Science.gov

Sample records for gene brca1 dna

  1. Transactivation of repair genes by BRCA1.

    PubMed

    El-Deiry, Wafik S

    2002-01-01

    Recent studies have identified a link between the BRCA1 tumor suppressor and transcriptional regulation of a group of genes involved in nucleotide excision repair. There is some controversy regarding the precise mechanism of upregulation of XPE DDB2 or XPC by BRCA1, with some evidence suggesting that p53 is involved in their regulation. Some evidence suggests BRCA1 may stabilize p53 and direct regulation of DNA repair genes, although how BRCA1 stabilizes p53 remains unclear and whether BRCA1 can upregulate DNA repair genes in a p53-independent manner remains a possibility. A transcriptional component to the action of BRCA1 and involvement of XP genes brings up new and interesting questions about breast cancer development and therapy.

  2. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    NASA Technical Reports Server (NTRS)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  3. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    PubMed

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-06-12

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.

  4. Direct DNA binding by Brca1

    PubMed Central

    Paull, Tanya T.; Cortez, David; Bowers, Blair; Elledge, Stephen J.; Gellert, Martin

    2001-01-01

    The tumor suppressor Brca1 plays an important role in protecting mammalian cells against genomic instability, but little is known about its modes of action. In this work we demonstrate that recombinant human Brca1 protein binds strongly to DNA, an activity conferred by a domain in the center of the Brca1 polypeptide. As a result of this binding, Brca1 inhibits the nucleolytic activities of the Mre11/Rad50/Nbs1 complex, an enzyme implicated in numerous aspects of double-strand break repair. Brca1 displays a preference for branched DNA structures and forms protein–DNA complexes cooperatively between multiple DNA strands, but without DNA sequence specificity. This fundamental property of Brca1 may be an important part of its role in DNA repair and transcription. PMID:11353843

  5. Identification of two novel BRCA1-partner genes in the DNA double-strand break repair pathway.

    PubMed

    Guglielmi, Chiara; Cerri, Iacopo; Evangelista, Monica; Collavoli, Anita; Tancredi, Mariella; Aretini, Paolo; Caligo, Maria Adelaide

    2013-10-01

    M1775R and A1789T are two missense variants located within the BRCT domains of BRCA1 gene. The M1775R is a known deleterious variant, while the A1789T is an unclassified variant that has been analyzed and classified as probably deleterious for the first time by our group. In a previous study, we described the expression profile of HeLa G1 cells transfected with the two variants and we found that they altered molecular mechanisms critical for cell proliferation and genome integrity. Considering that the mutations in the BRCA1 C terminus (BRCT) domains are associated to a phenotype with an altered ability in the DNA double-strand break repair, we chose three of the genes previously identified, EEF1E1, MRE11A, and OBFC2B, to be tested for an homologous recombination (HR) in vitro assay. For our purpose, we performed a gene expression knockdown by siRNA transfection in HeLa cells, containing an integrated recombination substrate (hprtDRGFP), for each of the target genes included BRCA1. The knockdown of BRCA1, OBFC2B, MRE11A, and EEF1E1 reduces the HR rate, respectively, of 97.6, 28.6, 41.8, and 42.3 % compared to cells transfected with a scrambled negative control duplex and all these differences are statistically significant (P < 0.05; Kruskal-Wallis test). Finally, we analyzed the effect of target gene depletion both on HR that on cell survival after DNA-damage induction by ionizing radiation. The clonogenic assay showed that the down-regulation of the target genes reduced the cell survival, but the effect on the HR, is not evident. Only the BRCA1-siRNA confirmed the inhibition effect on HR. Overall these results confirmed the involvement of MRE11A in the HR pathway and identified two new genes, OBFC2B and EEF1E1, which according to these data and the knowledge obtained from literature, might be involved in BRCA1-pathway.

  6. BRCA1-mediated repression of select X chromosome genes

    PubMed Central

    Jazaeri, Amir A; Chandramouli, Gadisetti VR; Aprelikova, Olga; Nuber, Ulrike A; Sotiriou, Christos; Liu, Edison T; Ropers, H Hilger; Yee, Cindy J; Boyd, Jeff; Barrett, J Carl

    2004-01-01

    Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling). Significance was determined using parametric statistics with P < 0.005 as a cutoff. Forty of 178 total X-chromosome transcripts were differentially expressed between the BRCA1-associated tumors and sporadic cancers with a BRCA2-like molecular profile. Thirty of these 40 genes showed higher mean expression in the BRCA1-associated samples including all 11 transcripts that mapped to Xp11. In contrast, four of 178 total X chromosome transcripts showed significant differential expression between BRCA1-associated and sporadic tumors with a BRCA1-like molecular profile. All four mapped to Xp11 and showed higher mean expression in BRCA1-associated tumors. Re-expression of BRCA1 in HCC1937 BRCA1-deficient breast cancer cell resulted in the repression of 21 transcripts. Eleven of the 21 (54.5%) transcripts mapped to Xp11. However, there was no significant overlap between these Xp11 genes and those found to be differentially expressed between BRCA1-associated and sporadic ovarian cancer samples. These results demonstrate that BRCA1 mediates the repression of several X chromosome genes, many of which map to the Xp11 locus. PMID:15383145

  7. BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene.

    PubMed

    Kennedy, Richard D; Gorski, Julia J; Quinn, Jennifer E; Stewart, Gail E; James, Colin R; Moore, Stephen; Mulligan, Karl; Emberley, Ethan D; Lioe, Tong F; Morrison, Patrick J; Mullan, Paul B; Reid, George; Johnston, Patrick G; Watson, Peter H; Harkin, D Paul

    2005-11-15

    Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease-associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIalpha poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.

  8. BRCA1 in the DNA damage response and at telomeres

    PubMed Central

    Rosen, Eliot M.

    2013-01-01

    Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40–45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression. PMID:23802008

  9. BRCA1 in the DNA damage response and at telomeres.

    PubMed

    Rosen, Eliot M

    2013-01-01

    Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  10. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis

    PubMed Central

    Welcsh, Piri L.; Lee, Ming K.; Gonzalez-Hernandez, Rachel M.; Black, Daniel J.; Mahadevappa, Mamatha; Swisher, Elizabeth M.; Warrington, Janet A.; King, Mary-Claire

    2002-01-01

    Loss of function of BRCA1 caused by inherited mutation and tissue-specific somatic mutation leads to breast and ovarian cancer. Nearly all BRCA1 germ-line mutations involve truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting that transcriptional regulation is a critical function of the wild-type gene. The purpose of this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression. We developed a cell line (in which BRCA1 can be induced) and used microarray analysis to compare transcription profiles of epithelial cells with low endogenous levels of BRCA1 vs. transcription profiles of cells with 2–4-fold higher induced levels of expression of BRCA1. At these levels of expression, BRCA1 did not induce apoptosis. Undirected cluster analysis of six paired experiments revealed 373 genes, the expression of which was altered significantly and consistently by BRCA1 induction. Expression of 62 genes was altered more than 2-fold. BRCA1-regulated genes associated with breast tumorigenesis included the estrogen-responsive genes MYC and cyclin D1, which are overexpressed in many breast tumors; STAT1 and JAK1, key components of the cytokine signal transduction pathway; the extracellular matrix protein laminin 3A; ID4, an inhibitor of DNA-binding transcriptional activators, which in turn negatively regulates BRCA1 expression; and the prohormone stanniocalcin, expression of which is lost in breast tumor cells. Coordinated expression of BRCA1 with ID4 and with stanniocalcin was confirmed in primary breast and ovarian tumors. PMID:12032322

  11. Assessing the RNA effect of 26 DNA variants in the BRCA1 and BRCA2 genes.

    PubMed

    Menéndez, Mireia; Castellsagué, Joan; Mirete, Marc; Pros, Eva; Feliubadaló, Lídia; Osorio, Ana; Calaf, Mónica; Tornero, Eva; del Valle, Jesús; Fernández-Rodríguez, Juana; Quiles, Francisco; Salinas, Mónica; Velasco, Angela; Teulé, Alex; Brunet, Joan; Blanco, Ignacio; Capellá, Gabriel; Lázaro, Conxi

    2012-04-01

    Comprehensive genetic testing of the breast cancer susceptibility genes BRCA1 and BRCA2 identified approximately 16% of variants of unknown significance (VUS), a significant proportion of which could affect the correct splicing of the genes. Our aim is to establish a workflow for classifying VUS in these complex genes, the first stage of which is splicing analysis. We used a combined approach consisting of five in silico splicing prediction programs and RT-PCR analysis for a set of 26 variants not previously studied at the mRNA level and six variants that had already been studied, four of which were used as positive controls as they were found to affect the splicing of these genes and the other two were used as negative controls. We identified a splicing defect in 8 of the 26 newly studied variants and ruled out splicing alteration in the remaining 18 variants. The results for the four positive and the two negative control variants were consistent with results presented in the literature. Our results strongly suggest that the combination of RNA analysis and in silico programs is an important step towards the classification of VUS. The results revealed a very high correlation between experimental data and in silico programs when using tools for predicting acceptor/donor sites but a lower correlation in the case of tools for identifying ESE elements.

  12. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    PubMed

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  13. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition

    PubMed Central

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients. PMID:26328243

  14. BRCA1 and BRCA2 gene testing

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → BRCA1 and BRCA2 gene testing URL of this page: //medlineplus.gov/ency/ ...

  15. The Cloning of the BRCA1 Gene

    DTIC Science & Technology

    1997-09-01

    Chromosome 17, Breast-Ovarian Cancer Syndrome 15. NUMBER OF PAGES 21 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...the breast-ovarian cancer syndrome as well. From 1990-1994, a series of experiments in several laboratories confirmed that BRCA1 was the gene...of mutations present in the families with the breast ovarian cancer syndrome . The objectives of the study were stated as follows: 1) To identify

  16. BRCA1 and BRCA1 Genes and Inherited Breast and/or Ovarian Cancer: Benefits of Genetic Testing.

    PubMed

    Somasundaram, Kumaravel

    2010-09-01

    The breast cancer associated genes BRCA1 and BRCA2 were discovered in 1994 and 1995 respectively. Since then in addition to our understanding how these proteins function in particular reference to DNA repair, enormous amount of knowledge has been gained regarding genetic epidemiology of inherited breast and ovarian cancer, mutation prevalence among different ethnic groups, presence of founder mutations, varying penetrance, genetic testing and potential management options of mutation carriers. This review will focus on the status of understanding of the role of BRCA1 and BRAC2 mutations among Indian women, structure and biology of these two genes, different methods used for mutation detection and different management options available for BRCA1 and BRCA2 mutation carriers.

  17. Egr-1 regulates the transcription of the BRCA1 gene by etoposide

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Lee, Young Han

    2013-01-01

    The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at −1031, −1005, and −385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide. [BMB Reports 2013; 46(2): 92-96] PMID:23433111

  18. Altered BRCA1 and BRCA2 responses and mutation of BRCA1 gene in mice exposed chronically and transgenerationally to aqueous extract of betel nut (AEBN).

    PubMed

    Choudhury, Yashmin; Sharan, Rajeshwar N

    2011-01-01

    The Brca1 and Brca2 tumor suppressor genes are involved in the maintenance of genomic integrity as they facilitate error free DNA repair. This study was designed to understand the role of Brca1 and Brca2 in betel nut (BN) induced chronic and transgenerational carcinogenesis in mice. Young male and female Swiss Albino mice were chronically as well as transgenerationally exposed to aqueous extract of betel nut (AEBN) in drinking water (2 mg ml(-1)) for up to 24 weeks. In chronically exposed mice, the levels of Brca1 and Brca2 proteins were elevated to approximately 1.4-fold over the age matched controls after 2 weeks of exposure to AEBN, followed by a decline below the controls. In transgenerationally exposed mice, both Brca1 and Brca2 proteins remained below the controls from the onset of AEBN exposure and rapidly declined further, indicating a loss of tumor suppressor protection. Nucleotide sequencing of exon 11 of Brca1 and exon 27 of Brca2 did not reveal mutation in liver nodules of chronically exposed mice, while a G → C mutation Brca1 was observed in liver nodules as well as in solid tumors developing in transgenerationally exposed mice. Thus, the genomic instability arising due to the lowering in the levels of Brca1 and Brca2 proteins and mutation in exon 11 of Brca1 gene contributed to the increased risk of cancer in mice exposed transgenerationally to AEBN.

  19. Connection between Tumor Suppressor BRCA1 and PTEN in Damaged DNA Repair.

    PubMed

    Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Kitagishi, Yasuko; Matsuda, Satoru

    2014-01-01

    Genomic instability finally induces cell death or apoptosis. The tumor suppressor, phosphatase and tensin homolog on chromosome 10 (PTEN), is a dual-specificity phosphatase, which has protein phosphatase activity and lipid phosphatase activity that antagonizes PI3K activity. Cells that lack PTEN have constitutively higher levels of PIP3 and activated downstream PI3K/AKT targets. BRCA1, a well-known breast cancer tumor suppressor, is to associate with breast cancer risk and genetic susceptibility. Many studies have demonstrated that PTEN, as well as BRCA1, plays a critical role in DNA damage responses. The BRCA1 functionally cooperates with PTEN and might be an essential blockage in the development of several tumors. Actually, the PTEN and BRCA1 genes are recognized as one of the most frequently deleted and/or mutated in many human cancers. The PI3K/AKT pathway is constitutively active in BRCA1-defective human cancer cells. Loss or decrease of these PTEN or BRCA1 function, by either mutation or reduced expression, has a role in various tumor developments. This review summarizes recent findings of the function of BRCA1 and PTEN involved in genomic stability and cancer cell signaling.

  20. Unsolved mystery: the role of BRCA1 in DNA end-joining.

    PubMed

    Saha, Janapriya; Davis, Anthony J

    2016-08-01

    Heritable mutations in the tumor suppressor gene BRCA1 increase a woman's lifetime risk of developing breast and ovarian cancer. BRCA1's tumor suppressor function is directly linked to its myriad of functions in the cellular response to DNA double-strand breaks (DSBs). BRCA1 interacts with an extensive array of DNA damage responsive proteins and plays important roles in DSB repair, mediated by the homologous recombination pathway, and in the activation of cell cycle checkpoints. However, the role of BRCA1 in the other two DSB repair pathways, classical non-homologous end-joining (C-NHEJ) and alternative NHEJ (A-NHEJ), remains unclear. In this review, we will discuss the current literature on BRCA1's potential role(s) in modulating both C-NHEJ and A-NHEJ. We also present a model showing that BRCA1 contributes to genomic maintenance by promoting precise DNA repair across all cell cycle phases via the direct modulation of DNA end-joining.

  1. Unsolved mystery: the role of BRCA1 in DNA end-joining

    PubMed Central

    Saha, Janapriya; Davis, Anthony J.

    2016-01-01

    Heritable mutations in the tumor suppressor gene BRCA1 increase a woman's lifetime risk of developing breast and ovarian cancer. BRCA1's tumor suppressor function is directly linked to its myriad of functions in the cellular response to DNA double-strand breaks (DSBs). BRCA1 interacts with an extensive array of DNA damage responsive proteins and plays important roles in DSB repair, mediated by the homologous recombination pathway, and in the activation of cell cycle checkpoints. However, the role of BRCA1 in the other two DSB repair pathways, classical non-homologous end-joining (C-NHEJ) and alternative NHEJ (A-NHEJ), remains unclear. In this review, we will discuss the current literature on BRCA1's potential role(s) in modulating both C-NHEJ and A-NHEJ. We also present a model showing that BRCA1 contributes to genomic maintenance by promoting precise DNA repair across all cell cycle phases via the direct modulation of DNA end-joining. PMID:27170701

  2. Prevalence of BRCA1 gene mutation in breast cancer patients in Guangxi, China

    PubMed Central

    Sun, Liping; Liu, Junjie; Wang, Sida; Chen, Yuanyuan; Li, Zhixian

    2014-01-01

    Objective: The prevalence of breast cancer susceptibility gene 1 mutation in breast cancer patients of south China has not been well revealed. This study was to invest the prevalence of BRCA1 gene mutation in breast cancer patients in Guangxi, China, and to try reflecting its relevance in genetic counseling of breast cancer. Methods: In this study, 463 breast cancer patients and 30 healthy women (control group) were involved. Entire sequence and splicing sites of BRCA1 genes were detected by PCR-DNA sequencing. Results: About 8.9% (41/463) patients were with 22 BRCA1 mutations (all in exon 10). The average hospitalized age of BRCA1-associated breast cancer cases was significantly younger (t = -2.965, P = 0.003). The nuclear grade (U = 2321.0, P = 0.030), ER (U = 4343.5, P = 0.041) and CerbB-2 (U = 3894.0, P = 0.038) expression levels, and triple negative breast cancer diagnosing rate (χ2 = 4.719, P = 0.03) were disclosed more in BRCA1-associated patients. Conclusions: The four most frequent BRCA1 mutation (2798 T > C, 3971 G > A, 3971 G > A and 624 C > T) found in female breast cancer cases in Guangxi are all located in exon 10. BRCA1-associated breast cancer cases have earlier onset age, higher nuclear grade and negative ER and CerbB-2 expression. PMID:25337278

  3. The Drosophila mus101 gene, which links DNA repair, replication and condensation of heterochromatin in mitosis, encodes a protein with seven BRCA1 C-terminus domains.

    PubMed Central

    Yamamoto, R R; Axton, J M; Yamamoto, Y; Saunders, R D; Glover, D M; Henderson, D S

    2000-01-01

    The mutagen-sensitive-101 (mus101) gene of Drosophila melanogaster was first identified 25 years ago through mutations conferring larval hypersensitivity to DNA-damaging agents. Other alleles of mus101 causing different phenotypes were later isolated: a female sterile allele results in a defect in a tissue-specific form of DNA synthesis (chorion gene amplification) and lethal alleles cause mitotic chromosome instability that can be observed genetically and cytologically. The latter phenotype presents as a striking failure of mitotic chromosomes of larval neuroblasts to undergo condensation of pericentric heterochromatic regions, as we show for a newly described mutant carrying lethal allele mus101(lcd). To gain further insight into the function of the Mus101 protein we have molecularly cloned the gene using a positional cloning strategy. We report here that mus101 encodes a member of the BRCT (BRCA1 C terminus) domain superfamily of proteins implicated in DNA repair and cell cycle checkpoint control. Mus101, which contains seven BRCT domains distributed throughout its length, is most similar to human TopBP1, a protein identified through its in vitro association with DNA topoisomerase IIbeta. Mus101 also shares sequence similarity with the fission yeast Rad4/Cut5 protein required for repair, replication, and checkpoint control, suggesting that the two proteins may be functional homologs. PMID:11014818

  4. Detection of a novel mutation in exon 20 of the BRCA1 gene.

    PubMed

    Chakraborty, Abhijit; Katarkar, Atul; Chaudhuri, Keya; Mukhopadhyay, Ashis; Basak, Jayasri

    2013-12-01

    Hereditary breast cancer constitutes 5-10% of all breast cancer cases. Inherited mutations in the BRCA1 and BRCA2 tumor-suppressor genes account for the majority of hereditary breast cancer cases. The BRCA1 C-terminal region (BRCT) has a functional duplicated globular domain, which helps with DNA damage repair and cell cycle checkpoint protein control. More than 100 distinct BRCA1 missense variants with structural and functional effects have been documented within the BRCT domain. Interpreting the results of mutation screening of tumor-suppressor genes that can have high-risk susceptibility mutations is increasingly important in clinical practice. This study includes a novel mutation, p.His1746 Pro (c.5237A>C), which was found in BRCA1 exon 20 of a breast cancer patient. In silico analysis suggests that this mutation could alter the stability and orientation of the BRCT domain and the differential binding of the BACH1 substrate.

  5. Altered DNA Binding and Amplification of Human Breast Cancer Suppressor Gene BRCA1 Induced by a Novel Antitumor Compound, [Ru(η6-p-phenylethacrynate)Cl2(pta)

    PubMed Central

    Chakree, Korawan; Ovatlarnporn, Chitchamai; Dyson, Paul J.; Ratanaphan, Adisorn

    2012-01-01

    The ruthenium-based complex [Ru(η6-p-phenylethacrynate)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane), termed ethaRAPTA, is an interesting antitumor compound. The elucidation of the molecular mechanism of drug activity is central to the drug development program. To this end, we have characterized the ethaRAPTA interaction with DNA, including probing the sequence specific modified DNA structural stability and DNA amplification using the breast cancer suppressor gene 1 (BRCA1) of human breast and colon adenocarcinoma cell lines as models. The preference of ethaRAPTA base binding is in the order A > G > T > C. Once modified, the ethaRAPTA-induced BRCA1 structure has higher thermal stability than the modified equivalents of its related compound, RAPTA-C. EthaRAPTA exhibits a higher efficiency than RAPTA-C in inhibiting BRCA1 amplification. With respect to both compounds, the inhibition of BRCA1 amplification is more effective in an isolated system than in cell lines. These data provide evidence that will help to understand the process of elucidating the pathways involved in the response induced by ethaRAPTA. PMID:23202946

  6. gDNA enrichment by a transposase-based technology for NGS analysis of the whole sequence of BRCA1, BRCA2, and 9 genes involved in DNA damage repair.

    PubMed

    Chevrier, Sandy; Boidot, Romain

    2014-10-06

    The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.

  7. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development.

    PubMed

    Nair, Sreejith J; Zhang, Xiaowen; Chiang, Huai-Chin; Jahid, Md Jamiul; Wang, Yao; Garza, Paula; April, Craig; Salathia, Neeraj; Banerjee, Tapahsama; Alenazi, Fahad S; Ruan, Jianhua; Fan, Jian-Bing; Parvin, Jeffrey D; Jin, Victor X; Hu, Yanfen; Li, Rong

    2016-03-04

    The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development.

  8. Methylation of the BRCA1 promoter in peripheral blood DNA is associated with triple-negative and medullary breast cancer.

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Narod, Steven A; Lubinski, Jan; Wojdacz, Tomasz K; Jakubowska, Anna

    2014-12-01

    It has been proposed that methylation signatures in blood-derived DNA may correlate with cancer risk. In this study, we evaluated whether methylation of the promoter region of the BRCA1 gene detectable in DNA from peripheral blood cells is a risk factor for breast cancer, in particular for tumors with pathologic features characteristic for cancers with BRCA1 gene mutations. We conducted a case-control study of 66 breast cancer cases and 36 unaffected controls. Cases were triple-negative or of medullary histology, or both; 30 carried a constitutional BRCA1 mutation and 36 did not carry a mutation. Blood for DNA methylation analysis was taken within three months of diagnosis. Methylation of the promoter of the BRCA1 gene was measured in cases and controls using methylation-sensitive high-resolution melting (MS-HRM). A sample with any detectable level of methylation was considered to be positive. Methylation of the BRCA1 promoter was detected in 15 of 66 cases and in 2 of 36 controls (OR 5.0, p = 0.03). Methylation was present in 15 of 36 women with breast cancer and without germline BRCA1 mutation, but in none of 30 women with breast cancer and a germline mutation (p < 0.01). The association between methylation and breast cancer was restricted to women with no constitutional BRCA1 mutation (OR 12.1, p = 0.0006). Methylation of the promoter of the BRCA1 gene detectable in peripheral blood DNA may be a marker of increased susceptibility to triple-negative or medullary breast cancer.

  9. BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis.

    PubMed

    Teoh, H; Quan, A; Creighton, A K; Annie Bang, K W; Singh, K K; Shukla, P C; Gupta, N; Pan, Y; Lovren, F; Leong-Poi, H; Al-Omran, M; Verma, S

    2013-01-01

    Sepsis-related complications and mortality remain a major clinical problem. Increased cell death and unresolved cellular repair have been implicated as key upstream mediators of sepsis-induced organ dysfunction and death. We hypothesised that gene therapy with BRCA1, a critical regulator of DNA damage repair and cell survival, would attenuate the sequelae of sepsis and peritonitis in mice subjected to caecal ligation and perforation (CLP) and thioglycollate stimulation. C57Bl/6J mice underwent sham or CLP surgery 3 days following treatment with either human BRCA1 adenovirus (AdBRCA1) or the adeno-CMV-null vector (Adnull). The 24-h post-CLP mortality was 2.8% vs 17.9% (P<0.001) and the median post-CLP survival was 50.5 vs 33 h (P<0.05) for AdBRCA1- vs Adnull-treated mice, respectively. AdBRCA1 therapy blunted CLP-associated cardiac, pulmonary, hepatic and renal dysfunction and also reduced CLP-elicited double strand breaks and apoptosis in the liver. BRCA1 gene therapy was associated with lower CLP-evoked cardiac and hepatic superoxide generation that in the liver was in part due to improved reactive oxygen species removal. CLP also elevated mesenteric arteriolar and serum intercellular adhesion molecule-1, both of which were partially abrogated with AdBRCA1 administration. Thioglycollate-challenged AdBRCA1-treated mice displayed reduced peritoneal neutrophil recruitment and dampened cytokine elaboration relative to their Adnull-treated counterparts. Taken together, we report a novel role of BRCA1 gene therapy in limiting systemic inflammation, multiple-organ failure and mortality in experimental sepsis.

  10. BRCA1 Regulation of Fanconi Anemia Proteins in DNA Damage Repair

    DTIC Science & Technology

    2006-05-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder. It has been shown that BRCA1 regulates one of FA proteins, called FANCD2 , by a process...that BRCA1 ubiquitination of FANCD2 is affected by association with the FANCA protein complex and by association with DNA damage when embedded in...chromatin. Specific aims are that (1) does BRCA1 monoubiquitinate FANCD2 in vivo using purified ubiquitination factors? (2) Do embedding FA proteins in

  11. DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer.

    PubMed

    Flower, Kirsty J; Shenker, Natalie S; El-Bahrawy, Mona; Goldgar, David E; Parsons, Michael T; Spurdle, Amanda B; Morris, Joanna R; Brown, Robert; Flanagan, James M

    2015-01-01

    Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity.

  12. Founder mutations in BRCA1 and BRCA2 genes.

    PubMed

    Ferla, R; Calò, V; Cascio, S; Rinaldi, G; Badalamenti, G; Carreca, I; Surmacz, E; Colucci, G; Bazan, V; Russo, A

    2007-06-01

    BRCA1 and BRCA2 germline mutations contribute to a significant number of familial and hereditary breast and/or ovarian cancers. The proportion of high-risk families with breast and/or ovarian cancer cases due to mutations in these tumor suppressor genes varies widely among populations. In some population, a wide spectrum of different mutations in both genes are present, whereas in other groups specific mutations in BRCA1 and BRCA2 have been reported with high frequency. Most of these mutations are prevalent in restricted populations as consequence of a founder effect. The comparison of haplotypes between families with the same mutation can distinguish whether high-frequency alleles derive from an older or more recent single mutational event or whether they have arisen independently more than once. Here, we review some of the most well-known and significant examples of founder mutations in BRCA genes found in European and non-European populations. In conclusion, the identification of the ethnic group of families undergoing genetic counseling enables the geneticist and oncologist to make more specific choices, leading to simplify the clinical approach to genetic testing carried out on members of high-risk families. Futhermore, the high frequency of founder mutations, allowing to analyze a large number of cases, might provide accurate information regarding their penetrance.

  13. Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies.

    PubMed

    Shapiro, Aaron M; Miller-Pinsler, Lutfiya; Wells, Peter G

    2016-04-01

    The breast cancer 1 (brca1) gene is associated with breast and ovarian cancers, and heterozygous (+/-) brca1 knockout progeny develop normally, suggesting a negligible developmental impact. However, our results show BRCA1 plays a broader biological role in protecting the embryo from oxidative stress. Sox2-promoted Cre-expressing hemizygous males were mated with floxed brca1 females, and gestational day 8 +/- brca1 conditional knockout embryos with a 28% reduction in protein expression were exposed in culture to the reactive oxygen species (ROS)-initiating drug ethanol (EtOH). Untreated +/- brca1-deficient embryos developed normally, but when exposed to EtOH exhibited increased levels of oxidatively damaged DNA, measured as 8-oxo-2'-deoxyguanosine, γH2AX, which is a marker of DNA double strand breaks that can result from 8-oxo-2'-deoxyguanosine, formation, and embryopathies at EtOH concentrations that did not affect their brca1-normal littermates. These results reveal that even modest BRCA1 deficiencies render the embryo more susceptible to drug-enhanced ROS formation, and corroborate a role for DNA oxidation in the mechanism of EtOH teratogenesis.

  14. Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies☆

    PubMed Central

    Shapiro, Aaron M.; Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-01-01

    The breast cancer 1 (brca1) gene is associated with breast and ovarian cancers, and heterozygous (+/−) brca1 knockout progeny develop normally, suggesting a negligible developmental impact. However, our results show BRCA1 plays a broader biological role in protecting the embryo from oxidative stress. Sox2-promoted Cre-expressing hemizygous males were mated with floxed brca1 females, and gestational day 8 +/− brca1 conditional knockout embryos with a 28% reduction in protein expression were exposed in culture to the reactive oxygen species (ROS)-initiating drug ethanol (EtOH). Untreated +/− brca1-deficient embryos developed normally, but when exposed to EtOH exhibited increased levels of oxidatively damaged DNA, measured as 8-oxo-2'-deoxyguanosine, γH2AX, which is a marker of DNA double strand breaks that can result from 8-oxo-2'-deoxyguanosine, formation, and embryopathies at EtOH concentrations that did not affect their brca1-normal littermates. These results reveal that even modest BRCA1 deficiencies render the embryo more susceptible to drug-enhanced ROS formation, and corroborate a role for DNA oxidation in the mechanism of EtOH teratogenesis. PMID:26629949

  15. BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer.

    PubMed

    Gorski, Julia J; James, Colin R; Quinn, Jennifer E; Stewart, Gail E; Staunton, Kieran Crosbie; Buckley, Niamh E; McDyer, Fionnuala A; Kennedy, Richard D; Wilson, Richard H; Mullan, Paul B; Harkin, D Paul

    2010-08-01

    Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

  16. DNA copy number profiling reveals extensive genomic loss in hereditary BRCA1 and BRCA2 ovarian carcinomas

    PubMed Central

    Kamieniak, M M; Muñoz-Repeto, I; Rico, D; Osorio, A; Urioste, M; García-Donas, J; Hernando, S; Robles-Díaz, L; Ramón y Cajal, T; Cazorla, A; Sáez, R; García-Bueno, J M; Domingo, S; Borrego, S; Palacios, J; van de Wiel, M A; Ylstra, B; Benítez, J; García, M J

    2013-01-01

    Background: Few studies have attempted to characterise genomic changes occurring in hereditary epithelial ovarian carcinomas (EOCs) and inconsistent results have been obtained. Given the relevance of DNA copy number alterations in ovarian oncogenesis and growing clinical implications of the BRCA-gene status, we aimed to characterise the genomic profiles of hereditary and sporadic ovarian tumours. Methods: High-resolution array Comparative Genomic Hybridisation profiling of 53 familial (21 BRCA1, 6 BRCA2 and 26 non-BRCA1/2) and 15 sporadic tumours in combination with supervised and unsupervised analysis was used to define common and/or specific copy number features. Results: Unsupervised hierarchical clustering did not stratify tumours according to their familial or sporadic condition or to their BRCA1/2 mutation status. Common recurrent changes, spanning genes potentially fundamental for ovarian carcinogenesis, regardless of BRCA mutations, and several candidate subtype-specific events were defined. Despite similarities, greater contribution of losses was revealed to be a hallmark of BRCA1 and BRCA2 tumours. Conclusion: Somatic alterations occurring in the development of familial EOCs do not differ substantially from the ones occurring in sporadic carcinomas. However, some specific features like extensive genomic loss observed in BRCA1/2 tumours may be of clinical relevance helping to identify BRCA-related patients likely to respond to PARP inhibitors. PMID:23558894

  17. Genetic evaluation of BRCA1-A complex genes with triple-negative breast cancer susceptibility in Chinese women

    PubMed Central

    Zheng, Yi-Zi; Qiao, Feng; Yao, Ling; Cao, Zhi-Gang; Ye, Fu-Gui; Wu, Jiong; Hu, Xin; Wang, Bin; Shao, Zhi-Ming

    2016-01-01

    Background The tumor suppressor BRCA1 plays a pivotal role in maintaining genomic stability and tumor suppression. The BRCA1-A complex is required for recruitment of BRCA1 to DNA damage sites, DNA repair and cell cycle checkpoint control. Since germline mutations of BRCA1 often lead to breast tumors that are triple-negative breast cancer (TNBC) type, we aimed to investigate whether genetic deficiency in genes of the BRCA1-A complex is associated with risk to TNBC development. Results We found that rs7250266 in the promoter region of NBA1 confers a decreased risk to TNBC development, but not to non-TNBC susceptibility. In addition, the haplotypes containing two polymorphisms rs7250266 and rs2278256 are associated with a lower chance of TNBC development specifically. Our studies also showed that the protective alleles of rs7250266 (C > G) and rs2278256 (T > C) down-regulate promoter activity of NBA1 in mammary epithelial cells. Methods We investigated associations between the BRCA1-A complex genes and TNBC developing risk in first case-control study of Chinese Han Women population including 414 patients with TNBC and 354 cancer-free controls. We detected 37 common variants in ABRAXAS, RAP80, BRE, BRCC36 and NBA1/MERIT40 genes encoding the BRCA1-A complex and evaluated their genetic susceptibility to the risk of TNBC. An additional cohort with 652 other types of breast cancer (non-TNBC) cases and 890 controls was used to investigate the associations between TNBC-specific SNPs genotype and non-TNBCs susceptibility. Conclusions Genetic variants in NBA1 may be an important genetic determinant of TNBC susceptibility. Further investigation and validation of these SNPs in larger cohorts may facilitate in predication and prevention of TNBC and in counseling individuals for risk of TNBC development. PMID:26848770

  18. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks.

  19. Functional Single-Nucleotide Polymorphisms in the BRCA1 Gene and Risk of Salivary Gland Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Li, Guojun; Sturgis, Erich M.

    2012-01-01

    Objectives Polymorphic BRCA1 is a vital tumor suppressor gene within the DNA double-strand break repair pathways, but its association with salivary gland carcinoma (SGC) has yet to be investigated. Materials and Methods In a case-control study of 156 SGC patients and 511 controls, we used unconditional logistical regression analyses to investigate the association between SGC risk and seven common functional single-nucleotide polymorphisms (A1988G, A31875G, C33420T, A33921G, A34356G, T43893C and A55298G) in BRCA1. Results T43893C TC/CC genotype was associated with a reduction of SGC risk (adjusted odds ratio =0.55, 95% CI: 0.38–0.80, Bonferroni-adjusted p=0.011), which was more pronounced in women, non-Hispanic whites, and individuals with a family history of cancer in first-degree relatives. The interaction between T43893C and family history of cancer was significant (p=0.009). The GATGGCG and AACAACA haplotypes, both of which carry the T43893C minor allele, were also associated with reduced SGC risk. Conclusion Our results suggest that polymorphic BRCA1, particularly T43893C polymorphism, may protect against SGC. PMID:22503699

  20. Molecular insights into the OGG1 gene, a cancer risk modifier in BRCA1 and BRCA2 mutations carriers

    PubMed Central

    Benitez-Buelga, Carlos; Vaclová, Tereza; Ferreira, Sofia; Urioste, Miguel; Inglada-Perez, Lucia; Soberón, Nora; Blasco, Maria A.; Osorio, Ana; Benitez, Javier

    2016-01-01

    We have recently shown that rs2304277 variant in the OGG1 glycosidase gene of the Base Excision Repair pathway can increase ovarian cancer risk in BRCA1 mutation carriers. In the present study, we aimed to explore the role of this genetic variant on different genome instability hallmarks to explain its association with cancer risk. We have evaluated the effect of this polymorphism on OGG1 transcriptional regulation and its contribution to telomere shortening and DNA damage accumulation. For that, we have used a series of 89 BRCA1 and BRCA2 mutation carriers, 74 BRCAX cases, 60 non-carrier controls and 23 lymphoblastoid cell lines (LCL) derived from BRCA1 mutation carriers and non-carriers. We have identified that this SNP is associated to a significant OGG1 transcriptional down regulation independently of the BRCA mutational status and that the variant may exert a synergistic effect together with BRCA1 or BRCA2 mutations on DNA damage and telomere shortening. These results suggest that this variant, could be associated to a higher cancer risk in BRCA1 mutation carriers, due to an OGG1 transcriptional down regulation and its effect on genome instability. PMID:27015555

  1. BRCA1 Regulation of Fanconi Anemia Proteins in DNA Damage Repair

    DTIC Science & Technology

    2005-05-01

    damage. Fanconi Anemia (FA) is a rare autosomal recessive disorder. It has been shown that BRCA1 regulates one of FA proteins, called FANCD2 , by a...hypothesize that BRCAI ubiquitination of FANCD2 is affected by association with the FANdA protein complex and by association with DNA damage when embedded in...chromatin. Specific aims are that (1) does BRCA1 monoubiquitinate FANCD2 in vivo using purified ubiquitination factors? (2) Do embedding FA proteins

  2. Identification of a preneoplastic gene expression profile in tubal epithelium of BRCA1 mutation carriers.

    PubMed

    Press, Joshua Z; Wurz, Kaitlyn; Norquist, Barbara M; Lee, Ming K; Pennil, Christopher; Garcia, Rochelle; Welcsh, Piri; Goff, Barbara A; Swisher, Elizabeth M

    2010-12-01

    Microinvasive carcinomas and high-grade intraepithelial neoplasms are commonly discovered within the fallopian tube of BRCA1 mutation carriers at the time of risk-reducing salpingo-oophorectomy, suggesting that many BRCA1-mutated ovarian carcinomas originate in tubal epithelium. We hypothesized that changes in gene expression profiles within the histologically normal fallopian tube epithelium of BRCA1 mutation carriers would overlap with the expression profiles in BRCA1-mutated ovarian carcinomas and represent a BRCA1 preneoplastic signature. Laser capture microdissection of frozen sections was used to isolate neoplastic cells or histologically normal fallopian tube epithelium, and expression profiles were generated on Affymetrix U133 Plus 2.0 gene expression arrays. Normal-risk controls were 11 women wild type for BRCA1 and BRCA2 (WT-FT). WT-FT were compared with histologically normal fallopian tube epithelium from seven women with deleterious BRCA1 mutations who had foci of at least intraepithelial neoplasm within their fallopian tube (B1-FTocc). WT-FT samples were also compared with 12 BRCA1 ovarian carcinomas (B1-CA). The comparison of WT-FT versus B1-FTocc resulted in 152 differentially expressed probe sets, and the comparison of WT-FT versus B1-CA resulted in 4079 differentially expressed probe sets. The BRCA1 preneoplastic signature was composed of the overlap between these two lists, which included 41 concordant probe sets. Genes in the BRCA1 preneoplastic signature included several known tumor suppressor genes such as CDKN1C and EFEMP1 and several thought to be important in invasion and metastasis such as E2F3. The expression of a subset of genes was validated with quantitative reverse transcription-polymerase chain reaction and immunohistochemistry.

  3. Searching for large genomic rearrangements of the BRCA1 gene in a Nigerian population.

    PubMed

    Zhang, Jing; Fackenthal, James D; Huo, Dezheng; Zheng, Yonglan; Olopade, Olufunmilayo I

    2010-11-01

    BRCA1/2 germline mutations predispose to breast and ovarian cancer. Large genomic rearrangements (LGRs) have widened the mutational spectrum of the BRCA1 gene, but the frequencies vary in different populations. In this study, we want to determine the spectrum of LGRs in BRCA1 gene in Nigerian breast cancer patients. The multiplex ligation-dependent probe amplification (MLPA) assay was used to screen BRCA1 rearrangements in 352 patients who previously tested negative for BRCA1 and BRCA2 point mutations and small insertions/deletions. Positive MLPA result was confirmed and located by long-range PCR. The breakpoints of the candidate rearrangement were characterized by sequencing. A novel deletion of BRCA1 exon 21 (c.5277 + 480_5332 + 672del) was detected in 1 out of 352 Nigerian breast cancer patients (0.3% occurrence frequency). Further analysis of breakpoints revealed that the deletion involves two Alu-elements: one AluSg in intron 20 and the AluY in intron 21. These data suggest that while BRCA1 genomic rearrangement exists, they do not contribute significantly to BRCA1-associated risk in the Nigerian population.

  4. "DNA Binding Region" of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint.

    PubMed

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress.

  5. DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  6. Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer.

    PubMed

    Zhu, X; Shan, L; Wang, F; Wang, J; Wang, F; Shen, G; Liu, X; Wang, B; Yuan, Y; Ying, J; Yang, H

    2015-04-01

    Paraffin sections from 239 cases of surgical resected mammary gland carcinomas were assessed to determine the role of BRCA1 gene methylation in sporadic triple-negative breast cancer and to evaluate the relationship between BRCA1 gene methylation and clinicopathologic features of triple-negative breast cancer in the National Cancer Center, China. Diagnostic tissues collected from patients received mastectomy in the National Cancer Center from January 1, 1999 to December 31, 2008 were reviewed. Tissue microarrays were constructed using 239 triple-negative breast cancer cases and stained with estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, cytokeratin 5/6, and epidermal growth factor receptor. Methylation status of the BRCA1 promoter was measured by methylation-specific PCR and analyzed against clinicopathologic characteristics, subtypes, and prognosis using standard statistical methods. Among the 239 triple-negative breast cancer cases, 137 (57.3 %) showed methylation of the BRCA1. According to the immunohistochemistry results, triple-negative breast cancer cases were classified into basal-like breast cancer (60.7 %) and non-basal-like breast cancer (39.3 %). The frequency of BRCA1 methylation was significantly higher in basal-like breast cancer subtype (71.7 %) than the non-basal subtype (35.1 %). Thus, BRCA1 methylation is statistically significantly correlated with basal-like breast cancer subtype (p < 0.001). Multivariate analyses further showed that BRCA1 promoter methylation is an independently predictor of overall survival (p = 0.023; HR 2.32; 95 % CI 1.12-4.81) and disease-free survival (p = 0.022; HR 2.36; 95 % CI 1.13-4.90) in triple-negative breast cancer. Here we demonstrated that epigenetic alteration of key tumor suppressor gene can be a promising biomarker for the prognosis of triple-negative breast cancer/basal-like breast cancer. Specifically our finding revealed that BRCA1 methylation is closely associated with a

  7. Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer

    PubMed Central

    Steinmann, D; Bremer, M; Rades, D; Skawran, B; Siebrands, C; Karstens, J H; Dörk, T

    2001-01-01

    Mutations of the BRCA1 or BRCA2 genes have been shown to strongly predispose towards the development of contralateral breast cancer in patients from large multi-case families. In order to test the hypothesis that BRCA1 and BRCA2 mutations are more frequent in patients with bilateral breast cancer, we have investigated a hospital-based series of 75 consecutive patients with bilateral breast cancer and a comparison group of 75 patients with unilateral breast cancer, pairwise matched by age and family history, for mutations in the BRCA1 and BRCA2 genes. Five frameshift deletions (517delGT in BRCA1; 4772delA, 5946delCT, 6174delT and 8138del5 in BRCA2) were identified in patients with bilateral disease. No further mutations, apart from polymorphisms and 3 rare unclassified variants, were found after scanning the whole BRCA1 and BRCA2 coding sequence. Three pathogenic BRCA1 mutations (Cys61Gly, 3814del5, 5382insC) were identified in the group of patients with unilateral breast cancer. The frequencies of common BRCA1 and BRCA2 missense variants were not different between the 2 groups. In summary, we did not find a significantly increased prevalence of BRCA1 and BRCA2 mutations in a hospital-based cohort of German patients with bilateral breast cancer. We conclude that bilaterality of breast cancer on its own is not strongly associated with BRCA1 and BRCA2 mutations when adjusted for age and family history. The high frequency of bilateral disease in multi-case breast cancer families may be due to a familial aggregation of additional susceptibility factors modifying the penetrance of BRCA1 and BRCA2 mutations. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11556836

  8. Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer.

    PubMed

    Steinmann, D; Bremer, M; Rades, D; Skawran, B; Siebrands, C; Karstens, J H; Dörk, T

    2001-09-14

    Mutations of the BRCA1 or BRCA2 genes have been shown to strongly predispose towards the development of contralateral breast cancer in patients from large multi-case families. In order to test the hypothesis that BRCA1 and BRCA2 mutations are more frequent in patients with bilateral breast cancer, we have investigated a hospital-based series of 75 consecutive patients with bilateral breast cancer and a comparison group of 75 patients with unilateral breast cancer, pairwise matched by age and family history, for mutations in the BRCA1 and BRCA2 genes. Five frameshift deletions (517delGT in BRCA1; 4772delA, 5946delCT, 6174delT and 8138del5 in BRCA2) were identified in patients with bilateral disease. No further mutations, apart from polymorphisms and 3 rare unclassified variants, were found after scanning the whole BRCA1 and BRCA2 coding sequence. Three pathogenic BRCA1 mutations (Cys61Gly, 3814del5, 5382insC) were identified in the group of patients with unilateral breast cancer. The frequencies of common BRCA1 and BRCA2 missense variants were not different between the 2 groups. In summary, we did not find a significantly increased prevalence of BRCA1 and BRCA2 mutations in a hospital-based cohort of German patients with bilateral breast cancer. We conclude that bilaterality of breast cancer on its own is not strongly associated with BRCA1 and BRCA2 mutations when adjusted for age and family history. The high frequency of bilateral disease in multi-case breast cancer families may be due to a familial aggregation of additional susceptibility factors modifying the penetrance of BRCA1 and BRCA2 mutations.

  9. The BRCA1 alternative splicing variant Δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells.

    PubMed

    Sevcik, Jan; Falk, Martin; Kleiblova, Petra; Lhota, Filip; Stefancikova, Lenka; Janatova, Marketa; Weiterova, Lenka; Lukasova, Emilie; Kozubek, Stanislav; Pohlreich, Petr; Kleibl, Zdenek

    2012-05-01

    The BRCA1 gene codes for a protein involved in the DNA double strand break (DDSB) repair. Alongside the dominant full-length splicing form of BRCA1, numerous endogenously expressed alternative splicing variants of unknown significance have been described in various tissues. Some of them retain the original BRCA1 reading frame but lack several critical BRCA1 structural domains, suggesting an altered function of the resulting protein in the BRCA1-regulated processes. To characterize the effect of the BRCA1Δ14-15 splicing variant (with an in-frame deletion affecting the regulatory serine-containing domain) on the DDSB repair, we constructed the MCF-7 clones stably expressing the analyzed variant with/without a shRNA-mediated downregulation of the endogenous full-length wild-type BRCA1 expression. Our results show that the expression of the BRCA1Δ14-15 variant delays the γ-radiation-induced DDSB repair, alters the kinetics of irradiation-induced foci formation/decomposition and reduces the non-homologous end-joining capacity in MCF-7 cells. Therefore, the BRCA1Δ14-15 is not able to functionally replace the full-length wt BRCA1 in the DDSB repair. Our findings indicate that the endogenously expressed BRCA1 alternative splicing variants may negatively influence genome stability and support the growing evidence of the pathological potential of the sequence variants generated by an altered or misregulated alternative splicing in the process of mammary malignant transformation.

  10. CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes.

    PubMed

    Ogiwara, Hideaki; Kohno, Takashi

    2012-01-01

    Histone acetylation at DNA double-strand break (DSB) sites by CBP and p300 histone acetyltransferases (HATs) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that CBP and p300 HATs also function in DSB repair by transcriptionally activating the BRCA1 and RAD51 genes, which are involved in homologous recombination (HR), a major DSB repair system. siRNA-mediated depletion of CBP and p300 impaired HR activity and downregulated BRCA1 and RAD51 at the protein and mRNA levels. Chromatin immunoprecipitation assays showed that CBP and p300 bind to the promoter regions of the BRCA1 and RAD51 genes, and that depletion of CBP and/or p300 reduces H3 and H4 acetylation and inhibits binding of the transcription factor E2F1 to these promoters. Depletion of CBP and p300 impaired DNA damage-induced phosphorylation and chromatin binding of the single-strand DNA-binding protein RPA following BRCA1-mediated DNA end resection. Consistent with this, subsequent phosphorylation of CHK1 and activation of the G2/M damage checkpoint were also impaired. These results indicate that the HATs CBP and p300 play multiple roles in the activation of the cellular response to DSBs.

  11. BRCA1 — EDRN Public Portal

    Cancer.gov

    BRCA1 is a nuclear phosphoprotein that functions as a tumor suppressor. BRCA1 combines with other tumor suppressors, DNA damage sensors, and signal transducers to form a large multi-subunit protein complex known as the BRCA1-associated genome surveillance complex (BASC). BRCA1 associates with RNA polymerase II, and through the C-terminal domain, also interacts with histone deacetylase complexes. This protein thus plays a role in transcription, DNA repair of double-stranded breaks, and recombination. Mutations in this gene are responsible for approximately 40% of inherited breast cancers and more than 80% of inherited breast and ovarian cancers.

  12. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    PubMed

    Feilotter, Harriet E; Michel, Claire; Uy, Paolo; Bathurst, Lauren; Davey, Scott

    2014-01-01

    The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  13. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene.

    PubMed

    Wabuyele, Musundi B; Yan, Fei; Vo-Dinh, Tuan

    2010-09-01

    This paper describes the application of plasmonics-based nanoprobes that combine the modulation of the plasmonics effect to change the surface-enhanced Raman scattering (SERS) of a Raman label and the specificity of a DNA hairpin loop sequence to recognize and discriminate a variety of molecular target sequences. Hybridization with target DNA opens the hairpin and physically separates the Raman label from the metal nanoparticle thus reducing the plasmonics effect and quenching the SERS signal of the label. We have successfully demonstrated the specificity and selectivity of the nanoprobes in the detection of a single-nucleotide polymorphism (SNP) in the breast cancer BRCA1 gene in a homogenous solution at room temperature. In addition, the potential application of plasmonics nanoprobes for quantitative DNA diagnostic testing is discussed.

  14. Tumor Suppression by BRCA-1: A Critical Role at DNA Replication Forks

    DTIC Science & Technology

    2006-10-01

    free extracts derived from Xenopus laevis eggs that support: 1. Semi-conservative, cell-cycle regulated DNA replication; 2. Many facets of the DNA...extracts derived from Xenopus laevis eggs that support: 1. Semi-conservative, cell-cycle regulated DNA replication; 2. Many facets of the DNA damage...assess the consequences of complete loss of BRCA1/BARD1 on fork progression and stalling. BODY Cell-free systems derived from Xenopus eggs can

  15. High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area

    PubMed Central

    Pohlreich, Petr; Zikan, Michal; Stribrna, Jana; Kleibl, Zdenek; Janatova, Marketa; Kotlas, Jaroslav; Zidovska, Jana; Novotny, Jan; Petruzelka, Lubos; Szabo, Csilla; Matous, Bohuslav

    2005-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes have been shown to account for the majority of hereditary breast and ovarian cancers. The purpose of our study was to estimate the incidence and spectrum of pathogenic mutations in BRCA1/2 genes in high-risk Czech families. Methods A total of 96 Czech families with recurrent breast and/or ovarian cancer and 55 patients considered to be at high-risk but with no reported family history of cancer were screened for mutations in the BRCA1/2 genes. The entire coding sequence of each gene was analyzed using a combination of the protein truncation test and direct DNA sequencing. Results A total of 35 mutations in the BRCA1/2 genes were identified in high-risk families (36.5%). Pathogenic mutations were found in 23.3% of breast cancer families and in 59.4% of families with the occurrence of both breast and ovarian cancer. In addition, four mutations were detected in 31 (12.9%) women with early onset breast cancer. One mutation was detected in seven (14.3%) patients affected with both a primary breast and ovarian cancer and another in three (33.3%) patients with a bilateral breast cancer. A total of 3 mutations in BRCA1 were identified among 14 (21.4%) women with a medullary breast carcinoma. Of 151 analyzed individuals, 35 (23.2%) carried a BRCA1 mutation and 9 (6.0%) a BRCA2 mutation. One novel truncating mutation was found in BRCA1 (c.1747A>T) and two in BRCA2 (c.3939delC and c.5763dupT). The 35 identified BRCA1 mutations comprised 13 different alterations. Three recurrent mutations accounted for 71.4% of unrelated individuals with detected gene alterations. The BRCA1 c.5266dupC (5382insC) was detected in 51.4% of mutation positive women. The mutations c.3700_3704del5 and c.181T>G (300T>G) contributed to 11.4% and 8.6% of pathogenic mutations, respectively. A total of eight different mutations were identified in BRCA2. The novel c.5763dupT mutation, which appeared in two unrelated families, was the only recurrent

  16. Functional characterization of BRCA1 gene variants by mini-gene splicing assay

    PubMed Central

    Steffensen, Ane Y; Dandanell, Mette; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Nielsen, Finn C; Hansen, Thomas vO

    2014-01-01

    Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213−1G>A, c.670+1delG, c.4185+1G>A, and c.5075−1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302−15C>G, c.547+14delG, c.4676−20A>G, c.4987−21G>T, and c.5278−14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members. PMID:24667779

  17. Functional characterization of BRCA1 gene variants by mini-gene splicing assay.

    PubMed

    Steffensen, Ane Y; Dandanell, Mette; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Nielsen, Finn C; Hansen, Thomas vO

    2014-12-01

    Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213-1G>A, c.670+1delG, c.4185+1G>A, and c.5075-1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302-15C>G, c.547+14delG, c.4676-20A>G, c.4987-21G>T, and c.5278-14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members.

  18. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gottesman, Max; Gautier, Jean

    2016-02-15

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein-DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)-DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2-DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication.

  19. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  20. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  1. Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing.

    PubMed

    Hernan, Imma; Borràs, Emma; de Sousa Dias, Miguel; Gamundi, María José; Mañé, Begoña; Llort, Gemma; Agúndez, José A G; Blanca, Miguel; Carballo, Miguel

    2012-01-01

    Advances in sequencing technologies, such as next-generation sequencing (NGS), represent an opportunity to perform genetic testing in a clinical scenario. In this study, we developed and tested a method for the detection of mutations in the large BRCA1 and BRCA2 tumor suppressor genes, using long-range PCR (LR-PCR) and NGS, in samples from individuals with a personal and/or family history of breast and/or ovarian cancer. Eleven LR-PCR fragments, between 3000 and 15,300 bp, containing all coding exons and flanking splice junctions of BRCA1 and BRCA2, were obtained from DNA samples of five individuals carrying mutations in either BRCA1 or BRCA2. Libraries for NGS were prepared using an enzymatic (Nextera technology) method. We analyzed five individual samples in parallel by NGS and obtained complete coverage of all LR-PCR fragments, with an average coding sequence depth for each nucleotide of >30 reads, running from ×7 (in exon 22 of BRCA1) to >×150. We detected and confirmed 100% of the mutations that predispose to the risk of cancer, together with other genomic variations in BRCA1 and BRCA2. Our approach demonstrates that genomic LR-PCR, together with NGS, using the GS Junior 454 System platform, is an effective method for patient sample analysis of BRCA1 and BRCA2 genes. In addition, this method could be performed in regular molecular genetics laboratories.

  2. Modification of Ovarian Cancer Risk by BRCA1/2 Interacting Genes in a Multicenter Cohort of BRCA1/2 Mutation Carriers

    PubMed Central

    Rebbeck, Timothy R.; Mitra, Nandita; Domchek, Susan M.; Wan, Fei; Chuai, Shannon; Friebel, Tara M.; Panossian, Saarene; Spurdle, Amanda; Chenevix-Trench, Georgia; kConFab; Singer, Christian F.; Pfeiler, Georg; Neuhausen, Susan L.; Lynch, Henry T.; Garber, Judy E.; Weitzel, Jeffrey N.; Isaacs, Claudine; Couch, Fergus; Narod, Steven A.; Rubinstein, Wendy S.; Tomlinson, Gail E.; Ganz, Patricia A.; Olopade, Olufunmilayo I.; Tung, Nadine; Blum, Joanne L.; Greenberg, Roger; Nathanson, Katherine L.; Daly, Mary B.

    2009-01-01

    Inherited BRCA1/2 mutations confer elevated ovarian cancer (OvCa) risk. Knowledge of factors that can improve OvCa risk assessment in BRCA1/2 mutation carriers is important because no effective early detection for OvCas exists. A cohort of 1,575 BRCA1 and 856 BRCA2 mutation carriers was used to evaluate SNPs and haplotypes at ATM, BARD1, BRIP1, CTIP, MRE11, NBS1, RAD50, RAD51, and TOPBP1 in OvCa risk. In BRCA1 carriers, no associations were observed with ATM, BARD1, CTIP, RAD50, RAD51, or TOPBP1. At BRIP1, an association was observed for one haplotype with a multiple testing corrected p-value (pcorr)=0.012, although no individual haplotype was significant. At MRE11, statistically significant associations were observed for one haplotype (pcorr=0.007). At NBS1, we observed a pcorr=0.024 for haplotypes. In BRCA2 carriers, no associations were observed with CTIP, NBS1, RAD50, or TOPBP1. Rare haplotypes at ATM (pcorr=0.044) and BARD1 (pcorr=0.012) were associated with OvCa risk. At BRIP1, two common haplotypes were significantly associated with OvCa risk (pcorr=0.011). At MRE11, we observed a significant haplotype association (pcorr=0.012), and at RAD51, one common haplotype was significantly associated with OvCa risk (pcorr=0.026). Variants in genes that interact biologically with BRCA1 and/or BRCA2 may be associated with modified OvCa risk in women who carry BRCA1/2 mutations. PMID:19584272

  3. A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function.

    PubMed

    Kononenko, Artem V; Bansal, Ruchi; Lee, Nicholas C O; Grimes, Brenda R; Masumoto, Hiroshi; Earnshaw, William C; Larionov, Vladimir; Kouprina, Natalay

    2014-12-01

    BRCA1 is involved in many disparate cellular functions, including DNA damage repair, cell-cycle checkpoint activation, gene transcriptional regulation, DNA replication, centrosome function and others. The majority of evidence strongly favors the maintenance of genomic integrity as a principal tumor suppressor activity of BRCA1. At the same time some functional aspects of BRCA1 are not fully understood. Here, a HAC (human artificial chromosome) module with a regulated centromere was constructed for delivery and expression of the 90 kb genomic copy of the BRCA1 gene into BRCA1-deficient human cells. A battery of functional tests was carried out to demonstrate functionality of the exogenous BRCA1. In separate experiments, we investigated the role of BRCA1 in maintenance of heterochromatin integrity within a human functional kinetochore. We demonstrated that BRCA1 deficiency results in a specific activation of transcription of higher-order alpha-satellite repeats (HORs) assembled into heterochromatin domains flanking the kinetochore. At the same time no detectable elevation of transcription was observed within HORs assembled into centrochromatin domains. Thus, we demonstrated a link between BRCA1 deficiency and kinetochore dysfunction and extended previous observations that BRCA1 is required to silence transcription in heterochromatin in specific genomic loci. This supports the hypothesis that epigenetic alterations of the kinetochore initiated in the absence of BRCA1 may contribute to cellular transformation.

  4. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  5. Regulation of BRCA1 Function by DNA Damage-Induced Site-Specific Phosphorylation

    DTIC Science & Technology

    2005-06-01

    Rad51p proteins, the lat - end-joining. BRCA-2 complexed with machinery. ter a member of the RAD-52 epi- RAD-51 is active in strand exchange BRCA- 1 has...AD Award Number: DAMD17-02- 1 -0584 TITLE: Regulation of BRCAl Function by DNA Damage-Induced Site- Specific Phosphorylation PRINCIPAL INVESTIGATOR...ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of Information Is estimated to average 1 hour per

  6. Regulation of BRCA1 Function by DNA Damage-Induced Site-Specific Phosphorylation

    DTIC Science & Technology

    2007-06-01

    AD_________________ Award Number: DAMD17-02- 1 -0584 TITLE: Regulation of BRCA1 Function by DNA Damage...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining...it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE 01-06-2007 2

  7. Analysis of BRCA1 and mtDNA haplotypes and mtDNA polymorphism in familial breast cancer.

    PubMed

    Gutiérrez Povedano, Cristina; Salgado, Josefa; Gil, Carmen; Robles, Maitane; Patiño-García, Ana; García-Foncillas, Jesús

    2015-04-01

    Mitochondrial DNA (mtDNA) defects have been postulated to play an important role in the modulation and/or progression of cancer. In the past decade, a wide spectrum of mtDNA variations have been suggested as potentially sensitive and specific biomarkers for several human cancer types. In this context, single nucleotide polymorphisms (SNPs) described as protective or risk variants have been published, in particular in breast cancer, though not without controversy. Moreover, many mtDNA haplogroups have been associated with different phenotypes and diseases. We genotyped 18 SNPs, 15 of them defining European mtDNA haplogroups, including SNPs described as protective or risk variants, 7 SNPs that determine BRCA1 haplotypes and a BRCA1 intron 7 polymorphism. We included in this study 90 Caucasian unrelated women with breast cancer with familial criteria and 96 controls. Our aim was to clarify the importance of any of these SNPs, mitochondrial haplogroups and BRCA1 haplotypes in the modulation of breast cancer. We detected no significant differences in the distribution of BRCA1 haplotypes between patients and controls. Haplogroup U and the 12308G variant of mtDNA were overrepresented within the control group (p = 0.005 and p = 0.036, respectively) compared to breast cancer. Finally, we identified a significant association between the BRCA1 intron 7 polymorphism and BRCA1 haplotypes. Specifically, (TTC)6/6 and (TTC)6/7 genotypes with the seven polymorphic site cassette of "H2-like" haplotypes, and the (TTC)7/7 genotype associated with the "H1-like" haplotypes (p < 0.001).

  8. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression.

    PubMed

    Valenti, Fabio; Ganci, Federica; Fontemaggi, Giulia; Sacconi, Andrea; Strano, Sabrina; Blandino, Giovanni; Di Agostino, Silvia

    2015-03-20

    Genomic instability (IN) is a common feature of many human cancers. The TP53 tumour suppressor gene is mutated in approximately half of human cancers. Here, we show that BRCA1 and RAD17 genes, whose derived proteins play a pivotal role in DNA damage repair, are transcriptional targets of gain-of-function mutant p53 proteins. Indeed, high levels of mutp53 protein facilitate DNA damage accumulation and severely impair BRCA1 and RAD17 expression in proliferating cancer cells. The recruitment of mutp53/E2F4 complex onto specific regions of BRCA1 and RAD17 promoters leads to the inhibition of their expression. BRCA1 and RAD17 mRNA expression is reduced in HNSCC patients carrying TP53 mutations when compared to those bearing wt-p53 gene. Furthermore, the analysis of gene expression databases for breast cancer patients reveals that low expression of DNA repair genes correlates significantly with reduced relapse free survival of patients carrying TP53 gene mutations. Collectively, these findings highlight the direct involvement of transcriptionally active gain of function mutant p53 proteins in genomic instability through the impairment of DNA repair mechanisms.

  9. Large genomic rearrangement of BRCA1 and BRCA2 genes in familial breast cancer patients in Korea.

    PubMed

    Cho, Ja Young; Cho, Dae-Yeon; Ahn, Sei Hyun; Choi, Su-Youn; Shin, Inkyung; Park, Hyun Gyu; Lee, Jong Won; Kim, Hee Jeong; Yu, Jong Han; Ko, Beom Seok; Ku, Bo Kyung; Son, Byung Ho

    2014-06-01

    We screened large genomic rearrangements of the BRCA1 and BRCA2 genes in Korean, familial breast cancer patients. Multiplex ligation-dependent probe amplification assay was used to identify BRCA1 and BRCA2 genomic rearrangements in 226 Korean familial breast cancer patients with risk factors for BRCA1 and BRCA2 mutations, who previously tested negative for point mutations in the two genes. We identified only one large deletion (c.4186-1593_4676-1465del) in BRCA1. No large rearrangements were found in BRCA2. Our result indicates that large genomic rearrangement in the BRCA1 and BRCA2 genes does not seem like a major determinant of breast cancer susceptibility in the Korean population. A large-scale study needs to validate our result in Korea.

  10. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours.

    PubMed

    Enginler, S O; Akış, I; Toydemir, T S F; Oztabak, K; Haktanir, D; Gündüz, M C; Kırşan, I; Fırat, I

    2014-03-01

    Mammary tumours are the most common tumour type in female dogs. The formation of the mammary tumours is multifactorial but the high incidence of tumour disease in certain canine breeds suggests a strong genetic component. BRCA1 and BRCA2 are the most important genes significantly associated with mammary tumours. The aim of this study was to determine the association between the variations of these two genes and canine mammary tumours. 5'-untranslated region, intron 8 and exon 9 of BRCA1 and exons 12, 24, 27 of BRCA2 were sequenced in order to detect the genetic variations. In addition to six previously identified polymorphisms, six novel single nucleotide polymorphisms (SNPs) were detected. Five of the coding SNPs were synonymous and three of them were non-synonymous. The comparison of the sequences from 25 mammary tumour bearing and 10 tumour free dogs suggested that the two SNPs in intron 8 and exon 9 of BRCA1 and two SNPs in exon 24 and exon 27 of BRCA2, which are firstly identified in this study, might be associated with mammary tumour development in dogs. Especially one SNP in exon 9 of BRCA1 and one SNP in exon 24 of BRCA2 were found to be significantly associated with canine mammary tumours.

  11. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours.

    PubMed

    Enginler, S O; Akış, I; Toydemir, T S F; Oztabak, K; Haktanir, D; Gündüz, M C; Kırşan, I; Fırat, I

    2014-03-01

    Mammary tumours are the most common tumour type in female dogs. The formation of the mammary tumours is multifactorial but the high incidence of tumour disease in certain canine breeds suggests a strong genetic component. BRCA1 and BRCA2 are the most important genes significantly associated with mammary tumours. The aim of this study was to determine the association between the variations of these two genes and canine mammary tumours. 5′-untranslated region, intron 8 and exon 9 of BRCA1 and exons 12, 24, 27 of BRCA2 were sequenced in order to detect the genetic variations. In addition to six previously identified polymorphisms, six novel single nucleotide polymorphisms (SNPs) were detected. Five of the coding SNPs were synonymous and three of them were non-synonymous. The comparison of the sequences from 25 mammary tumour bearing and 10 tumour free dogs suggested that the two SNPs in intron 8 and exon 9 of BRCA1 and two SNPs in exon 24 and exon 27 of BRCA2, which are firstly identified in this study, might be associated with mammary tumour development in dogs. Especially one SNP in exon 9 of BRCA1 and one SNP in exon 24 of BRCA2 were found to be significantly associated with canine mammary tumours.

  12. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers.

    PubMed

    Cox, David G; Simard, Jacques; Sinnett, Daniel; Hamdi, Yosr; Soucy, Penny; Ouimet, Manon; Barjhoux, Laure; Verny-Pierre, Carole; McGuffog, Lesley; Healey, Sue; Szabo, Csilla; Greene, Mark H; Mai, Phuong L; Andrulis, Irene L; Thomassen, Mads; Gerdes, Anne-Marie; Caligo, Maria A; Friedman, Eitan; Laitman, Yael; Kaufman, Bella; Paluch, Shani S; Borg, Åke; Karlsson, Per; Askmalm, Marie Stenmark; Bustinza, Gisela Barbany; Nathanson, Katherine L; Domchek, Susan M; Rebbeck, Timothy R; Benítez, Javier; Hamann, Ute; Rookus, Matti A; van den Ouweland, Ans M W; Ausems, Margreet G E M; Aalfs, Cora M; van Asperen, Christi J; Devilee, Peter; Gille, Hans J J P; Peock, Susan; Frost, Debra; Evans, D Gareth; Eeles, Ros; Izatt, Louise; Adlard, Julian; Paterson, Joan; Eason, Jacqueline; Godwin, Andrew K; Remon, Marie-Alice; Moncoutier, Virginie; Gauthier-Villars, Marion; Lasset, Christine; Giraud, Sophie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Eisinger, François; Bressac de Paillerets, Brigitte; Caron, Olivier; Delnatte, Capucine; Goldgar, David; Miron, Alex; Ozcelik, Hilmi; Buys, Saundra; Southey, Melissa C; Terry, Mary Beth; Singer, Christian F; Dressler, Anne-Catharina; Tea, Muy-Kheng; Hansen, Thomas V O; Johannsson, Oskar; Piedmonte, Marion; Rodriguez, Gustavo C; Basil, Jack B; Blank, Stephanie; Toland, Amanda E; Montagna, Marco; Isaacs, Claudine; Blanco, Ignacio; Gayther, Simon A; Moysich, Kirsten B; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Gadzicki, Dorothea; Fiebig, Britta; Caldes, Trinidad; Laframboise, Rachel; Nevanlinna, Heli; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B; Neuhausen, Susan L; Ding, Yuan C; Couch, Fergus J; Wang, Xianshu; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Radice, Paolo; Easton, Douglas F; Chenevix-Trench, Georgia; Antoniou, Antonis C; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Sinilnikova, Olga M

    2011-12-01

    Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77-0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription.

  13. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    PubMed

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer.

  14. Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer.

    PubMed

    Erturk, Elif; Cecener, Gulsah; Polatkan, Volkan; Gokgoz, Sehsuvar; Egeli, Unal; Tunca, Berrin; Tezcan, Gulcin; Demirdogen, Elif; Ak, Secil; Tasdelen, Ismet

    2014-01-01

    Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

  15. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence

    SciTech Connect

    Ford, D.; Easton, D.F.; Peto, J.

    1995-12-01

    The majority of multiple-case families that segregate both breast and ovarian cancer in a dominant fashion are due to mutations in the BRCA1 gene on chromosome 17q. In this paper, we have combined penetrance estimates for BRCA1 with the results of two population-based genetic epidemiological studies to estimate the gene frequency of BRCA1. On the assumption that the excess risk of ovarian cancer in first degree relatives of breast cancer patients and the breast cancer excess in relatives of ovarian cancer patients are both entirely accounted for by BRCA1, we estimate that the BRCA1 gene frequency is 0.0006 (95% confidence interval [0.0002-0.001]) and that the proportion of breast cancer cases in the general population due to BRCA1 is 5.3% below age 40 years, 2.2% between ages 40 and 49 years, and 1.1% between ages 50 and 70 years. The corresponding estimates for ovarian cancer are 5.7%, 4.6%, and 2.1%, respectively. Our results suggest that the majority of breast cancer families with less than four cases and no ovarian cancer are not due to rare highly penetrant genes such as BRCA1 but are more likely to be due either to chance or to more common genes of lower penetrance. 22 refs., 3 tabs.

  16. Compensatory functions and interdependency of the DNA-binding domain of BRCA2 with the BRCA1-PALB2-BRCA2 complex.

    PubMed

    Al Abo, Muthana; Dejsuphong, Donniphat; Hirota, Kouji; Yonetani, Yasukazu; Yamazoe, Mitsuyoshi; Kurumizaka, Hitoshi; Takeda, Shunichi

    2014-02-01

    BRCA1, BRCA2, and PALB2 are key players in cellular tolerance to chemotherapeutic agents, including camptothecin, cisplatin, and PARP inhibitor. The N-terminal segment of BRCA2 interacts with PALB2, thus contributing to the formation of the BRCA1-PALB2-BRCA2 complex. To understand the role played by BRCA2 in this complex, we deleted its N-terminal segment and generated BRCA2(Δ)(N) mutant cells. Although previous studies have suggested that BRCA1-PALB2 plays a role in the recruitment of BRCA2 to DNA-damage sites, BRCA2(Δ)(N) mutant cells displayed a considerably milder phenotype than did BRCA2(-/-) null-deficient cells. We hypothesized that the DNA-binding domain (DBD) of BRCA2 might compensate for a defect in BRCA2(ΔN) that prevented stable interaction with PALB2. To test this hypothesis, we disrupted the DBD of BRCA2 in wild-type and BRCA2(Δ)(N) cells. Remarkably, although the resulting BRCA2(Δ)(DBD) cells displayed a moderate phenotype, the BRCA2(Δ)(N+ΔDBD) cells displayed a very severe phenotype, as did the BRCA2(-/-) cells, suggesting that the N-terminal segment and the DBD play a substantially overlapping role in the functionality of BRCA2. We also showed that the formation of both the BRCA1-PALB2-BRCA2 complex and the DBD is required for efficient recruitment of BRCA2 to DNA-damage sites. Our study revealed the essential role played by both the BRCA1-PALB2-BRCA2 complex and the DBD in the functionality of BRCA2, as each can compensate for the other in the recruitment of BRCA2 to DNA-damage sites. This knowledge adds to our ability to accurately predict the efficacy of antimalignant therapies for patients carrying mutations in the BRCA2 gene.

  17. Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites

    PubMed Central

    Wu, Qian; Paul, Atanu; Su, Dan; Mehmood, Shahid; Foo, Tzeh Keong; Ochi, Takashi; Bunting, Emma L.; Xia, Bing; Robinson, Carol V.; Wang, Bin; Blundell, Tom L.

    2016-01-01

    Summary BRCA1 accumulation at DNA damage sites is an important step for its function in the DNA damage response and in DNA repair. BRCA1-BRCT domains bind to proteins containing the phosphorylated serine-proline-x-phenylalanine (pSPxF) motif including Abraxas, Bach1/FancJ, and CtIP. In this study, we demonstrate that ionizing radiation (IR)-induces ATM-dependent phosphorylation of serine 404 (S404) next to the pSPxF motif. Crystal structures of BRCT/Abraxas show that phosphorylation of S404 is important for extensive interactions through the N-terminal sequence outside the pSPxF motif and leads to formation of a stable dimer. Mutation of S404 leads to deficiency in BRCA1 accumulation at DNA damage sites and cellular sensitivity to IR. In addition, two germline mutations of BRCA1 are found to disrupt the dimer interface and dimer formation. Thus, we demonstrate a mechanism involving IR-induced phosphorylation and dimerization of the BRCT/Abraxas complex for regulating Abraxas-mediated recruitment of BRCA1 in response to IR. PMID:26778126

  18. Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites.

    PubMed

    Wu, Qian; Paul, Atanu; Su, Dan; Mehmood, Shahid; Foo, Tzeh Keong; Ochi, Takashi; Bunting, Emma L; Xia, Bing; Robinson, Carol V; Wang, Bin; Blundell, Tom L

    2016-02-04

    BRCA1 accumulation at DNA damage sites is an important step for its function in the DNA damage response and in DNA repair. BRCA1-BRCT domains bind to proteins containing the phosphorylated serine-proline-x-phenylalanine (pSPxF) motif including Abraxas, Bach1/FancJ, and CtIP. In this study, we demonstrate that ionizing radiation (IR)-induces ATM-dependent phosphorylation of serine 404 (S404) next to the pSPxF motif. Crystal structures of BRCT/Abraxas show that phosphorylation of S404 is important for extensive interactions through the N-terminal sequence outside the pSPxF motif and leads to formation of a stable dimer. Mutation of S404 leads to deficiency in BRCA1 accumulation at DNA damage sites and cellular sensitivity to IR. In addition, two germline mutations of BRCA1 are found to disrupt the dimer interface and dimer formation. Thus, we demonstrate a mechanism involving IR-induced phosphorylation and dimerization of the BRCT/Abraxas complex for regulating Abraxas-mediated recruitment of BRCA1 in response to IR.

  19. Expression profile of BRCA1 and BRCA2 genes in premenopausal Mexican women with breast cancer: clinical and immunohistochemical correlates.

    PubMed

    Loredo-Pozos, Gloria; Chiquete, Erwin; Oceguera-Villanueva, Antonio; Panduro, Arturo; Siller-López, Fernando; Ramos-Márquez, Martha E

    2009-01-01

    Low BRCA1 gene expression is associated with increased invasiveness and influences the response of breast carcinoma (BC) to chemotherapeutics. However, expression of BRCA1 and BRCA2 genes has not been completely characterized in premenopausal BC. We analyzed the clinical and immunohistochemical correlates of BRCA1 and BRCA2 expression in young BC women. We studied 62 women (mean age 38.8 years) who developed BC before the age of 45 years. BRCA1 and BRCA2 mRNA expression was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and that of HER-2 and p53 proteins by immunohistochemistry. Body mass index (BMI) > or = 27 (52%) and a declared family history of BC (26%) were the main risk factors. Ductal infiltrative adenocarcinoma was found in 86% of the cases (tumor size >5 cm in 48%). Disease stages I-IV occurred in 2, 40, 55, and 3%, respectively (73% implicating lymph nodes). Women aged < or = 35 years (24%) had more family history of cervical cancer, stage III/IV disease, HER-2 positivity, and lower BRCA1 expression than older women (P < 0.05). BRCA1 and BRCA2 expression correlated in healthy, but not in tumor tissues (TT). Neither BRCA1 nor BRCA2 expression was associated with tumor histology, differentiation, nodal metastasis or p53 and HER-2 expression. After multivariate analysis, only disease stage explained BRCA1 mRNA levels in the lowest quartile. Premenopausal BC has aggressive clinical and molecular characteristics. Low BRCA1 mRNA expression is associated mainly with younger ages and advanced clinical stage of premenopausal BC. BRCA2 expression is not associated with disease severity in young BC women.

  20. Detoxification: A Novel Function of BRCA1 in Tumor Suppression?

    PubMed Central

    Kang, Hyo Jin; Hong, Young Bin; Kim, Hee Jeong; Rodriguez, Olga C.; Nath, Raghu G.; Tilli, Elena M.; Albanese, Christopher; Chung, Fung-Lung; Kwon, Sang Hoon; Bae, Insoo

    2011-01-01

    Our studies found that BRCA1 levels negatively correlate with DNA adducts induced by Benzo(a)pyrene (BaP). Pulse-chase experiments showed that the increase in BaP-induced DNA adducts in BRCA1 knockdown cells may not be associated with BRCA1’s function in nucleotide excision repair activity; rather, it may be associated with its function in modulating transcriptional regulation. BRCA1 knockdown in MCF-10A cells significantly attenuated the induction of CYP1A1 following BaP treatment indicating that the increase in BaP-induced adducts in BRCA1 knockdown cells is not CYP1A1 dependent. However, our study shows that BRCA1 defective cells may still be able to biotransform BaP by regulating other CYP enzymes, including CYP1B1. Knockdown of BRCA1 also severely affected the expression levels of two types of uridine diphosphate glucorunyltransferase (UGT1A1 and UGT1A9) and NRF2. Both UGTs are known as BaP-specific detoxification enzymes, and NRF2 is a master regulator of antioxidant and detoxification genes. Thus, we concluded that the increased amount of BaP-induced DNA adducts in BRCA1 knockdown cells is strongly associated with its loss of functional detoxification. Chromatin immunoprecipitation assay revealed that BRCA1 is recruited to the promoter/enhancer sequences of UGT1A1, UGT1A9, and NRF2. Regulation of UGT1A1 and UGT1A9 expression showed that the induction of DNA adducts by BaP is directly affected by their expression levels. Finally, overexpression of UGTs, NRF2, or ARNT significantly decreased the amount of BaP-induced adducts in BRCA1-deficient cells. Overall, our results suggest that BRCA1 protects cells by reducing the amount of BaP-induced DNA adducts possibly via transcriptional activation of detoxification gene expression. PMID:21507987

  1. Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    PubMed Central

    Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dörk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; García-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; González-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasik, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian’an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Børge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D.P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B.H.R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L.R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R.B.; Murray, Anna

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two harbouring additional rare missense alleles of large effect. We found enrichment of signals in/near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses revealed a major association with DNA damage-response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomisation analyses supported a causal effect of later ANM on breast cancer risk (~6% risk increase per-year, P=3×10−14), likely mediated by prolonged sex hormone exposure, rather than DDR mechanisms. PMID:26414677

  2. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.

    PubMed

    Day, Felix R; Ruth, Katherine S; Thompson, Deborah J; Lunetta, Kathryn L; Pervjakova, Natalia; Chasman, Daniel I; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D; Elks, Cathy E; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A; Franke, Lude L; Huffman, Jennifer E; Keller, Margaux F; McArdle, Patrick F; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M; Schick, Ursula M; Smith, Jennifer A; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V; Tanaka, Toshiko; Abecasis, Gonçalo R; Andrulis, Irene L; Anton-Culver, Hoda; Antoniou, Antonis C; Arndt, Volker; Arnold, Alice M; Barbieri, Caterina; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J; Chapman, J Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J; Coviello, Andrea D; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M; Eicher, John D; Fasching, Peter A; Faul, Jessica D; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E; García-Closas, Montserrat; Giles, Graham G; Girotto, Giorgia G; Goldberg, Mark S; González-Neira, Anna; Goodarzi, Mark O; Grove, Megan L; Gudbjartsson, Daniel F; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A; Hall, Per; Hamann, Ute; Henderson, Brian E; Hocking, Lynne J; Hofman, Albert; Homuth, Georg; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Huang, Jinyan; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Jones, Samuel E; Kabisch, Maria; Karasik, David; Knight, Julia A; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian'an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Benjamin M; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B; Nordestgaard, Børge G; Olson, Janet E; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D P; Pirastu, Nicola N; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F; Sanna, Serena; Sawyer, Elinor J; Schlessinger, David; Schmidt, Marjanka K; Schmidt, Frank; Schmutzler, Rita K; Schoemaker, Minouk J; Scott, Robert A; Seynaeve, Caroline M; Simard, Jacques; Sorice, Rossella; Southey, Melissa C; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D; Thorsteinsdottir, Unnur; Toland, Amanda E; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F; Winqvist, Robert; Wolffenbuttel, Bruce B H R; Wright, Alan F; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I; Buring, Julie E; Ferrucci, Luigi; Montgomery, Grant W; Gudnason, Vilmundur; Spector, Tim D; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F; Gasparini, Paolo P; Gieger, Christian; Harris, Tamara B; Hayward, Caroline; Kardia, Sharon L R; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C; Reiner, Alex P; Ridker, Paul M; Rotter, Jerome I; Toniolo, Daniela; Uitterlinden, André G; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J; Weir, David R; Yerges-Armstrong, Laura M; Price, Alkes L; Stefansson, Kari; Visser, Jenny A; Ong, Ken K; Chang-Claude, Jenny; Murabito, Joanne M; Perry, John R B; Murray, Anna

    2015-11-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

  3. BRCA1-like signature in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with therapeutic potential.

    PubMed

    Severson, Tesa M; Peeters, Justine; Majewski, Ian; Michaut, Magali; Bosma, Astrid; Schouten, Philip C; Chin, Suet-Feung; Pereira, Bernard; Goldgraben, Mae A; Bismeijer, Tycho; Kluin, Roelof J C; Muris, Jettie J F; Jirström, Karin; Kerkhoven, Ron M; Wessels, Lodewyk; Caldas, Carlos; Bernards, René; Simon, Iris M; Linn, Sabine

    2015-10-01

    Triple negative (TN) breast cancers make up some 15% of all breast cancers. Approximately 10-15% are mutant for the tumor suppressor, BRCA1. BRCA1 is required for homologous recombination-mediated DNA repair and deficiency results in genomic instability. BRCA1-mutated tumors have a specific pattern of genomic copy number aberrations that can be used to classify tumors as BRCA1-like or non-BRCA1-like. BRCA1 mutation, promoter methylation, BRCA1-like status and genome-wide expression data was determined for 112 TN breast cancer samples with long-term follow-up. Mutation status for 21 known DNA repair genes and PIK3CA was assessed. Gene expression and mutation frequency in BRCA1-like and non-BRCA1-like tumors were compared. Multivariate survival analysis was performed using the Cox proportional hazards model. BRCA1 germline mutation was identified in 10% of patients and 15% of tumors were BRCA1 promoter methylated. Fifty-five percent of tumors classified as BRCA1-like. The functions of genes significantly up-regulated in BRCA1-like tumors included cell cycle and DNA recombination and repair. TP53 was found to be frequently mutated in BRCA1-like (P < 0.05), while PIK3CA was frequently mutated in non-BRCA1-like tumors (P < 0.05). A significant association with worse prognosis was evident for patients with BRCA1-like tumors (adjusted HR = 3.32, 95% CI = 1.30-8.48, P = 0.01). TN tumors can be further divided into two major subgroups, BRCA1-like and non-BRCA1-like with different mutation and expression patterns and prognoses. Based on these molecular patterns, subgroups may be more sensitive to specific targeted agents such as PI3K or PARP inhibitors.

  4. Lack of correlation between BRCA1 carrier status and HER-2/neu (ERBB2) gene amplification in breast cancer

    SciTech Connect

    Sanford, J.S.; Giraldez, R.A.; Flom, K.

    1994-09-01

    We examined 4{mu}m paraffin-embedded tissue sections from twenty female breast tumors for the presence of HER-2/neu (ERBB2) gene amplification. The study population consisted of ten BRCA1 carriers and ten non-BRCA1 carriers. Carrier status was assessed through linkage analysis. Detection of HER-2/neu gene amplification was performed blinded with respect to BRCA1 status. Forty cells representing at least two different areas of each tumor were analyzed by fluorescence in situ hybridization (FISH) using a HER-2/neu cosmid probe. We did not find any cases which showed the typical HER-2/neu gene amplification profile (homogeneous distribution of cells with > 4 signals per cell). In half of the cases, small foci that appeared amplified were identified as clusters of cells with > 4 signals. Modifying our analysis to compensate for this, cases were considered to be amplified if nine or more cells out of forty contained over four HER-2/neu signals. For the 10 BRCA1 carrier positive samples, 5 were HER-2/neu amplified and 5 were not. Similarly, of the 10 BRCA1 carrier negative samples, 5 were HER-2/neu amplified and 5 were not. Therefore, we found no statistical correlation between BRCA1 carrier status and amplification of the HER-2/neu gene in the tumors studied.

  5. Upregulation of the BRCA1 gene in human germ cells and in preimplantation embryos.

    PubMed

    Giscard d'Estaing, Sandrine; Perrin, Delphine; Lenoir, Gilbert M; Guérin, Jean François; Dante, Robert

    2005-09-01

    The quantification of BRCA1 messenger RNA molecules by a quantitative competitive one-step reverse transcriptase polymerase chain reaction method indicates that BRCA1 is upregulated both in human male and female germ cells and in preimplantation embryos. Because BRCA1 is involved in several pathways that participate in preserving intact chromosome and genome integrity, these data suggest that BRCA1 dysfunction might alter human embryogenesis or fertility.

  6. Mutations in BRCA1 and BRCA2 in breast cancer families: Are there more breast cancer-susceptibility genes?

    SciTech Connect

    Serova, O.M.; Mazoyer, S.; Putet, N.

    1997-03-01

    To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene. 24 refs., 1 fig., 3 tabs.

  7. Limited significance of family history for presence of BRCA1 gene mutation in Polish breast and ovarian cancer cases.

    PubMed

    Brozek, Izabela; Ratajska, Magdalena; Piatkowska, Magdalena; Kluska, Anna; Balabas, Aneta; Dabrowska, Michalina; Nowakowska, Dorota; Niwinska, Anna; Rachtan, Jadwiga; Steffen, Jan; Limon, Janusz

    2012-09-01

    It is estimated that about 5-10% of ovarian and 2-5% of all breast cancer patients are carriers of a germline BRCA1 or BRCA2 gene mutation. Most families with detected BRCA1 or BRCA2 gene mutation are qualified for molecular testing on the basis of family history of breast or ovarian cancers. The purpose of our study was to establish the frequency of positive family history of cancer in a series of Polish consecutive breast and ovarian cancer patients in two groups, with and without the BRCA1 gene mutations. We analysed the prevalence of four of the most common BRCA1 mutations: 5382insC (c.5266dupC), 300T>G (p.181T>G), 185delAG (c.68_69delAG) and 3819del5 (c.3700_3704del5). The patient group consisted of 1,845 consecutive female breast and 363 ovarian cancer cases. 19 out of 37 (51%) of BRCA1-positive ovarian cancer patients and 21 out of 55 (39%) BRCA1-positive breast cancer had negative family history of breast and/or ovarian cancer among first- and second-degree relatives. In ovarian cancer patients, negative family history was more frequent in those with 300T>G BRCA1 gene mutation than in 5382insC carriers. This finding indicates the necessity of searching for 300T>G mutation in families with a single diagnosis of ovarian cancer in family. The high frequency of mutations detected in breast cancer patients lacking obvious family history shows that breast cancer patients should be qualified for genetic testing on the basis of wide clinical and pathological criteria.

  8. Repair versus Checkpoint Functions of BRCA1 Are Differentially Regulated by Site of Chromatin Binding.

    PubMed

    Goldstein, Michael; Kastan, Michael B

    2015-07-01

    The product of the Brca1 tumor-suppressor gene is involved in multiple aspects of the cellular DNA damage response (DDR), including activation of cell-cycle arrests and DNA double-stranded break (DSB) repair by homologous recombination. Prior reports demonstrated that BRCA1 recruitment to areas of DNA breakage depended on RAP80 and the RNF8/RNF168 E3 ubiquitin ligases. Here, we extend these findings by showing that RAP80 is only required for the binding of BRCA1 to regions flanking the DSB, whereas BRCA1 binding directly to DNA breaks requires Nijmegen breakage syndrome 1 (NBS1). These differential recruitment mechanisms differentially affect BRCA1 functions: (i) RAP80-dependent recruitment of BRCA1 to chromatin flanking DNA breaks is required for BRCA1 phosphorylation at serine 1387 and 1423 by ATM and, consequently, for the activation of S and G(2) checkpoints; and (ii) BRCA1 interaction with NBS1 upon DSB induction results in an NBS1-dependent recruitment of BRCA1 directly to the DNA break and is required for nonhomologous end-joining repair. Together, these findings illustrate that spatially distinct fractions of BRCA1 exist at the DSB site, which are recruited by different mechanisms and execute different functions in the DDR.

  9. BRCA1 and Oxidative Stress

    PubMed Central

    Yi, Yong Weon; Kang, Hyo Jin; Bae, Insoo

    2014-01-01

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers. PMID:24704793

  10. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene.

    PubMed

    Snouwaert, J N; Gowen, L C; Latour, A M; Mohn, A R; Xiao, A; DiBiase, L; Koller, B H

    1999-12-20

    BRCA1 is a nuclear phosphoprotein that has been classified as a tumor suppressor based on the fact that women carrying a mutated copy of the BRCA1 gene are at increased risk of developing breast and ovarian cancer. The association of BRCA1 with RAD51 has led to the hypothesis that BRCA1 is involved in DNA repair. We describe here the generation and analysis of murine embryonic stem (ES) cell lines in which both copies of the murine homologue of the human BRCA1 gene have been disrupted by gene targeting. We show that exogenous DNA introduced into these BRCA1 deficient cells by electroporation is randomly integrated into the genome at a significantly higher rate than in wild type ES cells. In contrast, integration of exogenous DNA by homologous recombination occurs in BRCA1 deficient cells at a significantly lower rate than in wild type controls. When BRCA1 expression is re-established at 5-10% of normal levels by introduction of a Brca1 transgene into BRCA1 deficient ES cells, the frequency of random integration is reduced to wild type levels, although the frequency of homologous recombination is not significantly improved. These results suggest that BRCA1 plays a role in determining the response of cells to double stranded DNA breaks.

  11. BRCA1 as target for breast cancer prevention and therapy.

    PubMed

    Romagnolo, Alberto P G; Romagnolo, Donato F; Selmin, Ornella I

    2015-01-01

    The Breast Cancer 1 protein (BRCA1) is a tumor suppressor involved in basic cellular functions necessary for cell replication and DNA synthesis, but reduced expression of BRCA1, due to mutations or epigenetic inactivation, leads to impaired mammary gland differentiation and increased risk of breast cancer development. Although BRCA1 acts as a tumor suppressor and is present in all cells, where it is essential for the maintenance of the genome integrity, it is still not clear why mutations in the BRCA1 gene predispose to breast and ovarian, but not to other types of cancer. In the first part of this review, we briefly discuss the function and regulation of the BRCA1 protein, including its role associated with familial and sporadic breast cancer. The second part is an overview of the therapeutic compounds used for breast cancer treatment targeting BRCA1, and the natural food components that hold potential preventive effect against those types of breast cancer in which BRCA1 expression is either reduced or lacking. Further studies elucidating the interactions between dietary compounds and cellular pathways, involved in regulation of BRCA1expression, are necessary for the development of strategies that may successfully prevent or treat breast cancer.

  12. Single-nucleotide polymorphisms in the p53 pathway genes modify cancer risk in BRCA1 and BRCA2 carriers of Jewish-Ashkenazi descent.

    PubMed

    Yarden, Ronit I; Friedman, Eitan; Metsuyanim, Sally; Olender, Tzvia; Ben-Asher, Edna; Papa, Moshe Z

    2010-06-01

    Germline mutations in the BRCA1 and BRCA2 genes are associated with a significantly increased lifetime risk for developing breast and/or ovarian cancer. However, incomplete penetrance and substantial variability in age of disease onset among carriers of the same mutation suggests the involvement of additional modifier genes and/or environmental factors. Somatic inactivating mutations in the p53 gene and genes of the p53 pathway often accompany BRCA1/2-associated tumors. Therefore, we assessed whether these genes are modifiers of penetrance. We genotyped Jewish-Ashkenazi women for functional single-nucleotide polymorphisms (SNPs) in the AKT1 (C>T rs3730358) and the PERP (C>T rs2484067) genes that affect p53-mediated apoptosis, as well as two tag-SNPs in the CHEK2 (C>T rs743184) and the ZBRK1/ZNF350 (G>A rs2278414) genes that encode for proteins involved in growth arrest following DNA damage. The study population included 138 healthy women, 148 breast/ovarian cancer BRCA1/2 mutation carriers, 121 asymptomatic BRCA1/2 mutation carriers, and 210 sporadic noncarrier breast cancer patients. Utilizing lambda(2) and Kaplan-Meier analysis revealed a hazard ratio (HR) of 3.23 (95% CI: 1.44-54, P = 0.0184) for the TT genotype of AKT (rs3730358), HR = 2.105 (95% CI: 1.049-7.434, P = 0.039) for CHEK2 CC genotype (rs743184), and HR = 2.4743 (95% CI: 1.205-11.53, P = 0.022) for the AG genotype of ZBRK1/ZNF350 (rs2278414). No significant association between PERP variants and cancer was identified HR = 0.662 (95% CI: 0.289-1.324, P = 0.261). Our results suggest that genes that act upstream of p53, or participate in the DNA damage response, may modify the risk of cancer in women with mutant BRCA1/2 alleles.

  13. Frequency of 5382insC mutation of BRCA1 gene among breast cancer patients: an experience from Eastern India.

    PubMed

    Chakraborty, Abhijit; Mukhopadhyay, Ashis; Bhattacharyya, Deboshree; Bose, Chinmoy Kr; Choudhuri, Keya; Mukhopadhyay, Soma; Basak, Jayasri

    2013-09-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the number one cancer in females pushing the cervical cancer to the second position. The mutations in two breast cancer susceptibility genes, BRCA1 and BRCA2, are frequently associated with familial breast cancer. The main objective of the study was to determine the frequency of the mutation 5382insC in BRCA1 of eastern Indian breast cancer patients and also study the hormonal receptor status and histopathology of the patients. Altogether 92 patients affected with breast cancer were included in this study. ARMS-PCR based amplification was used to detect the presence of mutation. The mutations were considered only after pedigree analysis. Out of 92 patients (age range: 20-77 years) with family history (57 individuals) and without family history (35 individuals) were screened. Fifty controls have been systematically investigated. Seven patients and two family members were found to be carriers of 5382insC mutation in BRCA1 gene. We have found 42.64 % ER(-)/PR(-) cancer and 20.58 % triple negative cancer. Invasive ductal carcinoma is the most common histology among the investigated individuals. The presented data confirm a noticeable contribution of BRCA1 5382insC mutation in BC development in Eastern India, which may justify an extended BRCA1 5382insC testing within this patient population. We found HER-2/neu negativity and BRCA1 positivity associated with familial breast cancer. From the hospital's patient history, it was revealed that the age of menarche plays an important role in development of breast cancer.

  14. Characterisation of unclassified variants in the BRCA1/2 genes with a putative effect on splicing.

    PubMed

    Brandão, Rita Dias; van Roozendaal, Kees; Tserpelis, Demis; Gómez García, Encarna; Blok, Marinus J

    2011-10-01

    A subset of the unclassified variants (UVs) identified during genetic screening of BRCA1/2 genes may affect splicing. We assessed at RNA level the effect of four BRCA1 and ten BRCA2 UVs with a putative splice effect, as predicted in silico. The variants selected for this study were beyond the positions -1, -2 or +1, +2 from the exon, and were not previously described (n = 8) or their effect on splicing was not assessed previously (n = 6). Lymphocytes from UV carriers and healthy controls were cultured and treated with puromycin to prevent nonsense-mediated mRNA decay. The relative contribution of each allele to the various transcripts was assessed using combinations of allele-specific and transcript-specific primers. BRCA2 c.425G>T, c.7976+3_7976+4del and c.8754+3G>C give rise to aberrant transcripts BRCA2Δ4, BRCA2Δ17 and retention of 46nt of intron 21, respectively, and were considered pathogenic. BRCA1 c.4987-3C>G gives rise to BRCA1Δ17 that is likely pathogenic; however, residual expression of the full-length transcript from the variant allele could not be excluded. BRCA1 c.692C>T, c.693G>A and BRCA2 c.6935A>T, besides expressing the full-length transcript, increased expression of BRCA1Δ11 and BRCA2Δ12, respectively. As these are naturally occurring isoforms, also observed in controls, the clinical relevance is unclear. The seven remaining UVs did not affect splicing and three intronic variants were therefore classified as neutral. In conclusion, the RNA analysis results clarified the clinical relevance of 6 of the 14 studied UVs and thereby greatly improve the genetic counselling of high-risk breast/ovarian cancer patients carrying these classified variants.

  15. [BRCA1 and BRCA2 - pathologists starting kit].

    PubMed

    Škapa, Petr

    2016-01-01

    Dysfunction of tumor suppressor genes BRCA1 and BRCA2 is involved in the pathogenesis of malignant tumors, especially breast and ovarian carcinoma. BRCA1/2 genes may be inactivated by germinal and somatic mutations or epigenetic changes. Germinal mutations are responsible for the hereditary breast and ovarian carcinoma syndrome. Defects of BRCA1/2 genes lead to the failure of homologous recombination, the basic mechanism for DNA double strand break repair. The resultant genomic instability is associated with a high risk of malignant transformation of the cell, but it also results in a higher sensitivity of tumors to platinum-based chemotherapeutic compounds which damage DNA structure directly. Inhibitors of poly(ADP-ribose) polymerase (PARP) are the next generation of antitumor agents aimed on the suppression of DNA single strand break repair. In homologous recombination deficient tumors, PARP inhibitors lead to accumulation of DNA damage and death of neoplastic cells through the mechanism of synthetic lethality. Platinum-based agents and PARP inhibitors are effective not only against tumors with germinal and somatic BRCA1/2 mutations but also against sporadic carcinomas with epigenetic BRCA1/2 inactivation or with defects of other independent genes involved in the control of homologous recombination. This phenomenon is represented by the term "BRCAness". Mutational analysis is used for the assessment of BRCA1/2 status, but it is complicated by the prominent length of BRCA1/2 genes and a wide spectrum of possible genetic alterations. Therefore, next generation sequencing seems to represent an optimal approach for BRCA1/2 evaluation nowadays. Development of reliable diagnostic tests for BRCAness in sporadic tumors and efforts to reverse platinum and PARP inhibitors resistance represent the key objectives of the forthcoming research.

  16. Mutational analysis of BRCA1/2 gene and pathologic characteristics from Kazakh population with sporadic breast cancer in northwestern China.

    PubMed

    Yang, S Y; Aisimutula, D; Li, H F; Hu, Y; Du, X; Li, J; Luan, M X

    2015-10-27

    Mutations in the BRCA1/2 genes are associated with an increased risk of breast cancer, but no large-scale research have examined the BRCA1/2 mutations in Chinese Kazakh women. We evaluated the frequency and distributions of BRCA1 and BRCA2 gene mutations in Kazakh sporadic breast cancer patients and healthy women in China. The association between the clinical-pathologic features of Kazakh breast cancer patients and BRCA1/2 mutations were also investigated. Two unclassified variants (T539M and T1915M) and 16 polymorphisms were detected in this study, 4 of which (G356A, His743, Asn991Asp, Val1269) were detected more frequently in breast cancer patients than in healthy controls. We observed a higher prevalence of BRCA1/2 common sequence alterations and a large number of Kazakh women carrying multiple co-existing BRCA1/2 mutations. The prevalence of BRCA1 mutations was similar to that of BRCA2 mutations. Although no significant differences were observed, BRCA1/2 carriers were generally younger at diagnosis of wild-type breast cancer patients. BRCA1-associated Kazakh sporadic breast cancers present with high tumor grade, early stage, negative lymph node status, absence of estrogen receptor expression and progesterone-positive status. Estrogen receptor expression was the only predominant histological type in BRCA2 carriers. In this study, we determined the BRCA1 and BRCA2 gene mutation status and determined the association with clinical-pathologic characteristics in a Chinese Kazakh population. Larger population-based screening studies screening the entire coding region of BRCA1/2 are required to evaluate the breast cancer risk induced by the sequence alterations detected in this study.

  17. Exome Sequencing of Germline DNA from Non-BRCA1/2 Familial Breast Cancer Cases Selected on the Basis of aCGH Tumor Profiling

    PubMed Central

    Hilbers, Florentine S.; Meijers, Caro M.; Laros, Jeroen F. J.; van Galen, Michiel; Hoogerbrugge, Nicoline; Vasen, Hans F. A.; Nederlof, Petra M.; Wijnen, Juul T.; van Asperen, Christi J.; Devilee, Peter

    2013-01-01

    The bulk of familial breast cancer risk (∼70%) cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis. PMID:23383274

  18. The Leu33Pro polymorphism in the ITGB3 gene does not modify BRCA1/2-associated breast or ovarian cancer risks: results from a multicenter study among 15,542 BRCA1 and BRCA2 mutation carriers.

    PubMed

    Jakubowska, Anna; Rozkrut, Dominik; Antoniou, Antonis; Hamann, Ute; Lubinski, Jan

    2010-06-01

    Integrins containing the beta(3) subunit are key players in tumor growth and metastasis. A functional Leu33Pro polymorphism (rs5918) in the beta(3) subunit of the integrin gene (ITGB3) has previously been suggested to act as a modifier of ovarian cancer risk in Polish BRCA1 mutation carriers. To investigate the association further, we genotyped 9,998 BRCA1 and 5,544 BRCA2 mutation carriers from 34 studies from the Consortium of Investigators of Modifiers of BRCA1/2 for the ITGB3 Leu33Pro polymorphism. Data were analysed within a Cox-proportional hazards framework using a retrospective likelihood approach. There was marginal evidence that the ITGB3 polymorphism was associated with an increased risk of ovarian cancer for BRCA1 mutation carriers (per-allele Hazard Ratio (HR) 1.11, 95% CI 1.00-1.23, p-trend 0.05). However, when the original Polish study was excluded from the analysis, the polymorphism was no longer significantly associated with ovarian cancer risk (HR 1.07, 95% CI 0.96-1.19, p-trend 0.25). There was no evidence of an association with ovarian cancer risk for BRCA2 mutation carriers (HR 1.09, 95% CI 0.89-1.32). The polymorphism was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers. The ITGB3 Leu33Pro polymorphism does not modify breast or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers.

  19. Identification of a new complex rearrangement affecting exon 20 of BRCA1.

    PubMed

    Del Valle, Jesús; Campos, Olga; Velasco, Angela; Darder, Esther; Menéndez, Mireia; Feliubadaló, Lídia; Tornero, Eva; Blanco, Ignacio; Izquierdo, Angel; Brunet, Joan; Capellá, Gabriel; Lázaro, Conxi

    2011-11-01

    In this study, we present a novel complex rearrangement in the BRCA1 gene. The genomic rearrangement was identified using one of the two commercially available MLPA BRCA1 kits but was not confirmed with the other. In this report, we present the full characterization at the DNA and RNA levels of a new partial deletion of exon 20 of BRCA1. This is a complex deletion with four breakpoints which promotes aberrant splicing with partial deletion of exon 20 plus the insertion of a cryptic exon corresponding to a fragment of intron 20. The aberrant splicing generates an abnormal transcript with a frameshift that will result in a truncated BRCA1 protein.

  20. Recurrent germline mutations in BRCA1 and BRCA2 genes in high risk families in Israel.

    PubMed

    Laitman, Yael; Simeonov, Monica; Herskovitz, Liron; Kushnir, Anya; Shimon-Paluch, Shani; Kaufman, Bella; Zidan, Jamal; Friedman, Eitan

    2012-06-01

    The spectrum of germline mutations among Jewish non Ashkenazi high risk breast/ovarian cancer families includes a few predominant mutations in BRCA1 (185delAG and Tyr978X) and BRCA2 (8765delAG). A few additional recurring mutations [A1708E, 981delAT, C61G (BRCA1) R2336P, and IVS2 + 1G > A (BRCA2)] have been reported in Jewish non Ashkenazi families. The 4153delA*BRCA1 C61G*BRCA1 and the 4075delGT*BRCA2 has been reported to recur in Russian/Polish non Jews and Ashkenazim, respectively. The rate of these recurring mutations has not been reported in Israeli high risk families. Genotyping for these recurring mutations by restriction enzyme digest and sequencing method was applied to high risk, predominantly cancer affected, unrelated Israeli individuals of Ashkenazi (n = 827), non Ashkenazi (n = 2,777), non Jewish Caucasians (n = 193), and 395 of mixed ethnicity. Jewish participants included 827 Ashkenazi, 804 Balkans, 847 North Africans, 234 Yemenites, and 892 Asians (Iraq and Iran). Age at diagnosis of breast cancer (median ± SD) (n = 2,484) was 47.2 ± 9.6 for all women participants. Males (n = 236) were also included, of whom 24 had breast cancer and 35 had pancreatic cancer. Overall, 8/282 (2.8%) of the Balkan cases carried the BRCA1*A1708E mutation, 4/180 (2.2%) the R2336P mutation, and 0/270 the IVS2 + 1G > A BRCA2 mutations, respectively. Of North Africans, 7/264 (2.65%) carried the BRCA1*981delAT mutation. The BRCA1*C61G mutation was detected in 3/269 Ashkenazi, non Ashkenazi, and non Jewish Russians; the BRCA1*Tyr978X mutation was detected in 23/3220 individuals of non Ashkenazi origin, exclusively of Asian ethnicity (23/892, 2.6% of the Asians tested). The BRCA1*4153delA mutation was noted in 2/285 non Jewish Caucasians, and none of the Ashkenazim (n = 500) carried the BRCA2*4075delGT mutation. Jewish high risk families of North African, Asian, and Balkan descent should be screened for the 981delAT, Tyr978X, A1708E BRCA1, and the R2336P BRCA2 mutations

  1. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1

    SciTech Connect

    Park, Iha; Avraham, Hava Karsenty . E-mail: havraham@bidmc.harvard.edu

    2006-07-01

    Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving {gamma}-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.

  2. Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients.

    PubMed

    Sokolenko, Anna P; Preobrazhenskaya, Elena V; Aleksakhina, Svetlana N; Iyevleva, Aglaya G; Mitiushkina, Natalia V; Zaitseva, Olga A; Yatsuk, Olga S; Tiurin, Vladislav I; Strelkova, Tatiana N; Togo, Alexandr V; Imyanitov, Evgeny N

    2015-04-10

    Twenty one DNA repair genes were analyzed in a group of 95 BC patients, who displayed clinical features of hereditary disease predisposition but turned out to be negative for mutations in BRCA1 and BRCA2 entire coding region as well as for founder disease-predisposing alleles in CHEK2, NBN/NBS1 and ATM genes. Full-length sequencing of CHEK2 and NBN/NBS1 failed to identify non-founder mutations. The analysis of TP53 revealed a woman carrying the R282W allele; further testing of additional 108 BC patients characterized by a very young age at onset (35 years or earlier) detected one more carrier of the TP53 germ-line defect. In addition, this study confirmed non-random occurrence of PALB2 truncating mutations in Russian hereditary BC patients. None of the studied cases carried germ-line defects in recently discovered hereditary BC genes, BRIP1, FANCC, MRE11A and RAD51C. The analysis of genes with yet unproven BC-predisposing significance (BARD1, BRD7, CHEK1, DDB2, ERCC1, EXO1, FANCG, PARP1, PARP2, RAD51, RNF8, WRN) identified single women carrying a protein-truncating allele, WRN R1406X. DNA sequencing of another set of 95 hereditary BC cases failed to reveal additional WRN heterozygous genotypes. Since WRN is functionally similar to the known BC-predisposing gene, BLM, it deserves to be analyzed in future hereditary BC studies. Furthermore, this investigation revealed a number of rare missense germ-line variants, which are classified as probably protein-damaging by online in silico tools and therefore may require further consideration.

  3. Rare germline large rearrangements in the BRCA1/2 genes and eight candidate genes in 472 patients with breast cancer predisposition.

    PubMed

    Rouleau, E; Jesson, B; Briaux, A; Nogues, C; Chabaud, V; Demange, L; Sokolowska, J; Coulet, F; Barouk-Simonet, E; Bignon, Y J; Bonnet, F; Bourdon, V; Bronner, M; Caputo, S; Castera, L; Delnatte, C; Delvincourt, C; Fournier, J; Hardouin, A; Muller, D; Peyrat, J P; Toulas, C; Uhrhammer, N; Vidal, V; Stoppa-Lyonnet, D; Bieche, I; Lidereau, R

    2012-06-01

    Hereditary breast cancers account for up to 5-10 % of breast cancers and a majority are related to the BRCA1 and BRCA2 genes. However, many families with breast cancer predisposition do not carry any known mutations for BRCA1 and BRCA2 genes. We explored the incidence of rare large rearrangements in the coding, noncoding and flanking regions of BRCA1/2 and in eight other candidate genes--CHEK2, BARD1, ATM, RAD50, RAD51, BRIP1, RAP80 and PALB2. A dedicated zoom-in CGH-array was applied to screen for rearrangements in 472 unrelated French individuals from breast-ovarian cancer families that were being followed in eight French oncogenetic laboratories. No new rearrangement was found neither in the genomic regions of BRCA1/2 nor in candidate genes, except for the CHEK2 and BARD1 genes. Three heterozygous deletions were detected in the 5' and 3' flanking regions of BRCA1. One large deletion introducing a frameshift was identified in the CHEK2 gene in two families and one heterozygous deletion was detected within an intron of BARD1. The study demonstrates the usefulness of CGH-array in routine genetic analysis and, aside from the CHEK2 rearrangements, indicates there is a very low incidence of large rearrangements in BRCA1/2 and in the other eight candidate genes in families already explored for BRCA1/2 mutations. Finally, next-generation sequencing should bring new information about point mutations in intronic and flanking regions and also medium size rearrangements.

  4. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes.

    PubMed

    Volcic, Meta; Karl, Sabine; Baumann, Bernd; Salles, Daniela; Daniel, Peter; Fulda, Simone; Wiesmüller, Lisa

    2012-01-01

    NF-κB is involved in immune responses, inflammation, oncogenesis, cell proliferation and apoptosis. Even though NF-κB can be activated by DNA damage via Ataxia telangiectasia-mutated (ATM) signalling, little was known about an involvement in DNA repair. In this work, we dissected distinct DNA double-strand break (DSB) repair mechanisms revealing a stimulatory role of NF-κB in homologous recombination (HR). This effect was independent of chromatin context, cell cycle distribution or cross-talk with p53. It was not mediated by the transcriptional NF-κB targets Bcl2, BAX or Ku70, known for their dual roles in apoptosis and DSB repair. A contribution by Bcl-xL was abrogated when caspases were inhibited. Notably, HR induction by NF-κB required the targets ATM and BRCA2. Additionally, we provide evidence that NF-κB interacts with CtIP-BRCA1 complexes and promotes BRCA1 stabilization, and thereby contributes to HR induction. Immunofluorescence analysis revealed accelerated formation of replication protein A (RPA) and Rad51 foci upon NF-κB activation indicating HR stimulation through DSB resection by the interacting CtIP-BRCA1 complex and Rad51 filament formation. Taken together, these results define multiple NF-κB-dependent mechanisms regulating HR induction, and thereby providing a novel intriguing explanation for both NF-κB-mediated resistance to chemo- and radiotherapies as well as for the sensitization by pharmaceutical intervention of NF-κB activation.

  5. BRCA1/FANCD2/BRG1-Driven DNA Repair Stabilizes the Differentiation State of Human Mammary Epithelial Cells.

    PubMed

    Wang, Hua; Bierie, Brian; Li, Andrew G; Pathania, Shailja; Toomire, Kimberly; Dimitrov, Stoil D; Liu, Ben; Gelman, Rebecca; Giobbie-Hurder, Anita; Feunteun, Jean; Polyak, Kornelia; Livingston, David M

    2016-07-21

    An abnormal differentiation state is common in BRCA1-deficient mammary epithelial cells, but the underlying mechanism is unclear. Here, we report a convergence between DNA repair and normal, cultured human mammary epithelial (HME) cell differentiation. Surprisingly, depleting BRCA1 or FANCD2 (Fanconi anemia [FA] proteins) or BRG1, a mSWI/SNF subunit, caused HME cells to undergo spontaneous epithelial-to-mesenchymal transition (EMT) and aberrant differentiation. This also occurred when wild-type HMEs were exposed to chemicals that generate DNA interstrand crosslinks (repaired by FA proteins), but not in response to double-strand breaks. Suppressed expression of ΔNP63 also occurred in each of these settings, an effect that links DNA damage to the aberrant differentiation outcome. Taken together with somatic breast cancer genome data, these results point to a breakdown in a BRCA/FA-mSWI/SNF-ΔNP63-mediated DNA repair and differentiation maintenance process in mammary epithelial cells that may contribute to sporadic breast cancer development.

  6. Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers.

    PubMed

    Walker, Logan C; Waddell, Nic; Ten Haaf, Anette; Grimmond, Sean; Spurdle, Amanda B

    2008-11-01

    Germline mutations in BRCA1 or BRCA2 confer an increased lifetime risk of developing breast or ovarian cancer, but variable penetrance suggests that cancer susceptibility is influenced in part by modifier genes. Microarray expression profiling was conducted for 69 irradiated lymphoblastoid cell lines derived from healthy controls, or from cancer-affected women with a strong family history of breast and ovarian cancer carrying pathogenic mutations in BRCA1 or BRCA2, or with no BRCA1/2 mutations (BRCAX). Genes discriminating between BRCA1, BRCA2 or BRCAX and controls were stratified based on irradiation response and/or cell cycle involvement. Gene lists were aligned against genes tagged with single nucleotide polymorphisms (SNPs) determined by the Cancer Genetic Markers of Susceptibility (CGEMS) Breast Cancer Whole Genome Association Scan to be nominally associated with breast cancer risk. Irradiation responsive genes whose expression correlated with BRCA1 and/or BRCA2 mutation status were more likely to be tagged by risk-associated SNPs in the CGEMS dataset (BRCA1, P = 0.0005; BRCA2, P = 0.01). In contrast, irradiation responsive genes correlating with BRCAX status were not enriched in the CGEMS dataset. Classification of expression data by involvement in cell cycle processes did not enrich for genes tagged by risk-associated SNPs, for BRCA1, BRCA2 or BRCAX groups. Using a novel combinatorial approach, we have identified a subset of irradiation responsive genes as high priority candidate BRCA1/2 modifier genes. Similar approaches may be used to identify genes and underlying genetic risk factors that interact with exogenous stimulants to cause or modify any disease, without a priori knowledge of the pathways involved.

  7. BRCA1 polymorphism in breast cancer patients from Argentina.

    PubMed

    Jaure, Omar; Alonso, Eliana N; Braico, Diego Aguilera; Nieto, Alvaro; Orozco, Manuela; Morelli, Cecilia; Ferro, Alejandro M; Barutta, Elena; Vincent, Esteban; Martínez, Domingo; Martínez, Ignacio; Maegli, Maria Ines; Frizza, Alejandro; Kowalyzyn, Ruben; Salvadori, Marisa; Ginestet, Paul; Gonzalez Donna, Maria L; Balogh, Gabriela A

    2015-02-01

    Breast cancer is the most common type of cancer in females in Argentina, with an incidence rate similar to that in the USA. However, the contribution of the BRCA1 or BRCA2 mutation in breast cancer incidence has not yet been investigated in Argentina. In order to evaluate which BRCA1 polymorphisms or mutations characterize female breast cancer in Argentina, the current study enrolled 206 females with breast cancer from several hospitals from the southeast of Argentina. A buccal smear sample was obtained in duplicate from each patient and the DNA samples were processed for polymorphism analysis using the single-strand conformational polymorphism technique. The polymorphisms in BRCA1 were investigated using a combination of 15 primers to analyze exons 2, 3, 5, 20 and 11 (including the 11.1 to 11.12 regions). The BRCA1 mutations were confirmed by direct sequencing. Samples were successfully examined from 154 females and, among these, 16 mutations were identified in the BRCA1 gene representing 13.9% of the samples analyzed. One patient was identified with a polymorphism in exon 2 (0.86%), four in exon 20 (3.48%), four in exon 11.3 (3.48%), one in exon 11.7 (0.86%), two in exon 11.8 (1.74%), one in exon 11.10 (0.86%) and one in exon 11.11 (0.86%). The most prevalent alteration in BRCA1 was located in exon 11 (11 out of 16 patients; 68.75%). The objective of our next study is to evaluate the prevalence of mutations in the BRCA2 gene and analyze the BRCA1 gene in the healthy relatives of BRCA1 mutation carriers.

  8. BRCA1 polymorphism in breast cancer patients from Argentina

    PubMed Central

    JAURE, OMAR; ALONSO, ELIANA N.; BRAICO, DIEGO AGUILERA; NIETO, ALVARO; OROZCO, MANUELA; MORELLI, CECILIA; FERRO, ALEJANDRO M.; BARUTTA, ELENA; VINCENT, ESTEBAN; MARTÍNEZ, DOMINGO; MARTÍNEZ, IGNACIO; MAEGLI, MARIA INES; FRIZZA, ALEJANDRO; KOWALYZYN, RUBEN; SALVADORI, MARISA; GINESTET, PAUL; GONZALEZ DONNA, MARIA L.; BALOGH, GABRIELA A.

    2015-01-01

    Breast cancer is the most common type of cancer in females in Argentina, with an incidence rate similar to that in the USA. However, the contribution of the BRCA1 or BRCA2 mutation in breast cancer incidence has not yet been investigated in Argentina. In order to evaluate which BRCA1 polymorphisms or mutations characterize female breast cancer in Argentina, the current study enrolled 206 females with breast cancer from several hospitals from the southeast of Argentina. A buccal smear sample was obtained in duplicate from each patient and the DNA samples were processed for polymorphism analysis using the single-strand conformational polymorphism technique. The polymorphisms in BRCA1 were investigated using a combination of 15 primers to analyze exons 2, 3, 5, 20 and 11 (including the 11.1 to 11.12 regions). The BRCA1 mutations were confirmed by direct sequencing. Samples were successfully examined from 154 females and, among these, 16 mutations were identified in the BRCA1 gene representing 13.9% of the samples analyzed. One patient was identified with a polymorphism in exon 2 (0.86%), four in exon 20 (3.48%), four in exon 11.3 (3.48%), one in exon 11.7 (0.86%), two in exon 11.8 (1.74%), one in exon 11.10 (0.86%) and one in exon 11.11 (0.86%). The most prevalent alteration in BRCA1 was located in exon 11 (11 out of 16 patients; 68.75%). The objective of our next study is to evaluate the prevalence of mutations in the BRCA2 gene and analyze the BRCA1 gene in the healthy relatives of BRCA1 mutation carriers. PMID:25624909

  9. The role of BRCA1 in homologous recombination repair in response to replication stress: significance in tumorigenesis and cancer therapy

    PubMed Central

    2013-01-01

    Germ line mutations in breast cancer gene 1 (BRCA1) predispose women to breast and ovarian cancers. Although BRCA1 is involved in many important biological processes, the function of BRCA1 in homologous recombination (HR) mediated repair is considered one of the major mechanisms contributing to its tumor suppression activity, and the cause of hypersensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors when BRCA1 is defective. Mounting evidence suggests that the mechanism of repairing DNA double strand breaks (DSBs) by HR is different than the mechanism operating when DNA replication is blocked. Although BRCA1 has been recognized as a central component in HR, the precise role of BRCA1 in HR, particularly under replication stress, has remained largely unknown. Given the fact that DNA lesions caused by replication blockages are the primary substrates for HR in mitotic cells, functional analysis of BRCA1 in HR repair in the context of replication stress should benefit our understanding of the molecular mechanisms underlying tumorigenesis associated with BRCA1 deficiencies, as well as the development of therapeutic approaches for cancer patients carrying BRCA1 mutations or reduced BRCA1 expression. This review focuses on the current advances in this setting and also discusses the significance in tumorigenesis and cancer therapy. PMID:23388117

  10. BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer

    PubMed Central

    Stefansson, Olafur A.; Villanueva, Alberto; Vidal, August; Martí, Lola; Esteller, Manel

    2012-01-01

    Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin. PMID:23069641

  11. Characterization of RACK7 as a Novel Factor Involved in BRCA1 Mutation Mediated Breast Cancer

    DTIC Science & Technology

    2012-10-01

    in our screen as a candidate gene that could modulate the DNA damage hypersensitivity in cells lacking BRCA1. Biochemical data indicates that ZMYND8...tumor suppressors play important roles in the repair of damaged DNA [1, 2], and cells lacking either of these proteins are hypersensitive to a...as a candidate gene that could modulate the DNA damage hypersensitivity of cells lacking BRCA1. Nothing is known about the biological function of

  12. BRCA1/2-negative hereditary triple-negative breast cancers exhibit BRCAness.

    PubMed

    Domagala, Pawel; Hybiak, Jolanta; Cybulski, Cezary; Lubinski, Jan

    2017-04-01

    BRCA1/2-associated breast cancers are sensitive to poly(ADPribose) polymerase (PARP) inhibitors and platinum compounds mainly due to their deficiency in DNA repair via homologous recombination (HR). However, approximately only 15% of triple-negative breast cancers (TNBCs) are BRCA1/2-associated. TNBCs that exhibit BRCAness (a phenotype reflecting impaired HR in BRCA1/2-negative tumors) are also regarded sensitive to PARP inhibitors and platinum compounds. Thus, we hypothesized that hereditary BRCA1/2-negative TNBCs may exhibit BRCAness. To find a subset of hereditary BRCA1/2-negative TNBCs among 360 TNBCs, we first identified a group of 41 hereditary TNBCs by analyzing the family histories of the patients. Next, we tested this group for the presence of germline BRCA1/2 mutations, and finally, we compared the expression levels of 120 genes involved in HR and five other major mechanisms of DNA damage repair between BRCA1/2-associated and BRCA1/2-negative subgroups of hereditary TNBCs using real-time PCR arrays. Approximately 73% of the hereditary TNBCs were BRCA1/2-associated and 27% were BRCA1/2-negative. The expression levels of the analyzed genes showed no significant differences between these two subgroups indicating the BRCAness of the BRCA1/2-negative hereditary TNBCs and thereby distinguishing a novel subset of TNBCs as a potential target for PARP inhibitors or platinum-based therapy. The results show the significance of family history in selecting patients with TNBC for therapies directed at incompetent DNA repair (e.g., PARP inhibitors and/or platinum-based therapies) and indicate that a relatively simple strategy for broadening the target group for these modes of treatment is to identify patients with hereditary TNBCs.

  13. CtIP-BRCA1 modulates the choice of DNA double-strand break repair pathway throughout the cell cycle

    PubMed Central

    Yun, Maximina H.; Hiom, Kevin

    2009-01-01

    The repair of DNA double-strand breaks (DSB) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSB occurs through non-homologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ)1. These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional2, there is an increase in repair of DSB by homologous recombination (HR), which is mostly error-free3,4. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a profound influence on the maintenance of genetic integrity. How then are DSB directed for repair by different, potentially competing, repair pathways? Here we identify a role for CtIP in this process in DT40. We establish that CtIP is not only required for repair of DSB by HR in S/G2 phase, but also for MMEJ in G1. The function of CtIP in HR, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in HR and exhibit decreased level of single-stranded DNA (ssDNA) after DNA damage, while MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S-phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination (Supplementary Fig. 1). PMID:19357644

  14. BRCA1: a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score.

    PubMed

    Yuan, Zhengrong; Chu, Guiyan; Dan, Yang; Li, Jiao; Zhang, Lupei; Gao, Xue; Gao, Huijiang; Li, Junya; Xu, Shangzhong; Liu, Zhihua

    2012-06-01

    Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine breast cancer 1, early onset gene (BRCA1) was taken as a candidate gene for mastitis resistance. The main object of this study was to investigate whether the BRCA1 gene was associated with mastitis in cattle. Through DNA sequencing, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Created Restriction Site PCR (CRS-PCR) methods, three SNPs (G22231T, T25025A, and C28300A) were detected and twenty-four combinations of these SNPs were observed. The single SNP and their genetic effects on somatic cell score (SCS) were evaluated and a significant association with SCS was found in C28300A. The mean of genotype EE was significantly lower than those of genotypes EF and FF. The results of combined genotypes analysis of three SNPs showed that BBDDFF genotype with the highest SCS were easily for the mastitis susceptibility, whereas AACCEE genotype with the lowest SCS were favorable for the mastitis resistance. The information provided in the present study will be very useful for improving mastitis resistance in dairy cattle by marker-assisted selection.

  15. HE4 Serum Levels in Patients with BRCA1 Gene Mutation Undergoing Prophylactic Surgery as well as in Other Benign and Malignant Gynecological Diseases

    PubMed Central

    Cymbaluk-Płoska, Aneta; Strojna, Aleksandra; Menkiszak, Janusz

    2017-01-01

    Objective. We assess the behavior of serum concentrations of HE4 marker in female carriers of BRCA1 and assess the diagnostic usefulness of HE4 in ovarian and endometrial cancer. Methods. A total of 619 women with BRCA1 gene mutation, ovarian, endometrial, metastatic, other gynecological cancers, or benign gynecological diseases were included. Intergroup comparative analyses were carried out, the BRCA1 gene carriers subgroup was subjected to detailed analysis, and ROC curves were determined for the assessment of diagnostic usefulness of HE4 in ovarian and endometrial cancer. Results. Statistically lower serum HE4 and CA 125 levels were observed in BRCA1 gene mutation premenopausal carriers. Occult ovarian/fallopian tube cancer was found 3.6%. Each of those patients was characterized by slightly elevated levels of either CA 125 (63.9 and 39.4 U/mL) or HE4 (79 pmol/L). The ROC-AUC curves were 0.892 and 0.894 for diagnostic usefulness of ovarian cancer and 0.865 for differentiation of endometrial cancer from endometrial polyps. Conclusions. Patients with BRCA1 gene mutations have relatively low serum HE4 levels. Even the slightest elevation in HE4 or CA 125 levels in female BRCA1 carriers undergoing prophylactic surgery should significantly increase oncological alertness. The HE4 marker is valuable in ovarian and uterine cancer diagnosis. PMID:28182133

  16. [A paradox and three egnimas about the role of BRCA1 in breast and ovarian cancers].

    PubMed

    Feunteun, Jean

    2004-01-01

    More than 50% of the hereditary forms are associated with germ line mutation in either BRCA1 or BRCA2 genes (BReast CAncer 1/2). The BRCA1 protein is expressed ubiquitously and is likely to play a role in several fundamental processes, including the maintenance of genomic integrity. Paradoxically, BRCA1 appears as a gene essential for proliferation of embryonic cells that simultaneously carries tumor suppressor activity. The nature of the role of BRCA1 in DNA repair and maintenance of genome integrity remains enigmatic. BRCA1 may indeed be a sensor of "abnormal" DNA structures that undergo heterochromatinisation. This model finds some support in the recent report that BRCA1 participates in the maintenance of X-chromosome inactivation, a paradigm for facultative heterochromatinisation. Why are epithelial cells from mammary glands and ovaries the privileged targets for tumorigenesis in women carrying germline mutations in BRCA1? The inheritance of a single defective copy of BRCA1 by women confers a status of susceptibility for developing breast and/or ovarian cancer. The loss of the wild-type allele inherited from the unaffected parent (LOH), commonly observed in the primary breast and ovarian tumors in these susceptible women, represents the event that initiates the tumorigenesis process. This classical two hit model, which assumes that heterozygote cells are "normal" until the LOH occurs stochastically, remains enigmatic.

  17. Predicting the Pathogenic Potential of BRCA1 and BRCA2 Gene Variants Identified in Clinical Genetic Testing

    PubMed Central

    Brookes, Clare; Lai, Stella; Doherty, Elaine; Love, Donald R.

    2015-01-01

    Objectives: Missense variants are very commonly detected when screening for mutations in the BRCA1 and BRCA2 genes. Pathogenic mutations in the BRCA1 and BRCA2 genes lead to an increased risk of developing breast, ovarian, prostate and/or pancreatic cancer. This study aimed to assess the predictive capability of in silico programmes and mutation databases in assisting diagnostic laboratories to determine the pathogenicity of sequence-detectable mutations. Methods: Between July 2011 and April 2013, an analysis was undertaken of 13 missense BRCA gene variants that had been detected in patients referred to the Genetic Health Services New Zealand (Northern Hub) for BRCA gene analysis. The analysis involved the use of 13 in silico protein prediction programmes, two in silico transcript analysis programmes and the examination of three BRCA gene databases. Results: In most of the variants, the analysis showed different in silico interpretations. This illustrates the interpretation challenges faced by diagnostic laboratories. Conclusion: Unfortunately, when using online mutation databases and carrying out in silico analyses, there is significant discordance in the classification of some missense variants in the BRCA genes. This discordance leads to complexities in interpreting and reporting these variants in a clinical context. The authors have developed a simple procedure for analysing variants; however, those of unknown significance largely remain unknown. As a consequence, the clinical value of some reports may be negligible. PMID:26052455

  18. Differential Gene Expression of BRCA1,ERBB2 and TP53 biomarkers between Human Breast Tissue and Peripheral Blood Samples of Breast Cancer.

    PubMed

    Zghair, Abdulrazzaq Neamah; Sinha, Deepak Kumar; Kassim, Arkan; Alfaham, Mohmmad; Sharma, Anil K

    2016-01-01

    Breast cancer is a most common malignancy especially in Iraqi women accounting for high morbidity and mortality. Mutations in BRCA1 gene is one of the important genetic predisposing factors inbreast cancer. Similarly ERBB2 and TP53 are also key prognostic markers in breast cancer treatment.We were interested to explore the gene expression profiles of BRCA1, ERBB2 and TP53 in breast cancer women patients from Iraq so as to assess the potential of such markers in breast cancer treatment. The mRNA levels were significantly over-expressed in tumor tissues in comparison to normal ones with p values (p<0.005) observed between malignant BRCA1 and control tissue samples. Similarly significant difference (p<0.001) was observed between malignant ERBB2 in comparison to control, and malignant TP53 and benign tissue samples as well. However in blood samples, no considerable expression of these markers was observed. Out of three selected genes, ERBB2 expression was significantly expressed in comparison to BRCA1 and TP53 in cancer tissue. Mutation analysis of BRCA1, ERBB2 and TP53 has been made to find out the region most susceptible to mutations in these genes The BRCA1 exon 11, ERBB2 16 and TP53 exon 5 displayed increased chances of having mutations. We can conclude from the study that differential gene expression of BRCA1, ERBB2 and TP53 at mRNA levels may act as a diagnostic marker of circulating tumor cells having important prognostic value in breast cancer patients.

  19. High prevalence of GPRC5A germline mutations in BRCA1-mutant breast cancer patients.

    PubMed

    Sokolenko, Anna P; Bulanova, Daria R; Iyevleva, Aglaya G; Aleksakhina, Svetlana N; Preobrazhenskaya, Elena V; Ivantsov, Alexandr O; Kuligina, Ekatherina Sh; Mitiushkina, Natalia V; Suspitsin, Evgeny N; Yanus, Grigoriy A; Zaitseva, Olga A; Yatsuk, Olga S; Togo, Alexandr V; Kota, Poojitha; Dixon, J Michael; Larionov, Alexey A; Kuznetsov, Sergey G; Imyanitov, Evgeny N

    2014-05-15

    In a search for new breast cancer (BC) predisposing genes, we performed a whole exome sequencing analysis using six patient samples of familial BC and identified a germline inactivating mutation c.183delG [p. Arg61fs] in an orphan G protein-coupled receptor GPRC5A. An extended case-control study revealed a tenfold enrichment for this mutation in BC patients carrying the 5382insC allele of BRCA1, the major founder mutation in the Russian population, compared to wild-type BRCA1 BC cases [6/117 (5.1%) vs. 8/1578 (0.5%), p = 0.0002]. In mammary tumors (n = 60), the mRNA expression of GPRC5A significantly correlated with that of BRCA1 (p = 0.00018). In addition, the amount of GPRC5A transcript was significantly lower in BC obtained from BRCA1 mutation carriers (n = 17) compared to noncarriers (n = 93) (p = 0.026). Accordingly, a siRNA-mediated knockdown of either BRCA1 or GPRC5A in the MDA-MB-231 human BC cell line reduced expression of GPRC5A or BRCA1, respectively. Knockdown of GPRC5A also attenuated radiation-induced BRCA1- and RAD51-containing nuclear DNA repair foci. Taken together, these data suggest that GPRC5A is a modifier of BC risk in BRCA1 mutation carriers and reveals a functional interaction of these genes.

  20. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    SciTech Connect

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  1. Emerging roles of BRCA1 alternative splicing.

    PubMed

    Orban, T I; Olah, E

    2003-08-01

    Germline mutations of the BRCA1 gene predispose individuals mainly to the development of breast and/or ovarian cancer. However, the exact function of the gene is still unclear, although the encoded proteins are involved in various cellular processes, including transcriptional regulation and DNA repair pathways. Several BRCA1 splice variants are found in different tissues, but in spite of intense investigations, their regulation and possible functions are poorly understood at the moment. This review summarises current knowledge on the roles of these splice variants and the mechanisms responsible for their formation. Because alternative splicing is now widely accepted as an important source of genetic diversity, elucidating the functions of the BRCA1 splice variants would help in the understanding of the exact role(s) of this tumour suppressor. This should help to resolve the current paradox that, despite its seemingly vital cellular functions, mutations of this gene are associated with tissue specific tumour formation predominantly in the breast and the ovary.

  2. Luring BRCA1 to the scene of the crime.

    PubMed

    Baer, Richard

    2013-05-13

    To preserve genome stability, BRCA1 must be recruited to sites of DNA damage, where BRCA1 facilitates repair of double-strand DNA breaks (DSBs). In this issue of Cancer Cell, Li and Yu report that BRCA1 recruitment involves a novel interaction between its partner protein BARD1 and poly(ADP-ribose) chains at the DSB.

  3. p53 suppresses hyper-recombination by modulating BRCA1 function.

    PubMed

    Dong, Chao; Zhang, Fengmei; Luo, Yue; Wang, Hui; Zhao, Xipeng; Guo, Gongshe; Powell, Simon N; Feng, Zhihui

    2015-09-01

    Both p53 and BRCA1 are tumor suppressors and are involved in a number of cellular processes including cell cycle arrest, apoptosis, transcriptional regulation, and DNA damage repair. Some studies have suggested that the association of BRCA1 and p53 is required for transcriptional regulation of genes involved in cell replication and DNA repair pathways. However, the relationship between the two proteins in molecular mechanisms of DNA repair is still not clear. Therefore, we sought to determine whether there is a functional link between p53 and BRCA1 in DNA repair. Firstly, using a plasmid recombination substrate, pDR-GFP, integrated into the genome of breast cancer cell line MCF7, we have demonstrated that p53 suppressed Rad51-mediated hyper-recombinational repair by two independent cell models of HPV-E6 induced p53 inactivation and p53 knockdown assay. Our study further indicated that p53 mediated homologous recombination (HR) through inhibiting BRCA1 over-function via mechanism of transcription regulation in response to DNA repair. Since it was found p53 and BRCA1 existed in a protein complex, indicating both proteins may be associated at post-transcriptional level. Moreover, defective p53-induced hyper-recombination was associated with cell radioresistance and chromosomal stability, strongly supporting the involvement of p53 in the inhibition of hyper-recombination, which led to genetic stability and cellular function in response to DNA damage. In addition, it was found that p53 loss rescued BRCA1 deficiency via recovering HR and chromosomal stability, suggesting that p53 is also involved in the HR-inhibition independently of BRCA1. Thus, our data indicated that p53 was involved in inhibiting recombination by both BRCA1-dependent and -independent mechanisms, and there is a functional link between p53-suppression and BRCA1-promotion in regulation of HR activity at transcription level and possible post-transcription level.

  4. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours

    PubMed Central

    Xu, Hong; Di Antonio, Marco; McKinney, Steven; Mathew, Veena; Ho, Brandon; O'Neil, Nigel J.; Santos, Nancy Dos; Silvester, Jennifer; Wei, Vivien; Garcia, Jessica; Kabeer, Farhia; Lai, Daniel; Soriano, Priscilla; Banáth, Judit; Chiu, Derek S.; Yap, Damian; Le, Daniel D.; Ye, Frank B.; Zhang, Anni; Thu, Kelsie; Soong, John; Lin, Shu-chuan; Tsai, Angela Hsin Chin; Osako, Tomo; Algara, Teresa; Saunders, Darren N.; Wong, Jason; Xian, Jian; Bally, Marcel B.; Brenton, James D.; Brown, Grant W.; Shah, Sohrab P.; Cescon, David; Mak, Tak W.; Caldas, Carlos; Stirling, Peter C.; Hieter, Phil; Balasubramanian, Shankar; Aparicio, Samuel

    2017-01-01

    G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016). PMID:28211448

  5. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours.

    PubMed

    Xu, Hong; Di Antonio, Marco; McKinney, Steven; Mathew, Veena; Ho, Brandon; O'Neil, Nigel J; Santos, Nancy Dos; Silvester, Jennifer; Wei, Vivien; Garcia, Jessica; Kabeer, Farhia; Lai, Daniel; Soriano, Priscilla; Banáth, Judit; Chiu, Derek S; Yap, Damian; Le, Daniel D; Ye, Frank B; Zhang, Anni; Thu, Kelsie; Soong, John; Lin, Shu-Chuan; Tsai, Angela Hsin Chin; Osako, Tomo; Algara, Teresa; Saunders, Darren N; Wong, Jason; Xian, Jian; Bally, Marcel B; Brenton, James D; Brown, Grant W; Shah, Sohrab P; Cescon, David; Mak, Tak W; Caldas, Carlos; Stirling, Peter C; Hieter, Phil; Balasubramanian, Shankar; Aparicio, Samuel

    2017-02-17

    G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).

  6. Identification of BRCA1 and 2 Other Tumor Suppressor Genes on Chromosome 17 Through Positional Cloning

    DTIC Science & Technology

    1996-07-01

    Molecular cloning , DNA sequence analysis, and1 biochemical characterization of a novel 65-kDa FK506-hinding protein (FKBP65). J Biol Chem 270, 29336...S., Wong, K., Chan, R., Lau, C., Tsao, S., Knapp, R., and Berkowitz, R. (1994). Molecular cloning of differentially expressed genes in human

  7. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2013-12-01

    knockdown any functionally restored BRCA1 , even a shorter, partially restored BRCA1 transcript. Only the BRCA1 -rescue line, but not the parental or...the HR pathway, specifically BRCA2 and PALB2, known to function downstream of BRCA1 , and MRG15, known to function independently of BRCA1 . Following...levels are the same or higher than the BRCA1 -expressing rescue line, suggesting functional DNA-PK activity. These results show that other novel

  8. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function.

    PubMed

    Mgbemena, Victoria E; Signer, Robert A J; Wijayatunge, Ranjula; Laxson, Travis; Morrison, Sean J; Ross, Theodora S

    2017-01-24

    BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1(F22-24/F22-24)) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1(BRCA1/BRCA1)) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1(F22-24/5382insC)) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.

  9. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  10. Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

    PubMed Central

    Bennett, Craig B.; Westmoreland, Tammy J.; Verrier, Carmel S.; Blanchette, Carrie A. B.; Sabin, Tiffany L.; Phatnani, Hemali P.; Mishina, Yuliya V.; Huper, Gudrun; Selim, Alice L.; Madison, Ernest R.; Bailey, Dominique D.; Falae, Adebola I.; Galli, Alvaro; Olson, John A.; Greenleaf, Arno L.; Marks, Jeffrey R.

    2008-01-01

    BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast

  11. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer.

    PubMed

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P; Suarez, John J; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Della Valle, Adriana; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R; Goldstein, Alisa M; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R; Carvajal-Carmona, Luis G

    2017-04-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer.

  12. BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon-β Responses.

    PubMed

    Dutta, Dipanjan; Dutta, Sujoy; Veettil, Mohanan Valiya; Roy, Arunava; Ansari, Mairaj Ahmed; Iqbal, Jawed; Chikoti, Leela; Kumar, Binod; Johnson, Karen E; Chandran, Bala

    2015-06-01

    The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1β, IL-18 or interferon β (IFN-β). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1β generation. IFI16 also induces IFN-β during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1β production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-β production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16

  13. Functional Analysis of Variants of Unknown Significance in BRCA1 and BRCA2 Using Complementation of a Synthetic Lethal Interaction with PARP Inhibition

    DTIC Science & Technology

    2014-12-01

    Award Number: W81XWH-12-1-0569 TITLE: Functional Analysis of Variants of Unknown Significance in BRCA1 and BRCA2 Using Complementation of a...synergistic decrease in cell survival in cells with loss of function of either BRCA1 or BRCA2 and loss or inhibition of Parp1 activity15,17. SLI has...Develop a robust assay by which individual VUSs can be tested for their effect on BRCA1 /2 function by expressing a BRCA1 or BRCA2 gene (cDNA) carrying the

  14. Development and validation of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2 genes.

    PubMed

    Pruss, Dmitry; Morris, Brian; Hughes, Elisha; Eggington, Julie M; Esterling, Lisa; Robinson, Brandon S; van Kan, Aric; Fernandes, Priscilla H; Roa, Benjamin B; Gutin, Alexander; Wenstrup, Richard J; Bowles, Karla R

    2014-08-01

    BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.

  15. Evolutionary conservation analysis increases the colocalization of predicted exonic splicing enhancers in the BRCA1 gene with missense sequence changes and in-frame deletions, but not polymorphisms

    PubMed Central

    Pettigrew, Christopher; Wayte, Nicola; Lovelock, Paul K; Tavtigian, Sean V; Chenevix-Trench, Georgia; Spurdle, Amanda B; Brown, Melissa A

    2005-01-01

    Introduction Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. Methods As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. Results Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. Conclusion In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE

  16. Treatment related toxicity in BRCA1-associated epithelial ovarian cancer – is DNA repairing impairment associated with more adverse events?

    PubMed Central

    Budryk, Magdalena; Nowara, Elżbieta; Starzyczny-Słota, Danuta

    2016-01-01

    Aim of the study The presence of BRCA germline mutations in patients with ovarian cancer has been shown to have predictive and prognostic significance, including increased platinum-sensitivity. The aim of the study was to evaluate if patients with BRCA1-associated ovarian cancer have more treatment related adverse events and, if so, does it have impact on chemotherapy outcomes. Material and methods We conducted a retrospective analysis of medical records of 172 patients with newly diagnosed epithelial ovarian cancer, treated in Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch between 2007 and 2013. Ninety-six of these patients have known BRCA mutation status – 21 patients were BRCA1(+) and 75 BRCA1(–). Analysed treatment related adverse events (AE’s) were: haematological toxicity, nausea/vomiting, neuropathy and mucositis. Results Grade 3–4 haematological AE’s were significantly more common among BRCA1(+) patients (OR = 3.86; 95% CI: 1.14–13.23; p = 0.02). There was no association between BRCA1 mutation status and neuropathy (p = 0.73) or nausea/vomiting (p = 0.91). Occurrence of above mentioned AE’s has no significant association with PFS (p = 0.75, 0.64, 0.97 respectively) and OS (p = 0.64, 0.69, 0.73 respectively). Conclusions Among patients with BRCA1-associated epithelial ovarian cancer we observed significantly more grade 3–4 haematological complications after chemotherapy. However, occurrence of AE’s did not correlate with better outcomes in this subgroup.

  17. Targeting the BRCA1/2 tumor suppressors.

    PubMed

    Rosen, Eliot M; Pishvaian, Michael J

    2014-01-01

    The breast cancer susceptibility genes BRCA1 and BRCA2 are classic tumor suppressor genes that exhibit an autosomal dominant pattern of inheritance with high penetrance. BRCA carriers inherit one mutant BRCA allele and one wild-type allele; and the wild-type allele is invariably deleted or mutated within the tumor. These genes function as caretakers in the maintenance of genomic stability, in part, by participating in homology-directed DNA repair (HDR), an error- free mechanism for the repair of double-strand breaks (DSBs). PARP1 (poly (ADP-ribose) polymerase 1) is an enzyme that functions in the base excision repair (BER) pathway, where its ability to post-translationally modify histones and DNA damage response proteins is required for repair of single-strand breaks (SSBs). In 2005, it was observed that knockdown of PARP1 or treatment with a small molecule PARP inhibitor was far more toxic to cells with BRCA1 or BRCA2 mutations than BRCA1/2-competent cells. This observation is an example of "synthetic lethality", a concept whereby two gene mutations combine to cause cell death, when neither mutation alone is lethal. These results spawned the idea to use PARP inhibitors to treat BRCA1/2 mutant cancers. Here, we will review the basic science underlying the discoveries described above, the preclinical research, and the clinical trials designed to exploit the sensitivity of BRCA1/2 mutant tumor cells to PARP inhibitors. We will also describe problems associated with the use of these agents, including development and mechanisms of drug resistance; and we will provide a forward look at new agents and strategies currently under development.

  18. Relationship between three novel SNPs of BRCA1 and canine mammary tumors

    PubMed Central

    SUN, Weidong; YANG, Xu; QIU, Hengbin; ZHANG, Di; WANG, Huanan; HUANG, Jian; LIN, Degui

    2015-01-01

    The BRCA1 gene plays an important role in the development of human breast cancer, and recent research indicated that genetic variations of BRCA1 are also related to canine mammary tumors (CMTs). Here, using rapid amplification of cDNA ends (RACE), we cloned the 5′- and 3′-UTRs of BRCA1. By direct sequencing of the flanking sequences of the 5′- and 3′-UTRs of BRCA1, three previously unreported single-nucleotide polymorphisms (SNPs) were identified, two (−1228T >C, −1173C >T) in the putative promoter regions and one non-synonymous SNP (63449G >A) in exon 23. Compared with 16 normal samples, the sequences from 34 CMTs suggested that SNP (−1173C >T) was associated with the development of CMTs (odds ratio (OR)=2.57, 95% confidence interval (CI): 1.07–6.15). PMID:26156012

  19. Metastasizing patent claims on BRCA1.

    PubMed

    Kepler, Thomas B; Crossman, Colin; Cook-Deegan, Robert

    2010-05-01

    Many patents make claims on DNA sequences; some include claims on oligonucleotides related to the primary patented gene. We used bioinformatics to quantify the reach of one such claim from patent 4,747,282 on BRCA1. We find that human chromosome 1 (which does not contain BRCA1) contains over 300,000 oligonucleotides covered by this claim, and that 80% of cDNA and mRNA sequences contributed to GenBank before the patent application was filed also contain at least one claimed oligonucleotide. Any "isolated" DNA molecules that include such 15 bp nucleotide sequences would fall under the claim as granted by the US Patent and Trademark Office. Anyone making, using, selling, or importing such a molecule for any purpose within the United States would thus be infringing the claim. This claim and others like it turn out, on examination, to be surprisingly broad, and if enforced would have substantial implications for medical practice and scientific research.

  20. Critical role for BRCA1 expression as a marker of chemosensitivity response and prognosis.

    PubMed

    De Luca, Paola; De Siervi, Adriana

    2016-01-01

    Chemotherapy is still the leader option for cancer treatment. Nevertheless some patients develop chemotherapy resistance. One major research goal is to identify the critical genes involved in chemotherapy response to predict the best therapy option for patients. Germline mutations in the BReast Cancer susceptibility gene (BRCA1) are associated to increased risk of developing breast, ovarian and other types of cancers. However, due to harmful BRCA1 gene mutations are relatively rare in the general population, nowadays most researchers focused on BRCA1 expression downregulation and/or epigenetic inactivation in sporadic tumors as a prognosis tool for chemotherapy response in patients. Chemotherapy response can be dramatically different depending on BRCA1 expression status, tumor type and drug. Hence, the chemotherapy response could be dissimilar in breast, ovarian, uterine, prostate, esophageal, gastric and lung cancers. Additionally, differential BRCA1 expression in sporadic tumors shows different response to DNA-damaging agents, mitotic inhibitors or PARP inhibitors. In this review we will examine the response to different chemotherapy agents in several cancer types depending on BRCA1 expression status.

  1. The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription

    PubMed Central

    Johnston, Rebecca; D'Costa, Zenobia; Ray, Swagat; Gorski, Julia; Harkin, D. Paul; Mullan, Paul; Panov, Konstantin I.

    2016-01-01

    The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA polymerase I (Pol-I) and its associated holoenzyme complex. Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene. We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened. We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage. PMID:27589844

  2. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic

    PubMed Central

    Winter, C.; Nilsson, M. P.; Olsson, E.; George, A. M.; Chen, Y.; Kvist, A.; Törngren, T.; Vallon-Christersson, J.; Hegardt, C.; Häkkinen, J.; Jönsson, G.; Grabau, D.; Malmberg, M.; Kristoffersson, U.; Rehn, M.; Gruvberger-Saal, S. K.; Larsson, C.; Borg, Å.; Loman, N.; Saal, L. H.

    2016-01-01

    Background A mutation found in the BRCA1 or BRCA2 gene of a breast tumor could be either germline or somatically acquired. The prevalence of somatic BRCA1/2 mutations and the ratio between somatic and germline BRCA1/2 mutations in unselected breast cancer patients are currently unclear. Patients and methods Paired normal and tumor DNA was analyzed for BRCA1/2 mutations by massively parallel sequencing in an unselected cohort of 273 breast cancer patients from south Sweden. Results Deleterious germline mutations in BRCA1 (n = 10) or BRCA2 (n = 10) were detected in 20 patients (7%). Deleterious somatic mutations in BRCA1 (n = 4) or BRCA2 (n = 5) were detected in 9 patients (3%). Accordingly, about 1 in 9 breast carcinomas (11%) in our cohort harbor a BRCA1/2 mutation. For each gene, the tumor phenotypes were very similar regardless of the mutation being germline or somatically acquired, whereas the tumor phenotypes differed significantly between wild-type and mutated cases. For age at diagnosis, the patients with somatic BRCA1/2 mutations resembled the wild-type patients (median age at diagnosis, germline BRCA1: 41.5 years; germline BRCA2: 49.5 years; somatic BRCA1/2: 65 years; wild-type BRCA1/2: 62.5 years). Conclusions In a population without strong germline founder mutations, the likelihood of a BRCA1/2 mutation found in a breast carcinoma being somatic was ∼1/3 and germline 2/3. This may have implications for treatment and genetic counseling. PMID:27194814

  3. A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    PubMed Central

    2009-01-01

    Background In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Methods Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Results and Conclusion Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764_8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations. PMID:19619314

  4. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    PubMed

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

  5. Identification of Genes Required for the Survival of BRCA 1-/- Cells

    DTIC Science & Technology

    2010-02-01

    to double-strand breaks. Science 286, 1162-6 (1999). 36. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289-301 (2007).

  6. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  7. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer.

    PubMed

    Gong, C; Fujino, K; Monteiro, L J; Gomes, A R; Drost, R; Davidson-Smith, H; Takeda, S; Khoo, U S; Jonkers, J; Sproul, D; Lam, E W-F

    2015-09-24

    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly

  8. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2009-07-01

    In revision) T. Fazio, M. L. Visnapuu, S. Wind, E. C. Greene, Langmuir 24, 10524 (Sep 16, 2008). M. L. Visnapuu, T. Fazio, S. Wind, E. C. Greene... Langmuir 24, 11293 (Oct 7, 2008). CONCLUSION Our experiments in cell-free extracts have allowed us to separate the functions of the BRCA1/BARD1...checkpoint signaling might be critical to prevent breast tumor development. 11 REFERENCES 1. S. V. Hodgson, P. J. Morrison, M. Irving , Am J Med

  9. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2.

    PubMed

    Schlacher, Katharina; Wu, Hong; Jasin, Maria

    2012-07-10

    Genes mutated in patients with Fanconi anemia (FA) interact with the DNA repair genes BRCA1 and BRCA2/FANCD1 to suppress tumorigenesis, but the molecular functions ascribed to them cannot fully explain all of their cellular roles. Here, we show a repair-independent requirement for FA genes, including FANCD2, and BRCA1 in protecting stalled replication forks from degradation. Fork protection is surprisingly rescued in FANCD2-deficient cells by elevated RAD51 levels or stabilized RAD51 filaments. Moreover, FANCD2-mediated fork protection is epistatic with RAD51 functions, revealing an unanticipated fork protection pathway that connects FA genes to RAD51 and the BRCA1/2 breast cancer suppressors. Collective results imply a unified molecular mechanism for repair-independent functions of FA, RAD51, and BRCA1/2 proteins in preventing genomic instability and suppressing tumorigenesis.

  10. Identification of BRCA1 and 2 Other Tumor Suppressor Genes on Chromosome 17 Through Positional Cloning.

    DTIC Science & Technology

    1998-07-01

    services of these organizations. In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals...No. 86-23, Revised 1985). K x For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46. Ax In...conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of

  11. Conditional inactivation of Brca1 in the mouse ovarian surface epithelium results in an increase in preneoplastic changes

    SciTech Connect

    Clark-Knowles, Katherine V. . E-mail: kclar075@uottawa.ca; Garson, Kenneth; Jonkers, Jos; Vanderhyden, Barbara C.

    2007-01-01

    Epithelial ovarian cancer (EOC) is thought to arise from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. Using mice with conditional expression of Brca1, we inactivated Brca1 in the murine OSE and demonstrate that this inactivation results in the development of preneoplastic changes, such as hyperplasia, epithelial invaginations, and inclusion cysts, which arise earlier and are more numerous than in control ovaries. These changes resemble the premalignant lesions that have been reported in human prophylactic oophorectomy specimens from women with BRCA1 germline mutation. We also report that inactivation of Brca1 in primary cultures of murine OSE cells leads to a suppression of proliferation due to increased apoptosis that can be rescued by concomitant inactivation of p53. These observations, along with our finding that these cells display an increased sensitivity to the DNA-damaging agent cisplatin, indicate that loss of function of Brca1 in OSE cells impacts both cellular growth control and DNA-damage repair which results in altered cell behavior manifested as morphological changes in vivo that arise earlier and are more numerous than what can be attributed to ageing.

  12. Germline mutations in MEN1 and BRCA1 genes in a woman with familial multiple endocrine neoplasia type 1 and inherited breast-ovarian cancer syndromes: a case report.

    PubMed

    Papi, Laura; Palli, Domenico; Masi, Laura; Putignano, Anna Laura; Congregati, Caterina; Zanna, Ines; Marini, Francesca; Giusti, Francesca; Luzi, Ettore; Tonelli, Francesco; Genuardi, Maurizio; Brandi, Maria Luisa; Falchetti, Alberto

    2009-11-01

    The simultaneous occurrence of mutations in two different tumor suppressor genes in the same individual is a very rare event. Here we report the case of a woman in whom germline mutations in both MEN1 and BRCA1 were identified. The severity of MEN1-related biochemical and clinical findings did not significantly differ from that for other affected family members lacking the BRCA1 mutation, except for the development of an extremely large visceral lipoma; the proband has not developed any BRCA1-related malignancies. We explore genetic and molecular rationales for an association between these neoplastic processes.

  13. A Novel Pathogenic BRCA1 Splicing Variant Produces Partial Intron Retention in the Mature Messenger RNA

    PubMed Central

    Esposito, Maria Valeria; Nunziato, Marcella; Starnone, Flavio; Telese, Antonella; Calabrese, Alessandra; D’Aiuto, Giuseppe; Pucci, Pietro; D’Aiuto, Massimiliano; Baralle, Francisco; D’Argenio, Valeria; Salvatore, Francesco

    2016-01-01

    About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to better tailor the clinical management of patients; and to initiate preventive measures in healthy carriers. The pathophysiological significance of newly identified variants poses challenges for genetic counseling. We characterized a new BRCA1 variant discovered in a breast cancer patient during BRCA1/2 screening by next-generation sequencing. Bioinformatic predictions; indicating that the variant is probably pathogenetic; were verified using retro-transcription of the patient’s RNA followed by PCR amplifications performed on the resulting cDNA. The variant causes the loss of a canonic donor splice site at position +2 in BRCA1 intron 21; and consequently the partial retention of 156 bp of intron 21 in the patient’s transcript; which demonstrates that this novel BRCA1 mutation plays a pathogenetic role in breast cancer. These findings enabled us to initiate appropriate counseling and to tailor the clinical management of this family. Lastly; these data reinforce the importance of studying the effects of sequence variants at the RNA level to verify their potential role in disease onset. PMID:28009814

  14. [Should knowledge of BRCA1 status impact the choice of chemotherapy in metastatic breast cancer: a review].

    PubMed

    Clergue, Océane; Jones, Natalie; Sévenet, Nicolas; Quenel-Tueux, Nathalie; Debled, Marc

    2015-03-01

    BRCA1 and BRCA2 mutations account for 40% of cancer predisposition gene mutations identified in the current French diagnostic setting. The proteins encoded by these genes are implicated in DNA repair pathways. As a result, loss of BRCA1 or BRCA2 function may modify chemo-sensitivity. This literature review aims to determine whether BRCA1 mutation status should influence the choice of systemic treatment in breast cancer. Fourteen articles and four abstracts from 12 retrospective analyses and 6 prospective studies were identified in the literature review. CMF-type and taxane-based protocols appear to be insufficiently effective, while anthracycline activity does not seem to be affected by BRCA1 status. BRCA1-mutated tumours appear to be highly sensitive to platinum, in both the neoadjuvant and metastatic setting. Olaparib, a PARP inhibitor, has only been evaluated in one study in metastatic patients, with promising results. The presence of a BRCA1 mutation can lead to an adaptation of therapies in the metastatic stages in breast cancer. The rapid identification of BRCA1 mutations and the adaptation of treatment according to this status in the (neo)adjuvant setting is likely to become a reality in the coming years.

  15. BRCA1 haploinsufficiency for replication stress suppression in primary cells.

    PubMed

    Pathania, Shailja; Bade, Sangeeta; Le Guillou, Morwenna; Burke, Karly; Reed, Rachel; Bowman-Colin, Christian; Su, Ying; Ting, David T; Polyak, Kornelia; Richardson, Andrea L; Feunteun, Jean; Garber, Judy E; Livingston, David M

    2014-11-17

    BRCA1-a breast and ovarian cancer suppressor gene-promotes genome integrity. To study the functionality of BRCA1 in the heterozygous state, we established a collection of primary human BRCA1(+/+) and BRCA1(mut/+) mammary epithelial cells and fibroblasts. Here we report that all BRCA1(mut/+) cells exhibited multiple normal BRCA1 functions, including the support of homologous recombination- type double-strand break repair (HR-DSBR), checkpoint functions, centrosome number control, spindle pole formation, Slug expression and satellite RNA suppression. In contrast, the same cells were defective in stalled replication fork repair and/or suppression of fork collapse, that is, replication stress. These defects were rescued by reconstituting BRCA1(mut/+) cells with wt BRCA1. In addition, we observed 'conditional' haploinsufficiency for HR-DSBR in BRCA1(mut/+) cells in the face of replication stress. Given the importance of replication stress in epithelial cancer development and of an HR defect in breast cancer pathogenesis, both defects are candidate contributors to tumorigenesis in BRCA1-deficient mammary tissue.

  16. Characterization of three alternative transcripts of the BRCA1 gene in patients with breast cancer and a family history of breast and/or ovarian cancer who tested negative for pathogenic mutations.

    PubMed

    Gambino, Gaetana; Tancredi, Mariella; Falaschi, Elisabetta; Aretini, Paolo; Caligo, Maria Adelaide

    2015-04-01

    The study of BRCA1 and BRCA2 genes and their alterations has been essential to the understanding of the development of familial breast and ovarian cancers. Many of the variants identified have an unknown pathogenic significance. These include variants which determine alternative mRNA splicing, identified in the intronic regions and those are capable of destroying the splicing ability. The aim of this study was to detect BRCA1/BRCA2 aberrant transcripts resulting from alternative splicing, in women with a known family history and/or early onset of breast and/or ovarian cancer, tested wild-type for BRCA1 and BRCA2. The identification and characterization of aberrant transcripts through the analysis of mRNA levels in blood lymphocytes may help us to recognize families otherwise misclassified as wild-type BRCA1 and BRCA2. Blood samples were collected from 13 women that had a family history of breast and/or ovarian cancer and tested negative for pathogenic mutations in the BRCA1 and BRCA2 genes. Total RNA was analyzed for the presence of BRCA1 and BRCA2 naturally occurring and pathological transcripts using RT-PCR. In 2 out of the 13 samples, 2 alternative transcripts of the BRCA1 gene were identified. These were probably pathogenic as they lacked exon 17 and exon 15, respectively, giving rise to a truncated protein. In addition to these, we identified the Δ17-19 transcript in 1 patient, which gives rise to a protein with an in-frame deletion of 69 amino acids. In conclusion, this study on alternative transcripts of the BRCA1 and BRCA2 genes revealed the presence of isoforms (prevalence of 15%) in blood samples from women with breast and ovarian cancer that were probably pathogenic, that were not detected by conventional methods of mutation screening based on direct sequencing of all coding regions, intron-exons junctions and MLPA analysis.

  17. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2011-07-01

    J. 17:6412–25 52. Gravel S, Chapman JR, Magill C , Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev...protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15:3237– 42 124. Prinz S, Amon A, Klein F. 1997. Isolation...cerevisiae. Genes Dev. 19:1390–99 130. Richardson C , Moynahan ME, Jasin M. 1998. Double-strand break repair by interchromosomal recom- bination: suppression

  18. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2011-07-01

    phosphorylation-dependent binding partner CtIP, Genes Dev 20, 1721-1726. 
 GE45CH12-Symington ARI 18 August 2011 12:50 R E V I E W S I N A D V A N C E Double...J. 17:6412–25 52. Gravel S, Chapman JR, Magill C , Jackson SP. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev...complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25:1091–104 86. Limbo O, Chahwan C , Yamada Y, de Bruin RA, Wittenberg C , Russell P

  19. Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis

    PubMed Central

    Lo, Pang-Kuo; Zhang, Yongshu; Wolfson, Benjamin; Gernapudi, Ramkishore; Yao, Yuan; Duru, Nadire; Zhou, Qun

    2016-01-01

    Dysregulation of long non-codng RNA (lncRNA) expression has been found to contribute to tumorigenesis. However, the roles of lncRNAs in BRCA1-related breast cancer remain largely unknown. In this study, we delineate the role of the novel BRCA1/lncRNA NEAT1 signaling axis in breast tumorigenesis. BRCA1 inhibits NEAT1 expression potentially through binding to its genomic binding site upstream of the NEAT1 gene. BRCA1 deficiency in human normal/cancerous breast cells and mouse mammary glands leads to NEAT1 overexpression. Our studies show that NEAT1 upregulation resulting from BRCA1 deficiency stimulates in vitro and in vivo breast tumorigenicity. We have further identified molecular mediators downstream of the BRCA1/NEAT1 axis. NEAT1 epigenetically silences miR-129-5p expression by promoting the DNA methylation of the CpG island in the miR-129 gene. Silencing of miR-129-5p expression by NEAT1 results in upregulation of WNT4 expression, a target of miR-129-5p, which leads to activation of oncogenic WNT signaling. Our functional studies indicate that this NEAT1/miR-129-5p/WNT4 axis contributes to the tumorigenic effects of BRCA1 deficiency. Finally our in silico expression correlation analysis suggests the existence of the BRCA1/NEAT1/miR-129-5p axis in breast cancer. Our findings, taken together, suggest that the dysregulation of the BRCA1/NEAT1/miR-129-5p/WNT4 signaling axis is involved in promoting breast tumorigenesis. PMID:27556296

  20. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    SciTech Connect

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray, Joe; Huntsman, David G.

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  1. Ovarian carcinomas with genetic and epigenetic BRCA1 loss havedistinct molecular abnormalities

    SciTech Connect

    Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray,Joe; Huntsman, David G.

    2007-07-23

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  2. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes

    DTIC Science & Technology

    2005-02-01

    later by injection with 5 U of human chorionic gonadotropin (hormones purchased from Sigma, St. Louis, MO). 1.5 days following the last hormone...AD Award Number: W81XWH-04-1-0063 TITLE: Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes...FUNDING NUMBERS Modeling Human Epithelial Ovarian Cancer in Mice by W81XWH-04-1-0063 Alteration of Expression of the BRCAI and/or P53 Genes 6. AUTHOR(S

  3. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK)

    PubMed Central

    Pijpe, Anouk; Andrieu, Nadine; Easton, Douglas F; Kesminiene, Ausrele; Cardis, Elisabeth; Noguès, Catherine; Gauthier-Villars, Marion; Lasset, Christine; Fricker, Jean-Pierre; Peock, Susan; Frost, Debra; Evans, D Gareth; Eeles, Rosalind A; Paterson, Joan; Manders, Peggy; van Asperen, Christi J; Ausems, Margreet G E M; Meijers-Heijboer, Hanne; Thierry-Chef, Isabelle; Hauptmann, Michael; Goldgar, David; Rookus, Matti A

    2012-01-01

    Objective To estimate the risk of breast cancer associated with diagnostic radiation in carriers of BRCA1/2 mutations. Design Retrospective cohort study (GENE-RAD-RISK). Setting Three nationwide studies (GENEPSO, EMBRACE, HEBON) in France, United Kingdom, and the Netherlands, Participants 1993 female carriers of BRCA1/2 mutations recruited in 2006-09. Main outcome measure Risk of breast cancer estimated with a weighted Cox proportional hazards model with a time dependent individually estimated cumulative breast dose, based on nominal estimates of organ dose and frequency of self reported diagnostic procedures. To correct for potential survival bias, the analysis excluded carriers who were diagnosed more than five years before completion of the study questionnaire. Results In carriers of BRCA1/2 mutations any exposure to diagnostic radiation before the age of 30 was associated with an increased risk of breast cancer (hazard ratio 1.90, 95% confidence interval 1.20 to 3.00), with a dose-response pattern. The risks by quarter of estimated cumulative dose <0.0020 Gy, ≥0.0020-0.0065 Gy, ≥0.0066-0.0173 Gy, and ≥0.0174 Gy were 1.63 (0.96 to 2.77), 1.78 (0.88 to 3.58), 1.75 (0.72 to 4.25), and 3.84 (1.67 to 8.79), respectively. Analyses on the different types of diagnostic procedures showed a pattern of increasing risk with increasing number of radiographs before age 20 and before age 30 compared with no exposure. A history of mammography before age 30 was also associated with an increased risk of breast cancer (hazard ratio 1.43, 0.85 to 2.40). Sensitivity analysis showed that this finding was not caused by confounding by indication of family history. Conclusion In this large European study among carriers of BRCA1/2 mutations, exposure to diagnostic radiation before age 30 was associated with an increased risk of breast cancer at dose levels considerably lower than those at which increases have been found in other cohorts exposed to radiation. The results of this

  4. BRCA1 mutations in primary breast and ovarian carcinomas

    SciTech Connect

    Futreal, P.A.; Cochran, C.; Bennett, L.M.; Haugen-Strano, A.; Terry, L.; Barrett, J.C.; Wiseman, R.; Liu, Q.; Shattuck-Eidens, D.; Harshman, K.

    1994-10-07

    Loss of heterozygosity data from familial tumors suggested that BRCA1, a gene that confers susceptibility to ovarian and early-onset breast cancer, encodes a tumor suppressor. The BRCA1 region is also subject to allelic loss in sporadic breast and ovarian cancers, an indication that BRCA1 mutations may occur somatically in these tumors. The BRCA1 coding region was examined for mutations in primary breast and ovarian tumors that show allele loss at the BRCA1 locus. Mutations were detected in 3 of 32 breast and 1 of 12 ovarian carcinomas; all four mutations were germline alterations and occurred in early-onset cancers. These results suggest that mutation of BRCA1 may not be critical in the development of the majority of breast and ovarian cancers that arise in the absence of a mutant germline allele.

  5. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes.

    PubMed

    Theile, M; Hartmann, S; Scherthan, H; Arnold, W; Deppert, W; Frege, R; Glaab, F; Haensch, W; Scherneck, S

    1995-02-02

    A number of candidate tumor suppressor genes located on the human chromosome 17 are thought to have a role to play in the development of breast cancer. In addition to the p53 gene on 17p13.1 and the BRCA1 gene mapped to 17q12-21, other chromosomal regions for tumor suppressor genes have been suggested to exist on 17p13.3 and both the central and the distal parts of 17q, although definitive functional proof of their involvement in breast cancer tumorigenesis is still lacking. In this report we show that microcell transfer of a human chromosome 17 into wild-type p53 breast cancer cells CAL51 results in loss of tumorigenicity and anchorage-independent growth, changes in cell morphology and a reduction of cell growth rates of the neo-selected microcell hybrids. In the hybrid cells, which express the p53 wild-type protein, only the p- and the distal parts of the q arm of donor chromosome 17 are transferred. Thus, our results provide functional evidence for the presence of one or more tumor suppressor gene(s) on chromosome 17, which are distinct from the p53 and the BRCA1 genes.

  6. Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer.

    PubMed

    Hsu, Nicholas C; Huang, Ya-Fang; Yokoyama, Kazunari K; Chu, Pei-Yi; Chen, Fang-Ming; Hou, Ming-Feng

    2013-01-01

    BRCA1-associated breast cancers are associated with particular features such as early onset, poor histological differentiation, and hormone receptor negativity. Previous studies conducted in Taiwanese population showed that the mutation of BRCA1 gene does not play a significant role in the occurrence of breast cancer. The present study explored methylation of BRCA1 promoter and its relationship to clinical features and outcome in Taiwanese breast cancer patients. Tumor specimens from a cohort of 139 early-stage breast cancer patients were obtained during surgery before adjuvant treatment for DNA extraction. Methylation of BRCA1 promoter region was determined by methylation-specific PCR and the results were related to clinical features and outcome of patients using statistical analysis. Methylation of the BRCA1 promoter was detected in 78 (56%) of the 139 tumors. Chi-square analysis indicated that BRCA1 promoter methylation correlated significantly with triple-negative (ER-/PR-/HER2-) status of breast cancer patients (p = 0.041). The Kaplan-Meier method showed that BRCA1 promoter methylation was significantly associated with poor overall survival (p = 0.026) and disease-free survival (p = 0.001). Multivariate analysis which incorporated variables of patients' age, tumor size, grade, and lymph node metastasis revealed that BRCA1 promoter methylation was associated with overall survival (p = 0.027; hazard ratio, 16.38) and disease-free survival (p = 0.003; hazard ratio, 12.19) [corrected].Our findings underscore the clinical relevance of the methylation of BRCA1 promoter in Taiwanese patients with early-stage breast cancer.

  7. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania.

    PubMed

    Janavičius, Ramūnas; Rudaitis, Vilius; Mickys, Ugnius; Elsakov, Pavel; Griškevičius, Laimonas

    2014-05-01

    There is limited knowledge about the BRCA1/2 mutational profile in Lithuania. We aimed to define the full BRCA1 and BRCA2 mutational spectrum and the clinically relevant prevalence of these gene mutations in Lithuania. A data set of 753 unrelated probands, recruited through a clinical setting, was used and consisted of 380 female breast cancer cases, 213 epithelial ovarian cancer cases, 20 breast and ovarian cancer cases, and 140 probands with positive family history of breast or ovarian cancer. A comprehensive mutation analysis of the BRCA1/2 genes by high resolution melting analysis coupled with Sanger sequencing and multiplex ligation-dependent probe amplification analysis was performed. Genetic analysis revealed 32 different pathogenic germline BRCA1/2 mutations: 20 in the BRCA1 gene and 12 in the BRCA2 gene, including four different large genomic rearrangements in the BRCA1 gene. In all, 10 novel BRCA1/2 mutations were found. Nine different recurrent BRCA1 mutations and two recurrent BRCA2 mutations were identified, which comprised 90.4% of all BRCA1/2 mutations. BRCA1 exon 1-3 deletion and BRCA2 c.658_659del are reported for the first time as recurrent mutations, pointing to a possible Baltic founder effect. Approximately 7% of breast cancer and 22% of ovarian cancer patients without family history and an estimated 0.5-0.6% of all Lithuanian women were found to be carriers of mutations in the BRCA1 or BRCA2 gene.

  8. Immunohistochemical expression of BRCA1 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Judson, Gregory; Penney, Kathryn; Flavin, Richard; Stark, Jennifer; Fiore, Christopher; Fall, Katja; Martin, Neil; Ma, Jing; Sinnott, Jennifer; Giovannucci, Edward; Stampfer, Meir; Sesso, Howard D.; Kantoff, Philip W.; Finn, Stephen; Loda, Massimo; Mucci, Lorelei

    2011-01-01

    BRCA1 functions as a tumor suppressor; recent work suggests that BRCA1 may also induce cell-cycle arrest to allow for DNA repair. We hypothesized that BRCA1 expression in prostate tumor tissue may be associated with prostate cancer progression through regulation of the cell-cycle. We used immunohistochemistry to evaluate BRCA1 protein expression in archival tumors samples from 393 prostate cancer cases in the Physicians' Health Study. The men were followed prospectively from diagnosis to development of metastases and mortality. Fifteen percent of tumors stained positive for BRCA1. BRCA1 positive tumors had substantially increased tumor proliferation index compared to negative tumors (47.0 Ki67 positive nuclei vs. 10.3, p=0.0016), and were more likely to develop lethal cancer compared to BRCA1 negative tumors (Hazard ratio=4.6; 95% Confidence interval: 2.4, 8.7). These findings strengthen the hypothesis that BRCA1 plays a role in cell-cycle control and demonstrate that BRCA1 is a marker of clinical prostate cancer prognosis. PMID:20388772

  9. BRCA1/2 mutations perturb telomere biology: characterization of structural and functional abnormalities in vitro and in vivo.

    PubMed

    Uziel, Orit; Yerushalmi, Rinat; Zuriano, Lital; Naser, Shaden; Beery, Einat; Nordenberg, Jardena; Lubin, Ido; Adel, Yonatan; Shepshelovich, Daniel; Yavin, Hagai; Ben Aharon, Irit; Pery, Shlomit; Rizel, Shulamit; Pasmanik-Chor, Metsada; Frumkin, Dan; Lahav, Meir

    2016-01-19

    BRCA1 mutation is associated with carcinogenesis, especially of breast tissue. Telomere maintenance is crucial for malignant transformation. Being a part of the DNA repair machinery, BRCA1 may be implicated in telomere biology. We explored the role of BRCA1 in telomere maintenance in lymphocytes of BRCA1/2 mutation carriers and in in vitro system by knocking down its expression in non-malignant breast epithelial cells.The results in both systems were similar. BRCA1/2 mutation caused perturbation of telomere homeostasis, shortening of the single stranded telomere overhang and increased the intercellular telomere length variability as well as the number of telomere free chromosomal ends and telomeric circles. These changes resulted in an increased DNA damage status. Telomerase activity, inducibility and expression remained unchanged. BRCA1 mutation resulted also in changes in the binding of shelterin proteins to telomeres. DNMT-1 levels were markedly reduced both in the carriers and in in vitro system. The methylation pattern of the sub-telomeric regions in carriers suggested hypomethylation in chromosome 10. The expression of a distinct set of genes was also changed, some of which may relate to pre-disposition to malignancy.These results show that BRCA gene products have a role in telomere length homeostasis. It is plausible that these perturbations contribute to malignant transformation in BRCA mutants.

  10. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus.

    PubMed

    Auriol, Emilie; Billard, Lise-Marie; Magdinier, Frédérique; Dante, Robert

    2005-01-01

    The methyl-CpG binding domain (MBD) proteins are key molecules in the interpretation of DNA methylation signals leading to gene silencing. We investigated their binding specificity at the constitutively methylated region of a CpG island containing the bidirectional promoter of the Breast cancer predisposition gene 1, BRCA1, and the Near BRCA1 2 (NBR2) gene. In HeLa cells, quantitative chromatin immunoprecipitation assays indicated that MBD2 is associated with the methylated region, while MeCP2 and MBD1 were not detected at this locus. MBD2 depletion (approximately 90%), mediated by a transgene expressing a small interfering RNA (siRNA), did not induce MeCP2 or MBD1 binding at the methylated area. Furthermore, the lack of MBD2 at the BRCA1-NBR2 CpG island is associated with an elevated level of NBR2 transcripts and with a significant reduction of induced-DNA-hypomethylation response. In MBD2 knockdown cells, transient expression of a Mbd2 cDNA, refractory to siRNA-mediated decay, shifted down the NBR2 mRNA level to that observed in unmodified HeLa cells. Variations in MBD2 levels did not affect BRCA1 expression despite its stimulation by DNA hypomethylation. Collectively, our data indicate that MBD2 has specific targets and its presence at these targets is indispensable for gene repression.

  11. MLN4924 suppresses the BRCA1 complex and synergizes with PARP inhibition in NSCLC cells.

    PubMed

    Guo, Zong-Pei; Hu, Ying-Chun; Xie, Yu; Jin, Feng; Song, Zhi-Quan; Liu, Xiao-Dan; Ma, Teng; Zhou, Ping-Kun

    2017-01-29

    Like ubiquitination, several studies have demonstrated that neddylation is implicated to be involved in the double strand break repair. BRCA1 is one of the key repair factors in the homologous recombination repair and may play a downstream role of the neddylation. BRCA1 is also a frequently mutated gene in cancers, which serve as the targets for PARP inhibitors. Here we further investigated the correlation between neddylation and BRCA1 complex using neddylation inhibitor MLN4924. MLN4924 efficiently inhibited the recruitment of components of BRCA1 complex to DNA damage sites. Thus MLN4924 may collaborate with PARP inhibitor to suppress tumor. Our results showed that combination MLN4924 and PARP inhibitor Olaparib impaired the DNA repair process in NSCLC cells. Furthermore, MLN4924 and Olaparib significantly inhibited the cancer cell growth. Kaplan-Meier survival analysis from lung cancer patients showed that high expression of NEDD8, BRCA1 and PARPs correlate with worse overall survival. Thus the combination of MLN4924 and PARP inhibitor may serve as a new strategy for NSCLC treatment.

  12. BRCA1-directed, enhanced and aberrant homologous recombination: mechanism and potential treatment strategies.

    PubMed

    Dever, Seth M; White, E Railey; Hartman, Matthew C T; Valerie, Kristoffer

    2012-02-15

    Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.

  13. Rendering DNA Repair Defective by Targeting Wild-Type BRCA1 Nuclear Shuttling in Sporadic Breast Cancer as a Therapeutic Strategy

    DTIC Science & Technology

    2010-09-01

    CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b . ABSTRACT U c. THIS...only (C), or nuclear/cytosolic (N/C) (a) Representative immunocytochemistry staining of BRCA1 (red), Rad51 foci (green), and nucleus (blue). ( b ...MCF7 Fig. 2. (a) Schematic of BRCA1, BARD1, and tr-BRCA1. ( b ) expression of tr-BRCA1 in MCF7 cells. (c) Cells were treated with 3Gy radiation

  14. Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol.

    PubMed

    Papoutsis, Andreas J; Selmin, Ornella I; Borg, Jamie L; Romagnolo, Donato F

    2015-04-01

    Studies with murine models suggest that maternal exposure to aromatic hydrocarbon receptor (AhR) agonists may impair mammary gland differentiation and increase the susceptibility to mammary carcinogenesis in offspring. However, the molecular mechanisms responsible for these perturbations remain largely unknown. Previously, we reported that the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CpG methylation of the breast cancer-1 (BRCA-1) gene and reduced BRCA-1 expression in breast cancer cell lines. Based on the information both the human and rat BRCA-1 genes harbor xenobiotic responsive elements (XRE = 5'-GCGTG-3'), which are binding targets for the AhR, we extended our studies to the analysis of offspring of pregnant Sprague-Dawley rats treated during gestation with TCDD alone or in combination with the dietary AhR antagonist resveratrol (Res). We report that the in utero exposure to TCDD increased the number of terminal end buds (TEB) and reduced BRCA-1 expression in mammary tissue of offspring. The treatment with TCDD induced occupancy of the BRCA-1 promoter by DNA methyltransferase-1 (DNMT-1), CpG methylation of the BRCA-1 promoter, and expression of cyclin D1 and cyclin-dependent kinase-4 (CDK4). These changes were partially overridden by pre-exposure to Res, which stimulated the expression of the AhR repressor (AhRR) and its recruitment to the BRCA-1 gene. These findings point to maternal exposure to AhR agonists as a risk factor for breast cancer in offspring through epigenetic inhibition of BRCA-1 expression, whereas dietary antagonists of the AhR may exert protective effects.

  15. Role of BRCA1 in heat shock response.

    PubMed

    Xian Ma, Yong; Fan, Saijun; Xiong, Jingbo; Yuan, Ren-Qi; Meng, Qinghui; Gao, Min; Goldberg, Itzhak D; Fuqua, Suzanne A; Pestell, Richard G; Rosen, Eliot M

    2003-01-09

    The heat shock response is an evolutionarily conserved response to heat and other stresses that promotes the maintenance of key metabolic functions and cell survival. We report that exposure of human prostate (DU-145) and breast (MCF-7) cancer cells to heat (42 degrees C) caused a rapid disappearance of the breast cancer susceptibility gene-1 (BRCA1) protein, starting at approximately 1 h after the onset of heating and slightly lagging behind the increase in heat shock protein 70 (HSP70) levels. The heat-induced loss of BRCA1 occurred at the protein level, since: (1) BRCA1 mRNA expression was unaffected; and (2) the BRCA1 protein loss was also observed in DU-145 cells that expressed exogenous wild-type BRCA1 (wtBRCA1). In addition to heat regulation of BRCA1 protein levels, we also found that BRCA1 could modulate the heat shock response. Thus, wtBRCA1 overexpressing DU-145 cell clones showed significantly decreased sensitivity to heat-induced cytotoxicity; and Brca1 mutant mouse embryo fibroblasts showed increased sensitivity to heat. The DU-145 wtBRCA1 clones also showed increased expression of the small heat shock protein HSP27; and reporter assays revealed that wtBRCA1 stimulated a two to four-fold increase in HSP27 promoter activity, consistent with its ability to upregulate HSP27 mRNA and protein levels. In studies using epitope-tagged truncated BRCA1 proteins, the ability to stimulate the HSP27 promoter and to mediate heat-induced degradation required the amino-terminus but not the carboxyl-terminus of BRCA1. Although the heat-induced loss of BRCA1 appeared to be due to protein degradation, various protein metabolic agents (or combinations) failed to block this event, including: MG132 (a 26S proteasomal inhibitor), N-acetyl-leucyl-leucyl-norleucinal (a calpain inhibitor), z-VAD-fmk (a pan-caspase inhibitor), and ammonium chloride and chloroquine (which stabilize lysosomes). These findings suggest that in addition to its other functions, BRCA1 may participate

  16. Modification of BRCA1 Breast Cancer Risk by Coffee Consumption: Potential Mechanisms for Biologic Effect

    DTIC Science & Technology

    2007-08-01

    including caffeine although the full length wildtype BRCA1 protein is affected. We also show that the BRCA1 mutant proteins 1853 and Cys61Gly show a loss of...proteins 1853 and Cys61Gly show a loss of nuclear localization and are defective in DNA repair and radiation response. BRCA1 is a large, nuclear

  17. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex.

    PubMed

    Kawai, Shinji; Amano, Atsuo

    2012-04-16

    MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. miRNA maturation is controlled by the DROSHA microprocessor complex. However, the detailed mechanism of miRNA biogenesis remains unclear. We show that the tumor suppressor breast cancer 1 (BRCA1) accelerates the processing of miRNA primary transcripts. BRCA1 increased the expressions of both precursor and mature forms of let-7a-1, miR-16-1, miR-145, and miR-34a. In addition, this tumor suppressor was shown to be directly associated with DROSHA and DDX5 of the DROSHA microprocessor complex, and it interacted with Smad3, p53, and DHX9 RNA helicase. We also found that BRCA1 recognizes the RNA secondary structure and directly binds with primary transcripts of miRNAs via a DNA-binding domain. Together, these results suggest that BRCA1 regulates miRNA biogenesis via the DROSHA microprocessor complex and Smad3/p53/DHX9. Our findings also indicate novel functions of BRCA1 in miRNA biogenesis, which may be linked to its tumor suppressor mechanism and maintenance of genomic stability.

  18. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells.

    PubMed

    Papoutsis, Andreas J; Borg, Jamie L; Selmin, Ornella I; Romagnolo, Donato F

    2012-10-01

    Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-α-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17β-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 μmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.

  19. Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions.

    PubMed

    Zámborszky, J; Szikriszt, B; Gervai, J Z; Pipek, O; Póti, Á; Krzystanek, M; Ribli, D; Szalai-Gindl, J M; Csabai, I; Szallasi, Z; Swanton, C; Richardson, A L; Szüts, D

    2017-02-09

    Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Owing to their function in homologous recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly as large-scale rearrangements. We used whole-genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base substitution mutations in BRCA1/2-deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large rearrangements were also more common in BRCA1/2 mutant cells compared with the wild-type control. A difference in the short deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2 mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2.

  20. Pathogenicity of the BRCA1 Missense Variant M1775K is Determined by the Disruption of the BRCT Phosphopeptide-Binding Pocket: a Multi-Modal Approach

    SciTech Connect

    Tischkowitz,M.; Hamel, N.; Carvalho, M.; Birrane, G.; Soni, A.; van Beers, E.; Joosse, S.; Wong, N.; Novak, D.; et al

    2008-01-01

    A number of germ-line mutations in the BRCA1 gene confer susceptibility to breast and ovarian cancer. However, it remains difficult to determine whether many single amino-acid (missense) changes in the BRCA1 protein that are frequently detected in the clinical setting are pathologic or not. Here, we used a combination of functional, crystallographic, biophysical, molecular and evolutionary techniques, and classical genetic segregation analysis to demonstrate that the BRCA1 missense variant M1775K is pathogenic. Functional assays in yeast and mammalian cells showed that the BRCA1 BRCT domains carrying the amino-acid change M1775K displayed markedly reduced transcriptional activity, indicating that this variant represents a deleterious mutation. Importantly, the M1775K mutation disrupted the phosphopeptide-binding pocket of the BRCA1 BRCT domains, thereby inhibiting the BRCA1 interaction with the proteins BRIP1 and CtIP, which are involved in DNA damage-induced checkpoint control. These results indicate that the integrity of the BRCT phosphopeptide-binding pocket is critical for the tumor suppression function of BRCA1. Moreover, this study demonstrates that multiple lines of evidence obtained from a combination of functional, structural, molecular and evolutionary techniques, and classical genetic segregation analysis are required to confirm the pathogenicity of rare variants of disease-susceptibility genes and obtain important insights into the underlying pathogenetic mechanisms.

  1. BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

    PubMed Central

    Drost, Rinske; Dhillon, Kiranjit K.; van der Gulden, Hanneke; van der Heijden, Ingrid; Brandsma, Inger; Cruz, Cristina; Chondronasiou, Dafni; Castroviejo-Bermejo, Marta; van der Burg, Eline; Wientjens, Ellen; Pieterse, Mark; Klijn, Christiaan; Klarenbeek, Sjoerd; Loayza-Puch, Fabricio; Elkon, Ran; van Deemter, Liesbeth; Rottenberg, Sven; van de Ven, Marieke; Dekkers, Dick H.W.; Demmers, Jeroen A.A.; Agami, Reuven; Balmaña, Judith; Taniguchi, Toshiyasu; Bouwman, Peter

    2016-01-01

    Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain–less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients. PMID:27454287

  2. Missense Variants of Uncertain Significance (VUS) Altering the Phosphorylation Patterns of BRCA1 and BRCA2

    PubMed Central

    Tram, Eric; Savas, Sevtap; Ozcelik, Hilmi

    2013-01-01

    Mutations in BRCA1 and BRCA2 are responsible for a large proportion of breast-ovarian cancer families. Protein-truncating mutations have been effectively used in the clinical management of familial breast cancer due to their deleterious impact on protein function. However, the majority of missense variants identified throughout the genes continue to pose an obstacle for predictive informative testing due to low frequency and lack of information on how they affect BRCA1/2 function. Phosphorylation of BRCA1 and BRCA2 play an important role in their function as regulators of DNA repair, transcription and cell cycle in response to DNA damage but whether missense variants of uncertain significance (VUS) are able to disrupt this important process is not known. Here we employed a novel approach using NetworKIN which predicts in vivo kinase-substrate relationship, and evolutionary conservation algorithms SIFT, PolyPhen and Align-GVGD. We evaluated whether 191 BRCA1 and 43 BRCA2 VUS from the Breast Cancer Information Core (BIC) database can functionally alter the consensus phosphorylation motifs and abolish kinase recognition and binding to sites known to be phosphorylated in vivo. Our results show that 13.09% (25/191) BRCA1 and 13.95% (6/43) BRCA2 VUS altered the phosphorylation of BRCA1 and BRCA2. We highlight six BRCA1 (K309T, S632N, S1143F, Q1144H, Q1281P, S1542C) and three BRCA2 (S196I, T207A, P3292L) VUS as potentially clinically significant. These occurred rarely (n<2 in BIC), mutated evolutionarily conserved residues and abolished kinase binding to motifs established in the literature involved in DNA repair, cell cycle regulation, transcription or response to DNA damage. Additionally in vivo phosphorylation sites identified via through-put methods are also affected by VUS and are attractive targets for studying their biological and functional significance. We propose that rare VUS affecting phosphorylation may be a novel and important mechanism for which BRCA1 and

  3. BRCA Genetic Screening in Middle Eastern and North African: Mutational Spectrum and Founder BRCA1 Mutation (c.798_799delTT) in North African

    PubMed Central

    Laraqui, Abdelilah; Uhrhammer, Nancy; EL Rhaffouli, Hicham; Sekhsokh, Yassine; Lahlou-Amine, Idriss; Bajjou, Tahar; Hilali, Farida; El Baghdadi, Jamila; Al Bouzidi, Abderrahmane; Bakri, Youssef; Amzazi, Said; Bignon, Yves-Jean

    2015-01-01

    Background. The contribution of BRCA1 mutations to both hereditary and sporadic breast and ovarian cancer (HBOC) has not yet been thoroughly investigated in MENA. Methods. To establish the knowledge about BRCA1 mutations and their correlation with the clinical aspect in diagnosed cases of HBOC in MENA populations. A systematic review of studies examining BRCA1 in BC women in Cyprus, Jordan, Egypt, Lebanon, Morocco, Algeria, and Tunisia was conducted. Results. Thirteen relevant references were identified, including ten studies which performed DNA sequencing of all BRCA1 exons. For the latter, 31 mutations were detected in 57 of the 547 patients ascertained. Familial history of BC was present in 388 (71%) patients, of whom 50 were mutation carriers. c.798_799delTT was identified in 11 North African families, accounting for 22% of total identified BRCA1 mutations, suggesting a founder allele. A broad spectrum of other mutations including c.68_69delAG, c.181T>G, c.5095C>T, and c.5266dupC, as well as sequence of unclassified variants and polymorphisms, was also detected. Conclusion. The knowledge of genetic structure of BRCA1 in MENA should contribute to the assessment of the necessity of preventive programs for mutation carriers and clinical management. The high prevalence of BC and the presence of frequent mutations of the BRCA1 gene emphasize the need for improving screening programs and individual testing/counseling. PMID:25814778

  4. Targeting the Akt/mTOR pathway in Brca1-deficient cancers.

    PubMed

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-05-26

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers.

  5. Targeting the Akt/mTOR pathway in Brca1-deficient cancers

    PubMed Central

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-01-01

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers. PMID:21242970

  6. Germline mutations of BRCA1 gene exon 11 are not associated with platinum response neither with survival advantage in patients with primary ovarian cancer: understanding the clinical importance of one of the biggest human exons. A study of the Tumor Bank Ovarian Cancer (TOC) Consortium.

    PubMed

    Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid

    2016-09-01

    Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.

  7. Compromised BRCA1-PALB2 interaction is associated with breast cancer risk.

    PubMed

    Foo, T K; Tischkowitz, M; Simhadri, S; Boshari, T; Zayed, N; Burke, K A; Berman, S H; Blecua, P; Riaz, N; Huo, Y; Ding, Y C; Neuhausen, S L; Weigelt, B; Reis-Filho, J S; Foulkes, W D; Xia, B

    2017-03-20

    The major breast cancer suppressor proteins BRCA1 and BRCA2 play essential roles in homologous recombination (HR)-mediated DNA repair, which is thought to be critical for tumor suppression. The two BRCA proteins are linked by a third tumor suppressor, PALB2, in the HR pathway. While truncating mutations in these genes are generally pathogenic, interpretation of missense variants remains a challenge. To date, patient-derived missense variants that disrupt PALB2 binding have been identified in BRCA1 and BRCA2; however, there has not been sufficient evidence to prove their pathogenicity in humans, and no variants in PALB2 that disrupt either its BRCA1 or BRCA2 binding have been reported. Here we report on the identification of a novel PALB2 variant, c.104T>C (p.L35P), that segregates in a family with a strong history of breast cancer. Functional analyses showed that L35P abrogates the PALB2-BRCA1 interaction and completely disables its abilities to promote HR and confer resistance to platinum salts and PARP inhibitors. Whole-exome sequencing of a breast cancer from a c.104T>C carrier revealed a second, somatic, truncating mutation affecting PALB2, and the tumor displays hallmark genomic features of tumors with BRCA mutations and HR defects, cementing the pathogenicity of L35P. Parallel analyses of other germline variants in the PALB2 N-terminal BRCA1-binding domain identified multiple variants that affect HR function to varying degrees, suggesting their possible contribution to cancer development. Our findings establish L35P as the first pathogenic missense mutation in PALB2 and directly demonstrate the requirement of the PALB2-BRCA1 interaction for breast cancer suppression.Oncogene advance online publication, 20 March 2017; doi:10.1038/onc.2017.46.

  8. Ovarian cancer in BRCA1 and BRCA2 gene mutation carriers: analysis of prognostic factors and survival

    PubMed Central

    Biglia, Nicoletta; Sgandurra, Paola; Bounous, Valentina Elisabetta; Maggiorotto, Furio; Piva, Eleonora; Pivetta, Emanuele; Ponzone, Riccardo; Pasini, Barbara

    2016-01-01

    Objectives To compare clinical–pathological characteristics and outcome between sporadic ovarian cancer and ovarian cancer in patents with hereditary breast and ovarian cancer syndrome (HBOC). Methods Twenty-four patients with ovarian cancer treated between 2000 and 2009 who tested positive for BRCA1/2 mutation (BRCA+) and a control group of 64 age-matched patients with no family history of breast/ovarian cancer (controls) were enrolled. Clinical–pathological characteristics, surgical outcome, overall (OS), and progression-free survival (PFS) were compared between the two groups. Results The high-grade serous histotype was more represented in BRCA+ than in controls (70.8% versus 53.1%) (p > 0.05). BRCA+ cancers were more frequently diagnosed at stage II than controls (20.83% versus 4.69%) (p = 0.024). Radical primary surgery was performed in 70% of women in both groups, with no difference in debulking results. In patients undergoing surgery after neoadjuvant chemotherapy, in all BRCA+ patients, optimal cytoreduction was achieved (versus 70% of the controls). PFS was significantly longer for BRCA+ patients compared to controls (60 months versus 22 months; p = 0.039). No significant difference was observed in OS between BRCA+ patients and controls. Conclusions At a median follow-up time of 46 months, BRCA+ patients have a better prognosis than controls in terms of PFS. Higher chemosensitivity of BRCA+ tumours was observed. PMID:27350785

  9. Individual and Combined Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predict Shorter Survival of Soft Tissue Sarcoma Patients

    PubMed Central

    Park, See-Hyoung; Park, Hye Jeong; Wang, Sung Il; Park, Ho Sung; Lee, Ho; Kwon, Keun Sang; Moon, Woo Sung; Lee, Dong Geun; Kim, Jung Ryul; Jang, Kyu Yun

    2016-01-01

    DNA damage response (DDR) molecules are protective against genotoxic stresses. DDR molecules are also involved in the survival of cancer cells in patients undergoing anti-cancer therapies. Therefore, DDR molecules are potential markers of cancer progression in addition to being potential therapeutic targets. In this study, we evaluated the immunohistochemical expression of PARP1, γH2AX, BRCA1, and BRCA2 and their prognostic significance in 112 cases of soft tissue sarcoma (STS). The expression of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with each other and were associated with higher tumor stage and presence of distant metastasis. The expression of PARP1, γH2AX, and BRCA2 were significantly associated with shorter disease-specific survival (DSS) and event-free survival (EFS) by univariate analysis. BRCA1 expression was associated with shorter DSS. Multivariate analysis revealed the expression of PARP1 and γH2AX to be independent indicators of poor prognosis of DSS and EFS. BRCA2 expression was an independent indicator of poor prognosis of DSS. In addition, the combined expressional patterns of PARP1, γH2AX, BRCA1, and BRCA2 (CSddrm) were independent prognostic predictors of DSS (P < 0.001) and EFS (P = 0.016). The ten-year DSS rate of the CSddrm-low, CSddrm-intermediate, and CSddrm-high subgroups were 81%, 26%, and 0%, respectively. In conclusion, this study demonstrates that the individual and combined expression patterns of the DDR molecules PARP1, γH2AX, BRCA1, and BRCA2 could be predictive of the prognosis of STS patients and suggests that controlling the activity of these DDR molecules could be employed in new therapeutic stratagems for the treatment of STS. PMID:27643881

  10. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil.

    PubMed

    Carraro, Dirce Maria; Koike Folgueira, Maria Aparecida Azevedo; Garcia Lisboa, Bianca Cristina; Ribeiro Olivieri, Eloisa Helena; Vitorino Krepischi, Ana Cristina; de Carvalho, Alex Fiorini; de Carvalho Mota, Louise Danielle; Puga, Renato David; do Socorro Maciel, Maria; Michelli, Rodrigo Augusto Depieri; de Lyra, Eduardo Carneiro; Grosso, Stana Helena Giorgi; Soares, Fernando Augusto; Achatz, Maria Isabel Alves de Souza Waddington; Brentani, Helena; Moreira-Filho, Carlos Alberto; Brentani, Maria Mitzi

    2013-01-01

    Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC) and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22%) [7 in BRCA1 (13%), 4 in BRCA2 (7%) and one in TP53 (2%) gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes). Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.

  11. Detection of eight BRCA1 mutations in 10 breast/ovarian cancer families, including 1 family with male breast cancer

    SciTech Connect

    Sruewing, J.P.; Brody, L.C.; Erdos, M.R.

    1995-07-01

    Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals. Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.

  12. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2010-07-01

    Langmuir 2008, 24, (19), 11293 - 9. Gorman, J.; Fazio, T.; Wang, F.; Wind, S.; Greene, E. Langmuir 2010, 26, (2), 1372 - 9. CONCLUSION Our...development. 
 10
 REFERENCES 
 1. Hodgson, S. V., Morrison, P. J., and Irving , M. (2004) Breast cancer genetics: unsolved questions and open...Greene, E. (2008) Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion, Langmuir 24, 11293 - 11299

  13. Novel BRCA1 and BRCA2 Tumor Test as Basis for Treatment Decisions and Referral for Genetic Counselling of Patients with Ovarian Carcinomas

    PubMed Central

    Weren, Robbert D.A.; Mensenkamp, Arjen R.; Simons, Michiel; Eijkelenboom, Astrid; Sie, Aisha S.; Ouchene, Hicham; van Asseldonk, Monique; Gomez‐Garcia, Encarna B.; Blok, Marinus J.; de Hullu, Joanne A.; Nelen, Marcel R.; Hoischen, Alexander; Bulten, Johan; Tops, Bastiaan B.J.; Hoogerbrugge, Nicoline

    2016-01-01

    ABSTRACT With the recent introduction of Poly(ADP‐ribose) polymerase inhibitors, a promising novel therapy has become available for ovarian carcinoma (OC) patients with inactivating BRCA1 or BRCA2 mutations in their tumor. To select patients who may benefit from these treatments, assessment of the mutation status of BRCA1 and BRCA2 in the tumor is required. For reliable evaluation of germline and somatic mutations in these genes in DNA derived from formalin‐fixed, paraffin‐embedded (FFPE) tissue, we have developed a single‐molecule molecular inversion probe (smMIP)‐based targeted next‐generation sequencing (NGS) approach. Our smMIP‐based NGS approach provides analysis of both strands of the open reading frame of BRCA1 and BRCA2, enabling the discrimination between real variants and formalin‐induced artefacts. The single molecule tag enables compilation of unique reads leading to a high analytical sensitivity and enabling assessment of the reliability of mutation‐negative results. Multiplex ligation‐dependent probe amplification (MLPA) and Methylation‐specific multiplex ligation‐dependent probe amplification (MS‐MLPA) were used to detect exon deletions of BRCA1 and methylation of the BRCA1 promoter, respectively. Here, we show that this combined approach allows the rapid and reliable detection of both germline and somatic aberrations affecting BRCA1 and BRCA2 in DNA derived from FFPE OCs, enabling improved hereditary cancer risk assessment and clinical treatment of ovarian cancer patients. PMID:27767231

  14. A New Cell-Free System to Study BRCA1 Function

    DTIC Science & Technology

    2014-05-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT This proposal is based on our finding that in a cell-free system based on Xenopus egg extracts, the...addition, we found that in BRCA1-depleted egg extracts, the CMG helicase that unwinds DNA ahead of DNA polymerases, fails to be unloaded from the...tumor suppression. We have also developed new ways of inhibiting BRCA1 function in egg extracts and examined the role of potential BRCA1 effectors

  15. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    DTIC Science & Technology

    2009-07-01

    Cycle Regulation of DNA Double-strand Break Resection. (In revision) T. Fazio, M. L. Visnapuu, S. Wind, E. C. Greene, Langmuir 24, 10524 (Sep 16...2008). M. L. Visnapuu, T. Fazio, S. Wind, E. C. Greene, Langmuir 24, 11293 (Oct 7, 2008). CONCLUSION Our experiments in cell-free extracts have...S. V. Hodgson, P. J. Morrison, M. Irving , Am J Med Genet C Semin Med Genet 129, 56 (Aug 15, 2004). 2. M. C. King, J. H. Marks, J. B. Mandell

  16. BRCA1 and its toolbox for the maintenance of genome integrity

    PubMed Central

    Huen, Michael S.Y.; Sy, Shirley M.H.; Chen, Junjie

    2014-01-01

    The breast and ovarian cancer type 1 susceptibility protein (BRCA1) has pivotal roles in the maintenance of genome stability. Studies support that BRCA1 exerts its tumour suppression function primarily through its involvement in cell cycle checkpoint control and DNA damage repair. In addition, recent proteomic and genetic studies have revealed the presence of distinct BRCA1 complexes in vivo, each of which governs a specific cellular response to DNA damage. Thus, BRCA1 is emerging as the master regulator of the genome through its ability to execute and coordinate various aspects of the DNA damage response. PMID:20029420

  17. A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase.

    PubMed

    Horwitz, Andrew A; Affar, El Bachir; Heine, George F; Shi, Yang; Parvin, Jeffrey D

    2007-04-17

    Loss of function of the tumor suppressor protein BRCA1 is responsible for a high percentage of familial and also sporadic breast cancers. Early work identified a stimulatory transcriptional coactivator function for the BRCA1 protein, and more recently, BRCA1 has been implicated in transcriptional repression, although few examples of repressed genes have been characterized. We recently used an in vitro transcription assay to identify a biochemical mechanism that explained the BRCA1 stimulatory activity. In this study, we identified an ubiquitin-dependent mechanism by which BRCA1 inhibits transcription. BRCA1 ubiquitinates the transcriptional preinitiation complex, preventing stable association of TFIIE and TFIIH, and thus blocks the initiation of mRNA synthesis. What is striking about this mechanism of regulation by BRCA1 is that the ubiquitination of the preinitiation complex is not targeting proteins for degradation by the proteasome, nor are ubiquitin receptors modifying the activity, but rather the ubiquitin moiety itself interferes with the assembly of basal transcription factors at the promoter. Using RNAi to knockdown expression of the endogenous BRCA1 protein, we assessed the level of repression dependent on BRCA1 in the cell, and we found that BRCA1 is at least as significant a transcriptional repressor as it is an activator. These results define a biochemical mechanism by which the BRCA1 enzymatic activity regulates a key cellular process.

  18. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes.

    PubMed

    Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi

    2013-08-01

    Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches.

  19. Molecular Analysis of BRCA1 in Human Breast Cancer Cells Under Oxidative Stress

    PubMed Central

    Gilmore, Brian L.; Liang, Yanping; Winton, Carly E.; Patel, Kaya; Karageorge, Vasilea; Varano, A. Cameron; Dearnaley, William; Sheng, Zhi; Kelly, Deborah F.

    2017-01-01

    The precise manner in which physical changes to the breast cancer susceptibility protein (BRCA1) affect its role in DNA repair events remain unclear. Indeed, cancer cells harboring mutations in BRCA1 suffer from genomic instability and increased DNA lesions. Here, we used a combination of molecular imaging and biochemical tools to study the properties of the BRCA1 in human cancer cells. Our results reveal new information for the manner in which full-length BRCA1 engages its binding partner, the BRCA1-associated Ring Domain protein (BARD1) under oxidative stress conditions. We also show how physical differences between wild type and mutated BRCA15382insC impact the cell’s response to oxidative damage. Overall, we demonstrate how clinically relevant changes to BRCA1 affect its structure-function relationship in hereditary breast cancer. PMID:28262780

  20. New perspective on maintenance therapies for platinum- sensitive recurrent ovarian cancer in women with germline and somatic mutations in BRCA1 and BRCA2 genes

    PubMed Central

    Vergote, I; Bours, V; Blaumeiser, B; Baurain, J-F

    2016-01-01

    Ovarian cancer (OC) is the seventh most common cancer in women. Although women diagnosed with OC are usually treated frontline with platinum-based chemotherapy, most of them relapse once treatment is halted. Therefore, maintenance therapies have been developed to secure the response and delay further chemotherapy. There are two established maintenance therapies for women affected by platinum-sensitive recurrent OC: bevacizumab, a humanized monoclonal antibody targeting vascular endothelial growth factor, and olaparib, an inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerase (PARPi). Loss-of-function mutations in genes in the homologous recombination pathway, especially BRCA1 and BRCA2, predict higher rates of platinum sensitivity, better overall survival (OS), and better response to PARPi in women with OC. Among patients with platinum-sensitive recurrent OC, a BRCA mutation is the first genetically defined predictive marker for targeted therapy, since these patients are most likely to benefit from treatment with a PARPi, such as olaparib. In patients with platinum-sensitive recurrent OC without a BRCA mutation, bevacizumab currently seems to be the best maintenance option. Women with OC are progressively more routinely screened for germline BRCA mutations, and the implication of somatic BRCA mutations is increasingly being recognized in OC. Therefore, the recommendations should be updated to reflect the importance of both types of mutations. Together, these data highlight the fact that treatment of recurrent OC can be optimized using genomic contributions to individualize therapy and to improve treatment response. PMID:28003870

  1. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations.

    PubMed

    Yao, Lu; Sun, Jie; Zhang, Juan; He, Yingjian; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2016-04-01

    BRCA1/2 mutations represent approximately 5 % of unselected Chinese women with breast cancer. However, the breast cancer risk of Chinese women with BRCA1/2 mutations is unknown. Therefore, the aim of this study was to estimate the age-specific cumulative risk of breast cancer in Chinese women who carry a BRCA1 or BRCA2 mutation. Our study included 1816 unselected Chinese women with breast cancer and 5549 female first-degree relatives of these probands. All probands were screened for BRCA1/2 mutation. The age-specific cumulative risks of BRCA1/2 carriers were estimated using the kin-cohort study by comparing the history of breast cancer in first-degree female relatives of BRCA1/2 carriers and non-carriers. Among the 1816 probands, 125 BRCA1/2 pathogenic mutations were identified (70 in the BRCA1 gene and 55 in the BRCA2 gene). The incidence of breast cancer in the first-degree female relatives of BRCA1/2 mutation carriers was significantly higher (3.7-fold and 4.4-fold for BRCA1 and BRCA2 mutation carriers, respectively) than in non-carriers. The estimated cumulative risks of breast cancer by age 70 years were 37.9 % [95 % confidence interval (CI) 24.1-54.4 %] for BRCA1 mutation carriers and 36.5 % (95 % CI 26.7-51.8 %) for BRCA2 mutation carriers, respectively. Our study suggests that the breast cancer risk of Chinese women with BRCA1/2 mutations appears to be relatively high by the age of 70. Therefore, genetic counseling, enhanced surveillance, and individual preventive strategies should be provided for Chinese women who carry a BRCA1/2 mutation.

  2. Transgenic expression of BRCA1 disturbs hematopoietic stem and progenitor cells quiescence and function

    SciTech Connect

    Bai, Lin; Shi, Guiying; Zhang, Xu; Dong, Wei; Zhang, Lianfeng

    2013-10-15

    The balance between quiescence and proliferation of HSCs is an important regulator of hematopoiesis. Loss of quiescence frequently results in HSCs exhaustion, which underscores the importance of tight regulation of proliferation in these cells. Studies have indicated that cyclin-dependent kinases are involved in the regulation of quiescence in HSCs. BRCA1 plays an important role in the repair of DNA double-stranded breaks, cell cycle, apoptosis and transcription. BRCA1 is expressed in the bone marrow. However, the function of BRCA1 in HSCs is unknown. In our study, we generated BRCA1 transgenic mice to investigate the effects of BRCA1 on the mechanisms of quiescence and differentiation in HSCs. The results demonstrate that over-expression of BRCA1 in the bone marrow impairs the development of B lymphocytes. Furthermore, BRCA1 induced an increase in the number of LSKs, LT-HSCs, ST-HSCs and MPPs. A competitive transplantation assay found that BRCA1 transgenic mice failed to reconstitute hematopoiesis. Moreover, BRCA1 regulates the expression of p21{sup waf1}/cip1 and p57{sup kip2}, which results in a loss of quiescence in LSKs. Together, over-expression of BRCA1 in bone marrow disrupted the quiescent of LSKs, induced excessive accumulation of LSKs, and disrupted differentiation of the HSCs, which acts through the down-regulated of p21{sup waf1}/cip1 and p57{sup kip2}. - Highlights: • Over-expression of BRCA1 results in impaired B lymphocyte development. • BRCA1 transgenic mice disrupted the quiescent of LSKs, induced excessive accumulation of LSKs. • BRCA1 impairs the function of HSCs through the down-regulated of p21{sup waf1/cip1} and p57{sup kip2}.

  3. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes.

    PubMed

    Easton, Douglas F; Deffenbaugh, Amie M; Pruss, Dmitry; Frye, Cynthia; Wenstrup, Richard J; Allen-Brady, Kristina; Tavtigian, Sean V; Monteiro, Alvaro N A; Iversen, Edwin S; Couch, Fergus J; Goldgar, David E

    2007-11-01

    Mutation screening of the breast and ovarian cancer-predisposition genes BRCA1 and BRCA2 is becoming an increasingly important part of clinical practice. Classification of rare nontruncating sequence variants in these genes is problematic, because it is not known whether these subtle changes alter function sufficiently to predispose cells to cancer development. Using data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests, we assessed the clinical significance of 1,433 sequence variants of unknown significance (VUSs) in the BRCA genes. Three independent measures were employed in the assessment: co-occurrence in trans of a VUS with known deleterious mutations; detailed analysis, by logistic regression, of personal and family history of cancer in VUS-carrying probands; and, in a subset of probands, an analysis of cosegregation with disease in pedigrees. For each of these factors, a likelihood ratio was computed under the hypothesis that the VUSs were equivalent to an "average" deleterious mutation, compared with neutral, with respect to risk. The likelihood ratios derived from each component were combined to provide an overall assessment for each VUS. A total of 133 VUSs had odds of at least 100 : 1 in favor of neutrality with respect to risk, whereas 43 had odds of at least 20 : 1 in favor of being deleterious. VUSs with evidence in favor of causality were those that were predicted to affect splicing, fell at positions that are highly conserved among BRCA orthologs, and were more likely to be located in specific domains of the proteins. In addition to their utility for improved genetics counseling of patients and their families, the global assessment reported here will be invaluable for validation of functional assays, structural models, and in silico analyses.

  4. Rare alleles of the HRAS polymorphism do not modify the risk of breast or ovarian cancer in BRCA1 carriers

    SciTech Connect

    Phelan, C.; Tonin, P.; Lynch, H.T.

    1994-09-01

    The presence of one of the rare alleles of a minisatellite polymorphism at the HRAS locus on chromosome 11p15 has been associated with a roughly two-fold increase in the risk of breast cancer. The BRCA1 gene on chromosome 17q12-21 is responsible for the majority of the families with the breast-ovarian cancer syndrome. It is estimated that 87% of BRCA1 carriers will be affected with breast cancer by age 70. The relative risk for premenopausal breast cancer in carriers, compared to non-carriers, is roughly 100. Because of the wide range in ages of onset of cancer among BRCA1 carriers, it is likely that additional factors modify the risk of cancer. The role of other modifying genetic loci has not been studied. Through haplotype analysis we have identified 199 female BRCA1 carriers above the age of 20 years in 25 linked families. 127 of these women have been diagnosed with cancer and 72 are currently healthy. DNA was available on 59 carriers. Each sample was typed for the HRAS polymorphism by PCR, using primers flanking the minisatellite. Rare alleles were identified in 18 carriers. The penetrance of the BRCA1 gene was not higher among those women who carried a rare HRAS allele (mean age of onset 49 years) than among those who carried two common alleles (mean age of onset 43 years) (p= 0.59; log rank test). Similar results were obtained for ovarian cancer. These data do not support the hypothesis that the HRAS locus modified the risk of cancer among carriers of mutations in BRCA1.

  5. Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability.

    PubMed

    Di Paolo, Aurélie; Racca, Carine; Calsou, Patrick; Larminat, Florence

    2014-12-01

    In contrast to its well-known role in the DNA damage response during interphase, the function of BRCA1 in the maintenance of chromosomal stability during mitosis remains to be defined. In this study, we uncover a novel role of BRCA1 in preserving centromere integrity in mitotic human cells. Using immunofluorescence and chromatin immunoprecipitation approaches, we report BRCA1 association with centromeric chromatin during mitosis. BRCA1 depletion impairs centromeric cohesion, leading to an increase in interkinetochore distance and in unpaired sister-chromatids frequency during prometaphase. Moreover, BRCA1 loss partially decreased accumulation of the Aurora B kinase at the centromere. We found that proper recruitment of the DNMT3b DNA methyltransferase to satellite sequences is BRCA1-dependent during mitosis, suggesting that DNA hypomethylation contributes to Aurora B mislocalization. BRCA1-deficient cells exhibited decreased ability to correct improper Aurora B-dependent chromosome-spindle attachments and to align chromosomes at metaphase. Finally, we show that BRCA1 disruption promotes merotelic kinetochore attachments that represent a major mechanism of aneuploidy in human cells. In summary, we report here a novel function of BRCA1 in maintaining chromosomal stability through its contribution to the mitotic centromere integrity necessary for faithful segregation of sister-chromatids during cell division.

  6. BRCA1 involved in regulation of Bcl-2 expression and apoptosis susceptibility to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Wang, YanLing; Wang, Bing; Zhang, Hong; Li, Ning; Tanaka, Kaoru; Zhou, Xin; Chen, RuPing; Zhang, Xin

    2011-05-01

    BRCA1 has been proposed to be tightly linked to the resistance of tumor cells to ionizing radiation. The pathway leading to this phenomenon is not yet clear. In this work, we investigated the role of BRCA1 in the apoptosis regulation in response to carbon ion irradiation. We utilized three different cancer cell lines with various states for BRCA1 and p53 to identify the relationship between endogenous BRCA1 and the apoptosis-related genes, and determine whether p53 function would affect the role of BRCA1 in apoptosis regulation. By Western blot analysis, we found that Bax expressions were not significantly changed after irradiation in all of three cell lines. However, Bcl-2 expression showed an up-regulation by endogenous BRCA1 regardless of p53 status. Moreover, the changes in Bcl-2 protein were due to the increase in the transcriptional levels of Bcl-2 mRNA, based on real-time PCR assay. At the same time, BRCA1-deficient cells showed a greater apoptosis susceptibility to irradiation when compared with BRCA1-proficient cells. The results suggest that BRCA1 might exert p53-independent regulative activities for Bcl-2, which seems account for the low apoptosis susceptibility in BRCA1-proficient carcinomas.

  7. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer.

    PubMed

    Maia, Sofia; Cardoso, Marta; Paulo, Paula; Pinheiro, Manuela; Pinto, Pedro; Santos, Catarina; Pinto, Carla; Peixoto, Ana; Henrique, Rui; Teixeira, Manuel R

    2016-01-01

    Prostate cancer (PrCa) is one of the most common cancers diagnosed worldwide and 5-10 % of all cases are estimated to be associated with inherited predisposition. Even though there is strong evidence that the genetic component is significant in PrCa, the genetic etiology of familial and early-onset disease is largely unknown. Although it has been suggested that men from families with hereditary breast/ovarian cancer (HBOC) and, more recently, with Lynch syndrome may have an increased risk for PrCa, the contribution of these syndromes to PrCa predisposition in families ascertained for early-onset and/or familial PrCa, independently of the presence of other cancers in the family, is uncertain. To quantify the contribution of genes associated with HBOC and Lynch syndromes to PrCa predisposition, we have tested for germline mutations 460 early-onset and/or familial PrCa patients. All patients were screened for the six mutations that are particularly common in Portugal and 38 of them were selected for complete sequencing of BRCA1/2 and/or MLH1, MSH2 and MSH6. Two patients were found to harbor the same MSH2 mutation and a third patient carried a Portuguese BRCA2 founder mutation. None of the alterations were identified in 288 control subjects. Furthermore, we reviewed the 62 PrCa diagnoses in all HBOC (n = 161) and Lynch syndrome (n = 124) families previously diagnosed at our department, and found five other BRCA2 mutation carriers and two additional MSH2 mutation carriers. The clinicopathological characteristics of mutation carriers are in concordance with earlier data suggesting an aggressive PrCa phenotype and support the hypothesis that mutation carriers might benefit from targeted screening according to the gene mutated in the germline.

  8. BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer.

    PubMed

    Sedic, Maja; Kuperwasser, Charlotte

    2016-01-01

    Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells.

  9. BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer

    PubMed Central

    Sedic, Maja; Kuperwasser, Charlotte

    2016-01-01

    abstract Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells. PMID:26822887

  10. BRCA1-Associated Protein BRCC36: A Novel Target for Breast Cancer Therapy

    DTIC Science & Technology

    2008-10-01

    Arciero CA, Wang C, Broccoli D, Godwin AK. 2006. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation...1999). BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. Cancer Res 59: 1752s- 1756s. Chen X, Arciero CA, Wang C, Broccoli D

  11. BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1.

    PubMed

    Zhang, Wenwen; Luo, Jiayan; Yang, Fang; Wang, Yucai; Yin, Yongmei; Strom, Anders; Gustafsson, Jan Åke; Guan, Xiaoxiang

    2016-02-23

    Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor protein that functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. The androgen receptor (AR) is expressed in more than 70% of breast cancers and has been implicated in breast cancer pathogenesis. However, little is known about the role of BRCA1 in AR-mediated cell proliferation in human breast cancer. Here, we report that a high expression of AR in breast cancer patients was associated with shorter overall survival (OS) using a tissue microarray with 149 non-metastatic breast cancer patient samples. We reveal that overexpression of BRCA1 significantly inhibited expression of AR through activation of SIRT1 in breast cancer cells. Meanwhile, SIRT1 induction or treatment with a SIRT1 agonist, resveratrol, inhibits AR-stimulated proliferation. Importantly, this mechanism is manifested in breast cancer patient samples and TCGA database, which showed that low SIRT1 gene expression in tumor tissues compared with normal adjacent tissues predicts poor prognosis in patients with breast cancer. Taken together, our findings suggest that BRCA1 attenuates AR-stimulated proliferation of breast cancer cells via SIRT1 mediated pathway.

  12. Characterization of direct selected cDNAs from the BRCA1 region of 17q21

    SciTech Connect

    Welcsh, P.L.; Osborne-Lawrence, S.L.; Spillman, M.A.

    1994-09-01

    A gene involved in the development of early-onset familial breast and ovarian cancer, BRCA1, has been mapped to human chromosome 17q21. Polymorphisms closely linked to BRCA1 has been sublocalized to a region of 17q21 which is defined by the markers D17S856 and D17S78. A physical map of this region, that consists of yeast artificial chromosome (YAC) and cosmid contigs, has been constructed and used to isolate potential coding sequences via direct selection. We have identified at least 23 unique transcripts in a 600 kb interval corresponding to approximately one gene every 30 kb. We have determined the expression profile of these cDNAs by generating cDNA-specific primers which have been used in a screen of cDNAs derived from wide variety of tissues and cell types. Full length cDNA clones are being obtained from cDNA libraries in which the genes have been shown to be expressed by a variety of techniques which include direct screening, 5{prime} and 3{prime} RACE, anchor PCR as well as modified selection procedures. We are currently screening for mutations in these candidate cDNAs in affected family members known to harbor a germ-line BRCA1 mutation and in sporadic breast and ovarian tumors. Mutation screening is being performed by Southern and Northern blotting, DNA sequencing, and SSCP analysis of germline DNA and cDNA. Finally, we are analyzing these candidate cDNAs in a number of breast and ovarian cancer cell lines for induction by known mitogenic factors such as estrogen and progesterone by Northern blotting and RT-PCR.

  13. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or p53 Genes

    DTIC Science & Technology

    2008-02-01

    including high level chromosome damage, variable chromosome counts, rearrangements and multiclonal populations ( dicentrics , translocations...sarcoma arising in the p53LoxP/LoxP group, while not normal, generally had patterns of whole chromosome gains and losses consistent with aneuploidy and...many fewer regions of interstitial chromosomal gains/losses detected by aCGH as compared to tumors isolated from Brca1LoxP/LoxP;p53LoxP/LoxP mice

  14. BRCA1 founder mutations compared to ovarian cancer in Belarus.

    PubMed

    Savanevich, Alena; Oszurek, Oleg; Lubiński, Jan; Cybulski, Cezary; Dębniak, Tadeusz; Narod, Steven A; Gronwald, Jacek

    2014-09-01

    In Belarus and other Slavic countries, founder mutations in the BRCA1 gene are responsible for a significant proportion of breast cancer cases, but the data on contribution of these mutations to ovarian cancers are limited. To estimate the proportion of ovarian cancers in Belarus, which are dependent on BRCA1 Slavic founder mutations, we sought the presence of three most frequent mutations (BRCA1: 5382insC, C61G and, 4153delA) in 158 consecutive unselected cases of ovarian cancer. One of the three founder mutations was present in 25 of 158 unselected cases of ovarian cancer (15.8 %). We recommend that all cases of ovarian cancer in Belarus be offered genetic testing for these founder mutations. Furthermore, genetic testing of the Belarusian population will provide the opportunity to prevent a significant proportion of ovarian cancer.

  15. Breast and ovarian cancer predisposition due to de novo BRCA1 and BRCA2 mutations.

    PubMed

    Golmard, L; Delnatte, C; Laugé, A; Moncoutier, V; Lefol, C; Abidallah, K; Tenreiro, H; Copigny, F; Giraudeau, M; Guy, C; Barbaroux, C; Amorim, G; Briaux, A; Guibert, V; Tarabeux, J; Caputo, S; Collet, A; Gesta, P; Ingster, O; Stern, M-H; Rouleau, E; de Pauw, A; Gauthier-Villars, M; Buecher, B; Bézieau, S; Stoppa-Lyonnet, D; Houdayer, C

    2016-03-10

    BRCA1 and BRCA2 are the two major genes predisposing to breast and ovarian cancer. Whereas high de novo mutation rates have been demonstrated for several genes, only 11 cases of de novo BRCA1/2 mutations have been reported to date and the BRCA1/2 de novo mutation rate remains unknown. The present study was designed to fill this gap based on a series of 12 805 consecutive unrelated patients diagnosed with breast and/or ovarian cancer who met the inclusion criteria for BRCA1/2 gene analysis according to French guidelines. BRCA1/2 mutations were detected in 1527 (12%) patients, and three BRCA1 mutations and one BRCA2 mutation were de novo. The BRCA1/2 de novo mutation rate was estimated to be 0.3% (0.1%; 0.7%). Although rare, it may be useful to take the possibility of de novo BRCA1/2 mutation into account in genetic counseling of relatives and to improve the understanding of complex family histories of breast and ovarian cancers.

  16. Genetic heterogeneity in hereditary breast cancer: Role of BRCA1 and BRCA2

    SciTech Connect

    Rebbeck, T.R.; Couch, F.J.; Kant, J.

    1996-09-01

    The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer. 19 refs., 1 fig., 3 tabs.

  17. "Ring-fencing" BRCA1 tumor suppressor activity.

    PubMed

    Patel, Ketan J; Crossan, Gerry P; Hodskinson, Michael R G

    2011-12-13

    BRCA1 is a crucial human breast and ovarian cancer tumor suppressor gene. The article by Drost et al. in this issue of Cancer Cell together with a recent paper in Science now provide a clearer picture of how this large and complex protein suppresses tumorigenesis.

  18. Proliferation and ovarian hormone signaling are impaired in normal breast tissues from women with BRCA1 mutations: benefit of a progesterone receptor modulator treatment as a breast cancer preventive strategy in women with inherited BRCA1 mutations

    PubMed Central

    Communal, Laudine; Courtin, Aurélie; Mourra, Najat; Lahlou, Najiba; Le Guillou, Morwenna; de Jotemps, Muriel Perrault; Chauvet, Marie-Pierre; Chaouat, Marc; Pujol, Pascal; Feunteun, Jean; Delaloge, Suzette; Forgez, Patricia; Gompel, Anne

    2016-01-01

    Women with inherited BRCA1 mutations have an elevated risk (40-80%) for developing breast and ovarian cancers. Reproductive history has been reported to alter this risk, suggesting a relationship between ovarian hormone signaling and BRCA1-related tumor development. BRCA1 interactions with estrogen receptor (ER) and progesterone receptor (PR) signaling were previously described in human breast cancer cell lines and mouse models. However, few studies have examined the effect of ovarian hormone regulation in normal human breast tissues bearing a heterozygous BRCA1 mutation. This study compares the proliferation level (Ki67) and the expression of ER, PR, and of the PR target gene, fatty acid synthase (FASN), in histologically normal breast tissues from women with BRCA1 mutations (BRCA1+/mut, n=23) or without BRCA1 mutations (BRCA1+/+, n=28). BRCA1+/mut tissues showed an increased proliferation and impaired hormone receptor expression with a marked loss of the PR isoform, PR-B. Responses to estradiol and progesterone treatments in BRCA1+/mut and BRCA1+/+ breast tissues were studied in a mouse xenograft model, and showed that PR and FASN expression were deregulated in BRCA1+/mut breast tissues. Progesterone added to estradiol treatment increased the proliferation in a subset of BRCA1+/mut breast tissues. The PR inhibitor, ulipristal acetate (UPA), was able to reverse this aberrant progesterone-induced proliferation. This study suggests that a subset of women with BRCA1 mutations could be candidates for a UPA treatment as a preventive breast cancer strategy. PMID:27246982

  19. The occurrence of germline BRCA1 and BRCA2 sequence alterations in Slovenian population

    PubMed Central

    2011-01-01

    Background The BRCA1 and BRCA2 mutation spectrum and mutation detection rates according to different family histories were investigated in 521 subjects from 322 unrelated Slovenian cancer families with breast and/or ovarian cancer. Methods The BRCA1 and BRCA2 genes were screened using DGGE, PTT, HRM, MLPA and direct sequencing. Results Eighteen different mutations were found in BRCA1 and 13 in BRCA2 gene. Mutations in one or other gene were found in 96 unrelated families. The mutation detection rates were the highest in the families with at least one breast and at least one ovarian cancer - 42% for BRCA1 and 8% for BRCA2. The mutation detection rate observed in the families with at least two breast cancers with disease onset before the age of 50 years and no ovarian cancer was 23% for BRCA1 and 13% for BRCA2. The mutation detection rate in the families with at least two breast cancers and only one with the disease onset before the age of 50 years was 11% for BRCA1 and 8% for BRCA2. In the families with at least two breast cancers, all of them with disease onset over the age of 50 years, the detection rate was 5% for BRCA2 and 0% for BRCA1. Conclusion Among the mutations detected in Slovenian population, 5 mutations in BRCA1 and 4 mutations in BRCA2 have not been described in other populations until now. The most frequent mutations in our population were c.181T > G, c.1687C > T, c.5266dupC and c.844_850dupTCATTAC in BRCA1 gene and c.7806-2A > G, c.5291C > G and c.3978insTGCT in BRCA2 gene (detected in 69% of BRCA1 and BRCA2 positive families). PMID:21232165

  20. RING domain–deficient BRCA1 promotes PARP inhibitor and platinum resistance

    PubMed Central

    Wang, Yifan; Krais, John J.; Bernhardy, Andrea J.; Nicolas, Emmanuelle; Cai, Kathy Q.; Harrell, Maria I.; Kim, Hyoung H.; George, Erin; Swisher, Elizabeth M.; Simpkins, Fiona

    2016-01-01

    Patients with cancers that harbor breast cancer 1 (BRCA1) mutations initially respond well to platinum and poly(ADP-ribose) polymerase inhibitor (PARPi) therapy; however, resistance invariably arises in these patients and is a major clinical problem. The BRCA1185delAG allele is a common inherited mutation located close to the protein translation start site that is thought to produce a shortened, nonfunctional peptide. In this study, we investigated the mechanisms that lead to PARPi and platinum resistance in the SUM1315MO2 breast cancer cell line, which harbors a hemizygous BRCA1185delAG mutation. SUM1315MO2 cells were initially sensitive to PARPi and cisplatin but readily acquired resistance. PARPi- and cisplatin-resistant clones did not harbor secondary reversion mutations; rather, PARPi and platinum resistance required increased expression of a really interesting gene (RING) domain–deficient BRCA1 protein (Rdd-BRCA1). Initiation of translation occurred downstream of the frameshift mutation, probably at the BRCA1-Met-297 codon. In contrast to full-length BRCA1, Rdd-BRCA1 did not require BRCA1-associated RING domain 1 (BARD1) interaction for stability. Functionally, Rdd-BRCA1 formed irradiation-induced foci and supported RAD51 foci formation. Ectopic overexpression of Rdd-BRCA1 promoted partial PARPi and cisplatin resistance. Furthermore, Rdd-BRCA1 protein expression was detected in recurrent carcinomas from patients who carried germline BRCA1185delAG mutations. Taken together, these results indicate that RING-deficient BRCA1 proteins are hypomorphic and capable of contributing to PARPi and platinum resistance when expressed at high levels. PMID:27454289

  1. Protein-Protein Interaction Inhibitors of BRCA1 Discovered Using Small Molecule Microarrays.

    PubMed

    Na, Zhenkun; Pan, Sijun; Uttamchandani, Mahesh; Yao, Shao Q

    2017-01-01

    Microarray screening technology has transformed the life sciences arena over the last decade. The platform is widely used in the area of mapping interaction networks, to molecular fingerprinting and small molecular inhibitor discovery. The technique has significantly impacted both basic and applied research. The microarray platform can likewise enable high-throughput screening and discovery of protein-protein interaction (PPI) inhibitors. Herein we demonstrate the application of microarray-guided PPI inhibitor discovery, using human BRCA1 as an example. Mutations in BRCA1 have been implicated in ~50 % of hereditary breast cancers. By targeting the (BRCT)2 domain, we showed compound 15a and its prodrug 15b inhibited BRCA1 activities in tumor cells. Unlike previously reported peptide-based PPI inhibitors of BRCA1, the compounds identified could be directly administered to tumor cells, thus making them useful in targeting BRCA1/PARP-related pathways involved in DNA damage and repair response, for cancer therapy.

  2. Frequent microsatellite instability and loss of heterozygosity in the region including BRCA1 (17q21) in young patients with gastric cancer.

    PubMed

    Semba, S; Yokozaki, H; Yasui, W; Tahara, E

    1998-06-01

    It is known that nearly 5% of gastric carcinomas arise under the age of 40. To elucidate genetic alterations in these patients, we performed studies using microsatellite assay in 27 gastric cancers under 35 years of age, composed of 5 well and 22 poorly differentiated adenocarcinomas. We detected replication errors (RERs) in 18 (67%) of 27 tumors, but no germline mutation in DNA mismatch repair genes (hMLH1 and hMSH2), except fory 3 somatic mutations in the hMLH1 gene. Loss of heterozygosity (LOH) at D17S855, located on chromosome 17q21 (BRCA1), was detected in 8 (40%) of 20 informative cases. In 12 (44%) of 27 cases, LOH on chromosome 17q12-21 including the BRCA1 was found in several neighboring markers in this region, while no mutation was found in the BRCA1 gene. Four (40%) of 10 scirrhous type gastric cancers exhibited wide allelic deletions on chromosome 17q12-21. These results overall suggest that young gastric cancer patients display highly frequent micro-satellite instability that might be due to defect of DNA repair system rather than hMLH1 and hMSH2. In addition, chromosome 17q12-21 including BRCA1 locus may contain a candidate for tumor suppressor gene, particularly in scirrhous type gastric cancers arising in young patients.

  3. ENIGMA--evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes.

    PubMed

    Spurdle, Amanda B; Healey, Sue; Devereau, Andrew; Hogervorst, Frans B L; Monteiro, Alvaro N A; Nathanson, Katherine L; Radice, Paolo; Stoppa-Lyonnet, Dominique; Tavtigian, Sean; Wappenschmidt, Barbara; Couch, Fergus J; Goldgar, David E

    2012-01-01

    As genetic testing for predisposition to human diseases has become an increasingly common practice in medicine, the need for clear interpretation of the test results is apparent. However, for many disease genes, including the breast cancer susceptibility genes BRCA1 and BRCA2, a significant fraction of tests results in the detection of a genetic variant for which disease association is not known. The finding of an "unclassified" variant (UV)/variant of uncertain significance (VUS) complicates genetic test reporting and counseling. As these variants are individually rare, a large collaboration of researchers and clinicians will facilitate studies to assess their association with cancer predisposition. It was with this in mind that the ENIGMA consortium (www.enigmaconsortium.org) was initiated in 2009. The membership is both international and interdisciplinary, and currently includes more than 100 research scientists and clinicians from 19 countries. Within ENIGMA, there are presently six working groups focused on the following topics: analysis, clinical, database, functional, tumor histopathology, and mRNA splicing. ENIGMA provides a mechanism to pool resources, exchange methods and data, and coordinately develop and apply algorithms for classification of variants in BRCA1 and BRCA2. It is envisaged that the research and clinical application of models developed by ENIGMA will be relevant to the interpretation of sequence variants in other disease genes.

  4. CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly.

    PubMed

    Ertych, Norman; Stolz, Ailine; Valerius, Oliver; Braus, Gerhard H; Bastians, Holger

    2016-02-16

    BRCA1 (breast cancer type 1 susceptibility protein) is a multifunctional tumor suppressor involved in DNA damage response, DNA repair, chromatin regulation, and mitotic chromosome segregation. Although the nuclear functions of BRCA1 have been investigated in detail, its role during mitosis is little understood. It is clear, however, that loss of BRCA1 in human cancer cells leads to chromosomal instability (CIN), which is defined as a perpetual gain or loss of whole chromosomes during mitosis. Moreover, our recent work has revealed that the mitotic function of BRCA1 depends on its phosphorylation by the tumor-suppressor kinase Chk2 (checkpoint kinase 2) and that this regulation is required to ensure normal microtubule plus end assembly rates within mitotic spindles. Intriguingly, loss of the positive regulation of BRCA1 leads to increased oncogenic Aurora-A activity, which acts as a mediator for abnormal mitotic microtubule assembly resulting in chromosome missegregation and CIN. However, how the CHK2-BRCA1 tumor suppressor axis restrains oncogenic Aurora-A during mitosis to ensure karyotype stability remained an open question. Here we uncover a dual molecular mechanism by which the CHK2-BRCA1 axis restrains oncogenic Aurora-A activity during mitosis and identify BRCA1 itself as a target for Aurora-A relevant for CIN. In fact, Chk2-mediated phosphorylation of BRCA1 is required to recruit the PP6C-SAPS3 phosphatase, which acts as a T-loop phosphatase inhibiting Aurora-A bound to BRCA1. Consequently, loss of CHK2 or PP6C-SAPS3 promotes Aurora-A activity associated with BRCA1 in mitosis. Aurora-A, in turn, then phosphorylates BRCA1 itself, thereby inhibiting the mitotic function of BRCA1 and promoting mitotic microtubule assembly, chromosome missegregation, and CIN.

  5. DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families.

    PubMed

    Pilato, Brunella; De Summa, Simona; Danza, Katia; Papadimitriou, Stavros; Zaccagna, Paolo; Paradiso, Angelo; Tommasi, Stefania

    2012-09-01

    Hereditary breast cancer accounts for about 10% of all breast cancers and BRCA1 and BRCA2 genes have been identified as validated susceptibility genes for this pathology. Testing for BRCA gene mutations is usually based on a pre-screening approach, such as the partial denaturation DHPLC method, and capillary direct sequencing. However, this approach is time consuming due to the large size of BRCA1 and BRCA2 genes. Recently, a new low cost and time saving DHPLC protocol has been developed to analyze gene mutations by using SURVEYOR(®) Nuclease digestion and DHPLC analysis. A subset of 90 patients, enrolled in the Genetic Counseling Program of the National Cancer Centre of Bari (Italy), was performed to validate this approach. Previous retrospective analysis showed that 9/90 patients (10%) were mutated in BRCA1 and BRCA2 genes and these data were confirmed by the present approach. DNA samples underwent touchdown PCR and, subsequently, SURVEYOR(®) nuclease digestion. BRCA1 and BRCA2 amplicons were divided into groups depending on amplicon size to allow multiamplicon digestion. The product of this reaction were analyzed on Transgenomic WAVE Nucleic Acid High Sensitivity Fragment Analysis System. The operator who performed the DHPLC surveyor approach did not know the sequencing results at that time. The SURVEYOR(®) Nuclease DHPLC approach was able to detect all alterations with a sensitivity of 95%. Furthermore, in order to save time and reagents, a multiamplicon setting preparation was validated.

  6. Germline BRCA1 mutations in patients from 84 families with breast and/or ovarian cancers in northern France.

    PubMed

    Peyrat, J P; Vennin, P; Hornez, L; Fournier, J; Adenis, C; Bonneterre, J

    1998-02-01

    The BRCA1 gene modification is responsible for an autosomal dominant syndrome of inherited early onset breast and/or ovarian cancer. This gene is estimated to account for almost half of inherited breast cancers and three quarters of inherited breast/ovarian cancers. This suggests that about 1 in every 500 women may carry the BRCA1 mutation. The BRCA1 was isolated by positional cloning in 1994. More than 100 different mutations have been found in the germline of affected individuals. Using systematic sequencing, we looked at BRCA1 germline mutations in 84 patients treated at the Centre Oscar Lambret for breast and/or ovarian cancer who belonged to high-risk families. We found 39 mutations: 22 true mutations inducing modifications of the BRCA1 protein (BRCA1+), six mutations with unknown consequences on the BRCA1 protein, and eleven mutations corresponding to polymorphisms that had been described previously. All the BRCA1+ cases had a HPG3 tumour. The median age of discovery and the receptor positivity percentage are lower in hereditary breast cancer than in the standard population of the breast cancers treated in our centre. Conversely, most of the BRCA1+ patients are without node involvement. This shows that BRCA1 mutations are not always related to parameters thought to indicate a bad prognosis.

  7. Determination of Cancer Risk Associated with Germ Line BRCA1 Missense Variants by Functional Analysis

    PubMed Central

    Carvalho, Marcelo A.; Marsillac, Sylvia M.; Karchin, Rachel; Manoukian, Siranoush; Grist, Scott; Swaby, Ramona F.; Urmenyi, Turan P.; Rondinelli, Edson; Silva, Rosane; Gayol, Luis; Baumbach, Lisa; Sutphen, Rebecca; Pickard-Brzosowicz, Jennifer L.; Nathanson, Katherine L.; Sali, Andrej; Goldgar, David; Couch, Fergus J.; Radice, Paolo; Monteiro, Alvaro N.A.

    2010-01-01

    Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability. PMID:17308087

  8. BRCA1/2 germline mutations and their clinical importance in Turkish breast cancer patients.

    PubMed

    Cecener, Gulsah; Egeli, Unal; Tunca, Berrin; Erturk, Elif; Ak, Secil; Gokgoz, Sehsuvar; Tasdelen, Ismet; Tezcan, Gulcin; Demirdogen, Elif; Bayram, Nuran; Avci, Nilufer; Evrensel, Turkkan

    2014-10-01

    BRCA1/BRCA2 genes were screened in 117 patients with breast cancer by sequencing. Fourteen percent of patients tested positive for BRCA1/BRCA2 mutations. Four frame shift mutations, four pathogenic missense mutations, and 25 different sequence variations were detected. BRCA mutation positivity was significantly associated with Ki67 (p = .001). BRCA protein expressions were decreased in the patients harboring important mutations and polymorphisms (BRCA1;P508 stop, V1740G, Q1182R, Q1756P and BRCA2;V2466A) related with disease. Our findings contribute significantly to the types of germline BRCA1/BRCA2 mutations and their biological effects in Turkish women. These data could help guide the management of BRCA1/BRCA2 mutation-carrying patients when considering breast-conserving therapy.

  9. Prevalence of BRCA1 Mutations in Familial and Sporadic Greek Ovarian Cancer Cases

    PubMed Central

    Stavropoulou, Alexandra V.; Fostira, Florentia; Pertesi, Maroulio; Tsitlaidou, Marianthi; Voutsinas, Gerassimos E.; Triantafyllidou, Olga; Bamias, Aristotelis; Dimopoulos, Meletios A.; Timotheadou, Eleni; Pectasides, Dimitrios; Christodoulou, Christos; Klouvas, George; Papadimitriou, Christos; Makatsoris, Thomas; Pentheroudakis, George; Aravantinos, Gerasimos; Karydakis, Vassilis; Yannoukakos, Drakoulis; Fountzilas, George; Konstantopoulou, Irene

    2013-01-01

    Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer. PMID:23536787

  10. BRCA1 and BRCA2 mutation status and cancer family history of Danish women affected with multifocal or bilateral breast cancer at a young age

    PubMed Central

    Bergthorsson, J; Ejlertsen, B; Olsen, J; Borg, A; Nielsen, K; Barkardottir, R; Klausen, S; Mouridsen, H; Winther, K; Fenger, K; Niebuhr, A; Harboe, T; Niebuhr, E

    2001-01-01

    INTRODUCTION—A small fraction of breast cancer is the result of germline mutations in the BRCA1 and BRCA2 cancer susceptibility genes. Mutation carriers frequently have a positive family history of breast and ovarian cancer, are often diagnosed at a young age, and may have a higher incidence of double or multiple primary breast tumours than breast cancer patients in general.
OBJECTIVES—To estimate the prevalence and spectrum of BRCA1 and BRCA2 mutations in young Danish patients affected with bilateral or multifocal breast cancer and to determine the relationship of mutation status to family history of cancer.
SUBJECTS—From the files of the Danish Breast Cancer Cooperative Group (DBCG), we selected 119 breast cancer patients diagnosed before the age of 46 years with either bilateral (n=59) or multifocal (n=61) disease.
METHODS—DNA from the subjects was screened for BRCA1 and BRCA2 mutations using single strand conformation analysis (SSCA) and the protein truncation test (PTT). Observed and expected cancer incidence in first degree relatives of the patients was estimated using data from the Danish Cancer Registry.
RESULTS—Twenty four mutation carriers were identified (20%), of whom 13 had a BRCA1 mutation and 11 carried a BRCA2 mutation. Two mutations in BRCA1 were found repeatedly in the material and accounted for seven of the 24 (29%) mutation carriers. The mutation frequency was about equal in patients with bilateral (22%) and multifocal breast cancer (18%). The incidence of breast and ovarian cancer was greatly increased in first degree relatives of BRCA1 and BRCA2 mutation carriers, but to a much lesser degree in relatives of non-carriers. An increased risk of cancer was also noted in brothers of non-carriers.
CONCLUSIONS—A relatively broad spectrum of germline mutations was observed in BRCA1 and BRCA2 and most of the mutations are present in other populations. Our results indicate that a diagnosis of bilateral and multifocal breast

  11. Pyrosequencing analysis of BRCA1 methylation level in breast cancer cells.

    PubMed

    Cai, Fengfeng; Ge, Isabell; Wang, Minghong; Biskup, Ewelina; Lin, Xiaoyan; Zhong, Xiaoyan

    2014-04-01

    BRCA1 and BRCA2 genes are crucial for double-strand break repair by homologous recombination, and mutations in these genes are responsible for most familial breast carcinomas. Cells with inactivating mutations of the BRCA1 or BRCA2 tumor suppressor genes are sensitive to poly (ADP-ribose) polymerase-1 (PARP1) inhibitors. Already in 2010, it has been predicted, that BRCA1 hypermethylation might be sensitive to PARP1 inhibitor. However, till today, a statistically significant proof has been missing, and the effectiveness of PARP1 inhibitors for breast cancer caused by BRCA1 promoter hypermethylation remained elusive. Pyrosequencing has been proposed as an optimal method to investigate the methylation status of the BRCA1 genes. Here, we show for the first time that BRCA1 CpG island hypermethylation is sensitive to PARP1 inhibitors. In clinical settings, this might improve treatment response and provide a more personalized therapy for breast cancer patients. Furthermore, the determination of methylation status of BRCA1 and other genes of the BRCA/homologous recombination (HR) pathway may be an important predictive classifier of response to PARP inhibitor therapy.

  12. Genetic analysis of the BRCA1 region in a large breast/ovarian family: refinement of the minimal region containing BRCA1.

    PubMed

    Kelsell, D P; Black, D M; Bishop, D T; Spurr, N K

    1993-11-01

    We have analyzed a single multi-affected breast/ovarian cancer pedigree (BOV3) and have shown consistent inheritance of markers on chromosome 17q with the disease confirming that this family is due to the BRCA1 gene. Analysis of 17q haplotypes shows a recombination event in a bilateral breast cancer case which suggests that the BRCA1 gene lies distal to D17S857; D17S857 is thus the new proximal boundary for the region containing BRCA1. Combining this information with previously published mapping information suggests that BRCA1 is contained in a region estimated at 1-1.5 Mb in length. All seven breast tumour/blood pairs examined from this family show loss of heterozygosity in the tumours. The allel retained in each tumour was from the disease-bearing chromosome implicating BRCA1 as a tumour suppressor gene. We have sequenced the 17 beta-oestradiol dehydrogenase genes (EDH17B1 and EDH17B2) which have been suggested as candidate genes for BRCA1 in four members of this family. No germline mutations were detected.

  13. BRCA1 and BRCA2 Mutations in African Americans

    DTIC Science & Technology

    2002-04-01

    genetic testing in African Americans must include the entire coding and flanking non-coding regions of the BRCA2 gene . "* It is noteworthy that BRCA ...Over 80% of inherited breast cancer is due to mutations in the breast cancer predisposing genes BRCA ] and BRCA2. In one of the largest studies of high...population 25-27,32. Therefore, genetic testing in African Americans must include complete sequencing of both BRCA 1 and BRCA2 genes . Familial cancer

  14. Performance of multiplicom's BRCA MASTR Dx kit on the detection of BRCA1 and BRCA2 mutations in fresh frozen ovarian and breast tumor samples

    PubMed Central

    Badoer, Cindy; Garrec, Céline; Goossens, Dirk; Ellison, Gillian; Mills, John; Dzial, Mélina; Housni, Hakim El; Berwouts, Sarah; Concolino, Paola; Guevellou, Virginie Guibert-Le; Delnatte, Capucine; Favero, Jurgen Del

    2016-01-01

    Next-generation sequencing (NGS) has enabled new approaches for detection of mutations in the BRCA1 and BRCA2 genes responsible for hereditary breast and ovarian cancer (HBOC). The search for germline mutations in the BRCA1 and BRCA2 genes is of importance with respect to oncogenetic and surgical (bilateral mastectomy, ovariectomy) counselling. Testing tumor material for BRCA mutations is of increasing importance for therapeutic decision making as the poly ADP ribose polymerase (PARP) inhibitor, olaparib, is now available to treat patients with specific forms of ovarian cancer and BRCA mutations. Molecular genetics laboratories should develop reliable and sensitive techniques for the complete analysis of the BRCA1 and BRCA2 genes. This is a challenge due to the size of the coding sequence of the BRCA1/2 genes, the absence of hot spot mutations, and particularly by the lower DNA quality obtained from Formalin-Fixed Paraffin-Embedded (FFPE) tissue. As a result, a number of analyses are uninterpretable and do not always provide a result to the clinician, limiting the optimal therapeutic management of patients. The availability of Fresh Frozen Tissue (FFT) for some laboratories and the excellent quality of the DNA extracted from it offers an alternative. For this reason, we evaluated Multiplicom's BRCA MASTR Dx assay on a set of 97 FFT derived DNA samples, in combination with the MID for Illumina MiSeq for BRCA1 and BRCA2 mutation detection. We obtained interpretable NGS results for all tested samples and showed > 99,7% sensitivity, specificity and accuracy. PMID:27793035

  15. Molecular profiles of BRCA1-mutated and matched sporadic breast tumours: relation with clinico-pathological features

    PubMed Central

    Berns, E M J J; Staveren, I L van; Verhoog, L; Ouweland, A M W van de; Gelder, M Meijer-van; Meijers-Heijboer, H; Portengen, H; Foekens, J A; Dorssers, L C J; Klijn, J G M

    2001-01-01

    About 5–10% of breast cancers are hereditary; a genetically and clinically heterogeneous disease in which several susceptibility genes, including BRCA1, have been identified. While distinct tumour features can be used to estimate the likelihood that a breast tumour is caused by a BRCA1 germline mutation it is not yet possible to categorize a BRCA1 mutated tumour. The aim of the present study is to molecularly classify BRCA1 mutated breast cancers by resolving gene expression patterns of BRCA1 and matched sporadic surgical breast tumour specimens. The expression profiles of 6 frozen breast tumour tissues with a proven BRCA1 gene mutation were weighed against those from 12 patients without a known family history but who had similar clinico-pathological characteristics. In addition two fibroblast cultures, the breast cancer cell-line HCC1937 and its corresponding B-lymphoblastoid cell line (heterozygous for mutation BRCA1 5382insC) and an epithelial ovarian cancer cell line (A2780) were studied. Using a high density membrane based array for screening of RNA isolated from these samples and standard algorithms and software, we were able to distinguish subgroups of sporadic cases and a group consisting mainly of BRCA1-mutated breast tumours. Furthermore this pilot analysis revealed a gene cluster that differentially expressed genes related to cell substrate formation, adhesion, migration and cell organization in BRCA1-mutated tumours compared to sporadic breast tumours. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11506493

  16. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer.

    PubMed Central

    Beckmann, M. W.; Picard, F.; An, H. X.; van Roeyen, C. R.; Dominik, S. I.; Mosny, D. S.; Schnürch, H. G.; Bender, H. G.; Niederacher, D.

    1996-01-01

    The development of familial and sporadic breast cancer is based on genetic alterations of tumour-suppressor genes, for which loss of heterozygosity (LOH) is one mechanism of gene inactivation. To investigate LOH of BRCA1 (17q21) and BRCA2 (13-q12-13) in sporadic breast cancer, polymerase chain reaction (PCR)-based fluorescent DNA technology for detection of microsatellite polymorphisms was applied. A total of 137 breast cancer and 15 benign breast specimens with matched normal tissue were examined. Fluorescent-labelled PCR products were analysed in an automated DNA sequencer (ALFTM Pharmacia). Losses at both loci were correlated with different histological types, age, tumour size, lymph node status, grading and steroid hormone receptor expression, [SHR: oestrogen receptor (ER), progesterone receptor (PgR)]. For BRCA1 (D17S855, THRA1, D17S579) losses could be detected in invasive ductal carcinoma (IDC; n = 108) in 32-38%, invasive lobular carcinoma (ILC; n = 19) in 21-42% depending on the marker applied, but not in benign breast tumours (n = 15). Losses of BRCA1 markers correlated with larger tumour size, higher grade, and PgR expression. For BRCA2 (D13S260, D13S267, D13S171) losses could be detected in 108 IDCs in 30-38%, in 19 ILCs in 17-39% depending on the marker applied, but not in benign breast tumours. Losses of BRCA2 markers correlated only with higher grade. Microsatellite analyses combined with detection of fluorescent-labelled PCR products by an automated laser DNA sequencer can be used for routine determination of LOH. In sporadic breast cancer, LOH of BRCA1 of BRCA2 does not add decisive prognostic value as stated for familial breast cancer. Images Figure 1 PMID:8630282

  17. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence from 40 studies.

    PubMed

    Zhang, Li; Long, Xinghua

    2015-12-08

    Breast cancer susceptibility gene 1 (BRCA1) located at chromosome 17q12-21 is a classic tumor suppressor gene, and has been considered as a significant role in hereditary breast cancers. Moreover, numerous studies demonstrated the methylation status of CpG islands in the promoter regions of BRCA1 gene was aberrant in patients with sporadic breast tumors compared with healthy females or patients with benign diseases. However, these conclusions were not always consistent. Hence, a meta-analysis was performed to get a more precise estimate for these associations. Crude odds ratio with 95% confidence interval were used to assess the association of BRCA1 promoter methylation and the risk or clinicopathologic characteristics of breast cancers under fixed or random effect model. A total of 40 studies were eligible for this present study. We observed the frequency of BRCA1 promoter methylation was statistically significant higher in breast cancers than non-cancer controls. Furthermore, BRCA1 methylation was statistically associated with lymph node metastasis, histological grade 3, ER(-), PR(-), triple-negative phenotype, and decreased or lack levels of BRCA1 protein expression. In conclusion, this study indicated that BRCA1 promoter methylation appeared to be a useful predictive or prognostic biomarker for breast cancers in clinical assessment.

  18. TNRC9 downregulates BRCA1 expression and promotes breast cancer aggressiveness.

    PubMed

    Shan, Jingxuan; Dsouza, Shoba P; Bakhru, Sasha; Al-Azwani, Eman K; Ascierto, Maria L; Sastry, Konduru S; Bedri, Shahinaz; Kizhakayil, Dhanya; Aigha, Idil I; Malek, Joel; Al-Bozom, Issam; Gehani, Salah; Furtado, Stacia; Mathiowitz, Edith; Wang, Ena; Marincola, Francesco M; Chouchane, Lotfi

    2013-05-01

    Although the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer. Gene amplification was associated with reduced disease-free and metastasis-free survival rates. Ectopic expression of TNRC9 increased breast cancer cell proliferation, migration, and survival after exposure to apoptotic stimuli. These phenotypes were associated with tumor progression in a mouse model of breast cancer. Gene expression profiling, protein analysis, and in silico assays of large datasets of breast and ovarian cancer samples suggested that TNRC9 and BRCA1 expression were inversely correlated. Notably, we found that TNRC9 bound to both the BRCA1 promoter and the cAMP-responsive element-binding protein (CREB) complex, a regulator of BRCA1 transcription. In support of this connection, expression of TNRC9 downregulated expression of BRCA1 by altering the methylation status of its promoter. Our studies unveil a function for TNRC9 in breast cancer that highlights a new paradigm in BRCA1 regulation.

  19. Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors

    PubMed Central

    Huang, Fei; Goyal, Nadish; Sullivan, Katherine; Hanamshet, Kritika; Patel, Mikir; Mazina, Olga M.; Wang, Charles X.; An, W. Frank; Spoonamore, James; Metkar, Shailesh; Emmitte, Kyle A.; Cocklin, Simon; Skorski, Tomasz; Mazin, Alexander V.

    2016-01-01

    RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy. In vitro, RAD52 has ssDNA annealing and DNA strand exchange activities. Here, to identify small molecule inhibitors of RAD52 we screened a 372,903-compound library using a fluorescence-quenching assay for ssDNA annealing activity of RAD52. The obtained 70 putative inhibitors were further characterized using biochemical and cell-based assays. As a result, we identified compounds that specifically inhibit the biochemical activities of RAD52, suppress growth of BRCA1- and BRCA2-deficient cells and inhibit RAD52-dependent single-strand annealing (SSA) in human cells. We will use these compounds for development of novel cancer therapy and as a probe to study mechanisms of DNA repair. PMID:26873923

  20. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner.

    PubMed

    Zhang, Wenwen; Luo, Jiayan; Chen, Fengxia; Yang, Fang; Song, Wei; Zhu, Aiyu; Guan, Xiaoxiang

    2015-04-10

    BRCA1 plays a key role in the regulation of p53-dependent target gene transcription activation. Meanwhile, the p53 inducible gene 3 (PIG3) is a downstream target of p53 and is involved in p53-initiated apoptosis. However, little is known about whether BRCA1 can regulate PIG3-mediated apoptosis. Using a tissue microarray containing 149 breast cancer patient samples, we found that BRCA1 and PIG3 expression status were significantly positively correlated (r = 0.678, P < 0.001) and identified a significant positive correlation between high expression of BRCA1 and/or PIG3 and overall survival (OS). Moreover, we reveal that overexpression of BRCA1 significantly increased expression of PIG3 in cells with intact p53, whereas no increase in PIG3 was observed in p53-null MDA-MB-157 cells and p53-depleted HCT116p53-/- cells. Meanwhile, ectopic expression of BRCA1 could not lead to an increase expression level of prohibitin (PHB), which we have previously identified to induce PIG3-mediated apoptosis. Finally, ChIP analysis revealed that PHB can bind to the PIG3 promoter and activate PIG3 transcription independent of p53, although p53 presence did enhance this process. Taken together, our findings suggest that BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner, and that PIG3 expression is associated with a better OS in breast cancer patients.

  1. Novel BRCA1 and BRCA2 pathogenic mutations in Slovene hereditary breast and ovarian cancer families

    PubMed Central

    NOVAKOVIĆ, SRDJAN; MILATOVIĆ, MAŠA; CERKOVNIK, PETRA; STEGEL, VIDA; KRAJC, MATEJA; HOČEVAR, MARKO; ŽGAJNAR, JANEZ; VAKSELJ, ALEŠ

    2012-01-01

    The estimated proportion of hereditary breast and ovarian cancers among all breast and ovarian cancer cases is 5–10%. According to the literature, inherited mutations in the BRCA1 and BRCA2 tumour-suppressor genes, account for the majority of hereditary breast and ovarian cancer cases. The aim of this report is to present novel mutations that have not yet been described in the literature and pathogenic BRCA1 and BRCA2 mutations which have been detected in HBOC families for the first time in the last three years. In the period between January 2009 and December 2011, 559 individuals from 379 families affected with breast and/or ovarian cancer were screened for mutations in the BRCA1 and BRCA2 genes. Three novel mutations were detected: one in BRCA1 - c.1193C>A (p.Ser398*) and two in BRCA2 - c.5101C>T (p.Gln1701*) and c.5433_5436delGGAA (p.Glu1811Aspfs*3). These novel mutations are located in the exons 11 of BRCA1 or BRCA2 and encode truncated proteins. Two of them are nonsense while one is a frameshift mutation. Also, 11 previously known pathogenic mutations were detected for the first time in the HBOC families studied here (three in BRCA1 and eight in BRCA2). All, except one cause premature formation of stop codons leading to truncation of the respective BRCA1 or BRCA2 proteins. PMID:22923021

  2. Women with BRCA1 and BRCA2 mutations survive ovarian cancer at higher rates

    Cancer.gov

    Results from a National Cancer Institute (NCI) sponsored multicenter study published in the Journal of the American Medical Association on January 25, 2012, provides strong evidence that BRCA1 and BRCA2 gene mutation carriers with ovarian cancer were more

  3. Surgically treated ovarian endometriosis association with BRCA1 and BRCA2 mutations.

    PubMed

    Aviel-Ronen, Sarit; Soriano, David; Shmuel, Elyasaf; Schonman, Ron; Rosenblatt, Kinneret; Zadok, Oranit; Vituri, Aya; Seidman, Daniel; Barshack, Iris; Cohen, Yoram

    2014-04-01

    Endometriosis is associated with an increased risk of ovarian cancer. Few studies have also shown increased risk of breast cancer. BRCA1/2 mutations are linked to an increased risk of breast and ovarian cancers but their relation to endometriosis is unknown. The objective of this study was to examine the mutation rate of BRCA1/2 among women with surgically treated ovarian endometriosis. We collected 126 specimens from Jewish Ashkenazi women with endometriotic (76) and control non-endometriotic (50) ovarian cysts, reviewed the pathological diagnoses and extracted DNA from all samples. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), samples were examined for the founder germline mutations of BRCA1/2, most common among Ashkenazi Jews. The rate of mutations in each group was calculated and compared. BRCA1/2 mutation rate was 1/76 (1.3%) in the endometriotic cyst study group and 1/50 (2%) in the control non-endometriotic cysts, showing no statistically significant difference between the groups (p=0.84). BRCA1/2 mutation rate was similar to the previously reported rate among Jewish Ashkenazi women. BRCA1/2 mutation rates in patients with endometriotic ovarian cysts and with non-endometriotic ovarian cysts are similar. A larger cohort is required to completely exclude the possibility of an association between BRCA1/2 mutations and surgically treated endometriosis.

  4. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    PubMed Central

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie; Jensen, Kamilla E.; Maya-Mendoza, Apolinar; Holst, Camilla B.; Møllgaard, Kjeld; Rasmussen, Jane S.; Brennum, Jannick; Bartek, Jiri; Syrucek, Martin; Sedlakova, Eva; Andersen, Klaus K.; Frederiksen, Marie H.; Bartek, Jiri; Hamerlik, Petra

    2016-01-01

    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Higher BRCA1 positivity is associated with shorter survival of glioma patients and the abrogation of BRCA1 function in GBM enhances RS, DNA damage (DD) accumulation and impairs tumour growth. Mechanistically, we identify a novel role of BRCA1 as a transcriptional co-activator of RRM2 (catalytic subunit of ribonucleotide reductase), whereby BRCA1-mediated RRM2 expression protects GBM cells from endogenous RS, DD and apoptosis. Notably, we show that treatment with a RRM2 inhibitor triapine reproduces the BRCA1-depletion GBM-repressive phenotypes and sensitizes GBM cells to PARP inhibition. We propose that GBM cells are addicted to the RS-protective role of the BRCA1-RRM2 axis, targeting of which may represent a novel paradigm for therapeutic intervention in GBM. PMID:27845331

  5. BRCA1 promoter methylation is a marker of better response to anthracycline-based therapy in sporadic TNBC.

    PubMed

    Ignatov, T; Poehlmann, A; Ignatov, A; Schinlauer, A; Costa, S D; Roessner, A; Kalinski, T; Bischoff, J

    2013-09-01

    The aim of the current study was to investigate the role of BRCA1 gene aberrations in sporadic triple-negative breast cancer (TNBC) and its impact on anthracycline-based therapy. BRCA1 promoter methylation was analyzed in 70 TNBC and compared with the clinical and pathologic characteristics. As a control group, we used 70 patients with non-TNBC. BRCA1 promoter methylation was observed in 65.2 % of patients and was similar in both groups. BRCA1 promoter methylation was associated with decreased intensity of BRCA1 protein expression (P = 0.002) and significant increase of median disease-free survival (DFS) of TNBC patients receiving adjuvant anthracycline-based chemotherapy (P = 0.001). Multivariate analysis revealed that BRCA1 promoter methylation remains a favorable factor in regard to DFS (HR 0.224; 95 % CI 0.092-0.546, P = 0.001) in TNBC after adjustment for other prognostic factors. In contrast, in non-TNBC, BRCA1 promoter methylation was not associated with any clinical and pathologic parameters. BRCA1 promoter methylation is a common mechanism of BRCA1 gene aberration in sporadic breast cancer and is predictive for better response to anthracycline-based therapies.

  6. BRCA1 and BRCA2 genetic test in high risk patients and families: counselling and management.

    PubMed

    Marchina, Eleonora; Fontana, Maria Grazia; Speziani, Michela; Salvi, Alessandro; Ricca, Giuseppe; Di Lorenzo, Diego; Gervasi, Maria; Caimi, Luigi; Barlati, Sergio

    2010-12-01

    Hereditary breast cancer accounts for 5-10% of all cases of breast cancer and 10-15% of ovarian cancer and is characterised by dominant inheritance, early onset, the severity of the disease and bilaterality. About 30% of cases with hereditary breast and ovarian cancer have mutations in the BRCA1 and BRCA2 genes. Women with a mutation in the BRCA1 gene have a 80-90% lifetime risk of developing breast cancer, and 40-65% chance of developing ovarian cancer. Most studies carried out throughout the world indicate that the prevalence of BRCA1 and BRCA2 mutation is lower than originally suggested by early studies on large families with several affected members. Studies performed in Italy have reported different prevalence of BRCA1 and BRCA2 mutations, probably due to different selection criteria and to the variability of the techniques used. In this study, we performed a screening of BRCA1 and BRCA2 in families from northern Italy with familial recurrence of breast cancer or ovarian cancer in which the individual risk of patients of being carriers of BRCA1 and BRCA2 mutation was evaluated using BRCAPRO (CAGene) software. We enrolled 27 patients of 101 unrelated families selected when they fulfilled the inclusion criteria of the American Society of Clinical Oncology (ASCO). Specific risk evaluation, genetic test administration if needed, and discussion of the results were offered during multi-disciplinary genetic, surgical and psychological counselling. Seven probands (35%) found BRCA1/2 sequence variation carriers; no BRCA1 and BRCA2 mutations were detected in the remaining 13 probands. Two (15%) patients had BRCA1 mutations and 5 (25%) patients had BRCA2 mutations. In the latter case, BRCA2 delA 9158fs+29stop mutation in exon 22, never previously described and a new sequence variation (T703N) in exon 11 were identified.

  7. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2015-12-01

    of single stranded DNA breaks especially through activation of base excision repair (BER) (Krishnakumar & Kraus, 2010). A synthetic lethal phenotype...1) Test candidate mechanisms of HR restoration: a) Determine HR activity in parental , rescue, and PARP inhibitor resistant lines: In my previous two...seen in the parental , BRCA1-deficient line using Rad51 and PALB2 as markers. b) Test BRCA1-restoration: In my previous annual reports, I showed that

  8. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    PubMed Central

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  9. BRCA1 is a negative modulator of the PRC2 complex

    PubMed Central

    Wang, Lan; Zeng, Xianzhuo; Chen, Shuai; Ding, Liya; Zhong, Jian; Zhao, Jonathan C; Wang, Liguo; Sarver, Aaron; Koller, Antonius; Zhi, Jizu; Ma, Yupo; Yu, Jindan; Chen, Junjie; Huang, Haojie

    2013-01-01

    The Polycomb-repressive complex 2 (PRC2) is important for maintenance of stem cell pluripotency and suppression of cell differentiation by promoting histone H3 lysine 27 trimethylation (H3K27me3) and transcriptional repression of differentiation genes. Here we show that the tumour-suppressor protein BRCA1 interacts with the Polycomb protein EZH2 in mouse embryonic stem (ES) and human breast cancer cells. The BRCA1-binding region in EZH2 overlaps with the noncoding RNA (ncRNA)-binding domain, and BRCA1 expression inhibits the binding of EZH2 to the HOTAIR ncRNA. Decreased expression of BRCA1 causes genome-wide EZH2 re-targeting and elevates H3K27me3 levels at PRC2 target loci in both mouse ES and human breast cancer cells. BRCA1 deficiency blocks ES cell differentiation and enhances breast cancer migration and invasion in an EZH2-dependent manner. These results reveal that BRCA1 is a key negative modulator of PRC2 and that loss of BRCA1 inhibits ES cell differentiation and enhances an aggressive breast cancer phenotype by affecting PRC2 function. PMID:23624935

  10. RANKL/RANK control Brca1 mutation-driven mammary tumors

    PubMed Central

    Sigl, Verena; Owusu-Boaitey, Kwadwo; Joshi, Purna A; Kavirayani, Anoop; Wirnsberger, Gerald; Novatchkova, Maria; Kozieradzki, Ivona; Schramek, Daniel; Edokobi, Nnamdi; Hersl, Jerome; Sampson, Aishia; Odai-Afotey, Ashley; Lazaro, Conxi; Gonzalez-Suarez, Eva; Pujana, Miguel A; CIMBA, for; Heyn, Holger; Vidal, Enrique; Cruickshank, Jennifer; Berman, Hal; Sarao, Renu; Ticevic, Melita; Uribesalgo, Iris; Tortola, Luigi; Rao, Shuan; Tan, Yen; Pfeiler, Georg; Lee, Eva YHP; Bago-Horvath, Zsuzsanna; Kenner, Lukas; Popper, Helmuth; Singer, Christian; Khokha, Rama; Jones, Laundette P; Penninger, Josef M

    2016-01-01

    Breast cancer is the most common female cancer, affecting approximately one in eight women during their life-time. Besides environmental triggers and hormones, inherited mutations in the breast cancer 1 (BRCA1) or BRCA2 genes markedly increase the risk for the development of breast cancer. Here, using two different mouse models, we show that genetic inactivation of the key osteoclast differentiation factor RANK in the mammary epithelium markedly delayed onset, reduced incidence, and attenuated progression of Brca1;p53 mutation-driven mammary cancer. Long-term pharmacological inhibition of the RANK ligand RANKL in mice abolished the occurrence of Brca1 mutation-driven pre-neoplastic lesions. Mechanistically, genetic inactivation of Rank or RANKL/RANK blockade impaired proliferation and expansion of both murine Brca1;p53 mutant mammary stem cells and mammary progenitors from human BRCA1 mutation carriers. In addition, genome variations within the RANK locus were significantly associated with risk of developing breast cancer in women with BRCA1 mutations. Thus, RANKL/RANK control progenitor cell expansion and tumorigenesis in inherited breast cancer. These results present a viable strategy for the possible prevention of breast cancer in BRCA1 mutant patients. PMID:27241552

  11. Association of BRCA1 Functional Single Nucleotide Polymorphisms with Risk of Differentiated Thyroid Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Liu, Yanhong; Li, Guojun

    2012-01-01

    Background Breast cancer 1, early onset (BRCA1) is a vital DNA repair gene, and the single nucleotide polymorphisms (SNPs) of this gene have been studied in diverse cancer types. In this study, we investigated the association between eight common BRCA1 functional SNPs and the risk of differentiated thyroid carcinoma (DTC). Methods This cancer center-based case–control study included 303 DTC cases and 511 controls. A polymerase chain reaction-based restriction fragment length polymorphism assay was performed for genotyping. Unconditional logistical regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) in single-SNP analysis and haplotype analysis. Results A decreased risk of DTC was found for the A1988G heterozygous AG genotype (adjusted OR=0.63, 95% CI: 0.45–0.87, Bonferroni-adjusted p-value=0.036). AATAATA and ATAA haplotypes that carry C33420T variant allele were associated with reduced papillary thyroid cancer risk (adjusted OR=0.52, 95% CI: 0.33–0.84; adjusted OR=0.62, 95% CI: 0.40–0.95, respectively). Also, having a combination of ≥3 favorable genotypes was associated with a DTC risk reduction (adjusted OR=0.69, 95% CI: 0.50–0.95). The A31875G AG/GG genotype was associated with a 69% reduced risk of multifocal primary tumor in DTC patients (adjusted OR=0.31, 95% CI: 0.12–0.81). Conclusion BRCA1 genetic polymorphisms may play a role in DTC risk, while the possible associations warrant confirmation in independent studies. PMID:22136207

  12. BRCA1/2 testing: uptake, phenocopies, and strategies to improve detection rates in initially negative families.

    PubMed

    Fischer, C; Engel, C; Sutter, C; Zachariae, S; Schmutzler, R; Meindl, A; Heidemann, S; Grimm, T; Goecke, T O; Debatin, I; Horn, D; Wieacker, P; Gadzicki, D; Becker, K; Schäfer, D; Stock, F; Voigtländer, T

    2012-11-01

    In families with clustering of breast and ovarian cancer, molecular testing of the major susceptibility genes BRCA1/2 helps to identify patients with disease mutations and healthy persons at high risk who can participate in targeted intervention programs. We investigated 5559 families from the German Consortium for Hereditary Breast and Ovarian Cancer included between 1997 and 2008 and treated under clinical routine conditions. In each family an index patient/person had been screened for deleterious mutations in BRCA1/2. Healthy relatives agreed to predictive testing in 888 of 1520 BRCA1/2 mutation-positive families (58%). Of 2646 eligible unaffected first-degree relatives 1143 decided to be tested (43%). In 325 families with BRCA1/2-positive index patients one related BC/OC patient was tested and 39 (12.0%; 95% confidence interval: 8.7-16.0%) discrepant cases found. A second related individual was screened in 163 of 3388 (4.9%) families with BRCA1/2-negative index patient and in eight families a BRCA1/2 mutation was found. In BRCA1/2 mutation-positive families, BC/OC patients lacking the familial mutation have to be expected at a rather high rate. In families with BRCA1/2-negative index patient we recommend a second screening if another patient with a high probability of carrying a BRCA1/2 mutation is available.

  13. Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer

    PubMed Central

    Machackova, Eva; Foretova, Lenka; Lukesova, Mirka; Vasickova, Petra; Navratilova, Marie; Coene, Ilse; Pavlu, Hana; Kosinova, Veronika; Kuklova, Jitka; Claes, Kathleen

    2008-01-01

    Background The incidence of breast cancer has doubled over the past 20 years in the Czech Republic. Hereditary factors may be a cause of young onset, bilateral breast or ovarian cancer, and familial accumulation of the disease. BRCA1 and BRCA2 mutations account for an important fraction of hereditary breast and ovarian cancer cases. One thousand and ten unrelated high-risk probands with breast and/or ovarian cancer were analysed for the presence of a BRCA1 or BRCA2 gene mutation at the Masaryk Memorial Cancer Institute (Czech Republic) during 1999–2006. Methods The complete coding sequences and splice sites of both genes were screened, and the presence of large intragenic rearrangements in BRCA1 was verified. Putative splice-site variants were analysed at the cDNA level for their potential to alter mRNA splicing. Results In 294 unrelated families (29.1% of the 1,010 probands) pathogenic mutations were identified, with 44 different BRCA1 mutations and 41 different BRCA2 mutations being detected in 204 and 90 unrelated families, respectively. In total, three BRCA1 founder mutations (c.5266dupC; c.3700_3704del5; p.Cys61Gly) and two BRCA2 founder mutations (c.7913_7917del5; c.8537_8538del2) represent 52% of all detected mutations in Czech high-risk probands. Nine putative splice-site variants were evaluated at the cDNA level. Three splice-site variants in BRCA1 (c.302-3C>G; c.4185G>A and c.4675+1G>A) and six splice-site variants in BRCA2 (c.475G>A; c.476-2>G; c.7007G>A; c.8755-1G>A; c.9117+2T>A and c.9118-2A>G) were demonstrated to result in aberrant transcripts and are considered as deleterious mutations. Conclusion This study represents an evaluation of deleterious genetic variants in the BRCA1 and 2 genes in the Czech population. The classification of several splice-site variants as true pathogenic mutations may prove useful for genetic counselling of families with high risk of breast and ovarian cancer. PMID:18489799

  14. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries

    PubMed Central

    Kwong, Ava; Shin, Vivian Y; Ho, John C W; Kang, Eunyoung; Nakamura, Seigo; Teo, Soo-Hwang; Lee, Ann S G; Sng, Jen-Hwei; Ginsburg, Ophira M; Kurian, Allison W; Weitzel, Jeffrey N; Siu, Man-Ting; Law, Fian B F; Chan, Tsun-Leung; Narod, Steven A; Ford, James M; Ma, Edmond S K; Kim, Sung-Won

    2015-01-01

    Approximately 5%–10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer. PMID:26187060

  15. Comprehensive spectrum of BRCA1 and BRCA2 deleterious mutations in breast cancer in Asian countries.

    PubMed

    Kwong, Ava; Shin, Vivian Y; Ho, John C W; Kang, Eunyoung; Nakamura, Seigo; Teo, Soo-Hwang; Lee, Ann S G; Sng, Jen-Hwei; Ginsburg, Ophira M; Kurian, Allison W; Weitzel, Jeffrey N; Siu, Man-Ting; Law, Fian B F; Chan, Tsun-Leung; Narod, Steven A; Ford, James M; Ma, Edmond S K; Kim, Sung-Won

    2016-01-01

    Approximately 5%-10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer.

  16. Genomic rearrangement screening of the BRCA1 from seventy Iranian high-risk breast cancer families

    PubMed Central

    Sedghi, Maryam; Esfandiari, Elham; Fazel-Najafabadi, Esmat; Salehi, Mansoor; Salavaty, Abbas; Fattahpour, Shirin; Dehghani, Leila; Nouri, Nayerossadat; Mokarian, Fariborz

    2016-01-01

    Background: The second leading cause of cancer deaths in women is breast cancer. Germline mutations in susceptibility breast cancer gene BRCA1 increase the lifetime risk of breast cancer. Eighty-one large genomic rearrangements (LGRs) have been reported up to date in BRCA1 gene, and evaluation of these rearrangements helps with precise risk assessment in high-risk individuals. In this study, we have investigated LGRs in BRCA1 among Iranian high-risk breast cancer families. Materials and Methods: Seventy patients with breast cancer who were identified negative for point mutations or small deletions/insertions of BRCA1 gene were selected. Deletions and duplications of BRCA1 gene were evaluated using multiplex ligation-dependent probe amplification (MLPA). Results: Two deletions, deletion of exons 1A/1B-2 and exon 24, were detected in two patients with breast cancer. The former alteration was found in a woman with a strong family history of breast cancer while the latter one was detected in a woman with early onset of breast cancer. Conclusion: Although our data confirm that LGRs in BRCA1 comprise a relatively small proportion of mutations in hereditary breast cancer in the Iranian population, MLPA analysis might be considered for screening of LGRs in high-risk individuals. It is worth to note that our results are consistent with previous studies in various Asian and European countries. PMID:28163741

  17. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155

    PubMed Central

    Chang, Suhwan; Wang, Rui-Hong; Akagi, Keiko; Kim, Kyung-Ae; Martin, Betty K; Cavallone, Luca; Haines, Diana C; Basik, Mark; Mai, Phuong; Poggi, Elizabeth; Isaacs, Claudine; Looi, Lai M; Mun, Kein S; Greene, Mark H; Byers, Stephen W; Teo, Soo H; Deng, Chu-Xia; Sharan, Shyam K

    2012-01-01

    BRCA1, a well-known tumor suppressor with multiple interacting partners, is predicted to have diverse biological functions. However, so far its only well-established role is in the repair of damaged DNA and cell cycle regulation. In this regard, the etiopathological study of low-penetrant variants of BRCA1 provides an opportunity to uncover its other physiologically important functions. Using this rationale, we studied the R1699Q variant of BRCA1, a potentially moderate-risk variant, and found that it does not impair DNA damage repair but abrogates the repression of microRNA-155 (miR-155), a bona fide oncomir. Mechanistically, we found that BRCA1 epigenetically represses miR-155 expression via its association with HDAC2, which deacetylates histones H2A and H3 on the miR-155 promoter. We show that overexpression of miR-155 accelerates whereas the knockdown of miR-155 attenuates the growth of tumor cell lines in vivo. Our findings demonstrate a new mode of tumor suppression by BRCA1 and suggest that miR-155 is a potential therapeutic target for BRCA1-deficient tumors. PMID:21946536

  18. A BRCA1-interacting lncRNA regulates homologous recombination

    PubMed Central

    Sharma, Vivek; Khurana, Simran; Kubben, Nard; Abdelmohsen, Kotb; Oberdoerffer, Philipp; Gorospe, Myriam; Misteli, Tom

    2015-01-01

    Long non-coding RNAs (lncRNAs) are important players in diverse biological processes. Upon DNA damage, cells activate a complex signaling cascade referred to as the DNA damage response (DDR). Using a microarray screen, we identify here a novel lncRNA, DDSR1 (DNA damage-sensitive RNA1), which is induced upon DNA damage. DDSR1 induction is triggered in an ATM-NF-κB pathway-dependent manner by several DNA double-strand break (DSB) agents. Loss of DDSR1 impairs cell proliferation and DDR signaling and reduces DNA repair capacity by homologous recombination (HR). The HR defect in the absence of DDSR1 is marked by aberrant accumulation of BRCA1 and RAP80 at DSB sites. In line with a role in regulating HR, DDSR1 interacts with BRCA1 and hnRNPUL1, an RNA-binding protein involved in DNA end resection. Our results suggest a role for the lncRNA DDSR1 in modulating DNA repair by HR. PMID:26412854

  19. A BRCA1-interacting lncRNA regulates homologous recombination.

    PubMed

    Sharma, Vivek; Khurana, Simran; Kubben, Nard; Abdelmohsen, Kotb; Oberdoerffer, Philipp; Gorospe, Myriam; Misteli, Tom

    2015-11-01

    Long non-coding RNAs (lncRNAs) are important players in diverse biological processes. Upon DNA damage, cells activate a complex signaling cascade referred to as the DNA damage response (DDR). Using a microarray screen, we identify here a novel lncRNA, DDSR1 (DNA damage-sensitive RNA1), which is induced upon DNA damage. DDSR1 induction is triggered in an ATM-NF-κB pathway-dependent manner by several DNA double-strand break (DSB) agents. Loss of DDSR1 impairs cell proliferation and DDR signaling and reduces DNA repair capacity by homologous recombination (HR). The HR defect in the absence of DDSR1 is marked by aberrant accumulation of BRCA1 and RAP80 at DSB sites. In line with a role in regulating HR, DDSR1 interacts with BRCA1 and hnRNPUL1, an RNA-binding protein involved in DNA end resection. Our results suggest a role for the lncRNA DDSR1 in modulating DNA repair by HR.

  20. Radiosensitivity to high energy iron ions is influenced by heterozygosity for Atm, Rad9 and Brca1

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Smilenov, L. B.; Lieberman, H. B.; Ludwig, T.; Hall, E. J.

    2010-09-01

    Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1 GeV/ n56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose-response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation.

  1. RADIOSENSITIVITY TO HIGH ENERGY IRON IONS IS INFLUENCED BY HETEROZYGOSITY for ATM, RAD9 and BRCA1

    PubMed Central

    Zhou, G.; Smilenov, L. B.; Lieberman, H. B.; Ludwig, T.; Hall, E. J.

    2013-01-01

    Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1GeV/n 56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy Iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose-response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation. PMID:24431481

  2. The carboxyl-terminal of BRCA1 is required for subnuclear assembly of RAD51 after treatment with cisplatin but not ionizing radiation in human breast and ovarian cancer cells

    SciTech Connect

    Zhou Chenyi; Huang Peng; Liu Jinsong . E-mail: jliu@mdanderson.org

    2005-10-28

    BRCA1 plays an important role in maintaining genomic stability through its involvement in DNA repair. Although it is known that BRCA1 and RAD51 form distinct DNA repair subnuclear complexes, or foci, following environmental insults to the DNA, the role of BRCA1 in this process remains to be characterized. The purpose of the study was therefore to determine the role of BRCA1 in the formation of RAD51 foci following treatment with cisplatin and ionizing radiation. We found that although a functional BRCA1 is required for the subnuclear assembly of BRCA1 foci following treatment with either ionizing radiation or cisplatin, a functional BRCA1 is required for RAD51 foci to form following treatment with cisplatin but not with ionizing radiation. Similar results were obtained in SKOV-3 cells when the level of BRCA1 expression was knocked down by stable expression of a retrovirus-mediated small-interfering RNA against BRCA1. We also found that the carboxyl-terminal of BRCA1 contains uncharacterized phosphorylation sites that are responsive to cisplatin. The functional BRCA1 is also required for breast and ovarian cancer cells to mount resistance to cisplatin. These results suggest that the carboxyl-terminal of BRCA1 is required for the cisplatin-induced recruitment of RAD51 to the DNA-damage site, which may contribute to cisplatin resistance.

  3. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    SciTech Connect

    Wang, Xiaozhen; Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha; Shao, Genze

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  4. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    SciTech Connect

    Wang, Xiaozhen; Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha; Shao, Genze

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  5. Two PALB2 germline mutations found in both BRCA1+ and BRCAx familial breast cancer.

    PubMed

    Downs, Bradley; Kim, Yeong C; Xiao, Fengxia; Snyder, Carrie; Chen, Peixian; Fleissner, Elizabeth A; Becirovic, Dina; Wen, Hongxiu; Sherman, Simon; Cowan, Kenneth H; Lynch, Henry T; Wang, San Ming

    2015-05-01

    Partner and localizer of BRCA2 (PALB2), plays an important functional role in DNA damage repair. Recent studies indicate that germline mutations in PALB2 predispose individuals to a high risk of developing familial breast cancer. Therefore, comprehensive identification of PALB2 germline mutations is potentially important for understanding their roles in tumorigenesis and for testing their potential utility as clinical targets. Most of the previous studies of PALB2 have focused on familial breast cancer cases with normal/wild-type BRCA1 and BRCA2 (BRCAx). We hypothesize that PALB2 genetic mutations also exist in individuals with BRCA mutations (BRCA+). To test this hypothesis, PALB2 germline mutations were screened in 107 exome data sets collected from familial breast cancer families who were either BRCA1+ or BRCAx. Two novel heterozygous mutations predicted to alter the function of PALB2 were identified (c.2014G>C, p.E672Q and c.2993G>A, p.G998E). Notably, both of these mutations co-existed in BRCA1+ and BRCA1x families. These studies show that mutations in PALB2 can occur independent of the status of BRCA1 mutations, and they highlight the importance to include BRCA1+ families in PALB2 mutation screens.

  6. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - A proteomics study.

    PubMed

    Gau, David M; Lesnock, Jamie L; Hood, Brian L; Bhargava, Rohit; Sun, Mai; Darcy, Kathleen; Luthra, Soumya; Chandran, Uma; Conrads, Thomas P; Edwards, Robert P; Kelley, Joseph L; Krivak, Thomas C; Roy, Partha

    2015-01-01

    Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1(+/+) and BRCA1(null) status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells.

  7. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility – A proteomics study

    PubMed Central

    Gau, David M; Lesnock, Jamie L; Hood, Brian L; Bhargava, Rohit; Sun, Mai; Darcy, Kathleen; Luthra, Soumya; Chandran, Uma; Conrads, Thomas P; Edwards, Robert P; Kelley, Joseph L; Krivak, Thomas C; Roy, Partha

    2015-01-01

    Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1+/+ and BRCA1null status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells. PMID:25927284

  8. BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation.

    PubMed

    Isono, Mayu; Niimi, Atsuko; Oike, Takahiro; Hagiwara, Yoshihiko; Sato, Hiro; Sekine, Ryota; Yoshida, Yukari; Isobe, Shin-Ya; Obuse, Chikashi; Nishi, Ryotaro; Petricci, Elena; Nakada, Shinichiro; Nakano, Takashi; Shibata, Atsushi

    2017-01-10

    BRCA1 promotes homologous recombination (HR) by activating DNA-end resection. By contrast, 53BP1 forms a barrier that inhibits DNA-end resection. Here, we show that BRCA1 promotes DNA-end resection by relieving the 53BP1-dependent barrier. We show that 53BP1 is phosphorylated by ATM in S/G2 phase, promoting RIF1 recruitment, which inhibits resection. 53BP1 is promptly dephosphorylated and RIF1 released, despite remaining unrepaired DNA double-strand breaks (DSBs). When resection is impaired by CtIP/MRE11 endonuclease inhibition, 53BP1 phosphorylation and RIF1 are sustained due to ongoing ATM signaling. BRCA1 depletion also sustains 53BP1 phosphorylation and RIF1 recruitment. We identify the phosphatase PP4C as having a major role in 53BP1 dephosphorylation and RIF1 release. BRCA1 or PP4C depletion impairs 53BP1 repositioning, EXO1 recruitment, and HR progression. 53BP1 or RIF1 depletion restores resection, RAD51 loading, and HR in PP4C-depleted cells. Our findings suggest that BRCA1 promotes PP4C-dependent 53BP1 dephosphorylation and RIF1 release, directing repair toward HR.

  9. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    SciTech Connect

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M. . E-mail: wael_elshamy@dfci.harvard.edu

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level in ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.

  10. The c.*229C > T gene polymorphism in 3'UTR region of the topoisomerase IIβ binding protein 1 gene and LOH in BRCA1/2 regions and their effect on the risk and progression of human laryngeal carcinoma.

    PubMed

    Starska, Katarzyna; Forma, Ewa; Nowacka-Zawisza, Maria; Lewy-Trenda, Iwona; Ciesielski, Piotr; Pietruszewska, Wioletta; Skóra, Michał; Bryś, Magdalena

    2016-04-01

    Topoisomerase IIβ binding protein 1 (TopBP1), a multiple-BRCT-domain, protein plays crucial roles in chromosome replication, DNA damage repair, apoptosis, and cell cycle checkpoint signalling. The aim of this study was to identify five SNPs at loci potentially located in the 3'UTR region of the TopBP1 gene (rs185903567, rs116645643, rs115160714, rs116195487, rs112843513), their relationship with the risk of squamous cell laryngeal cancer (SCLC), tumor invasiveness, and prognosis. Genotyping was performed in 323 genetically unrelated individuals with SCLC and 418 randomly selected healthy volunteers. Allele-specific TopBP1 mRNA and protein expressions were determined by using real-time PCR and Western blotting techniques, respectively. LOH in BRCA1/BRCA2 was determined by using microsatellite markers. Compared to homozygous common allele carriers, heterozygosity for the T variant was associated with increased risk of SCLC (adjusted odds ratio [OR] = 9.83, 95 % confidence interval [CI]: 3.12-22.16, p dominant < 0.0001). The presence of risk allele at rs115160714 TopBP1 determined a higher incidence of nodal metastases (OR = 7.98, 95 % CI: 3.94-16.00, p = 0.001) and higher tumor grade (OR = 6.48, 95 % CI: 0.86-48.01, p = 0.03). The heterozygotes displayed diffuse tumor growth with no distinct borderline (OR = 3.10, 95 % Cl: 0.92-10.62, p = 0.049) and higher depth of invasion (OR = 2.66, 95 % Cl: 0.78-9.03, p = 0.04). Relationships were also identified between TopBP1 mRNA/protein expression and overall survival (p < 0.0001). The incidence of LOH in BRCA1/BRCA2 was significantly related to higher tumor grade and TFG (p < 0.05). The results of this study suggest that rs115160714 TopBP1 may be a genetic marker of etiology and progression in laryngeal cancer.

  11. Synthetic lethality between CCNE1 amplification and loss of BRCA1.

    PubMed

    Etemadmoghadam, Dariush; Weir, Barbara A; Au-Yeung, George; Alsop, Kathryn; Mitchell, Gillian; George, Joshy; Davis, Sally; D'Andrea, Alan D; Simpson, Kaylene; Hahn, William C; Bowtell, David D L

    2013-11-26

    High-grade serous ovarian cancers (HGSCs) are characterized by a high frequency of TP53 mutations, BRCA1/2 inactivation, homologous recombination dysfunction, and widespread copy number changes. Cyclin E1 (CCNE1) gene amplification has been reported to occur independently of BRCA1/2 mutation, and it is associated with primary treatment failure and reduced patient survival. Insensitivity of CCNE1-amplified tumors to platinum cross-linking agents may be partly because of an intact BRCA1/2 pathway. Both BRCA1/2 dysfunction and CCNE1 amplification are known to promote genomic instability and tumor progression. These events may be mutually exclusive, because either change provides a path to tumor development, with no selective advantage to having both mutations. Using data from a genome-wide shRNA synthetic lethal screen, we show that BRCA1 and members of the ubiquitin pathway are selectively required in cancers that harbor CCNE1 amplification. Furthermore, we show specific sensitivity of CCNE1-amplified tumor cells to the proteasome inhibitor bortezomib. These findings provide an explanation for the observed mutual exclusivity of CCNE1 amplification and BRCA1/2 loss in HGSC and suggest a unique therapeutic approach for treatment-resistant CCNE1-amplified tumors.

  12. The spectrum of BRCA1 and BRCA2 mutations in breast cancer patients in the Bahamas.

    PubMed

    Akbari, M R; Donenberg, T; Lunn, J; Curling, D; Turnquest, T; Krill-Jackson, E; Zhang, S; Narod, S A; Hurley, J

    2014-01-01

    We sought to identify the full range of founder mutations in BRCA1 and BRCA2 in the Bahamas and to estimate the proportion of all BRCA1 and BRCA2 mutations that are accounted for by founder mutations. We studied 214 Bahamian women with invasive breast cancer, unselected for age or family history. A founder mutation had previously been identified in 49 patients. We conducted full sequencing of the BRCA1 and BRCA2 genes and multiplex ligation-dependent probe amplification (MLPA) for 156 patients. A novel founder mutation in BRCA2 (exon 17 818delA) was seen in four different patients and five other unique mutations in BRCA1 and BRCA2, including a large deletion (exons 8-9) in BRCA1. In total, a mutation was seen in 58 of the 214 patients (27%); 92% of carriers carried one of the seven founder mutations. Approximately 27% of unselected cases of breast cancer in the Bahamian population are attributable to a mutation in BRCA1 or BRCA2, a prevalence which far exceeds that of any other country. The majority of women who carry a mutation in the Bahamas, carry one of the seven founder mutations, making it possible to offer genetic testing to all women at risk for breast cancer in the Bahamas.

  13. Analysis of alternative lengthening of telomere markers in BRCA1 defective cells

    PubMed Central

    Kargaran, Parisa K.; Yasaei, Hemad; Anjomani‐Virmouni, Sara; Mangiapane, Giovanna

    2016-01-01

    Telomeres are specialized structures responsible for the chromosome end protection. Previous studies have revealed that defective BRCA1 may lead to elevated telomere fusions and accelerated telomere shortening. In addition, BRCA1 associates with promyelocytic leukemia (PML) bodies in alternative lengthening of telomeres (ALTs) positive cells. We report here elevated recombination rates at telomeres in cells from human BRCA1 mutation carriers and in mouse embryonic stem cells lacking both copies of functional Brca1. An increased recombination rate at telomeres is one of the signs of ALT. To investigate this possibility further we employed the C‐circle assay that identifies ALT unequivocally. Our results revealed elevated levels of ALT activity in Brca1 defective mouse cells. Similar results were obtained when the same cells were assayed for the presence of another ALT marker, namely the frequency of PML bodies. These results suggest that BRCA1 may act as a repressor of ALT. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:27295426

  14. Breed-related differences in altered BRCA1 expression, phenotype and subtype in malignant canine mammary tumors.

    PubMed

    Im, Keum-Soon; Kim, Il-Hwan; Kim, Na-Hyun; Lim, Ha-Young; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2013-03-01

    BRCA1 is a high-penetrance breast cancer susceptibility gene and BRCA1-associated breast cancer has a high familial prevalence that is more common among certain populations of humans. A similar high prevalence also exists for canine mammary tumors (CMTs) and the objective of this study was to determine the breed-related differences in malignant CMTs. Comparative analyses of the expression of various prognostic factors for CMTs, including BRCA1, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) were conducted on 139 malignant CMT cases from five breeds with the highest prevalence of CMTs in Korea. Significant breed-related differences were observed in the expression of BRCA1 (P=0.003), histological grade (P=0.038), and extensive lymphatic invasion (P=0.042). The Shih Tzu breed had the highest proportion of dogs with malignant CMT and strong overexpression of BRCA1. Cytoplasmic and membranous expression of BRCA1 was associated with the ER negative (P=0.004), PR negative (P=0.046), and triple negative (ER, PR, and HER-2 negative; P=0.016) phenotype and the basal-like molecular subtype (P=0.019) in Shih Tzu dogs. Since these features are similar to BRCA1-related human breast cancer, dogs with BRCA1-associated CMT, particularly Shih Tzu dogs, may serve as a suitable spontaneous model, although additional molecular studies are needed.

  15. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues.

    PubMed

    Marquis, S T; Rajan, J V; Wynshaw-Boris, A; Xu, J; Yin, G Y; Abel, K J; Weber, B L; Chodosh, L A

    1995-09-01

    We have examined the developmental expression of the murine breast and ovarian cancer susceptibility gene, Brca1, to investigate its role in the control of cell growth and differentiation. Specifically, we have analysed Brca1 expression during embryonic development, in adult tissues, and during postnatal mammary gland development, particularly in response to ovarian hormones. Our results suggest that Brca1 is expressed in rapidly proliferating cell types undergoing differentiation. In the mammary gland, Brca1 expression is induced during puberty, pregnancy, and following treatment of ovariectomized animals with 17 beta-estradiol and progesterone. These observations imply that Brca1 is involved in the processes of proliferation and differentiation in multiple tissues, notably in the mammary gland in response to ovarian hormones.

  16. Double PALB2 and BRCA1/BRCA2 mutation carriers are rare in breast cancer and breast-ovarian cancer syndrome families from the French Canadian founder population

    PubMed Central

    ANCOT, FRÉDÉRIC; ARCAND, SUZANNA L.; MES-MASSON, ANNE-MARIE; PROVENCHER, DIANE M.; TONIN, PATRICIA N.

    2015-01-01

    French Canadian families with breast cancer and breast-ovarian cancer syndrome harbor specific BRCA1, BRCA2 and PALB2 germline mutations, which have been attributed to common founders. Mutations in these genes confer an increased risk to breast and ovarian cancers, and have been identified to play a role in and directly interact with the common homologous recombination DNA repair pathways. Our previous study described the case of a female diagnosed with breast cancer at 45 years old, who harbored the PALB2:c.2323C>T [p.Q775X] and BRCA2:c.9004G>A [p.E3002K] germline mutations, which have been found to recur in the French Canadian cancer families. As the frequency of double heterozygous carriers of breast-ovarian cancer susceptibility alleles is unknown, and due to the possibility that there may be implications for genetic counseling and management for these carriers, the present study investigated the co-occurrence of BRCA1/BRCA2 and PALB2 mutations in the French Canadian cancer families. The PALB2:c.2323C>T [p.Q775X] mutation, which is the only PALB2 mutation to have been identified in French Canadian cancer families, was screened in 214 breast cancer cases and 22 breast-ovarian cancer cases from 114 BRCA1/BRCA2 mutation-positive French Canadian breast cancer (n=61) and breast-ovarian cancer (n=53) families using a tailored polymerase chain reaction-based TaqMan® SNP Genotyping Assay. No additional PALB2:c.2323C>T [p.Q775X] mutation carriers were identified among the BRCA1/BRCA2 mutation carriers. The results suggest that carriers of the PALB2:c.2323C>T [p.Q775X] mutation rarely co-occur in French Canadian breast cancer and breast-ovarian cancer families harboring BRCA1 or BRCA2 mutations. PMID:26137147

  17. Double PALB2 and BRCA1/BRCA2 mutation carriers are rare in breast cancer and breast-ovarian cancer syndrome families from the French Canadian founder population.

    PubMed

    Ancot, Frédéric; Arcand, Suzanna L; Mes-Masson, Anne-Marie; Provencher, Diane M; Tonin, Patricia N

    2015-06-01

    French Canadian families with breast cancer and breast-ovarian cancer syndrome harbor specific BRCA1, BRCA2 and PALB2 germline mutations, which have been attributed to common founders. Mutations in these genes confer an increased risk to breast and ovarian cancers, and have been identified to play a role in and directly interact with the common homologous recombination DNA repair pathways. Our previous study described the case of a female diagnosed with breast cancer at 45 years old, who harbored the PALB2:c.2323C>T [p.Q775X] and BRCA2:c.9004G>A [p.E3002K] germline mutations, which have been found to recur in the French Canadian cancer families. As the frequency of double heterozygous carriers of breast-ovarian cancer susceptibility alleles is unknown, and due to the possibility that there may be implications for genetic counseling and management for these carriers, the present study investigated the co-occurrence of BRCA1/BRCA2 and PALB2 mutations in the French Canadian cancer families. The PALB2:c.2323C>T [p.Q775X] mutation, which is the only PALB2 mutation to have been identified in French Canadian cancer families, was screened in 214 breast cancer cases and 22 breast-ovarian cancer cases from 114 BRCA1/BRCA2 mutation-positive French Canadian breast cancer (n=61) and breast-ovarian cancer (n=53) families using a tailored polymerase chain reaction-based TaqMan® SNP Genotyping Assay. No additional PALB2:c.2323C>T [p.Q775X] mutation carriers were identified among the BRCA1/BRCA2 mutation carriers. The results suggest that carriers of the PALB2:c.2323C>T [p.Q775X] mutation rarely co-occur in French Canadian breast cancer and breast-ovarian cancer families harboring BRCA1 or BRCA2 mutations.

  18. Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design

    PubMed Central

    Huang, Yu-ming M.; Kizhake, Smitha; Natarajan, Amarnath; Chang, Chia-en A.

    2016-01-01

    Inhibition of the protein-protein interaction (PPI) mediated by breast-cancer-gene 1 C-terminal (BRCT) is an attractive strategy to sensitize breast and ovarian cancers to chemotherapeutic agents that induce DNA damage. Such inhibitors could also be used for studies to understand the role of this PPI in DNA damage response. However, design of BRCT inhibitors is challenging because of the inherent flexibility associated with this domain. Several studies identified short phosphopeptides as tight BRCT binders. Here we investigated the thermodynamic properties of 18 phosphopeptides or peptide with phosphate mimic and three compounds with phosphate groups binding to BRCT to understand promiscuous molecular recognition and guide inhibitor design. We performed molecular dynamics (MD) simulations to investigate the interactions between inhibitors and BRCT and their dynamic behavior in the free and bound states. MD simulations revealed the key role of loops in altering the shape and size of the binding site to fit various ligands. The mining minima (M2) method was used for calculating binding free energy to explore the driving forces and the fine balance between configuration entropy loss and enthalpy gain. We designed a rigidified ligand, which showed unfavorable experimental binding affinity due to weakened enthalpy. This was because it lacked the ability to rearrange itself upon binding. Investigation of another phosphate group containing compound, C1, suggested that the entropy loss can be reduced by preventing significant narrowing of the energy well and introducing multiple new compound conformations in the bound states. From our computations, we designed an analog of C1 that introduced new intermolecular interactions to strengthen attractions while maintaining small entropic penalty. This study shows that flexible compounds do not always encounter larger entropy penalty, compared with other more rigid binders, and highlights a new strategy for inhibitor design. PMID

  19. Frequent somatic loss of BRCA1 in breast tumours from BRCA2 germ-line mutation carriers and vice versa

    PubMed Central

    Staff, S; Isola, J J; Johannsson, O; Borg, Å; Tanner, M M

    2001-01-01

    Breast cancer susceptibility genes BRCA1 and BRCA2 are tumour suppressor genes the alleles of which have to be inactivated before tumour development occurs. Hereditary breast cancers linked to germ-line mutations of BRCA1 and BRCA2 genes almost invariably show allelic imbalance (AI) at the respective loci. BRCA1 and BRCA2 are believed to take part in a common pathway in maintenance of genomic integrity in cells. We carried out AI and fluorescence in situ hybridization (FISH) analyses of BRCA2 in breast tumours from germ-line BRCA1 mutation carriers and vice versa. For comparison, 14 sporadic breast tumours were also studied. 8 of the 11 (73%) informative BRCA1 mutation tumours showed AI at the BRCA2 locus. 53% of these tumours showed a copy number loss of the BRCA2 gene by FISH. 5 of the 6 (83%) informative BRCA2 mutation tumours showed AI at the BRCA1 locus. Half of the tumours (4/8) showed a physical deletion of the BRCA1 gene by FISH. Combined allelic loss of both BRCA1 and BRCA2 gene was seen in 12 of the 17 (71%) informative hereditary tumours, whereas copy number losses of both BRCA genes was seen in only 4/14 (29%) sporadic control tumours studied by FISH. In conclusion, the high prevalence of AI at BRCA1 in BRCA2 mutation tumours and vice versa suggests that somatic events occurring at the other breast cancer susceptibility gene locus may be selected in the cancer development. The mechanism resulting in AI at these loci seems more complex than a physical deletion.   http://www.bjcancer.com © 2001 Cancer Research Campaign PMID:11710835

  20. BRCA1 and BRCA2 Mutations

    MedlinePlus

    ... mutation. Should You Be Tested? If you answer “yes” to any of the following questions, genetic risk assessment is ... known BRCA1 or BRCA2 mutation? If you answer “yes” to any of the following questions, genetic risk assessment may ...

  1. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from medellín, Colombia

    PubMed Central

    2014-01-01

    Background Approximately 5% of all breast cancers can be attributed to a mutation in the BRCA1 or BRCA2 gene. The genetic component of breast cancer in Colombia has been, for the most part, studied on cases from the Bogota region. Five different founder mutations were in two studies of breast cancer patients in the Bogota region. It is important that the frequency of mutations be established among unselected cases of breast cancer of other regions of Colombia in order to estimate the genetic burden of this cancer in Colombia and to plan genetic services. The aim of this study was to establish the mutation frequencies of the BRCA genes in breast cancer patients unselected for family history or age, from Medellin, Colombia. Methods We enrolled 280 unselected women with breast cancer from a large public hospital in Medellin, Colombia. A detailed family history from each patient and a blood sample was obtained and processed for DNA analysis. Mutations in BRCA1 and BRCA2 were sought using a combination of techniques including a panel of recurrent Hispanic BRCA mutations which consists of fifty BRCA1 mutations and forty-six BRCA2 mutations, including the five recurrent Colombian BRCA mutations. All mutations were confirmed by direct sequencing. Results Genetic testing was successfully completed for 244 of the 280 cases (87%). Among the 244 cases, three deleterious mutations were identified (two in BRCA1 and one in BRCA2) representing 1.2% of the total. The average age of breast cancer in the mutation-positive cases was 34 years. The two BRCA1 mutations were known founder mutations (3450del4 in exon 11 and A1708E in exon 18). The BRCA2 mutation was in exon 11 (5844del5) and has not been previously reported in individuals of Colombian descent. Among the three mutation-positive families was a breast cancer family and two families with no history of breast or ovarian cancer. Conclusion The frequency of BRCA mutations in unselected breast cancer cases from the Medellin region

  2. Innovative Approaches for Determining the Role of BRCA2 and BRCA1 in DNA Recombinational Repair: Examination of Genetic Instability and Possible Therapeutic Uses

    DTIC Science & Technology

    2000-12-01

    et al., 2000; Moynahan et al., 1999), Rad54 (Dronkert et al., 2000; Tan et al., 1999), and the Rad5 1-related protein XRCC3 (Bishop et al., 1998...Bhattacharyya, A., Calderone, C., Beckett, M., Weichselbaum, R. R., and Shinohara, A. (1998). Xrcc3 is required for assembly of Rad5l complexes in...forks. Nature 404, 37-41. Cui, X., Brenneman, M., Meyne, J., Oshimura, M., Goodwin, E. H., and Chen, D. J. (1999). The XRCC2 and XRCC3 repair genes are

  3. Genetic, functional, and histopathological evaluation of two C‐terminal BRCA1 missense variants

    PubMed Central

    Lovelock, P K; Healey, S; Au, W; Sum, E Y M; Tesoriero, A; Wong, E M; Hinson, S; Brinkworth, R; Bekessy, A; Diez, O; Izatt, L; Solomon, E; Jenkins, M; Renard, H; Hopper, J; Waring, P; Investigators, kConFab; Tavtigian, S V; Goldgar, D; Lindeman, G J; Visvader, J E; Couch, F J; Henderson, B R; Southey, M; Chenevix‐Trench, G; Spurdle, A B; Brown, M A

    2006-01-01

    Background The vast majority of BRCA1 missense sequence variants remain uncharacterised for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. Objective To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. Methods and Results Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. Conclusions A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as “benign”. In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through

  4. Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1

    PubMed Central

    Feng, Lin; Li, Nan; Li, Yujing; Wang, Jiadong; Gao, Min; Wang, Wenqi; Chen, Junjie

    2015-01-01

    DNA damage response mediator protein 53BP1 is a key regulator of non-homologous end-joining (NHEJ) repair. 53BP1 protects DNA broken ends from resection by recruiting two downstream factors, RIF1 (RAP1-interacting factor 1) and PTIP (Pax transactivation domain-interacting protein), to double-stranded breaks (DSBs) via ATM (ataxia telangiectasia mutated)-mediated 53BP1 phosphorylation, and competes with BRCA1-mediated homologous recombination (HR) repair in G1 phase. In contrast, BRCA1 antagonizes 53BP1-direct NHEJ repair in S/G2 phases. We and others have found that BRCA1 prevents the translocation of RIF1 to DSBs in S/G2 phases; however, the underlying mechanism remains unclear. Here we show that efficient ATM-dependent 53BP1 phosphorylation is restricted to the G1 phase of the cell cycle, as a consequence RIF1 and PTIP accumulation at DSB sites only occur in G1 phase. Mechanistically, both BRCT and RING domains of BRCA1 are required for the inhibition of 53BP1 phosphorylation in S and G2 phases. Thus, our findings reveal how BRCA1 antagonizes 53BP1 signaling to ensure that HR repair is the dominant repair pathway in S/G2 phases. PMID:27462418

  5. Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation.

    PubMed

    Podszywalow-Bartnicka, Paulina; Wolczyk, Magdalena; Kusio-Kobialka, Monika; Wolanin, Kamila; Skowronek, Krzysztof; Nieborowska-Skorska, Margaret; Dasgupta, Yashodhara; Skorski, Tomasz; Piwocka, Katarzyna

    2014-01-01

    BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3'UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins - HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3'UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 -positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in "BRCAness" CML and BCR-ABL1 -positive ALL cells.

  6. Rapid and cost-effective high-throughput sequencing for identification of germline mutations of BRCA1 and BRCA2.

    PubMed

    Ahmadloo, Somayeh; Nakaoka, Hirofumi; Hayano, Takahide; Hosomichi, Kazuyoshi; You, Hua; Utsuno, Emi; Sangai, Takafumi; Nishimura, Motoi; Matsushita, Kazuyuki; Hata, Akira; Nomura, Fumio; Inoue, Ituro

    2017-02-09

    Genetic testing for breast cancer predisposing genes, BRCA1 and BRCA2, can take advantage for early identification of carriers with pathogenic germline mutations. However, conventional approaches based on Sanger sequencing are laborious and expensive. Next-generation sequencing technology has a great impact on investigation of medical genomics and now applied clinical genetics. We provide a protocol based on a pool and capture method followed by high-throughput sequencing, which realizes a rapid, high-quality, high-accuracy and low-cost testing for mutations in BRCA1 and BRCA2 by using small amounts of input DNA. Custom capture probes were designed for 195 kb regions encompassing the entire BRCA1 and BRCA2. DNA libraries of 96 samples with distinct indices were pooled before hybridizing to the capture probes, which largely reduced labor and cost. The captured library was run on the Illumina MiSeq sequencer. We applied the method to 384 Japanese individuals including 11 patients with breast cancer whose mutation statuses had been determined by standard clinical testing and 373 individuals from a general population. 99.99% of coding exons and their 20 bp flanking regions were covered with a minimum of 20 reads and the average depth was 179.5, supporting confident variant detection. The sequencing method rendered concordant results for 11 patients with breast cancer compared with the standard clinical testing including nine mutations in eight patients. Among 373 individuals from the general population, novel stop gain and frameshift deletion in BRCA2 were identified, which led to truncated protein and were most likely to be pathogenic. The result suggests the importance of a large-scale population-wide screening for carriers of mutations in these genes.Journal of Human Genetics advance online publication, 9 February 2017; doi:10.1038/jhg.2017.5.

  7. Spectrum of BRCA1/2 variants in 940 patients from Argentina including novel, deleterious and recurrent germline mutations: impact on healthcare and clinical practice.

    PubMed

    Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar

    2016-07-24

    BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements.Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described.

  8. [Germ-line mutation of BRCA1 in patients with breast and/or ovarian cancer in high risk families in Northern France].

    PubMed

    Peyrat, J P; Vennin, P; Hornez, L; Bonneterre, J

    1997-01-01

    The BRCA1 gene modification is responsible for an autosomal dominant syndrome of inherited early onset breast and/or ovarian cancer. This gene is estimated to account for almost half of inherited breast cancers and three quarters of inherited breast/ovarian cancers. This suggests that about 1 out of 500 women may carry BRCA1 mutation. The BRCA1 gene was isolated by positional cloning in 1994. More than 100 different mutations have been found in the germline of affected individuals. We looked by systematic sequencing at BRCA1 germline mutations in 36 patients treated at the Centre Oscar-Lambret for breast and/or ovarian cancer and that belonged to high risk families. We have found 24 mutations: 9 true mutations inducing modifications of the BRCA1 protein (BRCA1+), 5 mutations with unknown consequences on the BRCA1 protein and 10 mutations corresponding to polymorphisms that had been previously described. All the BRCA1+ cases had a HPG3 tumor. The median age of discovery and the receptor positivity percentage are lower in hereditary breast cancer than in the standard population of the breast cancers treated in our center. Consequently, BRCA1 mutations are associated to parameters thought to be of bad prognosis.

  9. Detection of BRCA1 and BRCA2 germline mutations in Japanese population using next-generation sequencing

    PubMed Central

    Hirotsu, Yosuke; Nakagomi, Hiroshi; Sakamoto, Ikuko; Amemiya, Kenji; Mochizuki, Hitoshi; Omata, Masao

    2015-01-01

    Tumor suppressor genes BRCA1 and BRCA2 are the two main breast and ovarian cancer susceptibility genes, and their genetic testing has been used to evaluate the risk of hereditary breast and ovarian cancer (HBOC). While several studies have reported the prevalence of BRCA1 and BRCA2 mutations in Japanese populations, there is insufficient information about deleterious mutations compared with western countries. Moreover, because many rare variants are found in BRCA1 and BRCA2, both of which encode large proteins, it is difficult to sequence all coding regions using the Sanger method for mutation detection. In this study, therefore, we performed next-generation sequencing (NGS) analysis of the entire coding regions of BRCA1 and BRCA2 in 135 breast and/or ovarian cancer patients. Deleterious BRCA1 and BRCA2 mutations were detected in 10 patients (7.4%) by NGS analysis. Of these, one mutation in BRCA1 and two in BRCA2 had not been reported previously. Furthermore, a BRCA2 mutation found in a proband was also identified in two unaffected relatives. These data suggest the utility of screening BRCA1 and BRCA2 mutations by NGS in clinical diagnosis. PMID:25802882

  10. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?

    PubMed Central

    Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth TS; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Investigators, kConFab; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A

    2007-01-01

    Introduction Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion

  11. BRCA1 Mutation Leads to Deregulated Ubc9 Levels which Triggers Proliferation and Migration of Patient-Derived High Grade Serous Ovarian Cancer and Triple Negative Breast Cancer Cells

    PubMed Central

    Xu, J; Footman, A; Qin, Y; Aysola, K; Black, S; Reddy, V; Singh, K; Grizzle, W; You, S; Moellering, D; Reddy, ES; Fu, Y; Rao, VN

    2016-01-01

    Women who carry a germline mutation in BRCA1 gene typically develop triple negative breast cancers (TNBC) and high grade serous ovarian cancers (HGSOC). Previously, we reported that wild type BRCA1 proteins, unlike the disease-associated mutant BRCA1 proteins to bind the sole sumo E2-conjugating enzyme Ubc9. In this study, we have used clinically relevant cell lines with known BRCA1 mutations and report the in-vivo association of BRCA1 and Ubc9 in normal mammary epithelial cells but not in BRCA1 mutant HGSOC and TNBC cells by immunofluorescence analysis. BRCA1-mutant HGSOC/TNBC cells and ovarian tumor tissues showed increased expression of Ubc9 compared to BRCA1 reconstituted HGSOC, normal mammary epithelial cells and matched normal ovarian tissues. Knockdown of Ubc9 expression resulted in decreased proliferation and migration of BRCA1 mutant TNBC and HGSOC cells. This is the first study demonstrating the functional link between BRCA1 mutation, high Ubc9 expression and increased migration of HGSOC and TNBC cells. High Ubc9 expression due to BRCA1 mutation may trigger an early growth and transformation advantage to normal breast and ovarian epithelial cells resulting in aggressive cancers. Future work will focus on studying whether Ubc9 expression could show a positive correlation with BRCA1 linked HGSOC and basal like TNBC phenotype. PMID:28164176

  12. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer

    PubMed Central

    Henneman, Linda; van Miltenburg, Martine H.; Michalak, Ewa M.; Braumuller, Tanya M.; Jaspers, Janneke E.; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J.; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-01-01

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics. PMID:26100884

  13. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer.

    PubMed

    Henneman, Linda; van Miltenburg, Martine H; Michalak, Ewa M; Braumuller, Tanya M; Jaspers, Janneke E; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-07-07

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.

  14. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden.

    PubMed

    Johannsson, O; Ostermeyer, E A; Håkansson, S; Friedman, L S; Johansson, U; Sellberg, G; Brøndum-Nielsen, K; Sele, V; Olsson, H; King, M C; Borg, A

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P<.001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers.

  15. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden.

    PubMed Central

    Johannsson, O.; Ostermeyer, E. A.; Håkansson, S.; Friedman, L. S.; Johansson, U.; Sellberg, G.; Brøndum-Nielsen, K.; Sele, V.; Olsson, H.; King, M. C.; Borg, A.

    1996-01-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P<.001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers. Images Figure 1a Figure 1b PMID:8644702

  16. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden

    SciTech Connect

    Johannsson, O.; Hakansson, S.; Johannson, U.

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P < .001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers. 28 refs., 3 figs., 4 tabs.

  17. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs

    PubMed Central

    Rottenberg, Sven; Jaspers, Janneke E.; Kersbergen, Ariena; van der Burg, Eline; Nygren, Anders O. H.; Zander, Serge A. L.; Derksen, Patrick W. B.; de Bruin, Michiel; Zevenhoven, John; Lau, Alan; Boulter, Robert; Cranston, Aaron; O'Connor, Mark J.; Martin, Niall M. B.; Borst, Piet; Jonkers, Jos

    2008-01-01

    Whereas target-specific drugs are available for treating ERBB2-overexpressing and hormone receptor-positive breast cancers, no tailored therapy exists for hormone receptor- and ERBB2-negative (“triple-negative”) mammary carcinomas. Triple-negative tumors account for 15% of all breast cancers and frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. The DNA-repair defects characteristic of BRCA1-deficient cells confer sensitivity to poly(ADP-ribose) polymerase 1 (PARP1) inhibition, which could be relevant to treatment of triple-negative tumors. To evaluate PARP1 inhibition in a realistic in vivo setting, we tested the PARP inhibitor AZD2281 in a genetically engineered mouse model (GEMM) for BRCA1-associated breast cancer. Treatment of tumor-bearing mice with AZD2281 inhibited tumor growth without signs of toxicity, resulting in strongly increased survival. Long-term treatment with AZD2281 in this model did result in the development of drug resistance, caused by up-regulation of Abcb1a/b genes encoding P-glycoprotein efflux pumps. This resistance to AZD2281 could be reversed by coadministration of the P-glycoprotein inhibitor tariquidar. Combination of AZD2281 with cisplatin or carboplatin increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents. Our results demonstrate in vivo efficacy of AZD2281 against BRCA1-deficient breast cancer and illustrate how GEMMs of cancer can be used for preclinical evaluation of novel therapeutics and for testing ways to overcome or circumvent therapy resistance. PMID:18971340

  18. The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers.

    PubMed

    Catucci, Irene; Verderio, Paolo; Pizzamiglio, Sara; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Ripamonti, Carla B; Pasini, Barbara; Barile, Monica; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Varesco, Liliana; Martayan, Aline; Riboni, Mirko; Volorio, Sara; Radice, Paolo; Peterlongo, Paolo

    2011-02-01

    The rs3834129 polymorphism, in the promoter of CASP8 gene, has been recently reported as associated with breast cancer risk in the general population, with the minor allele del having a protective effect. Some of the genetic variants found associated with breast cancer risk were reported as risk modifiers in individuals with mutations in BRCA1 and BRCA2 genes. Here, we tested the effect of the rs3834129 del allele on breast cancer risk in BRCA mutation carriers. The rs3834129 was genotyped in a total of 1,207 Italian female BRCA mutation carriers. Of these, 740 carried a BRCA1 mutation and 467 a BRCA2 mutation. Overall, 699 were affected with breast cancer and 508 were unaffected. When considering class 1 (loss-of-function) BRCA mutations, hazard ratios estimated by weighted multivariable Cox regression model, for individuals with at least one copy of the del allele, were 1.46 (95% confidence interval (CI): 1.08-1.99) for BRCA1 and BRCA2 mutation carriers combined, 1.74 (95% CI: 1.24-2.46) for BRCA1 mutation carriers, and 1.09 (95% CI: 0.66-1.80) for BRCA2 mutation carriers. These results suggest that the minor allele del of rs3834129 is associated under a dominant model with increased breast cancer risk in carriers of BRCA1 mutations but not in carriers of BRCA2 mutations.

  19. BRCA1 and microRNAs: emerging networks and potential therapeutic targets.

    PubMed

    Chang, Suhwan; Sharan, Shyam K

    2012-11-01

    BRCA1 is a well-known tumor suppressor implicated in familial breast and ovarian cancer. Since its cloning in 1994, numerous studies have established BRCA1's role in diverse cellular and biochemical processes, such as DNA damage repair, cell cycle control, and transcriptional regulation as well as ubiquitination. In addition, a number of recent studies have functionally linked this tumor suppressor to another important cellular regulator, microRNAs, which are short (19-22 nt) RNAs that were discovered in the nematode in 1993. Soon their presence and function were validated in mammals, and since then, the role of microRNAs has been actively investigated in almost all biological processes, including cancer. In this review, we will describe recent progress in the understanding of the BRCA1 function through microRNAs and the role of microRNAs in regulating BRCA1, with emphasis on the implication of these processes on the development and progression of cancer. We will also discuss the therapeutic potential of microRNA mimics or inhibitors of microRNAs to affect BRCA1 function.

  20. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru

    PubMed Central

    Abugattas, Julio; Llacuachaqui, Marcia; Allende, Yasser Sullcahuaman; Velásquez, Abelardo Arias; Velarde, Raúl; Cotrina, José; Garcés, Milko; León, Mauricio; Calderón, Gabriela; de la Cruz, Miguel; Mora, Pamela; Royer, Robert; Herzog, Josef; Weitzel, Jeffrey N; Narod, Steven A

    2014-01-01

    The prevalence of BRCA1 and BRCA2 mutations among breast cancer patients in Peru has not yet been explored. We enrolled 266 women with breast cancer from a National cancer hospital in Lima, Peru, unselected for age or family history. DNA was screened with a panel of 114 recurrent Hispanic BRCA mutations (HISPANEL). Among the 266 cases, thirteen deleterious mutations were identified (eleven in BRCA1 and two in BRCA2), representing 5% of the total. The average age of breast cancer in the mutation-positive cases was 44 years. BRCA1 185delAG represented seven of the eleven mutations in BRCA1. Other mutations detected in BRCA1 included: two 2080delA, one 943ins10, and one 3878delTA. The BRCA2 3036del4 mutation was seen in two patients. Given the relatively low cost of the HISPANEL test, one should consider offering this test to all Peruvian women with breast or ovarian cancer. PMID:25256238

  1. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru.

    PubMed

    Abugattas, J; Llacuachaqui, M; Allende, Y Sullcahuaman; Velásquez, A Arias; Velarde, R; Cotrina, J; Garcés, M; León, M; Calderón, G; de la Cruz, M; Mora, P; Royer, R; Herzog, J; Weitzel, J N; Narod, S A

    2015-10-01

    The prevalence of BRCA1 and BRCA2 mutations among breast cancer patients in Peru has not yet been explored. We enrolled 266 women with breast cancer from a National cancer hospital in Lima, Peru, unselected for age or family history. DNA was screened with a panel of 114 recurrent Hispanic BRCA mutations (HISPANEL). Among the 266 cases, 13 deleterious mutations were identified (11 in BRCA1 and 2 in BRCA2), representing 5% of the total. The average age of breast cancer in the mutation-positive cases was 44 years. BRCA1 185delAG represented 7 of 11 mutations in BRCA1. Other mutations detected in BRCA1 included: two 2080delA, one 943ins10, and one 3878delTA. The BRCA2 3036del4 mutation was seen in two patients. Given the relatively low cost of the HISPANEL test, one should consider offering this test to all Peruvian women with breast or ovarian cancer.

  2. Mutations in the BRCT binding site of BRCA1 result in hyper-recombination.

    PubMed

    Dever, Seth M; Golding, Sarah E; Rosenberg, Elizabeth; Adams, Bret R; Idowu, Michael O; Quillin, John M; Valerie, Nicholas; Xu, Bo; Povirk, Lawrence F; Valerie, Kristoffer

    2011-05-01

    We introduced a K1702M mutation in the BRCA1 BRCT domain known to prevent the binding of proteins harboring pS-X-X-F motifs such as Abraxas-RAP80, BRIP1, and CtIP. Surprisingly, rather than impairing homologous recombination repair (HRR), expression of K1702M resulted in hyper-recombination coinciding with an accumulation of cells in S-G2 and no effect on nonhomologous end-joining. These cells also showed increased RAD51 and RPA nuclear staining. More pronounced effects were seen with a naturally occurring BRCT mutant (M1775R) that also produced elevated levels of ssDNA, in part co-localizing with RPA, in line with excessive DNA resection. M1775R induced unusual, thread-like promyelocytic leukemia (PML) nuclear bodies and clustered RPA foci rather than the typical juxtaposed RPA-PML foci seen with wild-type BRCA1. Interestingly, K1702M hyper-recombination diminished with a second mutation in the BRCA1 RING domain (I26A) known to reduce BRCA1 ubiquitin-ligase activity. Thesein vitro findings correlated with elevated nuclear RAD51 and RPA staining of breast cancer tissue from a patient with the M1775R mutation. Altogether, the disruption of BRCA1 (BRCT)-pS-X-X-F protein binding results in ubiquitination-dependent hyper-recombination via excessive DNA resection and the appearance of atypical PML-NBs. Thus, certain BRCA1 mutations that cause hyper-recombination instead of reduced DSB repair might lead to breast cancer.

  3. SERS gene probe for DNA diagnostics

    NASA Astrophysics Data System (ADS)

    Stokes, David L.; Allain, Leonardo R.; Isola, Narayana R.; Vo-Dinh, Tuan

    2003-07-01

    We describe the development of a surface-enhanced Raman scattering gene (SERGen) probe technology for rapid screening for diseases and pathogens through DNA hybridization assays. The technology combines the use of gene probes labeled with SERS-active markers, and nanostructured metallic platforms for inducing the SERS effect. As a result, SERGen-based methods can offer the spectral selectivity and sensitivity of SERS as well as the molecular specificity of DNA sequence hybridization. Furthermore, these new probe s preclude the use of radioactive labels. As illustrated herein, SERGen probes have been used as primers in polymerase chain reaction (PCR) amplifications of specific DNA sequences, hence further boosting the sensitivity of the technology. We also describe several approaches to developing SERS-active DNA assay platforms, addressing the challenges of making the SERGen technology accessible and practical for clinical settings. The usefulness of the SERGen approach has been demonstrated in the detection of HIV, BRCA1 breast cancer, and BAX genes. There is great potential for the use of numerous SERGen probes for multiplexed detection of multiple biological targets.

  4. Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining.

    PubMed

    Beckta, Jason M; Dever, Seth M; Gnawali, Nisha; Khalil, Ashraf; Sule, Amrita; Golding, Sarah E; Rosenberg, Elizabeth; Narayanan, Aarthi; Kehn-Hall, Kylene; Xu, Bo; Povirk, Lawrence F; Valerie, Kristoffer

    2015-09-29

    Mutations in the breast cancer susceptibility 1 (BRCA1) gene are catalysts for breast and ovarian cancers. Most mutations are associated with the BRCA1 N- and C-terminal domains linked to DNA double-strand break (DSB) repair. However, little is known about the role of the intervening serine-glutamine (SQ) - cluster in the DNA damage response beyond its importance in regulating cell cycle checkpoints. We show that serine-to-alanine alterations at critical residues within the SQ-cluster known to be phosphorylated by ATM and ATR result in reduced homologous recombination repair (HRR) and aberrant mitosis. While a S1387A BRCA1 mutant - previously shown to abrogate S-phase arrest in response to radiation - resulted in only a modest decrease in HRR, S1387A together with an additional alteration, S1423A (BRCA12P), reduced HRR to vector control levels and similar to a quadruple mutant also including S1457A and S1524A (BRCA14P). These effects appeared to be independent of PALB2. Furthermore, we found that BRCA14P promoted a prolonged and struggling HRR late in the cell cycle and shifted DSB repair from HRR to non-homologous end joining which, in the face of irreparable chromosomal damage, resulted in mitotic catastrophe. Altogether, SQ-cluster phosphorylation is critical for allowing adequate time for completing normal HRR prior to mitosis and preventing cells from entering G1 prematurely resulting in gross chromosomal aberrations.

  5. Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining

    PubMed Central

    Gnawali, Nisha; Khalil, Ashraf; Sule, Amrita; Golding, Sarah E.; Rosenberg, Elizabeth; Narayanan, Aarthi; Kehn-Hall, Kylene; Xu, Bo; Povirk, Lawrence F.; Valerie, Kristoffer

    2015-01-01

    Mutations in the breast cancer susceptibility 1 (BRCA1) gene are catalysts for breast and ovarian cancers. Most mutations are associated with the BRCA1 N- and C-terminal domains linked to DNA double-strand break (DSB) repair. However, little is known about the role of the intervening serine-glutamine (SQ) - cluster in the DNA damage response beyond its importance in regulating cell cycle checkpoints. We show that serine-to-alanine alterations at critical residues within the SQ-cluster known to be phosphorylated by ATM and ATR result in reduced homologous recombination repair (HRR) and aberrant mitosis. While a S1387A BRCA1 mutant - previously shown to abrogate S-phase arrest in response to radiation - resulted in only a modest decrease in HRR, S1387A together with an additional alteration, S1423A (BRCA12P), reduced HRR to vector control levels and similar to a quadruple mutant also including S1457A and S1524A (BRCA14P). These effects appeared to be independent of PALB2. Furthermore, we found that BRCA14P promoted a prolonged and struggling HRR late in the cell cycle and shifted DSB repair from HRR to non-homologous end joining which, in the face of irreparable chromosomal damage, resulted in mitotic catastrophe. Altogether, SQ-cluster phosphorylation is critical for allowing adequate time for completing normal HRR prior to mitosis and preventing cells from entering G1 prematurely resulting in gross chromosomal aberrations. PMID:26320175

  6. Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms.

    PubMed

    Schouten, Philip C; Grigoriadis, Anita; Kuilman, Thomas; Mirza, Hasan; Watkins, Johnathan A; Cooke, Saskia A; van Dyk, Ewald; Severson, Tesa M; Rueda, Oscar M; Hoogstraat, Marlous; Verhagen, Caroline V M; Natrajan, Rachael; Chin, Suet-Feung; Lips, Esther H; Kruizinga, Janneke; Velds, Arno; Nieuwland, Marja; Kerkhoven, Ron M; Krijgsman, Oscar; Vens, Conchita; Peeper, Daniel; Nederlof, Petra M; Caldas, Carlos; Tutt, Andrew N; Wessels, Lodewyk F; Linn, Sabine C

    2015-08-01

    Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be 'BRCA1-like' or 'non-BRCA1-like', which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively. Approximately one third of the BRCA1-like breast cancers have a BRCA1 mutation, one third has hypermethylation of the BRCA1 promoter and one third has an unknown reason for being BRCA1-like. This classification is indicative of patients' response to high dose alkylating and platinum containing chemotherapy regimens, which targets the inability of BRCA1 deficient cells to repair DNA double strand breaks. We investigated whether this classification can be reliably obtained with next generation sequencing and copy number platforms other than the bacterial artificial chromosome (BAC) array Comparative Genomic Hybridization (aCGH) on which it was originally developed. We investigated samples from 230 breast cancer patients for which a CN profile had been generated on two to five platforms, comprising low coverage CN sequencing, CN extraction from targeted sequencing panels (CopywriteR), Affymetrix SNP6.0, 135K/720K oligonucleotide aCGH, Affymetrix Oncoscan FFPE (MIP) technology, 3K BAC and 32K BAC aCGH. Pairwise comparison of genomic position-mapped profiles from the original aCGH platform and other platforms revealed concordance. For most cases, biological differences between samples exceeded the differences between platforms within one sample. We observed the same classification across different platforms in over 80% of the patients and kappa values of at least 0.36. Differential classification could be attributed to CN profiles that were not strongly associated to one class. In conclusion, we have shown that the genomic regions that define our BRCA1-like classifier are robustly measured by different CN profiling technologies, providing the possibility to retro- and prospectively

  7. Direct selection of expressed sequences within a 1-Mb region flanking BRCA1 on human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.; Welcsh, P.L.; Spillman, M.

    1995-01-01

    Direct selection of genes within the interval of chromosome 17q21 containing BRCA1 was performed. YAC and cosmid contigs spanning the BRCA1 region were used to select cDNA clones from pools of cDNAs derived from human placenta, HeLa cells, activated T cells, and fetal head. A minimum set of 48 fragments of nonoverlapping cDNAs that unequivocally mapped within a 1-Mb region was identified, although it is not yet known how many of these are derived from the same transcript. DNA sequence analyses revealed that 4 of these cDNAs were derived from known genes (EDH17B2, glucose-6-phosphatase, IAI.3B, and E1AF), 1 is a member of a previously described gene family (EMG-17), and 7 share substantial identity with previously described genes from human or other species. The remainder showed no significant homology to known genes. Limited PCR-based expression profiles of a set of 13 of the genes were performed, and all gave positive results with at least some cDNA sources supporting the contention that they truly represent transcribed sequences. A comparison between genes obtained from this region by direct selection with those obtained by direct screening or exon trapping revealed that over 90% of the genes identified by exon trapping were represented in the selected material and that at least two additional genes that appear to represent low abundance transcripts with restricted expression profiles were identified by selection but not by other means. 39 refs., 3 figs., 2 tabs.

  8. Germline mutations in DNA repair genes may predict neoadjuvant therapy response in triple negative breast patients.

    PubMed

    Spugnesi, Laura; Gabriele, Michele; Scarpitta, Rosa; Tancredi, Mariella; Maresca, Luisa; Gambino, Gaetana; Collavoli, Anita; Aretini, Paolo; Bertolini, Ilaria; Salvadori, Barbara; Landucci, Elisabetta; Fontana, Andrea; Rossetti, Elena; Roncella, Manuela; Naccarato, Giuseppe Antonio; Caligo, Maria Adelaide

    2016-12-01

    Triple negative breast cancers (TNBCs) represent about 15-20% of all breast cancer cases and are characterized by a complex molecular heterogeneity. Some TNBCs exhibit clinical and pathological properties similar to BRCA-mutated tumors, without actually bearing a mutation in BRCA genes. This "BRCAness" phenotype may be explained by germline mutations in other genes involved in DNA repair. Although respond to chemotherapy with alkylating agents, they have a high risk of recurrence and progression. Some studies have shown the efficacy of neoadjuvant therapy in TNBC patients with DNA repair defects, but proper biomarkers of DNA repair deficiency are still needed. Here, we investigated if mutations in DNA repair genes may be correlated with anthracyclines/taxanes neoadjuvant therapy response. DNA from 19 TNBC patients undergoing neoadjuvant therapy were subjected to next generation sequencing of a panel of 24 genes in DNA repair and breast cancer predisposition. In this study, 5 of 19 patients (26%) carried a pathogenic mutation in BRCA1, PALB2, RAD51C and two patients carried a probable pathogenic missense variant. Moreover, VUS (Variants of Unknown Significance) in other genes, predicted to be deleterious by in silico tools, were detected in five patients. Germline mutations in DNA repair genes were found to be associated with the group of TNBC patients who responded to therapy. We conclude that a subgroup of TNBC patients have defects in DNA repair genes, other than BRCA1, and such patients respond favourably to neoadjuvant anthracyclines/taxanes therapy. © 2016 Wiley Periodicals, Inc.

  9. Recently-Derived Variants of Brain-Size Genes "ASPM", "MCPH1", "CDK5RAP" and "BRCA1" Not Associated with General Cognition, Reading or Language

    ERIC Educational Resources Information Center

    Bates, Timothy C.; Luciano, Michelle; Lind, Penelope A.; Wright, Margaret J.; Montgomery, Grant W.; Martin, Nicholas G.

    2008-01-01

    Derived changes in genes associated with primary microcephaly (MCPH) have been suggested to be "currently sweeping to fixation" i.e., increasing in frequency in most populations, with the likely outcome that the derived allele will completely displace the ancestral allele over time. Possible causes for this sweep include effects on human reasoning…

  10. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells.

    PubMed

    Björkman, Andrea; Qvist, Per; Du, Likun; Bartish, Margarita; Zaravinos, Apostolos; Georgiou, Konstantinos; Børglum, Anders D; Gatti, Richard A; Törngren, Therese; Pan-Hammarström, Qiang

    2015-02-17

    Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.

  11. BRCA1, BRCA2, PALB2, and CDKN2A Mutations in Familial Pancreatic Cancer (FPC): A PACGENE Study

    PubMed Central

    Zhen, David B.; Rabe, Kari G.; Gallinger, Steven; Syngal, Sapna; Schwartz, Ann G.; Goggins, Michael G.; Hruban, Ralph H.; Cote, Michele L.; McWilliams, Robert R.; Roberts, Nicholas J.; Cannon-Albright, Lisa A.; Li, Donghui; Moyes, Kelsey; Wenstrup, Richard J.; Hartman, Anne-Renee; Seminara, Daniela; Klein, Alison P.; Petersen, Gloria M.

    2014-01-01

    Purpose Familial Pancreatic Cancer (FPC) kindreds contain at least two affected first-degree relatives (FDR). Comprehensive data are needed to assist clinical risk assessment and genetic testing. Methods Germline DNA samples from 727 unrelated probands with positive family history (521 met criteria for FPC) were CLIA-tested for mutations in BRCA1 and BRCA2 (including analysis of deletions and rearrangements), PALB2, and CDKN2A. We compared prevalence of deleterious mutations between FPC probands and non-FPC probands (kindreds containing at least two affected biologic relatives, but not FDR). We also examined the impact of family history of breast and ovarian cancer and melanoma. Results Prevalence of deleterious mutations (excluding variants of unknown significance) among FPC probands was: BRCA1, 1.2%; BRCA2, 3.7%; PALB2, 0.6%; CDKN2A, 2.5%. Four novel deleterious mutations were detected. FPC probands carry more mutations in the four genes (8.0%) than non-FPC probands (3.5%) (odds ratio=2.40, 95% CI=(1.06, 5.44), p=0.03). The probability of testing positive for deleterious mutations in any of the four genes ranges up to 10.4%, depending upon family history of cancers. BRCA2 and CDKN2A account for the majority of mutations in FPC. Conclusion Genetic testing of multiple relevant genes in probands with a positive family history is warranted, particularly for FPC. PMID:25356972

  12. Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    PubMed Central

    Rosell, Rafael; Perez-Roca, Laia; Sanchez, Jose Javier; Cobo, Manuel; Moran, Teresa; Chaib, Imane; Provencio, Mariano; Domine, Manuel; Sala, Maria Angeles; Jimenez, Ulpiano; Diz, Pilar; Barneto, Isidoro; Macias, Jose Antonio; de las Peñas, Ramon; Catot, Silvia; Isla, Dolores; Sanchez, Jose Miguel; Ibeas, Rafael; Lopez-Vivanco, Guillermo; Oramas, Juana; Mendez, Pedro; Reguart, Noemi; Blanco, Remei; Taron, Miquel

    2009-01-01

    Background Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. Methodology/Principal Findings We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1

  13. A Comprehensive Focus on Global Spectrum of BRCA1 and BRCA2 Mutations in Breast Cancer

    PubMed Central

    Karami, Fatemeh; Mehdipour, Parvin

    2013-01-01

    Breast cancer (BC) is the most common cancer of women all over the world. BRCA1 and BRCA2 gene mutations comprise the most important genetic susceptibility of BC. Except for few common mutations, the spectrum of BRCA1 and BRCA2 mutations is heterogeneous in diverse populations. 185AGdel and 5382insC are the most important BRCA1 and BRCA2 alterations which have been encountered in most of the populations. After those Ashkenazi founder mutations, 300T>G also demonstrated sparse frequency in African American and European populations. This review affords quick access to the most frequent alterations among various populations which could be helpful in BRCA screening programs. PMID:24312913

  14. Response of BRCA1-mutated gallbladder cancer to olaparib: A case report

    PubMed Central

    Xie, Yuan; Jiang, Yan; Yang, Xiao-Bo; Wang, An-Qiang; Zheng, Yong-Chang; Wan, Xue-Shuai; Sang, Xin-Ting; Wang, Kai; Zhang, Da-Dong; Xu, Jia-Jia; Li, Fu-Gen; Zhao, Hai-Tao

    2016-01-01

    Gallbladder cancer (GBC), although considered as a relatively rare malignancy, is the most common neoplasm of the biliary tract system. The late diagnosis and abysmal prognosis present challenges to treatment. The overall 5-year survival rate for metastatic GBC patients is extremely low. BRCA1 and BRCA2 are the breast cancer susceptibility genes and their mutation carriers are at a high risk for cancer development, both in men and women. Olaparib, an oral poly ADP-ribose polymerase inhibitor, has been approved by the Food and Drug Administration and the European Commission for the treatment of ovarian cancer with any BRCA1/2 mutations. The first case of a BRCA1-mutated GBC patient who responded to olaparib treatment is reported here. PMID:28028375

  15. Multifactorial Likelihood Assessment of BRCA1 and BRCA2 Missense Variants Confirms That BRCA1:c.122A>G(p.His41Arg) Is a Pathogenic Mutation

    PubMed Central

    Whiley, Phillip J.; Parsons, Michael T.; Leary, Jennifer; Tucker, Kathy; Warwick, Linda; Dopita, Belinda; Thorne, Heather; Lakhani, Sunil R.; Goldgar, David E.; Brown, Melissa A.; Spurdle, Amanda B.

    2014-01-01

    Rare exonic, non-truncating variants in known cancer susceptibility genes such as BRCA1 and BRCA2 are problematic for genetic counseling and clinical management of relevant families. This study used multifactorial likelihood analysis and/or bioinformatically-directed mRNA assays to assess pathogenicity of 19 BRCA1 or BRCA2 variants identified following patient referral to clinical genetic services. Two variants were considered to be pathogenic (Class 5). BRCA1:c.4484G> C(p.Arg1495Thr) was shown to result in aberrant mRNA transcripts predicted to encode truncated proteins. The BRCA1:c.122A>G(p.His41Arg) RING-domain variant was found from multifactorial likelihood analysis to have a posterior probability of pathogenicity of 0.995, a result consistent with existing protein functional assay data indicating lost BARD1 binding and ubiquitin ligase activity. Of the remaining variants, seven were determined to be not clinically significant (Class 1), nine were likely not pathogenic (Class 2), and one was uncertain (Class 3).These results have implications for genetic counseling and medical management of families carrying these specific variants. They also provide additional multifactorial likelihood variant classifications as reference to evaluate the sensitivity and specificity of bioinformatic prediction tools and/or functional assay data in future studies. PMID:24489791

  16. Breast Cancer 1 (BrCa1) May Be behind Decreased Lipogenesis in Adipose Tissue from Obese Subjects

    PubMed Central

    Ortega, Francisco J.; Moreno-Navarrete, José M.; Mayas, Dolores; García-Santos, Eva; Gómez-Serrano, María; Rodriguez-Hermosa, José I.; Ruiz, Bartomeu; Ricart, Wifredo; Tinahones, Francisco J.; Frühbeck, Gema; Peral, Belen; Fernández-Real, José M.

    2012-01-01

    Context Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1) interacts with acetyl-CoA carboxylase (ACC) reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. Research Design and Methods BrCa1 gene expression, total and phosphorylated (P-) BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. Results BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002) and subcutaneous (SC; 1.49-fold, p = 0.001) adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007) as well as in OM (p = 0.010) fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001) and protein (1.2-fold, p = 0.001) were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005) allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium), whereas lipogenic genes significantly decreased. Conclusions The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects. PMID:22666314

  17. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer.

    PubMed

    Deng, Yu; Deng, Hui; Liu, Jing; Han, Gangwen; Malkoski, Stephen; Liu, Bolin; Zhao, Rui; Wang, Xiao-Jing; Zhang, Qinghong

    2012-06-01

    Carboxyl-terminal binding protein 1 (CtBP1) is a transcriptional co-repressor with oncogenic potential. Immunohistochemistry staining using human breast cancer tissue arrays revealed that 92% of invasive ductal breast cancer cases have CtBP1-positive staining compared to 4% CtBP1-positive in normal breast tissue. To explore the functional impact of CtBP1 in breast cancer, we examined CtBP1's transcriptional regulation of known tumor suppressors, breast cancer susceptibility gene 1 (Brca1), and E-cadherin. We found CtBP1 was recruited to the promoter regions of Brca1 and E-cadherin genes in breast cancer cells. Concomitantly, Brca1 loss was detected in 57% and E-cadherin loss was detected in 76% of human invasive ductal breast cancers, and correlated with CtBP1 nuclear staining in these lesions. Importantly, siRNA knock down of CtBP1 restored Brca1 and E-cadherin expression in breast cancer cell lines, implying CtBP1 down-regulates Brca1 and E-cadherin genes in human breast cancer. This study provides evidence that although genetic loss of Brca1 and E-cadherin are infrequent in breast cancer, they are down-regulated at the transcriptional level by CtBP1 expression. Thus, CtBP1 activation could be a potential biomarker for breast cancer development.

  18. Novel Mechanisms of PARP Inhibitor Resistance in BRCA1-Deficient Breast Cancers

    DTIC Science & Technology

    2014-12-01

    Lorusso, n.d.; Tutt et al., 2010). BRCA1 is essential for error-free repair of DNA double strand breaks via homologous recombination (HR...for DNA damage and Rad51 as a marker of HR.   14   Figure 4: ATR inhibitor (ATRi) selectively inhibits homologous recombination ...Gudmundsdottir & Ashworth, 2006), while PARPs are thought to primarily function in repair of single stranded DNA breaks especially through activation of

  19. Breast cancer risk and the BRCA1 interacting protein CTIP.

    PubMed

    Gorringe, Kylie L; Choong, David Y H; Lindeman, Geoffrey J; Visvader, Jane E; Campbell, Ian G

    2008-11-01

    Mutations in BRCA1 predispose to breast cancer. CTIP interacts with BRCA1 and so could also be associated with increased risk. We screened CTIP for germline mutations in 210 probands of breast cancer families including 129 families with no mutations in BRCA1 or BRCA2. No coding variants were detected in CTIP, therefore, it is unlikely to be involved in breast cancer risk.

  20. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E.; Balliet, Renee; Lin, Zhao; Whitaker-Menezes, Diana; Birbe, Ruth C.; Bombonati, Alessandro; Pavlides, Stephanos; Lamb, Rebecca; Sneddon, Sharon; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P.

    2012-01-01

    Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype

  1. Familial site-specific Ovarian cancer is linked to BRCA1 on 17q12-21

    SciTech Connect

    Steichen-Gersdorf, E.; Gallion, H.H.; Ponder, M.A.; Pye, C.; Mazoyer, S.; Smith, S.A.; Ponder, B.A.J.; Ford, D.; Easton, D.F.; Girodet, C.

    1994-11-01

    In a study of nine families with {open_quotes}site-specific{close_quotes} ovarian cancer (criterion: three or more cases of epithelial ovarian cancer and no cases of breast cancer diagnosed at age <50 years) we have obtained evidence of linkage to the breast-ovarian cancer susceptibility gene, BRCA1 on 17q12-21. If the risk of cancer in these families is assumed to be restricted to the ovary, the best estimate of the proportion of families linked to BRCA1 is .78 (95% confidence interval .32-1.0). If predisposition to both breast and ovarian cancer is assumed, the proportion linked is 1.0 (95% confidence interval .46-1.0). The linkage of familial site-specific ovarian cancer to BRCA1 indicates the possibility of predictive testing in such families; however, this is only appropriate in families where the evidence for linkage to BRCA1 is conclusive. 17 refs., 3 figs., 1 tab.

  2. Mechanism of Ovarian Epithelial Tumor Predispostion in Individuals Carrying Germline BRCA1 Mutations

    DTIC Science & Technology

    2005-01-01

    are predisposed to ovarian cancer is that the ensuing decrease in BRCA1 gene dosage results in a disruption of normal cellular interactions between...Bioactivation of Mullerian inhibiting substance during gonadal development by a kex2/ subtilisin -like endoprotease. Proc. Natl. Acad. Sci. 93, 7711

  3. BRCA1 and BRCA2 point mutations and large rearrangements in breast and ovarian cancer families in Northern Poland.

    PubMed

    Ratajska, Magdalena; Brozek, Izabela; Senkus-Konefka, Elzbieta; Jassem, Jacek; Stepnowska, Magdalena; Palomba, Grazia; Pisano, Marina; Casula, Milena; Palmieri, Giuseppe; Borg, Ake; Limon, Janusz

    2008-01-01

    Sixty-four Polish families with a history of breast and/or ovarian cancer were screened for mutations in the BRCA1/2 genes using a combination of denaturing high performance liquid chromatography (DHPLC) and sequencing. Two thirds (43/64; 67%) of the families were found to carry deleterious mutations, of which the most frequent were BRCA1 5382insC (n=22/43; 51%) and Cys61Gly (n=9/43; 20%). Two other recurrent mutations were BRCA1 185delAG (n=3) and 3819del5 (n=4), together accounting for 16% of the 43 mutation-positive cases. We also found three novel mutations (BRCA1 2991del5, BRCA2 6238ins2del21 and 8876delC) which combined with findings from our earlier study of 60 Northern Polish families. Moreover, screening of 43 BRCA1/2 negative families for the presence of large rearrangements by multiplex ligation-dependent probe amplification (MLPA) resulted in the finding of two additional BRCA1 mutations: a deletion of exons 1A, 1B and 2, and a deletion of exons 17-19, both present in single families. We conclude that the Polish population has a diverse mutation spectrum influenced by strong founder effects. However, families with strong breast/ovarian cancer history who are negative for these common mutations should be offered a complete BRCA gene screening, including MLPA analysis.

  4. Mutational analysis of BRCA1 and BRCA2 in hereditary breast and ovarian cancer families from Asturias (Northern Spain)

    PubMed Central

    2013-01-01

    Background The prevalence of BRCA1 and BRCA2 mutations in Spain is heterogeneous and varies according to geographical origin of studied families. The contribution of these mutations to hereditary breast and ovarian cancer has not been previously investigated in Asturian populations (Northern Spain). Methods In the present work, 256 unrelated high-risk probands with breast and/or ovarian cancer from families living in Asturias were analyzed for the presence of a BRCA1 or BRCA2 gene mutation from October 2007 to May 2012. The entire coding sequences and each intron/exon boundaries of BRCA1/2 genes were screened both by direct sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). Results A total of 59 families (23%) were found to carry a pathogenic germ line mutation, 39 in BRCA1 and 20 in BRCA2. Twenty nine additional families (12%) carried an unknown significance variant. We detected 28 distinct pathogenic mutations (16 in BRCA1 and 12 in BRCA2), of which 3 mutations in BRCA1 (c.1674delA, c.1965C>A and c.2900_2901dupCT) and 5 in BRCA2 (c.262_263delCT, c.2095C>T, c.3263dupC, c.4030_4035delinsC, c.8042_8043delCA) had not been previously described. The novel mutations c.2900_2901dupCT in BRCA1 and c.4030_4035delinsC in BRCA2 occurred in 8 and 6 families respectively and clustered in two separated small geographically isolated areas suggesting a founder effect. These 2 mutations, together with the Galician BRCA1 mutation c.211A>G (9 families), and the common BRCA1 mutation c.3331_3334delCAAG (6 families), account for approximately 50% of all affected families. By contrast, very frequent mutations in other Spanish series such as the BRCA1 Ashkenazi founder mutation c.68_69delAG, was found in only one family. Conclusions In this study we report the BRCA1 and BRCA2 spectrum of mutations and their geographical distribution in Asturias, which largely differ from other areas of Spain. Our findings may help design a first step recurrent mutation panel for

  5. BRCA1 and BRCA2 rearrangements in Brazilian individuals with Hereditary Breast and Ovarian Cancer Syndrome.

    PubMed

    Ewald, Ingrid Petroni; Cossio, Silvia Liliana; Palmero, Edenir Inez; Pinheiro, Manuela; Nascimento, Ivana Lucia de Oliveira; Machado, Taisa Manuela Bonfim; Sandes, Kiyoko Abe; Toralles, Betânia; Garicochea, Bernardo; Izetti, Patricia; Pereira, Maria Luiza Saraiva; Bock, Hugo; Vargas, Fernando Regla; Moreira, Miguel Ângelo Martins; Peixoto, Ana; Teixeira, Manuel R; Ashton-Prolla, Patricia

    2016-01-01

    Approximately 5-10% of breast cancers are caused by germline mutations in high penetrance predisposition genes. Among these, BRCA1 and BRCA2, which are associated with the Hereditary Breast and Ovarian Cancer (HBOC) syndrome, are the most frequently affected genes. Recent studies confirm that gene rearrangements, especially in BRCA1, are responsible for a significant proportion of mutations in certain populations. In this study we determined the prevalence of BRCA rearrangements in 145 unrelated Brazilian individuals at risk for HBOC syndrome who had not been previously tested for BRCA mutations. Using Multiplex Ligation-dependent Probe Amplification (MLPA) and a specific PCR-based protocol to identify a Portuguese founder BRCA2 mutation, we identified two (1,4%) individuals with germline BRCA1 rearrangements (c.547+240_5193+178del and c.4675+467_5075-990del) and three probands with the c.156_157insAlu founder BRCA2 rearrangement. Furthermore, two families with false positive MLPA results were shown to carry a deleterious point mutation at the probe binding site. This study comprises the largest Brazilian series of HBOC families tested for BRCA1 and BRCA2 rearrangements to date and includes patients from three regions of the country. The overall observed rearrangement frequency of 3.44% indicates that rearrangements are relatively uncommon in the admixed population of Brazil.

  6. BRCA1 and BRCA2 rearrangements in Brazilian individuals with Hereditary Breast and Ovarian Cancer Syndrome

    PubMed Central

    Ewald, Ingrid Petroni; Cossio, Silvia Liliana; Palmero, Edenir Inez; Pinheiro, Manuela; Nascimento, Ivana Lucia de Oliveira; Machado, Taisa Manuela Bonfim; Sandes, Kiyoko Abe; Toralles, Betânia; Garicochea, Bernardo; Izetti, Patricia; Pereira, Maria Luiza Saraiva; Bock, Hugo; Vargas, Fernando Regla; Moreira, Miguel Ângelo Martins; Peixoto, Ana; Teixeira, Manuel R.; Ashton-Prolla, Patricia

    2016-01-01

    Abstract Approximately 5-10% of breast cancers are caused by germline mutations in high penetrance predisposition genes. Among these, BRCA1 and BRCA2, which are associated with the Hereditary Breast and Ovarian Cancer (HBOC) syndrome, are the most frequently affected genes. Recent studies confirm that gene rearrangements, especially in BRCA1, are responsible for a significant proportion of mutations in certain populations. In this study we determined the prevalence of BRCA rearrangements in 145 unrelated Brazilian individuals at risk for HBOC syndrome who had not been previously tested for BRCA mutations. Using Multiplex Ligation-dependent Probe Amplification (MLPA) and a specific PCR-based protocol to identify a Portuguese founder BRCA2 mutation, we identified two (1,4%) individuals with germline BRCA1 rearrangements (c.547+240_5193+178del and c.4675+467_5075-990del) and three probands with the c.156_157insAlu founder BRCA2 rearrangement. Furthermore, two families with false positive MLPA results were shown to carry a deleterious point mutation at the probe binding site. This study comprises the largest Brazilian series of HBOC families tested for BRCA1 and BRCA2 rearrangements to date and includes patients from three regions of the country. The overall observed rearrangement frequency of 3.44% indicates that rearrangements are relatively uncommon in the admixed population of Brazil. PMID:27303907

  7. Mutational analysis of BRCA1/2 in a group of 134 consecutive ovarian cancer patients. Novel and recurrent BRCA1/2 alterations detected by next generation sequencing.

    PubMed

    Ratajska, Magdalena; Krygier, Magdalena; Stukan, Maciej; Kuźniacka, Alina; Koczkowska, Magdalena; Dudziak, Mirosław; Śniadecki, Marcin; Dębniak, Jarosław; Wydra, Dariusz; Brozek, Izabela; Biernat, Wojciech; Borg, Ake; Limon, Janusz; Wasąg, Bartosz

    2015-05-01

    The importance of proper mutational analysis of BRCA1/2 in individuals at risk for hereditary breast and ovarian cancer syndrome is widely accepted. Standard genetic screening includes targeted analysis of recurrent, population-specific mutations. The purpose of the study was to establish the frequency of germline BRCA1/2 mutations in a group of 134 unrelated patients with primary ovarian cancer. Next generation sequencing analysis revealed a presence of 20 (14.9%) mutations, where 65% (n = 13) were recurrent BRCA1 alterations included in the standard diagnostic panel in northern Poland. However, the remaining seven BRCA1/2 mutations (35%) would be missed by the standard approach and were detected in unique patients. A substantial proportion (n = 5/12; 41%) of mutation-positive individuals with complete family history reported no incidence of breast or ovarian cancer in their relatives. This observation, together with the raising perspectives for personalized therapy targeting BRCA1/2 signaling pathways indicates the necessity of comprehensive genetic screening in all ovarian cancer patients. However, due to the limited sensitivity of the standard genetic screening presented in this study (65%) an application of next generation sequencing in molecular diagnostics of BRCA1/2 genes should be considered.

  8. Breast cancer susceptibility gene 1 (BRCA1) predict clinical outcome in platinum- and toxal-based chemotherapy in non-small-cell lung cancer (NSCLC) patients: a system review and meta-analysis

    PubMed Central

    2013-01-01

    The recent studies have evaluated the relationship between BRCA1 expression and clinical outcome of chemotherapy (mainly focused on platinum-based and toxal-based treatment) in NSCLC patients, but the results were inconclusive and controversial. Our aim of this study was to evaluate this association by literature based system review and meta-analysis. PubMed, EMBASE and the China National Knowledge Infrastructure (CNKI) databases were used to retrieve the relevant articles. The interested outcome included objective response rate (ORR), overall survival (OS) and event-free survival (EFS). The pooled odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) ware estimated. After specific inclusion and exclusion criteria, 23 studies fulfilled the criteria and were included in our analysis. In 17 platinum-based studies, low/negative BRCA1 was in favor of better ORR (OR = 1.70, 95%CI = 1.32-2.18), longer OS and EFS (HR = 1.58, 95%CI = 1.27-1.97, and HR = 1.60, 95%CI = 1.07-2.39 for OS and EFS, respectively). In 4 toxal-based chemotherapy studies, the patients with high/positive BRCA1 had better ORR (OR = 0.41, 95%CI = 0.26-0.64), OS and EFS were not evaluated as the insufficient data available. Overall, BRCA1 might be a useful biomarker to predict clinical outcome for personal chemotherapy in NSCLC patients in the future. PMID:23497550

  9. Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Kartsonaki, Christiana; Gayther, Simon A.; Pharoah, Paul D. P.; Sinilnikova, Olga M.; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Healey, Sue; Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Barile, Monica; Viel, Alessandra; Allavena, Anna; Ottini, Laura; Papi, Laura; Gismondi, Viviana; Capra, Fabio; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Cruger, Dorthe; Jensen, Uffe Birk; Caligo, Maria Adelaide; Olsson, Håkan; Kristoffersson, Ulf; Lindblom, Annika; Arver, Brita; Karlsson, Per; Stenmark Askmalm, Marie; Borg, Ake; Neuhausen, Susan L.; Ding, Yuan Chun; Nathanson, Katherine L.; Domchek, Susan M.; Jakubowska, Anna; Lubiński, Jan; Huzarski, Tomasz; Byrski, Tomasz; Gronwald, Jacek; Górski, Bohdan; Cybulski, Cezary; Dębniak, Tadeusz; Osorio, Ana; Durán, Mercedes; Tejada, Maria-Isabel; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; Verhoef, Senno; Tilanus-Linthorst, Madeleine A.; Vreeswijk, Maaike P.; Bodmer, Danielle; Ausems, Margreet G. E. M.; van Os, Theo A.; Asperen, Christi J.; Blok, Marinus J.; Meijers-Heijboer, Hanne E. J.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Dunning, Alison M.; Evans, D. Gareth; Eeles, Ros; Pichert, Gabriella; Cole, Trevor; Hodgson, Shirley; Brewer, Carole; Morrison, Patrick J.; Porteous, Mary; Kennedy, M. John; Rogers, Mark T.; Side, Lucy E.; Donaldson, Alan; Gregory, Helen; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Moncoutier, Virginie; Castera, Laurent; Mazoyer, Sylvie; Barjhoux, Laure; Bonadona, Valérie; Leroux, Dominique; Faivre, Laurence; Lidereau, Rosette; Nogues, Catherine; Bignon, Yves-Jean; Prieur, Fabienne; Collonge-Rame, Marie-Agnès; Venat-Bouvet, Laurence; Fert-Ferrer, Sandra; Miron, Alex; Buys, Saundra S.; Hopper, John L.; Daly, Mary B.; John, Esther M.; Terry, Mary Beth; Goldgar, David; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Agnarsson, Bjarni A.; Offit, Kenneth; Kirchhoff, Tomas; Vijai, Joseph; Dutra-Clarke, Ana V. C.; Przybylo, Jennifer A.; Montagna, Marco; Casella, Cinzia; Imyanitov, Evgeny N.; Janavicius, Ramunas; Blanco, Ignacio; Lázaro, Conxi; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Beattie, Mary S.; Schmutzler, Rita; Wappenschmidt, Barbara; Meindl, Alfons; Ruehl, Ina; Fiebig, Britta; Sutter, Christian; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Kast, Karin; Niederacher, Dieter; Gadzicki, Dorothea; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Soucy, Penny; Spurdle, Amanda B.; Holland, Helene; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes are associated with increased risks of breast and ovarian cancers. Although several common variants have been associated with breast cancer susceptibility in mutation carriers, none have been associated with ovarian cancer susceptibility. A genome-wide association study recently identified an association between the rare allele of the single-nucleotide polymorphism (SNP) rs3814113 (ie, the C allele) at 9p22.2 and decreased risk of ovarian cancer for women in the general population. We evaluated the association of this SNP with ovarian cancer risk among BRCA1 or BRCA2 mutation carriers by use of data from the Consortium of Investigators of Modifiers of BRCA1/2. Methods We genotyped rs3814113 in 10 029 BRCA1 mutation carriers and 5837 BRCA2 mutation carriers. Associations with ovarian and breast cancer were assessed with a retrospective likelihood approach. All statistical tests were two-sided. Results The minor allele of rs3814113 was associated with a reduced risk of ovarian cancer among BRCA1 mutation carriers (per-allele hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.72 to 0.85; P = 4.8 × 10-9) and BRCA2 mutation carriers (hazard ratio of ovarian cancer = 0.78, 95% confidence interval = 0.67 to 0.90; P = 5.5 × 10-4). This SNP was not associated with breast cancer risk among either BRCA1 or BRCA2 mutation carriers. BRCA1 mutation carriers with the TT genotype at SNP rs3814113 were predicted to have an ovarian cancer risk to age 80 years of 48%, and those with the CC genotype were predicted to have a risk of 33%. Conclusion Common genetic variation at the 9p22.2 locus was associated with decreased risk of ovarian cancer for carriers of a BRCA1 or BRCA2 mutation. PMID:21169536

  10. Selecting for BRCA1 testing using a combination of homogeneous selection criteria and immunohistochemical characteristics of breast cancers

    PubMed Central

    2009-01-01

    Background BRCA1 gene-related tumours are more frequently estrogen receptor (ER) and progesterone receptor (PR) negative with a lower prevalence of human epidermal growth factor receptor 2 (HER2) overexpression or amplification. We evaluated the effectiveness of a combination of homogeneously selected criteria and immunohistochemical (IHC) characteristics of Familial Breast Cancers (FBCs) in detecting BRCA1 mutation carriers. Methods Primary breast tumours from 93 FBC patients defined by specific eligibility criteria, based on personal and familial tumour history, were evaluated by Allred's method. The BRCA1 molecular analysis, including Multiplex Ligation-dependent Probe Amplification (MLPA), was considered as the gold standard assay. Results A total of 10 BRCA1 pathogenetic mutations was found. With the exclusion of the tumours characterized by double positive receptorial status and/or strong HER2 positivity (3+), we identified 22 patients, 10 of whom resulted as BRCA1 mutation carriers. The sensitivity, specificity, positive and negative predictive values were 100%, 83.3%, 45.4% and 100% respectively. Conclusion Our findings suggest that the IHC analysis by Allred's method improves our ability to select patients for BRCA1 testing. PMID:19818148

  11. Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31

    PubMed Central

    Chappell, William H.; Gautam, Dipendra; Ok, Suzan T.; Johnson, Bryan A.; Anacker, Daniel C.

    2015-01-01

    ABSTRACT High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for

  12. Recurrent BRCA1 and BRCA2 mutations in Mexican women with breast cancer

    PubMed Central

    Torres-Mejía, Gabriela; Royer, Robert; Llacuachaqui, Marcia; Akbari, Mohammad R.; Giuliano, Anna R.; Martínez-Matsushita, Louis; Angeles-Llerenas, Angélica; Ortega-Olvera, Carolina; Ziv, Elad; Lazcano-Ponce, Eduardo; Phelan, Catherine M.; Narod, Steven A.

    2015-01-01

    Background Germline mutations in the BRCA1 and BRCA2 genes confer an estimated 58–80% lifetime risk of breast cancer. In general, screening is done for cancer patients if a relative has been diagnosed with breast or ovarian cancer. There are few data on the prevalence of mutations in these genes in Mexican women with breast cancer and this hampers efforts to develop screening policies in Mexico. Methods We screened 810 unselected women with breast cancer from three cities in Mexico (Mexico City, Veracruz and Monterrey) for mutations in BRCA1 and BRCA2, including a panel of 26 previously reported mutations. Results Thirty-five mutations were identified in 34 women (4.3% of total) including 20 BRCA1 mutations and 15 BRCA2 mutations. Twenty-two of the 35 mutations were recurrent mutations (62.8%). Only five of the 34 mutation carriers had a first-degree relative with breast cancer (three with BRCA1 and two with BRCA2 mutations). Conclusion These results support the rationale for a strategy of screening for recurrent mutations in all women with breast cancer in Mexico, as opposed to restricting screening to those with a sister or mother with breast or ovarian cancer. Impact These results will impact cancer genetic testing in Mexico and the identification of at-risk individuals who will benefit from increased surveillance. PMID:25371446

  13. The contribution of founder mutations in BRCA1 to breast cancer in Belarus.

    PubMed

    Uglanitsa, N; Oszurek, O; Uglanitsa, K; Savonievich, E; Lubiński, J; Cybulski, C; Debniak, T; Narod, S A; Gronwald, J

    2010-10-01

    Mutations in the BRCA1 gene increase susceptibility to both breast and ovarian cancer. In some countries, including several in Eastern Europe, founder mutations in the BRCA1 gene are responsible for a significant proportion of breast cancer cases. To estimate the hereditary proportion of breast cancer in Belarus, we sought the presence of any of three founder mutations in BRCA1 (4153delA, 5382insC and C61G) in 500 unselected cases of breast cancer. These mutations have previously been identified in breast/ovarian cancer families from Belarus and from other Slavic countries, including Poland and Russia. One of the three founder mutations in BRCA1 was present in 38 of 500 unselected cases of breast cancer (7.6%). A mutation was found in 12.6% of women diagnosed before age 50 and 5.6% of women diagnosed after age 50. A mutation was identified in 2 of 251 newborn controls (0.8%). The hereditary proportion of breast cancers in Belarus is among the highest of any countries studied to date.

  14. BRCA1 and BRCA2 mutations in breast cancer patients from Venezuela.

    PubMed

    Lara, Karlena; Consigliere, Nigmet; Pérez, Jorge; Porco, Antonietta

    2012-01-01

    A sample of 58 familial breast cancer patients from Venezuela were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIM no. 113705) and BRCA2 (MIM no. 600185) genes by using conformation-sensitive gel electrophoresis. Ashkenazi Jewish founder mutations were not found in any of the samples. We identified 6 (10.3%) and 4 (6.9%) patients carrying germline mutations in BRCA1 and BRCA2, respectively. Four pathogenic mutations were found in BRCA1, one is a novel mutation (c.951_952insA), while the other three had been previously reported (c.1129_1135insA, c.4603G>T and IVS20+1G>A). We also found 4 pathogenic mutations in BRCA2, two novel mutations (c.2732_2733insA and c.3870_3873delG) and two that have been already reported (c.3036_3039delACAA and c.6024_6025_delTA). In addition, 17 variants of unknown significance (6 BRCA1 variants and 11 BRCA2 variants), 5 BRCA2 variants with no clinical importance and 22 polymorphisms (12 in BRCA1 and 10 in BRCA2) were also identified. This is the first genetic study on BRCA gene mutations conducted in breast cancer patients from Venezuela. The ethnicity of our population, as well as the heterogeneous and broad spectrum of BRCA genes mutations, must be considered to optimize genetic counseling and disease prevention in affected families.

  15. Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer.

    PubMed

    Heerma van Voss, Marise R; Brilliant, Justin D; Vesuna, Farhad; Bol, Guus M; van der Wall, Elsken; van Diest, Paul J; Raman, Venu

    2017-03-01

    Triple-negative breast cancers have unfavorable outcomes due to their inherent aggressive behavior and lack of targeted therapies. Breast cancers occurring in BRCA1 mutation carriers are mostly triple-negative and harbor homologous recombination deficiency, sensitizing them to inhibition of a second DNA damage repair pathway by, e.g., PARP inhibitors. Unfortunately, resistance against PARP inhibitors in BRCA1-deficient cancers is common and sensitivity is limited in BRCA1-proficient breast cancers. RK-33, an inhibitor of the RNA helicase DDX3, was previously demonstrated to impede non-homologous end-joining repair of DNA breaks. Consequently, we evaluated DDX3 as a therapeutic target in BRCA pro- and deficient breast cancers and assessed whether DDX3 inhibition could sensitize cells to PARP inhibition. High DDX3 expression was identified by immunohistochemistry in breast cancer samples of 24% of BRCA1 (p = 0.337) and 21% of BRCA2 mutation carriers (p = 0.624), as compared to 30% of sporadic breast cancer samples. The sensitivity to the DDX3 inhibitor RK-33 was similar in BRCA1 pro- and deficient breast cancer cell lines, with IC50 values in the low micromolar range (2.8-6.6 μM). A synergistic interaction was observed for combination treatment with RK-33 and the PARP inhibitor olaparib in BRCA1-proficient breast cancer, with the mean combination index ranging from 0.59 to 0.62. Overall, we conclude that BRCA pro- and deficient breast cancers have a similar dependency upon DDX3. DDX3 inhibition by RK-33 synergizes with PARP inhibitor treatment, especially in breast cancers with a BRCA1-proficient background.

  16. Direct selection in the BRCA1 region of human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.L.; Welcsh, P.L.; Gallardo, T.D.

    1994-09-01

    Direct cDNA selection was used to obtain candidate genes within the region of human chromosome 17q21 associated with early onset familial breast and ovarian cancer (BRCA1). Four sets of pooled cosmids (10 to 25 per set) derived from this region were used in the selection of cDNAs from four complex human cDNA pools: placenta, fetal head, HeLa cells, and activated T cells. Two YACs within our contig were also used in a separate selection. A reporter gene, estradiol 17 beta-hydroxysteriod dehydrogenase (EDH17B), located on one of the cosmids in the contig of the region, was monitored to observe the efficiency of the selection. A >10,000-fold enrichment of EDH17B was seen after two rounds of selection based on the number of EDH17B clones found in the resultant selected library. Selected inserts were cloned into lambda gt10, amplified with the PCR using vector primers, and dot blotted. 200 inserts have been hybridized individually to cosmids from the contig and to the cDNA dot blots. Approximately 70% of these map back to specific cosmids or YACs in the region. These PCR products were sequenced directly and analyzed for homology against each other as well as against sequences within GenBank. At least 23 new genes have been identified and isolated from this region based on sequence and hybridization overlaps. Seventeen of these cDNAs appear to be unique, two are known genes previously mapped to the region, one has homology to a known known Drosophilia gene, one is homologous to a human non-histone chromosomal protein HMG-17, and two are new members of gene families. These cDNAs are being used for mutational analyses in affected women from families with multiple cases of breast and ovarian cancer.

  17. Analysis of BRCA1and BRCA2 large genomic rearrangements in Sri Lankan familial breast cancer patients and at risk individuals

    PubMed Central

    2014-01-01

    Background Majority of mutations found to date in the BRCA1/BRCA2 genes in breast and/or ovarian cancer families are point mutations or small insertions and deletions scattered over the coding sequence and splice junctions. Such mutations and sequence variants of BRCA1 and BRCA2 genes were previously identified in a group of Sri Lankan breast cancer patients. Large genomic rearrangements have been characterized in BRCA1 and BRCA2 genes in several populations but these have not been characterized in Sri Lankan breast cancer patients. Findings A cohort of familial breast cancer patients (N = 57), at risk individuals (N = 25) and healthy controls (N = 23) were analyzed using multiplex ligation-dependent probe amplification method to detect BRCA1 and BRCA2 large genomic rearrangements. One familial breast cancer patient showed an ambiguous deletion in exon 6 of BRCA1 gene. Full sequencing of the ambiguous region was used to confirm MLPA results. Ambiguous deletion detected by MLPA was found to be a false positive result confirming that BRCA1 large genomic rearrangements were absent in the subjects studied. No BRCA2 rearrangement was also identified in the cohort. Conclusion Thus this study demonstrates that BRCA1 and BRCA2 large genomic rearrangements are unlikely to make a significant contribution to aetiology of breast cancer in Sri Lanka. PMID:24906410

  18. A Guide for Functional Analysis of BRCA1 Variants of Uncertain Significance (VUS)

    PubMed Central

    Millot, Gaël; Carvalho, Marcelo A.; Caputo, Sandrine M; Vreeswijk, Maaike P.G.; Brown, Melissa A; Webb, Michelle; Rouleau, Etienne; Neuhausen, Susan L.; Hansen, Thomas v. O.; Galli, Alvaro; Brandão, Rita D; Blok, Marinus J.; Velkova, Aneliya; Couch, Fergus J.; Monteiro, Alvaro N.A.

    2012-01-01

    Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56–80% for breast cancer and 15–60% for ovarian cancer. Since the mid 1990’s when BRCA1 was identified, genetic testing has revealed over 3,000 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome-wide pathogenicity assignment. PMID:22753008

  19. Founder BRCA1 and BRCA2 mutations in French Canadian breast and ovarian cancer families.

    PubMed Central

    Tonin, P N; Mes-Masson, A M; Futreal, P A; Morgan, K; Mahon, M; Foulkes, W D; Cole, D E; Provencher, D; Ghadirian, P; Narod, S A

    1998-01-01

    We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families. PMID:9792861

  20. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer.

    PubMed

    Christou, Charita M; Hadjisavvas, Andreas; Kyratzi, Maria; Flouri, Christina; Neophytou, Ioanna; Anastasiadou, Violetta; Loizidou, Maria A; Kyriacou, Kyriacos

    2014-01-01

    The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

  1. The BRCA1 Variant p.Ser36Tyr Abrogates BRCA1 Protein Function and Potentially Confers a Moderate Risk of Breast Cancer

    PubMed Central

    Kyratzi, Maria; Flouri, Christina; Neophytou, Ioanna; Anastasiadou, Violetta; Loizidou, Maria A.; Kyriacou, Kyriacos

    2014-01-01

    The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk. PMID:24695549

  2. Comprehensive analysis of BRCA1 and BRCA2 germline mutations in a large cohort of 5931 Chinese women with breast cancer.

    PubMed

    Zhang, Juan; Sun, Jie; Chen, Jiuan; Yao, Lu; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2016-08-01

    We determined the prevalence and characteristics of BRCA1/2 germline mutations in a large cohort of Chinese women with breast cancer. A total of 5931 unselected Chinese women with breast cancer were enrolled in this study and underwent testing for BRCA1/2 mutations. Of these, 543 patients were familial breast cancer, 1033 were early-onset disease (≤40 years) without family history of breast cancer, and 4355 were sporadic breast cancer. In total, 232 patients (3.9 %) carried a BRCA1 or BRCA2 mutation (110 in BRCA1and 122 in BRCA2) in this cohort of 5931 patients. BRCA1/2 mutation rate was 16.9 % (92/543) in familial breast cancers, 5.2 % (54/1033) in early-onset breast cancers (≤40 years), and 2.0 % in sporadic breast cancers (>40 years), respectively. The BRCA1/2 mutation rate was 27.0 % in 111 familial breast cancers diagnosed at and before the age of 40. 41.4 % of mutations in this cohort were specific for Chinese population. Recurrent mutations accounted for 44.8 % of the entire mutations in 2382 cases that BRCA1 and BRCA2 genes were fully sequenced in this study. Both BRCA1 and BRCA2 mutation carriers were significantly more likely to be early-onset and bilateral breast cancers, high-grade cancer, and to have a family history of breast cancer compared with non-carriers. BRCA1 mutation carriers were more likely to be triple-negative cancer than BRCA2 mutation carriers and non-carriers. Our data provide guidelines for Chinese women with breast cancer who should undergo BRCA1/2 genetic testing; additionally, recurrent mutations account for nearly half of the mutations and some of them are specific for Chinese women.

  3. Common genetic variation at BARD1 is not associated with Breast cancer risk in BRCA1 or BRCA2 mutation carriers

    PubMed Central

    Spurdle, Amanda B.; Marquart, Louise; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga; Wan, Fei; Chen, Xiaoqing; Beesley, Jonathan; Singer, Christian F; Dressler, Anne-Catharine; Gschwantler-Kaulich, Daphne; Blum, Joanne L.; Tung, Nadine; Weitzel, Jeff; Lynch, Henry; Garber, Judy; Easton, Douglas F.; Peock, Susan; Cook, Margaret; Oliver, Clare T.; Frost, Debra; Conroy, Don; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Davidson, Rosemarie; Chu, Carol; Eccles, Diana; Selkirk, Christina G.; Daly, Mary; Isaacs, Claudine; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Buecher, Bruno; Belotti, Muriel; Mazoyer, Sylvie; Barjhoux, Laure; Verny-Pierre, Carole; Lasset, Christine; Dreyfus, Hélène; Pujol, Pascal; Collonge-Rame, Marie-Agnès; Rookus, Matti A.; Verhoef, Senno; Kriege, Mieke; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Os, Theo A.; Wijnen, Juul; Devilee, Peter; Meijers-Heijboer, Hanne E.J.; Blok, Marinus J.; Heikkinen, Tuomas; Nevanlinna, Heli; Jakubowska, Anna; Lubiński, Jan; Huzarski, Tomasz; Byrski, Tomasz; Durocher, Francine; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Thomassen, Mads; Domchek, Susan; Nathanson, Kate; Caligo, MA; Jernström, Helena; Liljegren, Annelie; Ehrencrona, Hans; Karlsson, Per; Ganz, Patricia A.; Olopade, Olufunmilayo I.; Tomlinson, Gail; Neuhausen, Susan; Antoniou, Antonis C.; Chenevix-Trench, Georgia; Rebbeck, Timothy R.

    2011-01-01

    Background Inherited BRCA1 and BRCA2 (BRCA1/2) mutations confer elevated breast cancer risk. Knowledge of factors that can improve breast cancer risk assessment in BRCA1/2 mutation carriers may improve personalized cancer prevention strategies. Methods A cohort of 5,546 BRCA1 and 2,865 BRCA2 mutation carriers was used to evaluate risk of breast cancer associated with BARD1 Cys557Ser. In a second non-independent cohort of 1,537 of BRCA1 and 839 BRCA2 mutation carriers, BARD1 haplotypes were also evaluated. Results The BARD1 Cys557Ser variant was not significantly associated with risk of breast cancer from single SNP analysis, with a pooled effect estimate of 0.90 (95%CI: 0.71-1.15) in BRCA1 carriers and 0.87 (95%CI: 0.59-1.29) in BRCA2 carriers. Further analysis of haplotypes at BARD1 also revealed no evidence that additional common genetic variation not captured by Cys557Ser was associated with breast cancer risk. Conclusion Evidence to date does not support a role for BARD1 variation, including the Cy557Ser variant, as a modifier of risk in BRCA1/2 mutation carriers. Impact Interactors of BRCA1/2 have been implicated as modifiers of BRCA1/2-associated cancer risk. Our finding that BARD1 does not contribute to this risk modification may focus research on other genes that do modify BRCA1/2-associated cancer risk. PMID:21393566

  4. Skin cancer risk in BRCA1/2 mutation carriers.

    PubMed

    Gumaste, P V; Penn, L A; Cymerman, R M; Kirchhoff, T; Polsky, D; McLellan, B

    2015-06-01

    Women with BRCA1/2 mutations have an elevated risk of breast and ovarian cancer. These patients and their clinicians are often concerned about their risk for other cancers, including skin cancer. Research evaluating the association between BRCA1/2 mutations and skin cancer is limited and has produced inconsistent results. Herein, we review the current literature on the risk of melanoma and nonmelanoma skin cancers in BRCA1/2 mutation carriers. No studies have shown a statistically significant risk of melanoma in BRCA1 families. BRCA2 mutations have been linked to melanoma in large breast and ovarian cancer families, though a statistically significant elevated risk was reported in only one study. Five additional studies have shown some association between BRCA2 mutations and melanoma, while four studies did not find any association. With respect to nonmelanoma skin cancers, studies have produced conflicting results. Given the current state of medical knowledge, there is insufficient evidence to warrant increased skin cancer surveillance of patients with a confirmed BRCA1/2 mutation or a family history of a BRCA1/2 mutation, in the absence of standard risk factors. Nonetheless, suspected BRCA1/2 mutation carriers should be counselled about skin cancer risks and may benefit from yearly full skin examinations.

  5. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects

    PubMed Central

    Jervis, Sarah; Song, Honglin; Lee, Andrew; Dicks, Ed; Harrington, Patricia; Baynes, Caroline; Manchanda, Ranjit; Easton, Douglas F; Jacobs, Ian; Pharoah, Paul P D; Antoniou, Antonis C

    2015-01-01

    Background Although BRCA1 and BRCA2 mutations account for only ∼27% of the familial aggregation of ovarian cancer (OvC), no OvC risk prediction model currently exists that considers the effects of BRCA1, BRCA2 and other familial factors. Therefore, a currently unresolved problem in clinical genetics is how to counsel women with family history of OvC but no identifiable BRCA1/2 mutations. Methods We used data from 1548 patients with OvC and their relatives from a population-based study, with known BRCA1/2 mutation status, to investigate OvC genetic susceptibility models, using segregation analysis methods. Results The most parsimonious model included the effects of BRCA1/2 mutations, and the residual familial aggregation was accounted for by a polygenic component (SD 1.43, 95% CI 1.10 to 1.86), reflecting the multiplicative effects of a large number of genes with small contributions to the familial risk. We estimated that 1 in 630 individuals carries a BRCA1 mutation and 1 in 195 carries a BRCA2 mutation. We extended this model to incorporate the explicit effects of 17 common alleles that are associated with OvC risk. Based on our models, assuming all of the susceptibility genes could be identified we estimate that the half of the female population at highest genetic risk will account for 92% of all OvCs. Conclusions The resulting model can be used to obtain the risk of developing OvC on the basis of BRCA1/2, explicit family history and common alleles. This is the first model that accounts for all OvC familial aggregation and would be useful in the OvC genetic counselling process. PMID:26025000

  6. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families

    PubMed Central

    2014-01-01

    Background In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. Methods In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis. Results We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. Conclusions Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1

  7. Evaluation of the Dutch BRCA1/2 clinical genetic center referral criteria in an unselected early breast cancer population.

    PubMed

    van den Broek, Alexandra J; de Ruiter, Karen; van 't Veer, Laura J; Tollenaar, Rob A E M; van Leeuwen, Flora E; Verhoef, Senno; Schmidt, Marjanka K

    2015-05-01

    In this study, we evaluated the diagnostic value of the Dutch Clinical Genetic Center (CGC) referral guidelines for BRCA1/2 mutation testing in 903 early breast cancer patients, unselected for family history, diagnosed in a cancer hospital before the age of 50 years in 1974-2002; most prevalent Dutch pathogenic BRCA1/2 mutations had been analyzed on coded DNA in a research setting. Forty-nine (5.4%) of the patients were proven to be BRCA1/2 mutation carriers. We found that 78% and 69% of BRCA1 and BRCA2 mutation carriers identified met the criteria for referral to the CGC based on age, family history and synchronous multiple tumors; reflected by a combined sensitivity of 75.5% and specificity of 63.2%. More than half of the BRCA1 mutation carriers, that is, 58% had a triple-negative tumor. The highest AUC was obtained by shifting the age at diagnosis threshold criterion from 40 to 35 years and by adding a 'triple-negative breast cancer' criterion with an age threshold of 45 years; the specificity increased to 71.2%, whereas the sensitivity remained the same; that is, a referral of fewer patients will lead to the identification of at least the same number of BRCA1/2 mutation carriers. Two-thirds of the BRCA1/2 mutation carriers identified in this research setting had been referred for counseling and testing. Our results indicate that, awaiting a possibly more extended mutation screening of all breast cancer patients, the triple-negative status of a breast cancer should be added to the CGC referral criteria.

  8. Generation of a transcription map from the 17q21 region containing the BRCA1 locus

    SciTech Connect

    Rommens, J.M.; McArthur, J.; Allen, T.

    1994-09-01

    A limited interval of the chromosome 17q21 has been implicated in hereditary breast and ovarian cancer by linkage analysis. The type I 17{beta}-hydroxysteriod dehydrogenase gene (17{beta}HSD) was used to isolate two YACs. These and additional YACs identified with nearby genetic markers were characterized to obtain a detailed physical map of the BRCA1 region. This map provided the basis for the generation of a transcription map in order to identify candidate genes that could be assessed for involvement in the development of breast cancer in affected families. Direct selection of cDNAs from the genomic clones was carried out by hybridization with primary cDNA pools that had been prepared from RNA of mammary gland, ovary, placenta and the Caco-2 colon carcinoma cell line. The selected material was amplified by the polymerase chain reaction and cloned into plasmid vectors. Individual clones of the libraries of the retrieved fragments were then characterized by physical mapping, by RNA hybridization and by sequence analysis. To date, 36 unique cDNA fragments have been mapped to this region and confirmed to originate from chromosome 17. Longer cDNAs were also isolated by screening libraries derived from human breast and placenta. Based on analyses of these clones we have evidence for at least 12 genes from a 1 Megabase region. These include the type I 17{beta}HSD gene and the human {gamma}-tubulin gene. Sequences of two of the cDNA fragments showed similarity to a human brain cDNA and to a human pancreas cDNA. The predicted coding portion of one cDNA showed similarity with a rat ribosomal protein. Also, one cDNA fragment was found to be part of the recently identified gene corresponding to the CA125 antigen. The sequences of the remaining clones showed no strong similarity to known genes or proteins. These cDNAs are being analyzed by DNA and RNA hybridization for aberrations in breast and ovarian cancers.

  9. Significant clinical impact of recurrent BRCA1 and BRCA2 mutations in Mexico

    PubMed Central

    Villarreal-Garza, Cynthia; Alvarez-Gómez, Rosa María; Pérez-Plasencia, Carlos; Herrera, Luis A.; Herzog, Josef; Castillo, Danielle; Mohar, Alejandro; Castro, Clementina; Gallardo, Lenny N.; Gallardo, Dolores; Santibáñez, Miguel; Blazer, Kathleen R.; Weitzel, Jeffrey N.

    2014-01-01

    Background Frequent recurrent BRCA1 and BRCA2 gene (BRCA) mutations among Hispanics, including a large rearrangement Mexican founder mutation (BRCA1 ex9-12del), suggest that an ancestry-informed BRCA-testing strategy could reduce disparities and promote cancer prevention by enabling economical screening for hereditary breast and ovarian cancer in Mexico. Methods In a multistage approach, 188 cancer cases unselected for family cancer history (92 ovarian cancer and 96 breast cancer) were screened for BRCA mutations using a Hispanic mutation panel (HISPANEL®) of 115 recurrent mutations in a multiplex assay (114 on a mass spectroscopy platform, and a PCR assay for the BRCA1 ex9-12del mutation), followed by sequencing of all BRCA exons and adjacent intronic regions, and BRCA1 multiplex ligation-dependent probe amplification assay (MLPA) for HISPANEL negative cases. BRCA mutation prevalence was calculated and correlated with histology and tumor receptor status, and HISPANEL sensitivity was estimated. Results BRCA mutations were detected in 28% (26/92) of ovarian cancer cases and 15% (14/96) of breast cancer cases overall and 27% (9/33) of triple negative breast cancer. Most breast cancer cases were diagnosed with locally advanced disease. The Mexican founder mutation (BRCA1 ex9-12del) accounted for 35% of the BRCA-associated ovarian cancer cases and 29% of the BRCA-associated breast cancer cases. At 2% of the sequencing and MLPA cost, the HISPANEL detected 68% of all BRCA mutations. Conclusion In this study, we found a remarkably high prevalence of BRCA mutations among ovarian and breast cases not selected for family history, and BRCA1 ex9-12del explained one third of the total. The remarkable frequency of BRCA1 ex9-12del in Mexico City supports a nearby origin of this Mexican founder mutation and may constitute a regional public health problem. The HISPANEL presents a translational opportunity for cost-effective genetic testing to enable breast and ovarian cancer

  10. Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles

    PubMed Central

    Gracia-Aznarez, Francisco Javier; Fernandez, Victoria; Pita, Guillermo; Peterlongo, Paolo; Dominguez, Orlando; de la Hoya, Miguel; Duran, Mercedes; Osorio, Ana; Moreno, Leticia; Gonzalez-Neira, Anna; Rosa-Rosa, Juan Manuel; Sinilnikova, Olga; Mazoyer, Sylvie; Hopper, John; Lazaro, Conchi; Southey, Melissa; Odefrey, Fabrice; Manoukian, Siranoush; Catucci, Irene; Caldes, Trinidad; Lynch, Henry T.; Hilbers, Florentine S. M.; van Asperen, Christi J.; Vasen, Hans F. A.; Goldgar, David; Radice, Paolo; Devilee, Peter; Benitez, Javier

    2013-01-01

    The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles. PMID:23409019

  11. Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Peterlongo, Paolo; Chang-Claude, Jenny; Moysich, Kirsten B.; Rudolph, Anja; Schmutzler, Rita K.; Simard, Jacques; Soucy, Penny; Eeles, Rosalind A.; Easton, Douglas F.; Hamann, Ute; Wilkening, Stefan; Chen, Bowang; Rookus, Matti A.; Schmidt, Marjanka K; van der Baan, Frederieke H.; Spurdle, Amanda B.; Walker, Logan C.; Lose, Felicity; Maia, Ana-Teresa; Montagna, Marco; Matricardi, Laura; Lubinski, Jan; Jakubowska, Anna; Gómez Garcia, Encarna B.; Olopade, Olufunmilayo I.; Nussbaum, Robert L.; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Orsulic, Sandra; Lester, Jenny; Chung, Wendy K.; Miron, Alex; Southey, Melissa C.; Goldgar, David E.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Ding, Yuan Chun; Neuhausen, Susan L.; Hansen, Thomas V. O.; Gerdes, Anne-Marie; Ejlertsen, Bent; Jønson, Lars; Osorio, Ana; Martínez-Bouzas, Cristina; Benitez, Javier; Conway, Edye E.; Blazer, Kathleen R.; Weitzel, Jeffrey N.; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Barile, Monica; Ficarazzi, Filomena; Mariette, Frederique; Fortuzzi, Stefano; Viel, Alessandra; Giannini, Giuseppe; Papi, Laura; Martayan, Aline; Tibiletti, Maria Grazia; Radice, Paolo; Vratimos, Athanassios; Fostira, Florentia; Garber, Judy E.; Donaldson, Alan; Brewer, Carole; Foo, Claire; Evans, D. Gareth R.; Frost, Debra; Eccles, Diana; Brady, Angela; Cook, Jackie; Tischkowitz, Marc; Adlard, Julian; Barwell, Julian; Walker, Lisa; Izatt, Louise; Side, Lucy E.; Kennedy, M. John; Rogers, Mark T.; Porteous, Mary E.; Morrison, Patrick J.; Platte, Radka; Davidson, Rosemarie; Hodgson, Shirley V.; Ellis, Steve; Cole, Trevor; Godwin, Andrew K.; Claes, Kathleen; Van Maerken, Tom; Meindl, Alfons; Gehrig, Andrea; Sutter, Christian; Engel, Christoph; Niederacher, Dieter; Steinemann, Doris; Plendl, Hansjoerg; Kast, Karin; Rhiem, Kerstin; Ditsch, Nina; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Wang-Gohrke, Shan; Bressac-de Paillerets, Brigitte; Buecher, Bruno; Delnatte, Capucine; Houdayer, Claude; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Coupier, Isabelle; Barjhoux, Laure; Venat-Bouvet, Laurence; Golmard, Lisa; Boutry-Kryza, Nadia; Sinilnikova, Olga M.; Caron, Olivier; Pujol, Pascal; Mazoyer, Sylvie; Belotti, Muriel; Piedmonte, Marion; Friedlander, Michael L.; Rodriguez, Gustavo C.; Copeland, Larry J; de la Hoya, Miguel; Segura, Pedro Perez; Nevanlinna, Heli; Aittomäki, Kristiina; van Os, Theo A.M.; Meijers-Heijboer, Hanne E.J.; van der Hout, Annemarie H.; Vreeswijk, Maaike P.G.; Hoogerbrugge, Nicoline; Ausems, Margreet G.E.M.; van Doorn, Helena C.; Collée, J. Margriet; Olah, Edith; Diez, Orland; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Feliubadalo, Lidia; Cybulski, Cezary; Gronwald, Jacek; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Sukiennicki, Grzegorz; Arason, Adalgeir; Chiquette, Jocelyne; Teixeira, Manuel R.; Olswold, Curtis; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Szabo, Csilla I.; Offit, Kenneth; Corines, Marina; Jacobs, Lauren; Robson, Mark E.; Zhang, Liying; Joseph, Vijai; Berger, Andreas; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng M.; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Rennert, Gad; Mulligan, Anna Marie; Glendon, Gord; Tchatchou, Sandrine; Andrulis, Irene L.; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Thomassen, Mads; Jensen, Uffe Birk; Laitman, Yael; Rantala, Johanna; von Wachenfeldt, Anna; Ehrencrona, Hans; Askmalm, Marie Stenmark; Borg, Åke; Kuchenbaecker, Karoline B.; McGuffog, Lesley; Barrowdale, Daniel; Healey, Sue; Lee, Andrew; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Friedman, Eitan

    2014-01-01

    Background BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes. Methods Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. Results The observed p-values of association ranged between 0.005-1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. Conclusion There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Impact Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies. PMID:25336561

  12. NPR3 protects cardiomyocytes from apoptosis through inhibition of cytosolic BRCA1 and TNF-α

    PubMed Central

    Lin, Dong; Chai, Yubo; Izadpanah, Reza; Braun, Stephen E.; Alt, Eckhard

    2016-01-01

    ABSTRACT Natriuretic peptide receptor 3 (NPR3) is a clearance receptor by binding and internalizing natriuretic peptides (NPs) for ultimate degradation. Patients with cardiac failure show elevated NPs. NPs are linked to poor long-term survival because of their apoptotic effects. However, the underling mechanisms have not been identified yet. Here we report the role of NPR3 in anti-apoptosis via the breast cancer type 1 susceptibility protein (BRCA1) and tumor necrosis factor α (TNF-α ). To demonstrate a role for NPR3 in apoptosis, stable H9C2 cardiomyocyte cell lines using shRNA to knockdown NPR3 were generated. The activities of caspase-3, 8, and 9 were significantly increased in NPR3 knockdown H9C2 cardiomyocytes. Knockdown of NPR3 increased the expression of BRCA1. Also NPR3 knockdown remarkably increased the activity of cAMP response element-binding protein (CREB), a positive regulatory element for BRCA1 expression. BRCA1 showed dispersed nuclear localization in non-cardiomyocytes while predominantly cytoplasmic localization in H9C2 cells. Meanwhile, NPR3 knockdown significantly increased TNF-α gene expression. These data show that NPR3 knockdown in H9C2 cells triggered both extrinsic and intrinsic apoptotic pathways. NPR3 protects cardiomyocytes from apoptosis through inhibition of cytosolic BRCA1 and TNF-α, which are regulators of apoptosis. Our studies demonstrate anti-apoptosis role of NPR3 in protecting cardiomyocytes and establish the first molecular link between NP system and programmed cell death. PMID:27494651

  13. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations

    PubMed Central

    Laitman, Yael; Feng, Bing-Jian; Zamir, Itay M; Weitzel, Jeffrey N; Duncan, Paul; Port, Danielle; Thirthagiri, Eswary; Teo, Soo-Hwang; Evans, Gareth; Latif, Ayse; Newman, William G; Gershoni-Baruch, Ruth; Zidan, Jamal; Shimon-Paluch, Shani; Goldgar, David; Friedman, Eitan

    2013-01-01

    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ∼2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ∼5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750–1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ∼650 years ago, and into the Iraqi–Jewish community ∼450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews. PMID:22763381

  14. CAF-like state in primary skin fibroblasts with constitutional BRCA1 epimutation sheds new light on tumor suppressor deficiency-related changes in healthy tissue

    PubMed Central

    Etzold, Anna; Galetzka, Danuta; Weis, Eva; Bartsch, Oliver; Haaf, Thomas; Spix, Claudia; Itzel, Timo; Schweiger, Susann; Strand, Dennis; Strand, Susanne; Zechner, Ulrich

    2016-01-01

    ABSTRACT Constitutive epimutations of tumor suppressor genes are increasingly considered as cancer predisposing factors equally to sequence mutations. In light of the emerging role of the microenvironment for cancer predisposition, initiation, and progression, we aimed to characterize the consequences of a BRCA1 epimutation in cells of mesenchymal origin. We performed a comprehensive molecular and cellular comparison of primary dermal fibroblasts taken from a monozygous twin pair discordant for recurrent cancers and BRCA1 epimutation, whose exceptional clinical case we previously reported in this journal. Comparative transcriptome analysis identified differential expression of extracellular matrix-related genes and pro-tumorigenic growth factors, such as collagens and CXC chemokines. Moreover, genes known to be key markers of so called cancer-associated fibroblasts (CAFs), such as ACTA2, FAP, PDPN, and TNC, were upregulated in fibroblasts of the affected twin (BRCA1mosMe) in comparison to those of the healthy twin (BRCA1wt). Further analyses detected CAF-typical cellular features, including an elevated growth rate, enhanced migration, altered actin architecture and increased production of ketone bodies in BRCA1mosMe fibroblasts compared to BRCA1wt fibroblasts. In addition, conditioned medium of BRCA1mosMe fibroblasts was more potent than conditioned medium of BRCA1wt fibroblasts to promote cell proliferation in an epithelial and a cancer cell line. Our data demonstrate, that a CAF-like state is not an exclusive feature of tumor-associated tissue but also exists in healthy tissue with tumor suppressor deficiency. The naturally occurring phenomenon of twin fibroblasts differing in their BRCA1 methylation status revealed to be a unique powerful tool for exploring tumor suppressor deficiency-related changes in healthy tissue, reinforcing their significance for cancer predisposition. PMID:26949839

  15. BRCA1 germ-line mutations and tumor characteristics in eastern Chinese women with familial breast cancer.

    PubMed

    Cao, Wenming; Wang, Xiaojia; Gao, Yun; Yang, Hongjian; Li, Ji-Cheng

    2013-02-01

    Although several studies detected the BRCA1 germ-line mutations in Chinese women with familial breast cancer, most of them did not employ conventional full gene sequencing, especially in eastern China. In addition, the clinicopathological features of BRCA1-associated breast cancer in Chinese women were not well investigated. In this study, we screened the complete coding regions and exon-intron boundaries of BRCA1 by polymerase chain reaction (PCR)-sequencing assay. Immunohistochemistry analyses were performed on tumor samples to detect the expression of estrogen receptor (ER), progesterone receptor (PR), P53, and human epidermal growth factor receptor-2 (HER-2). Breast cancer patients having one or more affected relatives referred from the Zhejiang Cancer Hospital, eastern China during 2008-2011 were selected for the study. A total of 62 familial breast cancer patients received the BRCA1 germ-line mutation screening. Five deleterious mutations were detected in this cohort. The mutation rate was 11.3% (7/62). We found two novel mutations (3414delC and 5,280 C > T) and two recurrent mutations (5,273 G > A and 5589del8). BRCA1 mutation tumors tended to be negative for ER, PR, and HER-2, and exhibited high histological grade compared with tumors without BRCA1 mutations. Our study suggests that recurrent mutations may exist in eastern Chinese women with familial breast cancer and PCR-sequencing assay is a useful tool to screen these mutations. It also suggests that BRCA1-associated breast cancers in Chinese women exhibit an aggressive phenotype.

  16. Characterization and Use of Temperature-Sensitive Mutations of BRCA1 for the Study of BRCA1 Function

    DTIC Science & Technology

    2005-01-01

    Monteiro,A.N. BRCA1: exploring the links to transcription. Trends Biochem. Sci 25 , 469-474 (2000). 23. Starita,L.M. & Parvin,J.D. The multiple nuclear...Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum Mol. Genet 10, 353-360 (2001). 25 . Carvalho...the molecular mechanism(s) of feller.edu BRCA1 in processes related to transcription.Received 8/ 25 /02; Accepted 8/30/02 : ::i .... Previously

  17. High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia.

    PubMed

    Torres, Diana; Rashid, Muhammad Usman; Gil, Fabian; Umana, Angela; Ramelli, Giancarlo; Robledo, Jose Fernando; Tawil, Mauricio; Torregrosa, Lilian; Briceno, Ignacio; Hamann, Ute

    2007-06-01

    In South America, a high proportion of the population is of Hispanic origin with an important representation in Colombia. Since nothing is known about the contribution of BRCA1 and BRCA2 germline mutations to hereditary breast/ovarian cancer in the Hispanic population from Colombia, we conducted the first study of 53 breast/ovarian cancer families from this country. Comprehensive BRCA mutation screening was performed using a range of techniques, including DHPLC, SSCP, and PTT, followed by DNA sequencing analysis. Thirteen deleterious germline mutations (24.5%) were identified in 53 families, comprising eight in BRCA1 and five in BRCA2. The two recurrent BRCA1 mutations, 3450 delCAAG and A1708E, accounted for 100% of all BRCA1 mutations identified in this cohort and the recurrent 3034 delACAA BRCA2 mutation for 40% of all BRCA2 mutations. Haplotype analyses suggested that each of these mutations has arisen from a common ancestor. The prevalence of BRCA1 or BRCA2 mutations was 50% in multiple case breast cancer families, and was 33% for the breast-ovarian cancer families. Our findings show that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer in Colombia. The spectrum of mutations differed completely to that previously reported in Hispanic families of predominantly Mexican origin from Southern California [1] suggesting that specific genetic risk assessment strategies for the different Hispanic populations in South America and in the United States need to be developed.

  18. BRCA1 and BRCA2: Cancer Risk and Genetic Testing

    MedlinePlus

    ... BRCA2 genetic test result mean? What does a negative BRCA1 or BRCA2 test result mean? What does ... The medical implications of a positive or a negative test result The possibility that a test result ...

  19. Tumorigenesis in mice carrying a truncating Brca1 mutation

    PubMed Central

    Ludwig, Thomas; Fisher, Peter; Ganesan, Shridar; Efstratiadis, Argiris

    2001-01-01

    We generated mouse mutants carrying in the Brca1 locus a modification (Brca1tr) that eliminates the C-terminal half of the protein product and obtained results indicating that, depending on genetic background, the missing BRCT and/or other domains are dispensable for survival, but essential for tumor suppression. Most of the apparently hypomorphic Brca1tr/tr mutants developed various tumors. Lymphomas were detected at all ages, whereas sarcomas and carcinomas, including breast cancer, appeared after a long latency. The mammary tumors showed striking variability in histopathological patterns suggesting stochastic engagement of tumorigenic pathways in their progression, to which the Brca1tr/tr mutation was apparently a late participant. PMID:11358863

  20. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State.

    PubMed

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-10-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms.

  1. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State

    PubMed Central

    Liu, Ying; Yen, Hai-Yun; Austria, Theresa; Pettersson, Jonas; Peti-Peterdi, Janos; Maxson, Robert; Widschwendter, Martin; Dubeau, Louis

    2015-01-01

    Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r) promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr) promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30%) rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001), attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms. PMID:26629527

  2. Survival in Norwegian BRCA1 mutation carriers with breast cancer.

    PubMed

    Hagen, Anne Irene; Tretli, Steinar; Maehle, Lovise; Apold, Jaran; Vedå, Nina; Møller, Pål

    2009-04-14

    Several studies of survival in women with BRCA1 mutations have shown either reduced survival or no difference compared to controls. Programmes for early detection and treatment of inherited breast cancer, have failed to demonstrate a significant improvement in survival in BRCA1 mutation carriers.One hundred and sixty-seven women with disease-associated germline BRCA1 mutations and breast cancer from 1980 to 2001 were identified. Tumour characteristics, treatment given and survival were recorded. A control group comprising three hundred and four women matched for age, time of diagnosis and stage were used to compare survival.BRCA1 mutation carriers were found to have a poorer prognosis, which could be explained by neither the mode of surgical treatment nor the use of adjuvant chemotherapy. BRCA1 mutation carriers with node negative breast cancer had worse overall survival than controls.Our findings confirm the serious prognosis of BRCA1-associated breast cancer even when diagnosed at an early stage, and that type of treatment does not influence prognosis.

  3. Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population

    SciTech Connect

    Friedman, L.S.; Gayther, S.A.; Ponder, B.A.J.

    1997-02-01

    A population-based series of 54 male breast cancer cases from Southern California were analyzed for germ-line mutations in the inherited breast/ovarian cancer genes, BRCA1 and BRCA2. Nine (17%) of the patients had a family history of breast and/or ovarian cancer in at least one first-degree relative. A further seven (13%) of the patients reported breast/ovarian cancer in at least one second-degree relative and in no first-degree relatives. No germ-line BRCA1 mutations were found. Two male breast cancer patients (4% of the total) were found to carry novel truncating mutations in the BRCA2 gene. Only one of the two male breast cancer patients carrying a BRCA2 mutation had a family history of cancer, with one case of ovarian cancer in a first-degree relative. The remaining eight cases (89%) of male breast cancer with a family history of breast/ovarian cancer in first-degree relatives remain unaccounted for by mutations in either the BRCA1 gene or the BRCA2 gene. 23 refs., 1 fig., 5 tabs.

  4. TUSC4 functions as a tumor suppressor by regulating BRCA1's stability via the E3 ubiquitination pathway

    PubMed Central

    Peng, Yang; Dai, Hui; Wang, Edward; Lin, Curtis Chun-Jen; Mo, Wei; Peng, Guang; Lin, Shiaw-Yih

    2016-01-01

    Expression of the tumor suppressor protein BRCA1 is frequently lost in breast cancer patients, and the loss of its expression is associated with disruption of various critical functions in cells and cancer development. In the present study, we demonstrated that microarray analysis of cells with tumor suppressor candidate 4 (TUSC4) knockdown indicated critical changes such as cell cycle, cell death pathways and a global impact to cancer development. More importantly, we observed a clear cluster pattern of TUSC4-knockdown gene profiles with established homologous recombination (HR) repair defect signature. Additionally, TUSC4 protein can physically interact with E3 ligase Herc2 and prevents BRCA1 degradation via ubiquitination pathway. Knockdown of TUSC4 expression enhanced BRCA1 polyubiquitination, leading to BRCA1 protein degradation and a marked reduction in HR repair efficiency. Notably, ectopic expression of TUSC4 effectively suppressed the proliferation, invasion, and colony formation of breast cancer cells in vitro and tumorigenesis in vivo. Furthermore, knockdown of TUSC4 expression transformed normal mammary epithelial cells and enhanced the sensitivity of U2OS cells to the treatment of poly(ADP-ribose) polymerase inhibitors. Therefore, TUSC4 may act as a bona fide tumor suppressor by regulating BRCA1 protein stability and function in breast cancer. PMID:25480944

  5. Progesterone Receptor A Stability Is Mediated by Glycogen Synthase Kinase-3β in the Brca1-deficient Mammary Gland*

    PubMed Central

    Wang, Shaohui; Li, Ying; Hsu, Pang-Hung; Lee, Sou-Ying; Kim, Yoon; Lee, Eva Y.-H. P.

    2013-01-01

    Germ line mutations of the BRCA1 gene increase the risk of breast and ovarian cancer, but the basis of this tissue-specific tumor predisposition is not fully understood. Previously, we reported that the progesterone receptors are stabilized in Brca1-deficient mammary epithelial cells, and treating with anti-progesterone delays mammary tumorigenesis in Brca1/p53 conditional knock-out mice, suggesting that the progesterone has a critical role in breast carcinogenesis. To further explore how the stability of progesterone receptor is modulated, here, we have found that glycogen synthase kinase (GSK)-3β phosphorylation of progesterone receptor-A (PR-A) facilitates its ubiquitination. GSK-3β-mediated phosphorylation of serine 390 in PR-A regulates its subsequent ubiquitination and protein stability. Expression of PR-AS390A mutant in the human breast epithelial cells, MCF-10A, results in enhanced proliferation and formation of aberrant acini structure in the three-dimensional culture. Consistently, reduction of phosphorylation of serine 390 of PR-A and GSK-3β activity is observed in the Brca1-deficient mammary gland. Taken together, these results provide important aspects of tissue specificity of BRCA1-mediated suppression of breast carcinogenesis. PMID:23880761

  6. Progesterone receptor A stability is mediated by glycogen synthase kinase-3β in the Brca1-deficient mammary gland.

    PubMed

    Wang, Shaohui; Li, Ying; Hsu, Pang-Hung; Lee, Sou-Ying; Kim, Yoon; Lee, Eva Y-H P

    2013-09-06

    Germ line mutations of the BRCA1 gene increase the risk of breast and ovarian cancer, but the basis of this tissue-specific tumor predisposition is not fully understood. Previously, we reported that the progesterone receptors are stabilized in Brca1-deficient mammary epithelial cells, and treating with anti-progesterone delays mammary tumorigenesis in Brca1/p53 conditional knock-out mice, suggesting that the progesterone has a critical role in breast carcinogenesis. To further explore how the stability of progesterone receptor is modulated, here, we have found that glycogen synthase kinase (GSK)-3β phosphorylation of progesterone receptor-A (PR-A) facilitates its ubiquitination. GSK-3β-mediated phosphorylation of serine 390 in PR-A regulates its subsequent ubiquitination and protein stability. Expression of PR-A(S390A) mutant in the human breast epithelial cells, MCF-10A, results in enhanced proliferation and formation of aberrant acini structure in the three-dimensional culture. Consistently, reduction of phosphorylation of serine 390 of PR-A and GSK-3β activity is observed in the Brca1-deficient mammary gland. Taken together, these results provide important aspects of tissue specificity of BRCA1-mediated suppression of breast carcinogenesis.

  7. Mechanism of Ovarian Epithelial Tumor Predisposition in Individuals Carrying Germline BRCA1 Mutations

    DTIC Science & Technology

    2006-01-01

    gene knockout developed ovarian/ tubal tumors morphologically very similar to human ovarian serous cystadenomas in strong support of our hypothesis. We...proliferation activity in the uterus of 5 wild type and 5 mutant mice at the diestrus ad estrus phases of the estrus cycle. Histological cross- sections were...zygous knockout restricted to granulosa cells. One ovary was removed from each of 30 Brca1 flox/flox; Fshr-Cre mice at 2 months of age. Histological

  8. Development and Validation of a Next-Generation Sequencing Assay for BRCA1 and BRCA2 Variants for the Clinical Laboratory

    PubMed Central

    Strom, Charles M.; Rivera, Steven; Elzinga, Christopher; Angeloni, Taraneh; Rosenthal, Sun Hee; Goos-Root, Dana; Siaw, Martin; Platt, Jamie; Braastadt, Cory; Cheng, Linda; Ross, David; Sun, Weimin

    2015-01-01

    The objective of this study was to design and validate a next-generation sequencing assay (NGS) to detect BRCA1 and BRCA2 mutations. We developed an assay using random shearing of genomic DNA followed by RNA bait tile hybridization and NGS sequencing on both the Illumina MiSeq and Ion Personal Gene Machine (PGM). We determined that the MiSeq Reporter software supplied with the instrument could not detect deletions greater than 9 base pairs. Therefore, we developed an alternative alignment and variant calling software, Quest Sequencing Analysis Pipeline (QSAP), that was capable of detecting large deletions and insertions. In validation studies, we used DNA from 27 stem cell lines, all with known deleterious BRCA1 or BRCA2 mutations, and DNA from 67 consented control individuals who had a total of 352 benign variants. Both the MiSeq/QSAP combination and PGM/Torrent Suite combination had 100% sensitivity for the 379 known variants in the validation series. However, the PGM/Torrent Suite combination had a lower intra- and inter-assay precision of 96.2% and 96.7%, respectively when compared to the MiSeq/QSAP combination of 100% and 99.4%, respectively. All PGM/Torrent Suite inconsistencies were false-positive variant assignments. We began commercial testing using both platforms and in the first 521 clinical samples MiSeq/QSAP had 100% sensitivity for BRCA1/2 variants, including a 64-bp deletion and a 10-bp insertion not identified by PGM/Torrent Suite, which also suffered from a high false-positive rate. Neither the MiSeq nor PGM platform with their supplied alignment and variant calling software are appropriate for a clinical laboratory BRCA sequencing test. We have developed an NGS BRCA1/2 sequencing assay, MiSeq/QSAP, with 100% analytic sensitivity and specificity in the validation set consisting of 379 variants. The MiSeq/QSAP combination has sufficient performance for use in a clinical laboratory. PMID:26295337

  9. The Novel Ribonucleotide Reductase Inhibitor COH29 Inhibits DNA Repair In Vitro

    PubMed Central

    Chen, Mei-Chuan; Zhou, Bingsen; Zhang, Keqiang; Yuan, Yate-Ching; Un, Frank; Hu, Shuya; Chou, Chih-Ming; Chen, Chun-Han; Wu, Jun; Wang, Yan; Liu, Xiyong; Smith, D. Lynne; Li, Hongzhi; Liu, Zheng; Warden, Charles D.; Su, Leila; Malkas, Linda H.; Chung, Young Min; Hu, Mickey C.-T.

    2015-01-01

    COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1–defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5– and DR–green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent. PMID:25814515

  10. Cardiac function in BRCA1/2 mutation carriers with history of breast cancer treated with anthracyclines.

    PubMed

    Barac, Ana; Lynce, Filipa; Smith, Karen L; Mete, Mihriye; Shara, Nawar M; Asch, Federico M; Nardacci, Madeline P; Wray, Lynette; Herbolsheimer, Pia; Nunes, Raquel A; Swain, Sandra M; Warren, Robert; Peshkin, Beth N; Isaacs, Claudine

    2016-01-01

    Animal data suggest that defects in BRCA1/2 genes significantly increase the risk of heart failure and mortality in mice exposed to doxorubicine. Women with BRCA1/2 mutations who develop breast cancer (BC) may receive anthracyclines but their risk of cardiac dysfunction has not been investigated. Our study tested the hypothesis that women with history of BRCA1/2 mutation-associated BC treated with anthracyclines have impaired parameters of cardiac function compared to similarly treated women with history of sporadic BC. Women with history of BC and anthracycline treatment underwent an echocardiographic exam for assessment of primary outcomes, left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). The sample size of 81 provided 79 % power with two-sided two-sample t test and alpha of 0.05 to detect a clinically meaningful difference in cardiac function of absolute 5 % points difference for LVEF and 2 % points difference for GLS. Of 81 normotensive participants, 39 were BRCA1/2 mutation carriers and 42 in the sporadic group. Mean age was 50 ± 9 years in both groups (P = 0.99) but BRCA1/2 mutation carriers had longer anthracycline treatment-to-enrollment time (7.5 ± 5.3 vs. 4.2 ± 3.3 years, P = 0.001). There were no significant differences in LVEF (P = 0.227) or GLS (P = 0.53) between the groups. LVEF was normal in 91 % of women and subclinical cardiac dysfunction defined as absolute GLS value <18.9 % was seen in 4 (10 %) BRCA1/2 mutation carriers and 7 (17 %) sporadic participants. In this first prospective examination of cardiac function in BRCA1/2 mutation carriers, we found no significant differences in sensitive echocardiographic parameters of cardiac function between BRCA1/2 mutation carriers and women with history of sporadic BC who received anthracycline treatment. In contrast to laboratory animal data, our findings indicate lack of elevated cardiac risk with the use of standard-doses of adjuvant anthracyclines in treatment of BRCA1

  11. Depletion of eIF2.GTP.Met-tRNAi translation initiation complex up-regulates BRCA1 expression in vitro and in vivo

    PubMed Central

    Peker, Selen; Merajver, Sophia; Halperin, Jose A.

    2015-01-01

    Most sporadic breast and ovarian cancers express low levels of the breast cancer susceptibility gene, BRCA1. The BRCA1 gene produces two transcripts, mRNAa and mRNAb. mRNAb, present in breast cancer but not in normal mammary epithelial cells, contains three upstream open reading frames (uORFs) in its 5′UTR and is translationally repressed. Comparable tandem uORFs are characteristically seen in mRNAs whose translational efficiency paradoxically increases when the overall translation rate is decreased due to phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α). Here we show fish oil derived eicosopanthenoic acid (EPA) that induces eIF2α phosphorylation translationally up-regulates the expression of BRCA1 in human breast cancer cells. We demonstrate further that a diet rich in EPA strongly induces expression of BRCA1 in human breast cancer xenografts. PMID:25762631

  12. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples.

    PubMed

    Lee, Sin Hang; Zhou, Shaoxia; Zhou, Tianjun; Hong, Guofan

    2016-02-08

    Three sets of polymerase chain reaction (PCR) primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap) cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV) assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine.

  13. BRCA1 and BRCA2 Mutations in Ethnic Lebanese Arab Women With High Hereditary Risk Breast Cancer

    PubMed Central

    Zgheib, Nathalie K.; Assi, Hussein A.; Khoury, Katia E.; Bidet, Yannick; Jaber, Sara M.; Charara, Raghid N.; Farhat, Rania A.; Kreidieh, Firas Y.; Decousus, Stephanie; Romero, Pierre; Nemer, Georges M.; Salem, Ziad; Shamseddine, Ali; Tfayli, Arafat; Abbas, Jaber; Jamali, Faek; Seoud, Muhieddine; Armstrong, Deborah K.; Bignon, Yves-Jean; Uhrhammer, Nancy

    2015-01-01

    Purpose. Breast cancer is the most common malignancy among women in Lebanon and in Arab countries, with 50% of cases presenting before the age of 50 years. Methods. Between 2009 and 2012, 250 Lebanese women with breast cancer who were considered to be at high risk of carrying BRCA1 or BRCA2 mutations because of presentation at young age and/or positive family history (FH) of breast or ovarian cancer were recruited. Clinical data were analyzed statistically. Coding exons and intron-exon boundaries of BRCA1 and BRCA2 were sequenced from peripheral blood DNA. All patients were tested for BRCA1 rearrangements using multiplex ligation-dependent probe amplification (MLPA). BRCA2 MLPA was done in selected cases. Results. Overall, 14 of 250 patients (5.6%) carried a deleterious BRCA mutation (7 BRCA1, 7 BRCA2) and 31 (12.4%) carried a variant of uncertain significance. Eight of 74 patients (10.8%) aged ≤40 years with positive FH and only 1 of 74 patients (1.4%) aged ≤40 years without FH had a mutated BRCA. Four of 75 patients (5.3%) aged 41–50 years with FH had a deleterious mutation. Only 1 of 27 patients aged >50 years at diagnosis had a BRCA mutation. All seven patients with BRCA1 mutations had grade 3 infiltrating ductal carcinoma and triple-negative breast cancer. Nine BRCA1 and 17 BRCA2 common haplotypes were observed. Conclusion. Prevalence of deleterious BRCA mutations is lower than expected and does not support the hypothesis that BRCA mutations alone cause the observed high percentage of breast cancer in young women of Lebanese and Arab descent. Studies to search for other genetic mutations are recommended. PMID:25777348

  14. Development and characterization of reference materials for MTHFR, SERPINA1, RET, BRCA1, and BRCA2 genetic testing.

    PubMed

    Barker, Shannon D; Bale, Sherri; Booker, Jessica; Buller, Arlene; Das, Soma; Friedman, Kenneth; Godwin, Andrew K; Grody, Wayne W; Highsmith, Edward; Kant, Jeffery A; Lyon, Elaine; Mao, Rong; Monaghan, Kristin G; Payne, Deborah A; Pratt, Victoria M; Schrijver, Iris; Shrimpton, Antony E; Spector, Elaine; Telatar, Milhan; Toji, Lorraine; Weck, Karen; Zehnbauer, Barbara; Kalman, Lisa V

    2009-11-01

    Well-characterized reference materials (RMs) are integral in maintaining clinical laboratory quality assurance for genetic testing. These RMs can be used for quality control, monitoring of test performance, test validation, and proficiency testing of DNA-based genetic tests. To address the need for such materials, the Centers for Disease Control and Prevention established the Genetic Testing Reference Material Coordination Program (GeT-RM), which works with the genetics community to improve public availability of characterized RMs for genetic testing. To date, the GeT-RM program has coordinated the characterization of publicly available genomic DNA RMs for a number of disorders, including cystic fibrosis, Huntington disease, fragile X, and several genetic conditions with relatively high prevalence in the Ashkenazi Jewish population. Genotypic information about a number of other cell lines has been collected and is also available. The present study includes the development and commutability/genotype characterization of 10 DNA samples for clinically relevant mutations or sequence variants in the following genes: MTHFR; SERPINA1; RET; BRCA1; and BRCA2. DNA samples were analyzed by 19 clinical genetic laboratories using a variety of assays and technology platforms. Concordance was 100% for all samples, with no differences observed between laboratories using different methods. All DNA samples are available from Coriell Cell Repositories and characterization information can be found on the GeT-RM website.

  15. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families

    PubMed Central

    Krajc, Mateja; Teugels, Erik; Zgajnar, Janez; Goelen, Guido; Besic, Nikola; Novakovic, Srdjan; Hocevar, Marko; De Grève, Jacques

    2008-01-01

    Background Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations. The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families. Methods The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i) probands with at least two first degree relatives with breast and ovarian cancer; (ii) probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii) individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family. Results Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%). Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene). The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of the cryptic cysteine

  16. Twenty-three novel BRCA1 and BRCA2 sequence alterations in breast and/or ovarian cancer families of Eastern Spain.

    PubMed

    Esteban Cardeñosa, Eva; Bolufer Gilabert, Pascual; Palanca Suela, Sarai; Oltra Soler, Silvestre; Barragán González, Eva; Velasco Sampedro, Eladio; Chirivella González, Isabel; Segura Huerta, Angel; Guillén Ponce, Carmen; Martínez de Dueñas, Eduardo

    2008-11-01

    It is well established that mutations in BRCA1 and BRCA2 genes significantly increase the risk of breast and ovarian cancer. We here report 23 novel genetic variants of the BRCA1 and BRCA2 genes found in 349 cancer-prone unrelated families from Eastern Spain detected during the first 2 years of performance of the Program of Genetic Counseling of Valencia Community. Mutational screening was performed by pre-screening the heteroduplex formed in the PCR products obtained amplifying BRCA1 and BRCA2 genes by conformation sensitive electrophoresis. We detected 10 deletereous mutations, four in BRCA1 (three frame-shift (FS) and one nonsense mutation (NS)) and six in BRCA2 (four FS and one NS mutation). Moreover, we detected 13 unclassified variants, four in BRCA1 (one missense (MS), two synonymous (SYN) and one intronic (I) variant) and nine in BRCA2 (six MS, one SYN and two I). The relevance of the novel mutations is discussed. Our contribution broadens the BRCA1/2 world mutational spectra.

  17. Prevalence of BRCA1 and BRCA2 mutations in non-familial breast cancer patients with high risks in Korea: the Korean Hereditary Breast Cancer (KOHBRA) Study.

    PubMed

    Son, Byung Ho; Ahn, Sei Hyun; Kim, Sung-Won; Kang, Eunyoung; Park, Sue K; Lee, Min Hyuk; Noh, Woo-Chul; Kim, Lee Su; Jung, Yongsik; Kim, Ku Sang; Noh, Dong-Young; Moon, Byung-In; Suh, Young Jin; Lee, Jeong Eon; Choi, Doo Ho; Kim, Sung Yong; Jung, Sung Hoo; Yom, Cha Kyong; Lee, Hyde; Yang, Jung-Hyun

    2012-06-01

    Prevalence and phenotype of BRCA mutation can vary by race. The purpose of this study is to evaluate the prevalence of BRCA1/2 mutations in non-familial breast cancer patients with high risks in Korea. A subset of 758 patients was selected for this study from the KOHBRA nationwide multicenter prospective cohort study. Mutations in BRCA1/2 genes were tested using fluorescent-conformation sensitive gel electrophoresis, denaturing high performance liquid chromatography or direct sequencing. Mutation of BRCA1/2 genes were identified in 65 (8.6%) patients among total 758 patients [BRCA1 mutation: 25 (3.3%), BRCA2 mutation: 40 (5.3%)]. According to risk groups, mutation of BRCA1/2 genes were identified in 53 (8.5%) of 625 early onset patients (age ≤ 40), in 22 (17.7%) of 124 bilateral breast cancer patients, in 3 (50.0%) of 6 breast and ovarian cancer patients, in one (5.9%) of 17 male breast cancer patients, in 5 cases (7.6%) of 66 multiple organ cancer patients. The most common mutation was 509C>A for BRCA1 and 7708C>T for BRCA2. The prevalence of BRCA1/2 mutations by age in early onset patients was significantly different (age <35 vs age ≥35; 10.0 vs 2.9%, p = 0.0007). BRCA1/2 mutations for non-familial Korean breast cancer patients were detected at a high rate, particularly, in patients with early onset of less than 35 years of age, bilateral breast cancer, and breast and ovarian cancer. Individualized genetic counseling should be offered for non-familial breast cancer patients with these risk factors.

  18. Characterization of BRCA1/2 mutations in patients with family history of breast cancer in Armenia

    PubMed Central

    Atshemyan, Sofi; Chavushyan, Andranik; Berberian, Nerses; Sahakyan, Arthur; Zakharyan, Roksana; Arakelyan, Arsen

    2017-01-01

    Background. Breast cancer is one of the most common cancers in women worldwide. The germline mutations of the BRCA1 and BRCA2 genes are the most significant and well characterized genetic risk factors for hereditary breast cancer. Intensive research in the last decades has demonstrated that the incidence of mutations varies widely among different populations. In this study we attempted to perform a pilot study for identification and characterization of mutations in BRCA1 and BRCA2 genes among Armenian patients with family history of breast cancer and their healthy relatives.  Methods. We performed targeted exome sequencing for BRCA1 and BRCA2 genes in 6 patients and their healthy relatives. After alignment of short reads to the reference genome, germline single nucleotide variation and indel discovery was performed using GATK software. Functional implications of identified variants were assessed using ENSEMBL Variant Effect Predictor tool.  Results. In total, 39 single nucleotide variations and 4 indels were identified, from which 15 SNPs and 3 indels were novel. No known pathogenic mutations were identified, but 2 SNPs causing missense amino acid mutations had significantly increased frequencies in the study group compared to the 1000 Genome populations.  Conclusions. Our results demonstrate the importance of screening of BRCA1 and BRCA2 gene variants in the Armenian population in order to identity specifics of mutation spectrum and frequencies and enable accurate risk assessment of hereditary breast cancers. PMID:28357044

  19. Removal of Ovaries and Fallopian Tubes Cuts Cancer Risk for BRCA1/2 Carriers | Division of Cancer Prevention

    Cancer.gov

    Surgery that removes the ovaries and fallopian tubes, called salpingo-oophorectomy, is one of the most effective ways to decrease a woman's risk of breast and gynecologic cancer if she carries aBRCA1 or BRCA2 gene mutation. However, the true degree of risk reduction has not been precisely defined. |

  20. Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells.

    PubMed

    Chen, Ya-Yin; Chiang, Su-Yin; Lin, Jaung-Geng; Yang, Jai-Sing; Ma, Yi-Shih; Liao, Ching-Lung; Lai, Tung-Yuan; Tang, Nou-Ying; Chung, Jing-Gung

    2010-03-01

    In our primary studies, we have shown that emodin, aloe-emodin and rhein induced cytotoxic effects, including cell cycle arrest and apoptosis in SCC-4 human tongue cancer cells. However, details regarding their effects on DNA damage and repair gene expression in SCC-4 cells are not clear. We investigated whether or not emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 cells. Comet assay (single cell electrophoresis) indicated that incubation of SCC-4 cells with 0, 20, 30 and 40 microM of emodin, 0, 25, 50 and 100 microM of aloe-emodin or rhein led to a longer DNA migration smear (comet tail). This means that all examined agents induced DNA damage in SCC-4 cells and these effects are dose-dependent but emodin is stronger than that of aloe-emodin or rhein. The results from real-time PCR assay demonstrated that 30 microM of emodin or aloe-emodin used for 24 and 48 h treatment in SCC-4 cells significantly inhibited expression of genes associated with DNA damage and repair [ataxia telangiectasia mutated (ATM); ataxia-telangiectasia and Rad3-related (ATR); 14-3-3sigma (14-3-3sigma); breast cancer 1, early onset (BRCA1); and DNA-dependent serine/threonine protein kinase (DNA-PK)]; only rhein suppressed the expression of O(6)-methylguanine-DNA methyltransferase (MGMT) mRNA with 48 h treatment, but had no effect on ATM expression. On 24 h treatment, only aloe-emodin significantly affected ATM expression. These effects may be the vital factors for emodin, aloe-emodin and rhein induction of DNA damage in vitro. In conclusion, these agents induced DNA damage followed by the inhibition of DNA repair-associated gene expressions, including ATM, ATR, 14-3-3sigma, BRCA1, DNA-PK and MGMT in SCC-4 human tongue cancer cells.

  1. Quality of Life and Psychological State in Chinese Breast Cancer Patients Who Received BRCA1/2 Genetic Testing

    PubMed Central

    Qiu, Jiajia; Guan, Jiaqin; Yang, Xiaochen; Wu, Jiong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen

    2016-01-01

    Background This study aims to understand the quality of life (QOL) and psychological state (PS) of Chinese breast cancer patients who received BRCA1/2 genetic testing; to examine the psychological changes between BRCA1/2 mutation carriers and non-carriers; and to further explore the psychological experience of BRCA1/2 mutation carriers. Methods This study was combined with quantitative and qualitative designs. First, we performed a quantitative investigation using FACT-B (Chinese version) and Irritability, Depression and Anxiety scale (IDA) to assess the QOL and PS in breast cancer patients who received BRCA1/2 genetic testing. Then semi-structured in-depth qualitative interviews among 13 mutation carriers were conducted in hospital. Results Results from the quantitative study showed QOL scores were relatively high and the IDA scores were relatively low among the patients, and there was no significant difference in the QOL or IDA scores between non-carriers and carriers. Based on the qualitative analysis, four main themes emerged: (1) Finding the reason for having breast cancer; (2) Negative emotions; (3) Behavioral changes; (4) Lack of information. Conclusions The present study showed that QOL and PS are good among the breast cancer patients who received genetic testing. Genetic testing itself does not cause long psychosocial effects. BRCA1/2 mutation carriers may have certain negative emotions at the first stage they knew the testing results and may initiate behavioral and lifestyle changes. The patients with a BRCA1/2 mutation desire knowledge with regard to genetic aspects in mainland China. Professional information and advice can be provided to relieve the patients’ negative emotions when they were informed of gene defect. PMID:27428375

  2. Mammography screening and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a prospective study.

    PubMed

    Giannakeas, Vasily; Lubinski, Jan; Gronwald, Jacek; Moller, Pal; Armel, Susan; Lynch, Henry T; Foulkes, William D; Kim-Sing, Charmaine; Singer, Christian; Neuhausen, Susan L; Friedman, Eitan; Tung, Nadine; Senter, Leigha; Sun, Ping; Narod, Steven A

    2014-08-01

    Women with a genetic predisposition to breast cancer may be at increased risk of cancer after exposure to ionizing radiation. It is unclear whether mammography screening increases the risk of breast cancer among BRCA1 and BRCA2 carriers. We identified 2,346 women with a BRCA1 (n = 1844) or BRCA2 (n = 502) mutation and no breast cancer, and we reviewed their history of mammography exposure. These women were followed for an average of 5.3 years and were observed for new breast cancer diagnoses. At study entry, 1808 women (77.1 %) reported ever having had a mammogram; of these, 204 women (11.2 %) reported having had a mammogram before age 30. We estimated the hazard ratios for the development of invasive breast cancer, conditional on the number of prior mammograms and on the age at first mammogram. Hazard ratios were estimated and stratified by gene (BRCA1 or BRCA2), relative to women with no exposure. We observed no significant association between prior mammography exposure and breast cancer risk for BRCA1 carriers (HR 0.79; 95 % CI 0.53-1.19; P = 0.26) or for BRCA2 carriers (HR 0.90; 95 % CI 0.35-2.34; P = 0.83). An early age at first mammogram (<30 years) did not increase breast cancer risk among BRCA1 carriers (HR 0.75; 95 % CI 0.41-1.37; P = 0.35) or among BRCA2 carriers (HR 0.69; 95 % CI 0.19-2.48; P = 0.57). Exposure to mammography in women with BRCA1 and BRCA2 mutations is not associated with an increased risk of breast cancer.

  3. A low frequency of non-founder BRCA1 mutations in Ashkenazi Jewish breast-ovarian cancer families.

    PubMed

    Phelan, Catherine M; Kwan, Elaine; Jack, Elaine; Li, Song; Morgan, Cindy; Aubé, Jennifer; Hanna, Danielle; Narod, Steven A

    2002-11-01

    The 185delAG and 5382insC founder mutations account for the majority of mutations identified in BRCA1 in Ashkenazi Jewish breast and breast-ovarian cancer families. Few non-founder BRCA1 mutations have been identified to date in these families. We initially screened a panel of 245 Ashkenazi Jewish breast-ovarian cancer families with an affected proband and at least one other case of breast or ovarian cancer for founder mutations in BRCA1 and BRCA2. Founder mutations were identified in 85 families (185delAG in 44 families, 5382insC in 16 families, and the BRCA2 6174delT in 25 families). The 160 negative families were then screened for the entire BRCA1 gene by a combination of DGGE and PTT. We identified one novel frameshift mutation in BRCA1 in exon 14 (4572del22) that truncated the protein at codon 1485. The family contained three cases of early-onset ovarian cancer (41 years, 43 years, and 52 years) and one case of breast cancer (at age 54 years subsequent to an ovarian cancer). In addition, three missense variants of unknown significance (exon 11 C3832T (P1238L), exon 15 G4654T (S1512I), and exon 15 G4755A (D1546N)) were found in single families. These missense variants have been previously identified in other families [BIC Database] and are considered to be "unclassified variants, favoring polymorphism." Non-founder BRCA1 mutations are rare in Ashkenazi Jewish breast/ovarian cancer families.

  4. Characterization of an Italian Founder Mutation in the RING-Finger Domain of BRCA1

    PubMed Central

    Colombo, Mara; Congregati, Caterina; Sarkar, Mohosin; Magliery, Thomas J.; Ripamonti, Carla B.; Foglia, Claudia; Peissel, Bernard; Zaffaroni, Daniela; Manoukian, Siranoush; Tondini, Carlo; Barile, Monica; Pensotti, Valeria; Bernard, Loris

    2014-01-01

    The identification of founder mutations in cancer predisposing genes is important to improve risk assessment in geographically defined populations, since it may provide specific targets resulting in cost-effective genetic testing. Here, we report the characterization of the BRCA1 c.190T>C (p.Cys64Arg) mutation, mapped to the RING-finger domain coding region, that we detected in 43 hereditary breast/ovarian cancer (HBOC) families, for the large part originating from the province of Bergamo (Northern Italy). Haplotype analysis was performed in 21 families, and led to the identification of a shared haplotype extending over three BRCA1-associated marker loci (0.4 cM). Using the DMLE+2.2 software program and regional population demographic data, we were able to estimate the age of the mutation to vary between 3,100 and 3,350 years old. Functional characterization of the mutation was carried out at both transcript and protein level. Reverse transcriptase-PCR analysis on lymphoblastoid cells revealed expression of full length mRNA from the mutant allele. A green fluorescent protein (GFP)-fragment reassembly assay showed that the p.Cys64Arg substitution prevents the binding of the BRCA1 protein to the interacting protein BARD1, in a similar way as proven deleterious mutations in the RING-domain. Overall, 55 of 83 (66%) female mutation carriers had a diagnosis of breast and/or ovarian cancer. Our observations indicate that the BRCA1 c.190T>C is a pathogenic founder mutation present in the Italian population. Further analyses will evaluate whether screening for this mutation can be suggested as an effective strategy for the rapid identification of at-risk individuals in the Bergamo area. PMID:24516540

  5. Predictive Factors for BRCA1/BRCA2 Mutations in Women With Ductal Carcinoma In Situ

    PubMed Central

    Bayraktar, Soley; Elsayegh, Nisreen; Gutierrez Barrera, Angelica M.; Lin, Heather; Kuerer, Henry; Tasbas, Tunc; Muse, Kimberly I.; Ready, Kaylene; Litton, Jennifer; Meric-Bernstam, Funda; Hortobagyi, Gabriel N.; Albarracin, Constance T.; Arun, Banu

    2015-01-01

    Background It is unclear whether women with ductal carcinoma in situ (DCIS), like their counterparts with invasive breast cancer, warrant genetic risk assessment and testing on the basis of high-risk variables. The authors of this report identified predictive factors for mutations in the breast cancer-susceptibility genes BRCA1 and BRCA2 in women who were diagnosed with DCIS. Methods One hundred eighteen women with DCIS who were referred for genetic counseling and underwent genetic testing for BRCA1/BRCA2 mutations between 2003 and 2010 were included in the study. Logistic regression models were fit to determine the associations between potential predictive factors and BRCA status. Results Of 118 high-risk women with DCIS, 27% (n = 32) tested positive for BRCA1/BRCA2 mutations. Of those, 10% (n = 12) and 17% (n = 20) had BRCA1 and BRCA2 mutations, respectively. Age, race, and tumor characteristics did not differ between BRCA noncarriers and carriers. In a multivariate logistic model, ≥2 relatives with ovarian cancer (OC) (odds ratio [OR], 8.81; 95% confidence interval [CI], 1.38-56.29; P = .034), and a score ≥10% according to the BRCAPRO mathematical model for calculating the probability that a particular family member carries a germline BRCA mutation (OR, 6.37; 95% CI, 2.23-18.22; P = .0005) remained as independent significant predictors for a BRCA mutation. Fifty-seven percent of mutation carriers but only 25% of noncarriers underwent prophylactic mastectomy (P = .0037). This difference remained significant for patients aged ≤40 years (P = .025). Conclusions Women who had DCIS and a family history of OC or who had BRCAPRO scores ≥10% had a high rate of BRCA positivity regardless of age at diagnosis. These findings suggest that high-risk patients with DCIS are appropriate candidates for genetic testing for BRCA mutations in the presence of predictive factors even if they do not have invasive breast cancer. PMID:22009639

  6. BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers

    PubMed Central

    Buckley, Niamh E.; Nic An tSaoir, Caoimhe B.; Blayney, Jaine K.; Oram, Lisa C.; Crawford, Nyree T.; D’Costa, Zenobia C.; Quinn, Jennifer E.; Kennedy, Richard D.; Harkin, D. Paul; Mullan, Paul B.

    2013-01-01

    Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue. PMID:23863842

  7. Characteristics of BRCA1/2 Mutation-Positive Breast Cancers in Korea: A Comparison Study Based on Multicenter Data and the Korean Breast Cancer Registry

    PubMed Central

    Yu, Jong-Han; Son, Byung Ho; Kim, Sung-Won; Park, Sue K.; Lee, Min Hyuk; Kim, Lee Su; Noh, Woo-Chul; Kim, Eun-Kyu; Yoon, Dae Sung; Lee, Jeeyeon; Jung, Jin Hyang; Jung, Sang Seol; Gong, Gyungyup; Ahn, Sei-Hyun

    2014-01-01

    Purpose Mutations in BRCA genes are the main cause of hereditary breast cancer in Korea. The aim of this study was to investigate the characteristics of breast cancers involving BRCA1 (BRCA1 group) and BRCA2 (BRCA2 group) mutations. Methods We retrospectively reviewed the medical records of patients with BRCA1 (BRCA1 group) or BRCA2 (BRCA2 group) mutation positive breast cancer from multiple centers and compared the data to that of the Korean Breast Cancer Society registry (registry group). Results The patients of the BRCA1 group were diagnosed at a younger age (median age, 37 years) and had tumors of higher histological (61.3% with histological grade 3) and nuclear (37.5% with nuclear grade 3) grade than those of the registry group. In addition, the frequency of ductal carcinoma in situ in the BRCA1 group was lower (3.7%) than in the registry group, and the BRCA1 group were more likely to be triple-negative breast cancer (61.3%). Patients in the BRCA2 group were also younger at diagnosis (mean age, 41 years) and were more likely to have involvement of the axillary node than the registry group (45.5% vs. 33.5%, p=0.002). The BRCA1 and BRCA2 groups did not show a correlation between tumor size and axillary node involvement. Conclusion We report the characteristics of BRCA mutation positive breast cancer patients in the Korean population through multicenter data and nation-wide breast cancer registry study. However, BRCA-mutated breast cancers appear highly complex, and further research on their molecular basis is needed in Korea. PMID:25013433

  8. Prevalence of BRCA1/BRCA2 mutations in a Brazilian population sample at-risk for hereditary breast cancer and characterization of its genetic ancestry

    PubMed Central

    Paula, André E.; Pereira, Rui; Andrade, Carlos E.; Felicio, Paula S.; Souza, Cristiano P.; Mendes, Deise R.P.; Volc, Sahlua; Berardinelli, Gustavo N.; Grasel, Rebeca S.; Sabato, Cristina S.; Viana, Danilo V.; Machado, José Carlos; Costa, José Luis; Mauad, Edmundo C.; Scapulatempo-Neto, Cristovam; Arun, Banu; Reis, Rui M.; Palmero, Edenir I.

    2016-01-01

    Background There are very few data about the mutational profile of families at-risk for hereditary breast and ovarian cancer (HBOC) from Latin America (LA) and especially from Brazil, the largest and most populated country in LA. Results Of the 349 probands analyzed, 21.5% were BRCA1/BRCA2 mutated, 65.3% at BRCA1 and 34.7% at BRCA2 gene. The mutation c.5266dupC (former 5382insC) was the most frequent alteration, representing 36.7% of the BRCA1 mutations and 24.0% of all mutations identified. Together with the BRCA1 c.3331_3334delCAAG mutation, these mutations constitutes about 35% of the identified mutations and more than 50% of the BRCA1 pathogenic mutations. Interestingly, six new mutations were identified. Additionally, 39 out of the 44 pathogenic mutations identified were not previously reported in the Brazilian population. Besides, 36 different variants of unknown significance (VUS) were identified. Regarding ancestry, average ancestry proportions were 70.6% European, 14.5% African, 8.0% Native American and 6.8% East Asian. Materials and methods This study characterized 349 Brazilian families at-risk for HBOC regarding their germline BRCA1/BRCA2 status and genetic ancestry. Conclusions This is the largest report of BRCA1/BRCA2 assessment in an at-risk HBOC Brazilian population. We identified 21.5% of patients harboring BRCA1/BRCA2 mutations and characterized the genetic ancestry of a sample group at-risk for hereditary breast cancer showing once again how admixed is the Brazilian population. No association was found between genetic ancestry and mutational status. The knowledge of the mutational profile in a population can contribute to the definition of more cost-effective strategies for the identification of HBOC families. PMID:27741520

  9. Contribution of BRCA1 and BRCA2 Mutations to Breast and Ovarian Cancer in Pakistan

    PubMed Central

    Liede, Alexander; Malik, Imtiaz A.; Aziz, Zeba; Rios, Patricia de los; Kwan, Elaine; Narod, Steven A.

    2002-01-01

    The population of Pakistan has been reported to have the highest rate of breast cancer of any Asian population (excluding Jews in Israel) and one of the highest rates of ovarian cancer worldwide. To explore the contribution that genetic factors make to these high rates, we have conducted a case-control study of 341 case subjects with breast cancer, 120 case subjects with ovarian cancer, and 200 female control subjects from two major cities of Pakistan (Karachi and Lahore). The prevalence of BRCA1 or BRCA2 mutations among case subjects with breast cancer was 6.7% (95% confidence interval [CI] 4.1%–9.4%), and that among case subjects with ovarian cancer was 15.8% (95% CI 9.2%–22.4%). Mutations of the BRCA1 gene accounted for 84% of the mutations among case subjects with ovarian cancer and 65% of mutations among case subjects with breast cancer. The majority of detected mutations are unique to Pakistan. Five BRCA1 mutations (2080insA, 3889delAG, 4184del4, 4284delAG, and IVS14-1A→G) and one BRCA2 mutation (3337C→T) were found in multiple case subjects and represent candidate founder mutations. The penetrance of deleterious mutations in BRCA1 and BRCA2 is comparable to that of Western populations. The cumulative risk of cancer to age 85 years in female first-degree relatives of BRCA1-mutation–positive case subjects was 48% and was 37% for first-degree relatives of the BRCA2-mutation–positive case subjects. A higher proportion of case subjects with breast cancer than of control subjects were the progeny of first-cousin marriages (odds ratio [OR] 2.1; 95% CI 1.4–3.3; P=.001). The effects of consanguinity were significant for case subjects with early-onset breast cancer (age <40 years) (OR=2.7; 95% CI 1.5–4.9; P=.0008) and case subjects with ovarian cancer (OR=2.4; 95% CI 1.4–4.2; P=.002). These results suggest that recessively inherited genes may contribute to breast and ovarian cancer risk in Pakistan. PMID:12181777

  10. Increased Chromosomal Radiosensitivity in Women Carrying BRCA1/BRCA2 Mutations Assessed With the G2 Assay

    SciTech Connect

    Ernestos, Beroukas; Nikolaos, Pandis; Koulis, Giannoukakos; Eleni, Rizou; Konstantinos, Beroukas; Alexandra, Giatromanolaki; Michael, Koukourakis

    2010-03-15

    Purpose: Several in vitro studies suggest that BRCA1 and BRCA2 mutation carriers present increased sensitivity to ionizing radiation. Different assays for the assessment of deoxyribonucleic acid double-strand break repair capacity have been used, but results are rather inconsistent. Given the concerns about the possible risks of breast screening with mammography in mutation carrier women and the potentially damaging effects of radiotherapy, the purpose of this study was to further investigate the radiosensitivity of this population. Methods and Materials: The G2 chromosomal radiosensitivity assay was used to assess chromosomal breaks in lymphocyte cultures after exposure to 1 Gy. A group of familiar breast cancer patients carrying a mutation in the BRCA1 or BRCA2 gene (n = 15) and a group of healthy mutation carriers (n = 5) were investigated and compared with a reference group of healthy women carrying no mutation (n = 21). Results: BRCA1 and BRCA2 mutation carriers had a significantly higher number of mean chromatid breaks per cell (p = 0.006) and a higher maximum number of breaks (p = 0.0001) as compared with their matched controls. Both healthy carriers and carriers with a cancer history were more radiosensitive than controls (p = 0.002 and p = 0.025, respectively). Age was not associated with increased radiosensitivity (p = 0.868). Conclusions: Our results indicate that BRCA1 and BRCA2 mutation carriers show enhanced radiosensitivity, presumably because of the involvement of the BRCA genes in deoxyribonucleic acid repair and cell cycle control mechanisms.

  11. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    PubMed

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  12. Rates of BRCA1/2 mutation testing among young survivors of breast cancer.

    PubMed

    Kehl, Kenneth L; Shen, Chan; Litton, Jennifer K; Arun, Banu; Giordano, Sharon H

    2016-01-01

    Guidelines in the United States recommend consideration of testing for mutations in the BRCA1 and BRCA2 genes for women diagnosed with breast cancer under age 45. Identification of mutations among survivors has implications for secondary prevention and familial risk reduction. Although only 10 % of breast cancers are diagnosed under age 45, there are approximately 2.8 million breast cancer survivors in the United States, such that the young survivor population likely numbers in the hundreds of thousands. However, little is known about genetic testing rates in this population. We assessed trends in BRCA1/2 testing among breast cancer survivors who were under age 45 at diagno