly related with poor overall survival (P = 0.002). Our data confirm that in breast cancer, HER2 amplification is a frequent genetic aberration and a negative prognostic factor, and show that ESR1 amplification is not a key genetic abnormality in the tumorigenesis of breast cancer in Taiwan.

  2. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma.

    PubMed

    Araújo, T M; Seabra, A D; Lima, E M; Assumpção, P P; Montenegro, R C; Demachki, S; Burbano, R M; Khayat, A S

    2016-01-01

    Despite progression in treatment of gastric cancer, prognosis of patients remains poor, in part due to the low rate of diagnosis during its early stages. This paradigm implies the necessity to identify molecular biomarkers for early gastric cancer diagnosis, as well as for disease monitoring, thus contributing to the development of new therapeutic approaches. In a previous study, performed by array-Comparative Genomic Hybridization, we described for the first time in literature recurrent amplification of RTEL1 and ABCA13 genes in gastric cancer. Thus, the aim of the present study was to validate recurrent amplification of RTEL1 and ABCA13 genes and associate CNV status with clinicopathological data. Results showed RTEL1 and ABCA13 amplification in 38 % of samples. Statistical analysis demonstrated that RTEL amplification is more common in older patients and more associated with intestinal type and ABCA13 amplification increases the risk of lymph node metastasis and is more common in men. Co-amplification of these genes showed a significant association with advanced staging. aCGH is a very useful tool for investigating novel genes associated with carcinogenesis and RTEL1 amplification may be important for the development of gastric cancer in older patients, besides being a probable event contributing for chromosomal instability in intestinal gastric carcinogenesis. ABCA13 amplification may have age-specific function and could be considered a useful marker for predicting lymph node metastasis in resected gastric cancer patients in early stage. Lastly, RTEL1 and ABCA13 synergistic effect may be considered as a putative marker for advanced staging in gastric cancer patients.

  3. Sex determination in goat by amplification of the HMG box using duplex PCR.

    PubMed

    Shi, Lei; Yue, Wenbin; Ren, Youshe; Lei, Fulin; Zhao, Junxing

    2008-05-01

    The objective of this study was to obtain a fast, accurate and reliable method of determining the sex of goat embryos prior to implantation through amplification of the high-motility-group (HMG) box of the sex-determining region of the Y chromosome (SRY) gene of the goats. Goat specific primers were designed for duplex polymerase chain reaction (PCR). As an internal control gene, the goat beta-action gene sequence was simultaneously amplified together with the HMG box of goat SRY gene. Males showed both 1 SRY band and 1 beta-action band, but only 1 beta-action band was present in the agarose gel electrophoresis of females. The result indicated that the goat HMG-box sequence motif of SRY was male specific. Afterward, the optimized PCR procedure was applied in 30 embryo biopsies and the biopsied embryos were transferred into 30 recipient female goats. The sex of the 13 kids proved anatomically corresponded to the sex determined by PCR (100% accuracy). Thus, this study showed that this duplex PCR method can be applied to sex the goat pre-implantation embryos and to manipulate the sex ratio of offspring in goat breeding programs.

  4. Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus

    PubMed Central

    Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 102 CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples. PMID:28066368

  5. Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Yoshikawa, Miwako; Fujii, Tateo

    2003-05-01

    The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.

  6. Prognostic significance of MYCN gene amplification and protein expression in primary brain tumors: Astrocytoma and meningioma.

    PubMed

    Estiar, Mehrdad Asghari; Javan, Firouzeh; Zekri, Ali; Mehrazin, Masoud; Mehdipour, Parvin

    2017-07-04

    Astrocytoma and meningioma are the most common primary brain tumors. MYCN as a member of MYC proto-oncogenes has recently appeared as an attractive therapeutic target. Functions of MYCN are critical for growth of nervous system and neural differentiation. We examined MYCN amplification and protein expression in astrocytoma and meningioma cases. In this study, we used real-time PCR, FISH assay and flowcytometry to analyze DNA amplification and protein expression of MYCN. Among 30 samples of brain tumor, 14 cases (46.6%) revealed MYCN amplification. High-protein expression of MYCN was also observed in 43.3% of patients. There was a significant correlation between MYCN gene amplification and protein expression (r= 0.523; p= 0.003), interestingly five case showed discrepancy between the gene amplification and protein expression. Although MYCN amplification fails to show correlation with poor prognosis (p= 0.305), protein high-expression of MYCN significantly reduce disease-free survival (p= 0.019). Our results challenge the concept of the neural specificity of MYCN by demonstrating contribution of MYCN in meningioma. Moreover, this study highlights the importance of research at both level of DNA and protein, to determine the biological functions and medical impacts of MYCN.

  7. Comparison of the DNA extraction methods for polymerase chain reaction amplification from formalin-fixed and paraffin-embedded tissues.

    PubMed

    Sato, Y; Sugie, R; Tsuchiya, B; Kameya, T; Natori, M; Mukai, K

    2001-12-01

    To obtain an adequate quality and quantity of DNA from formalin-fixed and paraffin-embedded tissue, six different DNA extraction methods were compared. Four methods used deparaffinization by xylene followed by proteinase K digestion and phenol-chloroform extraction. The temperature of the different steps was changed to obtain higher yields and improved quality of extracted DNA. The remaining two methods used microwave heating for deparaffinization. The best DNA extraction method consisted of deparaffinization by microwave irradiation, protein digestion with proteinase K at 48 degrees C overnight, and no further purification steps. By this method, the highest DNA yield was obtained and the amplification of a 989-base pair beta-globin gene fragment was achieved. Furthermore, DNA extracted by means of this procedure from five gastric carcinomas was successfully used for single strand conformation polymorphism and direct sequencing assays of the beta-catenin gene. Because the microwave-based DNA extraction method presented here is simple, has a lower contamination risk, and results in a higher yield of DNA compared with the ordinary organic chemical reagent-based extraction method, it is considered applicable to various clinical and basic fields.

  8. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus.

    PubMed

    Yanai, Koji; Murakami, Takeshi; Bibb, Mervyn

    2006-06-20

    Streptomyces kanamyceticus 12-6 is a derivative of the wild-type strain developed for industrial kanamycin (Km) production. Southern analysis and DNA sequencing revealed amplification of a large genomic segment including the entire Km biosynthetic gene cluster in the chromosome of strain 12-6. At 145 kb, the amplifiable unit of DNA (AUD) is the largest AUD reported in Streptomyces. Striking repetitive DNA sequences belonging to the clustered regularly interspaced short palindromic repeats family were found in the AUD and may play a role in its amplification. Strain 12-6 contains a mixture of different chromosomes with varying numbers of AUDs, sometimes exceeding 36 copies and producing an amplified region >5.7 Mb. The level of Km production depended on the copy number of the Km biosynthetic gene cluster, suggesting that DNA amplification occurred during strain improvement as a consequence of selection for increased Km resistance. Amplification of DNA segments including entire antibiotic biosynthetic gene clusters might be a common mechanism leading to increased antibiotic production in industrial strains.

  9. Colorimetric Detection of Ehrlichia Canis via Nucleic Acid Hybridization in Gold Nano-Colloids

    PubMed Central

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-01-01

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease. PMID:25111239

  10. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    PubMed

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  11. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  12. Gene Signal Distribution and HER2 Amplification in Gastroesophageal Cancer.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Kjærsgaard, Gitte; Jepsen, Anna; Mollerup, Jens

    2017-01-01

    Background : HER2 serves as an important therapeutic target in gastroesophageal cancer. Differences in HER2 gene signal distribution patterns can be observed at the tissue level, but how it influences the HER2 amplification status has not been studied so far. Here, we investigated the link between HER2 amplification and the different types of gene signal distribution. Methods : Tumor samples from 140 patients with gastroesophageal adenocarcinoma where analyzed using the HER2 IQFISH pharmDx™ assay. Specimens covered non-amplified and amplified cases with a preselected high proportion of HER2 amplified cases. Based on the HER2 /CEN-17 ratio, specimens were categorized into amplified or non-amplified. The signal distribution patterns were divided into homogeneous, heterogeneous focal or heterogeneous mosaic. The study was conducted based on anonymized specimens with limited access to clinicopathological data. Results: Among the 140 analyzed specimens 83 had a heterogeneous HER2 signal distribution, with 62 being focal and 21 of the mosaic type. The remaining 57 specimens had a homogeneous signal distribution. HER2 amplification was observed in 63 of the 140 specimens, and nearly all (93.7%) were found among specimens with a heterogeneous focal signal distribution (p<0.0001). The mean HER2 /CEN-17 ratio for the focal heterogeneous group was 8.75 (CI95%: 6.87 - 10.63), compared to 1.53 (CI95%: 1.45 - 1.61) and 1.70 (CI95%: 1.22 - 2.18) for the heterogeneous mosaic and homogeneous groups, respectively, (p<0.0001). Conclusions: A clear relationship between HER2 amplification and the focal heterogeneous signal distribution was demonstrated in tumor specimens from patients with gastroesophageal cancer. Furthermore, we raise the hypothesis that the signal distribution patterns observed with FISH might be related to different subpopulations of HER2 positive tumor cells.

  13. Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication.

    PubMed

    Aida, A A; Che Man, Y B; Wong, C M V L; Raha, A R; Son, R

    2005-01-01

    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.

  14. [Nah-plasmids of IncP-9 group from natural strains of Pseudomonas].

    PubMed

    Levchuk, A A; Bulyga, I M; Izmalkova, T Iu; Sevast'ianovich, Ia R; Kosheleva, I A; Thomas, C M; Titok, M A

    2006-01-01

    Use of polymerase chain reaction helped to establish that the most frequent among naphthalene utilizing bacteria, isolated on the territory of Belarus, are Nah-plasmids of IncP-9 incompatibility group and those with indefinite systematic belonging. With the help of classical test of incompatibility, restriction and sequence analyses three new subgroups within the IncP-9 group were discovered (zeta, eta and IncP-9-like replicons). Conducting of restriction analysis for amplification products of nahG and nahAc genes allowed us to reveal, in addition to known sequences of stated determinants, two new types of nahG gene. Restriction analysis performed on amplification products of 16S RNA genes (ARDRA method) showed that native hosts of Nah-plasmids of IncP-9 group are not only fluorescent bacteria from genus Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. species), but also non-fluorescent bacteria with indefinite specific belonging.

  15. Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater.

    PubMed

    Kanitkar, Yogendra H; Stedtfeld, Robert D; Hatzinger, Paul B; Hashsham, Syed A; Cupples, Alison M

    2017-06-01

    TaqMan probe-based quantitative polymerase chain reaction (qPCR) specific to the biomarker reductive dehalogenase (RDase) genes is a widely accepted molecular biological tool (MBT) for determining the abundance of Dehalococcoides sp. in groundwater samples from chlorinated solvent-contaminated sites. However, there are significant costs associated with this MBT. In this study, we describe an approach that requires only low-cost laboratory equipment (a bench top centrifuge and a water bath) and requires less time and resources compared to qPCR. The method involves the concentration of biomass from groundwater, without DNA extraction, and loop-mediated isothermal amplification (LAMP) of the cell templates. The amplification products are detected by a simple visual color change (orange/green). The detection limits of the assay were determined using groundwater from a contaminated site. In addition, the assay was tested with groundwater from three additional contaminated sites. The final approach to detect RDase genes, without DNA extraction or a thermal cycler, was successful to 1.8 × 10 5  gene copies per L for vcrA and 1.3 × 10 5  gene copies per L for tceA. Both values are below the threshold recommended for effective in situ dechlorination.

  16. Evaluation of intratumoral HER-2 heterogeneity by fluorescence in situ hybridization in invasive breast cancer: a single institution study.

    PubMed

    Lee, Sarah; Jung, Woohee; Hong, Soon-Won; Koo, Ja Seung

    2011-08-01

    This study aimed to determine the incidence and characteristics of HER-2 gene heterogeneity in invasive breast cancer in a single institution. Included were 971 cases of primary invasive breast cancer diagnosed between 2008 and 2010. Fluorescence in situ hybridization (FISH) image files were retrospectively reviewed and HER-2 gene heterogeneity was defined as more than 5% but less than 50% of analyzed invasive tumor cells with a HER-2/Chr17 ratio higher than 2.2, according to the College of American Pathologists guidelines. HER-2 gene heterogeneity was identified in 24 (2.5%) cases. The mean proportion of invasive tumor cells with a HER-2/chromosome 17 ratio higher than 2.2 was 11.6% (range: 5%-25%). Of 24 cases, HER-2 gene status was not amplified in 8, showed borderline amplification in 2, and amplification in 14. All HER-2 amplification cases were low-grade. In conclusion, HER-2 gene heterogeneity of invasive breast cancer is identified in routine FISH examination. This may affect the results of HER-2 gene amplification status in FISH studies.

  17. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    PubMed

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  18. Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells.

    PubMed

    Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo

    2008-08-15

    A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.

  19. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less

  20. Isothermal multiple displacement amplification: a methodical approach enhancing molecular routine diagnostics of microcarcinomas and small biopsies.

    PubMed

    Mairinger, Fabian D; Walter, Robert Fh; Vollbrecht, Claudia; Hager, Thomas; Worm, Karl; Ting, Saskia; Wohlschläger, Jeremias; Zarogoulidis, Paul; Zarogoulidis, Konstantinos; Schmid, Kurt W

    2014-01-01

    Isothermal multiple displacement amplification (IMDA) can be a powerful tool in molecular routine diagnostics for homogeneous and sequence-independent whole-genome amplification of notably small tumor samples, eg, microcarcinomas and biopsies containing a small amount of tumor. Currently, this method is not well established in pathology laboratories. We designed a study to confirm the feasibility and convenience of this method for routine diagnostics with formalin-fixed, paraffin-embedded samples prepared by laser-capture microdissection. A total of 250 μg DNA (concentration 5 μg/μL) was generated by amplification over a period of 8 hours with a material input of approximately 25 cells, approximately equivalent to 175 pg of genomic DNA. In the generated DNA, a representation of all chromosomes could be shown and the presence of elected genes relevant for diagnosis in clinical samples could be proven. Mutational analysis of clinical samples could be performed without any difficulty and showed concordance with earlier diagnostic findings. We established the feasibility and convenience of IMDA for routine diagnostics. We also showed that small amounts of DNA, which were not analyzable with current molecular methods, could be sufficient for a wide field of applications in molecular routine diagnostics when they are preamplified with IMDA.

  1. Development and application of a rapid and visual loop-mediated isothermal amplification for the detection of Sporisorium scitamineum in sugarcane

    PubMed Central

    Su, Yachun; Yang, Yuting; Peng, Qiong; Zhou, Dinggang; Chen, Yun; Wang, Zhuqing; Xu, Liping; Que, Youxiong

    2016-01-01

    Smut is a fungal disease with widespread prevalence in sugarcane planting areas. Early detection and proper identification of Sporisorium scitamineum are essential in smut management practices. In the present study, four specific primers targeting the core effector Pep1 gene of S. scitamineum were designed. Optimal concentrations of Mg2+, primer and Bst DNA polymerase, the three important components of the loop-mediated isothermal amplification (LAMP) reaction system, were screened using a single factor experiment method and the L16(45) orthogonal experimental design. Hence, a LAMP system suitable for detection of S. scitamineum was established. High specificity of the LAMP method was confirmed by the assay of S. scitamineum, Fusarium moniliforme, Pestalotia ginkgo, Helminthospcrium sacchari, Fusarium oxysporum and endophytes of Yacheng05-179 and ROC22. The sensitivity of the LAMP method was equal to that of the conventional PCR targeting Pep1 gene and was 100 times higher than that of the conventional PCR assay targeting bE gene in S. scitamineum. The results suggest that this novel LAMP system has strong specificity and high sensitivity. This method not only provides technological support for the epidemic monitoring of sugarcane smut, but also provides a good case for development of similar detection technology for other plant pathogens. PMID:27035751

  2. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples

    PubMed Central

    Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.

    2016-01-01

    Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273

  3. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    PubMed

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  4. ORAOV1 is amplified in oral squamous cell carcinoma.

    PubMed

    Xavier, Flávia Caló Aquino; Rodini, Camila Oliveira; Paiva, Katiúcia Batista Silva; Destro, Maria Fernanda Souza Setúbal; Severino, Patricia; Moyses, Raquel A; Tajara, Eloiza H; Nunes, Fabio Daumas

    2012-01-01

    Oral cancer overexpressed 1 (ORAOV1) was found as a candidate oncogene in the 11q13 chromosomal region, based on its amplification and overexpression in oral cancer cell lines. Because gene amplification often leads to increased levels of gene expression, we aimed to verify the relationship between ORAOV1 gene status and mRNA expression primarily in oral squamous cell carcinoma (OSCC) by quantitative assay, correlating with clinical and pathological characteristics in patients. Levels of ORAOV1 amplification and expression were evaluated by qPCR and RT-qPCR in OSCC cell lines and in tumor and non-tumoral surgical margins from 33 patients with OSCC. All subjects were smokers and habitual alcohol drinkers, mostly men above 40 years of age and with a single primary tumor. ORAOV1 exhibited increased gene expression levels as well as higher copy number in three OSCC cell lines with 11q13 amplified chromosomal region when compared with the OSCC cell line without the amplification (one-way ANOVA, P < 0.05). Weak correlation between ORAOV1 mRNA levels and DNA copy number was seen in tumor samples (Spearman, P = 0.07). Although ORAOV1 was amplified in tumor (Wilcoxon, P < 0.01), high levels of transcripts in margin did not reveal differences in comparison with tumor (Wilcoxon, P = 0.85). Aggressiveness and survival rate did not demonstrate statistical difference for both events in OSCC. The overexpression of ORAOV1 in non-tumoral margin samples can occur in the absence of amplification. The weak correlation between ORAOV1 amplification and expression in OSSC suggests that ORAOV1 expression can be regulated by mechanisms other than gene amplification. © 2011 John Wiley & Sons A/S.

  5. Precision oncology using a limited number of cells: optimization of whole genome amplification products for sequencing applications.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Lee, Sangjun; Hou, Shuang; Graeber, Thomas G; Tseng, Hsian-Rong; Tomlinson, James S

    2017-07-01

    Sequencing analysis of circulating tumor cells (CTCs) enables "liquid biopsy" to guide precision oncology strategies. However, this requires low-template whole genome amplification (WGA) that is prone to errors and biases from uneven amplifications. Currently, quality control (QC) methods for WGA products, as well as the number of CTCs needed for reliable downstream sequencing, remain poorly defined. We sought to define strategies for selecting and generating optimal WGA products from low-template input as it relates to their potential applications in precision oncology strategies. Single pancreatic cancer cells (HPAF-II) were isolated using laser microdissection. WGA was performed using multiple displacement amplification (MDA), multiple annealing and looping based amplification (MALBAC) and PicoPLEX. Quality of amplified DNA products were assessed using a multiplex/RT-qPCR based method that evaluates for 8-cancer related genes and QC-scores were assigned. We utilized this scoring system to assess the impact of de novo modifications to the WGA protocol. WGA products were subjected to Sanger sequencing, array comparative genomic hybridization (aCGH) and next generation sequencing (NGS) to evaluate their performances in respective downstream analyses providing validation of the QC-score. Single-cell WGA products exhibited a significant sample-to-sample variability in amplified DNA quality as assessed by our 8-gene QC assay. Single-cell WGA products that passed the pre-analysis QC had lower amplification bias and improved aCGH/NGS performance metrics when compared to single-cell WGA products that failed the QC. Increasing the number of cellular input resulted in improved QC-scores overall, but a resultant WGA product that consistently passed the QC step required a starting cellular input of at least 20-cells. Our modified-WGA protocol effectively reduced this number, achieving reproducible high-quality WGA products from ≥5-cells as a starting template. A starting cellular input of 5 to 10-cells amplified using the modified-WGA achieved aCGH and NGS results that closely matched that of unamplified, batch genomic DNA. The modified-WGA protocol coupled with the 8-gene QC serve as an effective strategy to enhance the quality of low-template WGA reactions. Furthermore, a threshold number of 5-10 cells are likely needed for a reliable WGA reaction and product with high fidelity to the original starting template.

  6. Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells.

    PubMed

    Hannibal, Roberta L; Baker, Julie C

    2016-01-25

    While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DNA extraction from formalin-fixed, paraffin-embedded tissues: protein digestion as a limiting step for retrieval of high-quality DNA.

    PubMed

    Díaz-Cano, S J; Brady, S P

    1997-12-01

    Several DNA extraction methods have been used for formalin-fixed, paraffin-embedded tissues, with variable results being reported regarding the suitability of DNA obtained from such sources to serve as template in polymerase chain reaction (PCR)-based genetic analyses. We present a method routinely used for archival material in our laboratory that reliably yields DNA of sufficient quality for PCR studies. This method is based on extended proteinase K digestion (250 micrograms/ml in an EDTA-free calcium-containing buffer supplemented with mussel glycogen) followed by phenol-chloroform extraction. Agarose gel electrophoresis of both digestion buffer aliquots and PCR amplification of the beta-globin gene tested the suitability of the retrieved DNA for PCR amplification.

  8. Development of a rapid assay to detect the jellyfish Cyanea nozakii using a loop-mediated isothermal amplification method.

    PubMed

    Liu, Zhongyuan; Dong, Zhijun; Liu, Dongyan

    2016-07-01

    Blooms of the harmful jellyfish Cyanea nozakii, which are a severe nuisance to fisheries and tourisms, frequently occur in the northern East China Sea, Yellow Sea, and Bohai Sea. To provide early warning of this species, a simple and effective molecular method for identifying C. nozakii was developed using the loop-mediated isothermal amplification method (LAMP). The LAMP assay is highly specific and uses a set of four primers that target six different regions on the mitochondrial cytochrome c oxidase subunit I (COI) gene of C. nozakii. The amplification conditions, including the dNTP and betaine concentrations, the inner primer to outer primer concentration ratio, reaction time and temperature, were optimized. The LAMP assay amplified DNA extracted from tissue samples of C. nozakii but did not amplify DNA from other common scyphozoans and hydrozoans collected in the same region. In addition, the LAMP assay was more sensitive than conventional PCR. Therefore, the established LAMP assay is a sensitive, specific, fast, and easily performed method for detection of C. nozakii at different stages in their life cycle.

  9. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  10. Rapid Detection of Haptoglobin Gene Deletion in Alkaline-Denatured Blood by Loop-Mediated Isothermal Amplification Reaction

    PubMed Central

    Soejima, Mikiko; Egashira, Kouichi; Kawano, Hiroyuki; Kawaguchi, Atsushi; Sagawa, Kimitaka; Koda, Yoshiro

    2011-01-01

    Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin antibodies. Being homozygous for the haptoglobin gene deletion allele (HPdel) is the only known cause of congenital anhaptoglobinemia, and detection of HPdel before transfusion is important to prevent anaphylactic shock. In this study, we developed a loop-mediated isothermal amplification (LAMP)-based screening for HPdel. Optimal primer sets and temperature for LAMP were selected for HPdel and the 5′ region of the HP using genomic DNA as a template. Then, the effects of diluent and boiling on LAMP amplification were examined using whole blood as a template. Blood samples diluted 1:100 with 50 mmol/L NaOH without boiling gave optimal results as well as those diluted 1:2 with water followed by boiling. The results from 100 blood samples were fully concordant with those obtained by real-time PCR methods. Detection of the HPdel allele by LAMP using alkaline-denatured blood samples is rapid, simple, accurate, and cost effective, and is readily applicable in various clinical settings because this method requires only basic instruments. In addition, the simple preparation of blood samples using NaOH saves time and effort for various genetic tests. PMID:21497293

  11. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform.

    PubMed

    Tsaloglou, M-N; Watson, R J; Rushworth, C M; Zhao, Y; Niu, X; Sutton, J M; Morgan, H

    2015-01-07

    Clostridium difficile is one of the key bacterial pathogens that cause infectious diarrhoea both in the developed and developing world. Isothermal nucleic acid amplification methods are increasingly used for identification of toxinogenic infection by clinical labs. For this purpose, we developed a low-cost microfluidic platform based on the SlipChip concept and implemented real-time isothermal recombinase polymerase amplification (RPA). The on-chip RPA assay targets the Clostridium difficile toxin B gene (tcdB) coding for toxin B, one of the proteins responsible for bacterial toxicity. The device was fabricated in clear acrylic using rapid prototyping methods. It has six replicate 500 nL reaction wells as well as two sets of 500 nL control wells. The reaction can be monitored in real-time using exonuclease fluorescent probes with an initial sample volume of as little as 6.4 μL. We demonstrated a limit of detection of 1000 DNA copies, corresponding to 1 fg, at a time-to-result of <20 minutes. This miniaturised platform for pathogen detection has potential for use in resource-limited environments or at the point-of-care because of its ease of use and low cost, particularly if combined with preserved reagents.

  12. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  13. Efficient and Specific Detection of Salmonella in Food Samples Using a stn-Based Loop-Mediated Isothermal Amplification Method

    PubMed Central

    2015-01-01

    The Salmonella enterotoxin (stn) gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity. PMID:26543859

  14. Staph ID/R: a Rapid Method for Determining Staphylococcus Species Identity and Detecting the mecA Gene Directly from Positive Blood Culture

    PubMed Central

    Pasko, Chris; Dunn, John; Jaeckel, Heidi; Nieuwlandt, Dan; Weed, Diane; Woodruff, Evelyn; Zheng, Xiaotian

    2012-01-01

    Rapid diagnosis of staphylococcal bacteremia directs appropriate antimicrobial therapy, leading to improved patient outcome. We describe herein a rapid test (<75 min) that can identify the major pathogenic strains of Staphylococcus to the species level as well as the presence or absence of the methicillin resistance determinant gene, mecA. The test, Staph ID/R, combines a rapid isothermal nucleic acid amplification method, helicase-dependent amplification (HDA), with a chip-based array that produces unambiguous visible results. The analytic sensitivity was 1 CFU per reaction for the mecA gene and was 1 to 250 CFU per reaction depending on the staphylococcal species present in the positive blood culture. Staph ID/R has excellent specificity as well, with no cross-reactivity observed. We validated the performance of Staph ID/R by testing 104 frozen clinical positive blood cultures and comparing the results with rpoB gene or 16S rRNA gene sequencing for species identity determinations and mecA gene PCR to confirm mecA gene results. Staph ID/R agreed with mecA gene PCR for all samples and agreed with rpoB/16S rRNA gene sequencing in all cases except for one sample that contained a mixture of two staphylococcal species, one of which Staph ID/R correctly identified, for an overall agreement of 99.0% (P < 0.01). Staph ID/R could potentially be used to positively affect patient management for Staphylococcus-mediated bacteremia. PMID:22170912

  15. Methylation profile analysis of DNA repair genes in hepatocellular carcinoma with MS-MLPA.

    PubMed

    Ozer, Ozge; Bilezikci, Banu; Aktas, Sema; Sahin, Feride I

    2013-12-01

    Hepatocellular carcinoma (HCC) is one of the rare tumors with well-defined risk factors. The multifactorial etiology of HCC can be explained by its complex molecular pathogenesis. In the current study, the methylation status of 7 genes involved in DNA repair mechanisms, namely MLH1, PMS2, MSH6, MSH2, MGMT, MSH3, and MLH3, was investigated in tumor samples from HCC patients, using the methylation-specific-multiplex ligated probe amplification method and the results were correlated with available clinical findings. The most common etiological factor in these cases was the presence of hepatitis B alone (47.2%). Among the 56 cases that were studied, promoter methylation was detected in at least one of the genes in 27 (48.2%) cases, only in 1 gene in 13 (23.2%) cases, and in >1 gene in 14 (25%) cases. Of the 7 genes investigated, methylation was most frequently observed in MSH3, in 14 (25%) cases. Methylation of at least 1 gene was significantly more frequent in patients with single tumors than multifocal tumors. There were significant differences regarding hepatitis B status, Child Class, tumor number, grade, and TNM stage in cases where PMS2 methylation was detected. Our results suggest that methylation of genes involved in mismatch repair may be responsible in the pathogenesis of HCC, and evaluating changes in multiple genes in these pathways simultaneously would be more informative. Despite being a robust and relatively inexpensive method, the methylation-specific-multiplex ligated probe amplification assay could be more extensively applied with improvements in the currently intricate data analysis component.

  16. Evaluation of Intratumoral HER-2 Heterogeneity by Fluorescence In Situ Hybridization in Invasive Breast Cancer: A Single Institution Study

    PubMed Central

    Lee, Sarah; Jung, Woohee; Hong, Soon-Won

    2011-01-01

    This study aimed to determine the incidence and characteristics of HER-2 gene heterogeneity in invasive breast cancer in a single institution. Included were 971 cases of primary invasive breast cancer diagnosed between 2008 and 2010. Fluorescence in situ hybridization (FISH) image files were retrospectively reviewed and HER-2 gene heterogeneity was defined as more than 5% but less than 50% of analyzed invasive tumor cells with a HER-2/Chr17 ratio higher than 2.2, according to the College of American Pathologists guidelines. HER-2 gene heterogeneity was identified in 24 (2.5%) cases. The mean proportion of invasive tumor cells with a HER-2/chromosome 17 ratio higher than 2.2 was 11.6% (range: 5%-25%). Of 24 cases, HER-2 gene status was not amplified in 8, showed borderline amplification in 2, and amplification in 14. All HER-2 amplification cases were low-grade. In conclusion, HER-2 gene heterogeneity of invasive breast cancer is identified in routine FISH examination. This may affect the results of HER-2 gene amplification status in FISH studies. PMID:21860549

  17. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  18. Emergence of MET hyper-amplification at progression to MET and BRAF inhibition in colorectal cancer.

    PubMed

    Oddo, Daniele; Siravegna, Giulia; Gloghini, Annunziata; Vernieri, Claudio; Mussolin, Benedetta; Morano, Federica; Crisafulli, Giovanni; Berenato, Rosa; Corti, Giorgio; Volpi, Chiara Costanza; Buscarino, Michela; Niger, Monica; Dunne, Philip D; Rospo, Giuseppe; Valtorta, Emanuele; Bartolini, Alice; Fucà, Giovanni; Lamba, Simona; Martinetti, Antonia; Di Bartolomeo, Maria; de Braud, Filippo; Bardelli, Alberto; Pietrantonio, Filippo; Di Nicolantonio, Federica

    2017-07-25

    Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAF V600E and MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease progression. The mechanism of resistance to this drug combination is unknown. We analysed plasma circulating tumour DNA obtained at progression by exome sequencing and digital PCR. MET gene and mRNA in situ hybridisation analyses in two bioptic specimens obtained at progression were used to confirm the plasma data. We identified in plasma MET gene hyper-amplification as a potential mechanism underlying therapy resistance. Increased MET gene copy and transcript levels were detected in liver and lymph node metastatic biopsies. Finally, transduction of MET in BRAF mutant colorectal cancer cells conferred refractoriness to BRAF and MET inhibition. We identified in a rectal cancer patient MET gene hyper-amplification as mechanism of resistance to dual BRAF and MET inhibition.

  19. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål).

    PubMed

    Vontas, J G; Small, G J; Hemingway, J

    2000-12-01

    Organophosphorus and carbamate insecticide resistance in Nilaparvata lugens is based on amplification of a carboxylesterase gene, Nl-EST1. An identical gene occurs in susceptible insects. Quantitative real-time PCR was used to demonstrate that Nl-EST1 is amplified 3-7-fold in the genome of resistant compared to susceptible planthoppers. Expression levels were similar to amplification levels, with 1-15-fold more Nl-EST1 mRNA in individual insects and 5-11-fold more Nl-EST1 mRNA in mass whole body homogenates of resistant females compared to susceptibles. These values corresponded to an 8-10-fold increase in esterase activity in the head and thorax of individual resistant insects. Although amplification, expression and activity levels of Nl-EST1 in resistant N. lugens were similar, the correlation between esterase activity and Nl-EST1 mRNA levels in resistant individuals was not linear.

  20. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    PubMed

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. NASBA: A detection and amplification system uniquely suited for RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal:more » sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.« less

  2. Role of the RS1 sequence of the cholera vibrio in amplification of the segment of plasmid DNA carrying the gene of resistance to tetracycline and the genes of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fil'kova, S.L.; Il'ina, T.S.; Gintsburg, A.L.

    1988-11-01

    The hybrid plasmid pCO107, representing cointegrate 14(2)-5(2) of two plasmids, an F-derivative (pOX38) and a PBR322-derivative (pCT105) with an RS1 sequence of the cholera vibrio cloned in its makeup, contains two copes of RS1 at the sites of union of the two plasmids. Using a tetracycline resistance marker (Tc/sup R/) of the plasmid pCT105, clones were isolated which have an elevated level of resistance to tetracycline (an increase of from 4- to 30-fold). Using restriction analysis and the Southern blot method of hybridization it was shown that the increase in the level of resistance of tetracycline is associated with themore » amplification of pCT105 portion of the cointegrate, and that the process of amplification is governed by the presence of direct repeats of the RS1 sequence at its ends. The increase in the number of copies of the pCT105 segment, which contains in its composition the genes of cholera toxin (vct), is accompanied by an increase in toxin production.« less

  3. Molecular detection of the blood meal source of sand flies (Diptera: Psychodidae) in a transmission area of American cutaneous leishmaniasis, Paraná State, Brazil.

    PubMed

    Baum, Maurício; de Castro, Edilene Alcântara; Pinto, Mara Cristina; Goulart, Thais Marchi; Baura, Walter; Klisiowicz, Débora do Rocio; Vieira da Costa-Ribeiro, Magda Clara

    2015-03-01

    The feeding behavior of sand flies provides valuable information about the vector/host interactions and elucidates the epidemiological patterns of American cutaneous leishmaniasis (ACL) transmission. The aim of this study was to identify the blood meal sources of sand flies in endemic areas of leishmaniasis in Paraná State through polymerase chain reaction (PCR) amplification of a prepronociceptin (PNOC) gene fragment and its subsequent DNA sequencing. Moreover, molecular assays were conducted to evaluate the sensitivity and reproducibility of the PNOC gene amplification. Besides that, a time-course digestion test of the blood using sand flies that fed artificially on BALB/c mice was performed. Of 1263 female sand flies collected in the field, 93 (3.6%) specimens were engorged and 27 allowed efficient amplification of the PNOC gene. These flies had fed on equine (Equus caballus), porcine (Sus scrofa) and canine (Canis lupus familiaris) species. The results also showed that the identification of the blood meal sources of the sand flies using the molecular method was directly linked to the level of digestion of the blood (time-course) and not to the amount of blood that had been ingested or to the presence of inhibitors in the blood. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [MLPA technique--principles and use in practice].

    PubMed

    Rusu, Cristina; Sireteanu, Adriana; Puiu, Maria; Skrypnyk, Cristina; Tomescu, E; Csep, Katalin; Creţ, Victoria; Barbarii, Ligia

    2007-01-01

    MLPA (Multiplex Ligation-dependent Probe Amplification) is a recently introduced method, based on PCR principle, useful for the detection of different genetic abnormalities (aneuploidies, gene deletions/duplications, subtelomeric rearrangements, methylation status etc). The technique is simple, reliable and cheap. We present this method to discuss its importance for a modern genetic service and to underline its multiple advantages.

  5. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  6. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms.

    PubMed

    Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan

    2009-12-01

    A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.

  7. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation.

    PubMed

    Lin, Ching-Hung; Liu, Jacqueline M; Lu, Yen-Shen; Lan, Chieh; Lee, Wei-Chung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Chang, Dwan-Ying; Huang, Chiun-Sheng; Cheng, Ann-Lii

    2013-02-01

    The ESR1 gene encodes for oestrogen receptor (ER) α, which plays a crucial role in mammary carcinogenesis and clinical outcome in patients with breast cancer. However, the clinical significance of the ESR1 gene copy number change for breast cancer has not been clarified. ESR1 gene copy number was determined by fluorescence in situ hybridisation (FISH) on tissue sections. A minimum of 20 tumour cells were counted per section, and a FISH ratio of ESR1 gene to CEP6 ≥ 2.0 was considered ESR1 amplification. A ratio >1.2 but <2.0 was considered ESR1 gain. The ESR1 copy number was further measured by quantitative real-time PCR (Q-PCR) with ASXL2 as a reference. FISH revealed ESR1 amplification in six cases (4.0%) and ESR1 gain in 13 cases (8.7%) from a total of 150 cases. ESR1 gain and amplification were more common in older patients (p<0.001), and correlated well with ER protein expression (p=0.03) measured by immunohistochemistry, and ESR1 copy number (p<0.001) measured by Q-PCR. Furthermore, the multivariate analysis revealed that ESR1 amplification was associated with a shorter disease-free survival (HR=5.56, p=0.03) and a shorter overall survival (HR=5.11, p=0.04). In general, the frequency of ESR1 amplification in breast cancer is low when measured by FISH in large sections. ESR1 gain and amplification in breast cancer may be associated with older age and poorer outcomes.

  8. [Detection of CRSPR-Cas system in Streptococcus thermophiles].

    PubMed

    Li, Wan; Liang, Hongzhang; Zhang, Danqing; Wang, Nana; Tang, Yaru; Li, Bailiang; Huo, Guicheng

    2016-04-14

    We aimed to detect the CRSPR-Cas system of six Streptococcus thermophilus. Bioinformatics method was used to predict CRSPR-Cas system of nine S. thermophilus that published in National Center for Biotechnology Information. Four primers were designed according to the flanking sequences of standard strains and the CRISPR-Cas system of six S. thermophilus have been detected by PCR method. S. thermophilus S4 had a Cas9 gene, others all had Cas9 gene, Cas10 gene and Cas9* gene. In addition, 79 and KLDS3.0207 still had Cas3 gene. Signature genes amplification of CRSPR-Cas system could predict the type of CRSPR-Cas system in unsequenced strains, these findings will help establish the foundation for the study of CRSPR-Cas system in lactic acid bacteria.

  9. Rapid detection of newly isolated Tembusu-related Flavivirus by reverse-transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions. PMID:22185513

  10. Detection of mycobacterium tuberculosis in paraffin-embedded pleural biopsy specimens by commercial ribosomal RNA and DNA amplification kits.

    PubMed

    Ruiz-Manzano, J; Manterola, J M; Gamboa, F; Calatrava, A; Monsó, E; Martínez, C; Ausina, V

    2000-09-01

    To evaluate the utility of two gene amplification systems in historical paraffin-embedded pleural biopsy (PEB) tissues from patients with pleural tuberculosis, and to compare the results to those obtained with conventional histologic and microbiological methods. A retrospective study. Seventy-four formalin-fixed PEB tissues collected and stored over 12 years (1984 through 1995) were retrieved. Gene amplifications were performed in 57 tissues from patients with diagnoses of pleural tuberculosis and in 17 from patients with carcinoma as controls, using the first version of the Amplified Mycobacterium tuberculosis Direct Test (AMTDT; Gen-Probe; San Diego, CA) and the LCx Mycobacterium tuberculosis Assay (LCxMTB; Abbott Laboratories; Abbott Park, IL). The sensitivities of the AMTDT and LCxMTB were 52.6% and 63.2%, respectively (p = not statistically significant). The specificity of both tests was 100%. Twenty tissue samples (35.1%) were positive by both systems, and 10 tissues (17.5%) were positive only by the AMTDT, while 16 tissues (28.1%) were positive only by the LCxMTB. Both tests gave negative results for 11 specimens (19.3%). When both tests were used, a positive diagnosis was achieved in 80.7% of the samples. Diagnosis of 73.7% of patient conditions had previously been made by smear examination of pleural biopsy and sputum, pleural liquid, or biopsy culture. The overall diagnostic yield with both culture and amplification techniques was 96.5% (55 of 57 patients) for pleural tuberculosis, with amplification techniques adding 22.8% of the diagnoses. Amplification techniques are useful in archival PEB tissues, providing additional diagnoses beyond culturing, although the sensitivity should be improved, possibly by standardizing protocols.

  11. Comparison of Different Drying Methods for Recovery of Mushroom DNA.

    PubMed

    Wang, Shouxian; Liu, Yu; Xu, Jianping

    2017-06-07

    Several methods have been reported for drying mushroom specimens for population genetic, taxonomic, and phylogenetic studies. However, most methods have not been directly compared for their effectiveness in preserving mushroom DNA. In this study, we compared silica gel drying at ambient temperature and oven drying at seven different temperatures. Two mushroom species representing two types of fruiting bodies were examined: the fleshy button mushroom Agaricus bisporus and the leathery shelf fungus Trametes versicolor. For each species dried with the eight methods, we assessed the mushroom water loss rate, the quality and quantity of extracted DNA, and the effectiveness of using the extracted DNA as a template for PCR amplification of two DNA fragments (ITS and a single copy gene). Dried specimens from all tested methods yielded sufficient DNA for PCR amplification of the two genes in both species. However, differences among the methods for the two species were found in: (i) the time required by different drying methods for the fresh mushroom tissue to reach a stable weight; and (ii) the relative quality and quantity of the extracted genomic DNA. Among these methods, oven drying at 70 °C for 3-4 h seemed the most efficient for preserving field mushroom samples for subsequent molecular work.

  12. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  13. Bloodmeal Identification in Field-Collected Sand Flies From Casa Branca, Brazil, Using the Cytochrome b PCR Method.

    PubMed

    Carvalho, G M L; Rêgo, F D; Tanure, A; Silva, A C P; Dias, T A; Paz, G F; Andrade Filho, J D

    2017-07-01

    PCR-based identification of vertebrate host bloodmeals has been performed on several vectors species with success. In the present study, we used a previously published PCR protocol followed by DNA sequencing based on primers designed from multiple alignments of the mitochondrial cytochrome b gene used to identify avian and mammalian hosts of various hematophagous vectors. The amplification of a fragment encoding a 359 bp sequence of the Cyt b gene yielded recognized amplification products in 192 female sand flies (53%), from a total of 362 females analyzed. In the study area of Casa Branca, Brazil, blood-engorged female sand flies such as Lutzomyia longipalpis (Lutz & Neiva, 1912), Migonemyia migonei (França, 1924), and Nyssomyia whitmani (Antunes & Coutinho, 1939) were analyzed for bloodmeal sources. The PCR-based method identified human, dog, chicken, and domestic rat blood sources. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Highly Sensitive Detection of Low-Abundance White Spot Syndrome Virus by a Pre-Amplification PCR Method.

    PubMed

    Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo

    2017-03-28

    White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.

  15. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  16. Targeting Conserved Genes in Penicillium Species.

    PubMed

    Peterson, Stephen W

    2017-01-01

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of dideoxynucleotide-labeled fragments or NGS. The sequences are compared to a database of validated isolates. Identification of species indicates the potential of the fungus to make particular mycotoxins.

  17. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2).

    PubMed

    English, Diana P; Bellone, Stefania; Cocco, Emiliano; Bortolomai, Ileana; Pecorelli, Sergio; Lopez, Salvatore; Silasi, Dan-Arin; Schwartz, Peter E; Rutherford, Thomas; Santin, Alessandro D

    2013-11-01

    To evaluate PIK3CA mutational status and c-erbB2 gene amplification in a series of primary uterine serous carcinomas (USC) cell lines. To assess the efficacy of GDC-0980, a potent inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2), against primary USC harboring HER2/neu gene amplification and/or PIK3CA mutations. Twenty-two primary USC cell lines were evaluated for c-erbB2 oncogene amplification by fluorescence in situ hybridization (FISH) assays and for PIK3CA gene mutations by direct DNA sequencing of exons 9 and 20. In vitro sensitivity to GDC-0980 was evaluated by flow-cytometry-based viability and proliferation assays. Downstream cellular responses to GDC-0980 were assessed by measuring phosphorylation of the 4-EBP1 protein by flow-cytometry. Five of 22 (22.7%) USC cell lines contained oncogenic PIK3CA mutations although 9 (40.9%) harbored c-erbB2 gene amplification by FISH. GDC-0980 caused a strong differential growth inhibition in FISH+ USC when compared with FISH- (GDC-0980 IC50 mean ± SEM = 0.29 ± 0.05 μM in FISH+ vs 1.09 ± 0.20 μM in FISH- tumors, P = .02). FISH+ USC harboring PIK3CA mutations were significantly more sensitive to GDC-0980 exposure when compared with USC cell lines harboring wild-type PIK3CA (P = .03). GDC-0980 growth-inhibition was associated with a significant and dose-dependent decline in phosphorylated 4-EBP1 levels. Oncogenic PIK3CA mutations and c-erbB2 gene amplification may represent biomarkers to identify patients harboring USC who may benefit most from the use of GDC-0980. Copyright © 2013 Mosby, Inc. All rights reserved.

  18. No Control Genes Required: Bayesian Analysis of qRT-PCR Data

    PubMed Central

    Matz, Mikhail V.; Wright, Rachel M.; Scott, James G.

    2013-01-01

    Background Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. Results In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the “classic” analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Conclusions Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R. PMID:23977043

  19. Improvement of the quantitation method for the tdh+ Vibrio parahaemolyticus in molluscan shellfish based on most-probable- number, immunomagnetic separation, and loop-mediated isothermal amplification

    PubMed Central

    Escalante-Maldonado, Oscar; Kayali, Ahmad Y.; Yamazaki, Wataru; Vuddhakul, Varaporn; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki

    2015-01-01

    Vibrio parahaemolyticus is a marine microorganism that can cause seafood-borne gastroenteritis in humans. The infection can be spread and has become a pandemic through the international trade of contaminated seafood. Strains carrying the tdh gene encoding the thermostable direct hemolysin (TDH) and/or the trh gene encoding the TDH-related hemolysin (TRH) are considered to be pathogenic with the former gene being the most frequently found in clinical strains. However, their distribution frequency in environmental isolates is below 1%. Thus, very sensitive methods are required for detection and quantitation of tdh+ strains in seafood. We previously reported a method to detect and quantify tdh+ V. parahaemolyticus in seafood. This method consists of three components: the most-probable-number (MPN), the immunomagnetic separation (IMS) targeting all established K antigens, and the loop-mediated isothermal amplification (LAMP) targeting the tdh gene. However, this method faces regional issues in tropical zones of the world. Technicians have difficulties in securing dependable reagents in high-temperature climates where we found MPN underestimation in samples having tdh+ strains as well as other microorganisms present at high concentrations. In the present study, we solved the underestimation problem associated with the salt polymyxin broth enrichment for the MPN component and with the immunomagnetic bead-target association for the IMS component. We also improved the supply and maintenance of the dependable reagents by introducing a dried reagent system to the LAMP component. The modified method is specific, sensitive, quick and easy and applicable regardless of the concentrations of tdh+ V. parahaemolyticus. Therefore, we conclude this modified method is useful in world tropical, sub-tropical, and temperate zones. PMID:25914681

  20. Biologically relevant effects of mRNA amplification on gene expression profiles.

    PubMed

    van Haaften, Rachel I M; Schroen, Blanche; Janssen, Ben J A; van Erk, Arie; Debets, Jacques J M; Smeets, Hubert J M; Smits, Jos F M; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris T A

    2006-04-11

    Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other.Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways.

  1. Biologically relevant effects of mRNA amplification on gene expression profiles

    PubMed Central

    van Haaften, Rachel IM; Schroen, Blanche; Janssen, Ben JA; van Erk, Arie; Debets, Jacques JM; Smeets, Hubert JM; Smits, Jos FM; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris TA

    2006-01-01

    Background Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Results Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. Conclusion This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways. PMID:16608515

  2. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin

    PubMed Central

    Grigoraki, Linda; Pipini, Dimitra; Labbé, Pierrick; Chaskopoulou, Alexandra; Weill, Mylene; Vontas, John

    2017-01-01

    Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. PMID:28394886

  3. Amplification of the EGFR gene can be maintained and modulated by variation of EGF concentrations in in vitro models of glioblastoma multiforme

    PubMed Central

    Mokri, Poroshista; Lamp, Nora; Linnebacher, Michael; Classen, Carl Friedrich; Erbersdobler, Andreas; Schneider, Björn

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture. To maintain EGFR amplification in vitro, heterotopic GBM xenografts with elevated EGFR copy number were cultured under varying serum conditions and EGF concentrations. EGFR copy numbers were assessed over several passages by quantitative PCR and chromogenic in situ hybridization. As expected, in control assays with 10% FCS, cells lost EGFR amplification with increasing passage numbers. However, cells cultured under serum free conditions stably maintained elevated copy numbers. Furthermore, EGFR protein expression positively correlated with genomic amplification levels. Although elevated EGFR copy numbers could be maintained over several passages in vitro, levels of EGFR amplification were variable and dependent on the EGF concentration in the medium. In vitro cultures of GBM cells with elevated EGFR copy number and corresponding EGFR protein expression should prove valuable preclinical tools to gain a better understanding of EGFR driven glioblastoma and assist in the development of new improved therapies. PMID:28934307

  4. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed

    Williams, Maggie R; Stedtfeld, Robert D; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R Jan; Latimore, Jo; Hashsham, Syed A

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field.

  5. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed Central

    Stedtfeld, Robert D.; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R. Jan; Latimore, Jo; Hashsham, Syed A.

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable device (Gene-Z) showed the method could be used in the field to obtain results within one hr (from sample to result). Overall, the direct amplification has the potential to simplify the eDNA-based monitoring of multiple aquatic invasive species. Additional studies are warranted to establish quantitative correlation between eDNA copy number, veliger, biomass or organismal abundance in the field. PMID:29036210

  6. Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.

    PubMed

    Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui

    2018-05-01

    The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.

  7. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes.

    PubMed

    Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher

    2016-07-15

    The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.

  8. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9

    PubMed Central

    Kanitkar, Yogendra H.; Stedtfeld, Robert D.; Steffan, Robert J.; Hashsham, Syed A.

    2016-01-01

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures. PMID:26746711

  9. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    PubMed

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-11-01

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection.

    PubMed

    Barreda-García, Susana; González-Álvarez, María José; de-Los-Santos-Álvarez, Noemí; Palacios-Gutiérrez, Juan José; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2015-06-15

    A highly sensitive and robust method for the quantification of specific DNA sequences based on coupling asymmetric helicase-dependent DNA amplification to electrochemical detection is described. This method relies on the entrapment of the amplified ssDNA sequences on magnetic beads followed by a post-amplification hybridization assay to provide an added degree of specificity. As a proof-of-concept a 84-bases long sequence specific of Mycobacterium tuberculosis is amplified at 65°C, providing 3×10(6) amplification after 90 min. Using this system 0.5 aM, corresponding to 15 copies of the target gene in 50 µL of sample, can be successfully detected and reliably quantified under isothermal conditions in less than 4h. The assay has been applied to the detection of M. tuberculosis in sputum, pleural fluid and urine samples. Besides this application, the proposed assays is a powerful and general tool for molecular diagnostic that can be applied to the detection of other specific DNA sequences, taking full advantage of the plethora of genomic information now available. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. DETECTION OF GIARDIA IN ENVIRONMENTAL WATERS BY IMMUNO-PCR AMPLIFICATION METHODS

    EPA Science Inventory

    Genomic DNA was extracted either directly from Giardia muris cysts seeded into environmental surface waters or from cysts isolated by immunomagnetic beads (IMB).A 0.171-kbp segment of the giardin gene was PCR-amplified following "direct extraction" of Giardia DNA from seeded Caha...

  12. DETECTION OF GIARDIA IN ENVIRONMENTAL WATERS BY IMMUNO-PCR AMPLIFICATION METHODS

    EPA Science Inventory

    Genomic DNA was extracted either directly from Giardia muris cysts seeded into environmental surface waters or from cysts isolated by immunomagnetic beads (IMB}. A 0.171-kbp segment of the giardin gene was PCR-amplified following "direct extraction" of Giardia DNA from seeded Cah...

  13. High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay

    PubMed Central

    Quarello, Paola; Garelli, Emanuela; Brusco, Alfredo; Carando, Adriana; Mancini, Cecilia; Pappi, Patrizia; Vinti, Luciana; Svahn, Johanna; Dianzani, Irma; Ramenghi, Ugo

    2012-01-01

    Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy. PMID:22689679

  14. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology.

    PubMed

    Binga, Erik K; Lasken, Roger S; Neufeld, Josh D

    2008-03-01

    Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.

  15. Comparison of Two Methods of RNA Extraction from Formalin-Fixed Paraffin-Embedded Tissue Specimens

    PubMed Central

    Gouveia, Gisele Rodrigues; Ferreira, Suzete Cleusa; Ferreira, Jerenice Esdras; Siqueira, Sheila Aparecida Coelho; Pereira, Juliana

    2014-01-01

    The present study aimed to compare two different methods of extracting RNA from formalin-fixed paraffin-embedded (FFPE) specimens of diffuse large B-cell lymphoma (DLBCL). We further aimed to identify possible influences of variables—such as tissue size, duration of paraffin block storage, fixative type, primers used for cDNA synthesis, and endogenous genes tested—on the success of amplification from the samples. Both tested protocols used the same commercial kit for RNA extraction (the RecoverAll Total Nucleic Acid Isolation Optimized for FFPE Samples from Ambion). However, the second protocol included an additional step of washing with saline buffer just after sample rehydration. Following each protocol, we compared the RNA amount and purity and the amplification success as evaluated by standard PCR and real-time PCR. The results revealed that the extra washing step added to the RNA extraction process resulted in significantly improved RNA quantity and quality and improved success of amplification from paraffin-embedded specimens. PMID:25105117

  16. Genomic Basis of Prostate Cancer Health Disparity Among African-American Men

    DTIC Science & Technology

    2013-07-01

    amplification and deletion) in a limited repertoire of genes Is highly predictive of prostate cancer metastasis. This signature is present in primary...laboratory has demonstrated that the specific genes within metastatic prostate cancers have been altered by amplification (increase in the copy number...or deletion (decrease in the copy number) (3). These genes appeared to have been selected by the advantages that they conveyed to tumors, such as

  17. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation.

    PubMed

    Frithiof, Henrik; Aaltonen, Kristina; Rydén, Lisa

    2016-01-01

    Amplification of the HER-2/neu ( HER-2 ) proto-oncogene occurs in 10%-15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC) analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH)-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line), an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients showing that one out of six patients acquired CTC HER-2 amplification during treatment against metastatic disease. HER-2 amplification status of CTCs can be determined following CellSearch isolation and further enrichment. FISH is superior to protein assessment of HER-2 status in predicting response to HER-2-targeted immunotherapy in breast cancer patients. This assay has the potential of identifying patients with a shift in HER-2 status who may benefit from treatment adjustments.

  18. Clinical significance of Anoctamin-1 gene at 11q13 in the development and progression of head and neck squamous cell carcinomas

    PubMed Central

    Rodrigo, Juan P.; Menéndez, Sofía Tirados; Hermida-Prado, Francisco; Álvarez-Teijeiro, Saúl; Villaronga, M. Ángeles; Alonso-Durán, Laura; Vallina, Aitana; Martínez-Camblor, Pablo; Astudillo, Aurora; Suárez, Carlos; María García-Pedrero, Juana

    2015-01-01

    This study investigates the clinical significance of Anoctamin-1 gene mapping at 11q13 amplicon in both the development and progression of head and neck squamous cell carcinomas (HNSCC). ANO1 protein expression was evaluated by immunohistochemistry in a cohort of 372 surgically treated HNSCC patients and also in 35 laryngeal precancerous lesions. ANO1 gene amplification was determined by real-time PCR in all the laryngeal premalignancies and 60 of the HNSCCs, and molecular data correlated with clinical outcome. ANO1 gene amplification was frequently detected in both premalignant lesions (63%) and HNSCC tumours (58%), whereas concomitant ANO1 expression occurred at a much lower frequency (20 and 22%). Interestingly, laryngeal dysplasias harbouring ANO1 gene amplification showed a higher risk of malignant transformation (HR = 3.62; 95% CI 0.79–16.57; P = 0.097; Cox regression). ANO1 expression and gene amplification showed no significant associations with clinicopathological parameters in HNSCC. However, remarkably ANO1 expression differentially influenced patient survival depending on the tumour site. Collectively, this study provides original evidence demonstrating the distinctive impact of ANO1 expression on HNSCC prognosis depending on the tumour site. PMID:26498851

  19. Male specific genes from dioecious white campion identified by fluorescent differential display.

    PubMed

    Scutt, Charles P; Jenkins, Tom; Furuya, Masaki; Gilmartin, Philip M

    2002-05-01

    Fluorescent differential display (FDD) has been used to screen for cDNAs that are differentially up-regulated in male flowers of the dioecious plant Silene latifolia in which an X/Y chromosome system of sex determination operates. To adapt FDD to the cloning of large numbers of differential cDNAs, a novel method of confirming the differential expression of these has been devised. FDD gels were Southern electro-blotted and probed with mixtures of individual cDNA clones derived from different FDD product ligation reactions. These Southern blots were then stripped and re-probed with further mixtures of individual cloned FDD products to identify the maximum number of recombinant clones carrying the true differential amplification products. Of 135 differential bands identified by FDD, 56 differential amplification products were confirmed; these represent 23 unique differentially expressed genes as determined by virtual Northern analysis and two genes expressed at or below the level of detection by virtual Northern analysis. These two low expressed genes show bands of hybridization on genomic Southern blots that are specific to male plants, indicating that they are derived from, or closely related to, Y chromosome genes.

  20. Genetic diversity analysis of isolates belonging to the Photobacterium phosphoreum species group collected from salmon products using AFLP fingerprinting.

    PubMed

    Jérôme, Marc; Macé, Sabrina; Dousset, Xavier; Pot, Bruno; Joffraud, Jean-Jacques

    2016-01-18

    An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the P. phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Amplification of the BCR/ABL fusion gene clustered on a masked Philadelphia chromosome in a patient with myeloblastic crisis of chronic myelocytic leukemia.

    PubMed

    Gargallo, Patricia M; Cuello, Maria Teresa; Aranguren, Pedro Negri; Larripa, Irene B

    2003-06-01

    Although the chronic phase of chronic myelocytic leukemia (CML) is characterized by the Philadelphia (Ph) chromosome creating a hybrid BCR/ABL gene, additional genetic changes involved in blast crisis are poorly understood. We report a 4-8-fold amplification by tandem duplication of the BCR/ABL fusion gene clustered on a masked Ph chromosome in a 61-year-old male patient with CML in myeloblastic crisis. Our finding suggests that the BCR/ABL amplification may play a role as a novel mechanism in the progression to an aggressive blast transformation in some cases of Ph-positive CML.

  2. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand

    PubMed Central

    Auburn, Sarah; Serre, David; Pearson, Richard D.; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P.; Nosten, Francois; Price, Ric N.

    2016-01-01

    In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax. Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6–kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003–2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. PMID:27456706

  3. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay.

    PubMed

    Goud, Kalal Iravathy; Dayakar, Seetha; Vijayalaxmi, Kolanupaka; Babu, Saidam Jangu; Reddy, P Vijay Anand

    2012-03-01

    Fluorescence in situ hybridization (FISH) is increasingly being recognized as the most accurate and predictive test for HER 2/neu gene amplification and response to therapy in breast cancer. In the present study we investigated HER-2/neu gene amplification by FISH in breast carcinoma tissue specimens and compared the results with that of immunohistochemical (IHC) analysis. A total of 90 breast carcinoma tissue samples were used for immunohistochemical (IHC) and FISH analysis. IHC was performed by using mouse monoclonal antibody to the intracellular domain of HER-2/neu protein. Each slide was scored in a blinded fashion by two pathologists according to the manufacturer's recommended criteria. FISH analysis was performed on paraffin embedded breast tumour tissue sections. The polysomy for centromere 17 (Spec green signal) was read as green signals less than 4 as moderate polysomy, and more than 4 as highly polysomy. Thirty of the 90 patients had negative results by IHC and FISH. Of the 28 patients with the score of 2+ by IHC, 20 were FISH positive for HER-2/neu gene amplification, three were FISH negative and five patients showed equivocal (1.8-2.2) results by FISH. These five cases were retested for IHC and FISH on different paraffin embedded tissue blocks, and all five were found positive for HER-2/neu gene amplification. Twenty five patients with the score of 3+ by IHC were FISH positive for HER-2/neu gene amplification (>2.2). Seven cases with the score of 3+ by IHC were FISH negative for HER-2/neu gene amplification (>2.2), and showed polysomy of chromosome number 17 high polysomy > 4. Our results indicated that HER-2/neu status by FISH should be performed in all cases of breast tumour with a 2+ score by IHC. Cases demonstrating a 3+ score by IHC may be subjected to FISH to rule out polysomy of chromosome 17 which could be falsely interpreted as HER-2/neu overexpression by IHC analysis. There is also a need for establishing a clinically validated cut-off value for HER-2/neu FISH amplification against IHC which may be further compared and calibrated.

  4. Visual detection of Potato Leafroll virus by loop-mediated isothermal amplification of DNA with the GeneFinder™ dye.

    PubMed

    Almasi, Mohammad Amin; Erfan Manesh, Maryam; Jafary, Hossein; Dehabadi, Seyed Mohammad Hosseini

    2013-09-01

    The most common virus affecting potatoes in the field worldwide is Potato Leafroll virus (PLRV), belonging to the family Luteoviridae, genius Plerovirus. There are several molecular methods to detect PLRV including polymerase chain reaction (PCR), Multiplex AmpliDet RNA and double antibody sandwich ELISA (DAS-ELISA). But these techniques take a long time for 3h to two days, requiring sophisticated tools. The aim of this study was to reduce the time required to detect PLRV, using a newly designed loop-mediated isothermal amplification (LAMP) technique requiring only an ordinary water bath or thermoblock. PLRV RNA was extracted from overall 80 infected naturally potato leaves. A set of six novel primers for the LAMP reaction was designed according to the highly conserved sequence of the viral coat protein (CP) gene. LAMP was carried out under isothermal conditions, applying the Bst DNA polymerase enzyme; the LAMP products were detected visually using the GeneFinder™ florescence dye. A positive result using the GeneFinder™ dye was a color change from the original orange to green. Results confirmed LAMP with GeneFinder™ provides a rapid and safe assay for detection of PLRV. Since with other molecular methods, equipping laboratories with a thermocycler or expensive detector systems is unavoidable, this assay was found to be a simple, cost-effective molecular method that has the potential to replace other diagnostic methods in primary laboratories without the need for expensive equipment or specialized techniques. It can also be considered as a reliable alternative viral detection system in further investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene.

    PubMed

    Martorell, Sara; Palanca, Sarai; Maquieira, Ángel; Tortajada-Genaro, Luis A

    2018-03-01

    A blocked recombinase polymerase amplification (blocked-RPA) approach has been developed for the enrichment of mutated templates in heterogeneous specimens as tumor tissues. This isothermal amplification technique opens alternative solutions for meeting the technological demand of physician office laboratories. Herein, the detection of mutations in PIK3CA gene, such as p.E545K, and p.H1047L, is presented. The main element was an oligonucleotide (dideoxycytidine functionalized at 3'-end) which matched with wild-type sequence in the target locus. The amplification was performed operating at 37 °C during 40 min. The results demonstrated that the competition between the upstream primer and the blocker reduced the percentage of amplified wild-type allele, making the detection of the present mutation easier. For mutation discrimination, a fast hybridization assay was performed in microarray format on plastic chip and colorimetric detection. This approach enabled the reliable discrimination of specific mutations against a background of up to 95% wild-type DNA. The applicability of the method, based on the combination of blocked-RPA and low-cost chip hybridization, was successfully proven for the genotyping of various cancer cell lines as well as tumor tissues. The assignations agreed with those provided by next-generation sequencing. Therefore, these investigations would support a personalized approach to patient care based on the molecular signature of human cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  7. A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria.

    PubMed

    Strauss, Christian; Endimiani, Andrea; Perreten, Vincent

    2015-01-01

    A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA.

    PubMed

    Rinke, Jenny; Schäfer, Vivien; Schmidt, Mathias; Ziermann, Janine; Kohlmann, Alexander; Hochhaus, Andreas; Ernst, Thomas

    2013-08-01

    We sought to establish a convenient, sensitive next-generation sequencing (NGS) method for genotyping the 26 most commonly mutated leukemia-associated genes in a single work flow and to optimize this method for low amounts of input template DNA. We designed 184 PCR amplicons that cover all of the candidate genes. NGS was performed with genomic DNA (gDNA) from a cohort of 10 individuals with chronic myelomonocytic leukemia. The results were compared with NGS data obtained from sequencing of DNA generated by whole-genome amplification (WGA) of 20 ng template gDNA. Differences between gDNA and WGA samples in variant frequencies were determined for 2 different WGA kits. For gDNA samples, 25 of 26 genes were successfully sequenced with a sensitivity of 5%, which was achieved by a median coverage of 492 reads (range, 308-636 reads) per amplicon. We identified 24 distinct mutations in 11 genes. With WGA samples, we reliably detected all mutations above 5% sensitivity with a median coverage of 506 reads (range, 256-653 reads) per amplicon. With all variants included in the analysis, WGA amplification by the 2 kits tested yielded differences in variant frequencies that ranged from -28.19% to +9.94% [mean (SD) difference, -0.2% (4.08%)] and from -35.03% to +18.67% [mean difference, -0.75% (5.12%)]. Our method permits simultaneous analysis of a wide range of leukemia-associated target genes in a single sequencing run. NGS can be performed after WGA of template DNA for reliable detection of variants without introducing appreciable bias.

  9. Development of an Ammonium Sulfate DNA Extraction Method for Obtaining Amplifiable DNA in a Small Number of Cells and Its Application to Clinical Specimens

    PubMed Central

    Oh, Seo Young; Kim, Wook Youn; Hwang, Tae Sook; Han, Hye Seung; Lim, So Dug; Kim, Wan Seop

    2013-01-01

    DNA extraction from microdissected cells has become essential for handling clinical specimens with advances in molecular pathology. Conventional methods have limitations for extracting amplifiable DNA from specimens containing a small number of cells. We developed an ammonium sulfate DNA extraction method (A) and compared it with two other methods (B and C). DNA quality and quantity, β-globin amplification, and detectability of two cancer associated gene mutations were evaluated. Method A showed the best DNA yield, particularly when the cell number was very low. Amplification of the β-globin gene using DNA from the SNU 790 cell line and papillary thyroid carcinoma (PTC) cells extracted with Method A demonstrated the strongest band. BRAF V600E mutation analysis using ethanol-fixed PTC cells from a patient demonstrated both a “T” peak increase and an adjacent “A” peak decrease when 25 and 50 cells were extracted, whereas mutant peaks were too low to be analyzed using the other two methods. EGFR mutation analysis using formalin-fixed paraffin-embedded lung cancer tissues demonstrated a mutant peak with Method A, whereas the mutant peak was undetectable with Methods B or C. Method A yielded the best DNA quantity and quality with outstanding efficiency, particularly when paucicellular specimens were used. PMID:23691506

  10. Genes from the 20Q13 amplicon and their uses

    DOEpatents

    Gray, Joe; Collins, Colin; Hwang, Soo-in; Godfrey, Tony; Kowbel, David; Rommens, Johanna

    1999-01-01

    The present invention relates to cDNA sequences from a region of amplification on chromosome 20 associated with disease. The sequences can be used in hybridization methods for the identification of chromosomal abnormalities associated with various diseases. The sequences can also be used for treatment of diseases.

  11. Predicting epidermal growth factor receptor gene amplification status in glioblastoma multiforme by quantitative enhancement and necrosis features deriving from conventional magnetic resonance imaging.

    PubMed

    Dong, Fei; Zeng, Qiang; Jiang, Biao; Yu, Xinfeng; Wang, Weiwei; Xu, Jingjing; Yu, Jinna; Li, Qian; Zhang, Minming

    2018-05-01

    To study whether some of the quantitative enhancement and necrosis features in preoperative conventional MRI (cMRI) had a predictive value for epidermal growth factor receptor (EGFR) gene amplification status in glioblastoma multiforme (GBM).Fifty-five patients with pathologically determined GBMs who underwent cMRI were retrospectively reviewed. The following cMRI features were quantitatively measured and recorded: long and short diameters of the enhanced portion (LDE and SDE), maximum and minimum thickness of the enhanced portion (MaxTE and MinTE), and long and short diameters of the necrotic portion (LDN and SDN). Univariate analysis of each feature and a decision tree model fed with all the features were performed. Area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of features, and predictive accuracy was used to assess the performance of the model.For single feature, MinTE showed the best performance in differentiating EGFR gene amplification negative (wild-type) (nEGFR) GBM from EGFR gene amplification positive (pEGFR) GBM, and it got an AUC of 0.68 with a cut-off value of 2.6 mm. The decision tree model included 2 features MinTE and SDN, and got an accuracy of 0.83 in validation dataset.Our results suggest that quantitative measurement of the features MinTE and SDN in preoperative cMRI had a high accuracy for predicting EGFR gene amplification status in GBM.

  12. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens.

    PubMed

    Press, Michael F; Slamon, Dennis J; Flom, Kerry J; Park, Jinha; Zhou, Jian-Yuan; Bernstein, Leslie

    2002-07-15

    To compare and evaluate HER-2/neu clinical assay methods. One hundred seventeen breast cancer specimens with known HER-2/neu amplification and overexpression status were assayed with four different immunohistochemical assays and two different fluorescence in situ hybridization (FISH) assays. The accuracy of the FISH assays for HER-2/neu gene amplification was high, 97.4% for the Vysis PathVision assay (Vysis, Inc, Downers Grove, IL) and 95.7% for the the Ventana INFORM assay (Ventana, Medical Systems, Inc, Tucson, AZ). The immunohistochemical assay with the highest accuracy for HER-2/neu overexpression was obtained with R60 polyclonal antibody (96.6%), followed by immunohistochemical assays performed with 10H8 monoclonal antibody (95.7%), the Ventana CB11 monoclonal antibody (89.7%), and the DAKO HercepTest (88.9%; Dako, Corp, Carpinteria, CA). Only the sensitivities, and therefore, overall accuracy, of the DAKO Herceptest and Ventana CB11 immunohistochemical assays were significantly different from the more sensitive FISH assay. Based on these findings, the FISH assays were highly accurate, with immunohistochemical assays performed with R60 and 10H8 nearly as accurate. The DAKO HercepTest and the Ventana CB11 immunohistochemical assay were statistically significantly different from the Vysis FISH assay in evaluating these previously molecularly characterized breast cancer specimens.

  13. Development of real-time recombinase polymerase amplification assay for rapid and sensitive detection of canine parvovirus 2.

    PubMed

    Geng, Yunyun; Wang, Jianchang; Liu, Libing; Lu, Yan; Tan, Ke; Chang, Yan-Zhong

    2017-11-06

    Canine parvovirus 2, a linear single-stranded DNA virus belonging to the genus Parvovirus within the family Parvoviridae, is a highly contagious pathogen of domestic dogs and several wild canidae species. Early detection of canine parvovirus (CPV-2) is crucial to initiating appropriate outbreak control strategies. Recombinase polymerase amplification (RPA), a novel isothermal gene amplification technique, has been developed for the molecular detection of diverse pathogens. In this study, a real-time RPA assay was developed for the detection of CPV-2 using primers and an exo probe targeting the CPV-2 nucleocapsid protein gene. The real-time RPA assay was performed successfully at 38 °C, and the results were obtained within 4-12 min for 10 5 -10 1 molecules of template DNA. The assay only detected CPV-2, and did not show cross-detection of other viral pathogens, demonstrating a high level of specificity. The analytical sensitivity of the real-time RPA was 10 1 copies/reaction of a standard DNA template, which was 10 times more sensitive than the common RPA method. The clinical sensitivity of the real-time RPA assay matched 100% (n = 91) to the real-time PCR results. The real-time RPA assay is a simple, rapid, reliable and affordable method that can potentially be applied for the detection of CPV-2 in the research laboratory and point-of-care diagnosis.

  14. Sensitive Visual Detection of AHPND Bacteria Using Loop-Mediated Isothermal Amplification Combined with DNA-Functionalized Gold Nanoparticles as Probes

    PubMed Central

    Arunrut, Narong; Kampeera, Jantana; Sirithammajak, Sarawut; Sanguanrut, Piyachat; Proespraiwong, Porranee; Suebsing, Rungkarn; Kiatpathomchai, Wansika

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production. After VPAHPND was characterized, a major focus of the AHPND control strategy was to monitor broodstock shrimp and post larvae for freedom from VPAHPND by nucleic acid amplification methods, most of which required use of expensive and sophisticated equipment not readily available in a shrimp farm setting. Here, we describe a simpler but equally sensitive approach for detection of VPAHPND based on loop-mediated isothermal amplification (LAMP) combined with unaided visual reading of positive amplification products using a DNA-functionalized, ssDNA-labled nanogold probe (AuNP). The target for the special set of six LAMP primers used was the VPAHPND PirvpA gene. The LAMP reaction was carried out at 65°C for 45 min followed by addition of the red AuNP solution and further incubation at 65°C for 5 min, allowing any PirvpA gene amplicons present to hybridize with the probe. Hybridization protected the AuNP against aggregation, so that the solution color remained red upon subsequent salt addition (positive test result) while unprotected AuNP aggregated and underwent a color change from red to blue and eventually precipitated (negative result). The total assay time was approximately 50 min. The detection limit (100 CFU) was comparable to that of other commonly-used methods for nested PCR detection of VPAHPND and 100-times more sensitive than 1-step PCR detection methods (104 CFU) that used amplicon detection by electrophoresis or spectrophotometry. There was no cross reaction with DNA templates derived from non-AHPND bacteria commonly found in shrimp ponds (including other Vibrio species). The new method significantly reduced the time, difficulty and cost for molecular detection of VPAHPND in shrimp hatchery and farm settings. PMID:27003504

  15. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection of microorganisms with important genes from more other environments.

  16. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  17. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  18. High resolution melting analysis to genotype the most common variants in the HFE gene.

    PubMed

    Marotta, Roberta V; Turri, Olivia; Morandi, Antonella; Murano, Manuela; d'Eril, Gianlodovico Melzi; Biondi, Maria Luisa

    2011-09-01

    High resolution melting (HRM) analysis of PCR amplicons was recently introduced as a closed-tube, rapid, and inexpensive method of genotyping. This study evaluated this system as an option for detecting the three most common mutations in the HFE gene (C282Y, H63D, S65C), accounting for the main form of hereditary haemochromatosis. Ninety samples, previously screened by direct sequencing, and 27 controls were used. The analysis were performed on the Rotor Gene Q, using the commercial HRM mix containing the Eva Green dye (Qiagen). Specific primers allowed the amplification of the regions of interest in the HFE gene. Following amplification, a HRM analysis was conducted to detect DNA variants. The thermal denaturation profiles of the samples were compared with those of the controls. One hundred percent of heterozygous and homozygous samples were readily identified. Heterozygotes were easily identified because heteroduplexes altered the shape of the melting curves, but significant differences were also present in the melting curves of the homozygous carries compared with those of the wild-type subjects. HRM analysis is an appealing technology for HFE gene screening. It is a robust technique that can be widely adopted in diagnostic laboratories to facilitate gene mutation screening.

  19. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma

    PubMed Central

    Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-01-01

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC/CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC/CEP8 ratio ≥ 1.2−< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions. PMID:29765529

  20. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma.

    PubMed

    Gaiser, Timo; Hirsch, Daniela; Orouji, Azadeh; Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-04-20

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC /CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC /CEP8 ratio ≥ 1.2-< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions.

  1. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  2. 3' rapid amplification of cDNA ends (RACE) walking for rapid structural analysis of large transcripts.

    PubMed

    Ozawa, Tatsuhiko; Kondo, Masato; Isobe, Masaharu

    2004-01-01

    The 3' rapid amplification of cDNA ends (3' RACE) is widely used to isolate the cDNA of unknown 3' flanking sequences. However, the conventional 3' RACE often fails to amplify cDNA from a large transcript if there is a long distance between the 5' gene-specific primer and poly(A) stretch, since the conventional 3' RACE utilizes 3' oligo-dT-containing primer complementary to the poly(A) tail of mRNA at the first strand cDNA synthesis. To overcome this problem, we have developed an improved 3' RACE method suitable for the isolation of cDNA derived from very large transcripts. By using the oligonucleotide-containing random 9mer together with the GC-rich sequence for the suppression PCR technology at the first strand of cDNA synthesis, we have been able to amplify the cDNA from a very large transcript, such as the microtubule-actin crosslinking factor 1 (MACF1) gene, which codes a transcript of 20 kb in size. When there is no splicing variant, our highly specific amplification allows us to perform the direct sequencing of 3' RACE products without requiring cloning in bacterial hosts. Thus, this stepwise 3' RACE walking will help rapid characterization of the 3' structure of a gene, even when it encodes a very large transcript.

  3. Dual-cyclical nucleic acid strand-displacement polymerization based signal amplification system for highly sensitive determination of p53 gene.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Li, Hongling; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2016-12-15

    In the present study, we proposed a novel dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) based signal amplification system for highly sensitive determination of tumor suppressor genes. The system primarily consisted of a signaling hairpin probe (SHP), a label-free hairpin probe (LHP) and an initiating primer (IP). The presence of target DNA was able to induce one CNDP through continuous process of ligation, polymerization and nicking, leading to extensively accumulation of two nicked triggers (NT1 and NT2). Intriguingly, the NT1 could directly hybridize SHP, while the NT2 could act as the target analog to induce another CNDP. The resulting dual-CNDP contributed the striking signal amplification, and only a very weak blank noise existed since the ligation template of target was not involved. In this case, the target could be detected in a wide linear range (5 orders of magnitude), and a low detection limit (78 fM) was obtained, which is superior to most of the existing fluorescent methods. Moreover, the dual-CNDP sensing system provided a high selectivity towards target DNA against mismatched target and was successfully applied to analysis of target gene extracted from cancer cells or in human serum-contained samples, indicating its great potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. New, Improved Version of the mCOP-PCR Screening System for Detection of Spinal Muscular Atrophy Gene (SMN1) Deletion.

    PubMed

    Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide

    2017-09-07

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.

  5. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification

    PubMed Central

    Schouten, Jan P.; McElgunn, Cathal J.; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-01-01

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences. PMID:12060695

  6. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

    PubMed

    Schouten, Jan P; McElgunn, Cathal J; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-06-15

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.

  7. Method of artificial DNA splicing by directed ligation (SDL).

    PubMed Central

    Lebedenko, E N; Birikh, K R; Plutalov, O V; Berlin YuA

    1991-01-01

    An approach to directed genetic recombination in vitro has been devised, which allows for joining together, in a predetermined way, a series of DNA segments to give a precisely spliced polynucleotide sequence (DNA splicing by directed ligation, SDL). The approach makes use of amplification, by means of several polymerase chain reactions (PCR), of a chosen set of DNA segments. Primers for the amplifications contain recognition sites of the class IIS restriction endonucleases, which transform blunt ends of the amplification products into protruding ends of unique primary structures, the ends to be used for joining segments together being mutually complementary. Ligation of the mixture of the segments so synthesized gives the desired sequence in an unambiguous way. The suggested approach has been exemplified by the synthesis of a totally processed (intronless) gene encoding human mature interleukin-1 alpha. Images PMID:1662363

  8. [PCR-based evaluation of sequence specificity of DNA fragmentation by ultrasound].

    PubMed

    Garafutdinov, R R; Galimova, A A; Sakhabutdinova, A R; Chemeris, A V

    2016-01-01

    Ultrasonic fragmentation, which is a simple and convenient method for the mechanical degradation of DNA, is widely used in modern genome studies as one of the sample preparation steps. It has been recently found that the DNA breaks occur more often in the regions containing 5'-CG-3' dinucleotides. We studied the influence of the 5'-CG-3' dinucleotides on the efficiency of the 28S rRNA gene amplification during PCR with sonicated DNA of Mantis religiosa. It was shown that the amplification rate depends on the template length and the number of 5'-CG-3' dinucleotides. Amplification of the DNA regions with a higher 5'-CG-3' density is less efficient because of their higher sensitivity to ultrasound. The amount of the amplified DNA templates is inversely proportional to the 5'-CG-3'number.

  9. Detection of Fungi from an Indoor Environment using Loop-mediated Isothermal Amplification (LAMP) Method.

    PubMed

    Nakayama, Takako; Yamazaki, Takashi; Yo, Ayaka; Tone, Kazuya; Mahdi Alshahni, Mohamed; Fujisaki, Ryuichi; Makimura, Koichi

    2017-01-01

     Loop-mediated isothermal amplification (LAMP) is a useful DNA detection method with high specificity and sensitivity. The LAMP reaction is carried out within a short time at a constant temperature without the need for thermal cycling. We developed a LAMP primer set for detecting a wide range of fungi by aligning the sequences of the large subunit ribosomal RNA gene of Candida albicans (Ascomycota), Cryptococcus neoformans (Basidiomycota), and Mucor racemosus (Mucorales). The threshold of C. albicans rDNA as template with our LAMP primer set was in the range of 10-100 copies per a reaction. In this study, we evaluated the correlation between colony forming units (CFU) and LAMP detection rate using the LAMP method for environmental fungi. The LAMP method should be a useful means of detecting fungi in indoor environments, disaster areas, or even in confined manned spacecraft to prevent allergies or infections caused by fungi.

  10. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-08-03

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.

  11. Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe

    2016-09-01

    Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection. © 2016 The Author(s).

  12. Mu-driven transposition of recombinant mini-Mu unit DNA in the Corynebacterium glutamicum chromosome.

    PubMed

    Gorshkova, Natalya V; Lobanova, Juliya S; Tokmakova, Irina L; Smirnov, Sergey V; Akhverdyan, Valerii Z; Krylov, Alexander A; Mashko, Sergey V

    2018-03-01

    A dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C. glutamicum chromosome (≈ 2 × 10 -4 per cell) occurred mainly through the replicative pathway via cointegrate formation followed by possible resolution. Optimizing the E location in the mini-Mu unit significantly increased the efficiency of Mu-driven intramolecular transposition-amplification in C. glutamicum as well as in gram-negative bacteria. The new C. glutamicum genome modification strategy that was developed allows the consequent independent integration/amplification/fixation of target genes at high copy numbers. After integration/amplification of the first mini-Mu(LER) unit in the C. glutamicum chromosome, the E-element, which is bracketed by lox-like sites, is excised by Cre-mediated fashion, thereby fixing the truncated mini-Mu(LR) unit in its position for the subsequent integration/amplification of new mini-Mu(LER) units. This strategy was demonstrated using the genes for the citrine and green fluorescent proteins, yECitrine and yEGFP, respectively.

  13. [Alterations of c-Myc and c-erbB-2 genes in ovarian tumours].

    PubMed

    Pastor, Tibor; Popović, Branka; Gvozdenović, Ana; Boro, Aleksandar; Petrović, Bojana; Novaković, Ivana; Puzović, Dragana; Luković, Ljiljana; Milasin, Jelena

    2009-01-01

    According to clinical and epidemiological studies, ovarian cancer ranks fifth in cancer deaths among women. The causes of ovarian cancer remain largely unknown but various factors may increase the risk of developing it, such as age, family history of cancer, childbearing status etc. This cancer results from a succession of genetic alterations involving oncogenes and tumour suppressor genes, which have a critical role in normal cell growth regulation. Mutations and/or overexpression of three oncogenes, c-erbB-2, c-Myc and K-ras, and of the tumour suppressor gene p53, have been frequently observed in a sporadic ovarian cancer. The aim of the present study was to analyse c-Myc and c-erbB-2 oncogene alterations, specifically amplification, as one of main mechanisms of their activation in ovarian cancers and to establish a possible association with the pathogenic process. DNA was isolated from 15 samples of malignant and 5 benign ovarian tumours, using proteinase K digestion, followed by phenol-chloroform isoamyl extraction and ethanol precipitation. C-Myc and c-erbB-2 amplification were detected by differential PCR. The level of gene copy increase was measured using the Scion image software. The amplification of both c-Myc and c-erbB-2 was detected in 26.7% of ovarian epithelial carcinoma specimens. Only one tumour specimen concomitantly showed increased gene copy number for both studied genes. Interestingly, besides amplification, gene deletion was also detected (26.7% for c-erbB-2). Most of the ovarian carcinomas with alterations in c-Myc and c-erbB-2 belonged to advanced FIGO stages. The amplification of c-Myc and c-erbB-2 oncogenes in ovarian epithelial carcinomas is most probably a late event in the pathogenesis conferring these tumours a more aggressive biological behaviour. Similarly, gene deletions point to genomic instability in epithelial carcinomas in higher clinical stages as the result of clonal evolution and selection.

  14. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH.

    PubMed

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-11-07

    Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets.

  15. Removal of inhibitor(s) of the polymerase chain reaction from formalin fixed, paraffin wax embedded tissues.

    PubMed

    An, S F; Fleming, K A

    1991-11-01

    A problem associated with use of the polymerase chain reaction to amplify specific DNA fragments from formalin fixed, paraffin wax embedded tissues is the not infrequent failure of amplification. One possible reason for this could be the presence of inhibitor(s), which interfere with the activity of the reaction. It has been shown that such inhibitor(s) exist when amplifying the human beta globin gene (which exists in human genomic DNA as a single copy gene) from routine clinical samples. A variety of methods to remove such inhibitor(s) were investigated. The results indicate that inhibitor(s) are removed by proteinase K digestion, followed by purification with phenol/chloroform, and centrifugation through a Centricon-30 membrane (30,000 molecular weight cut off). Other factors, including the length and concentration of the DNA sequence to be amplified, can also affect amplification.

  16. An expanded nuclear phylogenomic PCR toolkit for Sapindales1

    PubMed Central

    Collins, Elizabeth S.; Gostel, Morgan R.; Weeks, Andrea

    2016-01-01

    Premise of the study: We tested PCR amplification of 91 low-copy nuclear gene loci in taxa from Sapindales using primers developed for Bursera simaruba (Burseraceae). Methods and Results: Cross-amplification of these markers among 10 taxa tested was related to their phylogenetic distance from B. simaruba. On average, each Sapindalean taxon yielded product for 53 gene regions (range: 16–90). Arabidopsis thaliana (Brassicales), by contrast, yielded product for two. Single representatives of Anacardiaceae and Rutacaeae yielded 34 and 26 products, respectively. Twenty-six primer pairs worked for all Burseraceae species tested if highly divergent Aucoumea klaineana is excluded, and eight of these amplified product in every Sapindalean taxon. Conclusions: Our study demonstrates that customized primers for Bursera can amplify product in a range of Sapindalean taxa. This collection of primer pairs, therefore, is a valuable addition to the toolkit for nuclear phylogenomic analyses of Sapindales and warrants further investigation. PMID:28101434

  17. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

    PubMed Central

    Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  18. ESR1 gene amplification in endometrial carcinomas: a clinicopathological analysis.

    PubMed

    Rahman, Mohammed Tanjimur; Nakayama, Kentaro; Rahman, Munmun; Ishikawa, Masako; Katagiri, Hiroshi; Katagiri, Atsuko; Ishibashi, Tomoka; Sato, Emi; Iida, Kouji; Ishikawa, Noriyuki; Nakayama, Naomi; Miyazaki, Kohji

    2013-09-01

    This study investigated the clinicopathological significance of estrogen receptor 1 (ESR1) gene amplification and its relationship to phosphatase and tensin homolog (PTEN), human epidermal growth factor receptor 2 (HER2), MutL homolog 1 (MLH1), p53, and AT rich interactive domain 1A (ARID1A) expression in endometrial carcinomas. ESR1 amplification and expression were assessed by fluorescence in situ hybridization and immunohistochemistry. Clinical data were collected by retrospective chart review. ESR1 amplification was identified in 13 out of 111 (11.7%) endometrial carcinomas. No significant association was observed between ESR1 amplification and International Federation of Gynecology and Obstetrics (FIGO) stage (p=0.17), histological grade (p=0.35), lymph node metastasis (p=0.51), or deep myometrial invasion (p=0.46). ESR1 amplification was independent of PTEN, p53, HER2, MLH1, and ARID1A protein expression. Patients without estrogen receptor (ER) or progesterone receptor (PR) expression had shorter progression-free and overall survival than those with ER or PR expression (p<0.01). ESR1 amplification is independent of known clinicopathological factors related to poor prognosis and PTEN, p53, HER2, MLH1, and ARID1A protein expression, suggesting ESR1 amplification may be an early event in endometrial carcinoma development.

  19. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  20. Fibroblast growth factor receptor 1 gene amplification is associated with poor survival in patients with resected esophageal squamous cell carcinoma

    PubMed Central

    Kim, Dae Joon; Lee, Chang-Geol; Hur, Jin; Chung, Hyunsoo; Park, Jun Chul; Jung, Da Hyun; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan; Kim, Hye Ryun; Moon, Yong Wha; Kim, Joo Hang; Shim, Young Mog; Jewell, Susan S.; Kim, Hyunki; Choi, Yoon-La; Cho, Byoung Chul

    2015-01-01

    To investigate the frequency and the prognostic impact of fibroblast growth factor receptor 1 (FGFR1) gene amplification in 526 curatively resected esophageal squamous cell carcinoma (ESCC). Using fluorescent in situ hybridization, high amplification was defined by an FGFR1/centromer 8 ratio is ≥ 2.0, or average number of FGFR1 signals/tumor cell nucleus ≥ 6.0, or percentage of tumor cells containing ≥ 15 FGFR1 signals or large cluster in ≥ 10%. Low amplification was defined by ≥ 5 FGFR1 signals in ≥ 50%. FGFR2 and FGFR3 mutations were assessed by direct sequencing in 388 cases and no mutation was detected. High and low amplification were detected in 8.6% and 1.1%, respectively. High FGFR1 amplification had significantly shorter disease-free survival (34.0 vs 158.5 months P=0.019) and overall survival (52.2 vs not reached P=0.022) than low/no amplification group. After adjusting for sex, smoking, stage, histology, and adjuvant treatment, high FGFR1 amplification had a greater risk of recurrence (adjusted hazard ratio [AHR], 1.6; P=0.029) and death (AHR, 1.53; P=0.050). High amplification was significantly higher in current smokers than former and never-smokers (Ptrend<0.001) and increased proportional to smoking dosage. High FGFR1 amplification is a frequent oncogenic alteration and an independent poor prognostic factor in resected ESCC. PMID:25537505

  1. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand.

    PubMed

    Auburn, Sarah; Serre, David; Pearson, Richard D; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, Francois; Price, Ric N

    2016-10-15

    In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq.

    PubMed

    Nakayama, Manabu; Oda, Hirotsugu; Nakagawa, Kenji; Yasumi, Takahiro; Kawai, Tomoki; Izawa, Kazushi; Nishikomori, Ryuta; Heike, Toshio; Ohara, Osamu

    2017-03-01

    Autoinflammatory diseases occupy one of a group of primary immunodeficiency diseases that are generally thought to be caused by mutation of genes responsible for innate immunity, rather than by acquired immunity. Mutations related to autoinflammatory diseases occur in 12 genes. For example, low-level somatic mosaic NLRP3 mutations underlie chronic infantile neurologic, cutaneous, articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID). In current clinical practice, clinical genetic testing plays an important role in providing patients with quick, definite diagnoses. To increase the availability of such testing, low-cost high-throughput gene-analysis systems are required, ones that not only have the sensitivity to detect even low-level somatic mosaic mutations, but also can operate simply in a clinical setting. To this end, we developed a simple method that employs two-step tailed PCR and an NGS system, MiSeq platform, to detect mutations in all coding exons of the 12 genes responsible for autoinflammatory diseases. Using this amplicon sequencing system, we amplified a total of 234 amplicons derived from the 12 genes with multiplex PCR. This was done simultaneously and in one test tube. Each sample was distinguished by an index sequence of second PCR primers following PCR amplification. With our procedure and tips for reducing PCR amplification bias, we were able to analyze 12 genes from 25 clinical samples in one MiSeq run. Moreover, with the certified primers designed by our short program-which detects and avoids common SNPs in gene-specific PCR primers-we used this system for routine genetic testing. Our optimized procedure uses a simple protocol, which can easily be followed by virtually any office medical staff. Because of the small PCR amplification bias, we can analyze simultaneously several clinical DNA samples with low cost and can obtain sufficient read numbers to detect a low level of somatic mosaic mutations.

  3. Amplification of the Gp41 gene for detection of mutations conferring resistance to HIV-1 fusion inhibitors on genotypic assay

    NASA Astrophysics Data System (ADS)

    Tanumihardja, J.; Bela, B.

    2017-08-01

    Fusion inhibitors have potential for future use in HIV control programs in Indonesia, so the capacity to test resistance to such drugs needs to be developed. Resistance-detection with a genotypic assay began with amplification of the target gene, gp41. Based on the sequence of the two most common HIV subtypes in Indonesia, AE and B, a primer pair was designed. Plasma samples containing both subtypes were extracted to obtain HIV RNA. Using PCR, the primer pair was used to produce the amplification product, the identity of which was checked based on length under electrophoresis. Eleven plasma samples were included in this study. One-step PCR using the primer pair was able to amplify gp41 from 54.5% of the samples, and an unspecific amplification product was seen in 1.1% of the samples. Amplification failed in 36.4% of the samples, which may be due to an inappropriate primer sequence. It was also found that the optimal annealing temperature for producing the single expected band was 57.2 °C. With one-step PCR, the designed primer pair amplified the HIV-1 gp41 gene from subtypes AE and B. However, further research should be done to determine the conditions that will increase the sensitivity and specificity of the amplification process.

  4. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.

  5. Topoisomerase IIα in Wilms' tumour: gene alterations and immunoexpression

    PubMed Central

    Tretiakova, M; Turkyilmaz, M; Grushko, T; Kocherginsky, M; Rubin, C; Teh, B; Yang, X J

    2006-01-01

    Background Topoisomerase IIα (topoIIα) is an essential enzyme gene in regulating DNA structure and cell proliferation and is encoded by the TOP2A . Using cDNA microarray analysis, TOP2A has been reported to be one of the top genes overexpressed in Wilms' tumour. Aim To evaluate the role of TopoIIα in Wilms' tumorigenesis and its prognostic value. Methods TOP2A gene copy numbers were determined using the fluorescence in situ hybridisation technique, and protein expression levels of TopoIIα by immunostaining in 39 samples of primary and 18 samples of metastatic Wilms' tumour. Results TOP2A gene amplification was detected only in anaplastic Wilms' tumours, and none of the Wilms' tumours showed deletion of the TOP2A gene. TopoIIα protein overexpression was detected in 97% of Wilms' tumours, and correlated strongly with proliferation, as measured by Ki‐67 (r = 0.85). The high TopoIIα expression was associated with the presence of vascular invasion, prominent apoptosis, metastases and adverse clinical outcomes (p<0.05). Conclusions Our findings suggest that TopoIIα overexpression in Wilms' tumours is caused by a change at the transcription level, except for anaplastic Wilms' tumours, in which gene amplification was present. High levels of TopoIIα protein are correlated with tumour aggressiveness. The assessment of TopoIIα expression in Wilms' tumour may have prognostic value. PMID:16556665

  6. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    NASA Astrophysics Data System (ADS)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c

  7. Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.

    2010-01-01

    Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…

  8. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    USDA-ARS?s Scientific Manuscript database

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  9. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae.

    PubMed

    Zhou, Ya; Xiao, Jingfan; Ma, Xin; Wang, Qiyao; Zhang, Yuanxing

    2018-06-01

    In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 10 2 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.

  10. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  11. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip.

    PubMed

    Cao, Zengguo; Wang, Hualei; Wang, Lina; Li, Ling; Jin, Hongli; Xu, Changping; Feng, Na; Wang, Jianzhong; Li, Qian; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 10(2) copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 10(1.5) TCID50/ml and 10(1.33) TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  12. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification.

    PubMed

    Hayasaka, Daisuke; Aoki, Kotaro; Morita, Kouichi

    2013-03-04

    Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. TBEV RT-LAMP assay offers a sensitive, specific, rapid and easy-to-handle method for the detection of TBEV RNA in tick samples and this may be applied in the clinical samples collected from TBE-suspected patients.

  13. Development and Application of Loop-Mediated Isothermal Amplification Assays for Rapid Visual Detection of cry2Ab and cry3A Genes in Genetically-Modified Crops

    PubMed Central

    Li, Feiwu; Yan, Wei; Long, Likun; Qi, Xing; Li, Congcong; Zhang, Shihong

    2014-01-01

    The cry2Ab and cry3A genes are two of the most important insect-resistant exogenous genes and had been widely used in genetically-modified crops. To develop more effective alternatives for the quick identification of genetically-modified organisms (GMOs) containing these genes, a rapid and visual loop-mediated isothermal amplification (LAMP) method to detect the cry2Ab and cry3A genes is described in this study. The LAMP assay can be finished within 60 min at an isothermal condition of 63 °C. The derived LAMP products can be obtained by a real-time turbidimeter via monitoring the white turbidity or directly observed by the naked eye through adding SYBR Green I dye. The specificity of the LAMP assay was determined by analyzing thirteen insect-resistant genetically-modified (GM) crop events with different Bt genes. Furthermore, the sensitivity of the LAMP assay was evaluated by diluting the template genomic DNA. Results showed that the limit of detection of the established LAMP assays was approximately five copies of haploid genomic DNA, about five-fold greater than that of conventional PCR assays. All of the results indicated that this established rapid and visual LAMP assay was quick, accurate and cost effective, with high specificity and sensitivity. In addition, this method does not need specific expensive instruments or facilities, which can provide a simpler and quicker approach to detecting the cry2Ab and cry3A genes in GM crops, especially for on-site, large-scale test purposes in the field. PMID:25167136

  14. Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops.

    PubMed

    Li, Feiwu; Yan, Wei; Long, Likun; Qi, Xing; Li, Congcong; Zhang, Shihong

    2014-08-27

    The cry2Ab and cry3A genes are two of the most important insect-resistant exogenous genes and had been widely used in genetically-modified crops. To develop more effective alternatives for the quick identification of genetically-modified organisms (GMOs) containing these genes, a rapid and visual loop-mediated isothermal amplification (LAMP) method to detect the cry2Ab and cry3A genes is described in this study. The LAMP assay can be finished within 60 min at an isothermal condition of 63 °C. The derived LAMP products can be obtained by a real-time turbidimeter via monitoring the white turbidity or directly observed by the naked eye through adding SYBR Green I dye. The specificity of the LAMP assay was determined by analyzing thirteen insect-resistant genetically-modified (GM) crop events with different Bt genes. Furthermore, the sensitivity of the LAMP assay was evaluated by diluting the template genomic DNA. Results showed that the limit of detection of the established LAMP assays was approximately five copies of haploid genomic DNA, about five-fold greater than that of conventional PCR assays. All of the results indicated that this established rapid and visual LAMP assay was quick, accurate and cost effective, with high specificity and sensitivity. In addition, this method does not need specific expensive instruments or facilities, which can provide a simpler and quicker approach to detecting the cry2Ab and cry3A genes in GM crops, especially for on-site, large-scale test purposes in the field.

  15. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method.

    PubMed

    Maeda, Hiroshi; Kokeguchi, Susumu; Fujimoto, Chiyo; Tanimoto, Ichiro; Yoshizumi, Wakako; Nishimura, Fusanori; Takashiba, Shogo

    2005-02-01

    A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.

  16. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies.

    PubMed

    Foster, S P; Young, S; Williamson, M S; Duce, I; Denholm, I; Devine, G J

    2003-08-01

    We show that single-point mutations conferring target-site resistance (kdr) to pyrethroids and DDT in aphids and houseflies, and gene amplification conferring metabolic resistance (carboxylesterase) to organophosphates and carbamates in aphids, can have deleterious pleiotropic effects on fitness. Behavioural studies on peach-potato aphids showed that a reduced response to alarm pheromone was associated with both gene amplification and the kdr target-site mutation. In this species, gene amplification was also associated with a decreased propensity to move from senescing leaves to fresh leaves at low temperature. Housefly genotypes possessing the identical kdr mutation were also shown to exhibit behavioural differences in comparison with susceptible insects. In this species, resistant individuals showed no positional preference along a temperature gradient while susceptible genotypes exhibited a strong preference for warmer temperatures.

  17. Frequency-encoded laser-induced fluorescence for multiplexed detection in infrared-mediated quantitative PCR

    PubMed Central

    Schrell, Adrian M.; Roper, Michael G.

    2014-01-01

    A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488-nm and 561-nm were modulated at 73- and 137-Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-blind manner using a single photomultiplier tube for detection and demodulated by frequency analysis. The resulting frequency domain signal resolved the contribution from the two fluorophores as well as the background from the IR lamp. The detection method was successfully used to measure amplification of DNA samples containing 104 – 107 starting copies of template producing an amplification efficiency of 96%. The utility of this methodology was further demonstrated by simultaneous amplification of two genes from human genomic DNA using different color TaqMan probes. This method of multiplexing fluorescence detection with IR-qPCR is ideally suited as it allowed isolation of the signals of interest from the background in the frequency domain and is expected to further reduce the complexity of multiplexed microfluidic IR-qPCR instrumentation. PMID:24448431

  18. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum

    PubMed Central

    Duan, Yabing; Zhang, Xiaoke; Ge, Changyan; Wang, Yong; Cao, Junhong; Jia, Xiaojing; Wang, Jianxin; Zhou, Mingguo

    2014-01-01

    Resistance of Fusarium graminearum to carbendazim is caused by point mutations in the β2-tubulin gene. The point mutation at codon 167 (TTT → TAT, F167Y) occurs in more than 90% of field resistant isolates in China. To establish a suitable method for rapid detection of the F167Y mutation in F. graminearum, an efficient and simple method with high specificity was developed based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed and optimized to specially distinguish the F167Y mutation genotype. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue dye (HNB) was added prior to amplification, samples with DNA of the F167Y mutation developed a characteristic sky blue color after the reaction but those without DNA or with different DNA did not. Results of HNB staining method were reconfirmed by gel electrophoresis. The developed LAMP had good specificity, stability and repeatability and was suitable for monitoring carbendazim-resistance populations of F. graminearum in agricultural production. PMID:25403277

  19. Optimization of Saanen sperm genes amplification: evaluation of standardized protocols in genetically uncharacterized rural goats reared under a subtropical environment.

    PubMed

    Barbour, Elie K; Saade, Maya F; Sleiman, Fawwak T; Hamadeh, Shady K; Mouneimne, Youssef; Kassaifi, Zeina; Kayali, Ghazi; Harakeh, Steve; Jaber, Lina S; Shaib, Houssam A

    2012-10-01

    The purpose of this research is to optimize quantitatively the amplification of specific sperm genes in reference genomically characterized Saanen goat and to evaluate the standardized protocols applicability on sperms of uncharacterized genome of rural goats reared under subtropical environment for inclusion in future selection programs. The optimization of the protocols in Saanen sperms included three production genes (growth hormone (GH) exons 2, 3, and 4, αS1-casein (CSN1S1), and α-lactalbumin) and two health genes (MHC class II DRB and prion (PrP)). The optimization was based on varying the primers concentrations and the inclusion of a PCR cosolvent (Triton X). The impact of the studied variables on statistically significant increase in the yield of amplicons was noticed in four out of five (80%) optimized protocols, namely in those related to GH, CSN1S1, α-lactalbumin, and PrP genes (P < 0.05). There was no significant difference in the yield of amplicons related to MHC class II DRB gene, regardless of the variables used (P > 0.05). The applicability of the optimized protocols of Saanen sperm genes on amplification of uncharacterized rural goat sperms revealed a 100% success in tested individuals for amplification of GH, CSN1S1, α-lactalbumin, and MHC class II DRB genes and a 75% success for the PrP gene. The significant success in applicability of the Saanen quantitatively optimized protocols to other uncharacterized genome of rural goats allows for their inclusion in future selection, targeting the sustainability of this farming system in a subtropical environment and the improvement of the farmers livelihood.

  20. [Preimplantation genetic diagnosis of Duchenne muscular dystrophy by single cell triplex PCR].

    PubMed

    Wu, Yue-Li; Wu, Ling-Qian; Li, Yan-Ping; Liu, Dong-E; Zeng, Qiao; Zhu, Hai-Yan; Pan, Qian; Liang, De-Sheng; Hu, Hao; Long, Zhi-Gao; Li, Juan; Dai, He-Ping; Xia, Kun; Xia, Jia-Hui

    2007-04-01

    To detect two exons of Duchenne muscular dystrophy (DMD) gene and a gender discrimination locus amelogenin gene by single cell triplex PCR, and to evaluate the possibility of this technique for preimplantation genetic diagnosis (PGD) in DMD family with DMD deletion mutation. Single lymphocytes from a normal male, a normal female, two DMD patients (exon 8 and 47 deleted, respectively) and single blastomeres from the couples treated by the in vitro fertilization pre-embryo transfer (IVF-ET) and without family history of DMD were obtained. Exons 8 and 47 of DMD gene were amplified by a triplex PCR assay, the amelogenin gene on X and Y chromosomes were co-amplified to analyze the correlation between embryo gender and deletion status. In the normal single lymphocytes, the amplification rate of exons 8 and 47 of DMD and amelogenin gene were 93.8%, 93.8%, and 95.3% respectively. The false positive rate was 3.3%. In the exon 8 deleted DMD patient, the amplification rate of exon 47 of DMD and amelogenin gene was 95.8%, and the false positive rate was 3.3%. In the exon 47 deleted DMD patient, the amplification rate of exon 8 of DMD and amelogenin gene was 95.8%, and the false positive rate was 0. In the single blastomeres, the amplification rate of exons 8 and 47 of DMD and amelogenin gene was 82.5%, 80.0% and 77.5%, respectively, and the false positive rate was 0. The single cell triplex PCR protocol for the detection of DMD and amelogenin gene is highly sensitive, specific and reliable, and can be used for PGD in those DMD families with DMD deletion mutation.

  1. Identification of Clinical Coryneform Bacterial Isolates: Comparison of Biochemical Methods and Sequence Analysis of 16S rRNA and rpoB Genes▿

    PubMed Central

    Adderson, Elisabeth E.; Boudreaux, Jan W.; Cummings, Jessica R.; Pounds, Stanley; Wilson, Deborah A.; Procop, Gary W.; Hayden, Randall T.

    2008-01-01

    We compared the relative levels of effectiveness of three commercial identification kits and three nucleic acid amplification tests for the identification of coryneform bacteria by testing 50 diverse isolates, including 12 well-characterized control strains and 38 organisms obtained from pediatric oncology patients at our institution. Between 33.3 and 75.0% of control strains were correctly identified to the species level by phenotypic systems or nucleic acid amplification assays. The most sensitive tests were the API Coryne system and amplification and sequencing of the 16S rRNA gene using primers optimized for coryneform bacteria, which correctly identified 9 of 12 control isolates to the species level, and all strains with a high-confidence call were correctly identified. Organisms not correctly identified were species not included in the test kit databases or not producing a pattern of reactions included in kit databases or which could not be differentiated among several genospecies based on reaction patterns. Nucleic acid amplification assays had limited abilities to identify some bacteria to the species level, and comparison of sequence homologies was complicated by the inclusion of allele sequences obtained from uncultivated and uncharacterized strains in databases. The utility of rpoB genotyping was limited by the small number of representative gene sequences that are currently available for comparison. The correlation between identifications produced by different classification systems was poor, particularly for clinical isolates. PMID:18160450

  2. Tracking B-Cell Repertoires and Clonal Histories in Normal and Malignant Lymphocytes.

    PubMed

    Weston-Bell, Nicola J; Cowan, Graeme; Sahota, Surinder S

    2017-01-01

    Methods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting. Conventional methods based on RT-PCR amplification and Sanger sequencing are also available where mpNGS is not accessible. Each method offers distinct advantages. Conventional methods for IGV gene sequencing are readily adaptable to most laboratories and provide an ease of analysis to capture salient features of B-cell use. This chapter describes two methods in detail for analysis of IGV genes, mpNGS and conventional RT-PCR with Sanger sequencing.

  3. Development of a recombinase polymerase amplification assay for the diagnosis of banana bunchy top virus in different banana cultivars.

    PubMed

    Kapoor, Reetika; Srivastava, Nishant; Kumar, Shailender; Saritha, R K; Sharma, Susheel Kumar; Jain, Rakesh Kumar; Baranwal, Virendra Kumar

    2017-09-01

    Recombinase polymerase amplification (RPA) is a rapid, isothermal amplification method with high specificity and sensitivity. In this study, an assay was developed and evaluated for the detection of banana bunchy top virus (BBTV) in infected banana plants. Three oligonucleotide primer pairs were designed from the replicase initiator protein gene sequences of BBTV to function both in RPA as well as in polymerase chain reaction (PCR). A total of 133 symptomatic as well as asymptomatic banana leaf samples from various cultivars were collected from the different regions of India and evaluated for BBTV infection using the RPA assay. BBTV was efficiently detected using crude leaf sap in RPA and the results obtained were consistent with PCR-based detection using purified DNA as template. To our knowledge, this is the first report of reliable diagnosis of BBTV infection by RPA using crude leaf sap as a template.

  4. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    PubMed

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  5. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  6. Protocol for the use of a rapid real-time PCR method for the detection of HIV-1 proviral DNA using double-stranded primer.

    PubMed

    Pau, Chou-Pong; Wells, Susan K; Granade, Timothy C

    2012-01-01

    This chapter describes a real-time PCR method for the detection of HIV-1 proviral DNA in whole blood samples using a novel double-stranded primer system. The assay utilizes a simple commercially available DNA extraction method and a rapid and easy-to-perform real-time PCR protocol to consistently detect a minimum of four copies of HIV-1 group M proviral DNA in as little as 90 min after sample (whole blood) collection. Co-amplification of the human RNase P gene serves as an internal control to monitor the efficiency of both the DNA extraction and amplification. Once the assay is validated properly, it may be suitable as an alternative confirmation test for HIV-1 infections in a variety of HIV testing venues including the mother-to-child transmission testing sites, clinics, and diagnostic testing centers.

  7. Detection of Pseudomonas savastanoi pv. savastanoi in olive plants by enrichment and PCR.

    PubMed

    Penyalver, R; García, A; Ferrer, A; Bertolini, E; López, M M

    2000-06-01

    The sequence of the gene iaaL of Pseudomonas savastanoi EW2009 was used to design primers for PCR amplification. The iaaL-derived primers directed the amplification of a 454-bp fragment from genomic DNA isolated from 70 strains of P. savastanoi, whereas genomic DNA from 93 non-P. savastanoi isolates did not yield this amplified product. A previous bacterial enrichment in the semiselective liquid medium PVF-1 improved the PCR sensitivity level, allowing detection of 10 to 100 CFU/ml of plant extract. P. savastanoi was detected by the developed enrichment-PCR method in knots from different varieties of inoculated and naturally infected olive trees. Moreover, P. savastanoi was detected in symptomless stem tissues from naturally infected olive plants. This enrichment-PCR method is more sensitive and less cumbersome than the conventional isolation methods for detection of P. savastanoi.

  8. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    PubMed

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  9. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  10. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  11. Development of Reverse Transcription Thermostable Helicase-Dependent DNA Amplification for the Detection of Tomato Spotted Wilt Virus.

    PubMed

    Wu, Xinghai; Chen, Chanfa; Xiao, Xizhi; Deng, Ming Jun

    2016-11-01

    A protocol for the reverse transcription-helicase-dependent amplification (RT-HDA) of isothermal DNA was developed for the detection of tomato spotted wilt virus (TSWV). Specific primers, which were based on the highly conserved region of the N gene sequence in TSWV, were used for the amplification of virus's RNA. The LOD of RT-HDA, reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP), and reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted using 10-fold serial dilution of RNA eluates. TSWV sensitivity in RT-HDA and RT-LAMP was 4 pg RNA compared with 40 pg RNA in RT-PCR. The specificity of RT-HDA for TSWV was high, showing no cross-reactivity with other tomato and Tospovirus viruses including cucumber mosaic virus (CMV), tomato black ring virus (TBRV), tomato mosaic virus (ToMV), or impatiens necrotic spot virus (INSV). The RT-HDA method is effective for the detection of TSWV in plant samples and is a potential tool for early and rapid detection of TSWV.

  12. Mucinous cystadenocarcinoma of the breast with amplification of the HER2-gene confirmed by FISH: The first case reported.

    PubMed

    Petersson, Fredrik; Pang, Brendan; Thamboo, Thomas P; Putti, Thomas Choudary

    2010-06-01

    We present the first case of a primary mucinous cystadenocarcinoma of the breast that, in addition to the characteristic immunophenotype (CK7(+), CK20(-), ER(-), PR(-), and cdx2(-)), showed a strong membranous HER2-protein expression and HER2-gene amplification documented by fluorescence in situ hybridization. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Identification of the bacterial etiology of culture-negative endocarditis by amplification and sequencing of a small ribosomal RNA gene.

    PubMed

    Khulordava, Irakli; Miller, Geraldine; Haas, David; Li, Haijing; McKinsey, Joel; Vanderende, Daniel; Tang, Yi-Wei

    2003-05-01

    We report two cases of culture-negative bacterial endocarditis in which the organisms were identified by amplification and sequencing of the bacterial 16S rRNA gene. These results support an important role for polymerase chain reaction followed by direct sequencing to determine the etiology of culture-negative bacterial endocarditis and to guide appropriate antimicrobial therapy.

  14. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection.

    PubMed

    Nzelu, Chukwunonso O; Gomez, Eduardo A; Cáceres, Abraham G; Sakurai, Tatsuya; Martini-Robles, Luiggi; Uezato, Hiroshi; Mimori, Tatsuyuki; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2014-04-01

    Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish.

    PubMed

    Gao, Weifang; Huang, Hailong; Zhu, Peng; Yan, Xiaojun; Fan, Jianzhong; Jiang, Jinpo; Xu, Jilin

    2018-05-01

    Salmonella is a major pathogen that causes acute foodborne outbreaks worldwide. Seafood, particularly shellfish, is a proven source of Salmonella spp. infection because many people prefer to eat it raw or lightly cooked. However, traditional identification methods are too time-consuming and complex to detect contamination of bacteria in the food chain in a timely manner, and few studies have aimed to identify Salmonella in shellfish early in the supply chain. We herein developed a method for rapid detection of Salmonella in shellfish based on the method of recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD), which targets the invasion gene A (invA). The RPA-LFD was able to function at 30-45 °C, and at the temperature of 40 °C, it only took 8 min of amplification to reach the test threshold of amplicons. The established method had both a good specificity and a sensitivity of 100 fg DNA per reaction (20 µL). Regarding practical performance, RPA-LFD performed better than real-time PCR. Another advantage of RPA-LFD is that it was capable of being performed without expensive equipments. Thus, RPA-LFD has potential for further development as a detection kit for Salmonella in shellfish and other foods under field conditions.

  16. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri

    PubMed Central

    Koo, Dal-Hoe; Molin, William T.; Saski, Christopher A.; Jiang, Jiming; Putta, Karthik; Friebe, Bernd; Gill, Bikram S.

    2018-01-01

    Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution. PMID:29531028

  17. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    PubMed

    Shen, Yong-Yi; Liang, Lu; Li, Gui-Sheng; Murphy, Robert W; Zhang, Ya-Ping

    2012-06-01

    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  18. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    PubMed

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  19. The analysis of ALK gene rearrangement by fluorescence in situ hybridization in non-small cell lung cancer patients

    PubMed Central

    Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz

    2013-01-01

    Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134

  20. Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties.

    PubMed

    Ulbegi-Mohyla, H; Hijazin, M; Alber, J; Lämmler, C; Hassan, A A; Abdulmawjood, A; Prenger-Berninghoff, E; Weiss, R; Zschöck, M

    2010-09-01

    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens.

  1. Dyskerin and TERC expression may condition survival in lung cancer patients

    PubMed Central

    Penzo, Marianna; Ludovini, Vienna; Treré, Davide; Siggillino, Annamaria; Vannucci, Jacopo; Bellezza, Guido; Crinò, Lucio; Montanaro, Lorenzo

    2015-01-01

    Dyskerin mediates both the modification of uridine on ribosomal and small nuclear RNAs and the stabilization of the telomerase RNA component (TERC). In human tumors dyskerin expression was found to be associated with both rRNA modification and TERC levels. Moreover, dyskerin overexpression has been linked to unfavorable prognosis in a variety of tumor types, however an explanation for the latter association is not available. To clarify this point, we analyzed the connection between dyskerin expression, TERC levels and clinical outcome in two series of primary lung cancers, differing for the presence of TERC gene amplification, a genetic alteration inducing strong TERC overexpression. TERC levels were significantly higher in tumors bearing TERC gene amplification (P = 0.017). In addition, the well-established association between dyskerin expression and TERC levels was observed only in the series without TERC gene amplification (P = 0.003), while it was not present in TERC amplified tumors (P = 0.929). Similarly, the association between dyskerin expression and survival was found in cases not bearing TERC gene amplification (P = 0.009) and was not observed in TERC amplified tumors (P = 0.584). These results indicate that the influence of dyskerin expression on tumor clinical outcome is linked to its role on the maintenance of high levels of TERC. PMID:26301749

  2. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  3. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  4. Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays

    PubMed Central

    Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios

    2007-01-01

    Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247

  5. Combinatorics of the Breakage-Fusion-Bridge Mechanism

    PubMed Central

    Bafna, Vineet

    2012-01-01

    Abstract The breakage-fusion-bridge (BFB) mechanism was proposed over seven decades ago and is a source of genomic variability and gene amplification in cancer. Here we formally model and analyze the BFB mechanism, to our knowledge the first time this has been undertaken. We show that BFB can be modeled as successive inverted prefix duplications of a string. Using this model, we show that BFB can achieve a surprisingly broad range of amplification patterns. We find that a sequence of BFB operations can be found that nearly fits most patterns of copy number increases along a chromosome. We conclude that this limits the usefulness of methods like array CGH for detecting BFB. PMID:22506505

  6. pelB gene in isolates of Colletotrichum gloeosporioides from several hosts.

    PubMed

    Medeiros, L V; Maciel, D B; Medeiros, V V; Houllou Kido, L M; Oliveira, N T

    2010-04-13

    Colletotrichum gloeosporioides is an important pathogen for a great number of economically important crops. During the necrotrophic phase of infection by Colletotrichum spp, the degradative enzymes of plant cell walls, such as pectate lyase, clearly increase. A gene pelB that expresses a pectate lyase was identified in isolates of C. gloeosporioides in avocado pathogens. Various molecular studies have identified a kind of specialization of C. gloeosporioides isolates with specific hosts; however, there have been no studies of this gene in isolates from hosts other than avocado. The same is true for other species of Colletotrichum. We examined genetic variability in order to design primers that would amplify pelB gene fragments and compared the products of this amplification in C. gloeosporioides isolates from different hosts. Genetic variability was assessed using ISSR primers; the resultant data were grouped based on the UPGMA clustering method. Primers for the pelB gene were designed from selected GenBank sequences using the Primer 3 program at an annealing temperature of 60 degrees C and product amplification of nearly 600 bp. The ISSR primers were efficient in demonstrating the genetic variability of the Colletotrichum isolates and in distinguishing C. gloeosporioides, C. acutatum and C. sublineolum species. The gene pelB was found in C. gloeosporioides, C. acutatum and C. sublineolum. Amplified restriction fragments using MspI did not reveal differences in pelB gene structure in isolates from the three different host species that we investigated.

  7. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    PubMed

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria.

    PubMed

    Mohon, Abu Naser; Elahi, Rubayet; Khan, Wasif A; Haque, Rashidul; Sullivan, David J; Alam, Mohammad Shafiul

    2014-06-01

    Molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories. Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. A new primer set has been designed targeting the 18S rRNA gene for the detection of Plasmodium falciparum in whole blood samples. The efficacy of LAMP using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers as well as with microscopy and real-time PCR as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system. The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR. Meanwhile, its specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. Moreover, the LAMP method was in very good agreement with microscopy and real-time PCR (0.94 and 0.98, respectively). This new LAMP method can detect at least 5parasites/μL of infected blood within 35min, while the other LAMP method tested in this study, could detect a minimum of 100parasites/μL of human blood after 60min of amplification. Thus, the new method is sensitive and specific, can be carried out in a very short time, and can substitute PCR in healthcare clinics and standard laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice.

    PubMed

    Jenkins, Claire; Ling, Clare L; Ciesielczuk, Holly L; Lockwood, Julianne; Hopkins, Susan; McHugh, Timothy D; Gillespie, Stephen H; Kibbler, Christopher C

    2012-04-01

    Amplification and sequence analysis of the 16S rRNA gene can be applied to detect and identify bacteria in clinical samples. We examined 75 clinical samples (17 culture-positive, 58 culture-negative) prospectively by two different PCR protocols, amplifying either a single fragment (1343 bp) or two fragments (762/598 bp) of the 16S rRNA gene. The 1343 bp PCR and 762/598 bp PCRs detected and identified the bacterial 16S rRNA gene in 23 (31 %) and 38 (51 %) of the 75 samples, respectively. The 1343 bp PCR identified 19 of 23 (83 %) PCR-positive samples to species level while the 762/598 bp PCR identified 14 of 38 (37 %) bacterial 16S rRNA gene fragments to species level and 24 to the genus level only. Amplification of shorter fragments of the bacterial 16S rRNA gene (762 and 598 bp) resulted in a more sensitive assay; however, analysis of a large fragment (1343 bp) improved species discrimination. Although not statistically significant, the 762/598 bp PCR detected the bacterial 16S rRNA gene in more samples than the 1343 bp PCR, making it more likely to be a more suitable method for the primary detection of the bacterial 16S rRNA gene in the clinical setting. The 1343 bp PCR may be used in combination with the 762/598 bp PCR when identification of the bacterial rRNA gene to species level is required.

  10. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH

    PubMed Central

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-01-01

    Background Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. Results We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. Conclusion ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets. PMID:16274472

  11. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  12. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment.

    PubMed

    Wu, Y D; Xu, M J; Wang, Q Q; Zhou, C X; Wang, M; Zhu, X Q; Zhou, D H

    2017-08-30

    Toxoplasma gondii infects all warm-blooded vertebrates, resulting in a great threat to human health and significant economic loss to the livestock industry. Ingestion of infectious oocysts of T. gondii from the environment is the major source of transmission. Detection of T. gondii oocysts by existing methods is laborious, time-consuming and expensive. The objective of the present study was to develop a recombinase polymerase amplification (RPA) method combined with a lateral flow (LF) strip for detection of T. gondii oocysts in the soil and water. The DNA of T. gondii oocysts was amplified by a pair of specific primers based on the T. gondii B1 gene over 15min at a constant temperature ranging from 30°C to 45°C using RPA. The amplification product was visualized by the lateral flow (LF) strip within 5min using the specific probe added to the RPA reaction system. The sensitivity of the established assay was 10 times higher than that of nested PCR with a lower detection limit of 0.1 oocyst per reaction, and there was no cross-reactivity with other closely related protozoan species. Fifty environmental samples were further assessed for the detection validity of the LF-RPA assay (B1-LF-RPA) and compared with nested PCR based on the B1 gene sequence. The B1-LF-RPA and nested PCR both showed that 5 out of the 50 environmental samples were positive. The B1-LF-RPA method was also proven to be sufficiently tolerant of existing inhibitors in the environment. In addition, the advantages of simple operation, speediness and cost-effectiveness make B1-LF-RPA a promising molecular detection tool for T. gondii. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

    PubMed Central

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-01-01

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657

  14. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    PubMed

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  15. Optimal DNA Isolation Method for Detection of Nontuberculous Mycobacteria by Polymerase Chain Reaction.

    PubMed

    Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid

    2017-01-01

    Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA ® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. The CTAB method showed more positive results at 1:10-1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor.

  16. Diagnostics of SHOX gene rearrangement in 46,XX women with idiopathic short stature.

    PubMed

    Mitka, Magdalena; Bednarek, Michał; Kałużewski, Bogdan

    2016-01-01

    The SHOX gene has been mapped at the pseudoautosomal region 1 (PAR1) of chromosomes X (Xp22.33) and Y (Yp11.32). The loss of SHOX gene functionality is assumed to be responsible for the Leri-Weill syndrome formation and the disproportionate short stature (DSS). The SHOX gene rearrangements constitute the majority of cases of gene functionality loss. Therefore, a practical application of the method, which allows for the diagnostics of the gene rearrangements, becomes a primary issue. With such an assumption, the MLPA technique (multiplex ligation - dependent probe amplification) becomes the method of choice. DNA samples were evaluated in the study by means of the MLPA method. The DNA was isolated from peripheral blood of sixty-three (63) 46,XX patients with short stature. Out of the examined patients, deletions within the SHOX gene were found in five (5) patients, and duplication at the PAR1 regulatory region of the SHOX gene in one (1) case. The obtained results confirm the opinion that the MLPA method, while enabling the diagnostics of the etiopathogenetic factor of short stature, identified in approximately 9.5% of cases, is a useful tool in the diagnostics of SHOX gene deletion and duplication. (Endokrynol Pol 2016; 67 (4): 397-402).

  17. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    PubMed

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  18. Molecular detection of field isolates of Turkey Eimeria by polymerase chain reaction amplification of the cytochrome c oxidase I gene.

    PubMed

    Rathinam, T; Gadde, U; Chapman, H D

    2015-07-01

    Oocysts of Eimeria spp. were isolated from litter samples obtained from 30 commercial turkey farms. Genomic DNA was extracted from clean oocysts, and polymerase chain amplification of the species-specific cytochrome c oxidase subunit I (COI) gene was performed for five species of turkey Eimeria. The species tested were Eimeria adenoeides, Eimeria meleagrimitis, Eimeria meleagridis, Eimeria dispersa, and Eimeria gallopavonis. All DNA samples were positive for E. meleagrimitis, nine were positive for E. adenoeides, two were positive for E. dispersa, and none for E. meleagridis and E. gallopavonis. E. meleagrimitis occurred as a single species in 21 (70 %) of the farms while 9 (30 %) farms had a mixed species with E. meleagrimitis and E. adenoeides and 2 (7 %) were triple positive with E. meleagrimitis, E. adenoeides, and E. dispersa. This is the first account of the field prevalence of turkey Eimeria species using molecular methods.

  19. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-10-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 10 2 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection.

  20. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus

    PubMed Central

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-01-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 102 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection. PMID:29081590

  1. Breast cancers with EGFR and HER2 co-amplification favor distant metastasis and poor clinical outcome

    PubMed Central

    Guo, Peng; Pu, Tianjie; Chen, Shinan; Qiu, Yan; Zhong, Xiaorong; Zheng, Hong; Chen, Lina; Bu, Hong; Ye, Feng

    2017-01-01

    ErbB signaling serves essential roles in invasive ductal carcinoma (IDC). The aim of the present study was to assess gene amplification in ErbB family members in IDC with clinical implications. Quantitative polymerase chain reaction and fluorescence in situ hybridization were performed on formalin-fixed paraffin-embedded tumor samples for gene amplification detection. The clinical and histopathological characteristics, as well as the prognostic significance, were analyzed. Among the 119 IDC patients evaluated, epidermal growth factor receptor [EGFR; also known as human epidermal growth factor receptor (HER)1], HER2, HER3 and HER4 gene amplification was observed in 30 (25.2%), 44 (36.9%), 0 (0.0%) and 1 (0.8%) patients, respectively. EGFR amplification was associated with estrogen receptor status (P=0.028) and higher possibilities of recurrence (P=0.015) and distant metastasis (following initial surgery) (P=0.011). In survival analysis, EGFR amplification was also associated with disease-free survival (DFS) (P=0.001) and overall survival (OS) (P=0.003). HER2 amplification was associated with larger tumor size (P=0.006), later clinical stage (P=0.003) and distant metastasis (following initial surgery) (P=0.006). In survival analysis, HER2 amplification was also associated with DFS (P=0.011). Notably, the present study identified a group of patients in whom EGFR and HER2 were co-amplified. This group of patients appeared to have a higher possibility of metastasis (when diagnosed) (P=0.014) and distant metastasis (following initial surgery) (P<0.001). In survival analysis, these patients were noticed to be associated with DFS (P<0.001) and OS (P=0.002). With respect to treatment regimen, this was also true for the DFS association with chemotherapy (P<0.001), radiotherapy (P<0.001) and hormonal therapy (P=0.001). The present results suggest that EGFR and HER2 amplification favor distant metastasis following initial surgery and are significantly associated with poor clinical outcome in breast cancer patients. PMID:29181099

  2. Droplet digital PCR technology promises new applications and research areas.

    PubMed

    Manoj, P

    2016-01-01

    Digital Polymerase Chain Reaction (dPCR) is used to quantify nucleic acids and its applications are in the detection and precise quantification of low-level pathogens, rare genetic sequences, quantification of copy number variants, rare mutations and in relative gene expressions. Here the PCR is performed in large number of reaction chambers or partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid. Results are calculated by counting amplified target sequence (positive droplets) and the number of partitions in which there is no amplification (negative droplets). The mean number of target sequences was calculated by Poisson Algorithm. Poisson correction compensates the presence of more than one copy of target gene in any droplets. The method provides information with accuracy and precision which is highly reproducible and less susceptible to inhibitors than qPCR. It has been demonstrated in studying variations in gene sequences, such as copy number variants and point mutations, distinguishing differences between expression of nearly identical alleles, assessment of clinically relevant genetic variations and it is routinely used for clonal amplification of samples for NGS methods. dPCR enables more reliable predictors of tumor status and patient prognosis by absolute quantitation using reference normalizations. Rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging can be accurately detected with droplet digital PCR.

  3. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia.

    PubMed

    Graux, C; Stevens-Kroef, M; Lafage, M; Dastugue, N; Harrison, C J; Mugneret, F; Bahloula, K; Struski, S; Grégoire, M J; Nadal, N; Lippert, E; Taviaux, S; Simons, A; Kuiper, R P; Moorman, A V; Barber, K; Bosly, A; Michaux, L; Vandenberghe, P; Lahortiga, I; De Keersmaecker, K; Wlodarska, I; Cools, J; Hagemeijer, A; Poirel, H A

    2009-01-01

    Episomes with the NUP214-ABL1 fusion gene have been observed in 6% of T-ALL. In this multicentric study we collected 27 cases of NUP214-ABL1-positive T-ALL. Median age was 15 years with male predominance. Outcome was poor in 12 patients. An associated abnormality involving TLX1 or TLX3 was found in all investigated cases. Fluorescent in situ hybridization revealed a heterogeneous pattern of NUP214-ABL1 amplification. Multiple episomes carrying the fusion were detected in 24 patients. Episomes were observed in a significant number of nuclei in 18 cases, but in only 1-5% of nuclei in 6. In addition, intrachromosomal amplification (small hsr) was identified either as the only change or in association with episomes in four cases and two T-ALL cell lines (PEER and ALL-SIL). One case showed insertion of apparently non-amplified NUP214-ABL1 sequences at 14q12. The amplified sequences were analyzed using array-based CGH.These findings confirm that the NUP214-ABL1 gene requires amplification for oncogenicity; it is part of a multistep process of leukemogenesis; and it can be a late event present only in subpopulations. Data also provide in vivo evidence for a model of episome formation, amplification and optional reintegration into the genome. Implications for the use of kinase inhibitors are discussed.

  4. Single Cell Genome Amplification Accelerates Identification of the Apratoxin Biosynthetic Pathway from a Complex Microbial Assemblage

    PubMed Central

    Grindberg, Rashel V.; Ishoey, Thomas; Brinza, Dumitru; Esquenazi, Eduardo; Coates, R. Cameron; Liu, Wei-ting; Gerwick, Lena; Dorrestein, Pieter C.; Pevzner, Pavel; Lasken, Roger; Gerwick, William H.

    2011-01-01

    Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites. PMID:21533272

  5. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  6. Determination of differential gene expression profiles in superficial and deeper zones of mature rat articular cartilage using RNA sequencing of laser microdissected tissue specimens.

    PubMed

    Mori, Yoshifumi; Chung, Ung-Il; Tanaka, Sakae; Saito, Taku

    2014-01-01

    Superficial zone (SFZ) cells, which are morphologically and functionally distinct from chondrocytes in deeper zones, play important roles in the maintenance of articular cartilage. Here, we established an easy and reliable method for performance of laser microdissection (LMD) on cryosections of mature rat articular cartilage using an adhesive membrane. We further examined gene expression profiles in the SFZ and the deeper zones of articular cartilage by performing RNA sequencing (RNA-seq). We validated sample collection methods, RNA amplification and the RNA-seq data using real-time RT-PCR. The combined data provide comprehensive information regarding genes specifically expressed in the SFZ or deeper zones, as well as a useful protocol for expression analysis of microsamples of hard tissues.

  7. Detection of viral infection and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization.

    PubMed

    Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A

    2002-09-01

    In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.

  8. Rapid and Sensitive Detection of H7N9 Avian Influenza Virus by Use of Reverse Transcription–Loop-Mediated Isothermal Amplification

    PubMed Central

    Zhang, Jinhai; Feng, Youjun; Hu, Dan; Lv, Heng; Zhu, Jing; Cao, Min; Zheng, Feng; Zhu, Jin; Gong, Xiufang; Hao, Lina; Srinivas, Swaminath; Ren, Hao; Qi, Zhongtian

    2013-01-01

    An epidemic of human H7N9 influenza virus infection recently emerged in China whose clinical features include high mortality and which has also resulted in serious economic loss. The novel reassortant avian-origin influenza A (H7N9) virus which was the causative agent of this epidemic raised the possibility of triggering a large-scale influenza pandemic worldwide. It seemed likely that fast molecular detection assays specific for this virus would be in great demand. Here, we report a one-step reverse transcription–loop-mediated isothermal amplification (RT-LAMP) method for rapid detection of the hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 virus, the minimum detection limit of which was evaluated using in vitro RNA transcription templates. In total, 135 samples from clinical specimens (from either patients or poultry) were tested using this method in comparison with the real-time PCR recommended by the World Health Organization (WHO). Our results showed that (i) RT-LAMP-based trials can be completed in approximately 12 to 23 min and (ii) the detection limit for the H7 gene is around 10 copies per reaction, similar to that of the real-time PCR, whereas the detection limit for its counterpart the N9 gene is 5 copies per reaction, a 100-fold-higher sensitivity than the WHO-recommended method. Indeed, this excellent performance of our method was also validated by the results for a series of clinical specimens. Therefore, we believe that the simple, fast, and sensitive method of RT-LAMP might be widely applied for detection of H7N9 infections and may play a role in prevention of an influenza pandemic. PMID:24006004

  9. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters

    PubMed Central

    2017-01-01

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring. PMID:28541661

  10. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  11. Nucleic acid amplification tests (NAATs) for gonorrhoea diagnosis in women: experience of a tertiary care hospital in north India.

    PubMed

    Sood, Seema; Verma, Rachna; Mir, Shazia Shaheen; Agarwal, Madhav; Singh, Neeta; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2014-11-01

    Gonorrhoea is among the most frequent of the estimated bacterial sexually transmitted infections (STIs) and has significant health implications in women. The use of nucleic acid amplification tests (NAATs) has been shown to provide enhanced diagnosis of gonorrhoea in female patients. However, it is recommended that an on-going assessment of the test assays should be performed to check for any probable sequence variation occurring in the targeted region. In this study, an in-house PCR targeting opa-gene of Neisseria gonorrhoeae was used in conjunction with 16S ribosomal PCR to determine the presence of gonorrhoea in female patients attending the tertiary care hospitals. Endocervical samples collected from 250 female patients with complaints of vaginal or cervical discharge or pain in lower abdomen were tested using opa and 16S ribosomal assay. The samples were also processed by conventional methods. Of the 250 female patients included in the study, only one was positive by conventional methods (microscopy and culture) whereas 17 patients were found to be positive based on PCR results. The clinical sensitivity of conventional methods for the detection of N. gonorrhoeae in female patients was low. The gonococcal detection rates increased when molecular method was used giving 16 additional positives. Studies should be done to find out other gene targets that may be used in the screening assays to detect the presence of gonorrhoea.

  12. Trypanosomatidae: Phytomonas detection in plants and phytophagous insects by PCR amplification of a genus-specific sequence of the spliced leader gene.

    PubMed

    Serrano, M G; Nunes, L R; Campaner, M; Buck, G A; Camargo, E P; Teixeira, M M

    1999-03-01

    In this paper we describe a method for the detection of Phytomonas spp. from plants and phytophagous insects using the PCR technique by targeting a genus-specific sequence of the spliced leader (SL) gene. PCR amplification of DNA from 48 plant and insect isolates previously classified as Phytomonas by morphological, biochemical, and molecular criteria resulted in all cases in a 100-bp fragment that hybridized with the Phytomonas-specific spliced leader-derived probe SL3'. Moreover, this Phytomonas-specific PCR could also detect Phytomonas spp. in crude preparations of naturally infected plants and insects. This method shows no reaction with any other trypanosomatid genera or with plant and insect host DNA, revealing it to be able to detect Phytomonas spp. from fruit, latex, or phloem of various host plants as well as from salivary glands and digestive tubes of several species of insect hosts. Results demonstrated that SLPCR is a simple, fast, specific, and sensitive method that can be applied to the diagnosis of Phytomonas among cultured trypanosomatids and directly in plants and putative vector insects. Therefore, the method was shown to be a very specific and sensitive tool for diagnosis of Phytomonas without the need for isolation, culture, and DNA extraction of flagellates, a feature that is very convenient for practical and epidemiological purposes. Copyright 1999 Academic Press.

  13. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  14. Prognostic Significance of ESR1 Amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 Polymorphisms in Breast Cancer Patients

    PubMed Central

    Markiewicz, Aleksandra; Wełnicka-Jaśkiewicz, Marzena; Skokowski, Jarosław; Jaśkiewicz, Janusz; Szade, Jolanta; Jassem, Jacek; Żaczek, Anna J.

    2013-01-01

    Introduction Amplification of the ESR1 gene, coding for estrogen receptor alpha, was shown to predict responsiveness to tamoxifen, however its prognostic impact in breast cancer patients has not been thoroughly investigated. Other factors that could contribute to responsiveness to tamoxifen treatment are polymorphisms in ESR1 gene and genes involved in tamoxifen metabolism. The aim of this study was to assess the prognostic role of ESR1 gene dosage in a consecutive group of breast cancer patients and to correlate this feature with clinico-pathological factors. Additionally, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphisms were analyzed in the tamoxifen-treated subgroup of patients. Materials and Methods Primary tumor samples from 281 stage I-III consecutive breast cancer patients were analyzed for ESR1 gene dosage using real-time PCR with locked nucleic acids hydrolysis probes. In the tamoxifen-treated subgroup of patients, ESR1 PvuII, CYP2C19*2 and UGT2B15*2 polymorphism in leukocytes genomic DNA were analyzed. Results were correlated with clinico-pathological factors and with disease-free survival (DFS) and overall survival (OS). Results ESR1 amplification (with a cut-off level of 2.0) was found in 12% of the entire group of breast cancer patients, and in 18% of the ER-negative subgroup. This feature was associated with decreased DFS both in the entire group (P=0.007) and in the ER-negative subgroup (P=0.03), but not in the tamoxifen-treated patients. Patients with ESR1 PvuII wt/wt genotype and at least one UGT2B15 wt allele had a worse DFS (P=0.03) and showed a trend towards decreased Os (P=0.08) in comparison to patients with ESR1 PvuII wt/vt or vt/vt genotype and UGT2B15 *2/*2 genotype. Conclusions ESR1 amplification can occur in ER-negative tumors and may carry poor prognosis. In the tamoxifen-treated subgroup, poor prognosis was related to the combined presence of ESR1 PvuII wt/wt and UGT2B15wt/wt or wt/*2 genotype. PMID:23951298

  15. Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli.

    PubMed

    Schechter, Lisa M; Creely, David P; Garner, Cherilyn D; Shortridge, Dee; Nguyen, Hoan; Chen, Lei; Hanson, Blake M; Sodergren, Erica; Weinstock, George M; Dunne, W Michael; van Belkum, Alex; Leopold, Shana R

    2018-04-24

    Although the TEM-1 β-lactamase (Bla TEM-1 ) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to β-lactam/β-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only bla TEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher β-lactamase activity and Bla TEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in bla TEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in bla TEM-1 gene dosage, allowing Bla TEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the bla TEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the bla TEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP. IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance. Copyright © 2018 Schechter et al.

  16. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  17. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  18. Genetic polymorphisms variants in interleukin-6 and interleukin-1beta patients with obstructive sleep apnea syndrome in East Northern Turkey.

    PubMed

    Gok, Ilhami; Huseyinoglu, Nergiz; Ilhan, Dogan

    2015-08-01

    To investigate the relationship of IL-1β and IL-6 cytokine gene polymorphisms with obstructive sleep apnea syndrome (OSAS) in 61 patients admitted to the neurology clinic in Kafkas University Hospital with insomnia problem who were diagnosed with OSAS in sleeping labs, and 80 healthy subjects not associated with the syndrome. METHODS :Blood samples were taken to isolate DNA from patients diagnosed with OSAS based on polysomnography results and healthy controls. DNA amplification of the genes was performed with PCR. Amplification products were cut with the restriction enzymes in order to determine IL-1 gene (TaqI) and IL-6 gene (Lwel) polymorphisms. The cut DNA fragments were carried out in agarose gel electrophoresis, and RFLP analysis was performed by utilizing the images with gel imaging system. PCR products were sequenced with an Applied Biosystems Automated Sequencer. Polymorphic changes were observed for IL-1β gene in 26 of 62 patients (41.9%), and 16 of the 80 (25.8%) in the control group. The incidence of polymorphic changes in IL-6 gene was in seen in seven (of the 62 patients) (11.3%), and in the 16 (20%) controls. The findings on the genomic level in OSAS may provide an important contribution to diagnosis of obstructive sleep apnea syndrome in clinical practice, as well as it helps to obtain the results easily about environmental and genetic interaction of OSAS patients. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  19. Multiprimer PCR system for differential identification of mycobacteria in clinical samples.

    PubMed Central

    Del Portillo, P; Thomas, M C; Martínez, E; Marañón, C; Valladares, B; Patarroyo, M E; Carlos López, M

    1996-01-01

    A novel multiprimer PCR method with the potential to identify mycobacteria in clinical samples is presented. The assay relies on the simultaneous amplification of three bacterial DNA genomic fragments by using different sets of oligonucleotide primers. The first set of primers amplifies a 506-bp fragment from the gene for the 32-kDa antigen of Mycobacterium tuberculosis, which is present in most of the species belonging to the genus Mycobacterium. The second set of primers amplifies a 984-bp fragment from the IS6110 insertion sequence of the bacteria belonging to the M. tuberculosis complex. The third set of primers, derived from an M. tuberculosis species-specific sequence named MTP40, amplifies a 396-bp genomic fragment. Thus, while the multiprimer system would render three amplification fragments from the M. tuberculosis genome and two fragments from the Mycobacterium bovis genome, a unique amplification fragment would be obtained from nontuberculous mycobacteria. The results obtained, using reference mycobacterial strains and typed clinical isolates, show that the multiprimer PCR method may be a rapid, sensitive, and specific tool for the differential identification of various mycobacterial strains in a single-step assay. PMID:8789008

  20. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    PubMed

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  2. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains

    PubMed Central

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-01-01

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (ɛ globin, p53 and γ interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to αλµοστ 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed. PMID:11842122

  3. humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila.

    PubMed

    Bandura, Jennifer L; Beall, Eileen L; Bell, Maren; Silver, Hannah R; Botchan, Michael R; Calvi, Brian R

    2005-04-26

    The full complement of proteins required for the proper regulation of genome duplication are yet to be described. We employ a genetic DNA-replication model system based on developmental amplification of Drosophila eggshell (chorion) genes [1]. Hypomorphic mutations in essential DNA replication genes result in a distinct thin-eggshell phenotype owing to reduced amplification [2]. Here, we molecularly identify the gene, which we have named humpty dumpty (hd), corresponding to the thin-eggshell mutant fs(3)272-9 [3]. We confirm that hd is essential for DNA amplification in the ovary and show that it also is required for cell proliferation during development. Mosaic analysis of hd mutant cells during development and RNAi in Kc cells reveal that depletion of Hd protein results in severe defects in genomic replication and DNA damage. Most Hd protein is found in nuclear foci, and some may traverse the nuclear envelope. Consistent with a role in DNA replication, expression of Hd protein peaks during late G1 and S phase, and it responds to the E2F1/Dp transcription factor. Hd protein sequence is conserved from plants to humans, and published microarrays indicate that expression of its putative human ortholog also peaks at G1/S [4]. Our data suggest that hd defines a new gene family likely required for cell proliferation in all multicellular eukaryotes.

  4. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    PubMed Central

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  5. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2017-11-01

    The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.

  6. Paternity testing in case of brother-sister incest.

    PubMed

    Macan, Marijana; Uvodić, Petra; Botica, Vladimir

    2003-06-01

    We performed a paternity test in a case of incest between brother and sister. DNA from blood samples of the alleged parents and their two children was obtained with Chelex DNA extraction method and quantified with Applied Biosystems QuantiBlot quantitation kit. Polymerase chain reaction (PCR) amplification of DNA samples was performed with AmpFlSTR SGM Plus PCR amplification kit and GenePrint PowerPlex PCR amplification kit. The amplified products were separated and detected by using the Perkin Elmer's ABI PRISM trade mark 310 Genetic Analyser. DNA and data analysis of 17 loci and Amelogenin confirmed the suspicion of brother-sister incest. Since both children had inherited all of the obligate alleles from the alleged father, we could confirm with certainty of 99.999999% that the oldest brother in the family was the biological father of both children. Calculated data showed that even in a case of brother-sister incest, paternity could be proved by the analysis of Amelogenin and 17 DNA loci.

  7. POLYMORPHIC CHLOROPLAST MICROSATELLITE MARKERS IN THE OCTOPLOID LEPIDIUM MEYENII (BRASSICACEAE) AND CROSS-SPECIES AMPLIFICATION IN LEPIDIUM

    PubMed Central

    Hasan, Nabeeh A.; Mummenhoff, Klaus; Quiros, Carlos F.; Tay, C. David; Bailey, C. Donovan

    2013-01-01

    Premise of the study As a crop and medicinal plant, the octoploid Andean endemic Lepidium meyenii suffers from taxonomic uncertainty. Few molecular markers are available to genotype individuals or track gene flow in wild and cultivated material. Methods and Results Using available sequence data, eight cpSSR primer pairs were developed for L. meyenii. Levels of polymorphism checked in 56 individual L. meyenii, including cultivated and wild material, revealed that the number of alleles per locus ranged from three to five, and intrapopulation allele frequencies ranged from 0.071 to 1.0. Polymerase-chain-reaction screens using our cpSSR primers in 27 other Lepidium species and three Coronopus species suggested a high degree of interspecific amplification. Conclusions These polymorphic cpSSR markers should prove useful in characterizing genetic variation among cultivated and wild L. meyenii. Additionally, interspecific amplifications suggest that these markers will be useful for the study of related taxa. PMID:21616787

  8. Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties

    PubMed Central

    Ülbegi-Mohyla, H.; Hijazin, M.; Alber, J.; Hassan, A. A.; Abdulmawjood, A.; Prenger-Berninghoff, E.; Weiß, R.; Zschöck, M.

    2010-01-01

    The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens. PMID:20706035

  9. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  10. Detection of MET amplification in gastroesophageal tumor specimens using IQFISH

    PubMed Central

    Nielsen, Karsten Bork; Mollerup, Jens; Jepsen, Anna; Go, Ning

    2017-01-01

    Background The gene mesenchymal epithelial transition factor (MET) is a proto-oncogene that encodes a transmembrane receptor with intrinsic tyrosine kinase activity known as Met or cMet. MET is found to be amplified in several human cancers including gastroesophageal cancer. Methods Here we report the MET amplification prevalence data from 159 consecutive tumor specimens from patients with gastric (G), gastroesophageal junction (GEJ) and esophageal (E) adenocarcinoma, using a novel fluorescence in situ hybridization (FISH) assay, MET/CEN-7 IQFISH Probe Mix [an investigational use only (IUO) assay]. MET amplification was defined as a MET/CEN-7 ratio ≥2.0. Furthermore, the link between the MET signal distribution and amplification status was investigated. Results The prevalence of MET amplification was found to be 6.9%. The FISH assay demonstrated a high inter-observer reproducibility. The inter-observer results showed a 100% overall agreement with respect to the MET status (amplified/non-amplified). The inter-observer CV was estimated to 11.8% (95% CI: 10.2–13.4). For the signal distribution, the inter-observer agreement was reported to be 98.7%. We also report an association of MET amplification and a unique signal distribution pattern in the G/GEJ/E tumor specimens. We found that the prevalence of MET amplification was markedly higher in tumors specimens with a heterogeneous (66.7%) versus homogeneous (2.0%) signal distribution. Furthermore, specimens with a heterogeneous signal distribution had a statically significantly higher median MET/CEN-7 ratio (2.35 versus 1.04; P<0.0001). Conclusions The novel FISH assay showed a high inter-observer reproducibility both with respect to amplification status and signal distribution. Based on the finding in the study it is suggested that MET amplification mainly is associated with tumor cells that is represented by a heterogonous growth pattern. PMID:29285491

  11. Reverse strand-displacement amplification strategy for rapid detection of p53 gene.

    PubMed

    Wang, Lisha; Han, Ying; Xiao, Shuai; Lv, Sha; Wang, Cong; Zhang, Nan; Wang, Zhengyong; Tang, Yongqiong; Li, Hongbo; Lyu, Jianxin; Xu, Huo; Shen, Zhifa

    2018-09-01

    The development of rapid approaches to detect prognostic markers is significant in reducing the morbidity and mortality of cancer. In this paper, we describe a rapid and specific biosensing platform for target DNA (p53 gene as a model) detection based on reverse strand displacement amplification (R-SDA). When the p53 gene is added, multifuctional molecular beacon (MMB) is unfolded via the hybridization with p53 gene. With the assist of Klenow fragment (KF) and Nt.BbvCI (the nicking endonuclease), p53 gene recycling could be initiated and considerable amount of complementary sequences for the MMBs (Nicked fragments, NFs) could be formed, generating enhanced fluorescence signal. Using this amplification strategy, the proposed biosensor displays the detection limit of 1 nM and a wide linear range from 1 to 100 nM, even if only one type of probe is involved. Notably, remarkable detection specificity for single-base mismatched target p53 gene is achieved. Moreover, the described biosensor also exhibited the stability in real biological samples (human serum). The rapid detection strategy can be performed less than 30 min without harsh reaction conditions or expensive nanoparticles. This biosensor shows great potential for application in clinic assay, especially, for early cancer diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Pattern of HER-2 Gene Amplification and Protein Expression in Benign, Borderline, and Malignant Ovarian Serous and Mucinous Neoplasms.

    PubMed

    Mohammed, Rabab A A; Makboul, Rania; Elsers, Dalia A H; Elsaba, Tarek M A M; Thalab, Abeer M A B; Shaaban, Omar M

    2017-01-01

    Amplification of HER-2 gene and overexpression of HER-2 receptor play a significant role in the progression of a number of malignancies such as breast cancer. Trastuzumab (anti-HER-2 therapeutic agent) has been used successfully in treatment of breast cancer. The aim of this study was to assess the pattern of HER-2 gene amplification and of HER-2 receptor expression in a spectrum of serous and mucinous ovarian tumors to determine whether HER-2 is altered in these neoplasms similar to that occurring in breast cancer. Formalin-fixed paraffin-embedded microarray tissue sections from 212 specimens were stained with HER-2 antibody using immunohistochemistry and with anti-HER-2 DNA probe using chromogenic in situ hybridization. Specimens consisted of 65 benign tumors (50 serous and 15 mucinous), 26 borderline (13 serous and 13 mucinous), 73 malignant tumors (53 serous carcinoma and 20 mucinous carcinoma), 18 metastatic deposits (13 serous and 5 mucinous), in addition to 30 normal tissues (16 ovarian surface and 14 normal fallopian tube). HER-2 protein-positive expression was not detected in the normal or the benign tissues. Borderline neoplasms showed positive staining, but no overexpression. HER-2 overexpression was seen only in 4 carcinoma specimens: 1/53 (1.8%) primary serous carcinomas and 3/20 (15%) primary mucinous carcinomas. HER-2 gene amplification was seen in 4 specimens: 2 primary mucinous carcinomas and 2 malignant deposits of these 2 mucinous carcinomas. In conclusion, alteration of HER-2 was not detected in ovarian serous neoplasms; however, in mucinous carcinoma, HER-2 amplification and overexpression occur.

  13. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity.

    PubMed

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-03-15

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis.

  14. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity

    PubMed Central

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-01-01

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis. PMID:26918453

  15. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Sensitive Identification of Ostrich Meat

    PubMed Central

    Abdulmawjood, Amir; Grabowski, Nils; Fohler, Svenja; Kittler, Sophie; Nagengast, Helga; Klein, Guenter

    2014-01-01

    Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP) assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes. PMID:24963709

  16. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases.

    PubMed

    Ricciotti, Robert W; Baraff, Aaron J; Jour, George; Kyriss, McKenna; Wu, Yu; Liu, Yuhua; Li, Shao-Chun; Hoch, Benjamin; Liu, Yajuan J

    2017-12-01

    Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS. Published by Elsevier Inc.

  18. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer

    PubMed Central

    Buganim, Yosef; Solomon, Hilla; Goldfinger, Naomi; Hovland, Randi; Ke, Xi-Song; Oyan, Anne M.; Kalland, Karl-H.; Rotter, Varda; Domany, Eytan

    2011-01-01

    Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification. PMID:21297939

  19. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    PubMed

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  20. E-Cadherin as a Chemotherapy Resistance Mechanism on Metastatic Breast Cancer

    DTIC Science & Technology

    2011-01-01

    Gold Kit (Zymo, San Diego, CA) per the manufacturer’s specifications. MSP was performed in the way of Corn et al [62] or using the CpG WIZ E-cadherin...Amplification Kit per the manufacturer’s instructions (Millipore, Temecula, CA). Briefly, in the method of Corn , a nested PCR method was used, in...cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92(11): 2786-95. 29. Corn , PG, BD Smith, ES Ruckdeschel et al (2000) E-cadherin

  1. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer

    PubMed Central

    Albitar, Maher; Sudarsanam, Sucha; Ma, Wanlong; Jiang, Shiping; Chen, Wayne; Funari, Vincent; Blocker, Forrest; Agersborg, Sally

    2018-01-01

    Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification. PMID:29568386

  2. Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor for Detection of Staphylococcus aureus and Identification of Methicillin-Resistant S. aureus.

    PubMed

    Wang, Yi; Yan, Weiqiang; Fu, Shanshan; Hu, Shoukui; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2018-01-01

    Staphylococcus aureus ( S. aureus ), including methicillin-resistant S. aureus (MRSA), is one of the most important human pathogens, which is responsible for bacteremia, soft-tissue infections, and food poisoning. Hence, multiple cross displacement amplification (MCDA) is employed to detect all S. aureus strains, and differentiates MRSA from methicillin-sensitive S. aureus . Multiplex MCDA (m-MCDA), which targets the nuc gene ( S. aureus -specific gene) and mecA gene (encoding penicillin-binding protein-2'), could detect S. aureus strains and identify MRSA within 85 min. Detection of the m-MCDA products is achieved using disposable lateral flow biosensors. A total of 58 strains, including various species of Gram-positive and Gram-negative strains, are used for evaluating and optimizing m-MCDA assays. The optimal amplification condition is found to be 63°C for 40 min, with detection limits at 100 fg DNA/reaction for nuc and mecA genes in the pure cultures, and 10 CFU/tube for nuc and mecA genes in the blood samples. The analytical specificity of m-MCDA assay is of 100%, and no cross-reactions to non- S. aureus strains are produced according to the specificity testing. Particularly, two additional components, including AUDG enzyme and dUTP, are added into the m-MCDA amplification mixtures, which are used for eliminating the unwanted results arising from carryover contamination. Thus, the m-MCDA technique appears to be a simple, rapid, sensitive, and reliable assay to detect all S. aureus strains, and identify MRSA infection for appropriate antibiotic therapy.

  3. A PCR primer bank for quantitative gene expression analysis.

    PubMed

    Wang, Xiaowei; Seed, Brian

    2003-12-15

    Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.

  4. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    PubMed

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Characterization of Novel Genes Within 8P11-12 Amplicon in Breast Cancer

    DTIC Science & Technology

    2007-06-01

    C-myc amplification in breast cancer: a meta - analysis of its occurrence and prognostic relevance. Br J Cancer, 83: 1688-1695, 2000. 2. Hui, R...Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta - analysis of its occurrence and prognostic relevance. Br J Cancer 2000;83...a detailed genomic and expression analysis of the 8p11-p12 amplicon in breast cancer cell lines and identified several novel candidate genes

  6. Genetic alteration profiling of patients with resected squamous cell lung carcinomas

    PubMed Central

    Zhang, Ningning; Lin, Dongmei; Wu, Di; Zhu, Xinxin; Song, Wenya; Shi, Yuankai

    2016-01-01

    In this study, we analyzed the genetic profiles of squamous cell lung carcinoma (SqCLC) to identify potential therapeutic targets. Approximately 2,800 COSMIC mutations from 50 genes were determined by next-generation sequencing. Amplification/deletion of SOX2, CDKN2A, PTEN, FGFR1, EGFR, CCND1, HER2 and PDGFRA were detected by FISH and expression of VEGFR2, PD-L1 and PTEN were examined by IHC. One hundred and fifty-seven samples of SqCLC were collected. Somatic mutations was identified in 73.9% of cases, with TP53 (56.1%), CDKN2A (8.9%), PIK3CA (8.9%), KRAS (4.5%) and EGFR (3.2%). Gene copy number alterations were identified in 75.8% of cases, including SOX2 amplification (31.2%), CDKN2A deletion (21.7%), PTEN deletion (16.6%), FGFR1 amplification (15.9%), EGFR amplification (14.0%), CCND1 amplification (14.0%), HER2 amplification (9.6%) and PDGFRA amplification (7.6%). Positive expression of VEGFR2 and PD-L1 and loss of PTEN expression were observed in 80.5%, 47.2%, and 42.7% of cases, respectively. Multivariate analysis showed that positive expression of PD-L1 was an independent favorable prognostic factor for DFS (HR = 0.610; P = 0.044). In conclusion, nearly all (93.6%) SqCLC cases harbored at least one potential druggable target. The findings of this study could facilitate the identification of therapeutic target candidates for precision medicine of SqCLC. PMID:27145277

  7. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus

    PubMed Central

    2010-01-01

    Background Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Results Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. Conclusions The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes. PMID:20534175

  8. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus.

    PubMed

    Chulakasian, Songkhla; Lee, Min-Shiuh; Wang, Chi-Young; Chiou, Shyan-Song; Lin, Kuan-Hsun; Lin, Fong-Yuan; Hsu, Tien-Huan; Wong, Min-Liang; Chang, Tien-Jye; Hsu, Wei-Li

    2010-06-10

    Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.

  9. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Optimal DNA Isolation Method for Detection of Nontuberculous Mycobacteria by Polymerase Chain Reaction

    PubMed Central

    Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid

    2017-01-01

    Background: Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. Materials and Methods: The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. Results: The CTAB method showed more positive results at 1:10–1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. Conclusions: According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor. PMID:29279831

  11. Comparative analysis of protocols for DNA extraction from soybean caterpillars.

    PubMed

    Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C

    2016-04-07

    Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.

  12. Prognostic relevance of Fédération Nationale des Centres de Lutte Contre le Cancer grade and MDM2 amplification levels in dedifferentiated liposarcoma: a study of 50 cases.

    PubMed

    Jour, George; Gullet, Ashley; Liu, Mingdong; Hoch, Benjamin L

    2015-01-01

    Dedifferentiated liposarcoma represents a form of liposarcoma composed of a non-lipogenic sarcoma associated with well-differentiated liposarcoma. The prognostic significance of histological grading of the dedifferentiated component remains to be elucidated due to vague grading criteria employed in previous studies. Molecular markers of tumor behavior, including amplification levels of murine double minute-2 (MDM2) and cyclin-dependent kinase-4 (CDK4) genes, have been explored in a limited number of cases. Here we investigate whether 'Fédération Nationale des Centres de Lutte Contre le Cancer' (FNCLCC) grade and MDM2 gene amplification levels have prognostic value in dedifferentiated liposarcoma in terms of local recurrence and disease-specific survival. Fifty cases were retrieved, reviewed and FNCLCC grade was scored for the dedifferentiated component. Testing for MDM2 gene amplification was performed by fluorescence in situ hybridization. Amplification was categorized as high level (≥20 copies) and as low level (<20 copies). Follow-up data was obtained through chart review. Log-rank test and Cox proportional hazard models were used to determine the effect of grade and level of MDM2 amplification on outcomes. Our series includes 50 patients (male n=28, female n=22) with an average age of 63 years (range, 28-88) and a median follow-up of 28 months (range, 2-120). Tumors were graded as grade 1 (6%), grade 2 (58%), and grade 3 (36%). When adjusted for age, sex, site, tumor size, and margin status, grade 3 patients had a higher recurrence rate than grades 1 and 2 (HR=2.07, 95% CI: 1.24, 7.62; P=0.015). Patients with high-level MDM2 amplification had higher recurrence rate on univariate analysis (P=0.028), but not on multivariate analysis (HR=1.69, 95% CI: 0.73, 3.94; P=0.221). FNCLCC grade 3 dedifferentiation confers a worse prognosis in dedifferentiated liposarcoma in terms of local recurrence. MDM2 amplification level remains a useful diagnostic tool in dedifferentiated liposarcoma, but has no prognostic value in terms of local recurrence.

  13. Identification of a candidate oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines.

    PubMed

    Tang, Terence C-M; Sham, Jonathan S T; Xie, Dan; Fang, Yan; Huo, Ke-Ke; Wu, Qiu-Liang; Guan, Xin-Yuan

    2002-12-15

    High-level amplification of DNA sequence at 19q13.1 is one of the frequent genetic alterations in ovarian cancer. In an attempt to verify the minimal amplified region (MAR) at 19q13.1 and to identify the target oncogenes, 49 probes within a region from D19S425 to D19S907 ( approximately 19.5 cM) were used to survey the amplification status in four ovarian cancer cell lines that have been confirmed as containing amplification at 19q13.1. Two separated overlapping MARs, MAR1 (approximately 200 kb) and MAR2 (approximately 1.1 Mb), were identified at 19q13.1. Two candidate oncogenes, AKT2 and SEI-1, were identified in MAR2. Amplification and overexpression of these two genes in four ovarian cancer cell lines were confirmed by Southern and Northern blot analyses. The proliferation-related function of AKT2 and SEI-1 suggests that both genes are likely to be biological targets of an amplification event at 19q13.1 in ovarian cancer and to play important roles in ovarian tumorigenesis.

  14. Multiplex ligation-dependent probe amplification analysis on capillary electrophoresis instruments for a rapid gene copy number study.

    PubMed

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-09-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies.

  15. A simple and rapid method for detection of Trypanosoma evansi in the dromedary camel using a nested polymerase chain reaction

    PubMed Central

    Aradaib, Imadeldin E; Majid, Ali A

    2006-01-01

    A nested polymerase chain reaction (nPCR)-based assay, was developed and evaluated for rapid detection of Trypanosoma evansi in experimentally infected mice and naturally infected camels (Camelus dromedarius). Four oligonucleotide primers (TE1, TE2, TE3 and TE4), selected from nuclear repetitive gene of T. evansi, were designed and used for PCR amplifications. The first amplification, using a pair of outer primers TE1 and TE2, produced a 821-bp primary PCR product from T. evansi DNA. The second amplification, using nested (internal) pair of primers TE3 and TE4, produced a 270-bp PCR product. T. evansi DNAs extracted from blood samples of experimentally infected mice and naturally infected Sudanese breed of dromedary camels were detected by this nested PCR-based assay. The nested primers TE3 and TE4 increased the sensitivity of the PCR assay and as little as 10 fg of T. evansi DNA (equivalent to a single copy of the putative gene of the parasite) was amplified and visualized onto ethidium bromide-stained agarose gels. Amplification products were not detected when the PCR-based assay was applied to DNA from other blood parasites including Thieleria annulata, Babesia bigemina or nucleic acid free samples. Application of this nPCR-based assay to clinical samples resulted in direct detection of T. evansi from a variety of tissue samples collected from experimentally infected mice and blood from naturally infected camels. The described nPCR-based assay provides a valuable tool to study the epidemiology of T. evansi infection in camels and other susceptible animal populations. PMID:16712737

  16. A cluster of culture positive gonococcal infections but with false negative cppB gene based PCR.

    PubMed

    Lum, G; Freeman, K; Nguyen, N L; Limnios, E A; Tabrizi, S N; Carter, I; Chambers, I W; Whiley, D M; Sloots, T P; Garland, S M; Tapsall, J W

    2005-10-01

    To describe the prevalence and characteristics of isolates of Neisseria gonorrhoeae grown from urine samples that produced negative results with nucleic acid amplification assays (NAA) targeting the cppB gene. An initial cluster of culture positive, but cppB gene based NAA negative, gonococcal infections was recognised. Urine samples and suspensions of gonococci isolated over 9 months in the Northern Territory of Australia were examined using cppB gene based and other non-cppB gene based NAA. The gonococcal isolates were phenotyped by determining the auxotype/serovar (A/S) class and genotyped by pulsed field gel electrophoresis (PFGE). 14 (9.8%) of 143 gonococci isolated were of A/S class Pro(-/)Brpyut, indistinguishable on PFGE and negative in cppB gene based, but not other, NAA. This cluster represents a temporal and geographic expansion of a gonococcal subtype lacking the cppB gene with consequent loss of sensitivity of NAA dependent on amplification of this target. Gonococci lacking the cppB gene have in the past been more commonly associated with the PAU-/PCU- auxotype, a gonococcal subtype hitherto infrequently encountered in Australia. NAA based on the cppB gene as a target may produce false positive as well as false negative NAA. This suggests that unless there is continuing comparison with culture to show their utility, cppB gene based NAA should be regarded as suboptimal for use either as a diagnostic or supplemental assay for diagnosis of gonorrhoea, and NAA with alternative amplification targets should be substituted.

  17. Genome-wide profiling of chromosomal alterations in renal cell carcinoma using high-density single nucleotide polymorphism arrays

    PubMed Central

    Chen, Meng; Ye, Yuanqing; Yang, Hushan; Tamboli, Pheroze; Matin, Surena; Tannir, Nizar M.; Wood, Christopher G.; Gu, Jian; Wu, Xifeng

    2009-01-01

    Purpose The identification of genetic aberrations may help understand the mechanisms of tumorigenesis and has important implications in diagnosis, prognosis, and treatment. Methods We applied Illumina's 317K high-density SNP-arrays to profile chromosomal aberrations in clear cell renal cell carcinoma (ccRCC) from 80 patients and analyzed the association of LOH/amplification events with clinicopathological characteristics and telomere length. Results The most common loss of heterozygosity (LOH) were 3p (69 cases) including 38 whole 3p arm losses, 30 large fragment LOH (spanning 3p21-36), and 1 interstitial LOH (spanning 3p12-14, 3p21-22, 3p24.1-24.2, and 3p24.3), followed by chromosome losses at 8p12-pter, 6q23.3-27, 14q24.1-qter, 9q32-qter, 10q22.3-qter, 9p13.3-pter, 4q28.3-qter, and 13q12.1-21.1. We also found several smallest overlapping regions of LOH that contained tumor suppressor genes. One smallest LOH in 8p12 had a size of 0.29 Mb and only contained one gene (NRG1). The most frequent chromosome gains were at 5q (32 cases), including 10 whole 5q amplification, 21 large amplifications encompassing 5q32-ter, and 1 focal amplification in 5q35.3 (0.42 Mb). The other common chromosome gains were 1q25.1-qter, 7q21.13-qter, 8q24.12-qter, and whole 7p arm. Significant associations of LOH at 9p, 9q, 14q, and 18q were observed with higher nuclear grade. Significant associations with tumor stage were observed for LOH at 14q, 18p, and 21q. Finally, we found that tumors with LOH at 2q, 6p, 6q, 9p, 9q, and 17p had significantly shorter telomere length than those without LOH. Conclusion This is the first study to use Illumina's SNP-CGH array that provides a close estimate of the size and frequency of chromosome LOH and amplifications of ccRCC. The identified regions and genes may become diagnostic and prognostic biomarkers as well as potential targets of therapy. PMID:19521957

  18. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations.

    PubMed

    Zhang, L; Yang, Y; Liu, R; Li, Q; Yang, F; Ma, L; Liu, H; Chen, X; Yang, Z; Cui, L; He, Y

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations. © 2015 John Wiley & Sons Ltd.

  19. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    PubMed

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  20. Identification of FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas in Chinese smoking patients

    PubMed Central

    Xia, Weiliang; Li, Ziming; Niu, Xiaomin; Ji, Wenxiang; Yuan, Hong; Xu, Qiang; Luo, Qingquan; Zhang, Jie; Lu, Shun

    2016-01-01

    Comprehensive genomic characterizations of lung squamous cell carcinoma (LSCC) have been performed, but the differences between smokers (S-LSCC) and never smokers (NS-LSCC) are not clear, as NS-LSCC could be considered as a different disease from S-LSCC. In this study we delineated genomic alterations in a cohort of 21 NS-LSCC and 16 S-LSCC patients, and identified common gene mutations and amplifications as previously reported. Inclusion of more NS-LSCC patients enabled us to identify unreported S-LSCC- or NS-LSCC-specific alterations. Importantly, an amplification region containing FGF19, FGF3, FGF4 and CCND1 was found five-times more frequent in S-LSCC than in NS-LSCC. Amplification of FGF19 was validated in independent LSCC samples. Furthermore, FGF19 stimulated LSCC cell growth in vitro. These data implicate FGF19 as a potential driver gene in LSCC with clinic characteristics as smoking. PMID:26943773

  1. Identification of FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas in Chinese smoking patients.

    PubMed

    Tan, Qiang; Li, Fan; Wang, Guan; Xia, Weiliang; Li, Ziming; Niu, Xiaomin; Ji, Wenxiang; Yuan, Hong; Xu, Qiang; Luo, Qingquan; Zhang, Jie; Lu, Shun

    2016-04-05

    Comprehensive genomic characterizations of lung squamous cell carcinoma (LSCC) have been performed, but the differences between smokers (S-LSCC) and never smokers (NS-LSCC) are not clear, as NS-LSCC could be considered as a different disease from S-LSCC. In this study we delineated genomic alterations in a cohort of 21 NS-LSCC and 16 S-LSCC patients, and identified common gene mutations and amplifications as previously reported. Inclusion of more NS-LSCC patients enabled us to identify unreported S-LSCC- or NS-LSCC-specific alterations. Importantly, an amplification region containing FGF19, FGF3, FGF4 and CCND1 was found five-times more frequent in S-LSCC than in NS-LSCC. Amplification of FGF19 was validated in independent LSCC samples. Furthermore, FGF19 stimulated LSCC cell growth in vitro. These data implicate FGF19 as a potential driver gene in LSCC with clinic characteristics as smoking.

  2. Determining ACTB, ATP5B and RPL32 as optimal reference genes for quantitative RT-PCR studies of cryopreserved stallion semen.

    PubMed

    Pérez-Rico, A; Crespo, F; Sanmartín, M L; De Santiago, A; Vega-Pla, J L

    2014-10-01

    Equine germplasm bank management involves not only the conservation and use of semen doses, in addition it can also be a resource to study stallion semen quality and after thawing semen properties for reproductive purposes. A possible criterion to measure quality may be based on differential gene expression of loci involved during spermatogenesis and sperm quality maturation. The rapid degradation of sperm after thawing affects the integrity and availability of RNA. In this study we have analyzed genes expressed in equine cryopreserved sperm, which provided an adequate amplification, specificity, and stability to be used as future reference genes in expression studies. Live spermatozoa were selected from cryopreserved semen straws derived from 20 stallions, through a discontinuous concentration gradient. RNA purification followed a combination of the organic and column extraction methods together with a deoxyribonuclease treatment. The selective amplification of nine candidate genes was undertaken using reverse transcription and real-time polymerase chain reaction (qPCR) carried out in a one-step mode (qRT-PCR). Specificities were tested by melting curves, agarose gel electrophoresis and sequencing. In addition, gene stabilities were also calculated. Results indicated that five out of the nine candidate genes amplified properly (β-Actin, ATP synthase subunit beta, Protamine 1, L32 ribosomal protein and Ubiquitin B), of which β-Actin and the L32 Ribosomal protein showed the highest stability thus being the most suitable to be considered as reference genes for equine cryopreserved sperm studies, followed by the ATP synthase subunit beta and Ubiquitin B. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of Trypanosoma cruzi discrete typing units (DTUs) through the implementation of a high-resolution melting (HRM) genotyping assay.

    PubMed

    Higuera, Sonia L; Guhl, Felipe; Ramírez, Juan David

    2013-04-20

    Chagas disease, caused by Trypanosoma cruzi, is a geographically widespread anthropozoonosis that is considered a major public health problem in Latin America. Because this parasite presents high genetic variability, a nomenclature has been adopted to classify the parasite into six discrete typing units (DTUs): TcI, TcII, TcIII, TcIV, TcV, and TcVI, which present different eco-epidemiological, clinical, and geographic associations. Currently, the available genotyping methods present a series of drawbacks that implies the need for developing new methods for characterizing T. cruzi DTU's. The aim of this work was to genotype reference populations from T. cruzi by means of a High-Resolution Melting (HRM) genotyping assay. Amplification of the mini-exon gene allowed the genotyping of three distinct groups: TcI, TcII- TcIV- TcV, and TcIII-TcVI, while amplification of the 24sα gene generated non-overlapping melting temperature ranges for each DTU that were used to identify the groups in the six existing DTUs of Trypanosoma cruzi. The proposed genotyping assay allowed discrimination of the six genetic groups by obtaining specific melting curves for each DTU. The application of this technique is proposed because of its specificity, sensitivity, high performance, and low cost compared with other previously described characterization methods.

  4. Development of a pan-rickettsial molecular diagnostic test based on recombinase polymerase amplification assay.

    PubMed

    Kissenkötter, Jonas; Hansen, Sören; Böhlken-Fascher, Susanne; Ademowo, Olusegun George; Oyinloye, Oladapo Elijah; Bakarey, Adeleye Solomon; Dobler, Gerhard; Tappe, Dennis; Patel, Pranav; Czerny, Claus-Peter; Abd El Wahed, Ahmed

    2018-03-01

    Rickettsioses are zoonotic vector-transmitted bacterial infections leading to flu-like symptoms and can progress to severe illness in humans. The gold standard for diagnosis of rickettsial infections is the indirect immunofluorescence assay, a serological method which is not suitable for pathogen identification during the acute phase of the disease. Therefore, several real-time PCR assays were developed. These assays are very sensitive, but require high-equipped laboratories and well-trained personnel. Hence, in this study, a rapid point-of-need detection method was developed to detect all Rickettsia species. The 23S and 16S rRNA genes were targeted to develop a recombinase polymerase amplification (RPA) assay. Both 23S and 16S_RPA assays required between seven to ten minutes to amplify and detect one or ten DNA molecules/reaction, respectively. The 16S_RPA assay detected all tested species, whereas the 23S_RPA assay identified only species of the spotted fever and transitional rickettsial groups. All results were compared with real-time PCR assays directed against the same rickettsial genes. The RPA assays are easy to handle and produced quicker results in comparison to real-time PCRs. Both RPA assays were implemented in a mobile suitcase laboratory to ease the use in rural areas. This method can help to provide rapid management of rickettsial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High levels of the AR-V7 Splice Variant and Co-Amplification of the Golgi Protein Coding YIPF6 in AR Amplified Prostate Cancer Bone Metastases.

    PubMed

    Djusberg, Erik; Jernberg, Emma; Thysell, Elin; Golovleva, Irina; Lundberg, Pia; Crnalic, Sead; Widmark, Anders; Bergh, Anders; Brattsand, Maria; Wikström, Pernilla

    2017-05-01

    The relation between androgen receptor (AR) gene amplification and other mechanisms behind castration-resistant prostate cancer (CRPC), such as expression of constitutively active AR variants and steroid-converting enzymes has been poorly examined. Specific aim was to examine AR amplification in PC bone metastases and to explore molecular and functional consequences of this, with the long-term goal of identifying novel molecular targets for treatment. Gene amplification was assessed by fluorescence in situ hybridization in cryo-sections of clinical PC bone metastases (n = 40) and by PCR-based copy number variation analysis. Whole genome mRNA expression was analyzed using H12 Illumina Beadchip arrays and specific transcript levels were quantified by qRT-PCR. Protein localization was analyzed using immunohistochemistry and confocal microscopy. The YIPF6 mRNA expression was transiently knocked down and stably overexpressed in the 22Rv1 cell line as representative for CRPC, and effects on cell proliferation, colony formation, migration, and invasion were determined in vitro. Extracellular vesicles (EVs) were isolated from cell cultures using size-exclusion chromatography and enumerated by nanoparticle tracking analysis. Protein content was identified by LC-MS/MS analysis. Blood coagulation was measured as activated partial thromboplastin time (APTT). Functional enrichment analysis was performed using the MetaCore software. AR amplification was detected in 16 (53%) of the bone metastases examined from CRPC patients (n = 30), and in none from the untreated patients (n = 10). Metastases with AR amplification showed high AR and AR-V7 mRNA levels, increased nuclear AR immunostaining, and co-amplification of genes such as YIPF6 in the AR proximity at Xq12. The YIPF6 protein was localized to the Golgi apparatus. YIPF6 overexpression in 22Rv1 cells resulted in reduced cell proliferation and colony formation, and in enhanced EV secretion. EVs from YIPF6 overproducing 22Rv1 cells were enriched for proteins involved in blood coagulation and, accordingly, decreased the APTT in a dose-dependent fashion. AR amplified CRPC bone metastases show high AR-V7 expression that probably gives resistance to AR-targeting drugs. Co-amplification of the Golgi protein coding YIPF6 gene with the AR may enhance the secretion of pro-coagulative EVs from cancer cells and thereby stimulate tumor progression and increase the coagulopathy risk in CRPC patients. Prostate 77: 625-638, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  7. Predictive and therapeutic markers in ovarian cancer

    DOEpatents

    Gray, Joe W.; Guan, Yinghui; Kuo, Wen-Lin; Fridlyand, Jane; Mills, Gordon B.

    2013-03-26

    Cancer markers may be developed to detect diseases characterized by increased expression of apoptosis-suppressing genes, such as aggressive cancers. Genes in the human chromosomal regions, 8q24, 11q13, 20q11-q13, were found to be amplified indicating in vivo drug resistance in diseases such as ovarian cancer. Diagnosis and assessment of amplification levels certain genes shown to be amplified, including PVT1, can be useful in prediction of poor outcome of patient's response and drug resistance in ovarian cancer patients with low survival rates. Certain genes were found to be high priority therapeutic targets by the identification of recurrent aberrations involving genome sequence, copy number and/or gene expression are associated with reduced survival duration in certain diseases and cancers, specifically ovarian cancer. Therapeutics to inhibit amplification and inhibitors of one of these genes, PVT1, target drug resistance in ovarian cancer patients with low survival rates is described.

  8. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature.

    PubMed

    Costa, Gabriel Luíz; Amaral, Lara Cotta; Fontes, Cor Jesus Fernandes; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves; de Sousa, Taís Nóbrega

    2017-04-19

    Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR-RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil.

  9. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    PubMed

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  10. Standardisation of polymerase chain reaction for the detection of Salmonella typhi in typhoid fever.

    PubMed Central

    Chaudhry, R; Laxmi, B V; Nisar, N; Ray, K; Kumar, D

    1997-01-01

    To improve the diagnosis of Salmonella typhi infection, a polymerase chain reaction (PCR) assay was developed for the amplification of the dH flagellin gene of S typhi. Primers were designed from dH flagellin gene sequence which will give an amplification product of 486 base pairs. In tests to study the specificity of the assay, no amplification was seen in non-salmonella strains or salmonella strains with flagellar gene other than "d". Sensitivity tests determined that 28 pg of S typhi target DNA or 3 x 10(2) target bacteria could be detected by the PCR assay. Subsequently, the PCR technique was used for detection of S typhi in blood or clot cultures from 84 patients clinically suspected of having typhoid fever, and from 20 healthy control subjects. Twenty five of 84 samples from clinically suspected cases were positive by PCR; four of which were culture negative. No amplification was seen in samples from patients who were culture positive for organisms other than S typhi or from controls. The time taken for each sample for PCR analysis was less than 48 hours compared with three to five days for blood or clot culture. PCR appeared to be a promising diagnostic test for typhoid fever. Images PMID:9215131

  11. Genetic amplification of PPME1 in gastric and lung cancer and its potential as a novel therapeutic target

    PubMed Central

    Li, Jing; Han, Sufang; Qian, Ziliang; Su, Xinying; Fan, Shuqiong; Fu, Jiangang; Liu, Yuanjie; Yin, Xiaolu; Gao, Zeren; Zhang, Jingchuan; Yu, De-Hua; Ji, Qunsheng

    2014-01-01

    Protein phosphatase methylesterase 1 (PPME1) is a protein phosphatase 2A (PP2A)-specific methyl esterase that negatively regulates PP2A through demethylation at its carboxy terminal leucine 309 residue. Emerging evidence shows that the upregulation of PPME1 is associated with poor prognosis in glioblastoma patients. By performing an array comparative genomic hybridization analysis to detect copy number changes, we have been the first to identify PPME1 gene amplification in 3.8% (5/131) of Chinese gastric cancer (GC) samples and 3.1% (4/124) of Chinese lung cancer (LC) samples. This PPME1 gene amplification was confirmed by fluorescence in situ hybridization analysis and is correlated with elevated protein expression, as determined by immunohistochemistry analysis. To further investigate the role of PPME1 amplification in tumor growth, short-hairpin RNA-mediated gene silencing was employed. A knockdown of PPME1 expression resulted in a significant inhibition of cell proliferation and induction of cell apoptosis in PPME1-amplified human cancer cell lines SNU668 (GC) and Oka-C1 (LC), but not in nonamplified MKN1 (GC) and HCC95 (LC) cells. The PPME1 gene knockdown also led to a consistent decrease in PP2A demethylation at leucine 309, which was correlated with the downregulation of cellular Erk and AKT phosphorylation. Our data indicate that PPME1 could be an attractive therapeutic target for a subset of GCs and LCs. PMID:24253382

  12. Antibiotic sensitivity and sequence amplification patterns of genes in multidrug resistant enterobacteria isolates from processed foods in some West African countries.

    PubMed

    Owoseni, Abimbola Adetokunboh; Onilude, Abiodun Anthony

    2011-01-01

    Diarrhoea, dysentery and other diseases due to other enteric bacteria have reportedly been found to resist chemotherapeutic treatment in some West African communities with fatal consequences in some cases. This study was carried out to determine multidrug resistance patterns of Enterobacteria isolates from processed ready-to-eat foods. Indigenously processed food samples of different types were collected from two Francophone and two Anglophone countries in the West African sub-region during the wet and dry seasons of a sampling period of two years. Enterobacteria were isolated from the samples using standard techniques. Amplification of chromosomal DNA of the isolates using the Polymerase Chain Reaction was carried out. The results obtained were subjected to statistical analyses. All isolates showed resistance to cefuroxime (90.7%), nitrofurantoin (90.6%), augmentin (86.1%) and ampicillin (51.2%) while all were sensitive to gentamycin and ciprofloxacin. There was amplification indicating the presence of invA gene at a position of 240 bp. There was no amplification at all for the spvC gene in any of the isolates tested. Multidrug resistant enteric bacteria in these foods containing the invA gene could lead to infections with uncontrolled antibiotic use. The presence of enteric bacteria in the foods analyzed which provide undeniable evidence of the poor microbiological quality of these foods could form the basis of a useful databank in formulation of food-borne disease control and prevention strategies.

  13. Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes.

    PubMed

    Beghain, Johann; Langlois, Anne-Claire; Legrand, Eric; Grange, Laura; Khim, Nimol; Witkowski, Benoit; Duru, Valentine; Ma, Laurence; Bouchier, Christiane; Ménard, Didier; Paul, Richard E; Ariey, Frédéric

    2016-04-12

    In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes. Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole-genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strategies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data and called PlasmoCNVScan. The analysis of CNV identification on three genes known to have different levels of amplification and which are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with the qPCR experiments, usually used for identification of locus specific amplification/deletion. This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: drug pressure, decreased transmission, reduction of the parasite population size (transition to pre-elimination endemic area).

  14. Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection.

    PubMed

    Steinrueck, Magdalena; Guet, Călin C

    2017-07-25

    How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data.

  15. An 'instant gene bank' method for gene cloning by mutant complementation.

    PubMed

    Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J

    1994-02-01

    We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.

  16. Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae).

    PubMed

    Gutiérrez-López, Rafael; Martínez-de la Puente, Josué; Gangoso, Laura; Soriguer, Ramón C; Figuerola, Jordi

    2015-06-01

    The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small-sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy(®) Tissue and Blood Kit and DNA Kit Maxwell(®) 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI-based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher. © 2015 The Society for Vector Ecology.

  17. Genotyping three SNPs affecting warfarin drug response by isothermal real-time HDA assays.

    PubMed

    Li, Ying; Jortani, Saeed A; Ramey-Hartung, Bronwyn; Hudson, Elizabeth; Lemieux, Bertrand; Kong, Huimin

    2011-01-14

    The response to the anticoagulant drug warfarin is greatly affected by genetic polymorphisms in the VKORC1 and CYP2C9 genes. Genotyping these polymorphisms has been shown to be important in reducing the time of the trial and error process for finding the maintenance dose of warfarin thus reducing the risk of adverse effects of the drug. We developed a real-time isothermal DNA amplification system for genotyping three single nucleotide polymorphisms (SNPs) that influence warfarin response. For each SNP, real-time isothermal Helicase Dependent Amplification (HDA) reactions were performed to amplify a DNA fragment containing the SNP. Amplicons were detected by fluorescently labeled allele specific probes during real-time HDA amplification. Fifty clinical samples were analyzed by the HDA-based method, generating a total of 150 results. Of these, 148 were consistent between the HDA-based assays and a reference method. The two samples with unresolved HDA-based test results were repeated and found to be consistent with the reference method. The HDA-based assays demonstrated a clinically acceptable performance for genotyping the VKORC1 -1639G>A SNP and two SNPs (430C>T and 1075A>C) for the CYP2C9 enzyme (CYP2C9*2 and CYP2C9*3), all of which are relevant in warfarin pharmacogenentics. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples

    PubMed Central

    Rahman, S. M. Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae

    2017-01-01

    Background Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. Methodology/Principle findings The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1–99.2) of sensitivity and 100% (95% CI, 92.9–100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. Conclusions To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis. PMID:28991924

  19. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    PubMed

    Rahman, S M Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae; Choi, Min-Ho

    2017-10-01

    Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2) of sensitivity and 100% (95% CI, 92.9-100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  20. Optimization of RT-PCR reactions in studies with genes of lignin biosynthetic route in Saccharum spontaneum.

    PubMed

    Llerena, Juan P P; Araújo, Pedro; Mazzafera, Paulo

    2018-01-01

    Saccharum spontaneum has been used for the development of energy cane a crop aimed to be used for the production of second-generation ethanol, or lignocellulosic ethanol. Lignin is a main challenge in the conversion of cell wall sugars into ethanol. In our studies to isolate the genes the lignin biosynthesis in S. spontaneum we have had great difficulty in RT-PCR reactions. Thus, we evaluated the effectiveness of different additives in the amplification of these genes. While COMT and CCoAOMT genes did not need any additives for other genes there was no amplification (HCT, F5H, 4CL and CCR) or the yield was very low (CAD and C4H). The application of supplementary cDNA was enough to overcome the non-specificity and low yield for C4H and C3H, while the addition of 0.04% BSA + 2% formamide was effective to amplify 4CL, CCR, F5H and CCR. HCT was amplified only by addition of 0.04% BSA + 2% formamide + 0.1 M trehalose and amplification of PAL was possible with addition of 2% of DMSO. Besides optimization of expression assays, the results show that additives can act independently or synergistically.

  1. MET Amplification Identifies a Small and Aggressive Subgroup of Esophagogastric Adenocarcinoma With Evidence of Responsiveness to Crizotinib

    PubMed Central

    Lennerz, Jochen K.; Kwak, Eunice L.; Ackerman, Allison; Michael, Michael; Fox, Stephen B.; Bergethon, Kristin; Lauwers, Gregory Y.; Christensen, James G.; Wilner, Keith D.; Haber, Daniel A.; Salgia, Ravi; Bang, Yung-Jue; Clark, Jeffrey W.; Solomon, Benjamin J.; Iafrate, A. John

    2011-01-01

    Purpose Amplification of the MET proto-oncogene in gastroesophageal cancer (GEC) may constitute a molecular marker for targeted therapy. We examined a GEC cohort with follow-up and reported the clinical response of four additional patients with MET-amplified tumors to the small molecule inhibitor crizotinib as part of an expanded phase I cohort study. Patients and Methods From 2007 to 2009, patients with GEC were genetically screened as a consecutive series of 489 tumors (stages 0, I, and II, 39%; III, 25%; IV, 36%; n = 222 esophageal, including n = 21 squamous carcinomas). MET, EGFR, and HER2 amplification status was assessed by using fluorescence in situ hybridization. Results Ten (2%) of 489 patients screened harbored MET amplification; 23 (4.7%) harbored EGFR amplification; 45 (8.9%) harbored HER2 amplification; and 411 (84%) were wild type for all three genes (ie, negative). MET-amplified tumors were typically high-grade adenocarcinomas that presented at advanced stages (5%; n = 4 of 80). EGFR-amplified tumors showed the highest fraction of squamous cell carcinoma (17%; n = 4 of 23). HER2, MET, and EGFR amplification were, with one exception (MET and EGFR positive), mutually exclusive events. Survival analysis in patients with stages III and IV disease showed substantially shorter median survival in MET/EGFR-amplified groups, with a rank order for all groups by median survival (from most to least aggressive): MET (7.1 months; P < .001) less than EGFR (11.2 months; P = .16) less than HER2 (16.9 months; P = .89) when compared with the negative group (16.2 months). Two of four patients with MET-amplified tumors treated with crizotinib experienced tumor shrinkage (−30% and −16%) and experienced progression after 3.7 and 3.5 months. Conclusion MET amplification defines a small and aggressive subset of GEC with indications of transient sensitivity to the targeted MET inhibitor crizotinib (PF-02341066). PMID:22042947

  2. Polymerase chain reaction amplification as a diagnostic tool in culture-negative multiple-valve endocarditis.

    PubMed

    Madershahian, Navid; Strauch, Justus T; Breuer, Martin; Bruhin, Raimund; Straube, Eberhard; Wahlers, Thorsten

    2005-03-01

    We report a case of culture-negative infectious endocarditis in a 17-year-old boy in which the etiologic diagnosis could only be provided by polymerase chain reaction amplification and sequencing of the bacterial 16S rRNA gene from valve tissue.

  3. Ancient DNA in human bone remains from Pompeii archaeological site.

    PubMed

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  4. Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales.

    PubMed

    Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko

    2005-01-01

    PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.

  5. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification

    PubMed Central

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida

    2017-01-01

    Abstract Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. PMID:28053125

  6. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  7. Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed.

    PubMed

    Bentley-Hewitt, Kerry L; Hedderley, Duncan I; Monro, John; Martell, Sheridan; Smith, Hannah; Mishra, Suman

    2016-05-25

    Experimental methods are constantly being improved by new technology. Recently a new technology, NanoString®, has been introduced to the market for the analysis of gene expression. Our experiments used adipose and liver samples collected from a rat feeding trial to explore gene expression changes resulting from a diet of 7.5% seaweed. Both quantitative real-time polymerase chain reaction (qPCR) and NanoString methods were employed to look at expression of genes related to fat and glucose metabolism and this paper compares results from both methods. We conclude that NanoString offers a valuable alternative to qPCR and our data suggest that results are more accurate because of the reduced sample handling and direct quantification of gene copy number without the need for enzymatic amplification. However, we have highlighted a potential challenge for both methods, which needs to be addressed when designing primers or probes. We suggest a literature search for known splice variants of a particular gene to be completed so that primers or probes can be designed that do not span exons which may be affected by alternative gene sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method.

    PubMed

    Koide, Y; Maeda, H; Yamabe, K; Naruishi, K; Yamamoto, T; Kokeguchi, S; Takashiba, S

    2010-04-01

    To develop a detection assay for staphylococcal mecA and spa by using loop-mediated isothermal amplification (LAMP) method. Staphylococcus aureus and other related species were subjected to the detection of mecA and spa by both PCR and LAMP methods. The LAMP successfully amplified the genes under isothermal conditions at 64 degrees C within 60 min, and demonstrated identical results with the conventional PCR methods. The detection limits of the LAMP for mecA and spa, by gel electrophoresis, were 10(2) and 10 cells per tube, respectively. The naked-eye inspections were possible with 10(3) and 10 cells for detection of mecA and spa, respectively. The LAMP method was then applied to sputum and dental plaque samples. The LAMP and PCR demonstrated identical results for the plaque samples, although frequency in detection of mecA and spa by the LAMP was relatively lower for the sputum samples when compared to the PCR methods. Application of the LAMP enabled a rapid detection assay for mecA and spa. The assay may be applicable to clinical plaque samples. The LAMP offers an alternative detection assay for mecA and spa with a great advantage of the rapidity.

  9. Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Zhang, David; Esteve, Teresa; Pla, Maria; Prat, Salomé

    2005-05-04

    The number of cultured hectares and commercialized genetically modified organisms (GMOs) has increased exponentially in the past 9 years. Governments in many countries have established a policy of labeling all food and feed containing or produced by GMOs. Consequently, versatile, laboratory-transferable GMO detection methods are in increasing demand. Here, we describe a qualitative PCR-based multiplex method for simultaneous detection and identification of four genetically modified maize lines: Bt11, MON810, T25, and GA21. The described system is based on the use of five primers directed to specific sequences in these insertion events. Primers were used in a single optimized multiplex PCR reaction, and sequences of the amplified fragments are reported. The assay allows amplification of the MON810 event from the 35S promoter to the hsp intron yielding a 468 bp amplicon. Amplification of the Bt11 and T25 events from the 35S promoter to the PAT gene yielded two different amplicons of 280 and 177 bp, respectively, whereas amplification of the 5' flanking region of the GA21 gave rise to an amplicon of 72 bp. These fragments are clearly distinguishable in agarose gels and have been reproduced successfully in a different laboratory. Hence, the proposed method comprises a rapid, simple, reliable, and sensitive (down to 0.05%) PCR-based assay, suitable for detection of these four GM maize lines in a single reaction.

  10. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. RNA splicing process analysis for identifying antisense oligonucleotide inhibitors with padlock probe-based isothermal amplification.

    PubMed

    Ren, Xiaojun; Deng, Ruijie; Wang, Lida; Zhang, Kaixiang; Li, Jinghong

    2017-08-01

    RNA splicing, which mainly involves two transesterification steps, is a fundamental process of gene expression and its abnormal regulation contributes to serious genetic diseases. Antisense oligonucleotides (ASOs) are genetic control tools that can be used to specifically control genes through alteration of the RNA splicing pathway. Despite intensive research, how ASOs or various other factors influence the multiple processes of RNA splicing still remains obscure. This is largely due to an inability to analyze the splicing efficiency of each step in the RNA splicing process with high sensitivity. We addressed this limitation by introducing a padlock probe-based isothermal amplification assay to achieve quantification of the specific products in different splicing steps. With this amplified assay, the roles that ASOs play in RNA splicing inhibition in the first and second steps could be distinguished. We identified that 5'-ASO could block RNA splicing by inhibiting the first step, while 3'-ASO could block RNA splicing by inhibiting the second step. This method provides a versatile tool for assisting efficient ASO design and discovering new splicing modulators and therapeutic drugs.

  12. Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)

    PubMed Central

    El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa

    2013-01-01

    The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454

  13. Alteration of Topoisomerase II–Alpha Gene in Human Breast Cancer: Association With Responsiveness to Anthracycline-Based Chemotherapy

    PubMed Central

    Press, Michael F.; Sauter, Guido; Buyse, Marc; Bernstein, Leslie; Guzman, Roberta; Santiago, Angela; Villalobos, Ivonne E.; Eiermann, Wolfgang; Pienkowski, Tadeusz; Martin, Miguel; Robert, Nicholas; Crown, John; Bee, Valerie; Taupin, Henry; Flom, Kerry J.; Tabah-Fisch, Isabelle; Pauletti, Giovanni; Lindsay, Mary-Ann; Riva, Alessandro; Slamon, Dennis J.

    2011-01-01

    Purpose Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. This study was designed to evaluate whether TOP2A gene alterations may predict incremental responsiveness to anthracyclines in some breast cancers. Methods A total of 4,943 breast cancers were analyzed for alterations in TOP2A and HER2. Primary tumor tissues from patients with metastatic breast cancer treated in a trial of chemotherapy plus/minus trastuzumab were studied for amplification/deletion of TOP2A and HER2 as a test set followed by evaluation of malignancies from two separate, large trials for changes in these same genes as a validation set. Association between these alterations and clinical outcomes was determined. Results Test set cases containing HER2 amplification treated with doxorubicin and cyclophosphamide (AC) plus trastuzumab, demonstrated longer progression-free survival compared to those treated with AC alone (P = .0002). However, patients treated with AC alone whose tumors contain HER2/TOP2A coamplification experienced a similar improvement in survival (P = .004). Conversely, for patients treated with paclitaxel, HER2/TOP2A coamplification was not associated with improved outcomes. These observations were confirmed in a larger validation set, where HER2/TOP2A coamplification was again associated with longer survival when only anthracycline-containing chemotherapy was used for treatment compared with outcome in HER2-positive cancers lacking TOP2A coamplification. Conclusion In a study involving nearly 5,000 breast malignancies, both test set and validation set demonstrate that TOP2A coamplification, not HER2 amplification, is the clinically useful predictive marker of an incremental response to anthracycline-based chemotherapy. Absence of HER2/TOP2A coamplification may indicate a more restricted efficacy advantage for breast cancers than previously thought. PMID:21189395

  14. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco

    PubMed Central

    Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods. IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results. The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion. A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas. PMID:28785587

  15. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco.

    PubMed

    Senhaji, Nadia; Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Idbaih, Ahmed; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods . IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results . The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion . A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas.

  16. Genome-wide single-nucleotide polymorphism arrays demonstrate high fidelity of multiple displacement-based whole-genome amplification.

    PubMed

    Tzvetkov, Mladen V; Becker, Christian; Kulle, Bettina; Nürnberg, Peter; Brockmöller, Jürgen; Wojnowski, Leszek

    2005-02-01

    Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.

  17. An improved strategy and a useful housekeeping gene for RNA analysis from formalin-fixed, paraffin-embedded tissues by PCR.

    PubMed

    Finke, J; Fritzen, R; Ternes, P; Lange, W; Dölken, G

    1993-03-01

    Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of material. We describe a procedure for RNA extraction from different types of FFPE tissues, involving digestion with proteinase K followed by guanidinium-thiocyanate acid phenol extraction and DNase I digestion. These RNA preparations are suitable for PCR analysis of mRNA and even of intronless genes. Furthermore, the universally expressed porphobilinogen deaminase mRNA proved to be useful as a positive control because of the lack of pseudogenes.

  18. Multiplex Ligation-Dependent Probe Amplification Analysis on Capillary Electrophoresis Instruments for a Rapid Gene Copy Number Study

    PubMed Central

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-01-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies. PMID:19137113

  19. Of Mice and Men: Empirical Support for the Population-Based Social Epistasis Amplification Model (a Comment on ).

    PubMed

    Sarraf, Matthew Alexandar; Woodley Of Menie, Michael Anthony

    2017-01-01

    This commentary article offers new perspective on recent research investigating the behavioral and social ecological effects of a mutation related to autism spectrum disorders in mice. The authors explain the consistency of this research on mice with predictions advanced by a theory of the role of mutations in altering interorganismal gene-gene interactions (social epistasis) in social species including humans, known as the social epistasis amplification model. The potential significance of the mouse research for understanding contemporary human behavioral trends is explored.

  20. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines

    PubMed Central

    Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso

    2016-01-01

    AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471

  1. Development of unidentified dna-specific hif 1α gene of lizard (hemidactylus platyurus) which plays a role in tissue regeneration process

    NASA Astrophysics Data System (ADS)

    Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.

    2018-03-01

    Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.

  2. Development of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities.

    PubMed

    Lee, Patrick K H; Men, Yujie; Wang, Shanquan; He, Jianzhong; Alvarez-Cohen, Lisa

    2015-02-03

    Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells from a microbial community, and the DNA of the isolated cells was processed by whole genome amplification (WGA) and hybridized onto a D. mccartyi microarray for comparative genomics against four sequenced strains. First, FACS was successfully applied to a D. mccartyi isolate as positive control, and then microarray results verified that WGA from 10(6) cells or ∼1 ng of genomic DNA yielded high-quality coverage detecting nearly all genes across the genome. As expected, some inter- and intrasample variability in WGA was observed, but these biases were minimized by performing multiple parallel amplifications. Subsequent application of the FACS and WGA protocols to two enrichment cultures containing ∼10% and ∼1% D. mccartyi cells successfully enabled genomic analysis. As proof of concept, this study demonstrates that coupling FACS with WGA and microarrays is a promising tool to expedite genomic characterization of target strains in environmental communities where the relative concentrations are low.

  3. Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum

    PubMed Central

    Chahar, Madhvi; Mishra, Neelima; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena

    2017-01-01

    Chloroquine (CQ) resistance in Plasmodium falciparum is determined by the mutations in the chloroquine resistance transporter (Pfcrt) gene. The point mutation at codon 76 (K76T), which has been observed in more than 91% of P. falciparum isolates in India, is the major determinant of CQ resistance. To overcome the limitations and challenges of traditional methods, in this investigation we developed an easy to use loop mediated isothermal amplification (LAMP) protocol for rapid detection of the K76T mutation associated with CQ resistance in P. falciparum with naked eye visualization. In- house designed primers were synthesized and optimized to specifically distinguish the CQ resistant mutants of P. falciparum. The LAMP reaction was optimal at 61 °C for 60 min and calcein dye was added prior to amplification to enable visual detection. We demonstrate the detection limit of <2 ng/μl respectively, supporting the high sensitivity of this calcein based LAMP method. To the best of our knowledge this is the first report on the establishment of an easy, reliable and cost effective LAMP assay for rapid and specific detection of highly CQ resistance in P. falciparum malaria. PMID:28134241

  4. Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification

    PubMed Central

    Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo

    2012-01-01

    Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397

  5. Protection from feed-forward amplification in an amplified RNAi mechanism

    PubMed Central

    Pak, Julia; Maniar, Jay Mahesh; Mello, Cecilia Cabral; Fire, Andrew

    2012-01-01

    SUMMARY The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture that will limit the ability of a randomly encountered trigger to produce an uncontrolled and self-escalating response. Investigating such limits in C. elegans, we find that feed-forward amplification is limited by a critical biosynthetic and structural distinction at the RNA level between (i) triggers that can produce amplification and (ii) siRNA products of the amplification reaction. By assuring that initial (primary) siRNAs can act as triggers but not templates for activation, and that the resulting (secondary) siRNAs can enforce gene silencing on additional targets without unbridled trigger amplification, the system achieves substantial but fundamentally limited signal amplification. PMID:23141544

  6. Real-time quantitative reverse transcription-PCR assay for renal cell carcinoma-associated antigen G250.

    PubMed

    Chuanzhong, Ye; Ming, Guan; Fanglin, Zhang; Haijiao, Chen; Zhen, Lin; Shiping, Chen; YongKang, Zhang

    2002-04-01

    Gene amplification/expression of G250 is a major event in human renal tumorigenesis. G250-based therapeutic agents and G250-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen G250 alterations in renal cell cancer (RCC) patients and investigate the relationship between G250 mRNA expression and RCC. We developed a quantitative RT-PCR assay for the measurement of G250 mRNA expression using a real-time procedure based on the use of fluorogenic probes and the ABI PRISM 7700 Sequence Detector System. The method has been applied to the measurement of quantitative mRNA level of G250 in 31 cases RCC and 6 normal renal tissues. The dynamic range was 10(3)-10(8). The relationship between Ct and log starting concentration was linear (r=0.99). G250 expression was present in all RCCs with G250 amplification but was absent in normal ones. G250 mRNA expression ranged from 2.9 x 10(3) to 6.5 x 10(7) copy/microg RNA, with a mean value of 3.5 x 10(6) copy/microg RNA. The expression of G250 revealed an inverse correlation to tumor grade. G250 mRNA level did not correlate with the cell types and clinical stages (P>0.05). G250 has the potential to be used as a marker of diagnosis and increasing proliferation in RCC. This new simple, rapid, semi-automated assay was a major alternative to competitive PCR and Northern blot analysis for gene alteration analysis in human tumors and might be a powerful tool for large randomized, prospective cooperative group trials and supporting future G250-based biological and gene therapy approaches.

  7. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.

    PubMed

    Ma, Yu-Dong; Chang, Wen-Hsin; Luo, Kang; Wang, Chih-Hung; Liu, Shih-Yuan; Yen, Wen-Hsiang; Lee, Gwo-Bin

    2018-01-15

    Loop-mediated isothermal amplification (LAMP) is a DNA amplification approach characterized by high sensitivity and specificity. In "digital LAMP", small quantities of both template DNA and reagents are encapsulated within a droplet or microwell, allowing for analysis of precious nucleic acid samples in shorter amounts of time relative to traditional DNA amplification protocols (e.g., PCR) with an improved limit of detection. In this study, an integrated, self-driven microfluidic chip was designed to carry out digital LAMP. The entire quantification process could be automatically performed on this chip via capillary forces enabled through microwells comprised of polydimethylsiloxane (PDMS) surfaces coated with a hydrophilic film; no external pumps were required. Moreover, digitized droplets could be separated from each other by normally-closed microvalves. The contact angle of the hydrophilic film-coated PDMS surface was only 14.3°. This is the first time that a rapid (30min) and simple method has been used to create hydrophilic PDMS surfaces that allow for digital LAMP to be performed in a self-driven microfluidic device. As a proof of concept, amplification of a gene specific to a vancomycin-resistant Enterococcus strain was performed on the developed microfluidic chip within 30min, and the limit of detection was only 11 copies with a volume of 30μL. This device may therefore become a promising tool for clinical diagnosis and point-of-care applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-05-19

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis.

  9. Linear RNA amplification for the production of microarray hybridization probes.

    PubMed

    Klebes, Ansgar; Kornberg, Thomas B

    2008-01-01

    To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity.

  10. Direct duplex real-time loop mediated isothermal amplification assay for the simultaneous detection of cow and goat species origin of milk and yogurt products for field use.

    PubMed

    Kim, Mi-Ju; Kim, Hae-Yeong

    2018-04-25

    A multiple loop-mediated isothermal amplification (LAMP) method was developed to detect cow and goat milk in the field using a portable fluorescence device. For rapid on-site detection, this duplex LAMP assay was used in combination with direct amplification, without DNA extraction. The cow- and goat-specific LAMP primer sets were designed based on the mitochondrial cytochrome b gene, and showed specificity against 13 other animal species in the reactions. The sensitivity of the duplex LAMP assay for cow and goat was 0.1 and 1 pg, respectively. The detection limit for both target species in milk mixtures was 2%. This assay successfully amplified and identified the two target species in 24 samples of commercial milk and yogurt products, with 30 min sampling-to-result analysis time. Therefore, this direct duplex real-time LAMP assay is useful for on-site simultaneous detection of cow and goat milk in commercial products, a capability needed to confirm accurate labeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level.

    PubMed

    Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi

    2008-12-15

    The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.

  12. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies.

    PubMed

    Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar

    2017-01-01

    The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  14. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamb, A.; Weir, M.; Rudy, B.

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this methodmore » to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.« less

  15. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas.

    PubMed

    Saâda-Bouzid, Esma; Burel-Vandenbos, Fanny; Ranchère-Vince, Dominique; Birtwisle-Peyrottes, Isabelle; Chetaille, Bruno; Bouvier, Corinne; Château, Marie-Christine; Peoc'h, Michel; Battistella, Maxime; Bazin, Audrey; Gal, Jocelyn; Michiels, Jean-François; Coindre, Jean-Michel; Pedeutour, Florence; Bianchini, Laurence

    2015-11-01

    HMGA2, CDK4, and JUN genes have been described as frequently coamplified with MDM2 in atypical lipomatous tumor, well-differentiated liposarcoma, and dedifferentiated liposarcoma. We studied the frequency of amplification of these genes in a series of 48 dedifferentiated liposarcomas and 68 atypical lipomatous tumors/well-differentiated liposarcomas. We correlated their amplification status with clinicopathological features and outcomes. Histologically, both CDK4 (P=0.007) and JUN (P=0.005) amplifications were associated with dedifferentiated liposarcoma, whereas amplification of the proximal parts of HMGA2 (5'-untranslated region (UTR) and exons 1-3) was associated with atypical lipomatous tumor/well-differentiated liposarcoma (P=0.01). CDK4 amplification was associated with axial tumors. Amplification of 5'-UTR and exons 1-3 of HMGA2 was associated with primary status and grade 1. Shorter overall survival was correlated with: age >64 years (P=0.03), chemotherapy used in first intent (P<0.001), no surgery (P=0.003), grade 3 (P<0.001), distant metastasis (P<0.001), node involvement (P=0.006), and CDK4 amplification (P=0.07). In multivariate analysis, distant metastasis (HR=8.8) and grade 3 (HR=18.2) were associated with shorter overall survival. A shorter recurrence-free survival was associated with dedifferentiated liposarcoma (P<0.001), grade 3 (P<0.001), node involvement (P<0.001), distant metastasis (P=0.02), recurrent status (P=0.009), axial location (P=0.001), and with molecular features such as CDK4 (P=0.05) and JUN amplification (P=0.07). Amplification of 5'-UTR and exons 1-3 (P=0.08) and 3'-UTR (P=0.01) of HMGA2 were associated with longer recurrence-free survival. Distant metastasis was associated with shorter recurrence-free survival (HR=5.8) in multivariate analysis. Dedifferentiated liposarcoma type was associated with axial location, grade 3 and recurrent status. In conclusion, we showed that the amplification of HMGA2 was associated with the atypical lipomatous tumor/well-differentiated liposarcoma histological type and a good prognosis, whereas CDK4 and JUN amplifications were associated with dedifferentiated liposarcoma histology and a bad prognosis. In addition, we also provided the first description of the molecular evolution of a well-differentiated liposarcoma into four successive dedifferentiated liposarcoma relapses, which was consistent with our general observations.

  16. The Fitness Consequences of Aneuploidy Are Driven by Condition-Dependent Gene Effects

    PubMed Central

    Sunshine, Anna B.; Payen, Celia; Ong, Giang T.; Liachko, Ivan; Tan, Kean Ming; Dunham, Maitreya J.

    2015-01-01

    Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations. PMID:26011532

  17. HER2/neu gene amplification determines the sensitivity of uterine serous carcinoma cell lines to AZD8055, a novel dual mTORC1/2 inhibitor.

    PubMed

    English, Diana P; Roque, Dana M; Carrara, Luisa; Lopez, Salvatore; Bellone, Stefania; Cocco, Emiliano; Bortolomai, Ileana; Schwartz, Peter E; Rutherford, Thomas; Santin, Alessandro D

    2013-12-01

    To evaluate c-erbB2 gene amplification in a series of primary uterine serous carcinoma (USC) cell lines. To assess the efficacy of AZD8055, a novel dual mTORC1/2 inhibitor against primary HER2/neu amplified vs HER2/neu not amplified USC cell lines. Twenty-two primary USC cell lines were evaluated for c-erbB2 oncogene amplification by FISH assays. In vitro sensitivity to AZD8055 was evaluated by flow-cytometry-based viability and proliferation assays. Cell cycle profile and downstream cellular responses to AZD8055 were assessed by measuring the DNA content of cells and by phosphorylation of the S6 protein by flow-cytometry. Nine of 22 (40.9%) USC cell lines demonstrated c-erbB2 gene amplification by FISH. AZD8055 caused a strong differential growth inhibition in USC cell lines, with high HER-2/neu-expressors demonstrating significantly higher sensitivity when compared to low HER-2/neu-expressors (AZD-8055 IC50 mean±SEM=0.27±0.05μM in c-erbB2 amplified versus 1.67±0.68μM in c-erbB2 not amplified tumors, P=0.03). AZD8055 growth-inhibition was associated with a significant and dose-dependent increase in the percentage of cells blocked in the G0/G1 cell cycle phase and a dose-dependent decline in pS6 levels in both c-erbB2 amplified vs c-erbB2 not amplified USC cell lines. AZD8055 may represent a novel targeted therapeutic agent in patients harboring advanced/recurrent/refractory USC. c-erbB2 gene amplification may represent a biomarker to identify USC patients who may benefit most from the use of AZD8055. © 2013.

  18. Molecular Alterations of KIT Oncogene in Gliomas

    PubMed Central

    Gomes, Ana L.; Reis-Filho, Jorge S.; Lopes, José M.; Martinho, Olga; Lambros, Maryou B. K.; Martins, Albino; Schmitt, Fernando; Pardal, Fernando; Reis, Rui M.

    2007-01-01

    Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK), is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117) immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17) and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH) and quantitative real-time PCR (qRT-PCR) were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179) of cases, namely in 25% (1/4) of pilocytic astrocytomas, 25% (5/20) of diffuse astrocytomas, 20% (1/5) of anaplastic astrocytomas, 19.5% (15/77) of glioblastomas and one third (3/9) of anaplastic oligoastrocytomas. Only 5.7% (2/35) of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24) of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK inhibitors. PMID:17726262

  19. Relationship between driver gene mutations, their relative protein expressions and survival in non-small cell lung carcinoma in Macao.

    PubMed

    Chan, Kin Iong; Vong, Hong Ting; Sin, Lai Fong; Yip, Yuk Ching; Zhong, Xue Yun; Wen, Jian Ming

    2018-04-01

    We report the status of most common gene mutations in non-small cell lung carcinoma (NSCLC) in Macao, and explore the relationship between each gene mutation and clinicopathologic features and survival. EGFR, KRAS and BRAF mutations were detected by PCR in 122 cases of NSCLC. ALK translocation and MET amplification were detected by fluorescence in situ hybridization (FISH). MET and thyroid transcription factor (TTF-1) were investigated by immunohistochemistry. Clinical data were collected for analyzing their correlation with the gene mutations. The mutation of EGFR, KRAS and BRAF was detected in 48 (39.3%), 13 (10.7%) and 3 (2.5%) of 122 cases of NSCLC, respectively. ALK translocation and MET amplification were detected in 7 (5.7%) and 3 cases (2.5%). The rate of EGFR mutation was significantly higher in female and non-smoker patients. In TTF-1 positive cases EGFR mutation was more frequent. Age of the patients over 62-year old was correlated with KRAS mutations. The concordance between ALK IHC and FISH was 58.3%. The MET protein in the cases with MET amplification was 100% positive. The survival was lower in the patients with positive MET protein than those with negative. MET protein was an independent prognostic factor for NSCLC. EGFR mutation occurred frequently in the female never smoke patients with NSCLC. KRAS mutation was more common in old patients. Negative MET protein expression could be used as a negative predictive marker of MET amplification. MET protein expression was an independent prognostic factor for NSCLC. © 2017 John Wiley & Sons Ltd.

  20. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  1. Evaluation of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a screening method for the detection of influenza viruses in the fecal materials of water birds.

    PubMed

    Yoshida, Hiromi; Sakoda, Yoshihiro; Endo, Mayumi; Motoshima, Masayuki; Yoshino, Fumi; Yamamoto, Naoki; Okamatsu, Masatoshi; Soejima, Takahiro; Senba, Syouhei; Kanda, Hidetoshi; Kida, Hiroshi

    2011-06-01

    Migratory water birds are a natural reservoir for influenza A viruses. Viruses replicate in the intestines of ducks and are shed with the fecal materials. Virus isolation from collected fecal materials, therefore, is an integral part of the surveillance of avian influenza in water birds. In the present study, reverse transcription loop-mediated isothermal amplification (RT-LAMP) was assessed for its usefulness in detecting the RNA of influenza A viruses in fecal materials. It was found that, RT-LAMP specifically and sensitively detects the matrix gene of influenza A viruses. Influenza A viruses were isolated from the fecal materials in which viral RNA were detected by RT-LAMP in 35 min. The present findings indicate that RT-LAMP is useful as a high throughput screening method for field samples prior to virus isolation, allowing the processing of hundreds of samples per day.

  2. Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrillo-Peixoto, M.L.; Beverley, S.M.

    1988-12-01

    We describe the structure of amplified DNA that was discovered in two laboratory stocks of the protozoan parasite Leishmania tarentolae. Restriction mapping and molecular cloning revealed that a region of 42 kilobases was amplified 8- to 30-fold in these lines. Southern blot analyses of digested DNAs or chromosomes separated by pulsed-field electrophoresis showed that the amplified DNA corresponded to the H region, a locus defined originally by its amplification in methotrexate-resistant Leishmania major. Similarities between the amplified DNA of the two species included (i) extensive cross-hybridization; (ii) approximate conservation of sequence order; (iii) extrachromosomal localization; (iv) an overall inverted, head-to-headmore » configuration as a circular 140-kilobase tetrameric molecule; (v) two regions of DNA sequence rearrangement, each of which was closely associated with the two centers of the inverted repeats; (vi) association with methotrexate resistance; and (vii) phenotypically conservative amplification, in which the wild-type chromosomal arrangement was retained without apparent modification. Our data showed that amplified DNA mediating drug resistance arose in unselected L. tarentolae, although the pressures leading to apparently spontaneous amplification and maintenance of the H region are not known. The simple structure and limited extent of DNA amplified in these and other Leishmania lines suggests that the study of gene amplification in Leishmania spp. offers an attractive model system for the study of amplification in cultured mammalian cells and tumors. We also introduced a method for measuring the size of large circular DNAs, using gamma-irradiation to introduce limited double-strand breaks followed by sizing of the linear DNAs by pulsed-field electrophoresis.« less

  3. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    PubMed

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  4. Development of Recombinase Polymerase Amplification Assays for Detection of Orientia tsutsugamushi or Rickettsia typhi.

    PubMed

    Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei

    2015-01-01

    Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37°C followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39°C. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus.

  5. Development of Recombinase Polymerase Amplification Assays for Detection of Orientia tsutsugamushi or Rickettsia typhi

    PubMed Central

    Chao, Chien-Chung; Belinskaya, Tatyana; Zhang, Zhiwen; Ching, Wei-Mei

    2015-01-01

    Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37oC followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39oC. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus. PMID:26161793

  6. Status of estrogen receptor 1 (ESR1) gene in mastopathy predicts subsequent development of breast cancer.

    PubMed

    Soysal, Savas D; Kilic, Incken B; Regenbrecht, Christian R A; Schneider, Sandra; Muenst, Simone; Kilic, Nerbil; Güth, Uwe; Dietel, Manfred; Terracciano, Luigi M; Kilic, Ergin

    2015-06-01

    Mastopathy is a common disease of the breast likely associated with elevated estrogen levels and a putative risk factor for breast cancer. The role of estrogen receptor alpha (ESR1) in mastopathy has not been investigated previously. Here, we investigated the prevalence of ESR1 gene amplification in mastopathy and its prediction for breast cancer. Paraffin-embedded tissues from 58 women with invasive breast cancer were analyzed. For all women, tissues with mastopathy taken at least 1.5 years before first diagnosis of breast cancer were available. Tissue from 46 women with mastopathy without a diagnosis of breast carcinoma in the observed time frame (12-18 years) was used as control. Fluorescence in situ hybridization analysis revealed that ESR1 was amplified in nine of 58 (15.5 %) breast cancers. All ESR1-amplified breast cancers were strongly positive for estrogen receptor with ER immunohistochemistry. Interestingly, in women with ESR1 amplification in breast cancer, the amplification was detectable in mastopathic tissues prior to the first diagnosis of breast cancer but was absent in tissues from women with mastopathy who did not develop breast cancer. Our study suggests that ESR1 gene amplification is an early event in breast pathology and might be a helpful predictive marker to identify patients at high risk of developing breast cancer.

  7. Convenient, Sensitive and High-Throughput Method for Screening Botanic Origin

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi

    2014-06-01

    In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.

  8. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas.

    PubMed

    Hélias-Rodzewicz, Zofia; Pérot, Gaëlle; Chibon, Frédéric; Ferreira, Céline; Lagarde, Pauline; Terrier, Philippe; Coindre, Jean-Michel; Aurias, Alain

    2010-12-01

    In a series of 404 adult soft tissue sarcomas, analyzed by array-CGH, we have observed in approximately 10% of them a genomic amplification of either chromosome bands 11q22 or 3p12. These two amplicons likely target the YAP1 and VGLL3 genes, respectively. Both genes encode proteins that are cofactors of the TEAD family of transcription factors. Very good correlations between amplification and expression levels were observed. Welch test analyses of transcriptome data demonstrate that tumors with amplicons share a large set of upregulated and downregulated genes. Inhibition of YAP1 and VGLL3 in cell lines with these amplifications/overexpressions leads to similar phenotypes: decrease of proliferation rate, and to a lesser extent decrease of migration properties. These data, and the fact that these amplicons are observed either in de-differentiated liposarcomas or in undifferentiated pleomorphic sarcomas, suggest that these genetics events could be involved in oncogenesis and progression of soft tissue sarcomas. © 2010 Wiley-Liss, Inc.

  9. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  10. Compartmentalized self-replication: a novel method for the directed evolution of polymerases and other enzymes.

    PubMed

    Ghadessy, Farid J; Holliger, Philipp

    2007-01-01

    Compartmentalized self-replication (CSR) is a novel method for the directed evolution of enzymes and, in particular, polymerases. In its simplest form, CSR consists of a simple feedback loop involving a polymerase that replicates only its own encoding gene (self-replication). Self-replication occurs in discrete, spatially separate, noncommunicating compartments formed by a heat-stable water-in-oil emulsion. Compartmentalization ensures the linkage of phenotype and genotype (i.e., it ensures that each polymerase replicates only its own encoding gene to the exclusion of those in the other compartments). As a result, adaptive gains by the polymerase directly (and proportionally) translate into genetic amplification of the encoding polymerase gene. CSR has proven to be a useful strategy for the directed evolution of polymerases directly from diverse repertoires of polymerase genes. In this chapter, we describe some of the CSR protocols used successfully to evolve variants of T. aquaticus Pol I (Taq) polymerase with novel and useful properties, such as increased thermostability or resistance to the potent inhibitor, heparin, from a repertoire of randomly mutated Taq polymerase genes.

  11. The uses and limitations of the square‐root‐impedance method for computing site amplification

    USGS Publications Warehouse

    Boore, David

    2013-01-01

    The square‐root‐impedance (SRI) method is a fast way of computing approximate site amplification that does not depend on the details from velocity models. The SRI method underestimates the peak response of models with large impedance contrasts near their base, but the amplifications for those models is often close to or equal to the root mean square of the theoretical full resonant (FR) response of the higher modes. On the other hand, for velocity models made up of gradients, with no significant impedance changes across small ranges of depth, the SRI method systematically underestimates the theoretical FR response over a wide frequency range. For commonly used gradient models for generic rock sites, the SRI method underestimates the FR response by about 20%–30%. Notwithstanding the persistent underestimation of amplifications from theoretical FR calculations, however, amplifications from the SRI method may often provide more useful estimates of amplifications than the FR method, because the SRI amplifications are not sensitive to details of the models and will not exhibit the many peaks and valleys characteristic of theoretical full resonant amplifications (jaggedness sometimes not seen in amplifications based on averages of site response from multiple recordings at a given site). The lack of sensitivity to details of the velocity models also makes the SRI method useful in comparing the response of various velocity models, in spite of any systematic underestimation of the response. The quarter‐wavelength average velocity, which is fundamental to the SRI method, is useful by itself in site characterization, and as such, is the fundamental parameter used to characterize the site response in a number of recent ground‐motion prediction equations.

  12. Filter-Adapted Fluorescent In Situ Hybridization (FA-FISH) for Filtration-Enriched Circulating Tumor Cells.

    PubMed

    Oulhen, Marianne; Pailler, Emma; Faugeroux, Vincent; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) may represent an easily accessible source of tumor material to assess genetic aberrations such as gene-rearrangements or gene-amplifications and screen cancer patients eligible for targeted therapies. As the number of CTCs is a critical parameter to identify such biomarkers, we developed fluorescent in situ hybridization (FISH) for CTCs enriched on filters (filter-adapted-FISH, FA-FISH). Here, we describe the FA-FISH protocol, the combination of immunofluorescent staining (DAPI/CD45) and FA-FISH techniques, as well as the semi-automated microscopy method that we developed to improve the feasibility and reliability of FISH analyses in filtration-enriched CTC.

  13. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  14. [Interest of crizotinib in a lung cancer patient with de novo amplification of MET].

    PubMed

    Rabeau, A; Rouquette, I; Vantelon, J-M; Taranchon-Clermont, E; Mazières, J

    2017-01-01

    Targeted therapy in lung cancer changes the prognostic and treatment of patients. MET is an oncogene including exon 14 mutations and gene amplification associated with worse prognosis. We here report the case of a 47-year-old former smoker, woman, with a stage IV lung adenocarcinoma with multiple chemotherapy failure. A MET amplification was identified and the patient consequently received crizotinib. A major response was observed after eight weeks of treatment. MET amplification screening appears to be interesting with some oncogenic-addicted tumor response rate. Those patients should be enrolled in clinical trials dedicated to tumor with MET alteration. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  15. Gene amplification of the Hps locus in Glycine max

    PubMed Central

    Gijzen, Mark; Kuflu, Kuflom; Moy, Pat

    2006-01-01

    Background Hydrophobic protein from soybean (HPS) is an 8 kD cysteine-rich polypeptide that causes asthma in persons allergic to soybean dust. HPS is synthesized in the pod endocarp and deposited on the seed surface during development. Past evidence suggests that the protein may mediate the adherence or dehiscence of endocarp tissues during maturation and affect the lustre, or glossiness of the seed surface. Results A comparison of soybean germplasm by genomic DNA blot hybridization shows that the copy number and structure of the Hps locus is polymorphic among soybean cultivars and related species. Changes in Hps gene copy number were also detected by comparative genomic DNA hybridization using cDNA microarrays. The Hps copy number polymorphisms co-segregated with seed lustre phenotype and HPS surface protein in a cross between dull- and shiny-seeded soybeans. In soybean cultivar Harosoy 63, a minimum of 27 ± 5 copies of the Hps gene were estimated to be present in each haploid genome. The isolation and analysis of genomic clones indicates that the core Hps locus is comprised of a tandem array of reiterated units, with each 8.6 kb unit containing a single HPS open reading frame. Conclusion This study shows that polymorphisms at the Hps locus arise from changes in the gene copy number via gene amplification. We present a model whereby Hps copy number modulates protein expression levels and seed lustre, and we suggest that gene amplification may result from selection pressures imposed on crop plants. PMID:16536872

  16. Polymerase chain reaction (PCR) amplification of a nucleoprotein gene sequence of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Arakawa, C.K.; Deering, R.E.; Higman, K.H.; Oshima, K.H.; O'Hara, P.J.; Winton, J.R.

    1990-01-01

    The polymerase chain reaction [PCR) was used to amplify a portion of the nucleoprotein [NI gene of infectious hematopoietic necrosis virus (IHNV). Using a published sequence for the Round Butte isolate of IHNV, a pair of PCR pnmers was synthesized that spanned a 252 nucleotide region of the N gene from residue 319 to residue 570 of the open reading frame. This region included a 30 nucleotide target sequence for a synthetic oligonucleotide probe developed for detection of IHNV N gene messenger RNA. After 25 cycles of amplification of either messenger or genomic RNA, the PCR product (DNA) of the expected size was easily visible on agarose gels stained with ethidium bromide. The specificity of the amplified DNA was confirmed by Southern and dot-blot analysis using the biotinylated oligonucleotide probe. The PCR was able to amplify the N gene sequence of purified genomic RNA from isolates of IHNV representing 5 different electropherotypes. Using the IHNV primer set, no PCR product was obtained from viral hemorrhagic septicemia virus RNA, but 2 higher molecular weight products were synthesized from hirame rhabdovirus RNA that did not hybridize with the biotinylated probe. The PCR could be efficiently performed with all IHNV genomic RNA template concentrations tested (1 ng to 1 pg). The lowest level of sensitivity was not determined. The PCR was used to amplify RNA extracted from infected cell cultures and selected tissues of Infected rainbow trout. The combination of PCR and nucleic acid probe promises to provide a detection method for IHNV that is rapid, h~ghly specific, and sensitive.

  17. Cloning and sequencing of a cellobiohydrolase gene from Trichoderma harzianum FP108

    Treesearch

    Patrick Guilfoile; Ron Burns; Zu-Yi Gu; Matt Amundson; Fu-Hsian Chang

    1999-01-01

    A cbbl cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderrna harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbbl gene from Tricboderma reesei. The 3' end of the gene was isolated by inverse...

  18. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    PubMed

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  19. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes.

    PubMed

    Nugen, Sam R; Leonard, Barbara; Baeumner, Antje J

    2007-05-15

    We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.

  1. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    PubMed

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  2. ALK amplification and protein expression predict inferior prognosis in neuroblastomas.

    PubMed

    Wang, Miao; Zhou, Chunju; Sun, Qinnuan; Cai, Rongqin; Li, Yong; Wang, Daye; Gong, Liping

    2013-10-01

    ALK gene has been identified as a major neuroblastoma (NBL) predisposition gene. But ALK gene copy number and protein expression in ganglioneuroblastoma (GNBL) and ganglioneuroma (GN) are poorly described in the literature. Furthermore, there are controversies on the correlation between ALK protein expression and clinical outcome in NBL. We evaluated MYCN/ALK gene copy number by fluorescence in situ hybridization (FISH) and detected ALK protein expression by immunohistochemistry (IHC) in 188 NBL, 52 GNBL and 6 GN samples and analyzed their association with clinical outcome of the patients. Although ALK gene copy number increase is a recurrent genetic aberration of neuroblastic tumors (NTs) (39.1%, 96/246), ALK amplification was only present in three NBLs (1.2%, 3/246). The frequency of ALK positivity in NBL (50.5%, 51/101) was significantly higher than in GNBL (22.6%, 7/31) and in GN (0.0%, 0/4) (P<0.05). In addition, ALK positivity also significantly correlates with MYCN/ALK gene copy number increases (P<0.05). Kaplan-Meier survival analysis indicated that MYCN/ALK amplification is correlated with decreased overall survival in NBL. A better prognosis trend was observed in patients with MYCN/ALK gain tumors compared with those with MYCN/ALK normal tumors. Furthermore, ALK positivity significantly correlated with inferior survival in NBL (P=0.044). ALK positivity in NTs correlated with advanced tumor types and MYCN/ALK gene copy number increases. ALK positivity predicts inferior prognosis in NBL and IHC is a simplified strategy to screen ALK positivity in clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Sequencing intractable DNA to close microbial genomes.

    PubMed

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  4. Reanalysis of RNA-Sequencing Data Reveals Several Additional Fusion Genes with Multiple Isoforms

    PubMed Central

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts. PMID:23119097

  5. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    PubMed

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  6. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    PubMed Central

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  7. Markers and mapping revisited: finding your gene.

    PubMed

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.

  8. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Development of a Rapid Identification Method for a Variety of Antibody Candidates Using High-throughput Sequencing.

    PubMed

    Ito, Yuji

    2017-01-01

    As an alternative to hybridoma technology, the antibody phage library system can also be used for antibody selection. This method enables the isolation of antigen-specific binders through an in vitro selection process known as biopanning. While it has several advantages, such as an avoidance of animal immunization, the phage cloning and screening steps of biopanning are time-consuming and problematic. Here, we introduce a novel biopanning method combined with high-throughput sequencing (HTS) using a next-generation sequencer (NGS) to save time and effort in antibody selection, and to increase the diversity of acquired antibody sequences. Biopannings against a target antigen were performed using a human single chain Fv (scFv) antibody phage library. VH genes in pooled phages at each round of biopanning were analyzed by HTS on a NGS. The obtained data were trimmed, merged, and translated into amino acid sequences. The frequencies (%) of the respective VH sequences at each biopanning step were calculated, and the amplification factor (change of frequency through biopanning) was obtained to estimate the potential for antigen binding. A phylogenetic tree was drawn using the top 50 VH sequences with high amplification factors. Representative VH sequences forming the cluster were then picked up and used to reconstruct scFv genes harboring these VHs. Their derived scFv-Fc fusion proteins showed clear antigen binding activity. These results indicate that a combination of biopanning and HTS enables the rapid and comprehensive identification of specific binders from antibody phage libraries.

  10. Vancomycin-resistant gene identification from live bacteria on an integrated microfluidic system by using low temperature lysis and loop-mediated isothermal amplification

    PubMed Central

    Chang, Wen-Hsin; Yu, Ju-ching; Yang, Sung-Yi; Lin, Yi-Cheng; Wang, Chih-Hung; You, Huey-Ling; Wu, Jiunn-Jong; Lee, Gwo-Bin

    2017-01-01

    Vancomycin-resistant Enterococcus (VRE) is a kind of enterococci, which shows resistance toward antibiotics. It may last for a long period of time and meanwhile transmit the vancomycin-resistant gene (vanA) to other bacteria. In the United States alone, the resistant rate of Enterococcus to vancomycin increased from a mere 0.3% to a whopping 40% in the past two decades. Therefore, timely diagnosis and control of VRE is of great need so that clinicians can prevent patients from becoming infected. Nowadays, VRE is diagnosed by antibiotic susceptibility test or molecular diagnosis assays such as matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and polymerase chain reaction. However, the existing diagnostic methods have some drawbacks, for example, time-consumption, no genetic information, or high false-positive rate. This study reports an integrated microfluidic system, which can automatically identify the vancomycin resistant gene (vanA) from live bacteria in clinical samples. A new approach using ethidium monoazide, nucleic acid specific probes, low temperature chemical lysis, and loop-mediated isothermal amplification (LAMP) has been presented. The experimental results showed that the developed system can detect the vanA gene from live Enterococcus in joint fluid samples with detection limit as low as 10 colony formation units/reaction within 1 h. This is the first time that an integrated microfluidic system has been demonstrated to detect vanA gene from live bacteria by using the LAMP approach. With its high sensitivity and accuracy, the proposed system may be useful to monitor antibiotic resistance genes from live bacteria in clinical samples in the near future. PMID:28798845

  11. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water.

    PubMed

    Tantawiwat, Suwalee; Tansuphasiri, Unchalee; Wongwit, Waranya; Wongchotigul, Varee; Kitayaporn, Dwip

    2005-01-01

    Multiplex PCR amplification of lacZ, uidA and plc genes was developed for the simultaneous detection of total coliform bacteria for Escherichia coli and Clostridium perfringens, in drinking water. Detection by agarose gel electrophoresis yielded a band of 876 bp for the lacZ gene of all coliform bacteria; a band of 147 bp for the uidA gene and a band of 876 bp for the lacZ gene of all strains of E. coli; a band of 280 bp for the p/c gene for all strains of C. perfringens; and a negative result for all three genes when tested with other bacteria. The detection limit was 100 pg for E. coli and C. perfringens, and 1 ng for coliform bacteria when measured with purified DNA. This assay was applied to the detection of these bacteria in spiked water samples. Spiked water samples with 0-1,000 CFU/ml of coliform bacteria and/or E. coli and/or C. perfringens were detected by this multiplex PCR after a pre-enrichment step to increase the sensitivity and to ensure that the detection was based on the presence of cultivable bacteria. The result of bacterial detection from the multiplex PCR was comparable with that of a standard plate count on selective medium (p=0.62). When using standard plate counts as a gold standard, the sensitivity for this test was 99.1% (95% CI 95.33, 99.98) and the specificity was 90.9 % (95% CI 75.67, 98.08). Multiplex PCR amplification with a pre-enrichment step was shown to be an effective, sensitive and rapid method for the simultaneous detection of these three microbiological parameters in drinking water.

  12. A polymorphism in the bovine gamma-S-crystallin gene revealed by allele-specific amplification.

    PubMed

    Kemp, S J; Maillard, J C; Teale, A J

    1993-04-01

    A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.

  13. Development and Use of an Internal Positive Control for Detection of Bordetella pertussis by PCR

    PubMed Central

    Herwegh, Stéphanie; Carnoy, Christophe; Wallet, Frédéric; Loïez, Caroline; Courcol, René J.

    2005-01-01

    An internal control of amplification was constructed by recombinant PCR to detect PCR inhibitors. This exogenous DNA was included in the reaction mixture and coamplified with the target gene. This detection was successfully applied to the diagnosis of whooping cough by amplification of a fragment of Bordetella pertussis IS481. PMID:15872283

  14. The detection of Yersinia enterocolitica in surface water by quantitative PCR amplification of the ail and yadA genes.

    PubMed

    Cheyne, Bo M; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2010-09-01

    Yersinia enterocolitica has been detected in surface water, and drinking untreated water is a risk factor for infection. PCR-based methods have been used to detect Y. enterocolitica in various sample types, but quantitative studies have not been conducted in water. In this study, quantitative PCR (qPCR)-based methods targeting the Yersinia virulence genes ail and yadA were used to survey the Grand River watershed in southern Ontario, Canada. Initial testing of reference strains showed that ail and yadA PCR assays were specific for pathogenic biotypes of Y. enterocolitica; however the genes were also detected in one clinical Yersinia intermedia isolate. A survey of surface water from the Grand River watershed showed that both genes were detected at five sampling locations, with the ail and yadA genes detected in 38 and 21% of samples, respectively. Both genes were detected more frequently at colder water temperatures. A screening of Yersinia strains isolated from the watershed showed that the ail gene was detected in three Y. enterocolitica 1A/O:5 isolates. Results of this study show that Yersinia virulence genes were commonly detected in a watershed used as a source of drinking water, and that the occurrence of these genes was seasonal.

  15. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses.

    PubMed

    Yan, Liying; Huang, Lei; Xu, Liya; Huang, Jin; Ma, Fei; Zhu, Xiaohui; Tang, Yaqiong; Liu, Mingshan; Lian, Ying; Liu, Ping; Li, Rong; Lu, Sijia; Tang, Fuchou; Qiao, Jie; Xie, X Sunney

    2015-12-29

    In vitro fertilization (IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening (PGS) help patients to select embryos free of monogenic diseases and aneuploidy (chromosome abnormality). Next-generation sequencing (NGS) methods, while experiencing a rapid cost reduction, have improved the precision of PGD/PGS. However, the precision of PGD has been limited by the false-positive and false-negative single-nucleotide variations (SNVs), which are not acceptable in IVF and can be circumvented by linkage analyses, such as short tandem repeats or karyomapping. It is noteworthy that existing methods of detecting SNV/copy number variation (CNV) and linkage analysis often require separate procedures for the same embryo. Here we report an NGS-based PGD/PGS procedure that can simultaneously detect a single-gene disorder and aneuploidy and is capable of linkage analysis in a cost-effective way. This method, called "mutated allele revealed by sequencing with aneuploidy and linkage analyses" (MARSALA), involves multiple annealing and looping-based amplification cycles (MALBAC) for single-cell whole-genome amplification. Aneuploidy is determined by CNVs, whereas SNVs associated with the monogenic diseases are detected by PCR amplification of the MALBAC product. The false-positive and -negative SNVs are avoided by an NGS-based linkage analysis. Two healthy babies, free of the monogenic diseases of their parents, were born after such embryo selection. The monogenic diseases originated from a single base mutation on the autosome and the X-chromosome of the disease-carrying father and mother, respectively.

  16. Copy number variants calling for single cell sequencing data by multi-constrained optimization.

    PubMed

    Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang

    2016-08-01

    Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Use of reverse transcription loop-mediated isothermal amplification combined with lateral flow dipstick for an easy and rapid detection of Jembrana disease virus.

    PubMed

    Kusumawati, Asmarani; Tampubolon, Issabellina Dwades; Hendarta, Narendra Yoga; Salasia, Siti Isrina Oktavia; Wanahari, Tenri Ashari; Mappakaya, Basofi Ashari; Hartati, Sri

    2015-09-01

    Jembrana disease virus (JDV) is a viral pathogen that causes Jembrana disease in Bali cattle (Bos javanicus) with high mortality rate. An easy and rapid diagnostic method is essential for further control this disease. We used a reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with lateral flow dipstick (LFD), based on conserved tm subunit of Jembrana disease virus env gene. The RT-LAMP conditions were optimized by varying the concentration of MgSO4, betaine, dNTP, and temperature as well as the time and duration of reaction. The primers sensitivity for JDV was confirmed. The method was able to detect env-tm gene dilution which contained 2 × 10(-15) g of template. Comparatively, the sensitivity of RT-LAMP/LFD was 100-fold more sensitive than reverse transcription-polymerase chain reaction. The primers specificity for JDV was also confirmed using positive and negative controls. This work also showed that virus detection could be done not only on total RNA extracted from blood but various organs could also be analyzed for the presence of JDV using RT-LAMP/LFD method. The whole process, including the LAMP reaction and the LFD hybridization step only lasts approximately 75 min. Results of analysis can be easily observed with naked eyes without addition of any chemical or further analysis. The combination of RT-LAMP with LFD makes the method a more suitable diagnostic tool in conditions where sophisticated and expensive equipments are not available for field investigations on Jembrana disease in Bali cattle.

  18. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    PubMed

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  19. A multiplex real-time polymerase chain reaction assay with two internal controls for the detection of Brucella species in tissues, blood, and feces from marine mammals.

    PubMed

    Sidor, Inga F; Dunn, J Lawrence; Tsongalis, Gregory J; Carlson, Jolene; Frasca, Salvatore

    2013-01-01

    Brucellosis has emerged as a disease of concern in marine mammals in the last 2 decades. Molecular detection techniques have the potential to address limitations of other methods for detecting infection with Brucella in these species. Presented herein is a real-time polymerase chain reaction (PCR) method targeting the Brucella genus-specific bcsp31 gene. The method also includes a target to a conserved region of the eukaryotic mitochondrial 16S ribosomal RNA gene to assess suitability of extracted DNA and a plasmid-based internal control to detect failure of PCR due to inhibition. This method was optimized and validated to detect Brucella spp. in multiple sample matrices, including fresh or frozen tissue, blood, and feces. The analytical limit of detection was low, with 95% amplification at 24 fg, or an estimated 7 bacterial genomic copies. When Brucella spp. were experimentally added to tissue or fecal homogenates, the assay detected an estimated 1-5 bacteria/µl. An experiment simulating tissue autolysis showed relative persistence of bacterial DNA compared to host mitochondrial DNA. When used to screen 1,658 field-collected marine mammal tissues in comparison to microbial culture, diagnostic sensitivity and specificity were 70.4% and 98.3%, respectively. In addition to amplification in fresh and frozen tissues, Brucella spp. were detected in feces and formalin-fixed, paraffin-embedded tissues from culture-positive animals. Results indicate the utility of this real-time PCR for the detection of Brucella spp. in marine species, which may have applications in surveillance or epidemiologic investigations.

  20. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples

    PubMed Central

    Sorensen, Darwin L.; Dupont, R. Ryan

    2016-01-01

    ABSTRACT The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII. In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments. PMID:27913413

  1. Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: polyploidization can lead to diagnostic pitfalls with potential impact for clinical management.

    PubMed

    Valent, Alexander; Penault-Llorca, Frédérique; Cayre, Anne; Kroemer, Guido

    2013-01-01

    The status of the HER2 (ERBB2) gene in breast cancer is not static and may change among the primary tumor, lymph node metastases, and distant metastases. This status change can be a consequence of the natural evolution of the tumor or can be induced by therapy. The HER2 gene status is, in the majority of cases, established at the moment of diagnosis. After chemotherapy, monitoring HER2 status can be a challenge because of ploidy changes induced by drugs. The cytogeneticist or the pathologist can face real difficulties in distinguishing between a true HER2 amplification and HER2 copy number increase by polyploidization. We performed a HER2 genetic examination by fluorescence in situ hybridization (FISH) of invasive breast cancers before and after taxane treatment. The majority of patients (91%) were HER2-negative both at diagnosis and after treatment. Thirty of 344 patients (9%) whose tumors were initially HER2-negative were found by FISH to have supernumerary HER2 gene copies (up to 15 copies) after neoadjuvant chemotherapy. This HER2 copy increase could not be attributed to true gene amplifications and instead reflected polyploidization events, which presumably affected all chromosomes. Indeed, when we used other FISH probes, we found other gene copy numbers to parallel those of HER2. We recommend careful checking of invasive breast carcinomas by supplementary FISH probes if the copy number of the HER2 gene is >6. This procedure allows the discrimination of specific HER2 gene amplifications and global increases in ploidy. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  3. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    USGS Publications Warehouse

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  4. Models and methods to characterize site amplification from a pair of records

    USGS Publications Warehouse

    Safak, E.

    1997-01-01

    The paper presents a tutorial review of the models and methods that are used to characterize site amplification from the pairs of rock- and soil-site records, and introduces some new techniques with better theoretical foundations. The models and methods discussed include spectral and cross-spectral ratios, spectral ratios for downhole records, response spectral ratios, constant amplification factors, parametric models, physical models, and time-varying filters. An extensive analytical and numerical error analysis of spectral and cross-spectral ratios shows that probabilistically cross-spectral ratios give more reliable estimates of site amplification. Spectral ratios should not be used to determine site amplification from downhole-surface recording pairs because of the feedback in the downhole sensor. Response spectral ratios are appropriate for low frequencies, but overestimate the amplification at high frequencies. The best method to be used depends on how much precision is required in the estimates.

  5. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine.

    PubMed

    Luo, Meng; Gao, Zhen; Li, Hui; Li, Qin; Zhang, Caixi; Xu, Wenping; Song, Shiren; Ma, Chao; Wang, Shiping

    2018-03-13

    Grapevine is among the fruit crops with high economic value, and because of the economic losses caused by abiotic stresses, the stress resistance of Vitis vinifera has become an increasingly important research area. Among the mechanisms responding to environmental stresses, the role of miRNA has received much attention recently. qRT-PCR is a powerful method for miRNA quantitation, but the accuracy of the method strongly depends on the appropriate reference genes. To determine the most suitable reference genes for grapevine miRNA qRT-PCR, 15 genes were chosen as candidate reference genes. After eliminating 6 candidate reference genes with unsatisfactory amplification efficiency, the expression stability of the remaining candidate reference genes under salinity, cold and drought was analysed using four algorithms, geNorm, NormFinder, deltaCt and Bestkeeper. The results indicated that U6 snRNA was the most suitable reference gene under salinity and cold stresses; whereas miR168 was the best for drought stress. The best reference gene sets for salinity, cold and drought stresses were miR160e + miR164a, miR160e + miR168 and ACT + UBQ + GAPDH, respectively. The selected reference genes or gene sets were verified using miR319 or miR408 as the target gene.

  6. The Novel Multiple Inner Primers-Loop-Mediated Isothermal Amplification (MIP-LAMP) for Rapid Detection and Differentiation of Listeria monocytogenes.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Aijing; Li, Dongxun; Luo, Lijuan; Liu, Dongxin; Hu, Shoukui; Jin, Dong; Liu, Kai; Ye, Changyun

    2015-12-03

    Here, a novel model of loop-mediated isothermal amplification (LAMP), termed multiple inner primers-LAMP (MIP-LAMP), was devised and successfully applied to detect Listeria monocytogenes. A set of 10 specific MIP-LAMP primers, which recognized 14 different regions of target gene, was designed to target a sequence in the hlyA gene. The MIP-LAMP assay efficiently amplified the target element within 35 min at 63 °C and was evaluated for sensitivity and specificity. The templates were specially amplified in the presence of the genomic DNA from L. monocytogenes. The limit of detection (LoD) of MIP-LAMP assay was 62.5 fg/reaction using purified L. monocytogenes DNA. The LoD for DNA isolated from serial dilutions of L. monocytogenes cells in buffer and in milk corresponded to 2.4 CFU and 24 CFU, respectively. The amplified products were analyzed by real-time monitoring of changes in turbidity, and visualized by adding Loop Fluorescent Detection Reagent (FD), or as a ladder-like banding pattern on gel electrophoresis. A total of 48 pork samples were investigated for L. monocytogenes by the novel MIP-LAMP method, and the diagnostic accuracy was shown to be 100% when compared to the culture-biotechnical method. In conclusion, the MIP-LAMP methodology was demonstrated to be a reliable, sensitive and specific tool for rapid detection of L. monocytogenes strains.

  7. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.

    PubMed

    Jousset, Alexandre; Lara, Enrique; Nikolausz, Marcell; Harms, Hauke; Chatzinotas, Antonis

    2010-02-01

    Ciliates (or Ciliophora) are ubiquitous organisms which can be widely used as bioindicators in ecosystems exposed to anthropogenic and industrial influences. The evaluation of the environmental impact on soil ciliate communities with methods relying on morphology-based identification may be hampered by the large number of samples usually required for a statistically supported, reliable conclusion. Cultivation-independent molecular-biological diagnostic tools are a promising alternative to greatly simplify and accelerate such studies. In this present work a ciliate-specific fingerprint method based on the amplification of a phylogenetic marker gene (i.e. the 18S ribosomal RNA gene) with subsequent analysis by denaturing gradient gel electrophoresis (DGGE) was developed and used to monitor community shifts in a polycyclic aromatic hydrocarbon (PAH) polluted soil. The semi-nested approach generated ciliate-specific amplification products from all soil samples and allowed to distinguish community profiles from a PAH-polluted and a non-polluted control soil. Subsequent sequence analysis of excised bands provided evidence that polluted soil samples are dominated by organisms belonging to the class Colpodea. The general DGGE approach presented in this study might thus in principle serve as a fast and reproducible diagnostic tool, complementing and facilitating future ecological and ecotoxicological monitoring of ciliates in polluted habitats. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Direct PCR of indigenous and invasive mosquito species: a time- and cost-effective technique of mosquito barcoding.

    PubMed

    Werblow, A; Flechl, E; Klimpel, S; Zittra, C; Lebl, K; Kieser, K; Laciny, A; Silbermayr, K; Melaun, C; Fuehrer, H-P

    2016-03-01

    Millions of people die each year as a result of pathogens transmitted by mosquitoes. However, the morphological identification of mosquito species can be difficult even for experts. The identification of morphologically indistinguishable species, such as members of the Anopheles maculipennis complex (Diptera: Culicidae), and possible hybrids, such as Culex pipiens pipiens/Culex pipiens molestus (Diptera: Culicidae), presents a major problem. In addition, the detection and discrimination of newly introduced species can be challenging, particularly to researchers without previous experience. Because of their medical importance, the clear identification of all relevant mosquito species is essential. Using the direct polymerase chain reaction (PCR) method described here, DNA amplification without prior DNA extraction is possible and thus species identification after sequencing can be achieved. Different amounts of tissue (leg, head; larvae or adult) as well as different storage conditions (dry, ethanol, -20 and -80 °C) and storage times were successfully applied and showed positive results after amplification and gel electrophoresis. Overall, 28 different indigenous and non-indigenous mosquito species were analysed using a gene fragment of the COX1 gene for species differentiation and identification by sequencing this 658-bp fragment. Compared with standard PCR, this method is time- and cost-effective and could thus improve existing surveillance and control programmes. © 2015 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  9. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification.

    PubMed

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida; Cox, J Colin; Warming, Søren

    2017-05-05

    Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Multiple displacement amplification on single cell and possible PGD applications.

    PubMed

    Hellani, Ali; Coskun, Serdar; Benkhalifa, Moncef; Tbakhi, Abelghani; Sakati, Nadia; Al-Odaib, Ali; Ozand, Pinar

    2004-11-01

    Multiple displacement amplification (MDA) is a technique used in the amplification of very low amounts of DNA and reported to yield large quantities of high-quality DNA. We used MDA to amplify the whole genome directly from a single cell. The most common techniques used in PGD are PCR and fluorescent in-situ hybridization (FISH). There are many limitations to these techniques including, the number of chromosomes diagnosed for FISH or the quality of DNA issued from a single cell PCR. This report shows, for the first time, use of MDA for single cell whole genome amplification. A total of 16 short tandem repeats (STRs) were amplified successfully with a similar pattern to the genomic DNA. Furthermore, allelic drop out (ADO) derived from MDA was assessed in 40 single cells by analysing (i) heterozygosity for a known beta globin mutation (IVSI-5 C-G) and by studying (ii) the heterozygous loci present in the STRs. ADO turned out to be 10.25% for the beta globin gene sequencing and 5% for the fluorescent PCR analysis of STRs. Moreover, the amplification accuracy of MDA permitted the detection of trisomy 21 on a single cell using comparative genome hybridization-array. Altogether, these data suggest that MDA can be used for single cell molecular karyotyping and the diagnosis of any single gene disorder in PGD.

  11. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  12. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. "Paper Machine" for Molecular Diagnostics.

    PubMed

    Connelly, John T; Rolland, Jason P; Whitesides, George M

    2015-08-04

    Clinical tests based on primer-initiated amplification of specific nucleic acid sequences achieve high levels of sensitivity and specificity. Despite these desirable characteristics, these tests have not reached their full potential because their complexity and expense limit their usefulness to centralized laboratories. This paper describes a device that integrates sample preparation and loop-mediated isothermal amplification (LAMP) with end point detection using a hand-held UV source and camera phone. The prototype device integrates paper microfluidics (to enable fluid handling) and a multilayer structure, or a "paper machine", that allows a central patterned paper strip to slide in and out of fluidic path and thus allows introduction of sample, wash buffers, amplification master mix, and detection reagents with minimal pipetting, in a hand-held, disposable device intended for point-of-care use in resource-limited environments. This device creates a dynamic seal that prevents evaporation during incubation at 65 °C for 1 h. This interval is sufficient to allow a LAMP reaction for the Escherichia coli malB gene to proceed with an analytical sensitivity of 1 double-stranded DNA target copy. Starting with human plasma spiked with whole, live E. coli cells, this paper demonstrates full integration of sample preparation with LAMP amplification and end point detection with a limit of detection of 5 cells. Further, it shows that the method used to prepare sample enables concentration of DNA from sample volumes commonly available from fingerstick blood draw.

  14. New primer for specific amplification of the CAG repeat in Huntington disease alleles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, C.E.; Hodes, M.E.

    1994-09-01

    Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designingmore » a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.« less

  15. Improved efficiency in amplification of Escherichia coli o-antigen gene clusters using genome-wide sequence comparison

    USDA-ARS?s Scientific Manuscript database

    Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...

  16. DHFR and MSH3 co-amplification in childhood acute lymphoblastic leukaemia, in vitro and in vivo.

    PubMed

    Matheson, Elizabeth C; Hogarth, Linda A; Case, Marian C; Irving, Julie A E; Hall, Andrew G

    2007-06-01

    The MSH3 and dihydrofolate reductase (DHFR) genes, located on chromosome 5, share a common promoter but are divergently transcribed. Dysregulation of the mismatch repair (MMR) pathway has been found to occur in cell line models due to co-amplification of MSH3 as a coincident effect of DHFR amplification, acquired as a mechanism generating resistance to methotrexate (MTX). The increased levels of MSH3 perturbed MutSalpha function resulting in hypermutability and increased resistance to thiopurines, drugs whose cytotoxic effects are triggered by MutSalpha. The relevance of this phenomenon in clinical samples is unknown but is extremely pertinent in childhood acute lymphoblastic leukaemia (ALL) in which children are exposed for prolonged periods to both MTX and thiopurines such that a single amplification event involving both the DHFR and the MSH3 genes may cause chemotherapeutic resistance to both agents. Thus, we have generated a leukaemic cell line (PreB697) and a normal human lymphoblastoid cell line (TK6) that are resistant to a pharmacologically relevant dose of MTX and show that while increased DHFR levels result in MTX resistance, the associated increased levels of MSH3 are insufficient to perturb MutSalpha functionality, in terms of MMR capacity or 6-thioguanine sensitivity. In addition, we show that although low-level DHFR amplification occurs alone in a significant number of samples, both at disease onset and relapse, co-amplification of both MSH3 and DHFR is rarely found in primary ALL samples, even after prolonged MTX therapy and is not at a sufficiently high level to perturb MMR function.

  17. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics.

    PubMed

    Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K; Gomez-Lorenzo, Maria G; Vanaerschot, Manu; Sakata-Kato, Tomoyo; Flannery, Erika L; Magistrado, Pamela; Owen, Edward; Abraham, Matthew; LaMonte, Gregory; Painter, Heather J; Williams, Roy M; Franco, Virginia; Linares, Maria; Arriaga, Ignacio; Bopp, Selina; Corey, Victoria C; Gnädig, Nina F; Coburn-Flynn, Olivia; Reimer, Christin; Gupta, Purva; Murithi, James M; Moura, Pedro A; Fuchs, Olivia; Sasaki, Erika; Kim, Sang W; Teng, Christine H; Wang, Lawrence T; Akidil, Aslı; Adjalley, Sophie; Willis, Paul A; Siegel, Dionicio; Tanaseichuk, Olga; Zhong, Yang; Zhou, Yingyao; Llinás, Manuel; Ottilie, Sabine; Gamo, Francisco-Javier; Lee, Marcus C S; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2018-01-12

    Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing.

    PubMed

    Watanabe, Manabu; Kusano, Junko; Ohtaki, Shinsaku; Ishikura, Takashi; Katayama, Jin; Koguchi, Akira; Paumen, Michael; Hayashi, Yoshiharu

    2014-09-01

    Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line) were used as a model. Single-cell capture was performed using laser capture microdissection (LCM) with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈ 10(6) cells) were subjected to whole genome amplification (WGA). For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel) was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 10(31-35). For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100 × were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100 × were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  19. [Prognostic significance of MYCN amplification in children neuroblastic tumors].

    PubMed

    Niu, Huilin; Xu, Tao; Wang, Fenghua; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Xia, Jianqing

    2015-02-01

    To summarize the clinicopathologic features of neuroblastic tumors (NT), and to explore the prognostic significance of MYCN amplification in NT. The clinicopathologic data of 267 NT were reviewed. MYCN gene amplification was detected by fluorescence in situ hybridization (FISH) in 119 cases and the relationship with pathological characteristics and prognostic significance were analyzed. The study included 267 cases of children NT from patients aged from 1 day to 13 years (median 27 months). The male to female ratio was 1.43. There were 38 cases (14.2%), 43 cases (16.1%), 71 cases (26.6%), and 115 cases (43.1%) of INSS stages I, II, III and IV respectively.Favorable histology group had 157 cases (59.9%); unfavorable histology group had 110 cases (40.1%).Of the 119 NT cases with MYCN FISH performed, 18 cases (15.1%) showed amplification and the signal ratio of MYCN to CEP2 was 4.08-43.29. One hundred and one cases of non-amplified MYCN included MYCN gain in 79 cases (66.3%) and MYCN negative in 22 cases (18.5%). MYCN expression showed significant difference (P = 0.000) between ages, gender, NT type and MKI, but not INPC and clinical stage (P > 0.05).Of the 18 cases with MYCN amplification, 3 were undifferentiated, and 15 poorly differentiated; 17 had high MKI and one moderate MKI. All 18 cases were in unfavorable histology group; the overall survival rate was 3/18, with an average survival time of (17.9 ± 2.4) months.Of the 101 MYCN non-amplification cases, the overall survival rate was 68.3% (69/101), with an average survival time of (29.8 ± 1.3) months. Survival analysis showed the cases with MYCN amplification had worse prognosis (P < 0.05). NT were commonly diagnosed in early ages and easily to metastasize. Most of cases with favorable histology. The cases of MYCN amplification showed unfavorable histology, and the majority cases with high MKI; The patients with MYCN gene amplification had poor prognosis.

  20. Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach.

    PubMed

    Mirzadeh, Kiavash; Toddo, Stephen; Nørholm, Morten H H; Daley, Daniel O

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence. As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification of a mini-library by PCR; and (3) screening for high-expressing clones.

  1. Development of a Rapid, Simple Method for Detecting Naegleria fowleri Visually in Water Samples by Loop-Mediated Isothermal Amplification (LAMP)

    PubMed Central

    Mahittikorn, Aongart; Mori, Hirotake; Popruk, Supaluk; Roobthaisong, Amonrattana; Sutthikornchai, Chantira; Koompapong, Khuanchai; Siri, Sukhontha; Sukthana, Yaowalark; Nacapunchai, Duangporn

    2015-01-01

    Naegleria fowleri is the causative agent of the fatal disease primary amebic meningoencephalitis. Detection of N. fowleri using conventional culture and biochemical-based assays is time-consuming and laborious, while molecular techniques, such as PCR, require laboratory skills and expensive equipment. We developed and evaluated a novel loop-mediated isothermal amplification (LAMP) assay targeting the virulence-related gene for N. fowleri. Time to results is about 90 min and amplification products were easily detected visually using hydroxy naphthol blue. The LAMP was highly specific after testing against related microorganisms and able to detect one trophozoite, as determined with spiked water and cerebrospinal fluid samples. The assay was then evaluated with a set of 80 water samples collected during the flooding crisis in Thailand in 2011, and 30 natural water samples from border areas of northern, eastern, western, and southern Thailand. N. fowleri was detected in 13 and 10 samples using LAMP and PCR, respectively, with a Kappa coefficient of 0.855. To the best of our knowledge, this is the first report of a LAMP assay for N. fowleri. Due to its simplicity, speed, and high sensitivity, the LAMP method described here might be useful for quickly detecting and diagnosing N. fowleri in water and clinical samples, particularly in resource-poor settings. PMID:25822175

  2. Development of a rapid, simple method for detecting Naegleria fowleri visually in water samples by loop-mediated isothermal amplification (LAMP).

    PubMed

    Mahittikorn, Aongart; Mori, Hirotake; Popruk, Supaluk; Roobthaisong, Amonrattana; Sutthikornchai, Chantira; Koompapong, Khuanchai; Siri, Sukhontha; Sukthana, Yaowalark; Nacapunchai, Duangporn

    2015-01-01

    Naegleria fowleri is the causative agent of the fatal disease primary amebic meningoencephalitis. Detection of N. fowleri using conventional culture and biochemical-based assays is time-consuming and laborious, while molecular techniques, such as PCR, require laboratory skills and expensive equipment. We developed and evaluated a novel loop-mediated isothermal amplification (LAMP) assay targeting the virulence-related gene for N. fowleri. Time to results is about 90 min and amplification products were easily detected visually using hydroxy naphthol blue. The LAMP was highly specific after testing against related microorganisms and able to detect one trophozoite, as determined with spiked water and cerebrospinal fluid samples. The assay was then evaluated with a set of 80 water samples collected during the flooding crisis in Thailand in 2011, and 30 natural water samples from border areas of northern, eastern, western, and southern Thailand. N. fowleri was detected in 13 and 10 samples using LAMP and PCR, respectively, with a Kappa coefficient of 0.855. To the best of our knowledge, this is the first report of a LAMP assay for N. fowleri. Due to its simplicity, speed, and high sensitivity, the LAMP method described here might be useful for quickly detecting and diagnosing N. fowleri in water and clinical samples, particularly in resource-poor settings.

  3. Detection of Cucurbit chlorotic yellows virus from Bemisia tabaci captured on sticky traps using reverse transcription loop-mediated isothermal amplification (RT-LAMP) and simple template preparation.

    PubMed

    Okuda, Mitsuru; Okuda, Shiori; Iwai, Hisashi

    2015-09-01

    Cucurbit chlorotic yellows virus (CCYV) of the genus Crinivirus within the family Closteroviridae is an emerging infectious agent of cucurbits leading to severe disease and significant economic losses. Effective detection and identification methods for this virus are urgently required. In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect CCYV from its vector Bemisia tabaci. LAMP primer sets to detect CCYV were evaluated for their sensitivity and specificity, and a primer set designed from the HSP70h gene with corresponding loop primers were selected. The RT-LAMP assay was applied to detect CCYV from viruliferous B. tabaci trapped on sticky traps. A simple extraction procedure using RNAsecure™ was developed for template preparation. CCYV was detected in all of the B. tabaci 0, 1, 7 and 14 days after they were trapped. Although the rise of turbidity was delayed in reactions using RNA from B. tabaci trapped for 7 and 14 days compared with those from 0 and 1 day, the DNA amplification was sufficient to detect CCYV in all of the samples. These findings therefore present a simple template preparation method and an effective RT-LAMP assay, which can be easily and rapidly performed to monitor CCYV-viruliferous B. tabaci in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.

  5. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria.

    PubMed

    Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; Silva, Marcus Adonai Castro da; Andreote, Fernando Dini; Lima, André Oliveira de Souza

    2017-05-25

    The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase ( phaC ) gene, which is involved in the production of polyhydroxyalkanoate (PHA)-a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms ( n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced ( n = 4), allowing for the confirmation of the pha C gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity.

  6. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria

    PubMed Central

    Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; da Silva, Marcus Adonai Castro; Andreote, Fernando Dini; Lima, André Oliveira de Souza

    2017-01-01

    The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase (phaC) gene, which is involved in the production of polyhydroxyalkanoate (PHA)—a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms (n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced (n = 4), allowing for the confirmation of the phaC gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity. PMID:28952531

  7. Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.

    PubMed

    Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin

    2016-06-01

    Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.

  8. New methods to characterize site amplification

    USGS Publications Warehouse

    Safak, Erdal

    1993-01-01

    Methods alternative to spectral ratios are introduced to characterize site amplification. The methods are developed by using a range of models, from the simple constant amplification model to the time-varying filter model. Examples are given for each model by using a pair of rock- and soil-site recordings from the Loma Prieta earthquake.

  9. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology.

    PubMed

    Galkiewicz, Julia P; Kellogg, Christina A

    2008-12-01

    PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem.

  10. Cross-Kingdom Amplification Using Bacteria-Specific Primers: Complications for Studies of Coral Microbial Ecology▿

    PubMed Central

    Galkiewicz, Julia P.; Kellogg, Christina A.

    2008-01-01

    PCR amplification of pure bacterial DNA is vital to the study of bacterial interactions with corals. Commonly used Bacteria-specific primers 8F and 27F paired with the universal primer 1492R amplify both eukaryotic and prokaryotic rRNA genes. An alternative primer set, 63F/1542R, is suggested to resolve this problem. PMID:18931299

  11. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  12. EGFR amplification and expression in oral squamous cell carcinoma in young adults.

    PubMed

    Costa, V; Kowalski, L P; Coutinho-Camillo, C M; Begnami, M D; Calsavara, V F; Neves, J I; Kaminagakura, E

    2018-07-01

    The aim of this study was to investigate epidermal growth factor receptor (EGFR) gene alterations in two groups of patients with oral squamous cell carcinoma (OSCC) (a test group of subjects aged ≤40 years and a control group of subjects aged ≥50 years) and to associate the results with EGFR immunostaining, clinicopathological features, and the prognosis. Sixty cases of OSCC were selected (test group, n=21; control group, n=39). The tissue microarray technique was applied to ensure the uniformity of results. Gene amplification was analyzed by fluorescence in situ hybridization (FISH), and immunohistochemical staining for EGFR was analyzed using an automated imaging system. EGFR amplification was higher in the test group than in the control group (P=0.018) and was associated with advanced clinical stage (P=0.013), regardless of age. Patients with EGFR overexpression had worse survival rates, as did patients who had T3-T4 tumours and positive margins. EGFR overexpression has a negative impact on disease progression. Despite the higher amplification of EGFR in young adults, it does not significantly impact the survival rates of affected patients. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  14. RT-LAMP assay: an alternative approach for profiling of bovine heat shock protein 70 gene in PBMC cultured model.

    PubMed

    Sengar, Gyanendra Singh; Deb, Rajib; Raja, T V; Singh, Umesh; Kant, Rajiv; Bhanuprakash, V; Alyethodi, R R; Kumar, Sushil; Verma, Preetam; Chakraborty, Soumendu; Alex, Rani; Singh, Rani

    2017-07-01

    The purpose of this study is to develop a novel Reverse Transcriptase Loop-mediated isothermal amplification (RT-LAMP) based assay for in vitro profiling of heat shock protein 70 (Hsp70) in bovine peripheral blood mononuclear cell (PBMC) culture model utilizing the absorbance level of magnesium pyrophosphate-a by-product of LAMP reaction. A set of bovine Hsp70 specific RT-LAMP primers were designed to detect the differential absorbance level of magnesium pyrophosphate by-product which signifies the degree of Hsp70 amplification from cDNA of thermally induced cultured cells at different recovery periods. The study revealed significant (P < 0.05) correlation between absorbance level and the fold change of Hsp70 transcripts at different kinetic intervals of heat stress recovery in bovine PBMC cell culture models. RT-LAMP based absorbance assay can be used as an indicator to measure the degree of bovine Hsp70 transcripts produced during thermal stress and can be used as an alternative to the traditional Real time PCR assay. Developed RT-LAMP assay can be used as a cost-effective method for profiling of bovine HSP70 gene.

  15. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification.

    PubMed Central

    Wimpee, C F; Nadeau, T L; Nealson, K H

    1991-01-01

    By using two highly conserved region of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species, Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies. Images PMID:1854194

  16. Phylogenetic utility of the nuclear genes AGAMOUS 1 and PHYTOCHROME B in palms (Arecaceae): an example within Bactridinae

    PubMed Central

    Ludeña, Bertha; Chabrillange, Nathalie; Aberlenc-Bertossi, Frédérique; Adam, Hélène; Tregear, James W.; Pintaud, Jean-Christophe

    2011-01-01

    Background and Aims Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics. Methods New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated. Key Results The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics. Conclusions AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies. PMID:21828068

  17. Comparative Study of GeneXpert with ZN Stain and Culture in Samples of Suspected Pulmonary Tuberculosis

    PubMed Central

    Bajaj, Ashish; Bhatia, Vinay; Dutt, Sarjana

    2016-01-01

    Introduction Tuberculosis remains one of the deadliest communicable diseases. There are number of tests available for the diagnosis of tuberculosis but conventional microscopy has low sensitivity and culture although gold standard, but takes longer time for positivity. On the other side, Nucleic acid amplification techniques due to its rapidity and sensitivity not only help in early diagnosis and management of tuberculosis especially in patients with high clinical suspicion like immunocompromised patients, history of contact with active tuberculosis patient etc., but also curtail the transmission of the disease. Aim To evaluate the sensitivity, specificity, positive predictive value and negative predictive value of Nucleic acid amplification assay (GeneXpert) using respiratory samples in patients with suspected pulmonary tuberculosis and compare with AFB smear microscopy (Ziehl Neelsen stain) and Acid Fast Bacilli (AFB) culture. Materials and Methods We retrospectively reviewed the respiratory samples of suspected pulmonary tuberculosis (including Bronchoalveolar lavage and sputum) of 170 patients from Jan 2015 to Nov 2015 for ZN stain, culture and GeneXpert (Xpert® MTB/Rif assay). The sensitivity, specificity, PPV and NPV of GeneXpert and ZN microscopy were calculated using Liquid culture of Mycobacterium tuberculosis as gold standard. Results A total of 170 patient samples were evaluated in final analysis. Of these, 14 samples were positive by all three methods used in our study. The overall sensitivity, specificity, PPV and NPV of GeneXpert were 86.8%, 93.1%, 78.5% and 96% respectively and for BAL sample, 81.4%, 93.4%, 73.3% and 95.7% respectively. The overall sensitivity and specificity of AFB smear microscopy were 22.2%, % and 78.5% respectively and for BAL sample 22.2% and 100% respectively. For AFB negative samples sensitivity and specificity were 79.1% and 93.1% respectively. Conclusion GeneXpert has a higher sensitivity than AFB smear microscopy in respiratory samples. GeneXpert can be a useful tool for early diagnosis of patients with high clinical suspicion of pulmonary tuberculosis. Positive GeneXpert, but culture negative results should be read cautiously and be well correlated with clinical and treatment history of the patient. The other major advantage of Gene Xpert is that it simultaneously detects Rifampicin resistance and especially beneficial in patient with MDR and HIV associated tuberculosis and should be studied further. PMID:27437212

  18. High-Throughput Sequencing and Copy Number Variation Detection Using Formalin Fixed Embedded Tissue in Metastatic Gastric Cancer

    PubMed Central

    Hong, Min Eui; Do, In-Gu; Kang, So Young; Ha, Sang Yun; Kim, Seung Tae; Park, Se Hoon; Kang, Won Ki; Choi, Min-Gew; Lee, Jun Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Duk-Hwan; Kim, Kyoung-Mee

    2014-01-01

    In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes. PMID:25372287

  19. Novel Mutations in pncA Gene of Pyrazinamide Resistant Clinical Isolates of Mycobacterium tuberculosis.

    PubMed

    Kahbazi, Manijeh; Sarmadian, Hossein; Ahmadi, Azam; Didgar, Farshideh; Sadrnia, Maryam; Poolad, Toktam; Arjomandzadegan, Mohammad

    2018-04-16

    In clinical isolates of Mycobacterium tuberculosis (MTB), resistance to pyrazinamide occurs by mutations in any positions of the pncA gene (NC_000962.3) especially in nucleotides 359 and 374. In this study we examined the pncA gene sequence in clinical isolates of MTB. Genomic DNA of 33 clinical isolates of MTB was extracted by the Chelex100 method. The polymerase chain reactions (PCR) were performed using specific primers for amplification of 744 bp amplicon comprising the coding sequences (CDS) of the pncA gene. PCR products were sequenced by an automated sequencing Bioscience system. Additionally, semi Nested-allele specific (sNASP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were carried out for verification of probable mutations in nucleotides 359 and 374. Sequencing results showed that from 33 MTB clinical isolates, nine pyrazinamide-resistant isolates have mutations. Furthermore, no mutation was detected in 24 susceptible strains in the entire 561 bp of the pncA gene. Moreover, new mutations of G→A at position 3 of the pncA gene were identified in some of the resistant isolates. Results showed that the sNASP method could detect mutations in nucleotide 359 and 374 of the pncA gene, but the PCR-RFLP method by the SacII enzyme could not detect these mutations. In conclusion, the identification of new mutations in the pncA gene confirmed the probable occurrence of mutations in any nucleotides of the pncA gene sequence in resistant isolates of MTB.

  20. Molecular detection and characterization through analysis of the hexon and fiber genes of Adenoviruses causing conjunctivitis in Tunisia, North Africa.

    PubMed

    Fedaoui, Nadia; Ben Ayed, Narjess; Ben Yahia, Ahlem; Hammami, Walid; Matri, Leila; Nacef, Leila; Triki, Henda

    2017-02-01

    Human adenoviruses (HAdVs) are common causes of conjunctivitis. This study describes the epidemiological features and characterizes by phylogenetic analysis HAdVs isolated from patients with conjunctivitis in Tunisia, North Africa. Data on out-patients presenting with conjunctivitis during 2 years (2012-2013) were analyzed. Conjunctival swabs obtained from 240 patients were assessed for the presence of HAdVs by PCR amplification on the fiber and hexon genes. Positive PCR products, together with those of nine viral isolates from previous years, were sequenced and analyzed phylogenetically. Conjunctivitis represented 11.5% of all reasons of consultations with a slight increase between mid-March and mid-June. Sixty-five percent of samples (n = 156) revealed positive by at least one PCR test. PCR amplification in the hexon gene was slightly more sensitive as compared to the fiber gene. Genotyping in the two genomic regions gave concordant results for almost all isolates. HAdV-D8 was the most predominant genotype (87.6%) and was detected continuously from 2000 to 2013. Minor co-circulating genotypes including HAdV-E4, HAdV-B3, HAdV-B55, and HAdV-D37 were identified; most of them were detected by amplification in the hexon gene. In conclusion, this work reports molecular data on adenoviral conjunctivitis from a region where such information is scarce and contributes to a better knowledge of the worldwide distribution of causative genotypes. It revealed a predominance and endemic circulation of HAdV-D8, a genotype that was mainly reported from epidemic keratoconjunctivitis. It shows that PCR amplification in two different genomic regions enhances the sensitivity of HAdV detection in clinical samples and the identification of minor genotypes. J. Med. Virol. 89:304-312, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

Top