Science.gov

Sample records for gene confer pulmonary-specific

  1. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    SciTech Connect

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. )

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  2. Clinical infection control in gene therapy: a multidisciplinary conference.

    PubMed

    Evans, M E; Jordan, C T; Chang, S M; Conrad, C; Gerberding, J L; Kaufman, H L; Mayhall, C G; Nolta, J A; Pilaro, A M; Sullivan, S; Weber, D J; Wivel, N A

    2000-10-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being introduced into clinical settings. Infection control professionals will be involved in reviewing the safety of these agents in their clinics and hospitals. To date, only a limited number of articles have been written on infection control in gene therapy, and no widely available recommendations exist from federal or private organizations to guide infection control professionals. The goals of the conference were to provide a forum where gene therapy experts could share their perspectives and experience with infection control in gene therapy and to provide an opportunity for newcomers to the field to learn about issues specific to infection control in gene therapy. Recommendations for infection control in gene therapy were proposed.

  3. A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin▿ †

    PubMed Central

    Vecchione, James J.; Sello, Jason K.

    2009-01-01

    Indolmycin, a potential antibacterial drug, competitively inhibits bacterial tryptophanyl-tRNA synthetases. An effort to identify indolmycin resistance genes led to the discovery of a gene encoding an indolmycin-resistant isoform of tryptophanyl-tRNA synthetase. Overexpression of this gene in an indolmycin-sensitive strain increased the indolmycin MIC 60-fold. Its transcription and distribution in various bacterial genera were assessed. The level of resistance conferred by this gene was compared to that of a known indolmycin resistance gene and to those of genes with resistance-conferring point mutations. PMID:19546369

  4. Gene Islands Integrated into tRNAGly Genes Confer Genome Diversity on a Pseudomonas aeruginosa Clone

    PubMed Central

    Larbig, Karen D.; Christmann, Andreas; Johann, André; Klockgether, Jens; Hartsch, Thomas; Merkl, Rainer; Wiehlmann, Lutz; Fritz, Hans-Joachim; Tümmler, Burkhard

    2002-01-01

    Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNAGly genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat. PMID:12426355

  5. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes

    PubMed Central

    Forsberg, Kevin J.; Patel, Sanket; Witt, Evan; Wang, Bin; Ellison, Tyler D.

    2015-01-01

    The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications. PMID:26546427

  6. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  7. Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stemphylium blight (caused by Stemphylium botryosum Wallr.) is one of the major diseases of lentil (Lens culinaris Medik.) in South Asia and North America. The objective of the study was to identify linkage map position of the genes conferring resistance to stemphylium blight and the markers linked ...

  8. Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts

    PubMed Central

    Marsit, Souhir; Mena, Adriana; Bigey, Frédéric; Sauvage, François-Xavier; Couloux, Arnaud; Guy, Julie; Legras, Jean-Luc; Barrio, Eladio; Dequin, Sylvie; Galeote, Virginie

    2015-01-01

    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding oligopeptide transporters. We show that FOT genes confer a strong competitive advantage during grape must fermentation by increasing the number and diversity of oligopeptides that yeast can utilize as a source of nitrogen, thereby improving biomass formation, fermentation efficiency, and cell viability. Thus, the acquisition of FOT genes has favored yeast adaptation to the nitrogen-limited wine fermentation environment. This finding indicates that anthropic environments offer substantial ecological opportunity for evolutionary diversification through gene exchange between distant yeast species. PMID:25750179

  9. Genes that Confer the Identity of the Renin Cell

    PubMed Central

    Brunskill, Eric W.; Sequeira-Lopez, Maria Luisa S.; Pentz, Ellen S.; Lin, Eugene; Yu, Jing; Aronow, Bruce J.; Potter, S. Steven

    2011-01-01

    Renin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney. For example, cells programmed to exhibit the renin phenotype expressed Akr1b7, and maturing cells expressed angiogenic factors necessary for the development of the kidney vasculature and RGS (regulator of G-protein signaling) genes, suggesting a potential relationship between renin cells and pericytes. Contrary to the plasticity of arteriolar smooth muscle cells upstream from the glomerulus, which can transiently acquire the embryonic phenotype in the adult under physiologic stress, the adult juxtaglomerular cell always possessed characteristics of both smooth muscle and renin cells. Taken together, these results identify the gene expression profile of renin-expressing cells at various stages of maturity, and suggest that juxtaglomerular cells maintain properties of both smooth muscle and renin-expressing cells, likely to allow the rapid control of body fluids and BP through both contractile and endocrine functions. PMID:22034642

  10. Genes that confer the identity of the renin cell.

    PubMed

    Brunskill, Eric W; Sequeira-Lopez, Maria Luisa S; Pentz, Ellen S; Lin, Eugene; Yu, Jing; Aronow, Bruce J; Potter, S Steven; Gomez, R Ariel

    2011-12-01

    Renin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney. For example, cells programmed to exhibit the renin phenotype expressed Akr1b7, and maturing cells expressed angiogenic factors necessary for the development of the kidney vasculature and RGS (regulator of G-protein signaling) genes, suggesting a potential relationship between renin cells and pericytes. Contrary to the plasticity of arteriolar smooth muscle cells upstream from the glomerulus, which can transiently acquire the embryonic phenotype in the adult under physiologic stress, the adult juxtaglomerular cell always possessed characteristics of both smooth muscle and renin cells. Taken together, these results identify the gene expression profile of renin-expressing cells at various stages of maturity, and suggest that juxtaglomerular cells maintain properties of both smooth muscle and renin-expressing cells, likely to allow the rapid control of body fluids and BP through both contractile and endocrine functions. PMID:22034642

  11. Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust.

    PubMed

    Martínez, F; Niks, R E; Singh, R P; Rubiales, D

    2001-01-01

    Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.

  12. Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Hatakeyama, Katsunori; Imamura, Jun; Ezura, Hiroshi; Nanasato, Yoshihiko; Tabei, Yutaka; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2013-01-01

    A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens.

  13. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    PubMed

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  14. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis

    PubMed Central

    1995-01-01

    Phagocyte recognition and ingestion of intact cells undergoing apoptosis are key events in this generally important program of cell death. Insufficient phagocyte capacity for apoptotic cells can result in failure to clear dying cells before membrane integrity is lost, resulting in leakage of noxious cell contents and severe tissue damage. However, no means has been available to increase phagocytic clearance of apoptotic cells. We now report that transfection of the macrophage adhesion molecule CD36 into human Bowes melanoma cells specifically conferred greatly increased capacity to ingest apoptotic neutrophils, lymphocytes, and fibroblasts, comparable to that exhibited by macrophages. Furthermore, when CD36 was transfected into another cell type with limited capacity to take up apoptotic bodies, the monkey COS- 7 cell, similar effects were observed. Therefore, CD36 gene transfer can confer "professional" capacity to ingest apoptotic cells upon "amateur" phagocytes. PMID:7536797

  15. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development.

    PubMed

    Theodoropoulos, George E; Saridakis, Vasilios; Karantanos, Theodoros; Michalopoulos, Nikolaos V; Zagouri, Flora; Kontogianni, Panagiota; Lymperi, Maria; Gazouli, Maria; Zografos, George C

    2012-08-01

    Toll-like receptor (TLR) activation may be an important event in tumor cell immune evasion. TLR2 and TLR4 gene polymorphisms have been related to increased susceptibility to cancer development in various organs. 261 patients and 480 health individuals were investigated for genotype and allelic frequencies of a 22-bp nucleotide deletion (-196 to -174del) in the promoter of TLR2 gene as well as two polymorphisms causing amino acid substitutions (Asp299Gly and Thr399Ile) in TLR4 gene. As far as (-196 to -174del) in TLR2 gene is concerned ins/del and del/del genotypes and del allele were significantly more frequent in breast cancer patients compared to healthy controls. Considering Asp299Gly replacement of TLR4 gene, Gly carriers (Asp/Gly & Gly/Gly genotype) and Gly allele were overrepresented among the breast cancer cases. The -174 to -196del of TLR2 gene and Asp299Gly of TLR4 gene polymorphisms may confer an increased susceptibility to breast cancer development.

  16. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  17. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    PubMed

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize. PMID:25724693

  18. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    PubMed

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize.

  19. Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease

    PubMed Central

    Taler, Dvir; Galperin, Marjana; Benjamin, Ido; Cohen, Yigal; Kenigsbuch, David

    2004-01-01

    Downy mildew caused by the oomycete pathogen Pseudoperonospora cubensis is a devastating foliar disease of cucurbits worldwide. We previously demonstrated that the wild melon line PI 124111F (PI) is highly resistant to all pathotypes of P. cubensis. That resistance was controlled genetically by two partially dominant, complementary loci. Here, we show that unlike other plant disease resistance genes, which confer an ability to resist infection by pathogens expressing corresponding avirulence genes, the resistance of PI to P. cubensis is controlled by enhanced expression of the enzymatic resistance (eR) genes At1 and At2. These constitutively expressed genes encode the photorespiratory peroxisomal enzyme proteins glyoxylate aminotransferases. The low expression of At1 and At2 in susceptible melon lines is regulated mainly at the transcriptional level. This regulation is independent of infection with the pathogen. Transgenic melon plants overexpressing either of these eR genes displayed enhanced activity of glyoxylate aminotransferases and remarkable resistance against P. cubensis. The cloned eR genes provide a new resource for developing downy mildew–resistant melon varieties. PMID:14688292

  20. Molecular mapping and characterization of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, a...

  1. PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato.

    PubMed

    Jin, Feng; Li, Shu; Dang, Lijie; Chai, Wenting; Li, Pengli; Wang, Ning Ning

    2012-10-01

    Visual selectable markers, including the purple color caused by the accumulation of anthocyanins, have been proposed for use as antibiotic-free alternatives. However, the excessive accumulation of anthocyanins seriously inhibits the growth and development of transgenic plants. In our study, the AtDWF4 promoter from Arabidopsis and the tomato LeANT1 gene, encoding a MYB transcription factor, were used to construct the PL1 fusion gene to test whether it could be used as a visual selectable marker gene for tomato transformation. All the PL1 transgenic shoots exhibited intense purple color on shoot induction medium. In the transgenic tomato plants, PL1 was highly expressed in the cotyledons, but expressed only slightly in the true leaves and other organs. The expression of PL1 had no significantly adverse effects on the growth or development of the transgenic tomato plants, and conferred tolerance to multiple abiotic stresses in them. With the “cut off green shoots” method, multiple independent 35S::GFP transgenic tomato lines were successfully obtained using PL1 as the selectable marker gene. These results suggest that PL1 has potential application of visual selectable marker gene for tomato transformation.

  2. A pigeonpea gene confers resistance to Asian soybean rust in soybean.

    PubMed

    Kawashima, Cintia G; Guimarães, Gustavo Augusto; Nogueira, Sônia Regina; MacLean, Dan; Cook, Doug R; Steuernagel, Burkhard; Baek, Jongmin; Bouyioukos, Costas; Melo, Bernardo do V A; Tristão, Gustavo; de Oliveira, Jamile Camargos; Rauscher, Gilda; Mittal, Shipra; Panichelli, Lisa; Bacot, Karen; Johnson, Ebony; Iyer, Geeta; Tabor, Girma; Wulff, Brande B H; Ward, Eric; Rairdan, Gregory J; Broglie, Karen E; Wu, Gusui; van Esse, H Peter; Jones, Jonathan D G; Brommonschenkel, Sérgio H

    2016-06-01

    Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement. PMID:27111723

  3. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis

    PubMed Central

    Yao, Xuan; Xiong, Wei; Ye, Tiantian; Wu, Yan

    2012-01-01

    Drought is one of the most severe environmental stresses affecting plant growth and limiting crop production. Although many genes involved in adaptation to drought stress have been disclosed, the relevant molecular mechanisms are far from understood. This study describes an Arabidopsis gene, ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1), that may function in drought avoidance through abscisic acid (ABA) signalling in guard cells. Overexpression of the ASPG1 gene enhanced ABA sensitivity in guard cells and reduced water loss in ectopically overexpressing ASPG1 (ASPG1-OE) transgenic plants. In ASPG1-OE plants, some downstream targets in ABA and/or drought-signalling pathways were altered at various levels, suggesting the involvement of ASPG1 in ABA-dependent drought avoidance in Arabidopsis. By analysing the activities of several antioxidases including superoxide dismutase and catalase in ASPG1-OE plants, the existence was demonstrated of an effective detoxification system for drought avoidance in these plants. Analysis of ProASPG1-GUS lines showed a predominant guard cell expression pattern in various aerial tissues. Moreover, the protease activity of ASPG1 was characterized in vitro, and two aspartic acid sites, D180 and D379, were found to be key residues for ASPG1 aspartic protease activity in response to ABA. In summary, these findings suggest that functional ASPG1 may be involved in ABA-dependent responsiveness and that overexpression of the ASPG1 gene can confer drought avoidance in Arabidopsis. PMID:22268147

  4. Identification of cis-elements conferring high levels of gene expression in non-green plastids.

    PubMed

    Zhang, Jiang; Ruf, Stephanie; Hasse, Claudia; Childs, Liam; Scharff, Lars B; Bock, Ralph

    2012-10-01

    Although our knowledge about the mechanisms of gene expression in chloroplasts has increased substantially over the past decades, next to nothing is known about the signals and factors that govern expression of the plastid genome in non-green tissues. Here we report the development of a quantitative method suitable for determining the activity of cis-acting elements for gene expression in non-green plastids. The in vivo assay is based on stable transformation of the plastid genome and the discovery that root length upon seedling growth in the presence of the plastid translational inhibitor kanamycin is directly proportional to the expression strength of the resistance gene nptII in transgenic tobacco plastids. By testing various combinations of promoters and translation initiation signals, we have used this experimental system to identify cis-elements that are highly active in non-green plastids. Surprisingly, heterologous expression elements from maize plastids were significantly more efficient in conferring high expression levels in root plastids than homologous expression elements from tobacco. Our work has established a quantitative method for characterization of gene expression in non-green plastid types, and has led to identification of cis-elements for efficient plastid transgene expression in non-green tissues, which are valuable tools for future transplastomic studies in basic and applied research.

  5. Rapid Detection of rpoB Gene Mutations Conferring Rifampin Resistance in Mycobacterium tuberculosis

    PubMed Central

    Ao, Wanyuan; Aldous, Stephen; Woodruff, Evelyn; Hicke, Brian; Rea, Larry; Kreiswirth, Barry

    2012-01-01

    Multidrug-resistant Mycobacterium tuberculosis strains are widespread and present a challenge to effective treatment of this infection. The need for a low-cost and rapid detection method for clinically relevant mutations in Mycobacterium tuberculosis that confer multidrug resistance is urgent, particularly for developing countries. We report here a novel test that detects the majority of clinically relevant mutations in the beta subunit of the RNA polymerase (rpoB) gene that confer resistance to rifampin (RIF), the treatment of choice for tuberculosis (TB). The test, termed TB ID/R, combines a novel target and temperature-dependent RNase H2-mediated cleavage of blocked DNA primers to initiate isothermal helicase-dependent amplification of a rpoB gene target sequence. Amplified products are detected by probes arrayed on a modified silicon chip that permits visible detection of both RIF-sensitive and RIF-resistant strains of M. tuberculosis. DNA templates of clinically relevant single-nucleotide mutations in the rpoB gene were created to validate the performance of the TB ID/R test. Except for one rare mutation, all mutations were unambiguously detected. Additionally, 11 RIF-sensitive and 25 RIF-resistant clinical isolates were tested by the TB ID/R test, and 35/36 samples were classified correctly (96.2%). This test is being configured in a low-cost test platform to provide rapid diagnosis and drug susceptibility information for TB in the point-of-care setting in the developing world, where the need is acute. PMID:22518852

  6. Targeting PCDH20 gene by microRNA-122 confers 5-FU resistance in hepatic carcinoma.

    PubMed

    Wang, Wei; Liu, Wen Bin; Huang, Da Bing; Jia, Wei; Ji, Chu Shu; Hu, Bing

    2016-01-01

    Drug resistance is one of the main hurdles for the successful treatment of hepatic carcinoma. However, the detailed mechanisms underlying resistance remain largely unknown and therapeutic approaches are limited. In the present study, we show that miR-122 confers resistance to 5-fluorouracil induced hepatocellular carcinoma cell apoptosis in vitro and reduces the potency of 5-fluorouracil in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-122 modulates drug resistance through down-regulation of expression of PCDH20, which belongs to the protocadherin gene family and negatively regulates Akt activation. Knockdown of PCDH20 expression increases Akt phosphorylation, which leads to elevated mTOR activity and enhanced 5-fluorouracil resistance; whereas rescue of PCDH20 expression in miR-122-expressing cells decreases Akt and mTOR phosphorylation, re-sensitizing hepatocellular carcinoma cell to 5-fluorouracil induced apoptosis. Moreover, a specific and potent Akt inhibitor reverses miR-122-conferred 5-fluorouracil resistance. These findings indicate that the miR-122/PCDH20/Akt/mTOR signaling axis has an important role in mediating response to chemotherapy in human hepatocellular carcinoma. A major implication of our study is that inhibition of miR-122 or restoration of PCDH20 expression may have significant therapeutic potential to overcome drug resistance in hepatocellular carcinoma and that the combined use of an Akt inhibitor with 5-fluorouracil may increase efficacy in liver cancer treatment. PMID:27648358

  7. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise

    PubMed Central

    Siciliano, Velia; Garzilli, Immacolata; Fracassi, Chiara; Criscuolo, Stefania; Ventre, Simona; di Bernardo, Diego

    2013-01-01

    miRNAs are small non-coding RNAs able to modulate target-gene expression. It has been postulated that miRNAs confer robustness to biological processes, but a clear experimental evidence is still missing. Using a synthetic biology approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. Here we construct a network motif in mammalian cells exhibiting a “toggle - switch” phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modeling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states. PMID:24077216

  8. Targeting PCDH20 gene by microRNA-122 confers 5-FU resistance in hepatic carcinoma

    PubMed Central

    Wang, Wei; Liu, Wen Bin; Huang, Da Bing; Jia, Wei; Ji, Chu Shu; Hu, Bing

    2016-01-01

    Drug resistance is one of the main hurdles for the successful treatment of hepatic carcinoma. However, the detailed mechanisms underlying resistance remain largely unknown and therapeutic approaches are limited. In the present study, we show that miR-122 confers resistance to 5-fluorouracil induced hepatocellular carcinoma cell apoptosis in vitro and reduces the potency of 5-fluorouracil in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-122 modulates drug resistance through down-regulation of expression of PCDH20, which belongs to the protocadherin gene family and negatively regulates Akt activation. Knockdown of PCDH20 expression increases Akt phosphorylation, which leads to elevated mTOR activity and enhanced 5-fluorouracil resistance; whereas rescue of PCDH20 expression in miR-122-expressing cells decreases Akt and mTOR phosphorylation, re-sensitizing hepatocellular carcinoma cell to 5-fluorouracil induced apoptosis. Moreover, a specific and potent Akt inhibitor reverses miR-122-conferred 5-fluorouracil resistance. These findings indicate that the miR-122/PCDH20/Akt/mTOR signaling axis has an important role in mediating response to chemotherapy in human hepatocellular carcinoma. A major implication of our study is that inhibition of miR-122 or restoration of PCDH20 expression may have significant therapeutic potential to overcome drug resistance in hepatocellular carcinoma and that the combined use of an Akt inhibitor with 5-fluorouracil may increase efficacy in liver cancer treatment.

  9. Mutations in the Pneumocystis jirovecii DHPS gene confer cross-resistance to sulfa drugs.

    PubMed

    Iliades, Peter; Meshnick, Steven R; Macreadie, Ian G

    2005-02-01

    Pneumocystis jirovecii is a major opportunistic pathogen that causes Pneumocystis pneumonia (PCP) and results in a high degree of mortality in immunocompromised individuals. The drug of choice for PCP is typically sulfamethoxazole (SMX) or dapsone in conjunction with trimethoprim. Drug treatment failure and sulfa drug resistance have been implicated epidemiologically with point mutations in dihydropteroate synthase (DHPS) of P. jirovecii. P. jirovecii cannot be cultured in vitro; however, heterologous complementation of the P. jirovecii trifunctional folic acid synthesis (PjFAS) genes with an E. coli DHPS-disrupted strain was recently achieved. This enabled the evaluation of SMX resistance conferred by DHPS mutations. In this study, we sought to determine whether DHPS mutations conferred sulfa drug cross-resistance to 15 commonly available sulfa drugs. It was established that the presence of amino acid substitutions (T(517)A or P(519)S) in the DHPS domain of PjFAS led to cross-resistance against most sulfa drugs evaluated. The presence of both mutations led to increased sulfa drug resistance, suggesting cooperativity and the incremental evolution of sulfa drug resistance. Two sulfa drugs (sulfachloropyridazine [SCP] and sulfamethoxypyridazine [SMP]) that had a higher inhibitory potential than SMX were identified. In addition, SCP, SMP, and sulfadiazine (SDZ) were found to be capable of inhibiting the clinically observed drug-resistant mutants. We propose that SCP, SMP, and SDZ should be considered for clinical evaluation against PCP or for future development of novel sulfa drug compounds.

  10. Mutations in the Pneumocystis jirovecii DHPS Gene Confer Cross-Resistance to Sulfa Drugs

    PubMed Central

    Iliades, Peter; Meshnick, Steven R.; Macreadie, Ian G.

    2005-01-01

    Pneumocystis jirovecii is a major opportunistic pathogen that causes Pneumocystis pneumonia (PCP) and results in a high degree of mortality in immunocompromised individuals. The drug of choice for PCP is typically sulfamethoxazole (SMX) or dapsone in conjunction with trimethoprim. Drug treatment failure and sulfa drug resistance have been implicated epidemiologically with point mutations in dihydropteroate synthase (DHPS) of P. jirovecii. P. jirovecii cannot be cultured in vitro; however, heterologous complementation of the P. jirovecii trifunctional folic acid synthesis (PjFAS) genes with an E. coli DHPS-disrupted strain was recently achieved. This enabled the evaluation of SMX resistance conferred by DHPS mutations. In this study, we sought to determine whether DHPS mutations conferred sulfa drug cross-resistance to 15 commonly available sulfa drugs. It was established that the presence of amino acid substitutions (T517A or P519S) in the DHPS domain of PjFAS led to cross-resistance against most sulfa drugs evaluated. The presence of both mutations led to increased sulfa drug resistance, suggesting cooperativity and the incremental evolution of sulfa drug resistance. Two sulfa drugs (sulfachloropyridazine [SCP] and sulfamethoxypyridazine [SMP]) that had a higher inhibitory potential than SMX were identified. In addition, SCP, SMP, and sulfadiazine (SDZ) were found to be capable of inhibiting the clinically observed drug-resistant mutants. We propose that SCP, SMP, and SDZ should be considered for clinical evaluation against PCP or for future development of novel sulfa drug compounds. PMID:15673759

  11. Targeting PCDH20 gene by microRNA-122 confers 5-FU resistance in hepatic carcinoma

    PubMed Central

    Wang, Wei; Liu, Wen Bin; Huang, Da Bing; Jia, Wei; Ji, Chu Shu; Hu, Bing

    2016-01-01

    Drug resistance is one of the main hurdles for the successful treatment of hepatic carcinoma. However, the detailed mechanisms underlying resistance remain largely unknown and therapeutic approaches are limited. In the present study, we show that miR-122 confers resistance to 5-fluorouracil induced hepatocellular carcinoma cell apoptosis in vitro and reduces the potency of 5-fluorouracil in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-122 modulates drug resistance through down-regulation of expression of PCDH20, which belongs to the protocadherin gene family and negatively regulates Akt activation. Knockdown of PCDH20 expression increases Akt phosphorylation, which leads to elevated mTOR activity and enhanced 5-fluorouracil resistance; whereas rescue of PCDH20 expression in miR-122-expressing cells decreases Akt and mTOR phosphorylation, re-sensitizing hepatocellular carcinoma cell to 5-fluorouracil induced apoptosis. Moreover, a specific and potent Akt inhibitor reverses miR-122-conferred 5-fluorouracil resistance. These findings indicate that the miR-122/PCDH20/Akt/mTOR signaling axis has an important role in mediating response to chemotherapy in human hepatocellular carcinoma. A major implication of our study is that inhibition of miR-122 or restoration of PCDH20 expression may have significant therapeutic potential to overcome drug resistance in hepatocellular carcinoma and that the combined use of an Akt inhibitor with 5-fluorouracil may increase efficacy in liver cancer treatment. PMID:27648358

  12. An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber.

    PubMed

    Zhou, Qian; Wang, Shenhao; Hu, Bowen; Chen, Huiming; Zhang, Zhonghua; Huang, Sanwen

    2015-11-01

    The peel color of fruit is an important commercial trait in cucumber, but the underlying molecular basis is largely unknown. A mutant showing light green exocarp was discovered from ethyl methane sulfonate (EMS) mutagenized cucumber line 406 with dark green exocarp. Genetic analysis showed the mutant phenotype is conferred by a single recessive gene, here designated as lgp (light green peel). By re-sequencing of bulked segregants, we identified the candidate gene Csa7G051430 encoding ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 (ARC5) that plays a vital role in chloroplast division in Arabidopsis. A single nucleotide polymorphism (SNP) causing amino acid alteration in the conserved GTPase domain of Csa7G051430 showed co-segregation with the altered phenotype. Furthermore, the transient RNA interference of this gene resulted in reduced number and enlarged size of chloroplasts, which were also observed in the lgp mutant. This evidence supports that the non-synonymous SNP in Csa7G051430 is the causative mutation for the light green peel. This study provides a new allele for cucumber breeding for light green fruits and additional resource for the study of chloroplast development.

  13. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    PubMed

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  14. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus.

    PubMed

    Leflon, M; Brun, H; Eber, F; Delourme, R; Lucas, M O; Vallée, P; Ermel, M; Balesdent, M H; Chèvre, A M

    2007-11-01

    Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of "new" resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.

  15. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  16. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins.

    PubMed

    Tabashnik, B E; Liu, Y B; Finson, N; Masson, L; Heckel, D G

    1997-03-01

    Environmentally benign insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) are the most widely used biopesticides, but their success will be short-lived if pests quickly adapt to them. The risk of evolution of resistance by pests has increased, because transgenic crops producing insecticidal proteins from Bt are being grown commercially. Efforts to delay resistance with two or more Bt toxins assume that independent mutations are required to counter each toxin. Moreover, it generally is assumed that resistance alleles are rare in susceptible populations. We tested these assumptions by conducting single-pair crosses with diamondback moth (Plutella xylostella), the first insect known to have evolved resistance to Bt in open field populations. An autosomal recessive gene conferred extremely high resistance to four Bt toxins (Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F). The finding that 21% of the individuals from a susceptible strain were heterozygous for the multiple-toxin resistance gene implies that the resistance allele frequency was 10 times higher than the most widely cited estimate of the upper limit for the initial frequency of resistance alleles in susceptible populations. These findings suggest that pests may evolve resistance to some groups of toxins much faster than previously expected.

  17. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins

    PubMed Central

    Tabashnik, Bruce E.; Liu, Yong-Biao; Finson, Naomi; Masson, Luke; Heckel, David G.

    1997-01-01

    Environmentally benign insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) are the most widely used biopesticides, but their success will be short-lived if pests quickly adapt to them. The risk of evolution of resistance by pests has increased, because transgenic crops producing insecticidal proteins from Bt are being grown commercially. Efforts to delay resistance with two or more Bt toxins assume that independent mutations are required to counter each toxin. Moreover, it generally is assumed that resistance alleles are rare in susceptible populations. We tested these assumptions by conducting single-pair crosses with diamondback moth (Plutella xylostella), the first insect known to have evolved resistance to Bt in open field populations. An autosomal recessive gene conferred extremely high resistance to four Bt toxins (Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F). The finding that 21% of the individuals from a susceptible strain were heterozygous for the multiple-toxin resistance gene implies that the resistance allele frequency was 10 times higher than the most widely cited estimate of the upper limit for the initial frequency of resistance alleles in susceptible populations. These findings suggest that pests may evolve resistance to some groups of toxins much faster than previously expected. PMID:9050831

  18. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry.

    PubMed

    Silva, Katchen Julliany P; Brunings, Asha; Peres, Natalia A; Mou, Zhonglin; Folta, Kevin M

    2015-08-01

    Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry.

  19. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry.

    PubMed

    Silva, Katchen Julliany P; Brunings, Asha; Peres, Natalia A; Mou, Zhonglin; Folta, Kevin M

    2015-08-01

    Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry. PMID:25812515

  20. HLA-D region genes and rheumatoid arthritis (RA): importance of DR and DQ genes in conferring susceptibility to RA.

    PubMed Central

    Singal, D P; Green, D; Reid, B; Gladman, D D; Buchanan, W W

    1992-01-01

    The distribution of HLA-D region antigens was studied in three groups (I, IIa, and IIb) of patients with rheumatoid arthritis (RA): group I comprised 43 patients with mild, non-progressive RA, controlled by non-steroidal anti-inflammatory drugs without progression or erosions; group II comprised 94 patients with severe disease, who had earlier been treated with non-steroidal anti-inflammatory drugs and all had incomplete response requiring treatment with gold (sodium aurothiomalate). Of these, 46 patients (group IIa) responded to gold and the disease was well controlled, and the remaining 48 patients (group IIb) did not respond to gold and developed gold induced toxic reactions, including thrombocytopenia or proteinuria, or both. HLA-D region antigens were defined by serological and molecular (Southern blot analysis and oligonucleotide typing) techniques. The results show that DR4 was significantly increased in all three groups of patients. The prevalence of DR1, or DR1 in DR4 negative patients, and DR3 and DR4 associated DQw7 specificities, however, showed differences in these three groups of patients. The prevalence of DR1 and of DR1 in DR4 negative patients was increased only in patients with mild (group I) RA, but not in patients with severe (groups IIa and IIb) disease. On the other hand, the prevalence of DR4 associated DQw7 was significantly increased in patients with severe disease, but not in patients with mild RA. In addition, DR3 was significantly increased only in patients with severe disease who developed gold induced toxic reactions (group IIb). These data suggest that the HLA-D region genes which cause susceptibility to mild RA may be different from those causing susceptibility to severe RA. The results suggest that both DR and DQ (A, B) genes may be important in conferring susceptibility to RA: DR in mild disease and DQ in severe RA. Images PMID:1371662

  1. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate.

    PubMed

    Henne, A; Daniel, R; Schmitz, R A; Gottschalk, G

    1999-09-01

    Environmental DNA libraries from three different soil samples were constructed. The average insert size was 5 to 8 kb and the percentage of plasmids with inserts was approximately 80%. The recombinant Escherichia coli strains (approximately 930,000) were screened for 4-hydroxybutyrate utilization. Thirty-six positive E. coli clones were obtained during the initial screen, and five of them contained a recombinant plasmid (pAH1 to pAH5) which conferred a stable 4-hydroxybutyrate-positive phenotype. These E. coli clones were studied further. All five were able to grow with 4-hydroxybutyrate as sole carbon and energy source and exhibited 4-hydroxybutyrate dehydrogenase activity in crude extracts. Sequencing of pAH5 revealed a gene homologous to the gbd gene of Ralstonia eutropha, which encodes a 4-hydroxybutyrate dehydrogenase. Two other genes (orf1 and orf6) conferring utilization of 4-hydroxybutyrate were identified during subcloning and sequencing of the inserts of pAH1 and pAH3. The deduced orf1 gene product showed similarities to members of the DedA family of proteins. The sequence of the deduced orf6 gene product harbors the fingerprint pattern of enoyl-coenzyme A hydratases/isomerases. The other sequenced inserts of the plasmids recovered from the positive clones revealed no significant similarity to any other gene or gene product whose sequence is available in the National Center for Biotechnology Information databases.

  2. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice. PMID:26471973

  3. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    PubMed

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice.

  4. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    PubMed

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.

  5. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    SciTech Connect

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki . E-mail: masi@tara.tsukuba.ac.jp

    2006-01-06

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes.

  6. Magnitude of Gene Mutations Conferring Drug Resistance in Mycobacterium Tuberculosis Isolates from Lymph Node Aspirates in Ethiopia

    PubMed Central

    Biadglegne, Fantahun; Tessema, Belay; Rodloff, Arne C.; Sack, Ulrich

    2013-01-01

    Objective: Resistance to drugs is due to particular genomic mutations in the specific genes of Mycobacterium tuberculosis. Timely genetic characterization will allow identification of resistance mutations that will optimize an effective antibiotic treatment regimen. We determine the magnitude of gene mutations conferring resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among tuberculosis (TB) lymphadenitis patients. Methods: A cross sectional prospective study was conducted among 226 M.tuberculosis isolates from culture positive lymph node aspirates collected from TB lymphadenitis patients between April 2012 and May 2012. Detection of mutations conferring resistance to drugs was carried out using GenoType® MTBDRplus and GenoType® MTBDRsl assay. Results: Out of the 226 strains, mutations conferring resistance to INH, RMP, multidrug resistance tuberculosis (MDR-TB) and EMB were 8, 3, 2 and 2 isolates, respectively. There was no isolated strain that showed mutation in the inhA promoter region gene. All INH resistant strains had mutations in the katG gene at codon 315 with amino acid change of S315T1. Among rifampicin resistant strains, two isolates displayed mutations at codon 531 in the rpoB gene with amino acid change of S531L and one isolate was by omission of wild type probes at Q513L. According to mutations associated with ethambutol resistance, all of the isolates had mutations in the embB gene with aminoacid change of M306I. All isolates resistant to INH, RMP and MDR using BacT/AlerT 3D system were correctly identified by GenoType® MTBDRplus assay. Conclusion: We observed mutations conferring resistance to INH at S315T1 of the katG gene, RMP at S531L and Q513L in the rpoB genes and EMB at M306I of the embB gene. In the absence of conventional drug susceptibility testing, the effort to develop easy, rapid and cost effective molecular assays for drug resistance TB monitoring is definitely desirable and the GenoType® MTBDRplus assay was

  7. MicroRNA degeneracy and pluripotentiality within a Lavallière-tie architecture confers robustness to gene expression networks.

    PubMed

    Bhajun, Ricky; Guyon, Laurent; Gidrol, Xavier

    2016-08-01

    Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks. PMID:27038488

  8. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    SciTech Connect

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  9. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    PubMed Central

    2012-01-01

    Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible (‘Sloan’) genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae

  10. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa†.

    PubMed

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Ingvarsson, Pär K; Zhang, Deqiang

    2015-02-01

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R(2)). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R(2) = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene-gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding.

  11. Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize.

    PubMed

    Yang, D E; Jin, D M; Wang, B; Zhang, D S; Nguyen, H-T; Zhang, C L; Chen, S J

    2005-10-01

    The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F(1), F(2) and BC(1)F(1) populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F(2) population, and 1:1 in the BC(1)F(1)population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145xY331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F(2) population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F(2)population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques. PMID:16133168

  12. Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize.

    PubMed

    Yang, D E; Jin, D M; Wang, B; Zhang, D S; Nguyen, H-T; Zhang, C L; Chen, S J

    2005-10-01

    The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F(1), F(2) and BC(1)F(1) populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F(2) population, and 1:1 in the BC(1)F(1)population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145xY331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F(2) population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F(2)population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques.

  13. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  14. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  15. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  16. Construction and Screening of Metagenomic Libraries Derived from Enrichment Cultures: Generation of a Gene Bank for Genes Conferring Alcohol Oxidoreductase Activity on Escherichia coli

    PubMed Central

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C2 to C4) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any

  17. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese.

    PubMed

    Li, Xiao; Zhang, Wen; Zhang, Chen; Yi, Zhenghui; Zhang, Deng-Feng; Gong, Wei; Tang, Jinsong; Wang, Dong; Lu, Weihong; Chen, Xiaogang; Fang, Yiru; Yao, Yong-Gang

    2015-04-01

    Schizophrenia is a prevalent psychiatric disorder with a complex etiology. Mitochondrial dysfunction has been frequently reported in schizophrenia. Phosphatase and tension homologue-induced kinase 1 (PINK1) and presenilin-associated rhomboid-like protease (PARL) are mitochondrial proteins, and genetic variants of these two genes may confer genetic susceptibility to schizophrenia by influencing mitochondrial function. In this study, we conducted a two-stage genetic association study to test this hypothesis. We genotyped 4 PINK1 and 5 PARL genetic variants and evaluated the potential association of the 9 SNPs with schizophrenia in two independent case-control cohorts of 2510 Han Chinese individuals. No positive association of common genetic variants of the PINK1 and PARL genes with schizophrenia was identified in our samples after Bonferroni correction. Re-analysis of the newly updated Psychiatric Genetics Consortium (PGC) data sets confirmed our negative result. Intriguingly, one PINK1 SNP (rs10916832), which showed a marginally significant association in only Hunan samples (P = 0.032), is associated with the expression of a schizophrenia susceptible gene KIF17 according to the expression quantitative trait locus (eQTL) analysis. Our study indicated that common genetic variants of the PINK1 and PARL genes are unlikely to be involved in schizophrenia. Further studies are essential to characterize the role of the PINK1 and PARL genes in schizophrenia.

  18. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    PubMed

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance.

  19. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    PubMed

    Liu, Xiaohui; Yang, Youtian; Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines. PMID:24498294

  20. The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia.

    PubMed

    Tan, Jingwen; Zhang, Jinqing; Chen, Wei; Sun, Yi; Wan, Zhe; Li, Ruoyu; Liu, Wei

    2015-04-01

    The mechanism of fluconazole resistance in Candida tropicalis is still unclear. Recently, we isolated a fluconazole-resistant strain of C. tropicalis from the blood specimen of a patient with candidemia in China. In vitro antifungal susceptibility of the isolate was determined by using CLSI M27-A3 and E-test methods. The sequence of ERG11 gene was then analyzed, and the three-dimensional model of Erg11p encoded by ERG11 gene was also investigated. The sequencing of ERG11 gene revealed the mutation of A395T in this fluconazole-resistant isolate of C. tropicalis, resulting in the Y132F substitution in Erg11p. Sequence alignment and three-dimensional model comparison of Erg11ps showed high similarity between fluconazole-susceptible isolates of C. tropicalis and Candida albicans. The comparison of the three-dimensional models of Erg11ps demonstrated that the position of the Y132F substitution in this isolate of C. tropicalis is identical to the isolate of C. albicans with fluconazole resistance resulting from Y132F substitution in Erg11p. Hence, we ascertain that the Y132F substitution of Erg11p caused by A395T mutation in ERG11 gene confers the fluconazole resistance in C. tropicalis.

  1. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco.

    PubMed

    Hu, Wei; Huang, Chao; Deng, Xiaomin; Zhou, Shiyi; Chen, Lihong; Li, Yin; Wang, Cheng; Ma, Zhanbing; Yuan, Qianqian; Wang, Yan; Cai, Rui; Liang, Xiaoyu; Yang, Guangxiao; He, Guangyuan

    2013-08-01

    Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes. PMID:23356734

  2. Identification of Genes in Candida glabrata Conferring Altered Responses to Caspofungin, a Cell Wall Synthesis Inhibitor

    PubMed Central

    Rosenwald, Anne G.; Arora, Gaurav; Ferrandino, Rocco; Gerace, Erica L.; Mohammednetej, Maedeh; Nosair, Waseem; Rattila, Shemona; Subic, Amanda Zirzow; Rolfes, Ronda

    2016-01-01

    Candida glabrata is an important human fungal pathogen whose incidence continues to rise. Because many clinical isolates are resistant to azole drugs, the drugs of choice to treat such infections are members of the echinocandin family, although there are increasing reports of resistance to these drugs as well. In efforts to better understand the genetic changes that lead to altered responses to echinocandins, we screened a transposon-insertion library of mutants for strains to identify genes that are important for cellular responses to caspofungin, a member of this drug family. We identified 16 genes that, when disrupted, caused increased tolerance, and 48 genes that, when disrupted, caused increased sensitivity compared to the wild-type parental strain. Four of the genes identified as causing sensitivity are orthologs of Saccharomyces cerevisiae genes encoding proteins important for the cell wall integrity (CWI) pathway. In addition, several other genes are orthologs of the high affinity Ca2+ uptake system (HACS) complex genes. We analyzed disruption mutants representing all 64 genes under 33 different conditions, including the presence of cell wall disrupting agents and other drugs, a variety of salts, increased temperature, and altered pH. Further, we generated knockout mutants in different genes within the CWI pathway and the HACS complex, and found that they too exhibited phenotypes consistent with defects in cell wall construction. Our results indicate that small molecules that inhibit the CWI pathway, or that the HACS complex, may be an important means of increasing the efficacy of caspofungin. PMID:27449515

  3. Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance.

    PubMed

    Lee, Jae Jin; Lee, Jung Hun; Kwon, Dae Beom; Jeon, Jeong Ho; Park, Kwang Seung; Lee, Chang-Ro; Lee, Sang Hee

    2015-10-01

    Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria. PMID:26169415

  4. Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance

    PubMed Central

    Lee, Jae Jin; Lee, Jung Hun; Kwon, Dae Beom; Jeon, Jeong Ho; Park, Kwang Seung; Lee, Chang-Ro

    2015-01-01

    Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria. PMID:26169415

  5. Identification of genes conferring genetic resistance to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to Marek’s disease (MD) is complex and controlled by many genes with the majority having small effect making them difficult to detect. Thus, to identify specific genes, we have been employing and integrating a variety of genomic and functional genomic approaches that capitalize on...

  6. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.

  7. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    PubMed Central

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 106 clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  8. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.

    PubMed

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  9. Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens.

    PubMed

    Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K

    2014-05-01

    Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities. PMID:24563293

  10. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance.

    PubMed

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  11. A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants

    PubMed Central

    Begcy, Kevin; Mariano, Eduardo D.; Gentile, Agustina; Lembke, Carolina G.; Zingaretti, Sonia Marli; Souza, Glaucia M.; Menossi, Marcelo

    2012-01-01

    Background Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications. PMID:22984543

  12. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    PubMed Central

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  13. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances.

    PubMed

    Wang, Xiatian; Zeng, Jian; Li, Ying; Rong, Xiaoli; Sun, Jiutong; Sun, Tao; Li, Miao; Wang, Lianzhe; Feng, Ying; Chai, Ruihong; Chen, Mingjie; Chang, Junli; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled 10 unigenes from expressed sequence tags (ESTs) of wheat and designated them as TaWRKY44-TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA), H2O2 and gibberellin (GA). The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC), soluble sugar, proline and superoxide dismutase (SOD) content, as well as higher activities of catalase (CAT) and peroxidase (POD), but less ion leakage (IL), lower contents of malondialdehyde (MDA), and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT, and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS)-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression. PMID:26322057

  14. A simple method for screening of plant NBS-LRR genes that confer a hypersensitive response to plant viruses and its application for screening candidate pepper genes against Pepper mottle virus.

    PubMed

    Tran, Phu-Tri; Choi, Hoseong; Kim, Saet-Byul; Lee, Hyun-Ah; Choi, Doil; Kim, Kook-Hyung

    2014-06-01

    Plant NBS-LRR genes are abundant and have been increasingly cloned from plant genomes. In this study, a method based on agroinfiltration and virus inoculation was developed for the simple and inexpensive screening of candidate R genes that confer a hypersensitive response to plant viruses. The well-characterized resistance genes Rx and N, which confer resistance to Potato virus X (PVX) and tobamovirus, respectively, were used to optimize a transient expression assay for detection of hypersensitive response in Nicotiana benthamiana. Infectious sap of PVX and Tobacco mosaic virus were used to induce hypersensitive response in Rx- and N-infiltrated leaves, respectively. The transient expression of the N gene induced local hypersensitive response upon infection of another tobamovirus, Pepper mild mottle virus, through both sap and transcript inoculation. When this method was used to screen 99 candidate R genes from pepper, an R gene that confers hypersensitive response to the potyvirus Pepper mottle virus was identified. The method will be useful for the identification of plant R genes that confer resistance to viruses.

  15. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    SciTech Connect

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  16. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  17. Expression in mammalian cells of a gene from Streptomyces alboniger conferring puromycin resistance.

    PubMed Central

    Vara, J A; Portela, A; Ortín, J; Jiménez, A

    1986-01-01

    The gene encoding a puromycin N-acetyl transferase from Streptomyces alboniger has been cloned next to the SV40 early promoter in a mammalian cells-Escherichia coli shuttle vector. When this construction was introduced into VERO cells it expressed the relevant enzymic activity. Moreover, the puromycin N-acetyl transferase gene has been used as a dominant marker for the selection of transformed mammalian cells able to grow in the presence of the antibiotic. PMID:3714487

  18. The wheat aquaporin gene TaAQP7 confers tolerance to cold stress in transgenic tobacco.

    PubMed

    Huang, Chao; Zhou, Shiyi; Hu, Wei; Deng, Xiaomin; Wei, Shuya; Yang, Guangxiao; He, Guangyuan

    2014-01-01

    Aquaporin proteins (AQPs) have been shown to be involved in abiotic stress responses. However, the precise role of AQPs, especially in response to cold stress, is not understood in wheat (Triticum aestivum). In the present study, quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed that TaAQP7 expression increased in leaves, but decreased in roots after cold treatment. Expression of TaAQP7 in tobacco plants resulted in increased root elongation and better growth compared with wild-type (WT) plants under cold stress. Moreover, after cold treatment, the transgenic tobacco lines exhibited higher chlorophyll contents, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than WT plants. Thus, expression of TaAQP7 enhanced cold stress tolerance in transgenic tobacco. Taken together, our results suggest that TaAQP7 confers cold stress tolerance by relieving membrane damage in the transgenic plants.

  19. New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate.

    PubMed

    Lebel, Karine; MacPherson, Sarah; Turcotte, Bernard

    2006-03-01

    Availability of the complete sequence of the Candida albicans genome allows for global gene analysis. We designed a gene deletion method to facilitate such studies. First, we constructed C. albicans strains that are both Deltaura3 and Deltatrp1. Second, we designed a system that relies on in vitro recombination, using the Gateway((R)) technology, for efficient generation of deletion cassettes. They are generated in two steps: (a) upstream and downstream DNA fragments of the chromosomal region to be deleted are amplified by PCR and introduced into two separate entry vectors; (b) the second step involves a quadruple recombination event including the two entry vectors, a plasmid bearing a marker of interest and a destination vector, in order to generate a plasmid containing the deletion cassette. The deletion plasmid contains very rare restriction sites for convenient excision of the knockout cassette. Selection in C. albicans can be performed with one of the following markers: the C. albicans URA3 gene, a modified S. cerevisiae TRP1 gene or the mycophenolic acid resistance (MPA(R)) gene. Upon integration into the genome, these markers can be removed by the use of 5-fluoroorotic acid (URA3), 5-fluoroanthranilic acid (TRP1) or the FLP recombinase (MPA(R)). Using this approach, we show that removal of the C. albicans orf19.1035 gene results in sensitivity to the weak acid sorbate, while its overexpression increases resistance to this compound. We named it WAR1, in analogy to its S. cerevisiae orthologue. PMID:16544288

  20. Proximal promoter elements of the human zeta-globin gene confer embryonic-specific expression on a linked reporter gene in transgenic mice.

    PubMed

    Pondel, M D; Sharpe, J A; Clark, S; Pearson, L; Wood, W G; Proudfoot, N J

    1996-11-01

    We have investigated the transcriptional regulation of the human embryonic zeta-globin gene promoter. First, we examined the effect that deletion of sequences 5' to zeta-globin's CCAAT box have on zeta-promoter activity in erythroid cell lines. Deletions of sequences between -116 and -556 (cap = 0) had little effect while further deletion to -84 reduced zeta-promoter activity by only 2-3-fold in both transiently and stably transfected erythroid cells. Constructs containing 67, 84 and 556 bp of zeta-globin 5' flanking region linked to a beta-galactosidase reporter gene (lacZ) and hypersensitive site -40 (HS-40) of the human alpha-globin gene cluster were then employed for the generation of transgenic mice. LacZ expression from all constructs, including a 67 bp zeta-globin promoter, was erythroid-specific and most active between 8.5 and 10.5 days post-fertilisation. By 16.5 days gestation, lacZ expression dropped 40-100-fold. These results suggest that embryonic-specific activation of the human zeta-globin promoter is conferred by a 67 bp zeta-promoter fragment containing only a CCAAT and TATA box. PMID:8932366

  1. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    PubMed

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  2. Screening for Escherichia coli K-12 genes conferring glyoxal resistance or sensitivity by transposon insertions.

    PubMed

    Lee, Changhan; Kim, Jihong; Kwon, Minsuk; Lee, Kihyun; Min, Haeyoung; Kim, Seong Hun; Kim, Dongkyu; Lee, Nayoung; Kim, Jiyeun; Kim, Doyun; Ko, Changmin; Park, Chankyu

    2016-09-01

    Glyoxal (GO) belongs to the reactive electrophilic species generated in vivo in all organisms. In order to identify targets of GO and their response mechanisms, we attempted to screen for GO-sensitive mutants by random insertions of TnphoA-132. The genes responsible for GO susceptibility were functionally classified as the following: (i) tRNA modification; trmE, gidA and truA, (ii) DNA repair; recA and recC, (iii) toxin-antitoxin; mqsA and (iv) redox metabolism; yqhD and caiC In addition, an insertion in the crp gene, encoding the cAMP responsive transcription factor, exhibits a GO-resistant phenotype, which is consistent with the phenotype of adenylate cyclase (cya) mutant showing GO resistance. This suggests that global regulation involving cAMP is operated in a stress response to GO. To further characterize the CRP-regulated genes directly associated with GO resistance, we created double mutants deficient in both crp and one of the candidate genes including yqhD, gloA and sodB The results indicate that these genes are negatively regulated by CRP as confirmed by real-time RT-PCR. We propose that tRNA as well as DNA are the targets of GO and that toxin/antitoxin, antioxidant and cAMP are involved in cellular response to GO.

  3. Screening for Escherichia coli K-12 genes conferring glyoxal resistance or sensitivity by transposon insertions.

    PubMed

    Lee, Changhan; Kim, Jihong; Kwon, Minsuk; Lee, Kihyun; Min, Haeyoung; Kim, Seong Hun; Kim, Dongkyu; Lee, Nayoung; Kim, Jiyeun; Kim, Doyun; Ko, Changmin; Park, Chankyu

    2016-09-01

    Glyoxal (GO) belongs to the reactive electrophilic species generated in vivo in all organisms. In order to identify targets of GO and their response mechanisms, we attempted to screen for GO-sensitive mutants by random insertions of TnphoA-132. The genes responsible for GO susceptibility were functionally classified as the following: (i) tRNA modification; trmE, gidA and truA, (ii) DNA repair; recA and recC, (iii) toxin-antitoxin; mqsA and (iv) redox metabolism; yqhD and caiC In addition, an insertion in the crp gene, encoding the cAMP responsive transcription factor, exhibits a GO-resistant phenotype, which is consistent with the phenotype of adenylate cyclase (cya) mutant showing GO resistance. This suggests that global regulation involving cAMP is operated in a stress response to GO. To further characterize the CRP-regulated genes directly associated with GO resistance, we created double mutants deficient in both crp and one of the candidate genes including yqhD, gloA and sodB The results indicate that these genes are negatively regulated by CRP as confirmed by real-time RT-PCR. We propose that tRNA as well as DNA are the targets of GO and that toxin/antitoxin, antioxidant and cAMP are involved in cellular response to GO. PMID:27535647

  4. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    DOE PAGESBeta

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-10-16

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. Here, we explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulatedmore » by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. In conclusion, taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.« less

  5. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    SciTech Connect

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-10-16

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. Here, we explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. In conclusion, taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.

  6. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    PubMed Central

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  7. Upregulated, 7q21-22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer.

    PubMed

    Tamilzhalagan, Sembulingam; Muthuswami, Muthulakshmi; Periasamy, Jayaprakash; Lee, Ming Hui; Rha, Sun Young; Tan, Patrick; Ganesan, Kumaresan

    2015-06-01

    Chromosomal aberrations are hallmarks of cancers and the locus of frequent genomic amplifications often harbors key cancer driver genes. Many genomic amplicons remain larger with hundreds of genes and the key drivers remain to be identified by an amplification-wide systematic analysis. The 7q21.12-q22.3 genomic amplification is frequent in gastric cancers which occur in ~10% of the patients and multiple cell lines. This 7q21.12-q22.3 amplicon has not yet been completely analyzed towards identifying the driver genes and their functional contribution in oncogenesis. The amplitude and prevalence indicate the important role conferred by this amplicon in gastric cancers. Among the 159 genes of this amplicon, 12 genes are found over-expressed in primary gastric tumors and cell lines. Many of the over-expressed genes show negative association with p53 transcriptional activity. RNAi based functional screening of the genes reveal, SHFM1 as key gastric cancer driver gene. SHFM1 confers cell cycle progression and resistance to p53 stabilizing drugs in gastric cancer cells. SHFM1 also activates Src, MAPK/ERK and PI3K/Akt signaling pathways. This is the first integrative genomic investigation of 7q21.12-q22.3 amplicon revealing the potential oncogenic candidacy of 12 genes. The oncogenic contribution of SHFM1, mediated by the p53 suppressive feature has been demonstrated in gastric cancer cells.

  8. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress

  9. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage ( Brassica rapa ssp. pekinensis).

    PubMed

    Piao, Z Y; Deng, Y Q; Choi, S R; Park, Y J; Lim, Y P

    2004-05-01

    Clubroot disease, caused by Plasmodiophora brassicae Wor., is highly damaging for Chinese cabbage. The CR (clubroot resistant) Shinki DH (doubled haploid) line of Chinese cabbage carries a single dominant gene, CRb, which confers resistance to the P. brassicae races 2, 4, and 8. An F(2) population derived from a cross between the CR Shinki DH line and a susceptible line, 94SK, was used to map the CRb gene. Inoculation of F(3) families with SSI (single-spore isolate) resulted in a 1:2:1 segregation ratio. Use of the AFLP technique combined with bulked segregant analysis allowed five co-dominant AFLP markers, and four and seven dominant AFLP markers linked in coupling and repulsion, respectively, to be identified. Six of the 16 AFLP markers showing low frequencies of recombination with the CRb locus among 138 F(2) lines were cloned. A reliable conversion procedure allowed five AFLP markers to be successfully converted into CAPS and SCAR markers. An F(2) population (143 plants) was analyzed with these markers and a previously identified SCAR marker, and a genetic map around CRb covering a total distance of 6.75 cM was constructed. One dominant marker, TCR09, was located 0.78 cM from CRb. The remaining markers (TCR05, TCR01, TCR10, TCR08, and TCR03) were located on the other side of CRb, and the nearest of these was TCR05, at a distance of 1.92 cM.

  10. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    PubMed

    Deng, Xiaomin; Hu, Wei; Wei, Shuya; Zhou, Shiyi; Zhang, Fan; Han, Jiapeng; Chen, Lihong; Li, Yin; Feng, Jialu; Fang, Bin; Luo, Qingchen; Li, Shasha; Liu, Yunyi; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Calcineurin B-like protein-interacting protein kinases (CIPKs) have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV), abscisic acid (ABA) and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+)/Na(+) ratios and Ca(2+) content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT) and peroxidase (POD) under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS) homeostasis.

  11. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    PubMed Central

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium. PMID:25520733

  12. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.

    PubMed

    Balesdent, Marie-Hélène; Fudal, Isabelle; Ollivier, Bénédicte; Bally, Pascal; Grandaubert, Jonathan; Eber, Frédérique; Chèvre, Anne-Marie; Leflon, Martine; Rouxel, Thierry

    2013-05-01

    Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.

  13. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  14. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.

    PubMed

    Balesdent, Marie-Hélène; Fudal, Isabelle; Ollivier, Bénédicte; Bally, Pascal; Grandaubert, Jonathan; Eber, Frédérique; Chèvre, Anne-Marie; Leflon, Martine; Rouxel, Thierry

    2013-05-01

    Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit. PMID:23406519

  15. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops.

    PubMed

    Gürel, Filiz; Öztürk, Zahide N; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na(+)/H(+) antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures. PMID:27536305

  16. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops

    PubMed Central

    Gürel, Filiz; Öztürk, Zahide N.; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na+/H+ antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures. PMID:27536305

  17. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is a devastating disease that can cause severe yield losses. A new Pgt race designated Ug99 has overcome most of the widely used resistance genes and is spreading through Africa and Asia threatening major wheat production areas. We re...

  18. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut.

    PubMed

    Hemsworth, Glyn R; Thompson, Andrew J; Stepper, Judith; Sobala, Łukasz F; Coyle, Travis; Larsbrink, Johan; Spadiut, Oliver; Goddard-Borger, Ethan D; Stubbs, Keith A; Brumer, Harry; Davies, Gideon J

    2016-07-01

    The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. PMID:27466444

  19. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut

    PubMed Central

    Thompson, Andrew J.; Stepper, Judith; Sobala, Łukasz F.; Coyle, Travis; Larsbrink, Johan; Spadiut, Oliver; Goddard-Borger, Ethan D.; Stubbs, Keith A.; Brumer, Harry; Davies, Gideon J.

    2016-01-01

    The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. PMID:27466444

  20. Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus.

    PubMed

    Simkovsky, Ryan; Effner, Emily E; Iglesias-Sánchez, Maria José; Golden, Susan S

    2016-05-01

    In natural and artificial aquatic environments, population structures and dynamics of photosynthetic microbes are heavily influenced by the grazing activity of protistan predators. Understanding the molecular factors that affect predation is critical for controlling toxic cyanobacterial blooms and maintaining cyanobacterial biomass production ponds for generating biofuels and other bioproducts. We previously demonstrated that impairment of the synthesis or transport of the O-antigen component of lipopolysaccharide (LPS) enables resistance to amoebal grazing in the model predator-prey system consisting of the heterolobosean amoeba HGG1 and the cyanobacterium Synechococcus elongates PCC 7942 (R. S. Simkovsky et al., Proc Natl Acad Sci U S A 109:16678-16683, 2012,http://dx.doi.org/10.1073/pnas.1214904109). In this study, we used this model system to identify additional gene products involved in the synthesis of O antigen, the ligation of O antigen to the lipid A-core conjugated molecule (including a novel ligase gene), the generation of GDP-fucose, and the incorporation of sugars into the lipid A core oligosaccharide ofS. elongatus Knockout of any of these genes enables resistance to HGG1, and of these, only disruption of the genes involved in synthesis or incorporation of GDP-fucose into the lipid A-core molecule impairs growth. Because these LPS synthesis genes are well conserved across the diverse range of cyanobacteria, they enable a broader understanding of the structure and synthesis of cyanobacterial LPS and represent mutational targets for generating resistance to amoebal grazers in novel biomass production strains. PMID:26921432

  1. Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus

    PubMed Central

    Effner, Emily E.; Iglesias-Sánchez, Maria José; Golden, Susan S.

    2016-01-01

    In natural and artificial aquatic environments, population structures and dynamics of photosynthetic microbes are heavily influenced by the grazing activity of protistan predators. Understanding the molecular factors that affect predation is critical for controlling toxic cyanobacterial blooms and maintaining cyanobacterial biomass production ponds for generating biofuels and other bioproducts. We previously demonstrated that impairment of the synthesis or transport of the O-antigen component of lipopolysaccharide (LPS) enables resistance to amoebal grazing in the model predator-prey system consisting of the heterolobosean amoeba HGG1 and the cyanobacterium Synechococcus elongatus PCC 7942 (R. S. Simkovsky et al., Proc Natl Acad Sci U S A 109:16678–16683, 2012, http://dx.doi.org/10.1073/pnas.1214904109). In this study, we used this model system to identify additional gene products involved in the synthesis of O antigen, the ligation of O antigen to the lipid A-core conjugated molecule (including a novel ligase gene), the generation of GDP-fucose, and the incorporation of sugars into the lipid A core oligosaccharide of S. elongatus. Knockout of any of these genes enables resistance to HGG1, and of these, only disruption of the genes involved in synthesis or incorporation of GDP-fucose into the lipid A-core molecule impairs growth. Because these LPS synthesis genes are well conserved across the diverse range of cyanobacteria, they enable a broader understanding of the structure and synthesis of cyanobacterial LPS and represent mutational targets for generating resistance to amoebal grazers in novel biomass production strains. PMID:26921432

  2. The neuronal transporter gene SLC6A15 confers risk to major depression

    PubMed Central

    Kohli, Martin A.; Lucae, Susanne; Saemann, Philipp G.; Schmidt, Mathias V.; Demirkan, Ayse; Hek, Karin; Czamara, Darina; Alexander, Michael; Salyakina, Daria; Ripke, Stephan; Hoehn, David; Specht, Michael; Menke, Andreas; Hennings, Johannes; Heck, Angela; Wolf, Christiane; Ising, Marcus; Schreiber, Stefan; Czisch, Michael; Müller, Marianne B.; Uhr, Manfred; Bettecken, Thomas; Becker, Albert; Schramm, Johannes; Rietschel, Marcella; Maier, Wolfgang; Bradley, Bekh; Ressler, Kerry J.; Nöthen, Markus M.; Cichon, Sven; Craig, Ian W.; Breen, Gerome; Lewis, Cathryn M.; Hofman, Albert; Tiemeier, Henning; van Duijn, Cornelia M.; Holsboer, Florian; Müller-Myhsok, Bertram; Binder, Elisabeth B.

    2011-01-01

    Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors likely contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a novel susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging and animal models suggest a novel pathophysiological mechanism for MD that may be accessible to drug targeting. PMID:21521612

  3. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    PubMed

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. PMID:26303802

  4. FCRL3 Gene Polymorphisms Confer Autoimmunity Risk for Allergic Rhinitis in a Chinese Han Population

    PubMed Central

    Gu, Zheng; Hong, Su-Ling; Ke, Xia; Shen, Yang; Wang, Xiao-Qiang; Hu, Di; Hu, Guo-Hua; Kang, Hou-Yong

    2015-01-01

    Background Heredity and environmental exposures may contribute to a predisposition to allergic rhinitis (AR). Autoimmunity may also involve into this pathologic process. FCRL3 (Fc receptor-like 3 gene), a novel immunoregulatory gene, has recently been reported to play a role in autoimmune diseases. Objective This study was performed to evaluate the potential association of FCRL3 polymorphisms with AR in a Chinese Han population. Methods Five single-nucleotide polymorphisms of FCRL3, rs945635, rs3761959, rs7522061, rs10489678 and rs7528684 were genotyped in 540 AR patients and 600 healthy controls using a PCR-restriction fragment length polymorphism assay. Allele, genotype and haplotype frequencies were compared between patients and controls using the χ2 test. The online software platform SHEsis was used to analyze their haplotypes. Results This study identified three strong risk SNPs rs7528684, rs10489678, rs7522061 and one weak risk SNP rs945635 of FCRL3 in Chinese Han AR patients. For rs7528684, a significantly increased prevalence of the AA genotype and A allele in AR patients was recorded. The frequency of the GG genotype and G allele of rs10489678 was markedly higher in AR patients than those in controls. For rs7522061, a higher frequency of the TT genotype, and a lower frequency of the CT genotype were found in AR patients. Concerning rs945635, a lower frequency of the CC genotype, and a higher frequency of G allele were observed in AR patients. According to the analysis of the three strong positive SNPs, the haplotype of AGT increased significantly in AR cases (AR = 38.8%, Controls = 24.3%, P = 8.29×10-14, OR [95% CI] 1.978 [1.652~2.368]). Conclusions This study found a significant association between the SNPs in FCRL3 gene and AR in Chinese Han patients. The results suggest these gene polymorphisms might be the autoimmunity risk for AR. PMID:25594855

  5. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice

    PubMed Central

    Liu, Juhong; Shen, Jianqiang; Xu, Yan; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2016-01-01

    CONSTANS (CO)-like genes have been intensively investigated for their roles in the regulation of photoperiodic flowering, but very limited information has been reported on their functions in other biological processes. Here, we found that a CO-like gene, Ghd2 (Grain number, plant height, and heading date2), which can increase the yield potential under normal growth condition just like its homologue Ghd7, is involved in the regulation of leaf senescence and drought resistance. Ghd2 is expressed mainly in the rice (Oryza sativa) leaf with the highest level detected at the grain-filling stage, and it is down-regulated by drought stress conditions. Overexpression of Ghd2 resulted in significantly reduced drought resistance, while its knockout mutant showed the opposite phenotype. The earlier senescence symptoms and the transcript up-regulation of many senescence-associated genes (SAGs) in Ghd2-overexpressing transgenic rice plants under drought stress conditions indicate that Ghd2 plays essential roles in accelerating drought-induced leaf senescence in rice. Moreover, developmental and dark-induced leaf senescence was accelerated in the Ghd2-overexpressing rice and delayed in the ghd2 mutant. Several SAGs were confirmed to be regulated by Ghd2 using a transient expression system in rice protoplasts. Ghd2 interacted with several regulatory proteins, including OsARID3, OsPURα, and three 14-3-3 proteins. OsARID3 and OsPURα showed expression patterns similar to Ghd2 in rice leaves, with the highest levels at the grain-filling stage, whereas OsARID3 and the 14-3-3 genes responded differently to drought stress conditions. These results indicate that Ghd2 functions as a regulator by integrating environmental signals with the senescence process into a developmental programme through interaction with different proteins. PMID:27638689

  6. Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate

    PubMed Central

    Desai, Kevin K.; Miller, Brian G.

    2010-01-01

    Microbial niches contain toxic chemicals capable of forcing organisms into periods of intense natural selection to afford survival. Elucidating the mechanisms by which microbes evade environmental threats has direct relevance for understanding and combating the rise of antibiotic resistance. In this study we used a toxic small-molecule, bromoacetate, to model the selective pressures imposed by antibiotics and anthropogenic toxins. We report the results of genetic selection experiments that identify nine genes from Escherichia coli whose overexpression affords survival in the presence of a normally lethal concentration of bromoacetate. Eight of these genes encode putative transporters or transmembrane proteins, while one encodes the essential peptidoglycan biosynthetic enzyme, UDP-N-acetylglucosamine enolpyruvoyl transferase (MurA). Biochemical studies demonstrate that the primary physiological target of bromoacetate is MurA, which becomes irreversibly inactivated via alkylation of a critical active-site cysteine. We also screened a comprehensive library of E. coli single-gene deletion mutants and identified 63 strains displaying increased susceptibility to bromoacetate. One hypersensitive bacterium lacks yliJ, a gene encoding a predicted glutathione transferase. Herein, YliJ is shown to catalyze the glutathione-dependent dehalogenation of bromoacetate with a kcat/Km value of 5.4 × 103 M-1 s-1. YliJ displays exceptional substrate specificity and produces a rate enhancement exceeding 5 orders of magnitude, remarkable characteristics for reactivity with a nonnatural molecule. This study illustrates the wealth of intrinsic survival mechanisms that can be exploited by bacteria when they are challenged with toxins. PMID:20921376

  7. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  8. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    PubMed Central

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-01-01

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species. PMID:27187354

  9. Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast

    PubMed Central

    Rienzo, Alessandro; Poveda-Huertes, Daniel; Aydin, Selcan; Buchler, Nicolas E.

    2015-01-01

    Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs. PMID:26283730

  10. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression

    PubMed Central

    Hu, Ruozhen; Huffaker, Thomas B.; Kagele, Dominique A.; Runtsch, Marah C.; Bake, Erin; Chaudhuri, Aadel A.; Round, June L.; O’Connell, Ryan M.

    2013-01-01

    Th17 cells are central to the pathogenesis of autoimmune disease, and recently specific noncoding microRNAs (miRNAs) have been shown to regulate their development. However, it remains unclear if miRNAs are also involved in modulating Th17 cell effector functions. Consequently, we examined the role of miR-155 in differentiated Th17 cells during their induction of Experimental Autoimmune Encephalomyelitis (EAE). Using adoptive transfer experiments, we found that highly purified, MOG antigen-specific Th17 cells lacking miR-155 were defective in their capacity to cause EAE. Gene expression profiling of purified miR-155−/− IL-17F+ Th17 cells identified a subset of effector genes that are dependent upon miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155−/− Th17 cells being hypo-responsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation, and finds that this occurs through a signaling network involving miR-155, Ets1 and the clinically relevant IL-23-IL-23R pathway. PMID:23686497

  11. Promoter methylation confers kidney-specific expression of the Klotho gene.

    PubMed

    Azuma, Masahiro; Koyama, Daisuke; Kikuchi, Jiro; Yoshizawa, Hiromichi; Thasinas, Dissayabutra; Shiizaki, Kazuhiro; Kuro-o, Makoto; Furukawa, Yusuke; Kusano, Eiji

    2012-10-01

    The aging suppressor geneKlotho is predominantly expressed in the kidney irrespective of species. Because Klotho protein is an essential component of an endocrine axis that regulates renal phosphate handling, the kidney-specific expression is biologically relevant; however, little is known about its underlying mechanisms. Here we provide in vitro and in vivo evidence indicating that promoter methylation restricts the expression of the Klotho gene in the kidney. Based on evolutionary conservation and histone methylation patterns, the region up to -1200 bp was defined as a major promoter element of the human Klotho gene. This region displayed promoter activity equally in Klotho-expressing and -nonexpressing cells in transient reporter assays, but the activity was reduced to ∼20% when the constructs were integrated into the chromatin in the latter. Both endogenous and transfected Klotho promoters were 30-40% methylated in Klotho-nonexpressing cells, but unmethylated in Klotho-expressing renal tubular cells. DNA demethylating agents increased Klotho expression 1.5- to 3.0-fold in nonexpressing cells and restored the activity of silenced reporter constructs. Finally, we demonstrated that a severe hypomorphic allele of Klotho had aberrant CpG methylation in kl/kl mice. These findings might be useful in therapeutic intervention for accelerated aging and several complications caused by Klotho down-regulation.

  12. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass.

    PubMed

    Patel, Minesh; Milla-Lewis, Susana; Zhang, Wanjun; Templeton, Kerry; Reynolds, William C; Richardson, Kim; Biswas, Margaret; Zuleta, Maria C; Dewey, Ralph E; Qu, Rongda; Sathish, Puthigae

    2015-06-01

    HUB1, also known as Ubl5, is a member of the subfamily of ubiquitin-like post-translational modifiers. HUB1 exerts its role by conjugating with protein targets. The function of this protein has not been studied in plants. A HUB1 gene, LpHUB1, was identified from serial analysis of gene expression data and cloned from perennial ryegrass. The expression of this gene was reported previously to be elevated in pastures during the summer and by drought stress in climate-controlled growth chambers. Here, pasture-type and turf-type transgenic perennial ryegrass plants overexpressing LpHUB1 showed improved drought tolerance, as evidenced by improved turf quality, maintenance of turgor and increased growth. Additional analyses revealed that the transgenic plants generally displayed higher relative water content, leaf water potential, and chlorophyll content and increased photosynthetic rate when subjected to drought stress. These results suggest HUB1 may play an important role in the tolerance of perennial ryegrass to abiotic stresses. PMID:25487628

  13. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  14. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    PubMed

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-01-01

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species. PMID:27187354

  15. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress

    PubMed Central

    Ren, Qian; Ma, Min; Ishima, Tamaki; Morisseau, Christophe; Yang, Jun; Wagner, Karen M.; Zhang, Ji-chun; Yang, Chun; Yao, Wei; Dong, Chao; Han, Mei; Hammock, Bruce D.; Hashimoto, Kenji

    2016-01-01

    Depression is a severe and chronic psychiatric disease, affecting 350 million subjects worldwide. Although multiple antidepressants have been used in the treatment of depressive symptoms, their beneficial effects are limited. The soluble epoxide hydrolase (sEH) plays a key role in the inflammation that is involved in depression. Thus, we examined here the role of sEH in depression. In both inflammation and social defeat stress models of depression, a potent sEH inhibitor, TPPU, displayed rapid antidepressant effects. Expression of sEH protein in the brain from chronically stressed (susceptible) mice was higher than of control mice. Furthermore, expression of sEH protein in postmortem brain samples of patients with psychiatric diseases, including depression, bipolar disorder, and schizophrenia, was higher than controls. This finding suggests that increased sEH levels might be involved in the pathogenesis of certain psychiatric diseases. In support of this hypothesis, pretreatment with TPPU prevented the onset of depression-like behaviors after inflammation or repeated social defeat stress. Moreover, sEH KO mice did not show depression-like behavior after repeated social defeat stress, suggesting stress resilience. The sEH KO mice showed increased brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor TrkB in the prefrontal cortex, hippocampus, but not nucleus accumbens, suggesting that increased BDNF-TrkB signaling in the prefrontal cortex and hippocampus confer stress resilience. All of these findings suggest that sEH plays a key role in the pathophysiology of depression, and that epoxy fatty acids, their mimics, as well as sEH inhibitors could be potential therapeutic or prophylactic drugs for depression. PMID:26976569

  16. Vat, an Amazing Gene Conferring Resistance to Aphids and Viruses They Carry: From Molecular Structure to Field Effects

    PubMed Central

    Boissot, Nathalie; Schoeny, Alexandra; Vanlerberghe-Masutti, Flavie

    2016-01-01

    We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region) and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant/aphid interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly) with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction). Resistance to viruses is qualitative and local. Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops serving as

  17. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance.

  18. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    PubMed

    Smigocki, Ann C; Ivic-Haymes, Snezana; Li, Haiyan; Savić, Jelena

    2013-01-01

    Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  19. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  20. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms

    PubMed Central

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue

    2015-01-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  1. Polymorphisms of the ITGAM Gene Confer Higher Risk of Discoid Cutaneous Than of Systemic Lupus Erythematosus

    PubMed Central

    Järvinen, Tiina M.; Hellquist, Anna; Koskenmies, Sari; Einarsdottir, Elisabet; Panelius, Jaana; Hasan, Taina; Julkunen, Heikki; Padyukov, Leonid; Kvarnström, Marika; Wahren-Herlenius, Marie; Nyberg, Filippa; D'Amato, Mauro; Kere, Juha

    2010-01-01

    Background Lupus erythematosus (LE) is a heterogeneous disease ranging from mainly skin-restricted manifestations (discoid LE [DLE] and subacute cutaneous LE) to a progressive multisystem disease (systemic LE [SLE]). Genetic association studies have recently identified several strong susceptibility genes for SLE, including integrin alpha M (ITGAM), also known as CD11b, whereas the genetic background of DLE is less clear. Principal Findings To specifically investigate whether ITGAM is a susceptibility gene not only for SLE, but also for cutaneous DLE, we genotyped 177 patients with DLE, 85 patients with sporadic SLE, 190 index cases from SLE families and 395 population control individuals from Finland for nine genetic markers at the ITGAM locus. SLE patients were further subdivided by the presence or absence of discoid rash and renal involvement. In addition, 235 Finnish and Swedish patients positive for Ro/SSA-autoantibodies were included in a subphenotype analysis. Analysis of the ITGAM coding variant rs1143679 showed highly significant association to DLE in patients without signs of systemic disease (P-value  = 4.73×10−11, OR  = 3.20, 95% CI  = 2.23–4.57). Significant association was also detected to SLE patients (P-value  = 8.29×10−6, OR  = 2.14, 95% CI  = 1.52–3.00), and even stronger association was found when stratifying SLE patients by presence of discoid rash (P-value  = 3.59×10−8, OR  = 3.76, 95% CI  = 2.29–6.18). Significance We propose ITGAM as a novel susceptibility gene for cutaneous DLE. The risk effect is independent of systemic involvement and has an even stronger genetic influence on the risk of DLE than of SLE. PMID:21151989

  2. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat.

    PubMed

    Herrera-Foessel, Sybil A; Singh, Ravi P; Huerta-Espino, Julio; Rosewarne, Garry M; Periyannan, Sambasivam K; Viccars, Libby; Calvo-Salazar, Violeta; Lan, Caixia; Lagudah, Evans S

    2012-05-01

    The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F(6) RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F(4)-derived F(5) RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.

  3. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics

    PubMed Central

    2012-01-01

    Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides

  4. Mutations in the Drosophila pushover gene confer increased neuronal excitability and spontaneous synaptic vesicle fusion

    SciTech Connect

    Richards, S.; Hillman, T.; Stern, M.

    1996-04-01

    We describe the identification of a gene called pushover (push), which affects both behavior and synaptic transmission at the neuromuscular junction. Adults carrying either of two mutations in push exhibit sluggishness, uncoordination, a defective escape response, and male sterility. Larvae defective in push exhibit increased release of transmitter at the neuromuscular junction. In particular, the frequency of spontaneous transmitter release and the amount of transmitter release evoked by nerve stimulation are each increased two- to threefold in push mutants at the lowest external [(Ca{sup 2+})] tested (0.15 mM). Furthermore, these mutants are more sensitive than wild type to application of the potassium channel-blocking drug quinidine: following quinidine application, push mutants, but not wild-type, display repetitive firing of the motor axon, leading to repetitive muscle postsynaptic potentials. The push gene thus might affect both neuronal excitability and the transmitter release process. Complementation tests and recombinational mapping suggest that the push mutations are allelic to a previously identified P-element-induced mutation, which also causes behavorial abnormalities and male sterility. 43 refs., 5 figs., 1 tab.

  5. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus

    PubMed Central

    Wang, Yankun; He, Yongjun; Yang, Mao; He, Jianbo; Xu, Pan; Shao, Mingquan; Chu, Pu; Guan, Rongzhan

    2016-01-01

    Leaf colour regulation is important in photosynthesis and dry material production. Most of the reported chlorophyll-deficient loci are recessive. The dominant locus is rarely reported, although it may be more important than the recessive locus in the regulation of photosynthesis efficiency. During the present study, we mapped a chlorophyll-deficient dominant locus (CDE1) from the ethyl methanesulfonate-mutagenized Brassica napus line NJ7982. Using an F2 population derived from the chlorophyll-deficient mutant (cde1) and the canola variety ‘zhongshuang11’, a high-density linkage map was constructed, consisting of 19 linkage groups with 2,878 bins containing 13,347 SNP markers, with a total linkage map length of 1,968.6 cM. Next, the CDE1 locus was mapped in a 0.9-cM interval of chromosome C08 of B. napus, co-segregating with nine SNP markers. In the following fine-mapping of the gene using the inherited F2:3 populations of 620 individuals, the locus was identified in an interval with a length of 311 kb. A bioinformatics analysis revealed that the mapping interval contained 22 genes. These results produced a good foundation for continued research on the dominant locus involved in chlorophyll content regulation. PMID:27506952

  6. An Endogenous Accelerator for Viral Gene Expression Confers a Fitness Advantage

    SciTech Connect

    Wong, Melissa; Bolovan-Fritts, Cynthia; Dar, Roy D.; Womack, Andrew; Simpson, Michael L; Shenk, Thomas; Weinberger, Leor S.

    2012-01-01

    Signal transduction circuits have long been known to differentiate between signals by amplifying inputs to different levels. Here, we describe a novel transcriptional circuitry that dynamically converts greater input levels into faster rates, without increasing the final equilibrium level (i.e. a rate amplifier). We utilize time-lapse microscopy to study human herpesvirus (cytomegalovirus) infection of live cells in real time. Strikingly, our results show that transcriptional activators accelerate viral gene expression in single cells without amplifying the steady-state levels of gene products in these cells. Experiment and modeling show that rate amplification operates by dynamically manipulating the traditional gain-bandwidth feedback relationship from electrical circuit theory to convert greater input levels into faster rates, and is driven by highly self-cooperative transcriptional feedback encoded by the virus s essential transactivator, IE2. This transcriptional rate-amplifier provides a significant fitness advantage for the virus and for minimal synthetic circuits. In general, rate-amplifiers may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.

  7. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.).

    PubMed

    Yadav, Shailesh; Anuradha, Ghanta; Kumar, Ravi Ranjan; Vemireddy, Lakshminaryana Reddy; Sudhakar, Ravuru; Donempudi, Krishnaveni; Venkata, Durgarani; Jabeen, Farzana; Narasimhan, Yamini Kalinati; Marathi, Balram; Siddiq, Ebrahimali Abubacker

    2015-01-01

    Sheath blight, caused by the pathogenic fungus Rhizoctonia solani Kühn, is one of the most devastating diseases in rice. Breeders have always faced challenges in acquiring reliable and absolute resistance to this disease in existing rice germplasm. In this context, 40 rice germplasm including eight wild, four landraces, twenty- six cultivated and two advanced breeding lines were screened utilizing the colonized bits of typha. Except Tetep and ARC10531 which expressed moderate level of resistance to the disease, none could be found to be authentically resistant. In order to map the quantitative trait loci (QTLs) governing the sheath blight resistance, two mapping populations (F2 and BC1F2) were developed from the cross BPT-5204/ARC10531. Utilizing composite interval mapping analysis, 9 QTLs mapped to five different chromosomes were identified with phenotypic variance ranging from 8.40 to 21.76%. Two SSR markers namely RM336 and RM205 were found to be closely associated with the major QTLs qshb7.3 and qshb9.2 respectively and were attested as well in BC1F2 population by bulk segregant analysis approach. A hypothetical β 1-3 glucanase with other 31 candidate genes were identified in silico utilizing rice database RAP-DB within the identified QTL region qshb9.2. A detailed insight into these candidate genes will facilitate at molecular level the intricate nature of sheath blight, a step forward towards functional genomics.

  8. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus.

    PubMed

    Wang, Yankun; He, Yongjun; Yang, Mao; He, Jianbo; Xu, Pan; Shao, Mingquan; Chu, Pu; Guan, Rongzhan

    2016-01-01

    Leaf colour regulation is important in photosynthesis and dry material production. Most of the reported chlorophyll-deficient loci are recessive. The dominant locus is rarely reported, although it may be more important than the recessive locus in the regulation of photosynthesis efficiency. During the present study, we mapped a chlorophyll-deficient dominant locus (CDE1) from the ethyl methanesulfonate-mutagenized Brassica napus line NJ7982. Using an F2 population derived from the chlorophyll-deficient mutant (cde1) and the canola variety 'zhongshuang11', a high-density linkage map was constructed, consisting of 19 linkage groups with 2,878 bins containing 13,347 SNP markers, with a total linkage map length of 1,968.6 cM. Next, the CDE1 locus was mapped in a 0.9-cM interval of chromosome C08 of B. napus, co-segregating with nine SNP markers. In the following fine-mapping of the gene using the inherited F2:3 populations of 620 individuals, the locus was identified in an interval with a length of 311 kb. A bioinformatics analysis revealed that the mapping interval contained 22 genes. These results produced a good foundation for continued research on the dominant locus involved in chlorophyll content regulation. PMID:27506952

  9. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    PubMed Central

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-01-01

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress. PMID:24918294

  10. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease.

    PubMed

    Namukwaya, B; Tripathi, L; Tripathi, J N; Arinaitwe, G; Mukasa, S B; Tushemereirwe, W K

    2012-08-01

    Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic.

  11. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers

    PubMed Central

    He, Shanshan; Zhao, Zhen; Yang, Yongfei; O'Connell, Douglas; Zhang, Xiaowei; Oh, Soohwan; Ma, Binyun; Lee, Joo-Hyung; Zhang, Tian; Varghese, Bino; Yip, Janae; Dolatshahi Pirooz, Sara; Li, Ming; Zhang, Yong; Li, Guo-Min; Ellen Martin, Sue; Machida, Keigo; Liang, Chengyu

    2015-01-01

    Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAGFS in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAGFS abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAGFS can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAGFS expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response. PMID:26234763

  12. Expression of Monstera deliciosa agglutinin gene (mda) in tobacco confers resistance to peach-potato aphids.

    PubMed

    Kai, Guoyin; Ji, Qian; Lu, Yang; Qian, Zhongying; Cui, Lijie

    2012-08-01

    The aphid is one of the most serious pests that causes damage to crops worldwide. Lectins from Araceae plant had been proved useful to control the aphid. Herein, the full-length cDNA of Monstera deliciosa agglutinin (mda) gene was cloned and then introduced into tobacco and the influence of the expression of mda in transgenic tobacco against peach-potato aphids (Myzus persicae) was investigated. Among 92 regenerated plants, 59 positive tobacco lines were obtained. Real-time PCR assays and aphid bioassay test revealed that there is a positive correlation between the expression level of mda and the inhibitory effect on peach-potato aphids. The average anti-pests ability of mda transgenic tobacco was 74%, which was higher than that of other reported lectins from Araceae plant. These results indicated that MDA is one of promising insect resistance proteins selected for the control of peach-potato aphids.

  13. An endogenous accelerator for viral gene expression confers a fitness advantage.

    PubMed

    Teng, Melissa W; Bolovan-Fritts, Cynthia; Dar, Roy D; Womack, Andrew; Simpson, Michael L; Shenk, Thomas; Weinberger, Leor S

    2012-12-21

    Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient ∼7) generated by homomultimerization of the virus's essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.

  14. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    PubMed

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. PMID:26025753

  15. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya; Okada, Norihiko; Yoshida, Saori; Yamamoto, Junya; Ohkubo, Rika; Abiko, Yumi; Yamada, Hidenori; Akahoshi, Noriyuki; Kasahara, Tadashi; Kumagai, Yoshito; Ishii, Isao

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs(+/-) or Cth(+/-)) and homozygous (Cth(-/-)) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth(-/-) mice at 150 mg/kg dose, and also in Cbs(+/-) or Cth(+/-) mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth(-/-) mice but not wild-type mice, although glutamate-cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth(-/-) mice with lower Km values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth(-/-) mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200-300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities.

  16. Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid

    PubMed Central

    Lahiri, Amit; Joy, Omana; Chakravortty, Dipshikha

    2011-01-01

    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate. PMID:21347426

  17. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    PubMed

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China.

  18. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco.

    PubMed

    Guan, Chunfeng; Jin, Chao; Ji, Jing; Wang, Gang; Li, Xiaozhou

    2015-01-01

    Cadmium (Cd) accumulation is very toxic to plants. The presence of Cd may lead to excessive production of reactive oxygen species (ROS), and then cause inhibition of plant growth. The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which has been shown to function as a sensor of alterations in the ER environment. BiP overexpression in plants was shown to increase drought tolerance through inhibition of ROS accumulation. Due to the above relationships, it is likely that there may be a link between Cd stress tolerance, ROS accumulation and the BiP transcript expression in plants. In this study, a BiP gene, LcBiP, from L. chinense was isolated and characterized. Overexpression of LcBiP in tobacco conferred Cd tolerance. Under Cd stress conditions, the transgenic tobacco lines exhibited better chlorophyll retention, less accumulation of ROS, longer root length, more glutathione (GSH) content, and less antioxidant enzyme activity than the wild type. These data demonstrated that LcBiP act as a positive regulator in Cd stress tolerance. It is hypothesized that the improved Cd tolerance of the transgenic tobacco plants may be due to the enhanced ROS scavenging capacity. The enhancement of GSH content might contribute to this ROS scavenging capacity in the transgenic plants. However, the underlying mechanism for BiP-mediated increase in Cd stress tolerance need to be further clarified. PMID:25589446

  19. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. Oryzae in rice

    PubMed Central

    Chen, Honglin; Li, Chunrong; Liu, Liping; Zhao, Jiying; Cheng, Xuzhen; Jiang, Guanghuai; Zhai, Wenxue

    2016-01-01

    Disease resistance is an important goal of crop improvement. The molecular mechanism of resistance requires further study. Here, we report the identification of a rice leaf color mutant, lc7, which is defective in chlorophyll synthesis and photosynthesis but confers resistance to Xanthomonas oryzae pv. Oryzae (Xoo). Map-based cloning revealed that lc7 encodes a mutant ferredoxin-dependent glutamate synthase1 (Fd-GOGAT1). Fd-GOGAT1 has been proposed to have great potential for improving nitrogen-use efficiency, but its function in bacterial resistance has not been reported. The lc7 mutant accumulates excessive levels of ROS (reactive oxygen species) in the leaves, causing the leaf color to become yellow after the four-leaf stage. Compared to the wild type, lc7 mutants have a broad-spectrum high resistance to seven Xoo strains. Differentially expressed genes (DEGs) and qRT-PCR analysis indicate that many defense pathways that are involved in this broad-spectrum resistance are activated in the lc7 mutant. These results suggest that Fd-GOGAT1 plays an important role in broad-spectrum bacterial blight resistance, in addition to modulating nitrogen assimilation and chloroplast development. PMID:27211925

  20. Mutations in the herpes simplex virus DNA polymerase gene can confer resistance to 9-beta-D-arabinofuranosyladenine.

    PubMed Central

    Coen, D M; Furman, P A; Gelep, P T; Schaffer, P A

    1982-01-01

    Mutants of herpes simplex virus type 1 resistant to the antiviral drug 9-beta-D-arabinofuranosyladenine (araA) have been isolated and characterized. AraA-resistant mutants can be isolated readily and appear at an appreciable frequency in low-passage stocks of wild-type virus. Of 13 newly isolated mutants, at least 11 were also resistant to phosphonoacetic acid (PAA). Of four previously described PAA-resistant mutants, two exhibited substantial araA resistance. The araA resistance phenotype of one of these mutants, PAAr5, has been mapped to the HpaI-B fragment of herpes simplex virus DNA by marker transfer, and araA resistance behaved in marker transfer experiments as if it were closely linked to PAA resistance, a recognized marker for the viral DNA polymerase locus. PAAr5 induced viral DNA polymerase activity which was much less susceptible to inhibition by the triphosphate derivative of araA than was wild-type DNA polymerase. These genetic and biochemical data indicate that the herpes simplex virus DNA polymerase gene is a locus which, when mutated, can confer resistance to araA and thus that the herpes simplex virus DNA polymerase is a target for this antiviral drug. PMID:6284981

  1. A TagSNP in SIRT1 Gene Confers Susceptibility to Myocardial Infarction in a Chinese Han Population

    PubMed Central

    Cheng, Jie; Cho, Miook; Cen, Jin-ming; Cai, Meng-yun; Xu, Shun; Ma, Ze-wei; Liu, Xinguang; Yang, Xi-li; Chen, Can; Suh, Yousin; Xiong, Xing-dong

    2015-01-01

    SIRT1 exerts protective effects against endothelial cells dysfunction, inflammation and atherosclerosis, indicating an important role on myocardial infarction (MI) pathogenesis. Nonetheless, the effects of SIRT1 variants on MI risk remain poorly understood. Here we aimed to investigate the influence of SIRT1 polymorphisms on individual susceptibility to MI. Genotyping of three tagSNPs (rs7069102, rs3818292 and rs4746720) in SIRT1 gene was performed in a Chinese Han population, consisting of 287 MI cases and 654 control subjects. In a logistic regression analysis, we found that G allele of rs7069102 had increased MI risk with odds ratio (OR) of 1.57 [95% confidence interval (CI) = 1.15–2.16, Bonferroni corrected P (Pc) = 0.015] after adjustment for conventional risk factors compared to C allele. Similarly, the combined CG/GG genotypes was associated with the increased MI risk (OR = 1.64, 95% CI = 1.14–2.35, Pc = 0.021) compared to the CC genotype. Further stratified analysis revealed a more significant association with MI risk among younger subjects (≤ 55 years old). Consistent with these results, the haplotype rs7069102G-rs3818292A-rs4746720T containing the rs7069102 G allele was also associated with the increased MI risk (OR = 1.41, 95% CI = 1.09–1.84, Pc = 0.040). However, we did not detect any association of rs3818292 and rs4746720 with MI risk. Our study provides the first evidence that the tagSNP rs7069102 and haplotype rs7069102G-rs3818292A-rs4746720T in SIRT1 gene confer susceptibility to MI in the Chinese Han population. PMID:25706717

  2. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species.

  3. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    PubMed Central

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  4. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification. PMID:24880475

  5. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  6. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.

    PubMed

    Hu, Ying; Wu, Qingyu; Sprague, Stuart A; Park, Jungeun; Oh, Myungmin; Rajashekar, C B; Koiwa, Hisashi; Nakata, Paul A; Cheng, Ninghui; Hirschi, Kendal D; White, Frank F; Park, Sunghun

    2015-01-01

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species. PMID:26623076

  7. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    SciTech Connect

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya; Okada, Norihiko; Yoshida, Saori; Yamamoto, Junya; Ohkubo, Rika; Abiko, Yumi; Yamada, Hidenori; Akahoshi, Noriyuki; Kasahara, Tadashi; Kumagai, Yoshito; Ishii, Isao

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs{sup +/−} or Cth{sup +/−}) and homozygous (Cth{sup −/−}) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alanine aminotransferase levels were highly elevated in Cth{sup −/−} mice at 150 mg/kg dose, and also in Cbs{sup +/−} or Cth{sup +/−} mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth{sup −/−} mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth{sup −/−} mice with lower K{sub m} values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth{sup −/−} mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs{sup +/−}, Cth{sup +/−}, and

  8. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    2014-01-01

    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex

  9. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  10. Expression of the hygromycin B phosphotransferase gene confers tolerance to the herbicide glyphosate.

    PubMed

    Peñaloza-Vázquez, A; Oropeza, A; Mena, G L; Bailey, A M

    1995-05-01

    Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of (32)P from [γ(-32)P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate. PMID:24185516

  11. Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani.

    PubMed

    Kern, Marcelo Fernando; Maraschin, Simone de Faria; Vom Endt, Débora; Schrank, Augusto; Vainstein, Marilene Henning; Pasquali, Giancarlo

    2010-04-01

    The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined to be varying from one to four. Copy number had observable effects neither on plant growth nor development. Substantial heterogeneity concerning production of the recombinant chitinase, and both general and specific chitinolytic activities were detected in leaf extracts from primary transformants. The highest chitinase activities were found in plants harboring two copies of chit1 inserts at different loci. Progeny derived from self-pollination of the primary transgenics revealed a stable inheritance pattern, with transgene segregation following a mendelian dihybrid ratio. Two selected plants expressing high levels of CHIT42 were consistently resistant to the soilborne pathogen Rhizoctonia solani, suggesting a direct relationship between enzyme activity and reduction of foliar area affected by fungal lesions. To date, this is the first report of resistance to fungal attack in plants mediated by a recombinant chitinase from an entomopathogenic and acaricide fungus.

  12. Genetic analysis of dilated cardiomyopathy--HLA and immunoglobulin genes may confer susceptibility.

    PubMed

    Nishi, H; Kimura, A; Fukuta, S; Kusukawa, R; Kawamura, K; Nimura, Y; Nagano, M; Yasuda, H; Kawai, C; Sugimoto, T

    1992-10-01

    To identify genetic factors in the immune system which control the susceptibility to dilated cardiomyopathy (DCM), HLA class II DNA typing was performed in 61 Japanese patients, using PCR/SSO probe analyses. The frequencies of HLA-DQB1*0503 (15% vs 5%; RR = 3.06, chi 2 = 7.19) and DQB1*0604 (21% vs 10%; RR = 2.41, chi 2 = 6.20) were significantly increased and that of HLA-DQB1*0502 (RR = 1.74) was slightly increased in the DCM patients. The frequency of DQB1*0303 (16% vs 31%; RR = 0.44, chi 2 = 5.16) was significantly decreased in the patients. The increased HLA-DQB1 alleles have a histidine residue in common at the 30th codon for the HLA-DQ beta chain. Among the genetic markers studied by Southern blot analyses, IGLV (immunoglobulin lambda light chain, pV3.3) showed a strong association with DCM, i.e. A2/A2 genotype was found in 37.7% of patients whereas it was observed in only 18.9% of the control subjects (RR = 2.6, chi 2 = 7.77). The frequency of this genotype was higher in patients under age 45 years at the time of diagnosis (45.5%, RR = 3.6, chi 2 = 10.02). These results suggest that HLA and immunoglobulin genes are closely linked to susceptibility to DCM.

  13. The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population.

    PubMed

    Wang, Meng; Chen, Jianhua; He, Kuanjun; Wang, Qingzhong; Li, Zhiqiang; Shen, Jiawei; Wen, Zujia; Song, Zhijian; Xu, Yifeng; Shi, Yongyong

    2015-10-01

    NVL (nuclear VCP (valosin containing protein)/p97-Like), a member of the AAA-ATPase (ATPases associated with various cellular activities) family, encodes a novel hTERT (human telomerase reverse transcriptase)-interacting protein NVL2 which is a telomerase component essential for holoenzyme assembly. Previous researches have reported the impacts of telomerase activity on mental illness and the potential association between NVL and major depressive disorder. To validate the susceptibility of NVL to major depressive disorder, and to investigate the overlapping risk conferred by NVL for both major depressive disorder and schizophrenia, we analyzed 9 tag single nucleotide polymorphisms (tag SNPs) using TaqMan® technology, in 1045 major depressive disorder patients, 1235 schizophrenia patients and 1235 normal controls of Han Chinese origin. We found that rs10916583 (P(allele) = 0.020, P(genotype) = 0.028, OR = 1.156) and rs16846649 (adjusted P(allele) = 0.014, P(genotype) = 0.007, OR = 0.718) were associated with major depressive disorder, while rs10916583 (adjusted P(allele) = 1.08E-02, OR = 1.213), rs16846649 (adjusted P(allele) = 7.40E-06, adjusted P(genotype) = 8.07E-05, OR = 0.598) and rs10799541 (adjusted P(allele) = 8.10E-03, adjusted P(genotype) = 0.049, OR= 0.826) showed statistically significant association with schizophrenia after Bonferroni correction. Furthermore, rs10916583 (adjusted P(allele) = 9.00E-03, adjusted P(genotype) = 3.15E-02, OR = 1.187) and rs16846649 (adjusted P(allele) = 8.92E-06, adjusted P(genotype) = 8.84E-05, OR = 0.653) remained strongly associated with the analysis of combined cases of major depressive disorder and schizophrenia after Bonferroni correction. Our results indicated that the NVL gene may contain overlapping common genetic risk factors for major depressive disorder and schizophrenia in the Han Chinese population. The roles of NVL in telomerase biogenesis were also highlighted in psychiatric pathogenesis. The study on

  14. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B.

    PubMed Central

    Ishiguro, J; Saitou, A; Durán, A; Ribas, J C

    1997-01-01

    The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis. PMID:9401022

  15. ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population.

    PubMed

    He, Kuanjun; Wang, Qingzhong; Chen, Jianhua; Li, Tao; Li, Zhiqiang; Li, Wenjin; Wen, Zujia; Qiang, Yu; Wang, Meng; Shen, Jiawei; Song, Zhijian; Ji, Jue; Feng, Guoyin; Qi, Shuguang; Lin, He; Shi, Yongyong; Cheng, Zaohuo

    2014-06-01

    As a major extracellular matrix component, ITIHs played an important role in inflammation and carcinogenesis. Several genome-wide association studies have reported that some positive signals which were derived from the tight linkage disequilibrium region on chromosome 3p21 were associated with both schizophrenia and bipolar disorders in the Caucasian population. To further investigate whether this genomic region is also a susceptibility locus of schizophrenia and major depressive disorder in the Han Chinese population, we conducted this study by recruiting 1235 schizophrenia patients, 1045 major depressive disorder patients and 1235 healthy control subjects in the Han Chinese samples for a case-control study. We genotyped seven SNPs within this region using TaqMan® technology. We found that rs2710322 was significantly associated with schizophrenia (adjusted P(allele) = 0.0018, adjusted P(genotype) = 0.006, OR [95% CI] = 1.278 [1.117-1.462]) while rs1042779 was weakly associated with schizophrenia (adjusted P(allele) = 0.048, OR [95% CI] = 1.164 [1.040-1.303]) and major depressive disorder (adjusted P(allele) = 0.042, OR [95% CI] = 1.178 [1.047-1.326]); it was also our finding that rs3821831 was positively associated with major depressive disorder (adjusted P(allele) = 0.003, adjusted P(genotype) = 0.006, OR [95% CI] = 1.426 [1.156-1.760]). Furthermore, no haplotype was found to be associated with schizophrenia and major depressive disorder. Via the association analysis which combines the schizophrenia and major depressive disorder cases, we also notice that rs1042779 and rs3821831 were significantly associated with combined cases (rs1042779: adjusted P(allele) = 0.012, adjusted P(genotype) = 0.018, OR [95% CI] = 1.171 [1.060-1.292]; rs3821831:adjusted P(genotype) = 0.012, OR [95% CI] = 1.193 [1.010-1.410]). Our results revealed that the shared genetic risk factors of both schizophrenia and major depressive disorder exist in ITIH family genes in the Han Chinese

  16. Virulence Associated Genes-Deleted Salmonella Montevideo Is Attenuated, Highly Immunogenic and Confers Protection against Virulent Challenge in Chickens

    PubMed Central

    Lalsiamthara, Jonathan; Lee, John H.

    2016-01-01

    To construct a novel live vaccine against Salmonella enterica serovar Montevideo (SM) infection in chickens, two important bacterial regulatory genes, lon and cpxR, which are associated with invasion and virulence, were deleted from the wild type SM genome. Attenuated strains, JOL1625 (Δlon), JOL1597 (ΔcpxR), and JOL1599 (ΔlonΔcpxR) were thereby generated. Observations with scanning electron microscopy suggested that JOL1625 and JOL1599 cells showed increased ruffled surface which may be related to abundant extracellular polysaccharide (EPS) production. JOL1597 depicted milder ruffled surface but showed increased surface corrugation. ConA affinity-based fluorometric quantification and fluorescence microscopy revealed significant increases in EPS production in JOL1625 and JOL1599. Four weeks old chickens were used for safety and immunological studies. The mutants were not observed in feces beyond day 3 nor in spleen and cecum beyond day 7, whereas wild type SM was detected for at least 2 weeks in spleen and cecum. JOL1599 was further evaluated as a vaccine candidate. Chickens immunized with JOL1599 showed strong humoral responses, as indicated by systemic IgG and secretory IgA levels, as well as strong cell-mediated immune response, as indicated by increased lymphocyte proliferation. JOL1599-immunized groups also showed significant degree of protection against wild type challenge. Our results indicate that Δlon- and/or ΔcpxR-deleted SM exhibited EPS-enhanced immunogenicity and attenuation via reduced bacterial cell intracellular replication, conferred increased protection, and possess safety qualities favorable for effective vaccine development against virulent SM infections. PMID:27785128

  17. Novel gene mutations in patients with 1alpha-hydroxylase deficiency that confer partial enzyme activity in vitro.

    PubMed

    Wang, Xuemei; Zhang, Martin Y H; Miller, Walter L; Portale, Anthony A

    2002-06-01

    The rate-limiting, hormonally regulated step in the biological activation of vitamin D is its 1alpha-hydroxylation to 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] in the kidney, catalyzed by the mitochondrial cytochrome P450 enzyme, P450c1alpha. We previously cloned the human P450c1alpha cDNA and gene, and identified 14 different mutations, including 7 missense, in 19 patients with 1alpha-hydroxylase deficiency, also known as vitamin D-dependent rickets type 1. None of the missense mutations encoded a protein with detectable enzymatic activity in vitro. Although there is phenotypic variation among such patients, the molecular basis of this variation is unknown. We analyzed 6 additional patients with clinical and radiographic features of rickets; in 4 patients the laboratory abnormalities were typical of 1alpha-hydroxylase deficiency, but in 2 they were unusually mild [mild hypocalcemia and normal serum 1,25-(OH)(2)D concentration]. Direct sequencing revealed that all patients had P450c1alpha mutations on both alleles. Five new and 2 known mutations were identified. The new mutations included a 5-bp deletion with a 6-bp novel insertion causing a frameshift in exon 2, and a G to A change at +1 of intron 2; a minigene experiment proved that this intronic mutation prevented proper splicing. Three new missense mutations were found and tested by expressing the mutant cDNA in mouse Leydig MA-10 cells. The R389G mutant was totally inactive, but mutant L343F retained 2.3% of wild-type activity, and mutant E189G retained 22% of wild-type activity. The two mutations that confer partial enzyme activity in vitro were found in the 2 patents with mild laboratory abnormalities, suggesting that such mutations contribute to the phenotypic variation observed in patients with 1alpha-hydroxylase deficiency.

  18. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  19. Identification and characterization of cis-acting elements conferring insulin responsiveness on hamster cholesterol 7alpha-hydroxylase gene promoter.

    PubMed Central

    De Fabiani, E; Crestani, M; Marrapodi, M; Pinelli, A; Golfieri, V; Galli, G

    2000-01-01

    Bile acid biosynthesis occurs primarily through a pathway initiated by the 7alpha-hydroxylation of cholesterol, catalysed by cholesterol 7alpha-hydroxylase (encoded by CYP7A1). Insulin down-regulates CYP7A1 transcription. The aim of our study was to characterize the sequences of hamster CYP7A1 promoter, mediating the response to insulin. We therefore performed transient transfection assays with CYP7A1 promoter/luciferase chimaeras mutated at putative response elements and studied protein-DNA interactions by means of gel electrophoresis mobility-shift assay. Here we show that two sequences confer insulin responsiveness on hamster CYP7A1 promoter: a canonical insulin response sequence TGTTTTG overlapping a binding site for hepatocyte nuclear factor 3 (HNF-3) (at nt -235 to -224) and a binding site for HNF-4 at nt -203 to -191. In particular we show that the hamster CYP7A1 insulin response sequence is part of a complex unit involved in specific interactions with multiple transcription factors such as members of the HNF-3 family; this region does not bind very strongly to HNF-3 and as a consequence partly contributes to the transactivation of the gene. Another sequence located at nt -138 to -128 binds to HNF-3 and is involved in the tissue-specific regulation of hamster CYP7A1. The sequence at nt -203 to -191 is not only essential for insulin effect but also has a major role in the liver-specific expression of CYP7A1; it is the target of HNF-4. Therefore the binding sites for liver-enriched factors, present in the hamster CYP7A1 proximal promoter in close vicinity and conserved between species, constitute a regulatory unit important for basal hepatic expression and tissue restriction of the action of hormones such as insulin. PMID:10727413

  20. Updates from the Sixth International Congress 'Psoriasis: from Gene to Clinic', the Queen Elizabeth II Conference Centre, London, U.K., 1-3 December 2011.

    PubMed

    Shams, K; Burden, A D

    2012-10-01

    The 15 years between the First International Congress 'Psoriasis: from Gene to Clinic' and the Sixth Congress held in London from 1 to 3 December 2011 have seen extraordinary progress in the sciences that are relevant to psoriasis and therapeutics that have transformed its treatment. Over this time, 'Psoriasis: from Gene to Clinic' has emerged as the premier conference for clinicians and scientists interested in this field. Its popularity is attested to by the 450 registered delegates from the U.K. and around the world, which necessitated a change of venue to the excellent facilities of the Queen Elizabeth II Conference Centre. Although the content has evolved over the years, the structure of this 3-day conference has remained similar. The first day was given to genetics, comorbidities and outcome measures. Immunology and immunity were covered on the second day and therapeutics on the third. The stature of the three keynote lecturers and eight invited speakers was truly world class and their presentations were interspersed with 23 free communications. Here we review highly selected personal highlights of the meeting that we hope will be of general interest.

  1. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco

    PubMed Central

    Strizhov, Nicolai; Keller, Menachem; Mathur, Jaideep; Koncz-Kálmán, Zsuzsanna; Bosch, Dirk; Prudovsky, Evgenia; Schell, Jeff; Sneh, Baruch; Koncz, Csaba; Zilberstein, Aviah

    1996-01-01

    Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable Pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01–0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA. PMID:8986755

  2. tcrB, a Gene Conferring Transferable Copper Resistance in Enterococcus faecium: Occurrence, Transferability, and Linkage to Macrolide and Glycopeptide Resistance

    PubMed Central

    Hasman, Henrik; Aarestrup, Frank M.

    2002-01-01

    A newly discovered gene, designated tcrB, which is located on a conjugative plasmid conferring acquired copper resistance in Enterococcus faecium, was identified in an isolate from a pig. The tcrB gene encodes a putative protein belonging to the CPx-type ATPase family with homology (46%) to the CopB protein from Enterococcus hirae. The tcrB gene was found in E. faecium isolated from pigs (75%), broilers (34%), calves (16%), and humans (10%) but not in isolates from sheep. Resistant isolates, containing the tcrB gene, grew on brain heart infusion agar plates containing up to 28 mM CuSO4 compared to only 4 mM for the susceptible isolates. Copper resistance, and therefore the presence of the tcrB gene, was strongly correlated to macrolide and glycopeptide resistance in isolates from pigs, and the tcrB gene was shown to be located on the same conjugative plasmid as the genes responsible for resistance to these two antimicrobial agents. The frequent occurrence of this new copper resistance gene in isolates from pigs, where copper sulfate is being used in large amounts as feed additive, suggests that the use of copper has selected for resistance. PMID:11959576

  3. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041.

    PubMed

    Tomberg, Joshua; Unemo, Magnus; Ohnishi, Makoto; Davies, Christopher; Nicholas, Robert A

    2013-07-01

    The recent identification of a high-level-ceftriaxone-resistant (MIC = 2 to 4 μg/ml) isolate of Neisseria gonorrhoeae from Japan (H041) portends the loss of ceftriaxone as an effective treatment for gonococcal infections. This is of grave concern because ceftriaxone is the last remaining option for first-line empirical antimicrobial monotherapy. The penA gene from H041 (penA41) is a mosaic penA allele similar to mosaic alleles conferring intermediate-level cephalosporin resistance (Ceph(i)) worldwide but has 13 additional mutations compared to the mosaic penA gene from the previously studied Ceph(i) strain 35/02 (penA35). When transformed into the wild-type strain FA19, the penA41 allele confers 300- and 570-fold increases in the MICs for ceftriaxone and cefixime, respectively. In order to understand the mechanisms involved in high-level ceftriaxone resistance and to improve surveillance and epidemiology during the potential emergence of ceftriaxone resistance, we sought to identify the minimum number of amino acid alterations above those in penA35 that confer high-level resistance to ceftriaxone. Using restriction fragment exchange and site-directed mutagenesis, we identified three mutations, A311V, T316P, and T483S, that, when incorporated into the mosaic penA35 allele, confer essentially all of the increased resistance of penA41. A311V and T316P are close to the active-site nucleophile Ser310 that forms the acyl-enzyme complex, while Thr483 is predicted to interact with the carboxylate of the β-lactam antibiotic. These three mutations have thus far been described only for penA41, but dissemination of these mutations in other mosaic alleles would spell the end of ceftriaxone as an effective treatment for gonococcal infections.

  4. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance.

  5. Functional Genetic Polymorphisms in PP2A Subunit Genes Confer Increased Risks of Lung Cancer in Southern and Eastern Chinese

    PubMed Central

    Yang, Rongrong; Yang, Lei; Qiu, Fuman; Zhang, Lisha; Wang, Hui; Yang, Xiaorong; Deng, Jieqiong; Fang, Wenxiang; Zhou, Yifeng; Lu, Jiachun

    2013-01-01

    Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. –: OR = 1.31, 95% CI = 1.13–1.51; rs1255722, AA vs. AG/GG: OR = 1.27, 95% CI = 1.07–1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (Ptrend  = 5.63×10−6). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer. PMID:24204789

  6. Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number.

    PubMed

    Alam, Md Mahfuz; Tanaka, Toru; Nakamura, Hidemitsu; Ichikawa, Hiroaki; Kobayashi, Kappei; Yaeno, Takashi; Yamaoka, Naoto; Shimomoto, Kota; Takayama, Kotaro; Nishina, Hiroshige; Nishiguchi, Masamichi

    2015-01-01

    Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF-Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β-glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2 O2 ), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2 O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up-regulation of defence-related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers. PMID:25168932

  7. Ectopic expression of Arabidopsis glutaredoxin gene AtGRXS17 in tomato (Solanum lycopersicum) confers tolerance to chilling stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The monothiol glutaredoxin AtGRXS17 from "Arabidopsis" confers thermotolerance in yeast, "Arabidopsis", and tomato plants. Here, we report that AtGRXS17 also enhances tolerance to chilling stress in tomato and is associated with elevation of antioxidant enzyme activities, which are known to be invol...

  8. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis.

    PubMed

    Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-09-01

    A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants. PMID:24868035

  9. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis.

    PubMed

    Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-09-01

    A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants.

  10. Expression of Amino-Terminal Portions or Full-Length Viral Replicase Genes in Transgenic Plants Confers Resistance to Potato Virus X Infection.

    PubMed Central

    Braun, CJ; Hemenway, CL

    1992-01-01

    The first open reading frame (ORF 1) of potato virus X (PVX) encodes a putative replicase gene. Transgenic tobacco lines expressing ORF 1 are resistant to PVX infection when inoculated with either PVX or PVX RNA. Analyses of lines containing various portions of the ORF 1 gene demonstrated that resistance is conferred to plants by expressing approximately the first half of the ORF 1 gene. One line expressing the untranslated leader and first 674 codons of ORF 1 is highly resistant to PVX infection. Conversely, lines expressing either approximately the third or fourth quarter of the ORF 1 gene, which contain the conserved nucleotide triphosphate (NTP) binding motif and Gly-Asp-Asp (GDD) motif, respectively, are not protected from PVX infection. In the resistant full-length and amino-terminal lines, lower numbers of local lesions were observed, and the virus accumulation in the inoculated and upper leaves was reduced when compared with the nontransformed control. When the performance of the most resistant ORF 1 line was compared with the most resistant coat protein (CP) line in a resistance test, the best ORF 1 line was more resistant to PVX infection than the best transgenic line expressing the PVX CP gene. These findings define a promising new approach for controlling plant viral infection. PMID:12297660

  11. Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants.

    PubMed

    Inui, Hideyuki; Hirota, Matashi; Goto, Junya; Yoshihara, Ryouhei; Kodama, Noriko; Matsui, Tomomi; Yamazaki, Kiyoshi; Eun, Heesoo

    2015-03-01

    Some cultivars of cucumbers, melons, pumpkins, and zucchini, which are members of the Cucurbitaceae family, are uniquely subject to contamination by hydrophobic pollutants such as the organohalogen insecticides DDT. However, the molecular mechanisms for the accumulation of these pollutants in cucurbits have not been determined. Here, cDNA subtraction analysis of Cucurbita pepo cultivars that are low and high accumulators of hydrophobic contaminants revealed that a gene for zinc finger proteins (ZFPs) are preferentially expressed in high accumulators. The cloned CpZFP genes were classified into 2 types: (1) the PBG type, which were expressed in C. pepo cultivars Patty Green, Black Beauty, and Gold Rush, and (2) the BG type, which were expressed in Black Beauty and Gold Rush. Expression of these CpZFP genes in transgenic tobacco plants carrying an aryl hydrocarbon receptor-based inducible gene expression system significantly induced β-glucuronidase activity when the plants were treated with a polychlorinated biphenyl (PCB) compound, indicating that highly hydrophobic PCBs accumulated in the plants. In transgenic tobacco plants carrying CpZFPs, accumulation of dioxins and dioxin-like compounds increased in their aerial parts when they were cultivated in the dioxin-contaminated soil. In summary, we propose that addition of CpZFP genes is a promising tool for conferring noncucurbits with the ability to accumulate hydrophobic contaminants. PMID:25532761

  12. Expression of a full-length cDNA for the human MDR1 gene confers resistance to colchicine, doxorubicin, and vinblastine

    SciTech Connect

    Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I.

    1987-05-01

    Intrinsic and acquired multidrug resistance (MDR) is an important problem in cancer therapy. MDR in human KB carcinoma cells selected for resistance to colchicine, vinblastine, or doxorubicin (former generic name adriamycin) is associated with overexpression of the MDR1 gene, which encodes P-glycoprotein. The authors previously have isolated an overlapping set of cDNA clones for the human MDR1 gene from multidrug-resistant KB cells. Here they report the construction of a full-length cDNA for the human MDR1 gene and show that this reconstructed cDNA, when inserted into a retroviral expression vector containing the long terminal repeats of Moloney leukemia virus or Harvey sarcoma virus, functions in mouse NIH 3T3 and human KB cells to confer the complete multidrug-resistance phenotype. These results suggest that the human MDR1 gene may be used as a positive selectable marker to introduce genes into human cells and to transform human cells to multidrug resistance without introducing nonhuman antigens.

  13. Zinc finger protein genes from Cucurbita pepo are promising tools for conferring non-Cucurbitaceae plants with ability to accumulate persistent organic pollutants.

    PubMed

    Inui, Hideyuki; Hirota, Matashi; Goto, Junya; Yoshihara, Ryouhei; Kodama, Noriko; Matsui, Tomomi; Yamazaki, Kiyoshi; Eun, Heesoo

    2015-03-01

    Some cultivars of cucumbers, melons, pumpkins, and zucchini, which are members of the Cucurbitaceae family, are uniquely subject to contamination by hydrophobic pollutants such as the organohalogen insecticides DDT. However, the molecular mechanisms for the accumulation of these pollutants in cucurbits have not been determined. Here, cDNA subtraction analysis of Cucurbita pepo cultivars that are low and high accumulators of hydrophobic contaminants revealed that a gene for zinc finger proteins (ZFPs) are preferentially expressed in high accumulators. The cloned CpZFP genes were classified into 2 types: (1) the PBG type, which were expressed in C. pepo cultivars Patty Green, Black Beauty, and Gold Rush, and (2) the BG type, which were expressed in Black Beauty and Gold Rush. Expression of these CpZFP genes in transgenic tobacco plants carrying an aryl hydrocarbon receptor-based inducible gene expression system significantly induced β-glucuronidase activity when the plants were treated with a polychlorinated biphenyl (PCB) compound, indicating that highly hydrophobic PCBs accumulated in the plants. In transgenic tobacco plants carrying CpZFPs, accumulation of dioxins and dioxin-like compounds increased in their aerial parts when they were cultivated in the dioxin-contaminated soil. In summary, we propose that addition of CpZFP genes is a promising tool for conferring noncucurbits with the ability to accumulate hydrophobic contaminants.

  14. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco

    PubMed Central

    Hu, Wei; Yan, Yan; Hou, Xiaowan; He, Yanzhen; Wei, Yunxie; Yang, Guangxiao; He, Guangyuan; Peng, Ming

    2015-01-01

    Group A protein phosphatases 2Cs (PP2Cs) are essential components of abscisic acid (ABA) signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA) and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS) accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process. PMID:26057628

  15. Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants

    PubMed Central

    Bahrini, Insaf; Ogawa, Taiichi; Kobayashi, Fuminori; Kawahigashi, Hiroyuki; Handa, Hirokazu

    2011-01-01

    Recently we cloned and characterized the gene for the wheat transcription factor TaWRKY45 and showed that TaWRKY45 was upregulated in response to benzothiadiazole (BTH) and Fusarium head blight (FHB) and that its overexpression conferred enhanced resistance against F. graminearum. To characterize the functional role of TaWRKY45 in the disease resistance of wheat, in the present study we conducted expression analyses of TaWRKY45 with inoculations of powdery mildew and leaf rust and evaluated TaWRKY45-overexpressing wheat plants for resistance to these diseases. TaWRKY45 was upregulated in response to infections with Blumeria graminis, a causal fungus for powdery mildew, and Puccinia triticina, a causal fungus for leaf rust. Constitutive overexpression of the TaWRKY45 transgene conferred enhanced resistance against these two fungi on transgenic wheat plants grown under greenhouse conditions. However, the expression of two resistance-related genes, Pm3 and Lr34, was not induced by the inoculation with powdery mildew in TaWRKY45-overexpressing wheat plants. These results suggest that TaWRKY45 is involved in the defense responses for multiple fungal diseases in wheat but that resistance involving TaWRKY45 differs from at least Pm3 and/or Lr34-related resistance. Our present and previous studies indicate that TaWRKY45 may be potentially utilized to improve a wide range of disease resistance in wheat. PMID:23136468

  16. Characterization of Vibrio fluvialis qnrVC5 Gene in Native and Heterologous Hosts: Synergy of qnrVC5 with other Determinants in Conferring Quinolone Resistance

    PubMed Central

    Vinothkumar, Kittappa; Kumar, G. N.; Bhardwaj, Ashima K.

    2016-01-01

    Resistance of various pathogens toward quinolones has emerged as a serious threat to combat infections. Analysis of plethora of genes and resistance mechanisms associated with quinolone resistance reveals chromosome-borne and transferable determinants. qnr genes have been found to be responsible for transferable quinolone resistance. In the present work, a new allele qnrVC5 earlier reported in Vibrio fluvialis from this laboratory was characterized in detail for its sequence, genetic context and propensity to decrease the susceptibility for quinolones. The study has revealed persistence of qnrVC5 in clinical isolates of V. fluvialis from Kolkata region through the years 2002–2006. qnrVC5 existed in the form of a gene cassette with the open reading frame being flanked by an upstream promoter and a downstream V. cholerae repeat region suggestive of its superintegron origin. Sequence analysis of different qnrVC alleles showed that qnrVC5 was closely related to qnrVC2 and qnrVC4 and these alleles were associated with V. cholerae repeats. In contrast, qnrVC1, qnrVC3, and qnrVC6 belonging to another group were associated with V. parahaemolyticus repeats. The gene manifested its activity in native V. fluvialis host as well as in Escherichia coli transformants harboring it by elevating the MIC toward various quinolones by twofold to eightfold. In combination with other quinolone resistance factors such as topoisomerase mutations and aac(6’)-Ib-cr gene, qnrVC5 gene product contributed toward higher quinolone resistance displayed by V. fluvialis isolates. Silencing of the gene using antisense peptide nucleic acid sensitized the V. fluvialis parent isolates toward ciprofloxacin. Recombinant QnrVC5 vividly demonstrated its role in conferring quinolone resistance. qnrVC5 gene, its synergistic effect and global dissemination should be perceived as a menace for quinolone-based therapies. PMID:26913027

  17. Common variants on 17q25 and gene-gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain.

    PubMed

    Guan, L; Wang, Q; Wang, L; Wu, B; Chen, Y; Liu, F; Ye, F; Zhang, T; Li, K; Yan, B; Lu, C; Su, L; Jin, G; Wang, H; Tian, H; Wang, L; Chen, Z; Wang, Y; Chen, J; Yuan, Y; Cong, W; Zheng, J; Wang, J; Xu, X; Liu, H; Xiao, W; Han, C; Zhang, Y; Jia, F; Qiao, X; Zhang, D; Zhang, M; Ma, H

    2016-09-01

    Recently, two genome-wide association studies (GWASs) of schizophrenia (SCZ) in Han Chinese identified several susceptibility loci. Replication efforts aiming to validate the GWAS findings were made and focused on the top hits. We conducted a more extensive follow-up study in an independent sample of 1471 cases and 1528 matched controls to verify 26 genetic variants by including nine top single-nucleotide polymorphisms (SNPs) that reached genome-wide significance and 17 promising SNPs nominated in the initial discovery phase. rs8073471 in an intron of tubulin-folding cofactor D (TBCD) obtained nominal significance (P<0.01) in single SNP analysis. Logistic regression identified significant interaction between rs3744165 (5'-untranslated region variant of exon 2 of zinc finger protein 750 (ZNF750), and in an intron of TBCD) and rs8073471 (Deviance test P-value=2.77 × 10(-34)). Both SNPs are located at 17q25, an interesting region that has been implicated in SCZ. By using the Genotype-Tissue Expression (GTEx) data set, we implemented an expression quantitative trait loci epistasis analysis to explore the association between the genotype combinations of the two SNPs and gene expression levels in 13 areas of human central nervous system. We observed that rs3744165 × rs8073471 interaction modulated the expression profile of TEAD3 (P=1.87 × 10(-8)), SH3TC2 (P=2.00 × 10(-8)), KCNK9 (P=5.20 × 10(-7)) and PPDPF (P=1.13 × 10(-6)) in postmortem cortex tissue; EFNA1 (P=7.26 × 10(-9)), RNU4ATAC (P=2.32 × 10(-8)) and NUPL2 (P=6.79 × 10(-8)) in cerebellum tissue. To the best of our knowledge, our study is the first one that links TBCD and ZNF750 mutations to SCZ susceptibility and to the transcript levels in human brain tissues. Further efforts are needed to understand the role of those variants in the pathogenesis of SCZ. PMID:26728569

  18. Expression of a Codon-Optimized dsdA Gene in Tobacco Plastids and Rice Nucleus Confers D-Serine Tolerance

    PubMed Central

    Li, Yanmei; Wang, Rui; Hu, Zongliang; Li, Hongcai; Lu, Shizhan; Zhang, Juanjuan; Lin, Yongjun; Zhou, Fei

    2016-01-01

    D-serine is toxic to plants. D-serine ammonia lyase, which is encoded by the dsdA gene, can attenuate this toxicity with high specificity. In the present study, we explored the function of codon-optimized dsdA with tobacco plastids and rice nuclear transformation system. It was shown that dsdA gene was site-specifically integrated into the tobacco plastid genome and displayed a high level of expression. Genetic analysis of the progenies showed that dsdA gene is maternally inherited and confers sufficient D-serine resistance in tobacco. The effective screening concentrations of D-serine for seed germination, callus regeneration and foliar spray were 10, 30, and 75 mM, respectively. In addition, calluses from homozygous transgenic rice lines also showed significant tolerance to D-serine (up to 75 mM). Our study proves the feasibility of using dsdA gene as a selectable marker in both plastid and nuclear transformation systems. PMID:27242842

  19. Expression of a Codon-Optimized dsdA Gene in Tobacco Plastids and Rice Nucleus Confers D-Serine Tolerance.

    PubMed

    Li, Yanmei; Wang, Rui; Hu, Zongliang; Li, Hongcai; Lu, Shizhan; Zhang, Juanjuan; Lin, Yongjun; Zhou, Fei

    2016-01-01

    D-serine is toxic to plants. D-serine ammonia lyase, which is encoded by the dsdA gene, can attenuate this toxicity with high specificity. In the present study, we explored the function of codon-optimized dsdA with tobacco plastids and rice nuclear transformation system. It was shown that dsdA gene was site-specifically integrated into the tobacco plastid genome and displayed a high level of expression. Genetic analysis of the progenies showed that dsdA gene is maternally inherited and confers sufficient D-serine resistance in tobacco. The effective screening concentrations of D-serine for seed germination, callus regeneration and foliar spray were 10, 30, and 75 mM, respectively. In addition, calluses from homozygous transgenic rice lines also showed significant tolerance to D-serine (up to 75 mM). Our study proves the feasibility of using dsdA gene as a selectable marker in both plastid and nuclear transformation systems. PMID:27242842

  20. Overexpression of the sweet potato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato.

    PubMed

    Goo, Young-Min; Han, Eun-Heui; Jeong, Jae Cheol; Kwak, Sang-Soo; Yu, Jaeju; Kim, Yun-Hee; Ahn, Mi-Jeong; Lee, Shin-Woo

    2015-01-01

    In a previous study, we have evidenced that the overexpression of the IbOr gene isolated from sweet potato conferred a tolerance activity against salinity and methyl viologen (MV) treatment in transgenic sweet potato calli along with an enhanced carotenoid content. In this study, to further examine the function of the IbOr gene in heterologous organism, we transformed the IbOr gene into potato under the direction of SWPA2 promoter, a strong inducible promoter upon treatment with various environmental stresses. Consistently with our previous study of sweet potato calli, the level of total carotenoid was elevated up to 2.7-fold (38.1 μg g(-1)DW) compared to the non-transgenic control, Atlantic cultivar. However, the composition of carotenoid was not influenced by the overexpression of the IbOr gene since only pre-existing carotenoids in the non-transgenic control including violaxanthin, lutien and β-carotene were elevated at a similar level of total carotenoids. In general, the transcript levels for most of carotenogenesis-related genes were elevated in transgenic tuber, whereas they remained at similar levels in transgenic leaf tissues compared to those of non-transgenic controls. The increased levels of carotenoid content in the leaf or tuber tissue of transgenic lines were correlated with the enhanced tolerance activity against salt- or MV-mediated oxidative stresses and DPPH radical-scavenging activity. Our preliminary results suggest that further investigation is required for the development of a crop tolerant to salinity and other environmental stresses through the overexpression of the IbOr gene.

  1. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea

    PubMed Central

    Huang, Li; Zhang, Songlin; Singer, Stacy D.; Yin, Xiangjing; Yang, Jinhua; Wang, Yuejin; Wang, Xiping

    2016-01-01

    Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  2. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea

    PubMed Central

    Huang, Li; Zhang, Songlin; Singer, Stacy D.; Yin, Xiangjing; Yang, Jinhua; Wang, Yuejin; Wang, Xiping

    2016-01-01

    Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress. PMID:27695466

  3. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes.

    PubMed

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  4. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  5. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz).

    PubMed

    Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J

    2010-05-01

    A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.

  6. The arabidopsis TIR-NB-LRR gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4.

    PubMed

    Borhan, Mohammad H; Holub, Eric B; Beynon, Jim L; Rozwadowski, Kevin; Rimmer, S Roger

    2004-07-01

    Resistance to Albugo candida isolate Acem1 is conferred by a dominant gene, RAC1, in accession Ksk-1 of Arabidopsis thaliana. This gene was isolated by positional cloning and is a member of the Drosophila toll and mammalian interleukin-1 receptor (TIR) nucleotide-binding site leucine-rich repeat (NB-LRR) class of plant resistance genes. Strong identity of the TIR and NB domains was observed between the predicted proteins encoded by the Ksk-1 allele and the allele from an Acem1-susceptible accession Columbia (Col) (99 and 98%, respectively). However, major differences between the two predicted proteins occur within the LRR domain and mainly are confined to the beta-strand/beta-turn structure of the LRR. Both proteins contain 14 imperfect repeats. RAC1-mediated resistance was analyzed further using mutations in defense regulation, including: pad4-1, eds1-1, and NahG, in the presence of the RAC1 allele from Ksk-1. White rust resistance was completely abolished by eds1-1 but was not affected by either pad4-1 or NahG.

  7. Up-regulation of anti-apoptotic genes confers resistance to the novel anti-leukaemic compound PEP005 in primary AML cells

    PubMed Central

    Hampson, Peter; Wang, Keqing; Ersvær, Elisabeth; McCormack, Emmet; Schüler, Julia; Fiebig, Heinz-Herbert; Gjertsen, Bjørn Tore; Bruserud, Øystein; Lord, Janet M.

    2014-01-01

    We showed previously that PEP005 induced apoptosis in leukaemic cell lines and blasts from patients with acute myeloid leukaemia (AML). Here we assess the anti-leukeamic effects of PEP005 in vivo and determine the mechanism of resistance of PEP005 non-responsive cells. We used 2 human xenograft mouse models of AML to assess the anti-leukaemic effects of PEP005 in vivo. Expression microarray analysis of primary AML blasts following treatment with PEP005 was used to determine patterns of gene expression that conferred resistance. PEP005 significantly reduced tumour burden in two human leukaemia mouse xenograft models. We also assessed responsiveness of 33 AML samples to PEP005, with 78% of the samples entering apoptosis at 100nM. Resistance to PEP005 was not restricted to a particular AML subtype. Expression microarray analysis of resistant samples following treatment with PEP005 revealed a significant up regulation of the anti-apoptotic genes Bcl-2A1, Mcl-1, and PHLDA1 which was verified using RT-PCR. We conclude that PEP005 shows broad efficacy against AML subtypes and that up regulation of anti-apoptotic genes underlies resistance to this agent and could be used to screen for patients unlikely to benefit from a therapeutic regime involving PEP005. PMID:25594060

  8. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases.

    PubMed

    Dong, Shujie; Shew, H David; Tredway, Lane P; Lu, Jianli; Sivamani, Elumalai; Miller, Eric S; Qu, Rongda

    2008-02-01

    Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.

  9. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance

    PubMed Central

    2011-01-01

    Background The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.). Results A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM), Phthorimaea operculella (Zeller). Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. Conclusions A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event. PMID:21995716

  10. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    PubMed

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae.

  11. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    PubMed

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae. PMID:23728780

  12. Mutations in Nonessential eIF3k and eIF3l Genes Confer Lifespan Extension and Enhanced Resistance to ER Stress in Caenorhabditis elegans

    PubMed Central

    Reddy, Kirthi C.; Droste, Rita; Kim, Dennis H.

    2016-01-01

    The translation initiation factor eIF3 is a multi-subunit protein complex that coordinates the assembly of the 43S pre-initiation complex in eukaryotes. Prior studies have demonstrated that not all subunits of eIF3 are essential for the initiation of translation, suggesting that some subunits may serve regulatory roles. Here, we show that loss-of-function mutations in the genes encoding the conserved eIF3k and eIF3l subunits of the translation initiation complex eIF3 result in a 40% extension in lifespan and enhanced resistance to endoplasmic reticulum (ER) stress in Caenorhabditis elegans. In contrast to previously described mutations in genes encoding translation initiation components that confer lifespan extension in C. elegans, loss-of-function mutations in eif-3.K or eif-3.L are viable, and mutants show normal rates of growth and development, and have wild-type levels of bulk protein synthesis. Lifespan extension resulting from EIF-3.K or EIF-3.L deficiency is suppressed by a mutation in the Forkhead family transcription factor DAF-16. Mutations in eif-3.K or eif-3.L also confer enhanced resistance to ER stress, independent of IRE-1-XBP-1, ATF-6, and PEK-1, and independent of DAF-16. Our data suggest a pivotal functional role for conserved eIF3k and eIF3l accessory subunits of eIF3 in the regulation of cellular and organismal responses to ER stress and aging. PMID:27690135

  13. The B gene of pea encodes a defective flavonoid 3',5'-hydroxylase, and confers pink flower color.

    PubMed

    Moreau, Carol; Ambrose, Mike J; Turner, Lynda; Hill, Lionel; Ellis, T H Noel; Hofer, Julie M I

    2012-06-01

    The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species.

  14. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131.

  15. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper (Capsicum spp.).

    PubMed

    Rai, Ved Prakash; Rai, Ashutosh; Kumar, Rajesh; Kumar, Sanjay; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap

    2016-09-01

    Pepper leaf curl virus (PepLCV) is a serious threat to pepper (Capsicum spp.) production worldwide. Molecular mechanism underlying pepper plants response to PepLCV infection is key to develop PepLCV resistant varieties. In this study, we generated transcriptome profiles of PepLCV resistant genotype (BS-35) and susceptible genotype (IVPBC-535) after artificial viral inoculation using microarray technology and detail experimental procedures and analyses are described. A total of 319 genes differentially expressed between resistant and susceptible genotypes were identified, out of that 234 unique genes were found to be up-regulated > 2-fold in resistant line BS-35 when compared to susceptible, IVPBC-535. The data set we generated has been analyzed to identify genes that are involved in the regulation of resistance against PepLCV. The raw data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE41131. PMID:27556012

  16. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain

    PubMed Central

    Böer, Ulrike; Eglins, Julia; Krause, Doris; Schnell, Susanne; Schöfl, Christof; Knepel, Willhart

    2007-01-01

    The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium. PMID:17696880

  17. The Y137H mutation of VvCYP51 gene confers the reduced sensitivity to tebuconazole in Villosiclava virens.

    PubMed

    Wang, Fei; Lin, Yang; Yin, Wei-Xiao; Peng, You-Liang; Schnabel, Guido; Huang, Jun-Bin; Luo, Chao-Xi

    2015-01-01

    Management of rice false smut disease caused by Villosiclava virens is dependent on demethylation inhibitor (DMI) fungicides. Investigation of molecular mechanisms of resistance is therefore of upmost importance. In this study the gene encoding the target protein for DMI fungicides (VvCYP51) was cloned and investigated. The VvCYP51 gene in the resistant mutant revealed both a change from tyrosine to histidine at position 137 (Y137H) and elevated gene expression compared to the parental isolate. In order to determine which of these mechanisms was responsible for the reduced sensitivity to DMI fungicide tebuconazole, transformants expressing the mutated or the wild type VvCYP51 gene were generated. Transformants carrying the mutated gene were more resistant to tebuconazole compared to control transformants lacking the mutation, but the expression of the VvCYP51 gene was not significantly correlated with EC50 values. The wild type VvCYP51 protein exhibited stronger affinity for tebuconazole compared to the VvCYP51/Y137H in both molecular docking analysis and experimental binding assays. The UV-generated mutant as well as transformants expressing the VvCYP51/Y137H did not exhibit significant fitness penalties based on mycelial growth and spore germination, suggesting that isolates resistant to DMI fungicides based on the Y137H mutation may develop and be competitive in the field. PMID:26631591

  18. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    PubMed

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  19. The Y137H mutation of VvCYP51 gene confers the reduced sensitivity to tebuconazole in Villosiclava virens

    PubMed Central

    Wang, Fei; Lin, Yang; Yin, Wei-Xiao; Peng, You-Liang; Schnabel, Guido; Huang, Jun-Bin; Luo, Chao-Xi

    2015-01-01

    Management of rice false smut disease caused by Villosiclava virens is dependent on demethylation inhibitor (DMI) fungicides. Investigation of molecular mechanisms of resistance is therefore of upmost importance. In this study the gene encoding the target protein for DMI fungicides (VvCYP51) was cloned and investigated. The VvCYP51 gene in the resistant mutant revealed both a change from tyrosine to histidine at position 137 (Y137H) and elevated gene expression compared to the parental isolate. In order to determine which of these mechanisms was responsible for the reduced sensitivity to DMI fungicide tebuconazole, transformants expressing the mutated or the wild type VvCYP51 gene were generated. Transformants carrying the mutated gene were more resistant to tebuconazole compared to control transformants lacking the mutation, but the expression of the VvCYP51 gene was not significantly correlated with EC50 values. The wild type VvCYP51 protein exhibited stronger affinity for tebuconazole compared to the VvCYP51/Y137H in both molecular docking analysis and experimental binding assays. The UV-generated mutant as well as transformants expressing the VvCYP51/Y137H did not exhibit significant fitness penalties based on mycelial growth and spore germination, suggesting that isolates resistant to DMI fungicides based on the Y137H mutation may develop and be competitive in the field. PMID:26631591

  20. Overexpression of Salmonella enterica serovar Typhi recA gene confers fluoroquinolone resistance in Escherichia coli DH5α.

    PubMed

    Yassien, M A M; Elfaky, M A

    2015-11-01

    A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α. PMID:26375447

  1. A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations.

    PubMed

    Narayan, Om Prakash; Kumari, Nidhi; Bhargava, Poonam; Rajaram, Hema; Rai, Lal Chand

    2016-01-01

    DNA-binding proteins (Dps) induced during starvation play an important role in gene regulation and maintaining homeostasis in bacteria. The nitrogen-fixing cyanobacterium, Anabaena PCC7120, has four genes annotated as coding for Dps; however, the information on their physiological roles is limiting. One of the genes coding for Dps, 'all3940' was found to be induced under different abiotic stresses in Anabaena and upon overexpression enhanced the tolerance of Anabaena to a multitude of stresses, which included salinity, heat, heavy metals, pesticide, and nutrient starvation. On the other hand, mutation in the gene resulted in decreased growth of Anabaena. The modulation in the levels of All3940 in Anabaena, achieved either by overexpression of the protein or mutation of the gene, resulted in changes in the proteome, which correlated well with the physiological changes observed. Proteins required for varied physiological activities, such as photosynthesis, carbon-metabolism, oxidative stress alleviation, exhibited change in protein profile upon modulation of All3940 levels in Anabaena. This suggested a direct or an indirect effect of All3940 on the expression of the above stress-responsive proteins, thereby enhancing tolerance in Anabaena PCC7120. Thus, All3940, though categorized as a Dps, is possibly a general stress protein having a global role in regulating tolerance to multitude of stresses in Anabaena.

  2. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.

    PubMed

    Borhan, Mohammad Hossein; Holub, Eric B; Kindrachuk, Colin; Omidi, Mansour; Bozorgmanesh-Frad, Ghazaleh; Rimmer, S Roger

    2010-03-01

    White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.

  3. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    SciTech Connect

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  4. Haplotypes encompassing the KIAA0391 and PSMA6 gene cluster confer a genetic link for myocardial infarction and coronary artery disease.

    PubMed

    Alsmadi, Osama; Muiya, Paul; Khalak, Hanif; Al-Saud, Haya; Meyer, Brian F; Al-Mohanna, Futwan; Alshahid, Maie; Dzimiri, Nduna

    2009-09-01

    The role of the KIAA0391 and PSMA6 genes in predisposing individuals to disease is still not fully understood. We evaluated by molecular beacon-based genotyping assays the roles of five single nucleotide polymorphisms (SNPs) in the chromosomal region 14q13.2 harbouring the KIAA0391 and PSMA6 gene cluster in coronary artery disease (CAD) in the Saudi population. Two of the studied SNPs rs8008319 (denoted as 1) and rs7157492 (2), reside in the KIAA0391 locus, two others rs1048990 (3) and rs12878391 (4) are components of the PSMA6, while rs4981283 (5) resides downstream of both genes. In a study involving 1071 patients and 929 controls, none of the studied SNPs showed significant association with CAD. In contrast, two haplotypes consisting of 1A-2G-3C-4A-5A [O.R.(95% C.I.) = 1.49(0.95-2.35); p = 0.022] and 1A-2G-3G-4A-5A [2.24(0.84-5.98); p = 0.031] conferred risk for both CAD and myocardial infarction (MI) in a five-SNP locus model, while another comprising 1A-2G-3C-4A-5G [2.24(0.84-5.98); p = 0.079] showed a borderline association. One haplotype consisting of 1T-2G-3C-4G-5A [0.79(0.59-1.05); p = 0.015] exhibited protective properties and another, 1T-2G-3C-4A-5G [0.20(0.03-139); p = 0.073], showed a similar but weaker trend. Our study identified haplotypes in the chromosomal region encompassing the KIAA0391 and PSMA6 genes as a possible genetic link between CAD and MI. These results also suggest that haplotypes may be more informative than individual SNPs in identifying risk factors for disease.

  5. The Mi-9 Gene from Solanum arcanum Conferring Heat-Stable Resistance to Root-Knot Nematodes Is a Homolog of Mi-11[W][OA

    PubMed Central

    Jablonska, Barbara; Ammiraju, Jetty S.S.; Bhattarai, Kishor K.; Mantelin, Sophie; de Ilarduya, Oscar Martinez; Roberts, Philip A.; Kaloshian, Isgouhi

    2007-01-01

    Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for limiting root-knot nematode (Meloidogyne spp.) yield loss in tomato (Solanum lycopersicum), but the resistance is ineffective at soil temperatures above 28°C. Previously, we mapped the heat-stable resistance gene Mi-9 in Solanum arcanum accession LA2157 to the short arm of chromosome 6, in a genetic interval as Mi-1 and the Cladosporium fulvum resistance gene Cf2. We developed a fine map of the Mi-9 region by resistance and marker screening of an F2 population and derived F3 families from resistant LA2157 × susceptible LA392. Mi-1 intron 1 flanking primers were designed to amplify intron 1 and fingerprint Mi-1 homologs. Using these primers, we identified seven Mi-1 homologs in the mapping parents. Cf-2 and Mi-1 homologs were mapped on chromosome 6 using a subset of the F2. Cf-2 homologs did not segregate with Mi-9 resistance, but three Mi-1 homologs (RH1, RH2, and RH4) from LA2157 and one (SH1) from LA392 colocalized to the Mi-9 region. Reverse transcriptase-polymerase chain reaction analysis indicated that six Mi-1 homologs are expressed in LA2157 roots. We targeted transcripts of Mi-1 homologs for degradation with tobacco (Nicotiana tabacum) rattle virus (TRV)-based virus-induced gene silencing using Agrobacterium infiltration with a TRV-Mi construct. In most LA2157 plants infiltrated with the TRV-Mi construct, Mi-9-meditated heat-stable root-knot nematode resistance was compromised at 32°C, indicating that the heat-stable resistance is mediated by a homolog of Mi-1. PMID:17172289

  6. Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor

    PubMed Central

    Huang, Chien Yu; Chen, Pei-Ying; Huang, Ming-Der; Tsou, Chih-Hua; Jane, Wann-Neng; Huang, Anthony H. C.

    2013-01-01

    During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In Brassicaceae, a tandem oleosin gene cluster of five to nine paralogs encodes ample tapetum-specific oleosins located in abundant organelles called tapetosomes in flower anthers. Tapetosomes coordinate the storage of lipids and flavonoids and their transport to the adjacent maturing pollen as the coat to serve various functions. Transfer-DNA and siRNA mutants of Arabidopsis thaliana with knockout and knockdown of different tandem oleosin paralogs had quantitative and correlated loss of organized structures of the tapetosomes, pollen-coat materials, and pollen tolerance to dehydration. Complementation with the knockout paralog restored the losses. Cleomaceae is the family closest to Brassicaceae. Cleome species did not contain the tandem oleosin gene cluster, tapetum oleosin transcripts, tapetosomes, or pollen tolerant to dehydration. Cleome hassleriana transformed with an Arabidopsis oleosin gene for tapetum expression possessed primitive tapetosomes and pollen tolerant to dehydration. We propose that during early evolution of Brassicaceae, a duplicate oleosin gene mutated from expression in seed to the tapetum. The tapetum oleosin generated primitive tapetosomes that organized stored lipids and flavonoids for their effective transfer to the pollen surface for greater pollen vitality. The resulting adaptive benefit led to retention of tandem-duplicated oleosin genes for production of more oleosin and modern tapetosomes. PMID:23940319

  7. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    PubMed Central

    Ishak, Intan H.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  8. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    PubMed

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  9. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    PubMed Central

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4–5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  10. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli.

    PubMed

    Ben Farhat, Mounira; Fourati, Amin; Chouayekh, Hichem

    2013-08-01

    The genes gdh and pqqABCDE encoding glucose dehydrogenase and its pyrroloquinoline quinone cofactor were cloned from the mineral phosphate-solubilizing (MPS) bacterium Serratia marcescens CTM 50650. We investigated, for the first time, the impact of their coexpression in Escherichia coli on MPS ability. The production of recombinant PQQGDH conferred high MPS activity to the engineered E. coli. In fact, the amounts of soluble phosphorus (P) produced from tricalcium phosphate, hydroxyapatite, and Gafsa rock phosphate (GRP) were 574, 426, and 217 mg/L, respectively. In an attempt to increase the soluble P concentration, the E. coli strain coexpressing the gdh and pqqABCDE genes was immobilized in agar, calcium alginate, and k-carrageenan and was then further applied in a repeated batch (six batches) fermentation process to solubilize GRP. Compared to other encapsulated systems, alginate cell beads were noted to yield the highest concentration of soluble P, which attained 300 mg/L/batch. MPS efficiency was maximal in the presence of 5 and 40 g/L of GRP and glucose, respectively. PMID:23737304

  11. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants.

    PubMed

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4-5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  12. Deletion of the Uracil Permease Gene Confers Cross-Resistance to 5-Fluorouracil and Azoles in Candida lusitaniae and Highlights Antagonistic Interaction between Fluorinated Nucleotides and Fluconazole

    PubMed Central

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle

    2014-01-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. PMID:24867971

  13. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  14. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    PubMed

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera. PMID:26659592

  15. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    PubMed Central

    Dutta, Tushar K.; Papolu, Pradeep K.; Banakar, Prakash; Choudhary, Divya; Sirohi, Anil; Rao, Uma

    2015-01-01

    Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1), was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60–80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants. PMID:25883594

  16. The wheat Snn7 gene confers susceptibility upon recognition of the Parastagonospora nodorum necrotrophic effector SnTox7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parastagonospora nodorum is a necrotrophic fungal pathogen that causes the disease Septoria nodorum blotch (SNB) on wheat. The fungus produces necrotrophic effectors (NEs), that when recognized by corresponding host genes, cause cell death, which ultimately leads to disease. To date, eight host ge...

  17. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  18. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1

    PubMed Central

    Langer, Simon M.; Hopfensperger, Kristina; Iyer, Shilpa S.; Kreider, Edward F.; Learn, Gerald H.; Lee, Lan-Hui; Hahn, Beatrice H.; Sauter, Daniel

    2015-01-01

    Background Pandemic strains of HIV-1 (group M) encode a total of nine structural (gag, pol, env), regulatory (rev, tat) and accessory (vif, vpr, vpu, nef) genes. However, some subtype A and C viruses exhibit an unusual gene arrangement in which the first exon of rev (rev1) and the vpu gene are placed in the same open reading frame. Although this rev1-vpu gene fusion is present in a considerable fraction of HIV-1 strains, its functional significance is unknown. Results Examining infectious molecular clones (IMCs) of HIV-1 that encode the rev1-vpu polymorphism, we show that a fusion protein is expressed in infected cells. Due to the splicing pattern of viral mRNA, however, these same IMCs also express a regular Vpu protein, which is produced at much higher levels. To investigate the function of the fusion gene, we characterized isogenic IMC pairs differing only in their ability to express a Rev1-Vpu protein. Analysis in transfected HEK293T and infected CD4+ T cells showed that all of these viruses were equally active in known Vpu functions, such as down-modulation of CD4 or counteraction of tetherin. Furthermore, the polymorphism did not affect Vpu-mediated inhibition of NF-кB activation or Rev-dependent nuclear export of incompletely spliced viral mRNAs. There was also no evidence for enhanced replication of Rev1-Vpu expressing viruses in primary PBMCs or ex vivo infected human lymphoid tissues. Finally, the frequency of HIV-1 quasispecies members that encoded a rev1-vpu fusion gene did not change in HIV-1 infected individuals over time. Conclusions Expression of a rev1-vpu fusion gene does not affect regular Rev and Vpu functions or alter HIV-1 replication in primary target cells. Since there is no evidence for increased replication fitness of rev1-vpu encoding viruses, this polymorphism likely emerged in the context of other mutations within and/or outside the rev1-vpu intergenic region, and may have a neutral phenotype. PMID:26554585

  19. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection. PMID:23677321

  20. Upland Cotton Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance Responses in Arabidopsis thaliana

    PubMed Central

    Wang, Xiaoyan; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Yu, Jiwen; Ma, Qifeng; Yu, Shuxun

    2014-01-01

    Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1) gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13) and Gossypium arboreum L. genome (A-genome, n = 13) databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26). Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319) exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses. PMID:24626476

  1. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  2. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    PubMed Central

    2012-01-01

    Background Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both

  3. Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge.

    PubMed

    Van Blarcom, T J; Sofer-Podesta, C; Ang, J; Boyer, J L; Crystal, R G; Georgiou, G

    2010-07-01

    Genetic transfer of neutralizing antibodies (Abs) has been shown to confer strong and persistent protection against bacterial and viral infectious agents. Although it is well established that for many exogenous neutralizing Abs increased antigen affinity correlates with protection, the effect of antigen affinity on Abs produced in situ after adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal Ab, 2C12.4, recognizes the Yersinia pestis type III secretion apparatus protein, LcrV (V antigen), and confers protection in mice when administered as an IgG intraperitoneally or after genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad). The 2C12.4 Ab was expressed as a single-chain variable fragment (scFv) in Escherichia coli and was shown to display an equilibrium dissociation constant (K(D))=3.5 nM by surface plasmon resonance analysis. The 2C12.4 scFv was subjected to random mutagenesis, and variants with increased affinity were isolated by flow cytometry using the anchored periplasmic expression bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower K(D) values (H8, K(D)=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdalphaV, giving rise to AdalphaV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen Abs 3 days after immunization, with 10(9), 10(10) or 10(11) particle units (pu). After intranasal challenge with 363 LD(50) (lethal dose, 50%) of Y. pestis CO92, 54% of the mice immunized with 10(10) pu of AdalphaV.H8 survived through the 14 day end point compared with only 15% survivors for the group immunized with AdalphaV expressing the lower-affinity 2C12.4 (P<0.04; AdalphaV versus AdalphaV.H8). These results indicate that affinity maturation of a neutralizing Ab delivered by genetic transfer may confer increased protection not only for Y. pestis

  4. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    PubMed

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

  5. Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis

    PubMed Central

    Giri, Anil K.; Midha, Shallu; Banerjee, Priyanka; Agrawal, Ankita; Mehdi, Syed Jafar; Dhingra, Rajan; Kaur, Ismeet; G., Ramesh Kumar; Lakhotia, Ritika; Ghosh, Saurabh; Das, Kshaunish; Mohindra, Samir; Rana, Surinder; Bhasin, Deepak K.; Garg, Pramod K.; Bharadwaj, Dwaipayan

    2016-01-01

    A recent genome-wide association study (GWAS) identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525—OR 1.71, P = 1.38 x 10-09; rs12008279—OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220—OR 1.72, P = 9.20 x 10-09; rs6622126—OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31–0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients. PMID:26820620

  6. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus

    PubMed Central

    O'Donnell, Vivian; Holinka, Lauren G.; Gladue, Douglas P.; Sanford, Brenton; Krug, Peter W.; Lu, Xiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R.

    2015-01-01

    ABSTRACT African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been developed using genetically modified live attenuated ASFVs where viral genes involved in virus virulence were removed from the genome. Multigene family 360 (MGF360) and MGF505 represent a group of genes sharing partial sequence and structural identities that have been connected with ASFV host range specificity, blocking of the host innate response, and virus virulence. Here we report the construction of a recombinant virus (ASFV-G-ΔMGF) derived from the highly virulent ASFV Georgia 2007 isolate (ASFV-G) by specifically deleting six genes belonging to MGF360 or MGF505: MGF505-1R, MGF360-12L, MGF360-13L, MGF360-14L, MGF505-2R, and MGF505-3R. ASFV-G-ΔMGF replicates as efficiently in primary swine macrophage cell cultures as the parental virus. In vivo, ASFV-G-ΔMGF is completely attenuated in swine, since pigs inoculated intramuscularly (i.m.) with either 102 or 104 50% hemadsorbing doses (HAD50) remained healthy, without signs of the disease. Importantly, when these animals were subsequently exposed to highly virulent parental ASFV-G, no signs of the disease were observed, although a proportion of these animals harbored the challenge virus. This is the first report demonstrating the role of MGF genes acting as independent determinants of ASFV virulence. Additionally, ASFV-G-ΔMGF is the first experimental vaccine reported to induce protection in pigs challenged with highly virulent and epidemiologically relevant ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies focusing on understanding ASFV virulence led to the production of genetically modified recombinant viruses that, while attenuated, are able to confer

  7. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  8. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa.

    PubMed

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR.

  9. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli.

    PubMed

    Yu, Hao-Qiang; Wang, Ying-Ge; Yong, Tai-Ming; She, Yue-Hui; Fu, Feng-Ling; Li, Wan-Chen

    2014-10-01

    Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine, a regulator of osmosis, and therefore BADH is considered to play a significant role in response of plants to abiotic stresses. Here, based on the conserved residues of the deduced amino acid sequences of the homologous BADH genes, we cloned the AnBADH gene from the xerophytic leguminous plant Ammopiptanthus nanus by using reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA is 1,868 bp long without intron, and contains an open reading frame of 1512 bp, and 3'- and 5'-untranslated regions of 294 and 62 bp. It encodes a 54.71 kDa protein of 503 amino acids. The deduced amino acid sequence shares high homology, conserved amino acid residues and sequence motifs crucial for the function with the BADHs in other leguminous species. The sequence of the open reading frame was used to construct a prokaryotic expression vector pET32a-AnBADH, and transform Escherichia coli. The transformants expressed the heterologous AnBADH gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of salt and heat tolerance under the stress conditions of 700 mmol L(-1) NaCl and 55°C high temperature. This result suggests that the AnBADH gene might play a crucial role in adaption of A. nanus to the abiotic stresses, and have the potential to be applied to transgenic operations of commercially important crops for improvement of abiotic tolerance. PMID:25046139

  10. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    PubMed

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants. PMID:26526130

  11. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs.

    PubMed

    Sato, Masahiro; Maeda, Kosuke; Koriyama, Miyu; Inada, Emi; Saitoh, Issei; Miura, Hiromi; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi; Miyoshi, Kazuchika

    2016-01-01

    The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes. PMID:27589724

  12. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa

    PubMed Central

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant–pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR. PMID:27462338

  13. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa.

    PubMed

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR. PMID:27462338

  14. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs

    PubMed Central

    Sato, Masahiro; Maeda, Kosuke; Koriyama, Miyu; Inada, Emi; Saitoh, Issei; Miura, Hiromi; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi; Miyoshi, Kazuchika

    2016-01-01

    The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes. PMID:27589724

  15. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  16. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance.

    PubMed

    Chen, Jinhuan; Xue, Bin; Xia, Xinli; Yin, Weilun

    2013-11-22

    Populus species are the most important timber trees over the Northern hemisphere. Most of them are cold- and drought-sensitive except the Populus euphratica Oliv. Here, a calcium-dependent protein kinase (CDPK) gene cloned from P. euphratica, designated as PeCPK10, was rapidly induced by salt, cold, and drought stresses. The protein encoded by PeCPK10 was localized within the nucleus and cytosol, which may be important for its specific regulation in cellular functions. To elucidate the physiological functions of PeCPK10, we generated transgenic Arabidopsis plants overexpressing PeCPK10. The results showed that PeCPK10-transgenic lines experienced better growth than vector control plants when treated with drought. Stronger abscisic acid-induced promotion of stomatal closing has been showed in transgenic lines. Particularly, overexpression of PeCPK10 showed enhanced freezing tolerance. Constitutive expression of PeCPK10 enhanced the expression of several abscisic acid-responsive genes and multiple abiotic stress-responsive genes such as RD29B and COR15A. Accordingly, a positive regulator responsive to cold and drought stresses in P. euphratica is proposed. PMID:24177011

  17. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight.

    PubMed

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-09-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  18. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis.

    PubMed

    Palmeros-Suárez, Paola A; Massange-Sánchez, Julio A; Martínez-Gallardo, Norma A; Montero-Vargas, Josaphat M; Gómez-Leyva, Juan F; Délano-Frier, John P

    2015-11-01

    Nuclear factor-Y (NF-Y), is a plant heterotrimeric transcription factor constituted by NF-YA, NF-YB and NF-YC subunits. The function of many NF-Y subunits, mostly of the A and B type, has been studied in plants, but knowledge regarding the C subunit remains fragmentary. Here, a water stress-induced NF-YC gene from Amaranthus hypochondriacus (AhNF-YC) was further characterized by its overexpression in transgenic Arabidospis thaliana plants. A role in development was inferred from modified growth rates in root, rosettes and inflorescences recorded in AhNF-YC overexpressing Arabidopsis plants, in addition to a delayed onset of flowering. Also, the overexpression of AhNF-YC caused increased seedling sensitivity to abscisic acid (ABA), and influenced the expression of several genes involved in secondary metabolism, development and ABA-related responses. An altered expression of the latter in water stressed and recovered transgenic plants, together with the observed increase in ABA sensitivity, suggested that their increased water stress resistance was partly ABA-dependent. An untargeted metabolomic analysis also revealed an altered metabolite pattern, both in normal and water stress/recovery conditions. These results suggest that AhNF-YC may play an important regulatory role in both development and stress, and represents a candidate gene for the engineering of abiotic stress resistance in commercial crops. PMID:26475185

  19. Two Non-target Recessive Genes Confer Resistance to the Anti-Oomycete Microtubule Inhibitor Zoxamide in Phytophthora capsici

    PubMed Central

    Cai, Meng; Zhu, Shusheng; Pang, Zhili; Liu, Xili

    2014-01-01

    This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC) but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had developed a novel non-target-site-based resistance to zoxamide. Analysis of the segregation ratio of zoxamide-resistance in the sexual progeny of the sensitive isolates PCAS1 and PCAS2 indicated that the resistance to zoxamide was controlled by one or more recessive nuclear genes. Furthermore, the segregation of resistance in the F1, F2, and BC1 progeny was in accordance with the theoretical ratios of the χ2 test (P>0.05), which suggested that the resistance to zoxamide was controlled by two recessive genes, and that resistance to zoxamide occurred when at least one pair of these alleles was homozygous. This implies that the risk of zoxamide-resistance in P. capsici is low to moderate. Nevertheless this potential for resistance should be monitored closely, especially if two compatible mating types co-exist in the same field. PMID:24586697

  20. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    PubMed Central

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  1. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  2. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis.

    PubMed

    Palmeros-Suárez, Paola A; Massange-Sánchez, Julio A; Martínez-Gallardo, Norma A; Montero-Vargas, Josaphat M; Gómez-Leyva, Juan F; Délano-Frier, John P

    2015-11-01

    Nuclear factor-Y (NF-Y), is a plant heterotrimeric transcription factor constituted by NF-YA, NF-YB and NF-YC subunits. The function of many NF-Y subunits, mostly of the A and B type, has been studied in plants, but knowledge regarding the C subunit remains fragmentary. Here, a water stress-induced NF-YC gene from Amaranthus hypochondriacus (AhNF-YC) was further characterized by its overexpression in transgenic Arabidospis thaliana plants. A role in development was inferred from modified growth rates in root, rosettes and inflorescences recorded in AhNF-YC overexpressing Arabidopsis plants, in addition to a delayed onset of flowering. Also, the overexpression of AhNF-YC caused increased seedling sensitivity to abscisic acid (ABA), and influenced the expression of several genes involved in secondary metabolism, development and ABA-related responses. An altered expression of the latter in water stressed and recovered transgenic plants, together with the observed increase in ABA sensitivity, suggested that their increased water stress resistance was partly ABA-dependent. An untargeted metabolomic analysis also revealed an altered metabolite pattern, both in normal and water stress/recovery conditions. These results suggest that AhNF-YC may play an important regulatory role in both development and stress, and represents a candidate gene for the engineering of abiotic stress resistance in commercial crops.

  3. A 129-kb Deletion on Chromosome 12 Confers Substantial Protection Against Rheumatoid Arthritis, Implicating the Gene SLC2A3

    PubMed Central

    Veal, Colin D; Reekie, Katherine E; Lorentzen, Johnny C; Gregersen, Peter K; Padyukov, Leonid; Brookes, Anthony J

    2014-01-01

    We describe a copy-number variant (CNV) for which deletion alleles confer a protective affect against rheumatoid arthritis (RA). This CNV reflects net unit deletions and expansions to a normal two-unit tandem duplication located on human chr12p13.31, a region with conserved synteny to the rat RA susceptibility quantitative trait loci Oia2. Genotyping, using the paralogue ratio test and SNP intensity data, in Swedish samples (2,403 cases, 1,269 controls) showed that the frequency of deletion variants is significantly lower in cases (P = 0.0012, OR = 0.442 [95%CI 0.258–0.755]). Reduced frequencies of deletion variants were also seen in replication materials comprising 9,201 UK samples (1,846 cases, 7,355 controls) and 2,963 US samples (906 controls, 1,967 cases) (Mantel–Haenszel P = 0.036, OR = 0.559 [95%CI 0.323–0.966]). Combining the three datasets produces a Mantel–Haenszel OR of 0.497 (P < 0.0002). The deletion variant lacks 129-kb of DNA containing SLC2A3, NANOGP1, and SLC2A14. SLC2A3 encodes a high-affinity glucose transporter important in the immune response and chondrocyte metabolism, both key aspects of RA pathogenesis. The large effect size of this association, its potential relevance to other diseases in which SLC2A3 is implicated, and the possibility of targeting drugs to inhibit SLC2A3, argue for further examination of the genetics and the biology of this CNV. PMID:24178905

  4. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  5. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain.

    PubMed Central

    Fenton, A M; Stephens, P M; Crowley, J; O'Callaghan, M; O'Gara, F

    1992-01-01

    Tn5 mutagenesis and complementation analysis were used to clone a 6-kb genomic fragment required for biosynthesis of 2,4-diacetylphloroglucinol (Phl) from fluorescent Pseudomonas sp. strain F113. A recombinant plasmid, pCU203, containing this region partially complemented a Phl production-negative mutant (F113G22) derived from strain F113. When sugar beet seeds were sown into an unsterilized soil, in which sugar beet was subject to damping-off by Pythium ultimum, the emergence of sugar beet seeds inoculated with strain F113 was significantly greater than that of seeds inoculated with F113G22. Transfer of pCU203 into eight other Pseudomonas strains conferred the ability to synthesize Phl in only one of these strains, Pseudomonas sp. strain M114. Strain M114(pCU203) showed enhanced antagonism towards P. ultimum in vitro and significantly increased the emergence of sugar beet seeds in the same soil compared with emergence induced by the parent strain M114. Images PMID:1476431

  6. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    PubMed

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance. PMID:25340650

  7. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    PubMed

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

  8. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    PubMed

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  9. The SbMT-2 Gene from a Halophyte Confers Abiotic Stress Tolerance and Modulates ROS Scavenging in Transgenic Tobacco

    PubMed Central

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2−; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance. PMID:25340650

  10. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum.

    PubMed

    Wang, Xinhua; Kohalmi, Susanne E; Svircev, Antonet; Wang, Aiming; Sanfaçon, Hélène; Tian, Lining

    2013-01-01

    Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.

  11. The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis.

    PubMed

    Tanabe, Noriaki; Tamoi, Masahiro; Shigeoka, Shigeru

    2015-08-10

    Sweet potato is an important crop because of its high yield and biomass production. We herein investigated the potential of the promoter activity of a small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) from sweet potato (Ipomoea batatas) in order to develop the high expression system of exogenous DNA in Arabidopsis. We isolated two different cDNAs (IbRbcS1 and IbRbcS2) encoding RbcS from sweet potato. Their predicted amino acid sequences were well conserved with the mature RbcS protein of other plants. The tissue-specific expression patterns of these two genes revealed that expression of IbRbcS1 was specific to green tissue, whereas that of IbRbcS2 was non-photosynthetic tissues such as roots and tubers. These results suggested that IbRbcS1 was predominantly expressed in the green tissue-specific of sweet potato over IbRbcS2. Therefore, the IbRbcS1 promoter was transformed into Arabidopsis along with β-glucuronidase (GUS) as a reporter gene. GUS staining and semi-quantitative RT-PCR showed that the IbRbcS1 promoter conferred the expression of the GUS reporter gene in green tissue-specific and light-inducible manners. Furthermore, qPCR showed that the expression levels of GUS reporter gene in IbRbcS1 pro:GUS were same as those in CaMV 35S pro:GUS plants. These results suggest that the IbRbcS1 promoter is a potentially strong foreign gene expression system for genetic transformation in plants.

  12. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco.

    PubMed

    He, Xiaolan; Chen, Zhenzhen; Wang, Jianwei; Li, Wenxu; Zhao, Jixin; Wu, Jun; Wang, Zhonghua; Chen, Xinhong

    2015-10-10

    Fructans are accessible carbohydrate reserves in various plant species, which possess many physiological functions including anti-oxidation, stabilizing subcellular structures, and osmotic adjustment. In addition, fructans may play important roles in stress tolerance in plant species. In this study, we isolated a Psathyrostachys huashanica (2n=2x=14, NsNs) sucrose:fructan-6-fructosyltransferase (Ph-6-SFT) using homologous cloning and genomic walking. Sequencing and gene structure analysis showed that Ph-6-SFT contains four exons and three introns, with a transcript of 2207 bp. Sequence analysis indicated that the coding sequence of Ph-6-SFT is 1851 bp long and it encodes 616 amino acids, where the structure shares high similarity with 6-SFTs from other plants. Furthermore, Ph-6-SFT was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. Compared with the wild-type plants, the transgenic tobacco plants exhibited a much higher tolerance of drought, cold, and high salinity. In all conditions, physiological studies showed that the tolerance of transgenic plants was associated with the accumulation of carbohydrate and proline, but reductions in malondialdehyde. Our results suggest that the 6-SFT gene from P. huashanica enhanced stress tolerance in tobacco plants and it may be applied as a genetic tool for improving stress tolerance in other crops. PMID:26072162

  13. Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast.

    PubMed

    Erbasol, Isil; Bozdag, Gonensin Ozan; Koc, Ahmet; Pedas, Pai; Karakaya, Huseyin Caglar

    2013-10-01

    Manganese (Mn(2+)) is an essential micronutrient in plants. However increased Mn(2+) levels are toxic to plant cells. Metal tolerance proteins (MTPs), member of cation diffusion facilitator protein (CDF) family, have important roles in metal homeostatis in different plant species and catalyse efflux of excess metal ions. In this study, we identified and characterized two MTP genes from Beta vulgaris spp. maritima (B. v. ssp. maritima). Overexpression of these two genes provided Mn tolerance in yeast cells. Sequence analyses displayed BmMTP10 and BmMTP11 as members of the Mn-CDF family. Functional analyses of these proteins indicated that they are specific to Mn(2+) with a role in reducing excess cellular Mn(2+) levels when expressed in yeast. GFP-fusion constructs of both proteins localized to the Golgi apparatus as a punctuated pattern. Finally, Q-RT-PCR results showed that BmMTP10 expression was induced threefold in response to the excess Mn(2+) treatment. On the other hand BmMTP11 expression was not affected in response to excess Mn(2+) levels. Thus, our results suggest that the BmMTP10 and BmMTP11 proteins from B. v. ssp. maritima have non-redundant functions in terms of Mn(2+) detoxification with a similar in planta localization and function as the Arabidopsis Mn-CDF homolog AtMTP11 and this conservation shows the evolutionary importance of these vesicular proteins in heavy metal homeostatis among plant species.

  14. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco.

    PubMed

    He, Xiaolan; Chen, Zhenzhen; Wang, Jianwei; Li, Wenxu; Zhao, Jixin; Wu, Jun; Wang, Zhonghua; Chen, Xinhong

    2015-10-10

    Fructans are accessible carbohydrate reserves in various plant species, which possess many physiological functions including anti-oxidation, stabilizing subcellular structures, and osmotic adjustment. In addition, fructans may play important roles in stress tolerance in plant species. In this study, we isolated a Psathyrostachys huashanica (2n=2x=14, NsNs) sucrose:fructan-6-fructosyltransferase (Ph-6-SFT) using homologous cloning and genomic walking. Sequencing and gene structure analysis showed that Ph-6-SFT contains four exons and three introns, with a transcript of 2207 bp. Sequence analysis indicated that the coding sequence of Ph-6-SFT is 1851 bp long and it encodes 616 amino acids, where the structure shares high similarity with 6-SFTs from other plants. Furthermore, Ph-6-SFT was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. Compared with the wild-type plants, the transgenic tobacco plants exhibited a much higher tolerance of drought, cold, and high salinity. In all conditions, physiological studies showed that the tolerance of transgenic plants was associated with the accumulation of carbohydrate and proline, but reductions in malondialdehyde. Our results suggest that the 6-SFT gene from P. huashanica enhanced stress tolerance in tobacco plants and it may be applied as a genetic tool for improving stress tolerance in other crops.

  15. OsPOP5, A Prolyl Oligopeptidase Family Gene from Rice Confers Abiotic Stress Tolerance in Escherichia coli

    PubMed Central

    Tan, Cun-Mei; Chen, Rong-Jun; Zhang, Jian-Hua; Gao, Xiao-Ling; Li, Li-Hua; Wang, Ping-Rong; Deng, Xiao-Jian; Xu, Zheng-Jun

    2013-01-01

    The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress. PMID:24152437

  16. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance.

    PubMed

    Shoresh, Michal; Gal-On, Amit; Leibman, Diana; Chet, Ilan

    2006-11-01

    The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.

  17. The 2-repeat allele of the MAOA gene confers an increased risk for shooting and stabbing behaviors.

    PubMed

    Beaver, Kevin M; Barnes, J C; Boutwell, Brian B

    2014-09-01

    There has been a great deal of research examining the link between a polymorphism in the promoter region of the MAOA gene and antisocial phenotypes. The results of these studies have consistently revealed that low activity MAOA alleles are related to antisocial behaviors for males who were maltreated as children. Recently, though, some evidence has emerged indicating that a rare allele of the MAOA gene-that is, the 2-repeat allele-may have effects on violence that are independent of the environment. The current study builds on this research and examines the association between the 2-repeat allele and shooting and stabbing behaviors in a sample of males drawn from the National Longitudinal Study of Adolescent Health. Analyses revealed that African-American males who carry the 2-repeat allele are significantly more likely than all other genotypes to engage in shooting and stabbing behaviors and to report having multiple shooting and stabbing victims. The limitations of the study are discussed and suggestions for future research are offered.

  18. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize.

    PubMed

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-05-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.

  19. Neuronal connectivity as a convergent target of gene-environment interactions that confer risk for Autism Spectrum Disorders

    PubMed Central

    Stamou, Marianna; Streifel, Karin M.; Goines, Paula E.; Lein, Pamela J.

    2013-01-01

    Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca2+-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways. PMID:23269408

  20. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders.

    PubMed

    Stamou, Marianna; Streifel, Karin M; Goines, Paula E; Lein, Pamela J

    2013-01-01

    Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.

  1. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  2. Frameshift mutations in the bacteriophage Mu repressor gene can confer a trans-dominant virulent phenotype to the phage.

    PubMed Central

    Geuskens, V; Vogel, J L; Grimaud, R; Desmet, L; Higgins, N P; Toussaint, A

    1991-01-01

    Virulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J. L. Vogel, N. P. Higgins, L. Desmet, V. Geuskens, and A. Toussaint, unpublished data). Vir repressors bind Mu operators very poorly. Thus the Mu repressor C terminus, either by itself or in conjunction with other phage or host proteins, tunes the DNA-binding properties at the repressor N terminus. Images FIG. 3 FIG. 4 FIG. 5 PMID:1833383

  3. Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel.

    PubMed

    Elwej, Awatef; Grojja, Yousri; Ghorbel, Imen; Boudawara, Ons; Jarraya, Raoudha; Boudawara, Tahia; Zeghal, Najiba

    2016-04-01

    The present study was performed to establish the therapeutic efficacy of pomegranate peel against barium chloride induced liver injury. Adult rats were divided into four groups of six animals each: group I, serving as controls, received distilled water; group II received by their drinking water 67 ppm of BaCl2; group III received both 67 ppm of BaCl2 by the same way than group II and 5 % of pomegranate peel (PP) via diet; group IV received 5 % of PP. Analysis by HPLC/MS of PP showed its rich composition in flavonoids such as gallic acid, castalin, hyperin, quercitrin, syringic acid, and quercetin. The protective effects of pomegranate peel against hepatotoxicity induced by barium chloride were assessed using biochemical parameters and histological studies. Exposure of rats to barium caused oxidative stress in the liver as evidenced by an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOHs), H2O2 and advanced oxidation protein product (AOPP) levels, and lactate dehydrogenase (LDH), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (AST) and aspartate aminotransferase (ALT) activities, a decrease in catalase (CAT) and glutathione peroxidase (GPx) activities, glutathion (GSH), non-protein thiol (NPSH), vitamin C levels, and Mn-SOD gene expression. Liver total MT levels, MT-1, and MT-2 and pro-inflammatory cytokine genes expression like TNF-α, IL-1β and IL-6 were increased. Pomegranate peel, supplemented in the diet of barium-treated rats, showed an improvement of all the parameters indicated above.The present work provided ethnopharmacological relevance of pomegranate peel against the toxic effects of barium, suggesting its beneficial role as a potential antioxidant.

  4. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize

    PubMed Central

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-01-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding. PMID:27092004

  5. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Li, Hui-Yong; Liu, Ying-Hui; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2011-09-01

    SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn(2+) to Mg(2+) as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.

  6. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco.

    PubMed

    Pandey, Vibha; Niranjan, Abhishek; Atri, Neelam; Chandrashekhar, K; Mishra, Manoj K; Trivedi, Prabodh K; Misra, Pratibha

    2014-06-01

    Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant's antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges.

  7. 9. international mouse genome conference

    SciTech Connect

    1995-12-31

    This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.

  8. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco.

    PubMed

    Yang, Sha; Tang, Xian-Feng; Ma, Na-Na; Wang, Li-Yan; Meng, Qing-Wei

    2011-10-15

    Various studies have confirmed that the CBF (C-repeat binding factor) family of transcription factors has a key role in regulating many plants' responses to cold stress. Here we isolated CBF3 from sweet pepper (Capsicum frutescens). Green fluorescent protein (GFP) fusion protein of CfCBF3 was targeted to the nucleus of the onion epidermis cell. RNA gel blot analysis indicated that CfCBF3 was expressed in leaves of sweet pepper and the expression was induced by low temperature, drought and salinity stresses but not by ABA. Overexpression of CfCBF3 under the control of the CaMV35S promoter in tobacco induced expression of orthologs of CBF3-targeted genes and increased chilling tolerance without a dwarf phenotype. Indeed it also led to multiple biochemical and physiological changes associated with chilling stress. Higher levels of proline (Pro) and soluble sugars and lower content of reactive oxygen species (ROS) were observed in transgenic plants. Our results demonstrated that the increase in total unsaturated fatty acids, especially in phosphatidylglycerol (PG) was detected by overexpression of CfCBF3. During exposure to chilling stress, the transgenic lines were less susceptible to chilling-induced photoinhibition than wild-type (WT) plants. These results suggest that overexpression of CfCBF3 led to modification of the fatty acid unsaturation and alleviated the injuries under chilling stress.

  9. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

    PubMed Central

    Schönhofen, André; Hazard, Brittany; Zhang, Xiaoqin; Dubcovsky, Jorge

    2016-01-01

    Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaploid wheat cultivar Lassik. Four mutant combinations were generated: SBEIIa/b-AB (Reg. No. GP-997, PI 675644); SBEIIa/b-A, SBEIIa-D (Reg. No. GP-998, PI 675645); SBEIIa/b-B, SBEIIa-D (Reg. No. GP-999, PI 675646); and SBEIIa/b-AB, SBEIIa-D (Reg. No. GP-1000, PI 675647). The SBEII mutant lines were compared with a wild-type control in a greenhouse and field experiment. The quintuple mutant line (SBEIIa/b-AB, SBEIIa-D) presented significant increases in both amylose (51% greenhouse; 63% field) and resistant starch (947% greenhouse; 1057% field) relative to the control. A decrease in total starch content (7.8%) was observed in the field experiment. The quintuple mutant also differed in starch viscosity parameters. Registration of the hexaploid wheat SBEII-mutant lines by University of California, Davis can help expedite the development of common wheat cultivars with increased amylose and resistant starch content.

  10. Kamebakaurin inhibits the expression of hypoxia-inducible factor-1α and its target genes to confer antitumor activity.

    PubMed

    Wang, Ke Si; Ma, Juan; Mi, Chunliu; Li, Jing; Lee, Jung Joon; Jin, Xuejun

    2016-04-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Kamebakaurin is a diterpenoid compound isolated from Isodon excia (Maxin.) Hara, which has been used for anti-inflammatory activities. However, its antitumor activity along with molecular mechanism has not been reported. Kamebakaurin showed potent inhibitory activity against HIF-1 activation induced by hypoxia or CoCl2 in various human cancer cell lines. This compound significantly decreased the hypoxia-induced accumulation of HIF-1α protein, whereas it did not affect the expression of topoisomerase-I (Topo-I). Further analysis revealed that kamebakaurin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Furthermore, kamebakaurin prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). However, kamebakaurin caused cell growth inhibition via cell cycle arrest at G1 phase in tumor cells. In vivo studies, we further confirmed the inhibitory effect of kamebakaurin on the expression of HIF-1α proteins, leading to growth inhibition of HCT116 cells in a xenograft tumor model. These results show that kamebakaurin is an effective inhibitor of HIF-1 and provide new perspectives into its anticancer activity. PMID:26781327

  11. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.

  12. Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine.

    PubMed

    Emanuelli, F; Sordo, M; Lorenzi, S; Battilana, J; Grando, M S

    2014-01-01

    High fruit and wine quality combined with good climatic adaptation and disease resistance are essential objectives of grape breeding. While several molecular markers are available for pyramiding resistance to fungal pathogens, molecular tools for predicting fruit composition are still scarce. Muscat flavor, caused by the accumulation of monoterpenoids in the berry, is an important target trait for breeding, sought after in both table grapes and wine. Four missense mutations in the VvDXS gene in grape germplasm have been shown to be tightly linked to muscat flavor. Here we present highly reproducible and breeder-friendly functional markers for each of the targeted polymorphisms developed by using either the multiplexed minisequencing SNaPshot™ method, the high-resolution melting (HRM) assay or the cleaved amplified polymorphic sequence system. A total of 242 grapevine accessions were analyzed to optimize these different genotyping methods and to provide allele-specific markers for accurate selection of muscat flavor at early stages of grape breeding programs. The HRM and the minisequencing SNaPshot multiplex assays allow for high-throughput automated screening and are suitable for large-scale breeding programs and germplasm characterization. PMID:24482604

  13. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  14. Computational Biology Support: RECOMB Conference Series (Conference Support)

    SciTech Connect

    Michael Waterman

    2006-06-15

    This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a

  15. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber.

    PubMed

    Kim, Tae-Won; Goo, Young-Min; Lee, Cheol-Ho; Lee, Byung-Hyun; Bae, Jung-Myung; Lee, Shin-Woo

    2009-10-01

    Molecular farming refers to the process of creating bioengineered plants with the capability of producing potentially valuable products, such as drugs, vaccines, and chemicals. We have investigated the potential of the sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter and its transit peptide (TP) as an expression system for the mass production of foreign proteins in potato. The ibAGP1 promoter and its TP sequence were transformed into potato along with beta-glucuronidase (GUS) as a reporter gene, and GUS activity was subsequently analyzed in the transgenic potato plants. In tuber tissues, GUS activity in transgenic plants carrying only the ibAGP1 promoter (ibAGP1::GUS) increased up to 15.6-fold compared with that of transgenic plants carrying only the CaMV35S promoter (CaMV35S::GUS). GUS activity in transgenic plants was further enhanced by the addition of the sweetpotato TP to the recombinant vector (ibAGP1::TP::GUS), with tuber tissues showing a 26-fold increase in activity compared with that in the CaMV35S::GUS-transgenic lines. In leaf tissues, the levels of GUS activity found in ibAGP1::GUS-transgenic lines were similar to those in CaMV35S::GUS-lines, but they were significantly enhanced in ibAGP1::TP::GUS-lines. GUS activity gradually increased with increasing tuber diameter in ibAGP1::GUS-transgenic plants, reaching a maximum level when the tuber was 35 mm in diameter. In contrast, extremely elevated levels of GUS activity - up to about 10-fold higher than that found in CaMV35S::GUS-lines - were found in ibAGP1::TP::GUS-transgenic lines at a much earlier stage of tuber development (diameter 4 mm), and these higher levels were maintained throughout the entire tuber developmental stage. These results suggest that the sweetpotato ibAGP1 promoter and its TP are a potentially strong foreign gene expression system that can be used for molecular farming in potato plants.

  16. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber.

    PubMed

    Kim, Tae-Won; Goo, Young-Min; Lee, Cheol-Ho; Lee, Byung-Hyun; Bae, Jung-Myung; Lee, Shin-Woo

    2009-10-01

    Molecular farming refers to the process of creating bioengineered plants with the capability of producing potentially valuable products, such as drugs, vaccines, and chemicals. We have investigated the potential of the sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter and its transit peptide (TP) as an expression system for the mass production of foreign proteins in potato. The ibAGP1 promoter and its TP sequence were transformed into potato along with beta-glucuronidase (GUS) as a reporter gene, and GUS activity was subsequently analyzed in the transgenic potato plants. In tuber tissues, GUS activity in transgenic plants carrying only the ibAGP1 promoter (ibAGP1::GUS) increased up to 15.6-fold compared with that of transgenic plants carrying only the CaMV35S promoter (CaMV35S::GUS). GUS activity in transgenic plants was further enhanced by the addition of the sweetpotato TP to the recombinant vector (ibAGP1::TP::GUS), with tuber tissues showing a 26-fold increase in activity compared with that in the CaMV35S::GUS-transgenic lines. In leaf tissues, the levels of GUS activity found in ibAGP1::GUS-transgenic lines were similar to those in CaMV35S::GUS-lines, but they were significantly enhanced in ibAGP1::TP::GUS-lines. GUS activity gradually increased with increasing tuber diameter in ibAGP1::GUS-transgenic plants, reaching a maximum level when the tuber was 35 mm in diameter. In contrast, extremely elevated levels of GUS activity - up to about 10-fold higher than that found in CaMV35S::GUS-lines - were found in ibAGP1::TP::GUS-transgenic lines at a much earlier stage of tuber development (diameter 4 mm), and these higher levels were maintained throughout the entire tuber developmental stage. These results suggest that the sweetpotato ibAGP1 promoter and its TP are a potentially strong foreign gene expression system that can be used for molecular farming in potato plants. PMID:19819408

  17. Interaction of KIR genes and G1M immunoglobulin allotypes confer susceptibility to type 2 diabetes in Puerto Rican Americans.

    PubMed

    Zuniga, Joaquin; Romero, Viviana; Azocar, Jose; Stern, Joel N H; Clavijo, Olga; Almeciga, Ingrid; Encinales, Liliana; Avendano, Angel; Fridkis-Hareli, Masha; Pandey, Janardan P; Yunis, Edmond J

    2006-11-01

    The susceptibility to type 2 diabetes (T2D) involves genetic factors. We studied the distribution of KIR and MHC class I ligands phenotype and genotype frequencies, as well as immunoglobulin KM and GM allotype frequencies in a group of patients (N = 95) with T2D and ethnically matched healthy controls (N = 74) with Puerto Rican ethnic background. We found a slight increase of the 2DL3/2DL3 homozygous genotype in T2D. Moreover, the association between 2DL3/2DL3 genotype was significant in the presence of 2DS4 (pC = 0.01). Also, we observed an epistatic effect of the interaction of 2DL3/2DL3, 2DS4 with allele z of G1M in T2D (pC = 0.004, OR = 3.60, 95% CI, 1.62-8.10). This genetic interaction between KIR and G1M allotypes, associated with T2D, was also significant by multiple logistic regression analysis (p < 0.0001, OR = 4.90, 95% CI, 2.12-11.3). We did not detect population stratification using unlinked short tandem repeat (STR) markers, demonstrating that the patients and controls were ethnically matched. Hence, we have demonstrated in this study an epistatic interaction between KIR genes and the G1M allotype that influences the susceptibility to T2D in Puerto Rican Americans. Our findings are important for understanding the autoimmune or innate immune inflammatory-mediated mechanisms involved in the pathogenesis of T2D.

  18. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2016-01-01

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California–Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch. PMID:27110322

  19. Conference Summary

    NASA Technical Reports Server (NTRS)

    Harrington, James L., Jr.

    2000-01-01

    Celebrations and special events were in order this year as the Minority University-Space Interdisciplinary Network (MU-SPIN) Program and NASA's Minority University Research and Education Division (MURED) both reached their 10th anniversaries. In honor of this occasion, the 2000 Annual Users' Conference held at Morris Brown College (MBC) in Atlanta, Georgia, September 11-15, 2000, was the first to be jointly hosted by MU-SPIN and MURED. It was particularly fitting that this anniversary should fall in the year 2000. The start of the new millennium propelled us to push bold new ideas and renew our commitment to minority university participation in all areas of NASA. With the theme 'Celebrating Our Tenth Year With Our Eyes on the Prize,' the conference provided a national forum for showcasing successful MU-SPIN and MURED Program (MUREP) experiences to enhance faculty/student development in areas of scientific and technical research and education. Our NASA-relevant conference agenda resulted in a record-breaking 220 registered attendees. Using feedback from past participants, we designed a track of student activities closely tailored to their interests. The resulting showcase of technical assistance and best practices set a new standard for our conferences in the years to come. This year's poster session was our largest ever, with over 50 presentations from students, faculty, and teachers. Posters covered a broad range of NASA activities from 'A Study of the Spiral Galaxy M101' to 'Network Cabling Characteristics.'

  20. Multiple Patterns of Regulation and Overexpression of a Ribonuclease-Like Pathogenesis-Related Protein Gene, OsPR10a, Conferring Disease Resistance in Rice and Arabidopsis

    PubMed Central

    He, Siou-Luan; Chen, Jyh-Lang; Jiang, Jian-Zhi; Chen, Bo-Hong; Hou, Yi-Syuan; Chen, Ruey-Shyang; Hong, Chwan-Yang; Ho, Shin-Lon

    2016-01-01

    An abundant 17 kDa RNase, encoded by OsPR10a (also known as PBZ1), was purified from Pi-starved rice suspension-cultured cells. Biochemical analysis showed that the range of optimal temperature for its RNase activity was 40–70°C and the optimum pH was 5.0. Disulfide bond formation and divalent metal ion Mg2+ were required for the RNase activity. The expression of OsPR10a::GUS in transgenic rice was induced upon phosphate (Pi) starvation, wounding, infection by the pathogen Xanthomonas oryzae pv. oryzae (Xoo), leaf senescence, anther, style, the style-ovary junction, germinating embryo and shoot. We also provide first evidence in whole-plant system, demonstrated that OsPR10a-overexpressing in rice and Arabidopsis conferred significant level of enhanced resistance to infection by the pathogen Xoo and Xanthomona campestris pv. campestris (Xcc), respectively. Transgenic rice and Arabidopsis overexpressing OsPR10a significantly increased the length of primary root under phosphate deficiency (-Pi) condition. These results showed that OsPR10a might play multiple roles in phosphate recycling in phosphate-starved cells and senescing leaves, and could improve resistance to pathogen infection and/or against chewing insect pests. It is possible that Pi acquisition or homeostasis is associated with plant disease resistance. Our findings suggest that gene regulation of OsPR10a could act as a good model system to unravel the mechanisms behind the correlation between Pi starvation and plant-pathogen interactions, and also provides a potential application in crops disease resistance. PMID:27258121

  1. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves.

    PubMed

    Sherameti, Irena; Tripathi, Swati; Varma, Ajit; Oelmüller, Ralf

    2008-06-01

    Piriformospora indica is an endophytic fungus that colonizes the roots of many plant species, including Arabidopsis. We exposed 18-day-old Arabidopsis seedlings, which were either cocultivated with the fungus or mock-treated for the last 9 days, to mild drought stress for 84 h. During the first 36 to 48 h, seedlings cocultivated with the fungus continued to grow, while the uncolonized controls did not. This results in a threefold difference in the fresh weight and a more than twofold difference in the chlorophyll content. The photosynthetic efficiency was only slightly reduced in the colonized (F variable/F maximum [Fv/Fm] at t(0 h) = 0.82 and t(36 h) = 0.79) and was severely impaired in the uncolonized (Fv/Fm at t(0 h) = 0.81 and (t)(36 h) = 0.49) seedlings, which also showed symptoms of withering. When seedlings exposed to drought stress for 72 or 84 h were transferred to soil, 10% (72 h) and none (84 h) of uncolonized seedlings reached the flowering stage and produced seeds, while 59% (72 h) and 47% (84 h) of the colonized seedlings flowered and produced seeds. After exposure to drought stress for 3 h, the message levels for RESPONSE TO DEHYDRATION 29A, EARLY RESPONSE TO DEHYDRATION1, ANAC072, DEHYDRATION-RESPONSE ELEMENT BINDING PROTEIN2A, SALT-, AND DROUGHT-INDUCED RING FINGER1, phospholipase Ddelta, CALCINEURIN B-LIKE PROTEIN (CBL)1, CBL-INTERACTING PROTEIN KINASE3, and the histone acetyltransferase (HAT) were upregulated in the leaves of P. indica-colonized seedlings. Uncolonized seedlings responded 3 to 6 h later, and the message levels increased much less. We identified an Arabidopsis ethylmethane-sulfonate mutant that is less resistant to drought stress and in which the stress-related genes were not upregulated in the presence of P. indica. Thus, P. indica confers drought-stress tolerance to Arabidopsis, and this is associated with the priming of the expression of a quite diverse set of stress-related genes in the leaves. Transfer to soil was again

  2. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  3. Conference Summary

    NASA Astrophysics Data System (ADS)

    Ellis, R. S.

    2008-10-01

    This first Subaru international conference has highlighted the remarkably diverse and significant contributions made using the 8.2m Subaru telescope by both Japanese astronomers and the international community. As such, it serves as a satisfying tribute to the pioneering efforts of Professors Keiichi Kodaira and Sadanori Okamura whose insight and dedication is richly rewarded. Here I try to summarize the recent impact of wide field science in extragalactic astronomy and cosmology and take a look forward to the key questions we will address in the near future.

  4. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  5. Systematic Mutagenesis of Genes Encoding Predicted Autotransported Proteins of Burkholderia pseudomallei Identifies Factors Mediating Virulence in Mice, Net Intracellular Replication and a Novel Protein Conferring Serum Resistance

    PubMed Central

    Adler, Natalie R. Lazar; Stevens, Mark P.; Dean, Rachel E.; Saint, Richard J.; Pankhania, Depesh; Prior, Joann L.; Atkins, Timothy P.; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E.

    2015-01-01

    Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were

  6. Knock-Down of Both eIF4E1 and eIF4E2 Genes Confers Broad-Spectrum Resistance against Potyviruses in Tomato

    PubMed Central

    Mazier, Marianne; Flamain, Fabrice; Nicolaï, Maryse; Sarnette, Verane; Caranta, Carole

    2011-01-01

    Background The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance. Methodology/Principal Findings To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2. Conclusion/Significance These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato

  7. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance.

    PubMed

    Lazar Adler, Natalie R; Stevens, Mark P; Dean, Rachel E; Saint, Richard J; Pankhania, Depesh; Prior, Joann L; Atkins, Timothy P; Kessler, Bianca; Nithichanon, Arnone; Lertmemongkolchai, Ganjana; Galyov, Edouard E

    2015-01-01

    Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were

  8. Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco

    PubMed Central

    Zhang, Hongli; Hou, Jiajia; Jiang, Pingping; Qi, Shoumei; Xu, Changzheng; He, Qiuxia; Ding, Zhaohua; Wang, Zhiwu; Zhang, Kewei; Li, Kunpeng

    2016-01-01

    Salinity and drought often affect plant growth and crop yields. Cloning and identification of salinity and drought stress inducible promoters is of great significance for their use in the genetic improvement of crop resistance. Previous studies showed that phosphatidylinositol synthase is involved in plant salinity and drought stress responses but its promoter has not been characterized by far. In the study, the promoter (pZmPIS, 1834 bp upstream region of the translation initiation site) was isolated from maize genome. To functionally validate the promoter, eight 5′ deletion fragments of pZmPIS in different lengths were fused to GUS to produce pZmPIS::GUS constructs and transformed into tobacco, namely PZ1–PZ8. The transcription activity and expression pattern obviously changed when the promoter was truncated. Previous studies have demonstrated that NaCl and PEG treatments are usually used to simulate salinity and drought treatments. The results showed that PZ1–PZ7 can respond well upon NaCl and PEG treatments, while PZ8 not. PZ7 (467 bp) displayed the highest transcription activity in all tissues of transgenic tobacco amongst 5′ deleted promoter fragments, which corresponds to about 20 and 50% of CaMV35S under normal and NaCl or PEG treatment, respectively. This implied that PZ7 is the core region of pZmPIS which confers high-level gene expression and NaCl or PEG inducible nature. The 113 bp segment between PZ7 and PZ8 (-467 to -355 bp) was considered as the key sequence for ZmPIS responding to NaCl or PEG treatment. GUS transient assay in tobacco leaves showed that this segment was sufficient for the NaCl or PEG stress response. Bioinformatic analysis revealed that the 113 bp sequence may contain new elements that are crucial for ZmPIS response to NaCl or PEG stress. These results promote our understanding on transcriptional regulation mechanism of ZmPIS and the characterized PZ7 promoter fragment would be an ideal candidate for the overexpression of

  9. Conference summary

    NASA Astrophysics Data System (ADS)

    Rebolo, R.

    ``Brown dwarfs come of age" was a stimulating conference attended by a large number of very active researchers, including many young students and post-docs who were largely responsible for the lively atmosphere that we enjoyed during the full meeting. Major theoretical and observational challenges currently faced in the study of brown dwarfs were reviewed. Key spectroscopic work is being conducted to determine atmospheric temperatures, surface gravities and metallicities, essential to understand the evolution of substellar objects. Research on ultracool atmospheres is extended down to temperatures typical of the atmosphere of the Earth. Characterisation of brown dwarfs at all wavelengths from X-ray to radio is ongoing and investigation of time domain phenomena reveal interesting new processes in cool atmospheres. In addition to talks on these topics, a large number of presentations addressed the formation and evolution of brown dwarfs, the lower end of the Initial Mass Function, the properties of substellar binaries, the angular momentum and disk evolution in very low-mass systems, results of large scale surveys aimed to find the lowest luminosity and coolest brown dwarfs, searches in star clusters delineating the evolution with age of the properties of brown dwarfs, binary searches and subsequent follow-up work enabling dynamical mass determinations. The excellent level of the review talks, oral and poster presentations and the work of the enthusiastic researchers that attended the meeting ensure a brilliant future for substellar research 18 years after the discovery of the first brown dwarfs.

  10. Rapid Detection of Mutations in the 23S rRNA Gene of Helicobacter pylori That Confers Resistance to Clarithromycin Treatment to the Bacterium

    PubMed Central

    Matsumura, Masayuki; Hikiba, Yoko; Ogura, Keiji; Togo, Goichi; Tsukuda, Izumi; Ushikawa, Kenji; Shiratori, Yasushi; Omata, Masao

    2001-01-01

    We developed a new method capable of detecting point mutations in the 23S rRNA gene of Helicobacter pylori using a LightCycler. Our method can detect a mutation in this gene in less than 1 h and can process many samples at once, thereby contributing to the selection of patients suitable for clarithromycin-based therapy. PMID:11158129

  11. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    PubMed Central

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID

  12. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components.

    PubMed

    van der Biezen, Erik A; Freddie, Cecilie T; Kahn, Katherine; Parker, Jane E; Jones, Jonathan D G

    2002-02-01

    In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance to Emoy2 and Emwa1. Most differences between RPP4 and RPP5 occur in residues that constitute the TIR domain and in LRR residues that are predicted to confer recognition specificity. RPP4 requires the action of at least 12 defence components, including DTH9, EDS1, PAD4, PAL, PBS2, PBS3, SID1, SID2 and salicylic acid. The ndr1, npr1 and rps5-1 mutations partially compromise RPP4 function in cotyledons but not in true leaves. The identification of RPP4 as a TIR-NB-LRR protein, coupled with its dependence on certain signalling components in true leaves, is consistent with the hypothesis that distinct NB-LRR protein classes differentially signal through EDS1 and NDR1. Our results suggest that RPP4-mediated resistance is developmentally regulated and that in cotyledons there is cross-talk between EDS1 and NDR1 signalling and processes regulating systemic acquired resistance.

  13. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  14. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae.

    PubMed

    Zhang, Baolong; Yang, Yuwen; Chen, Tianzi; Yu, Wengui; Liu, Tingli; Li, Hongjuan; Fan, Xiaohui; Ren, Yongzhe; Shen, Danyu; Liu, Li; Dou, Daolong; Chang, Youhong

    2012-01-01

    Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt. PMID:23251427

  15. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae.

    PubMed

    Zhang, Baolong; Yang, Yuwen; Chen, Tianzi; Yu, Wengui; Liu, Tingli; Li, Hongjuan; Fan, Xiaohui; Ren, Yongzhe; Shen, Danyu; Liu, Li; Dou, Daolong; Chang, Youhong

    2012-01-01

    Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.

  16. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene

    SciTech Connect

    Sternberg, E.A.; Spizz, G.; Perry, W.M.; Vizard, D.; Weil, T.; Olson, E.N.

    1988-07-01

    Terminal differentiation of skeletal myobalsts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzymte of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers.

  17. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    PubMed Central

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  18. Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis.

    PubMed

    Barone, A; Ritter, E; Schachtschabel, U; Debener, T; Salamini, F; Gebhardt, C

    1990-11-01

    A major dominant locus conferring resistance against several pathotypes of the root cyst nematode Globodera rostochiensis was mapped on the linkage map of potato using restriction fragment length polymorphism (RFLP) markers. The assessment of resistance versus susceptibility of the plants in the experimental population considered was based on an in vivo (pot) and an in vitro (petri dish) test. By linkage to nine RFLP markers the resistance locus Gro1 was assigned to the potato linkage group IX which is homologous to the tomato linkage group 7. Deviations from the additivity of recombination frequencies between Gro1 and its neighbouring markers in the pot test led to the detection of a few phenotypic misclassifications of small plants with poor root systems that limited the observation of cysts on susceptible roots. Pooled data from both tests provided better estimates of recombination frequencies in the linkage interval defined by the markers flanking the resistance locus. PMID:1980523

  19. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  20. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  1. Breast Tumors with Elevated Expression of 1q Candidate Genes Confer Poor Clinical Outcome and Sensitivity to Ras/PI3K Inhibition

    PubMed Central

    Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan

    2013-01-01

    Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022

  2. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-07-01

    Mitochondrial F(1)F(0)-ATPase is a key enzyme in plant metabolism, providing cells with ATP that uses the transmembrane electrochemical proton gradient to drive synthesis of ATP. A 6 kDa protein (At3g46430) has been previously purified from Arabidopsis thaliana mitochondrial F(1)F(0)-ATPase. In this study, the gene (AtMtATP6; GenBank accession no. AK117680) encoding this protein was isolated from Arabidopsis and characterized. Northern blot analyses showed that the expression of AtMtATP6 gene in Arabidopsis suspension-cultured cells was induced by several abiotic stresses from salts, drought, and cold. Over-expression of AtMtATP6 gene in transgenic yeast and Arabidopsis plants increased the resistance to salts, drought, oxidative and cold stresses. Taken together, our data raise the possibility that induction of the F(1)F(0)-ATPase plays a role in stress tolerance.

  3. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors.

    PubMed

    Landa, Iñigo; Ruiz-Llorente, Sergio; Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-09-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30-1.70; P = 5.9x10(-9)). Functional assays of rs1867277 (NM_004473.3:c.-283G>A) within the FOXE1 5' UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/alphaCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

  4. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    PubMed Central

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  5. Identification of Legionella pneumophila rcp, a pagP-Like Gene That Confers Resistance to Cationic Antimicrobial Peptides and Promotes Intracellular Infection

    PubMed Central

    Robey, Marianne; O'Connell, William; Cianciotto, Nicholas P.

    2001-01-01

    In the course of characterizing a locus involved in heme utilization, we identified a Legionella pneumophila gene predicted to encode a protein with homology to the product of the Salmonella enterica serovar Typhimurium pagP gene. In Salmonella, pagP increases resistance to the bactericidal effects of cationic antimicrobial peptides (CAMPs). Mutants with insertions in the L. pneumophila pagP-like gene were generated and showed decreased resistance to different structural classes of CAMPs compared to the wild type; hence, this gene was designated rcp for resistance to cationic antimicrobial peptides. Furthermore, Legionella CAMP resistance was induced by growth in low-magnesium medium. To determine whether rcp had any role in intracellular survival, mutants were tested in the two most relevant host cells for Legionnaires' disease, i.e., amoebae and macrophages. These mutants exhibited a 1,000-fold-decreased recovery during a Hartmannella vermiformis coculture. Complementation of the infectivity defect could be achieved by introduction of a plasmid containing the intact rcp gene. Mutations in rcp consistently reduced both the numbers of bacteria recovered during intracellular infection and their cytopathic capacity for U937 macrophages. The rcp mutant was also more defective for lung colonization of A/J mice. Growth of rcp mutants in buffered yeast extract broth was identical to that of the wild type, indicating that the observed differences in numbers of bacteria recovered from host cells were not due to a generalized growth defect. However, in low-Mg2+ medium, the rcp mutant was impaired in stationary-phase survival. This is the first demonstration of a pagP-like gene, involved in resistance to CAMPs, being required for intracellular infection and virulence. PMID:11401964

  6. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    PubMed

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis.

  7. Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yaping; Zhen, Shoumin; Luo, Nana; Han, Caixia; Lu, Xiaobing; Li, Xiaohui; Xia, Xianchun; He, Zhonghu; Yan, Yueming

    2016-01-01

    Low molecular weight glutenin subunit is one of the important quality elements in wheat (Triticum aestivum L.). Although considerable allelic variation has been identified, the functional properties of individual alleles at Glu-3 loci are less studied. In this work, we performed the first comprehensive study on the molecular characteristics and functional properties of the Glu-B3h gene using the wheat cultivar CB037B and its Glu-B3 deletion line CB037C. The results showed that the Glu-B3h deletion had no significant effects on plant morphological or yield traits, but resulted in a clear reduction in protein body number and size and main quality parameters, including inferior mixing property, dough strength, loaf volume, and score. Molecular characterization showed that the Glu-B3h gene consists of 1179 bp, and its encoded B-subunit has a longer repetitive domain and an increased number of α-helices, as well as higher expression, which could contribute to superior flour quality. The SNP-based allele-specific PCR markers designed for the Glu-B3h gene were developed and validated with bread wheat holding various alleles at Glu-B3 locus, which could effectively distinguish the Glu-B3h gene from others at the Glu-B3 locus, and have potential applications for wheat quality improvement through marker-assisted selection. PMID:27273251

  8. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight.

    PubMed

    Kim, Ju-Kon; Jang, In-Cheol; Wu, Ray; Zuo, Wei-Neng; Boston, Rebecca S; Lee, Yong-Hwan; Ahn, Il-Pyung; Nahm, Baek Hie

    2003-08-01

    Chitinases, beta-1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was co-transformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southern-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R1 plants were analyzed in a similar way, and the Southern-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression.

  9. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    PubMed

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture.

  10. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana.

    PubMed

    Dong, Na; Liu, Xin; Lu, Yan; Du, Lipu; Xu, Huijun; Liu, Hongxia; Xin, Zhiyong; Zhang, Zengyan

    2010-05-01

    Bipolaris sorokiniana is an economically important phytopathogen of wheat and other cereal species. In this paper, a novel pathogen-induced ethylene-responsive factor (ERF) gene of wheat, TaPIEP1, was isolated and characterized. The transcript of TaPIEP1 was significantly and rapidly induced by treatments with B. sorokiniana, and with ethylene (ET), jasmonate (JA), and abscisic acid. Molecular and biochemical assays demonstrated that TaPIEP1 is a new ERF transcription activator belonging to B-3c subgroup of the ERF family. Transgenic wheat lines overexpressing TaPIEP1 were generated by biolistic bombardment and molecular screening. Compared with the host wheat Yangmai12, six stable transgenic wheat lines overexpressing TaPIEP1 that exhibited significantly increased resistance to B. sorokiniana were identified by molecular detection in the T(0)-T(4) generations and by disease resistance tests. The degree of the enhanced resistance was correlated with an accumulation of the transcript level of TaPIEP1. Furthermore, the transcript levels of certain defense-related genes in the ET/JA pathways were markedly increased in the transgenic wheat plants with enhanced resistance. These results reveal that TaPIEP1 overexpression in wheat could obviously improve resistance to B. sorokiniana via activation of some defense genes, and TaPIEP1 gene may be useful in improving crop resistance to the pathogen.

  11. Genetics and mapping of the R₁₁ gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Seiler, G J; Vick, B A; Gulya, T J

    2012-09-01

    Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20 % yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6 cM, and shared a common marker, ORS728, which was mapped 1.3 cM proximal to Rf5 and 0.3 cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5 cM distal to Rf5 and ORS45 was 1.0 cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9

  12. Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines.

    PubMed

    Kamble, Suchita; Mukherjee, Prasun K; Eapen, Susan

    2016-01-01

    An endochitinase gene 'ech42' from the biocontrol fungus 'Trichoderma virens' was introduced to Brassica juncea (L). Czern and Coss via Agrobaterium tumefaciens mediated genetic transformation method. Integration and expression of the 'ech42' gene in transgenic lines were confirmed by PCR, RT-PCR and Southern hybridization. Transgenic lines (T1) showed expected 3:1 Mendelian segregation ratio when segregation analysis for inheritance of transgene 'hpt' was carried out. Fluorimetric analysis of transgenic lines (T0 and T1) showed 7 fold higher endochitinase activity than the non-transformed plant. Fluorimetric zymogram showed presence of endochitinase (42 kDa) in crude protein extract of transgenic lines. In detached leaf bioassay with fungi Alternaria brassicae and Alternaria brassicicola, transgenic lines (T0 and T1) showed delayed onset of lesions as well as 30-73 % reduction in infected leaf area compared to non-transformed plant. PMID:27186020

  13. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation.

  14. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection

    PubMed Central

    Campo, Sonia; Peris-Peris, Cristina; Montesinos, Laura; Peñas, Gisela; Messeguer, Joaquima; San Segundo, Blanca

    2012-01-01

    14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses. PMID:22016430

  15. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes.

    PubMed

    Borras-Hidalgo, Orlando; Caprari, Claudio; Hernandez-Estevez, Ingrid; Lorenzo, Giulia De; Cervone, Felice

    2012-01-01

    We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance.

  16. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract.

    PubMed

    Hwang, Daw-Yang; Kohl, Stefan; Fan, Xueping; Vivante, Asaf; Chan, Stefanie; Dworschak, Gabriel C; Schulz, Julian; van Eerde, Albertien M; Hilger, Alina C; Gee, Heon Yung; Pennimpede, Tracie; Herrmann, Bernhard G; van de Hoek, Glenn; Renkema, Kirsten Y; Schell, Christoph; Huber, Tobias B; Reutter, Heiko M; Soliman, Neveen A; Stajic, Natasa; Bogdanovic, Radovan; Kehinde, Elijah O; Lifton, Richard P; Tasic, Velibor; Lu, Weining; Hildebrandt, Friedhelm

    2015-08-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.

  17. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 Confer Risk for Congenital Anomalies of the Kidney and Urinary Tract

    PubMed Central

    Hwang, Daw-Yang; Kohl, Stefan; Fan, Xueping; Vivante, Asaf; Chan, Stefanie; Dworschak, Gabriel C; Schulz, Julian; van Eerde, Albertien M; Hilger, Alina C; Gee, Heon Yung; Pennimpede, Tracie; Herrmann, Bernhard G; van de Hoek, Glenn; Renkema, Kirsten Y; Schell, Christoph; Huber, Tobias B; Reutter, Heiko M; Soliman, Neveen A; Stajic, Natasa; Bogdanovic, Radovan; Kehinde, Elijah O; Lifton, Richard P; Tasic, Velibor; Lu, Weining; Hildebrandt, Friedhelm

    2015-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40–50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans. PMID:26026792

  18. Molecular analysis of transgenic melon plants showing virus resistance conferred by direct repeat of movement gene of Cucumber green mottle mosaic virus.

    PubMed

    Ali, Emran Md; Emran, Ali; Tabei, Yutaka; Kobayashi, Kappei; Yamaoka, Naoto; Nishiguchi, Masamichi

    2012-08-01

    Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of melon plants worldwide. For effective control of this virus using the transgenic approach, the direct repeat of the movement protein gene of CGMMV was used for transforming melon plants by Agrobacterium tumefaciens. PCR and Southern blot analyses of T₃ confirmed that they carried the transgene. Northern blot analysis with total RNA showed that transgene transcript RNA as well as siRNA was observed in all plants tested. Separate leaves or individual plants were inoculated with CGMMV and subjected to ELISA and RNA blot analysis using the coat protein gene probe of the virus. Compared to nontransgenic control, these plants were shown to have high virus resistance. Furthermore, cytosine of the transgene DNA in the plants was methylated. Thus, these results reveal that the transgenic lines were highly resistant to the virus through RNA silencing. Key message High virus resistance was obtained in transgenic melon plants with direct repeat of movement protein gene of Cucumber green mottle mosaic tobamovirus through RNA silencing.

  19. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice

    PubMed Central

    Wang, Ying; Cao, Liming; Zhang, Yuexiong; Cao, Changxiang; Liu, Fang; Huang, Fengkuan; Qiu, Yongfu; Li, Rongbai; Lou, Xiaojin

    2015-01-01

    Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant–insect interactions and should facilitate the breeding of rice host-resistant varieties. PMID:26136269

  20. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice.

    PubMed

    Kalla, R; Shimamoto, K; Potter, R; Nielsen, P S; Linnestad, C; Olsen, O A

    1994-12-01

    This paper describes the aleurone-specific gene Ltp2 from barley, which encodes a putative 7 kDa non-specific lipid transfer protein. As shown by Northern and in situ hybridization analyses, the Ltp2 transcript is present in barley aleurone cells shortly after the initiation of aleurone cell differentiation. The expression of Ltp2 increases until grain mid-maturity, but the mRNA is absent from mature grains. The Ltp2 transcript is undetectable in the embryo and vegetative tissues, confirming the aleurone specificity of the Ltp2 gene. The ability of the isolated 801 bp Ltp2 promoter to direct aleurone-specific expression in immature barley grains is demonstrated by particle bombardment experiments. In these experiments, the activity of the Ltp2 promoter is 5% of the activity of the strong constitutive Actin1 promoter from rice, as quantified by GUS activity measurements. In stably transformed rice plants containing the Ltp2 promoter-Gus construct, the specificity of the Ltp2 promoter is confirmed in vivo by the presence of GUS activity exclusively in the aleurone layer. This study demonstrates the conserved nature of the regulatory signals involved in aleurone-specific gene transcription in cereal grains.

  1. Ectopic Expression of the Petunia MADS Box Gene UNSHAVEN Accelerates Flowering and Confers Leaf-Like Characteristics to Floral Organs in a Dominant-Negative MannerW⃞

    PubMed Central

    Ferrario, Silvia; Busscher, Jacqueline; Franken, John; Gerats, Tom; Vandenbussche, Michiel; Angenent, Gerco C.; Immink, Richard G.H.

    2004-01-01

    Several genes belonging to the MADS box transcription factor family have been shown to be involved in the transition from vegetative to reproductive growth. The Petunia hybrida MADS box gene UNSHAVEN (UNS) shares sequence similarity with the Arabidopsis thaliana flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, is expressed in vegetative tissues, and is downregulated upon floral initiation and the formation of floral meristems. To understand the role of UNS in the flowering process, knockout mutants were identified and UNS was expressed ectopically in petunia and Arabidopsis. No phenotype was observed in petunia plants in which UNS was disrupted by transposon insertion, indicating that its function is redundant. Constitutive expression of UNS leads to an acceleration of flowering and to the unshaven floral phenotype, which is characterized by ectopic trichome formation on floral organs and conversion of petals into organs with leaf-like features. The same floral phenotype, accompanied by a delay in flowering, was obtained when a truncated version of UNS, lacking the MADS box domain, was introduced. We demonstrated that the truncated protein is not translocated to the nucleus. Using the overexpression approach with both the full-length and the nonfunctional truncated UNS protein, we could distinguish between phenotypic alterations because of a dominant-negative action of the protein and because of its native function in promoting floral transition. PMID:15155884

  2. Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants.

    PubMed

    Fuentes, Alejandro; Ramos, Pedro L; Fiallo, Elvira; Callard, Danay; Sánchez, Yadira; Peral, Rudy; Rodríguez, Raidel; Pujol, Merardo

    2006-06-01

    The whitefly-transmitted Tomato Yellow Leaf Curl Virus (TYLCV) is the major pathogen of tomato crop in Cuba and one of the most outstanding viral diseases of plants worldwide. In this work, we have developed transgenic tomato plants, transformed with an intron-hairpin genetic construction to induce post- transcriptional gene silencing against the early TYLCV replication associated protein gene (C1). The intron-hairpin RNA produced involves 726 nts of the 3' end of the TYLCV C1 gene as the arms of the hairpin, and the castor bean catalase intron. Transgenic tomato plants belonging to line 126, which harbor a single transgene copy, showed immunity to TYLCV, even in extreme conditions of infection (4-leaf-stage plants and 300 to many hundreds viruliferous whiteflies per plant during 60 days). Dot blot hybridization of these plants showed no TYLCV DNA presence 60 days after inoculation. Small interfering RNA molecules were detected in both inoculated and non-inoculated plants from line 126. These transgenic tomato plants of the otherwise very TYLCV-susceptible Campbell-28 tomato cultivar, are the first report of resistance to a plant DNA virus obtained by the use of the intron-hairpin RNA approach. PMID:16779645

  3. A Single Mutation in the Gene Responsible for the Mucoid Phenotype of Bifidobacterium animalis subsp. lactis Confers Surface and Functional Characteristics

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Álvarez-Martín, Pablo; López, Patricia; Martínez-Álvarez, Noelia; Delley, Michele; Martí, Marc; Varela, Encarna; Suárez, Ana; Antolín, María; Guarner, Francisco; Berger, Bernard; Ruas-Madiedo, Patricia

    2015-01-01

    Exopolysaccharides (EPS) are extracellular carbohydrate polymers synthesized by a large variety of bacteria. Their physiological functions have been extensively studied, but many of their roles have not yet been elucidated. We have sequenced the genomes of two isogenic strains of Bifidobacterium animalis subsp. lactis that differ in their EPS-producing phenotype. The original strain displays a nonmucoid appearance, and the mutant derived thereof has acquired a mucoid phenotype. The sequence analysis of their genomes revealed a nonsynonymous mutation in the gene Balat_1410, putatively involved in the elongation of the EPS chain. By comparing a strain from which this gene had been deleted with strains containing the wild-type and mutated genes, we were able to show that each strain displays different cell surface characteristics. The mucoid EPS synthesized by the strain harboring the mutation in Balat_1410 provided higher resistance to gastrointestinal conditions and increased the capability for adhesion to human enterocytes. In addition, the cytokine profiles of human peripheral blood mononuclear cells and ex vivo colon tissues suggest that the mucoid strain could have higher anti-inflammatory activity. Our findings provide relevant data on the function of Balat_1410 and reveal that the mucoid phenotype is able to alter some of the most relevant functional properties of the cells. PMID:26362981

  4. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest

    PubMed Central

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K.

    2016-01-01

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars. PMID:27682162

  5. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract.

    PubMed

    Hwang, Daw-Yang; Kohl, Stefan; Fan, Xueping; Vivante, Asaf; Chan, Stefanie; Dworschak, Gabriel C; Schulz, Julian; van Eerde, Albertien M; Hilger, Alina C; Gee, Heon Yung; Pennimpede, Tracie; Herrmann, Bernhard G; van de Hoek, Glenn; Renkema, Kirsten Y; Schell, Christoph; Huber, Tobias B; Reutter, Heiko M; Soliman, Neveen A; Stajic, Natasa; Bogdanovic, Radovan; Kehinde, Elijah O; Lifton, Richard P; Tasic, Velibor; Lu, Weining; Hildebrandt, Friedhelm

    2015-08-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans. PMID:26026792

  6. Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits.

    PubMed

    Wang, Wubin; Liu, Meifeng; Wang, Yufeng; Li, Xuliang; Cheng, Shixuan; Shu, Liping; Yu, Zheping; Kong, Jiejie; Zhao, Tuanjie; Gai, Junyi

    2016-01-01

    Annual wild soybean (Glycine soja Sieb. and Zucc.), the wild progenitor of the cultivated soybean [Glycine max (L.) Merr.], is valuable for improving the later. The construction of a linkage map is crucial for studying the genetic differentiation between these species, but marker density is the main factor limiting the accuracy of such a map. Recent advances in next-generation sequencing technologies allow for the generation of high-density linkage maps. Here, two sets of inter-specific recombinant inbred line populations, named NJIRNP and NJIR4P, composed of 284 and 161 lines, respectively, were generated from the same wild male parent, PI 342618B, and genotyped by restriction-site-associated DNA sequencing. Two linkage maps containing 5,728 and 4,354 bins were constructed based on 89,680 and 80,995 single nucleotide polymorphisms, spanning a total genetic distance of 2204.6 and 2136.7 cM, with an average distance of 0.4 and 0.5 cM between neighboring bins in NJRINP and NJRI4P, respectively. With the two maps, seven well-studied loci, B1 for seed bloom; G and I for seed coat color; E2, E3, qDTF16.1 and two linked FLOWERING LOCUS T for days to flowering, were detected. In addition, two SB and two DTF loci were newly identified in wild soybean. Using two high-density maps, the mapping resolution was enhanced, e.g., G was narrowed to a region of 0.4 Mb on chromosome 1, encompassing 54 gene models, among which only Glyma01g40590 was predicted to be involved in anthocyanin accumulation, and its interaction with I was verified in both populations. In addition, five genes, Glyma16g03030, orthologous to Arabidopsis Phytochrome A (PHYA); Glyma13g28810, Glyma13g29920, and Glyma13g30710 predicted to encode the APETALA 2 (AP2) domain; and Glyma02g00300, involved in response to red or far red light, might be candidate DTF genes. Our results demonstrate that RAD-seq is a cost-effective approach for constructing high-density and high-quality bin maps that can be used to map QTLs/genes

  7. Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits

    PubMed Central

    Wang, Wubin; Liu, Meifeng; Wang, Yufeng; Li, Xuliang; Cheng, Shixuan; Shu, Liping; Yu, Zheping; Kong, Jiejie; Zhao, Tuanjie; Gai, Junyi

    2016-01-01

    Annual wild soybean (Glycine soja Sieb. and Zucc.), the wild progenitor of the cultivated soybean [Glycine max (L.) Merr.], is valuable for improving the later. The construction of a linkage map is crucial for studying the genetic differentiation between these species, but marker density is the main factor limiting the accuracy of such a map. Recent advances in next-generation sequencing technologies allow for the generation of high-density linkage maps. Here, two sets of inter-specific recombinant inbred line populations, named NJIRNP and NJIR4P, composed of 284 and 161 lines, respectively, were generated from the same wild male parent, PI 342618B, and genotyped by restriction-site-associated DNA sequencing. Two linkage maps containing 5,728 and 4,354 bins were constructed based on 89,680 and 80,995 single nucleotide polymorphisms, spanning a total genetic distance of 2204.6 and 2136.7 cM, with an average distance of 0.4 and 0.5 cM between neighboring bins in NJRINP and NJRI4P, respectively. With the two maps, seven well-studied loci, B1 for seed bloom; G and I for seed coat color; E2, E3, qDTF16.1 and two linked FLOWERING LOCUS T for days to flowering, were detected. In addition, two SB and two DTF loci were newly identified in wild soybean. Using two high-density maps, the mapping resolution was enhanced, e.g., G was narrowed to a region of 0.4 Mb on chromosome 1, encompassing 54 gene models, among which only Glyma01g40590 was predicted to be involved in anthocyanin accumulation, and its interaction with I was verified in both populations. In addition, five genes, Glyma16g03030, orthologous to Arabidopsis Phytochrome A (PHYA); Glyma13g28810, Glyma13g29920, and Glyma13g30710 predicted to encode the APETALA 2 (AP2) domain; and Glyma02g00300, involved in response to red or far red light, might be candidate DTF genes. Our results demonstrate that RAD-seq is a cost-effective approach for constructing high-density and high-quality bin maps that can be used to map QTLs/genes

  8. Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits

    PubMed Central

    Wang, Wubin; Liu, Meifeng; Wang, Yufeng; Li, Xuliang; Cheng, Shixuan; Shu, Liping; Yu, Zheping; Kong, Jiejie; Zhao, Tuanjie; Gai, Junyi

    2016-01-01

    Annual wild soybean (Glycine soja Sieb. and Zucc.), the wild progenitor of the cultivated soybean [Glycine max (L.) Merr.], is valuable for improving the later. The construction of a linkage map is crucial for studying the genetic differentiation between these species, but marker density is the main factor limiting the accuracy of such a map. Recent advances in next-generation sequencing technologies allow for the generation of high-density linkage maps. Here, two sets of inter-specific recombinant inbred line populations, named NJIRNP and NJIR4P, composed of 284 and 161 lines, respectively, were generated from the same wild male parent, PI 342618B, and genotyped by restriction-site-associated DNA sequencing. Two linkage maps containing 5,728 and 4,354 bins were constructed based on 89,680 and 80,995 single nucleotide polymorphisms, spanning a total genetic distance of 2204.6 and 2136.7 cM, with an average distance of 0.4 and 0.5 cM between neighboring bins in NJRINP and NJRI4P, respectively. With the two maps, seven well-studied loci, B1 for seed bloom; G and I for seed coat color; E2, E3, qDTF16.1 and two linked FLOWERING LOCUS T for days to flowering, were detected. In addition, two SB and two DTF loci were newly identified in wild soybean. Using two high-density maps, the mapping resolution was enhanced, e.g., G was narrowed to a region of 0.4 Mb on chromosome 1, encompassing 54 gene models, among which only Glyma01g40590 was predicted to be involved in anthocyanin accumulation, and its interaction with I was verified in both populations. In addition, five genes, Glyma16g03030, orthologous to Arabidopsis Phytochrome A (PHYA); Glyma13g28810, Glyma13g29920, and Glyma13g30710 predicted to encode the APETALA 2 (AP2) domain; and Glyma02g00300, involved in response to red or far red light, might be candidate DTF genes. Our results demonstrate that RAD-seq is a cost-effective approach for constructing high-density and high-quality bin maps that can be used to map QTLs/genes

  9. Apollo 13 Facts: Press Conference

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flight Director Gene Krantz gives an overview of the Apollo 13 mission as corrections are made in the power down checklist, passive thermal control, and orbital burns after the spacecraft runs into problems. He then answers questions from the press with the help of Tony England, Bill Peters, and Dick Thorson. Footage then shows newspaper headlines 'We're Not Concerned' and 'Getting Ready to Land' as people watch televisions to see if the astronauts landed safely. The press conference section of this video has sound, the headlines section does not.

  10. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    SciTech Connect

    Sun Xingmin . E-mail: Xingmin_Sun@brown.edu; Goehler, Andre; Heller, Knut J. . E-mail: knut.heller@bfel.de; Neve, Horst

    2006-06-20

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10{sup 9} phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages.

  11. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

    PubMed

    Zheng, Si-Jun; Henken, Betty; de Maagd, Ruud A; Purwito, Agus; Krens, Frans A; Kik, Chris

    2005-06-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation. An average transformation frequency of 3.68% was obtained from two shallot cultivars, Tropix and Kuning. After transfer of the in vitro plants to the greenhouse 69% of the cry1Ca and 39% of the H04 transgenic shallots survived the first half year. After one year of cultivation in the greenhouse the remaining cry1Ca and H04 transgenic plants grew vigorously and had a normal bulb formation, although the cry1Ca transgenic plants (and controls) had darker green leaves compared to their H04 counterparts. Standard PCR, adaptor ligation PCR and Southern analyses confirmed the integration of T-DNA into the shallot genome. Northern blot and ELISA analyses revealed expression of the cry1Ca or H04 gene in the transgenic plants. The amount of Cry1Ca expressed in transgenic plants was higher than the expression levels of H04 (0.39 vs. 0.16% of the total soluble leaf proteins, respectively). There was a good correlation between protein expression and beet armyworm resistance. Cry1Ca or H04 gene expression of at least 0.22 or 0.08% of the total soluble protein in shallot leaves was sufficient to give a complete resistance against beet armyworm. This confirms earlier observations that the H04 toxin is more toxic to S. exigua than the Cry1Ca toxin. The results from this study suggest that the cry1Ca and H04 transgenic shallots developed could be used for introducing resistance to beet armyworm in (sub) tropical shallot.

  12. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

    PubMed

    Zheng, Si-Jun; Henken, Betty; de Maagd, Ruud A; Purwito, Agus; Krens, Frans A; Kik, Chris

    2005-06-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation. An average transformation frequency of 3.68% was obtained from two shallot cultivars, Tropix and Kuning. After transfer of the in vitro plants to the greenhouse 69% of the cry1Ca and 39% of the H04 transgenic shallots survived the first half year. After one year of cultivation in the greenhouse the remaining cry1Ca and H04 transgenic plants grew vigorously and had a normal bulb formation, although the cry1Ca transgenic plants (and controls) had darker green leaves compared to their H04 counterparts. Standard PCR, adaptor ligation PCR and Southern analyses confirmed the integration of T-DNA into the shallot genome. Northern blot and ELISA analyses revealed expression of the cry1Ca or H04 gene in the transgenic plants. The amount of Cry1Ca expressed in transgenic plants was higher than the expression levels of H04 (0.39 vs. 0.16% of the total soluble leaf proteins, respectively). There was a good correlation between protein expression and beet armyworm resistance. Cry1Ca or H04 gene expression of at least 0.22 or 0.08% of the total soluble protein in shallot leaves was sufficient to give a complete resistance against beet armyworm. This confirms earlier observations that the H04 toxin is more toxic to S. exigua than the Cry1Ca toxin. The results from this study suggest that the cry1Ca and H04 transgenic shallots developed could be used for introducing resistance to beet armyworm in (sub) tropical shallot. PMID:16145834

  13. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity.

    PubMed

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun; Cui, Liwang; Salanti, Ali; Winzeler, Elizabeth A; Gowda, D Channe

    2014-12-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several parasite proteins, including KAHRP and PfEMP3, play important roles in the cytoadherence by mediating the clustering of PfEMP1 in rigid knoblike structures on the infected erythrocyte surface. The lack of a subtelomeric region of chromosome 2 that contains kahrp and pfemp3 causes reduced cytoadherence. In this study, microarray transcriptome analysis showed that the absence of a gene cluster, comprising kahrp, pfemp3, and four other genes, results in the loss of parasitized erythrocytes adhering to chondroitin 4-sulfate (C4S). The role of one of these genes, PF3D7_0201600/PFB0080c, which encodes PHISTb (Plasmodium helical interspersed subtelomeric b) domain-containing RESA-like protein 1 expressed on the infected erythrocyte surface, was investigated. Disruption of PFB0080c resulted in increased var2csa transcription and VAR2CSA surface expression, leading to higher C4S-binding capacity of infected erythrocytes. Further, PFB0080c-knock-out parasites stably maintained the C4S adherence through many generations of growth. Although the majority of PFB0080c-knock-out parasites bound to C4S even after culturing for 6 months, a minor population bound to both C4S and CD36. These results strongly suggest that the loss of PFB0080c markedly compromises the var gene switching process, leading to a marked reduction in the switching rate and additional PfEMP1 expression by a minor population of parasites. PFB0080c interacts with VAR2CSA and modulates knob-associated Hsp40 expression. Thus, PFB0080c may regulate VAR2CSA expression through these processes. Overall, we conclude that PFB0080c regulates PfEMP1 expression and the parasite's cytoadherence.

  14. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum).

    PubMed

    Chen, Li-Hong; Zhang, Bo; Xu, Zi-Qin

    2008-02-01

    Agriculture productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. In the present work, transgenic buckwheat plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiporter gene from Arabidopsis thaliana, were regenerated after transformation with Agrobacterium tumefaciens. These plants were able to grow, flower and accumulate more rutin in the presence of 200 mmol/l sodium chloride. Moreover, the content of important nutrients in buckwheat was not affected by the high salinity of the soil. These results demonstrated the potential value of these transgenic plants for agriculture use in saline soil.

  15. More about the Viking hypothesis of origin of the delta32 mutation in the CCR5 gene conferring resistance to HIV-1 infection.

    PubMed

    Lucotte, Gérard; Dieterlen, Florent

    2003-11-01

    The chemokine receptor CCR5 constitutes the major coreceptor for the HIV-1, because a mutant allele of the CCR5 gene named delta32 was shown to provide to homozygotes a strong resistance against infection. In the present study the frequency of the delta32 allele was collected in 36 European populations and in Cyprus, and the highest allele frequencies were found in Nordic countries. We constructed an allele map of delta32 frequencies in Europe; the map is in accordance to the Vikings hypothesis of the origin of the mutation and his dissemination during the eighth to the tenth centuries.

  16. ISMB Conference Proceedings

    SciTech Connect

    Teresa, Gaasterand; Martin, Vingron

    2011-07-01

    This special issue comprises the papers accepted for presentation at the 19th Annual International Conference on Intelligent Systems for Molecular Biology, joint with the 10th European Conference on Computational Biology, an official conference of the International Society for Computational Biology (ISCB; http://www.iscb.org). ISMB/ECCB 2011 (http://www.iscb.org/ismb2011/) will take place in Vienna, Austria, from July 17 through July 19, 2011; preceded during July 14–16 by eight 1- or 2- day Special Interest Group (SIG) meetings, three satellite meetings and nine half-day tutorials; and followed by two additional satellite meetings. The 48 papers in this volume were selected from 258 submitted papers. Submitted papers were assigned to 13 areas. Area Chairs led each topic area by selecting their area's program committee and overseeing the reviewing process. Many Area Chairs were new compared to 2010, and two completely new areas were added in 2011, ‘Data Visualization’ and ‘Mass Spectrometry and Proteomics’. Six papers for which Area Chairs were in conflict were reviewed under a ‘Conflicts Management’ section headed by the Proceedings Chairs; one such paper was accepted in ‘Bioimaging’. Areas, co-chairs and acceptance information are listed in Table 1. Compared to prior years, five mature topic areas had steady submissions, ‘Evolution and Comparative Genomics’, ‘Gene Regulation and Transcriptomics’, ‘Protein Structure and Function’, ‘Sequence Analysis’, ‘Text Mining’. Two areas newer to ISMB were underrepresented this year, ‘Bioimaging’ and ‘Disease Models and Epidemiology’. One area doubled, ‘Applied Bioinformatics’, renamed from last year's ‘Other Bioinformatics Applications’; and one tripled, ‘Protein Interactions and Molecular Networks’. Across the areas, 326 members of the bioinformatics community provided reviews. Most papers received three reviews and several received four or more. There was

  17. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis.

    PubMed

    Conacci-Sorrell, Maralice E; Ben-Yedidia, Tamar; Shtutman, Michael; Feinstein, Elena; Einat, Paz; Ben-Ze'ev, Avri

    2002-08-15

    beta-catenin and plakoglobin (gamma-catenin) are homologous molecules involved in cell adhesion, linking cadherin receptors to the cytoskeleton. beta-catenin is also a key component of the Wnt pathway by being a coactivator of LEF/TCF transcription factors. To identify novel target genes induced by beta-catenin and/or plakoglobin, DNA microarray analysis was carried out with RNA from cells overexpressing either protein. This analysis revealed that Nr-CAM is the gene most extensively induced by both catenins. Overexpression of either beta-catenin or plakoglobin induced Nr-CAM in a variety of cell types and the LEF/TCF binding sites in the Nr-CAM promoter were required for its activation by catenins. Retroviral transduction of Nr-CAM into NIH3T3 cells stimulated cell growth, enhanced motility, induced transformation, and produced rapidly growing tumors in nude mice. Nr-CAM and LEF-1 expression was elevated in human colon cancer tissue and cell lines and in human malignant melanoma cell lines but not in melanocytes or normal colon tissue. Dominant negative LEF-1 decreased Nr-CAM expression and antibodies to Nr-CAM inhibited the motility of B16 melanoma cells. The results indicate that induction of Nr-CAM transcription by beta-catenin or plakoglobin plays a role in melanoma and colon cancer tumorigenesis, probably by promoting cell growth and motility. PMID:12183361

  18. A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco

    PubMed Central

    Singh, Vijay Kumar; Mishra, Avinash; Haque, Intesaful; Jha, Bhavanath

    2016-01-01

    A salt- and drought-responsive novel gene SbSDR1 is predominantly localised to the nucleus, up-regulated under abiotic stresses and is involved in the regulation of metabolic processes. SbSDR1 showed DNA-binding activity to genomic DNA, microarray analysis revealed the upregulation of host stress-responsive genes and the results suggest that SbSDR1 acts as a transcription factor. Overexpression of SbSDR1 did not affect the growth and yield of transgenic plants in non-stress conditions. Moreover, the overexpression of SbSDR1 stimulates the growth of plants and enhances their physiological status by modulating the physiology and inhibiting the accumulation of reactive oxygen species under salt and osmotic stress. Transgenic plants that overexpressed SbSDR1 had a higher relative water content, membrane integrity and concentration of proline and total soluble sugars, whereas they showed less electrolyte leakage and lipid peroxidation than wild type plants under stress conditions. In field conditions, SbSDR1 plants recovered from stress-induced injuries and could complete their life cycle. This study suggests that SbSDR1 functions as a molecular switch and contributes to salt and osmotic tolerance at different growth stages. Overall, SbSDR1 is a potential candidate to be used for engineering salt and drought tolerance in crops without adverse effects on growth and yield. PMID:27550641

  19. CCR5 Gene Editing of Resting CD4+ T Cells by Transient ZFN Expression From HIV Envelope Pseudotyped Nonintegrating Lentivirus Confers HIV-1 Resistance in Humanized Mice

    PubMed Central

    Yi, Guohua; Choi, Jang Gi; Bharaj, Preeti; Abraham, Sojan; Dang, Ying; Kafri, Tal; Alozie, Ogechika; Manjunath, Manjunath N; Shankar, Premlata

    2014-01-01

    CCR5 disruption by zinc finger nucleases (ZFNs) is a promising method for HIV-1 gene therapy. However, successful clinical translation of this strategy necessitates the development of a safe and effective method for delivery into relevant cells. We used non-integrating lentivirus (NILV) for transient expression of ZFNs and pseudotyped the virus with HIV-envelope for targeted delivery to CD4+ T cells. Both activated and resting primary CD4+ T cells transduced with CCR5-ZFNs NILV showed resistance to HIV-1 infection in vitro. Furthermore, NILV transduced resting CD4+ T cells from HIV-1 seronegative individuals were resistant to HIV-1 challenge when reconstituted into NOD-scid IL2rγc null (NSG) mice. Likewise, endogenous virus replication was suppressed in NSG mice reconstituted with CCR5-ZFN–transduced resting CD4+ T cells from treatment naïve as well as ART-treated HIV-1 seropositive patients. Taken together, NILV pseudotyped with HIV envelope provides a simple and clinically viable strategy for HIV-1 gene therapy. PMID:25268698

  20. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    SciTech Connect

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  1. A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco.

    PubMed

    Singh, Vijay Kumar; Mishra, Avinash; Haque, Intesaful; Jha, Bhavanath

    2016-01-01

    A salt- and drought-responsive novel gene SbSDR1 is predominantly localised to the nucleus, up-regulated under abiotic stresses and is involved in the regulation of metabolic processes. SbSDR1 showed DNA-binding activity to genomic DNA, microarray analysis revealed the upregulation of host stress-responsive genes and the results suggest that SbSDR1 acts as a transcription factor. Overexpression of SbSDR1 did not affect the growth and yield of transgenic plants in non-stress conditions. Moreover, the overexpression of SbSDR1 stimulates the growth of plants and enhances their physiological status by modulating the physiology and inhibiting the accumulation of reactive oxygen species under salt and osmotic stress. Transgenic plants that overexpressed SbSDR1 had a higher relative water content, membrane integrity and concentration of proline and total soluble sugars, whereas they showed less electrolyte leakage and lipid peroxidation than wild type plants under stress conditions. In field conditions, SbSDR1 plants recovered from stress-induced injuries and could complete their life cycle. This study suggests that SbSDR1 functions as a molecular switch and contributes to salt and osmotic tolerance at different growth stages. Overall, SbSDR1 is a potential candidate to be used for engineering salt and drought tolerance in crops without adverse effects on growth and yield. PMID:27550641

  2. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November...

  3. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants

    PubMed Central

    Alavilli, Hemasundar; Awasthi, Jay Prakash; Rout, Gyana R.; Sahoo, Lingaraj; Lee, Byeong-ha; Panda, Sanjib Kumar

    2016-01-01

    We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.

  4. GhDRIN1, a novel drought-induced gene of upland cotton (Gossypium hirsutum L.) confers abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Dhandapani, Gurusamy; Lakshmi Prabha, Azhagiyamanavalan; Kanakachari, Mogilicherla; Phanindra, Mullapudi Lakshmi Venkata; Prabhakaran, Narayanasamy; Gothandapani, Sellamuthu; Padmalatha, Kethireddy Venkata; Solanke, Amolkumar U; Kumar, Polumetla Ananda

    2015-04-01

    A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco. PMID:25413882

  5. GhDRIN1, a novel drought-induced gene of upland cotton (Gossypium hirsutum L.) confers abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Dhandapani, Gurusamy; Lakshmi Prabha, Azhagiyamanavalan; Kanakachari, Mogilicherla; Phanindra, Mullapudi Lakshmi Venkata; Prabhakaran, Narayanasamy; Gothandapani, Sellamuthu; Padmalatha, Kethireddy Venkata; Solanke, Amolkumar U; Kumar, Polumetla Ananda

    2015-04-01

    A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco.

  6. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

    PubMed Central

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-01-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  7. Mutations in the Pseudomonas aeruginosa Needle Protein Gene pscF Confer Resistance to Phenoxyacetamide Inhibitors of the Type III Secretion System

    PubMed Central

    Bowlin, Nicholas O.; Williams, John D.; Knoten, Claire A.; Torhan, Matthew C.; Tashjian, Tommy F.; Li, Bing; Aiello, Daniel; Mecsas, Joan; Hauser, Alan R.; Peet, Norton P.; Bowlin, Terry L.

    2014-01-01

    The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates effector toxins into host cells, impeding the host's rapid innate immune response to infection. Inhibitors of T3SS may be useful as prophylactic or adjunctive therapeutic agents to augment the activity of antibiotics in P. aeruginosa infections, such as pneumonia and bacteremia. One such inhibitor, the phenoxyacetamide MBX 1641, exhibits very responsive structure-activity relationships, including striking stereoselectivity, in its inhibition of P. aeruginosa T3SS. These features suggest interaction with a specific, but unknown, protein target. Here, we identify the apparent molecular target by isolating inhibitor-resistant mutants and mapping the mutation sites by deep sequencing. Selection and sequencing of four independent mutants resistant to the phenoxyacetamide inhibitor MBX 2359 identified the T3SS gene pscF, encoding the needle apparatus, as the only locus of mutations common to all four strains. Transfer of the wild-type and mutated alleles of pscF, together with its chaperone and cochaperone genes pscE and pscG, to a ΔpscF P. aeruginosa strain demonstrated that each of the single-codon mutations in pscF is necessary and sufficient to provide secretion and translocation that is resistant to a variety of phenoxyacetamide inhibitor analogs but not to T3SS inhibitors with different chemical scaffolds. These results implicate the PscF needle protein as an apparent new molecular target for T3SS inhibitor discovery and suggest that three other chemically distinct T3SS inhibitors interact with one or more different targets or a different region of PscF. PMID:24468789

  8. Characterization of mutations in AlHK1 gene from Alternaria longipes: implication of limited function of two-component histidine kinase on conferring dicarboximide resistance.

    PubMed

    Luo, Yiyong; Yang, Jinkui; Zhu, Mingliang; Yan, Jinping; Mo, Minghe; Zhqng, Keqin

    2008-01-01

    Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive induction with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the induced Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92- amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

  9. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge.

    PubMed

    O'Donnell, Vivian; Holinka, Lauren G; Sanford, Brenton; Krug, Peter W; Carlson, Jolene; Pacheco, Juan M; Reese, Bo; Risatti, Guillermo R; Gladue, Douglas P; Borca, Manuel V

    2016-08-01

    African swine fever virus (ASFV) produces a contagious disease of domestic pigs that results in severe economic consequences to the swine industry. Control of the disease has been hampered by the unavailability of vaccines. We recently reported the development of two experimental vaccine strains (ASFV-G-Δ9GL and ASFV-G-ΔMGF) based on the attenuation of the highly virulent and epidemiologically relevant Georgia2007 isolate. Deletion of the 9GL gene or six genes of the MGF360/505 group produced two attenuated ASFV strains which were able to confer protection to animals when challenged with the virulent parental virus. Both viruses, although efficient in inducing protection, present concerns regarding their safety. In an attempt to solve this problem we developed a novel virus strain, ASFV-G-Δ9GL/ΔMGF, based on the deletion of all genes deleted in ASFV-G-Δ9GL and ASFV-G-ΔMGF. ASFV-G-Δ9GL/ΔMGF is the first derivative of a highly virulent ASFV field strain subjected to a double round of recombination events seeking to sequentially delete specific genes. ASFV-G-Δ9GL/ΔMGF showed a decreased ability to replicate in primary swine macrophage cultures relative to that of ASFV-G and ASFV-G-ΔMGF but similar to that of ASFV-G-Δ9GL. ASFV-G-Δ9GL/ΔMGF was attenuated when intramuscularly inoculated into swine, even at doses as high as 10(6) HAD50. Animals infected with doses ranging from 10(2) to 10(6) HAD50 did not present detectable levels of virus in blood at any time post-infection and they did not develop detectable levels of anti-ASFV antibodies. Importantly, ASFV-G-Δ9GL/ΔMGF does not induce protection against challenge with the virulent parental ASFV-G isolate. Results presented here suggest caution towards approaches involving genomic manipulations when developing rationally designed ASFV vaccine strains. PMID:27182007

  10. District Leadership Conference Planner.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual provides usable guidelines and planning forms and materials for planning district leadership conferences, which were designed and initiated in Washington State to meet the problems in student enrollment and, consequently, Distributive Education Clubs of America membership. The conferences have become a useful means to increase…

  11. [Conference Time Kit.

    ERIC Educational Resources Information Center

    National School Public Relations Association, Washington, DC.

    This multimedia kit, for use with and by teachers from kindergarten through the upper elementary grades, consists of four components: 1) a filmstrip for teachers; 2) the 1970 edition of a handbook, "Conference Time for Teachers and Parents"; 3) a filmstrip for parents; 4) a supporting parent information leaflet "How To Confer Successfully with…

  12. [Kweichow planned parenthood conference].

    PubMed

    1978-12-15

    On December 5th the Kweichow Provincial Planned Parenthood Leadership Group held its 1st conference to discuss the problems of planned parenthood in the province. Miao Chun-ting, deputy secretary of the provincial CCP committee and head of the provincial planned parenthood leadership group, presided over the conference.

  13. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  14. The Conference in Retrospect.

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1982-01-01

    Presents an overview of the 6th International Conference on Chemical Education held at the University of Maryland (August 9-14, 1981), focusing on such organizational activities as roster building, people activating, innovative publishing, resolution and recommendation drafting, conference infrastructure and managerial mode, hospitality center,…

  15. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes. Design/methodology/approach: A…

  16. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  17. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  18. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  19. Antibody Engineering and Therapeutics Conference

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Scott, Jamie; Larrick, James W; Plückthun, Andreas; Veldman, Trudi; Adams, Gregory P; Parren, Paul WHI; Chester, Kerry A; Bradbury, Andrew; Reichert, Janice M; Huston, James S

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Biology), who will discuss a systems approach for studying disease that is enabled by emerging technology; Douglas Lauffenburger (Massachusetts Institute of Technology), who will discuss systems analysis of cell communication network dynamics for therapeutic biologics design; David Baker (University of Washington), who will describe computer-based design of smart protein therapeutics; and William Schief (The Scripps Research Institute), who will discuss epitope-focused immunogen design.   In this preview of the conference, the workshop and session chairs share their thoughts on what conference participants may learn in sessions on: (1) three-dimensional structure antibody modeling; (2) identifying clonal lineages from next-generation data sets of expressed VH gene sequences; (3) antibodies in cardiometabolic medicine; (4) the effects of antibody gene variation and usage on the antibody response; (5) directed evolution; (6) antibody pharmacokinetics, distribution and off-target toxicity; (7) use of knowledge-based design to guide development of complementarity-determining regions and epitopes to engineer or elicit the desired antibody; (8) optimizing antibody formats for immunotherapy; (9) antibodies in a complex environment; (10) polyclonal, oligoclonal and bispecific antibodies; (11) antibodies to watch in 2014; and (12) polyreactive antibodies and polyspecificity.

  20. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.

    PubMed

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2014-03-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  1. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.

    PubMed

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2014-03-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  2. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism

    PubMed Central

    2010-01-01

    Background The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Results Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia suspension. Immunocytological analysis showed that Hpa1Xoo, expressed in T-34, accumulated as clustered particles along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes, ghAOX1, hin1, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliae. The up-regulations of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation. Conclusions Hpa1Xoo accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H2O2 as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this study suggest that the transformation of cotton with hpa1Xoo could be an effective approach for the development of cotton varieties with the improved resistance against soil

  3. Genes Conferring Copper Resistance in Sinorhizobium meliloti CCNWSX0020 Also Promote the Growth of Medicago lupulina in Copper-Contaminated Soil

    PubMed Central

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher

    2014-01-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  4. Genetic Association and Gene-Gene Interaction Reveal Genetic Variations in ADH1B, GSTM1 and MnSOD Independently Confer Risk to Alcoholic Liver Diseases in India

    PubMed Central

    Mukhopadhyay, Indranil; Chatterjee, Ankita; Das, Kausik; Bhowmik, Pradip; Das, Soumyajit; Basu, Priyadarshi; Santra, Amal K.; Datta, Simanti; Dhali, Gopal Krishna; Chowdhury, Abhijit; Banerjee, Soma

    2016-01-01

    Genetic susceptibility is an important modifier of clinical outcome and natural history of progression in Alcoholic liver disease (ALD). While the significance of ethnicity in this evolution is very clear, subtle inter-individual genetic variant(s) might be important and thus we investigated those in an Indian population. Fourteen markers were genotyped within two alcohol metabolism genes [Alcohol dehydrogenase (ADH) gene clusters (ADH1B and ADH1C) and Aldehyde dehydrogenase (ALDH2)], one microsomal ethanol oxidizing enzyme cytochrome p450 (CYP2E1) and three oxidative stress response (OSR) genes (MnSOD, GSTT1 and GSTM1) among 490 Bengali individuals (322 ALD and 168 control) from Eastern and North-Eastern India and validation was performed in a new cohort of 150 Bengali patients including 100 ALD and 50 advanced non-alcoholic steatohepatitis (NASH). Out of 14 genetic variants, carriage of 5 genotypes (rs2066701CC in ADH1B, rs1693425TT in ADH1C, rs4880TT in MnSOD and GSTT1/GSTM1 null, p-value <0.05) were noted significantly higher among ALD patients while inter or intra group gene-gene interaction analysis revealed that addition of risk genotype of any OSR gene enhanced the possibility of ALD synergistically. Multiple logistic regression analysis showed independent association of rs2066701CC, rs4880TT and GSTM1 null genotype with ALD while lower frequencies of those genotypes in advanced NASH patients further confirmed their causal relation to ALD. Thus these findings suggest that the three variants of ADH1C, MnSOD and GSTM1 can be used to identify individuals who are at high risk to develop ALD and may be helpful in proper management of Indian alcoholics. PMID:26937962

  5. Genetic Association and Gene-Gene Interaction Reveal Genetic Variations in ADH1B, GSTM1 and MnSOD Independently Confer Risk to Alcoholic Liver Diseases in India.

    PubMed

    Roy, Neelanjana; Dasgupta, Debanjali; Mukhopadhyay, Indranil; Chatterjee, Ankita; Das, Kausik; Bhowmik, Pradip; Das, Soumyajit; Basu, Priyadarshi; Santra, Amal K; Datta, Simanti; Dhali, Gopal Krishna; Chowdhury, Abhijit; Banerjee, Soma

    2016-01-01

    Genetic susceptibility is an important modifier of clinical outcome and natural history of progression in Alcoholic liver disease (ALD). While the significance of ethnicity in this evolution is very clear, subtle inter-individual genetic variant(s) might be important and thus we investigated those in an Indian population. Fourteen markers were genotyped within two alcohol metabolism genes [Alcohol dehydrogenase (ADH) gene clusters (ADH1B and ADH1C) and Aldehyde dehydrogenase (ALDH2)], one microsomal ethanol oxidizing enzyme cytochrome p450 (CYP2E1) and three oxidative stress response (OSR) genes (MnSOD, GSTT1 and GSTM1) among 490 Bengali individuals (322 ALD and 168 control) from Eastern and North-Eastern India and validation was performed in a new cohort of 150 Bengali patients including 100 ALD and 50 advanced non-alcoholic steatohepatitis (NASH). Out of 14 genetic variants, carriage of 5 genotypes (rs2066701CC in ADH1B, rs1693425TT in ADH1C, rs4880TT in MnSOD and GSTT1/GSTM1 null, p-value <0.05) were noted significantly higher among ALD patients while inter or intra group gene-gene interaction analysis revealed that addition of risk genotype of any OSR gene enhanced the possibility of ALD synergistically. Multiple logistic regression analysis showed independent association of rs2066701CC, rs4880TT and GSTM1 null genotype with ALD while lower frequencies of those genotypes in advanced NASH patients further confirmed their causal relation to ALD. Thus these findings suggest that the three variants of ADH1C, MnSOD and GSTM1 can be used to identify individuals who are at high risk to develop ALD and may be helpful in proper management of Indian alcoholics.

  6. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions.

    PubMed Central

    Masuta, C; Tanaka, H; Uehara, K; Kuwata, S; Koiwai, A; Noma, M

    1995-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin. Images Fig. 1 Fig. 4 Fig. 7 PMID:11607550

  7. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses.

    PubMed

    Zhang, Xuan; Lu, Songchong; Jiang, Changhua; Wang, Yaofeng; Lv, Bo; Shen, Jiabin; Ming, Feng

    2014-07-01

    The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR. Overexpression of RcLEA in Escherichia coli improved its growth performance compared with the control under high temperature, low temperature, NaCl and oxidative stress conditions. RcLEA was also overexpressed in Arabidopsis thaliana. The transgenic Arabidopsis showed better growth after high and low temperature treatment and exhibited less peroxide according to 3, 3-diaminobenzidine staining. However, RcLEA did not improve the tolerance to NaCl or osmotic stress in Arabidopsis. In vitro analysis showed that RcLEA was able to prevent the freeze-thaw-induced inactivation or heat-induced aggregation of various substrates, such as lactate dehydrogenase and citrate synthase. It also protected the proteome of E. coli from denaturation when the proteins were heat-shocked or subjected to acidic conditions. Furthermore, bimolecular fluorescence complementation assays suggested that RcLEA proteins function in a complex manner by making the form of homodimers. PMID:24760474

  8. Development and validation of DNA markers linked to Sdvy-1, a common bean gene conferring resistance to the yellowing strain of Soybean dwarf virus.

    PubMed

    Yamashita, Yoko; Takeuchi, Toru; Okuyama, Masataka; Sasaki, Jun; Onodera, Kakumasa; Sato, Mikako; Souma, Chihiro; Ebe, Shigehiko

    2014-12-01

    The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, 'Oofuku', is resistant to SbDV-YS in inoculation tests. We crossed 'Oofuku' with an elite cultivar, 'Taisho-Kintoki', which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed 'Toiku-B79' and 'Toiku-B80', the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of 'Taisho-Kintoki'. The NILs had similar growth habit, maturity date and seed shape to those of 'Taisho-Kintoki'. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than 'Taisho-Kintoki'. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean. PMID:25914596

  9. Rapid, high-throughput, multiplex, real-time PCR for identification of mutations in the cyp51A gene of Aspergillus fumigatus that confer resistance to itraconazole.

    PubMed

    Balashov, Sergey V; Gardiner, Rebecca; Park, Steven; Perlin, David S

    2005-01-01

    Aspergillus fumigatus is an important cause of life-threatening invasive fungal disease in patients with compromised immune systems. Resistance to itraconazole in A. fumigatus is closely linked to amino acid substitutions in Cyp51A that replace Gly54. In an effort to develop a new class of molecular diagnostic assay that can rapidly assess drug resistance, a multiplexed assay was established. This assay uses molecular beacons corresponding to the wild-type cyp51A gene and seven mutant alleles encoding either Arg54, Lys54, Val54, Trp54, or Glu54. Molecular beacon structure design and real-time PCR conditions were optimized to increase the assay specificity. The multiplex assay was applied to the analysis of chromosomal DNA samples from a collection of 48 A. fumigatus clinical and laboratory-derived isolates, most with reduced susceptibility to itraconazole. The cyp51A allelic identities for codon 54 were established for all of the strains tested, and mutations altering Gly54 in 23 strains were revealed. These mutations included G(54)W (n = 1), G(54)E (n = 12), G(54)K (n = 3), G(54)R (n = 3), and G(54)V (n = 4). Molecular beacon assay results were confirmed by DNA sequencing. Multiplex real-time PCR with molecular beacons is a powerful technique for allele differentiation and analysis of resistance mutations that is dynamic and suitable for rapid high-throughput assessment of drug resistance.

  10. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  11. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2aL174Q rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2aL174Q rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2aL174Q rats. Sv2aL174Q rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2aL174Q rats. In vivo microdialysis study showed that the Sv2aL174Q mutation preferentially reduced high K+ (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  12. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release.

    PubMed

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2a(L174Q) rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2a(L174Q) rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2a(L174Q) rats. Sv2a(L174Q) rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2a(L174Q) rats. In vivo microdialysis study showed that the Sv2a(L174Q) mutation preferentially reduced high K(+) (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  13. Replacing the Promoter of the Murine Gene Encoding P-selectin with the Human Promoter Confers Human-like Basal and Inducible Expression in Mice.

    PubMed

    Liu, Zhenghui; Zhang, Nan; Shao, Bojing; Panicker, Sumith R; Fu, Jianxin; McEver, Rodger P

    2016-01-15

    In humans and mice, megakaryocytes/platelets and endothelial cells constitutively synthesize P-selectin and mobilize it to the plasma membrane to mediate leukocyte rolling during inflammation. TNF-α, interleukin 1β, and LPS markedly increase P-selectin mRNA in mice but decrease P-selectin mRNA in humans. Transgenic mice bearing the entire human SELP gene recapitulate basal and inducible expression of human P-selectin and reveal human-specific differences in P-selectin function. Differences in the human SELP and murine Selp promoters account for divergent expression in vitro, but their significance in vivo is not known. Here we generated knockin mice that replace the 1.4-kb proximal Selp promoter with the corresponding SELP sequence (Selp(KI)). Selp(KI) (/) (KI) mice constitutively expressed more P-selectin on platelets and more P-selectin mRNA in tissues but only slightly increased P-selectin mRNA after injection of TNF-α or LPS. Consistent with higher basal expression, leukocytes rolled more slowly on P-selectin in trauma-stimulated venules of Selp(KI) (/) (KI) mice. However, TNF-α did not further reduce P-selectin-dependent rolling velocities. Blunted up-regulation of P-selectin mRNA during contact hypersensitivity reduced P-selectin-dependent inflammation in Selp(KI) (/-) mice. Higher basal P-selectin in Selp(KI) (/) (KI) mice compensated for this defect. Therefore, divergent sequences in a short promoter mediate most of the functionally significant differences in expression of human and murine P-selectin in vivo.

  14. The -141C Ins/Del and Taq1A polymorphism in the dopamine D2 receptor gene may confer susceptibility to schizophrenia in Asian populations.

    PubMed

    Wang, Yurong; Liu, Li; Xin, Lihong; Fan, Dazhi; Ding, Ning; Hu, Yanting; Cai, Guoqi; Wang, Li; Xia, Qing; Li, Xiaona; Yang, Xiao; Zou, Yanfeng; Pan, Faming

    2016-08-01

    It has been reported that two single nucleotide polymorphisms (SNP) Taq1A and -141C Ins/Del in the DRD2 gene may be associated with susceptibility to schizophrenia. Due to inconclusive and mixed results, a meta-analysis was conducted to further clarify the relationship between the two SNP and schizophrenia susceptibility. A systematic literature search for the association of these two SNP with schizophrenia susceptibility was conducted using PubMed, ScienceDirect, Chinese Biomedical Literature Database, and Chinese National Knowledge Infrastructure. Odds ratios (OR) with 95% confidence intervals (CI) were used to assess the strength of the associations reported. A total of 5558 schizophrenic patients and 6792 healthy controls from 31 articles were included in this study. Evidence regarding the association between -141C Ins/Del polymorphism and schizophrenia was found in the allele frequency comparison (Ins versus Del: OR 1.29, 95% CI 1.06-1.57; p=0.01, Praw=0.1, PFalse Discovery Rate=0.023). In ethnic subgroup analysis, the result revealed that the 141C Ins/Del polymorphism was associated with schizophrenia in all genetic models in Asians, but not in Caucasians. For Taq1A polymorphism, a significant association was found in the allele frequency (A1 versus A2: OR 0.71, 95% CI 0.52-0.98, p=0.03). Stratification by ethnicity indicated an association between the Taq1A polymorphism and schizophrenia in Asians, but not Caucasians. The present study suggests that the -141C Ins/Del polymorphism carries a significantly increased risk of schizophrenia, while the Taq1A polymorphism carries a significantly decreased risk of schizophrenia susceptibility in Asians.

  15. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize.

    PubMed

    Liu, Xiuxia; Zhai, Shumei; Zhao, Yajie; Sun, Baocheng; Liu, Cheng; Yang, Aifang; Zhang, Juren

    2013-05-01

    Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.

  16. A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid.

    PubMed

    Klingler, John P; Nair, Ramakrishnan M; Edwards, Owain R; Singh, Karam B

    2009-01-01

    Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in defence against insects. Reference genotype A17 of Medicago truncatula Gaertn., a model legume, responds to aphids of the genus Acyrthosiphon with necrotic lesions resembling a HR. In this study, the biochemical nature of this response, its mode of inheritance, and its relationship with defence against aphids were investigated. The necrotic lesion phenotype and resistance to the bluegreen aphid (BGA, Acyrthosiphon kondoi Shinji) and the pea aphid (PA, Acyrthosiphon pisum (Harris)) were analysed using reference genotypes A17 and A20, their F(2) progeny and recombinant inbred lines. BGA-induced necrotic lesions co-localized with the production of H(2)O(2), consistent with an oxidative burst widely associated with hypersensitivity. This HR correlated with stronger resistance to BGA in A17 than in A20; these phenotypes cosegregated as a semi-dominant gene, AIN (Acyrthosiphon-induced necrosis). In contrast to BGA, stronger resistance to PA in A17, compared with A20, did not cosegregate with a PA-induced HR. The AIN locus resides in a cluster of sequences predicted to encode the CC-NBS-LRR subfamily of resistance proteins. AIN-mediated resistance presents a novel opportunity to use a model plant and model aphid to study the role of the HR in defence responses to phloem-feeding insects. PMID:19690018

  17. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato.

    PubMed

    Hasan, Md Kamrul; Liu, Congcong; Wang, Fanan; Ahammed, Golam Jalal; Zhou, Jie; Xu, Ming-Xing; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-01

    Glutathione (GSH) plays a critical role in plant growth, development and responses to stress. However, the mechanism by which GSH regulates tolerance to cadmium (Cd) stress still remains unclear. Here we show that inhibition of GSH biosynthesis by buthionine sulfoximine (BSO) aggravated Cd toxicity by increasing accumulation of reactive oxygen species (ROS) and reducing contents of nitric oxide (NO) and S-nitrosothiol (SNO) in tomato roots. In contrast, exogenous GSH alleviated Cd toxicity by substantially minimizing ROS accumulation and increasing contents of NO and SNO, and activities of antioxidant enzymes that eventually reduced oxidative stress. GSH-induced enhancement in Cd tolerance was closely associated with the upregulation of transcripts of several transcription factors such as ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR 1 (ERF1), ERF2, MYB1 TRANSCRIPTION FACTOR- AIM1 and R2R3-MYB TRANSCRIPTION FACTOR- AN2, and some stress response genes. In addition, GSH modulated the cellular redox balance through maintaining increased GSH: GSSG and AsA: DHA ratios, and also increased phytochelatins contents. Nonetheless, GSH-induced alleviation of Cd phytotoxicity was also associated with increased sequestration of Cd into cell walls and vacuoles but not with Cd accumulation. Under Cd stress, while treatment with BSO slightly decreased vacuolar fraction of Cd, combined treatment with BSO and GSH noticeably increased that fraction. Our results suggest that GSH increases tomato tolerance to Cd stress not only by promoting the chelation and sequestration of Cd but also by stimulating NO, SNO and the antioxidant system through a redox-dependent mechanism. PMID:27472435

  18. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1.248 Section 1.248 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a)...

  19. Interfacing microbiology and biotechnology. Conference abstracts

    SciTech Connect

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  20. Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato

    PubMed Central

    Li, Jinhua; Yu, Chuying; Wu, Hua; Luo, Zhidan; Ouyang, Bo; Cui, Long; Zhang, Junhong; Ye, Zhibiao

    2015-01-01

    Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 (‘GRAS protein Lacking the DELLA domain’) and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1. PMID:25680796

  1. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  2. Conference Summary Final Remarks

    NASA Astrophysics Data System (ADS)

    Greiner, Walter

    2007-05-01

    Finally we come to the last talk. The end of the Conference is near! I try to reflect on an interesting Conference, with many different - diverse - topics and 5 parallel afternoon sessions. How to solve this difficulty? I do it my way and present a selection of what I personally found interesting. I illustrate these topics with the help of slides which are borrowed from various speakers at the conference. There are outstanding problems, which will also find attention and interest if explained to non-nuclear physicists, common people. I will address four such topics which were were discussed at this conference: Heavy-Ion Cancer Therapy Extension of the Periodic Table - Superheavy Elements Nuclear Astrophysics Hot compressed elementary matter - Production - Phases

  3. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  4. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  5. Conference scene: DGVS spring conference 2009.

    PubMed

    Kolligs, Frank Thomas

    2009-10-01

    The 3rd annual DGVS Spring Conference of the German Society for Gastroenterology (Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten) was held at the Seminaris Campus Hotel in Berlin, Germany, on 8-9 May, 2009. The conference was organized by Roland Schmid and Matthias Ebert from the Technical University of Munich, Germany. The central theme of the meeting was 'translational gastrointestinal oncology: towards personalized medicine and individualized therapy'. The conference covered talks on markers for diagnosis, screening and surveillance of colorectal cancer, targets for molecular therapy, response prediction in clinical oncology, development and integration of molecular imaging in gastrointestinal oncology and translational research in clinical trial design. Owing to the broad array of topics and limitations of space, this article will focus on biomarkers, response prediction and the integration of biomarkers into clinical trials. Presentations mentioned in this summary were given by Matthias Ebert (Technical University of Munich, Germany), Esmeralda Heiden (Epigenomics, Berlin, Germany), Frank Kolligs (University of Munich, Germany), Florian Lordick (University of Heidelberg, Germany), Hans Jorgen Nielsen (University of Copenhagen, Denmark), Anke Reinacher-Schick (University of Bochum, Germany), Christoph Röcken (University of Berlin, Germany), Wolff Schmiegel (University of Bochum, Germany) and Thomas Seufferlein (University of Halle, Germany).

  6. High-level expression of a sweet potato sporamin gene promoter: beta-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements.

    PubMed

    Ohta, S; Hattori, T; Morikami, A; Nakamura, K

    1991-03-01

    Genes coding for sporamin, the most abundant protein of the tuberous root of the sweet potato, are expressed at a high levels in the stems of plantlets cultured axenically on sucrose-containing medium. Their expression is also induced in leaf-petiole explants by high concentrations of sucrose. A fusion gene comprising of the 1 kb 5' upstream region of the gSPO-A1 gene coding for the A-type sporamin and the coding sequence of bacterial beta-glucuronidase (GUS) was introduced into the tobacco genome by Agrobacterium-mediated transformation. Transgenic tobacco plants cultured axenically on sucrose-containing medium expressed GUS activity predominantly in their stems. Histochemical examination of GUS activity using a chromogenic substrate showed a distinct spatial pattern of GUS staining in the stem. Strong GUS activity was detected in the internal phloem of the vascular system and at the node, especially at the base of the axillary bud. Relatively weaker GUS activity was also detected in pith parenchyma. A 5' deletion of the promoter to nucleotide -305, relative to the transcription start site, did not alter significantly the level of GUS activity or the spatial pattern of GUS staining in the stem. However, further deletions to -237 and -192 resulted in a decrease in the level of GUS activity in the stem that occurred simultaneously with the loss of GUS staining in both the internal phloem and at the base of the axillary bud. However, plants with these deletion constructs still exhibited the predominant expression pattern of GUS activity in the stem and GUS staining in the pith parenchyma cells. Deletion to -94 completely abolished the expression of GUS activity. These results indicate that a sequence between -305 and -237 contains a cis-regulatory element(s) that is required for expression of the GUS reporter gene in both the internal phloem and at the base of the axillary bud, while a sequence between -192 and -94 contains a cis-acting element(s) that is required

  7. IL-1β (-511T/C) gene polymorphism not IL-1β (+3953T/C) and LT-α (+252A/G) gene variants confers susceptibility to visceral leishmaniasis.

    PubMed

    Moravej, Ali; Rasouli, Manoochehr; Kalani, Mehdi; Asaei, Sadaf; Kiany, Simin; Najafipour, Sohrab; Koohpayeh, Amin; Abdollahi, Abbas

    2012-06-01

    Lymphotoxin-α (LT-α) and interleukin-1beta (IL-1β) are proinflammatory cytokines playing important roles in immunity against Leishmania infection and the outcome of the disease. As cytokine productions are under the genetic control, this study tried to find any probable relationship between these cytokine gene polymorphisms and the susceptibility to visceral leishmaniasis in Iranian pediatric patients. Ninety-five pediatric patients involved with visceral leishmaniasis and 128 non-relative healthy people, from the same area as the patients, were genotyped for LT-α (+252A/G) and IL-1β (+3953T/C and -511T/C) gene polymorphisms using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). There was not found any significant differences in allele and genotype frequencies of LT-α (+252A/G) and IL-1β (+3953) among the study groups. However, the frequency of IL-1β -511TT genotype was higher in the controls (P = 0.0004) while the frequency of IL-1β -511CC genotype and C allele were higher in the patients (P = 0.008 and P = 0.00006, respectively). Furthermore, IL-1β CC (-511/+3953) haplotype was more frequent in VL patients compared with the controls (P = 0.0002) and the distribution of TT haplotype was higher in the controls compared with the patients (P = 0.003). In conclusion, based on the results, IL-1β -511C allele, CC genotype and CC (-511/+3953) haplotype could be considered as the susceptibility factors for visceral leishmaniasis while IL-1β -511TT genotype, T allele and TT haplotype (-511/+3953) might be counted as the influential factors for resistance to the disease.

  8. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9,...

  9. Cranfield Conference on Information Retrieval.

    ERIC Educational Resources Information Center

    Kuo, Franklin F.

    The Third Cranfield Conference on Mechanised Information Storage and Retrieval Systems was held on 20-23 July 1971 in Cranfield, England. The report describes a number of the key papers presented at this conference. (Author)

  10. Planning a Women's Studies Conference.

    ERIC Educational Resources Information Center

    Saul, Jean Rannells

    1992-01-01

    Describes the organization and implementation of a women's studies conference. Discusses fund raising, identifying speakers, developing publicity, local arrangement efforts, and providing hospitality. Includes nine recommendations and a suggested conference timeline. (CFR)

  11. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  12. Government Quality Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Government Quality Conference was an attempt to bring together executive organizations and senior individuals in the Federal Government that have a desire to improve productivity. It was designed to provide an exchange of ideas based on experience, and to encourage individual management initiatives to tap the capabilities of Federal employees.

  13. Conducting Telephone Conference IEPs

    ERIC Educational Resources Information Center

    Patterson, Philip Patrick; Petit, Constance; Williams, Shandelyn

    2007-01-01

    Synchronizing the availability of team members for Individual Education Plan (IEP) meetings can be a daunting task. Fortunately, the Individuals with Disabilities Education Improvement Act of 2004 permits alternative means of conducting such meetings. An example of an alternate means is a telephone conference, whereby parents communicate over the…

  14. Conference Rules, Part 1

    ERIC Educational Resources Information Center

    Kerber, Linda K.

    2008-01-01

    Most academic conferences are preceded by some effort to make the sessions different from the usual format, but the usual format overwhelmingly prevails. That is: Each panel discussion runs no longer than two hours, during which two, three, or four specialists stand at a lectern and talk. Sometimes they will read a prepared paper; sometimes they…

  15. International waste management conference

    SciTech Connect

    Not Available

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance.

  16. REGIONAL CONFERENCE SUMMARIES, 1966.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    AN AVERAGE OF 200 TEACHER EDUCATORS, STATE DIRECTORS, LAYMEN, AND REPRESENTATIVES OF VARIOUS AGENCIES ATTENDED EACH OF NINE REGIONAL CONFERENCES CONDUCTED THROUGHOUT THE UNITED STATES TO DISCUSS THE INFLUENCE OF SOCIAL AND ECONOMIC CHANGES AND PROBLEMS IN PLANNING AND CONDUCTING VOCATIONAL AND TECHNICAL EDUCATION PROGRAMS. MAJOR SPEECHES PRESENTED…

  17. Grammar! A Conference Report.

    ERIC Educational Resources Information Center

    King, Lid, Ed.; Boaks, Peter, Ed.

    Papers from a conference on the teaching of grammar, particularly in second language instruction, include: "Grammar: Acquisition and Use" (Richard Johnstone); "Grammar and Communication" (Brian Page); "Linguistic Progression and Increasing Independence" (Bernardette Holmes); "La grammaire? C'est du bricolage!" ("Grammar? That's Hardware!") (Barry…

  18. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  19. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  20. APPA 2011 Conference Highlights

    ERIC Educational Resources Information Center

    Facilities Manager, 2011

    2011-01-01

    This article presents highlights of APPA conference that was held on July 16-18, 2011. The highlights feature photos of 2011-2012 board of directors, outgoing senior regional representatives to the board, meritorious service award, APPA fellow, president's recognition and gavel exchange, and diamond business partner award.

  1. Creating Better Satellite Conferences.

    ERIC Educational Resources Information Center

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  2. Conference on Censorship.

    ERIC Educational Resources Information Center

    Meltzer, Milton; And Others

    In this collection of seven speeches from the University of Missouri Conference on Censorship, writers focus on the various aspects of censorship. Speeches are by (1) Milton Meltzer, who lauds those writers who were forced to battle with censors; (2) Enid Olson, who explores the censorship problems faced by teachers and school librarians; (3)…

  3. The interparliamentary conference

    SciTech Connect

    Not Available

    1990-01-01

    The purpose of this conference was to provide a forum for exchange of information on environmental problems with global origins and consequences. The areas of major concern included the following: global climate change; deforestation and desertification; preservation of biological diversity; safeguarding oceans and water resources; population growth; destruction of the stratospheric ozone layer; and sustainable development.

  4. Microbicides 2006 conference

    PubMed Central

    Ramjee, Gita; Shattock, Robin; Delany, Sinead; McGowan, Ian; Morar, Neetha; Gottemoeller, Megan

    2006-01-01

    Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities. PMID:17038196

  5. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  6. On the Conference Circuit.

    ERIC Educational Resources Information Center

    Tyckoson, David A.

    1987-01-01

    Summarizes three conference presentations on the effects of the economic climate on academic libraries in Iowa. These presentations focused on the impact of austerity budgets on collection development, library services and personnel, and possible management approaches to retrenchment in these areas. (CLB)

  7. Conference on Navajo Orthography.

    ERIC Educational Resources Information Center

    Ohannessian, Sirarpi; And Others

    This report on the Conference on Navajo Orthography, held in Albuquerque, New Mexico on May 2-3, 1969 constitutes a summary of the discussion and decisions of a meeting which was convened by the Center for Applied Linguistics under contract with the Bureau of Indian Affairs to agree on an orthography for the Navajo language. The immediate purpose…

  8. Report on the Conference.

    ERIC Educational Resources Information Center

    Brown, Ralph S.

    1983-01-01

    The themes of the 1982 annual conference of the American Association of University Professors are outlined. They include the importance of planning, selective versus across-the-board retrenchment strategies, definitions and problems of financial exigency, program reduction, and affirmative action claims. (MSE)

  9. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  10. A Conference of Hope.

    ERIC Educational Resources Information Center

    American Printing House for the Blind, Louisville, KY. Dept. of Educational Research.

    Presented are the proceedings of the First Historic Helen Keller World Conference on Services to Deaf-Blind Youths and Adults, held in New York City in September, 1977 on the theme "The Deaf-Blind Person in the Community." Reports have the following titles and authors: "Definition, Demography, Causes and Prevention of Deaf-Blindness; Finding and…

  11. IATUL Conference 1985.

    ERIC Educational Resources Information Center

    Information Services and Use, 1985

    1985-01-01

    Summarizes presentations at conference on theme "The future of information resources for science and technology and role of libraries": industrial and commercial use of national, regional, and university resources; balance between public- and private-sector resources; local access in national and regional context; access to information in…

  12. ALA Conference 2009: Chicago Hope

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    There is joy among those who have the funds to go to Chicago for the American Library Association (ALA) annual conference, July 9-15. Every librarian knows there is nothing better than a Chicago gathering, with the city's wonderful haunts, museums, restaurants, and fine memories of past conferences. The conference program covers nearly every…

  13. Summary: A Very Timely Conference

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary F. G.

    2012-04-01

    The conference poster includes a very apt phrase that describes a primary motivation for this conference: Time discovers truth. This aphorism, attributed to Seneca, was certainly affirmed by the many exciting talks and discussions at this conference, in both formal and informal settings.

  14. Energy Conferences and Symposia; (USA)

    SciTech Connect

    Osborne, J.H.; Simpson, W.F. Jr.

    1991-01-01

    Energy Conferences and Symposia, a monthly publication, was instituted to keep scientists, engineers, managers, and related energy professionals abreast of meetings sponsored by the Department of Energy (DOE) and by other technical associations. Announcements cover conference, symposia, workshops, congresses, and other formal meetings pertaining to DOE programmatic interests. Complete meeting information, including title, sponsor, and contact, is presented in the main section, which is arranged alphabetically by subject area. Within a subject, citations are sorted by beginning data of the meeting. New listings are indicated by a bullet after the conference number and DOE-sponsored conferences are indicated by a star. Two indexes are provided for cross referencing conference information. The Chronological Index lists conference titles by dates and gives the subject area where complete information they may be found. The Location Index is alphabetically sorted by the city where the conference will be held.

  15. Mississippi Climate & Hydrology Conference

    SciTech Connect

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  16. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  17. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  18. NSI conference support

    NASA Technical Reports Server (NTRS)

    Aaron, Susan

    1991-01-01

    One of the many services NSI provides as an extension of customer/user support is to attend major scientific conferences. The conference effort provides NASA/OSSA scientists with many benefits: (1) scientist get to see NSI in action; they utilize the network to read email, and have recently begun to demonstrate their scientific research to their colleagues; (2) scientist get an opportunity to meet and interact with NSI Staff, which gives scientists a chance to get status on their requirements, ask about network status, get acquainted with our procedures, and learn about services; and (3) scientists are exposed to networking in a larger sense; particularly by knowing about other NASA groups who provide valuable scientific resources over the Internet.

  19. Proceedings of the Second Annual Conference of the MidSouth Computational Biology and Bioinformatics Society

    PubMed Central

    Wren, Jonathan D; Slikker, William

    2005-01-01

    The MCBIOS 2004 conference brought together regional researchers and students in biology, computer science and bioinformatics on October 7th-9th 2004 to present their latest work. This editorial describes the conference itself and introduces the twelve peer-reviewed manuscripts accepted for publication in the Proceedings of the MCBIOS 2004 Conference. These manuscripts included new methods for analysis of high-throughput gene expression experiments, EST clustering, analysis of mass spectrometry data and genomic analysis PMID:16026594

  20. Genome sequencing conference II

    SciTech Connect

    Not Available

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  1. Moldova. Historic regional conference.

    PubMed

    Moshin, V

    1995-05-01

    The Directorate of Maternal and Child Health and the Family Planning Association of Moldova organized a regional conference, which was held October 18-19, 1994, in Kishinev, Moldova, with the support of the United Nations Population Fund (UNFPA), the World Health Organization (WHO), and the International Planned Parenthood Federation (IPPF). The conference,"Problems of Family Planning in Eastern Europe," was attended by approximately 400 Moldovan delegates of governmental and nongovernmental organizations (NGOs), and by 25 delegates from Romania, Russia, Belarus, the Ukraine, and Georgia. The President of Moldova and the Ministry of Public Health of Moldova gave their approval. The main objectives of the conference were to inform the public about the recommendations of the ICPD, to analyze the status of women's reproductive health and family planning in Eastern Europe, and to find ways of implementing the ICPD Plan of Action. Major problems identified during the conference were: 1) the social and economic problems facing most families; 2) the high rate of morbidity and mortality; 3) the decrease in birth rate; 4) the increase in abortions; 5) the rising incidence of venereal disease; and 6) the absence of an effective family planning system. It was agreed that cooperation between governments and NGOs is essential in designing population programs for each country. The following goals were set: 1) to provide populations with sufficient contraceptives; 2) to actively promote family planning concepts through the mass media; 3) to train specialists and to open family planning offices and centers; 4) to introduce sex education in the curricula of Pedagogical Institutes; and 5) to create national and regional statistical and sociological databases on population issues.

  2. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  3. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  4. Architecture of conference control functions

    NASA Astrophysics Data System (ADS)

    Kausar, Nadia; Crowcroft, Jon

    1999-11-01

    Conference control is an integral part in many-to-many communications that is used to manage and co-ordinate multiple users in conferences. There are different types of conferences which require different types of control. Some of the features of conference control may be user invoked while others are for internal management of a conference. In recent years, ITU (International Telecommunication Union) and IETF (Internet Engineering Task Force) have standardized two main models of conferencing, each system providing a set of conference control functionalities that are not easily provided in the other one. This paper analyzes the main activities appropriate for different types of conferences and presents an architecture for conference control called GCCP (Generic Conference Control Protocol). GCCP interworks different types of conferencing and provides a set of conference control functions that can be invoked by users directly. As an example of interworking, interoperation of IETF's SIP and ITU's H.323 call control functions have been examined here. This paper shows that a careful analysis of a conferencing architecture can provide a set of control functions essential for any group communication model that can be extensible if needed.

  5. Applied and Environmental Microbiology Gordon Research Conference

    SciTech Connect

    Wall, Judy D.

    2003-11-19

    The main objective of the Gordon Research Conference on Applied and Environmental Microbiology was to present and discuss new, fundamental research findings on microorganisms, their activities in the environment, their ecosystem-level effects, and their environmental or commercial applications. To accomplish this goal, knowledge of microbial diversity, interactions and population dynamics was required. The genomic basis of microbial processes, the cycling of naturally occurring and hazardous substances, and methodologies to assess the functional relationships of microorganisms in their habitats were essential for understanding the ecological consequences of microbial activities and the formulation of generalizing principles. In the last decade, molecular technology has revealed that microbial diversity is far more extensive than the limited view obtained from culturing procedures. Great advances in environmental microbiology have resulted from the development and application of molecular approaches to ecology and molecular evolution. A further surprise resulting from the application of these new tools is the blurring of the distinction between pathogenic traits versus those considered non-pathogenic. This year's conference addressed the issues of biodiversity, its development, and the impact of stress on gene selection and expression. In addition microbial metabolic versatility with toxins such as heavy metals, antibiotics, and organic pollutants were discussed. The nine session topics were (1) biodiversity and the bacterial species, (2) mechanisms of biodiversification, (3) biofilms in health and environment, (4) a genomic view of microbial response to stress, (5) microbial use of toxic metals, (6) microbial mineral formation and dissolution, (7) power and limitations of antimicrobials, (8) biodegradation of organic pollutants, and (9) astrobiology. The Conference had an international profile: the Conference Vice-Chair, Dr. Gerard Muyzer, was from The Nether lands

  6. Rural Energy Conference Project

    SciTech Connect

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  7. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  8. Networks Technology Conference

    NASA Technical Reports Server (NTRS)

    Tasaki, Keiji K. (Editor)

    1993-01-01

    The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.

  9. The 1993 Gordon Research Conference on Chronobiology

    NASA Technical Reports Server (NTRS)

    Schwartz, William J.

    1993-01-01

    The study of biological timekeeping is now at a particularly fertile stage, encompassing multiple levels of biological organization, recruiting a wide array of disciplines and methodologies and uniting a host of investigators. This report summarizes a research conference on Chronobiology. Some of the topics focused on transcriptional and translational mechanisms of circadian rhythmicity, with discussions of putative 'clock genes' in cyanobacteria, algae, fungi, fruitflies, and hamsters. Cellular analysis, with emphasis on photoreceptors in frogs, neurons in molluscs, and testis in moths was addressed. New methods for investigating the circadian clock in the suprachiasmatic nucleus were introduced.

  10. SVC 2003 Technical Conference Summary

    SciTech Connect

    Martin, Peter M.

    2003-07-01

    The 46th Annual Technical Conference of the Society of Vacuum Coaters was held in San Francisco May 2-8. All the world events apparently did not affect the attendance or the spirit of the attendees. The Conference was a huge success and very well attended. Many feel that it was the best Techcon yet. This year's Conference really raised the bar for the 47th Annual Technical Conference in Dallas next year. Congratulations go out to the program committee, board of directors, education committee, scholarship committee and Management Plus for a job well done. Excellent accommodations were provided by the San Francisco Marriott.

  11. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  12. Partnering for functional genomics research conference: Abstracts of poster presentations

    SciTech Connect

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  13. 2012 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 20-25, 2012

    SciTech Connect

    Timothy Donohue

    2012-07-25

    The Gordon Research Conference on MICROBIAL STRESS RESPONSE was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Gordon Research Conferences does not permit publication of meeting proceedings.

  14. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet

    PubMed Central

    Stahl, Dietmar J; Kloos, Dorothee U; Hehl, Reinhard

    2004-01-01

    Background Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation. Results Suppression Subtractive Hybridization (SSH) was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12) were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet. Conclusions This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed. PMID:15579211

  15. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agreements disposing of matters in dispute; or (6) Ways to expedite disposition of the case or to facilitate settlement of the dispute, including, if the parties and the Board agree, the use of alternative dispute... APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  16. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agreements disposing of matters in dispute; or (6) Ways to expedite disposition of the case or to facilitate settlement of the dispute, including, if the parties and the Board agree, the use of alternative dispute... APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  17. (Tribology conferences and forums)

    SciTech Connect

    Yust, C.S.

    1990-11-30

    The principal meeting attended during this trip was the Japan International Tribology Conference Nagoya 1990. The conference encompassed a wide range of topics, including the tribology of ceramics, the tribology in high-performance automobiles, and many aspects of lubrication technology. Associated forums were also held on the tribology of advanced ceramics, on solid lubrication, and on automotive lubricants. Presentations made during the latter forum discussed anticipated trends in engine development and anticipated improvements in lubricants required for the next generation of engines. In addition to meetings, site visits were made to five industrial organizations to discuss ceramic tribology. Nippon Steel Corporation and Toshiba Corporation are both very active in the ceramic area, Nippon Steel from their interest in research on new materials and Toshiba from both an interest in new materials and in support of their work in electronic devices. Two engine manufacturers were also visited, Toyota Motor Corporation, and Nissan Motor Co., Ltd. These companies were somewhat reserved in their discussion of progress in the utilization of ceramics in automobile engines.

  18. History of NAMES Conferences

    NASA Astrophysics Data System (ADS)

    Filippov, Lev

    2013-03-01

    -Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of

  19. History of NAMES Conferences

    NASA Astrophysics Data System (ADS)

    Filippov, Lev

    2013-03-01

    -Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of

  20. Calendar of Conferences

    NASA Astrophysics Data System (ADS)

    1996-08-01

    8 - 18 August 1996 International Summer School on Plasma Physics and Technology La Jolla, CA, USA Contact: Mr V Stefan, Institute for Advanced Physics Studies, PO Box 2964, La Jolla, CA 92038, USA. Tel +1-619-456-5737. 26 - 30 August 1996 Joint Varenna - Lausanne International Workshop on Theory of Fusion Plasmas Villa Monastero, Varenna, Italy Contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 2 - 5 September 1996 EU - US Workshop on Transport in Fusion Plasmas Villa Monastero, Varenna, Italy Further information: G Gorini, ISPP, 16 Via Celoria, I-20133 Milano, Italy. Tel +39-2-2392637, Fax +39-2-2392205, E-mail ggorini@mi.infn.it. Administrative contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 9 - 13 September 1996 International Conference on Plasma Physics Nagoya, Japan Contact: Conference Secretariat, c/o Prof. Hiromu Momota, National Institute for Fusion Science, Nagoya 464-01, Japan. Tel +81-52-789-4260, Fax +81-52-789-1037, E-mail icpp96@nifs.ac.jp. Abstract deadline: 31 March 1996. 16 - 20 September 1996 19th Symposium on Fusion Technology Lisbon, Portugal Contact: Professor Carlos Varandas, Centro de Fusão Nuclear, 1096 Lisboa Codex, Portugal. Fax +351-1-8417819, E-mail cvarandas@cfn.ist.utl.pt. General information will be available via WWW with URL http://www.cfn.ist.utl.pt. 25 - 29 September 1996 Summer University of Plasma Physics Garching, Germany Contact: Ms Ch Stahlberg, Max-Planck-Institut für PlasmaPhysik, Boltzmannstr 2, D-85748 Garching, Germany. Tel +49-89-3299-2232, Fax +49-89-3299-1001. 11 - 15 November 1996 38th Annual Meeting of the Division of Plasma Physics, APS Denver, CO, USA Contact: Dr Richard Hazeltine, University of Texas

  1. Interspecies Transfer of the Penicillin-Binding Protein 3-Encoding Gene ftsI between Haemophilus influenzae and Haemophilus haemolyticus Can Confer Reduced Susceptibility to β-Lactam Antimicrobial Agents

    PubMed Central

    Søndergaard, Annette; Witherden, Elizabeth A.

    2015-01-01

    Mutations in ftsI, encoding penicillin-binding protein 3, can cause decreased β-lactam susceptibility in Haemophilus influenzae. Sequencing of ftsI from clinical strains has indicated interspecies recombination of ftsI between H. influenzae and Haemophilus haemolyticus. This study documented apparently unrestricted homologous recombination of ftsI between H. influenzae and H. haemolyticus in vitro. Transfer of ftsI from resistant isolates conferred similar but not identical increases in the MICs of susceptible strains of H. influenzae and H. haemolyticus. PMID:25918135

  2. The Writing Conference as Performance.

    ERIC Educational Resources Information Center

    Newkirk, Thomas

    1995-01-01

    Provides an overview of the conversational roles taken on by students and teachers during college-level writing conferences. Uses the performative theory of Erving Goffman to analyze these role patterns. Illuminates the specific performative demands presented by writing conferences on both students and teachers. (HB)

  3. SLA at 100: Conference Preview

    ERIC Educational Resources Information Center

    Blumenstein, Lynn

    2009-01-01

    When School Library Association (SLA) convenes its annual conference in Washington, DC, June 14-17, 2009, the association will be celebrating its 100th birthday. This occasion allows for grand gestures--the SLA Salutes! Awards and Leadership Reception will be held in the Library of Congress's Great Hall. The conference also draws upon Washington…

  4. Conference Connections: Rewiring the Circuit

    ERIC Educational Resources Information Center

    Siemens, George; Tittenberger, Peter; Anderson, Terry

    2008-01-01

    Increased openness, two-way dialogue, and blurred distinctions between experts and amateurs have combined with numerous technology tools for dialogue, personal expression, networking, and community formation to "remake" conferences, influencing not only how attendees participate in but also how organizers host conferences today. (Contains 31…

  5. Sixth National Conference on Citizenship.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC.

    The document presents proceedings from the sixth in a series of annual national citizenship conferences. Held in Washington, D.C. in 1951, the conference served as a forum where educational, political, business, religious, labor, civic, and communications leaders could explore functions and duties of American citizenship. The theme of the…

  6. 10 CFR 2.329 - Prehearing conference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... place for a conference or conferences before trial. A prehearing conference in a proceeding involving a... proceeding; (10) The setting of a hearing schedule, including any appropriate limitations on the scope...

  7. 10 CFR 2.329 - Prehearing conference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... place for a conference or conferences before trial. A prehearing conference in a proceeding involving a... proceeding; (10) The setting of a hearing schedule, including any appropriate limitations on the scope...

  8. 77 FR 38306 - GFIRST Conference Stakeholder Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... SECURITY GFIRST Conference Stakeholder Evaluation AGENCY: National Protection and Programs Directorate, DHS... concerning new Information Collection Request--GFIRST Conference Stakeholder Evaluation. DHS previously... Conference Stakeholder Evaluation Forms. There is no reference to the I-9 Form on the GFIRST...

  9. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATES FOR ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment,...

  10. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment, Expansion, and...

  11. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment, Expansion, and...

  12. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment, Expansion, and...

  13. Megagauss X: a conference milestone /

    SciTech Connect

    Fowler, C. M.

    2004-01-01

    The first Megagauss Conference now known as MG I, was held in 1965. Thirty-nine years later, we are now attending MG X. As topical conferences go, this is a fairly long time. For comparison, the first IEEE International Pulsed Power Conference was held in 1976. It seems appropriate in the opening address of this 'Milestone' conference to note some highlights of the earlier MG conferences. Some relatively new research lines in progress will also be noted, as well as the speaker's 'wish list' of projects he would like to see pursued. Mention will be made of the growing number of explosive flux compression facilities around the world, as well as some facilities that no longer exist, but that made significant contributions in their time.

  14. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 2 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. The press conference question and answer period is continued from Part 1. Atmospheric thermal structure, water abundances, wind profiles, and electricity are among the topics discussed. The question and answer period is followed by a 3 minute presentation in which all of the visuals that are shown during the press conference are reviewed. Parts 1 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001073, and NONP-NASA-VT-2000001075.

  15. 11th International Conference of Radiation Research

    SciTech Connect

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  16. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  17. Aerospace Environmental Technology Conference

    SciTech Connect

    Whitaker, A.F.

    1995-03-01

    The mandated elimination of CFC`s, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297. Separate abstracts have been prepared for some articles from this report.

  18. 2006 environmental controls conference

    SciTech Connect

    2006-07-01

    The two topics covered at the conference were: selective catalytic reduction (SCR) and selection non-catalytic reduction (SNCR) for NOx control, and techniques for managing sulfur trioxide. A total of 45 presentations are summarized on the NETL website of which 22 are available in full. These include keynote addresses for each of the two major topics. In addition four poster papers are listed. The papers are arranged in sections headed: regulatory considerations; overview of SCR/SNCR; managing SCR catalysts; gas monitoring and analysis; predictive performance tools; non-coal applications; layered SCR; flow distribution and modeling; hybrid systems; innovative applications; SO{sub 2} conversion to SO{sub 3}; SO{sub 3} overview; acid gas control issues; sorbent injection for acid gas migration; and effects of SO{sub 3} on mercury control.

  19. Personalized cancer care conference.

    PubMed

    Zänker, Kurt S; Mihich, Enrico; Huber, Hans-Peter; Borresen-Dale, Anne-Lise

    2013-01-01

    The Oslo University Hospital (Norway), the K.G. Jebsen Centre for Breast Cancer Research (Norway), The Radiumhospital Foundation (Norway) and the Fritz-Bender-Foundation (Germany) designed under the conference chairmen (E. Mihich, K.S. Zänker, A.L. Borresen-Dale) and advisory committee (A. Borg, Z. Szallasi, O. Kallioniemi, H.P. Huber) a program at the cutting edge of "PERSONALIZED CANCER CARE: Risk prediction, early diagnosis, progression and therapy resistance." The conference was held in Oslo from September 7 to 9, 2012 and the science-based presentations concerned six scientific areas: (1) Genetic profiling of patients, prediction of risk, late side effects; (2) Molecular profiling of tumors and metastases; (3) Tumor-host microenvironment interaction and metabolism; (4) Targeted therapy; (5) Translation and (6) Informed consent, ethical challenges and communication. Two satellite workshops on (i) Ion Ampliseq-a novel tool for large scale mutation detection; and (ii) Multiplex RNA ISH and tissue homogenate assays for cancer biomarker validation were additionally organized. The report concludes that individual risk prediction in carcinogenesis and/or metastatogenesis based on polygenic profiling may be useful for intervention strategies for health care and therapy planning in the future. To detect distinct and overlapping DNA sequence alterations in tumor samples and adjacent normal tissues, including point mutations, small insertions or deletions, copy number changes and chromosomal rearrangements will eventually make it possible to design personalized management plans for individualized patients. However, large individualized datasets need a new approach in bio-information technology to reduce this enormous data dimensionally to simply working hypotheses about health and disease for each individual. PMID:25562519

  20. Personalized Cancer Care Conference

    PubMed Central

    Zänker, Kurt S.; Mihich, Enrico; Huber, Hans-Peter; Borresen-Dale, Anne-Lise

    2013-01-01

    The Oslo University Hospital (Norway), the K.G. Jebsen Centre for Breast Cancer Research (Norway), The Radiumhospital Foundation (Norway) and the Fritz-Bender-Foundation (Germany) designed under the conference chairmen (E. Mihich, K.S. Zänker, A.L. Borresen-Dale) and advisory committee (A. Borg, Z. Szallasi, O. Kallioniemi, H.P. Huber) a program at the cutting edge of “PERSONALIZED CANCER CARE: Risk prediction, early diagnosis, progression and therapy resistance.” The conference was held in Oslo from September 7 to 9, 2012 and the science-based presentations concerned six scientific areas: (1) Genetic profiling of patients, prediction of risk, late side effects; (2) Molecular profiling of tumors and metastases; (3) Tumor-host microenvironment interaction and metabolism; (4) Targeted therapy; (5) Translation and (6) Informed consent, ethical challenges and communication. Two satellite workshops on (i) Ion Ampliseq—a novel tool for large scale mutation detection; and (ii) Multiplex RNA ISH and tissue homogenate assays for cancer biomarker validation were additionally organized. The report concludes that individual risk prediction in carcinogenesis and/or metastatogenesis based on polygenic profiling may be useful for intervention strategies for health care and therapy planning in the future. To detect distinct and overlapping DNA sequence alterations in tumor samples and adjacent normal tissues, including point mutations, small insertions or deletions, copy number changes and chromosomal rearrangements will eventually make it possible to design personalized management plans for individualized patients. However, large individualized datasets need a new approach in bio-information technology to reduce this enormous data dimensionally to simply working hypotheses about health and disease for each individual. PMID:25562519

  1. Corrosion/96 conference papers

    SciTech Connect

    1996-07-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO{sub 2} corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base.

  2. 29 CFR 6.53 - Prehearing conference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FEDERALLY ASSISTED CONSTRUCTION CONTRACTS AND FEDERAL SERVICE CONTRACTS Substantial Variance and Arm's Length Proceedings § 6.53 Prehearing conference. (a) At the prehearing conference the Administrative...

  3. 33rd Actinide Separations Conference

    SciTech Connect

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  4. PREFACE: The Irago Conference 2012

    NASA Astrophysics Data System (ADS)

    Sandhu, Adarsh; Okada, Hiroshi

    2013-04-01

    The Irago Conference 2012 - 360 degree outlook on critical scientific and technological challenges for a sustainable society Organized by the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology, the Irago Conference, held recently (15-16 November) in Aichi, Japan, aimed to enhance mutual understanding between scientists, engineers and policymakers. Over 180 participants tackled topics ranging from energy and natural resources to public health and disaster prevention. The 360-degree outlook of the conference impressed speakers and guests. ''This conference has been extremely informative,'' noted Robert Gellar from the University of Tokyo. ''A unique conference with experts from a range of backgrounds,'' agreed Uracha Ruktanonchai from the National Nanotechnology Center (NANOTEC) in Thailand. Similarly, G P Li, professor of electrical engineering and computer science at the University of California Irvine commented that he had been ''able to think the unthinkable'' as a range of topics came together. The conference was streamed live on Ustream to ensure that researchers from across the world could benefit from thought-provoking presentations examining global issues such as energy, disaster mitigation and nanotechnology. ''This was wonderful,'' said Oussama Khatib from Stanford University, ''A good recipe of speakers from such a range of backgrounds.'' Manuscripts submitted to the organizers were peer-reviewed, and the papers in this proceedings were accepted for Journal of Physics: Conference Series. In addition to the formal speaker programme, graduate-student sessions provided a platform for graduate students to describe their latest findings as oral presentations. A series of excursions to relevant locations, such as the Tahara megasolar region under construction and a local car-manufacturing factory, gave participants the opportunity to further consider practical applications of their research in industry

  5. Mechanics of Textile Composites Conference

    SciTech Connect

    Poe, C.C. Jr.; Harris, C.E.

    1995-10-01

    This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advanced Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry. Separate abstracts have been submitted to the database for articles from this conference.

  6. Hot isostatic pressing: Conference proceedings

    SciTech Connect

    Froes, F.H.; Hebeisen, J.; Widmer, R.

    1996-12-31

    The International Conference on Hot Isostatic Pressing was held on May 20-22, 1996, in Andover, Massachusetts. This conference discussed the state-of-the-art of hot isostatic pressing (HIP) and competing compaction techniques. HIP allows complex cost-effective near net shapes to be produced from powder products, densification of castings thereby enhancing performance, retention of metastable structures such as nano-sized grains, and even creative food processing. Sections in the conference covered such items as fundamentals, mathematical modeling, equipment and instrumentation, advanced materials and processes, composite materials, casting densification, surface treatments, HIP bonding, and competing technologies. Forty five papers were processed separately for inclusion on the data base.

  7. DOE Workshop at Tapia Conference

    SciTech Connect

    Taylor, Valerie

    2015-02-19

    The DE-SC0013568 DOE Grant, in the amount of $11,822.79, was used to support five doctoral students from underrepresented groups to attend the 2015 Richard Tapia Celebration of Diversity in Computing Conference, held February 18-21 in Boston, MA. Each scholarship was approximately $1200 to cover conference registration, travel, and lodging for the duration of the conference. The remaining $5,822.79 was used to support a DOE Breakfast Workshop during breakfast on Thursday, February 19. The Breakfast supported approximately 140 graduate students from underrepresented groups to learn about the different career opportunities at the different DOE National Laboratories.

  8. Differential Gene Expression Profiles of Radioresistant Non-Small-Cell Lung Cancer Cell Lines Established by Fractionated Irradiation: Tumor Protein p53-Inducible Protein 3 Confers Sensitivity to Ionizing Radiation

    SciTech Connect

    Lee, Young Sook; Oh, Jung-Hwa; Yoon, Seokjoo; Kwon, Myung-Sang

    2010-07-01

    Purpose: Despite the widespread use of radiotherapy as a local and regional modality for the treatment of cancer, some non-small-cell lung cancers commonly develop resistance to radiation. We thus sought to clarify the molecular mechanisms underlying resistance to radiation. Methods and Materials: We established the radioresistant cell line H460R from radiosensitive parental H460 cells. To identify the radioresistance-related genes, we performed microarray analysis and selected several candidate genes. Results: Clonogenic and MTT assays showed that H460R was 10-fold more resistant to radiation than H460. Microarray analysis indicated that the expression levels of 1,463 genes were altered more than 1.5-fold in H460R compared with parental H460. To evaluate the putative functional role, we selected one interesting gene tumor protein p53-inducible protein 3 (TP53I3), because that this gene was significantly downregulated in radioresistant H460R cells and that it was predicted to link p53-dependent cell death signaling. Interestingly, messenger ribonucleic acid expression of TP53I3 differed in X-ray-irradiated H460 and H460R cells, and overexpression of TP53I3 significantly affected the cellular radiosensitivity of H460R cells. Conclusions: These results show that H460R may be useful in searching for candidate genes that are responsible for radioresistance and elucidating the molecular mechanism of radioresistance.

  9. Topical conference: Opportunities in biology for physicists. Conference summary

    SciTech Connect

    2002-12-16

    The conference was aimed at early career physicists who were interested in exploring the possibilities of working at the interface between physics and biology, in particular, graduate students and postdocs considering applying the methods of physics to biological research. Areas of major importance were genomics and evolution, biological networks, biomolecular dynamics, high-resolution imaging of living cells, and technologies for biological investigation. A total of 205 persons attended the conference.

  10. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  11. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  12. Proceedings: Condenser technology conference

    SciTech Connect

    Tsou, J.L. ); Mussalli, Y.G. )

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues.

  13. Conference OKs science budgets

    NASA Astrophysics Data System (ADS)

    With the budget process all but complete for next fiscal year, the National Science Foundation and the National Aeronautics and Space Administration observers were saying that science had not done that badly in Congress, for an election year. NSF got half the budget increase it requested, NASA two-thirds. The Space Station did well, at the expense of environmental and social programs, which are funded by Congress from the same pot of money as NASA and NSF.A House-Senate conference finished work on a $59 billion appropriations bill for the Department of Housing and Urban Development and independent agencies, including EPA, NASA, and NSF, in early August. The House and Senate then quickly passed the measure before their recess; the President is expected to sign it soon. Included in the Fiscal Year 1989 spending bill are $1,885 billion for NSF, a 9.8% increase over FY 1988, and $10.7 billion for NASA, 18.5% more than the year before.

  14. Oceans '86 conference record

    SciTech Connect

    Not Available

    1986-01-01

    These five volumes represent the proceedings of the Oceans '86 Conference Washington, DC, 23-25 September 1986. Volume 1 includes papers on Underwater Photography and Sensing; Marine Recreation; Diving; CTACTS (Charleston Tactical Aircrew Combat Training System); Offshore and Coastal Structures; Underwater Welding, Burning and Cutting; Advances in Ocean Mapping; Ocean Energy; Biofouling and Corrosion; Moorings, Cables and Connections; Marine Minerals; Remote Sensing and Satellites; and Acoustics Analysis. Volume 2 covers Data Base Management; Modeling and Simulation; Ocean Current Simulation; Instrumentation; Artificial Reefs and Fisheries; US Status and Trends; Education and Technology Transfer; Economic Potential and Coastal Zone Management; and Water Quality. Volume 3 includes papers on National and Regional Monitoring Strategies; New Techniques and Strategies for Monitoring; Indicator Parameters/Organisms; Historical Data; Crystal Cube for Coastal and Estuarine Degradation; and the Monitoring Gap. Volume 4 covers the Organotin Symposium - Chemistry; Toxicity Studies; and Environmental Monitoring and Modeling. Volume 5 includes papers on Advances in Oceanography; Applied Oceanography; Unmanned Vehicles and ROV's; Manned Vehicles; and Oceanographic Ships.

  15. 10 CFR 205.171 - Conferences.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Conferences. 205.171 Section 205.171 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Conferences, Hearings, and Public Hearings § 205.171 Conferences. (a) The DOE in its discretion may direct that a conference be convened, on its own initiative...

  16. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  17. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  18. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression

    PubMed Central

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106—a R2R3-MYB transcription factor—upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  19. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system.

    PubMed

    Park, Jin-Young; Kim, Hye-Joung; Kim, Jungmook

    2002-12-01

    Most of Aux/IAA genes are rapidly induced by auxin. The Aux/IAA proteins are short-lived nuclear proteins sharing the four conserved domains. Domain II is critical for rapid degradation of Aux/IAA proteins. Among these gene family members, IAA1 is one of the earliest auxin-inducible genes. We used a steroid hormone-inducible system to reveal putative roles and downstream signaling of IAA1 in auxin response. Arabidopsis transgenic plants were generated expressing fusion protein of IAA1 (IAA1-GR) or IAA1 with a mutation in domain II (iaa1-GR) and the glucocorticoid hormone-binding domain (GR). IAA1-GR transgenic plants did not exhibit any discernable phenotypic differences by DEX treatment that allows nuclear translocation of the fusion protein. In contrast, diverse auxin-related physiological processes including gravitropism and phototropism were impaired by DEX treatment in roots, hypocotyls, stems, and leaves in iaa1-GR transgenic plants. Auxin induction of seven Aux/IAA mRNAs including IAA1 itself was repressed by DEX treatment, suggesting that IAA1 functions in the nucleus by mediating auxin response and might act as a negative feedback regulator for the expression of Aux/IAA genes including IAA1 itself. Auxin induction of Aux/IAA genes in the presence of cycloheximide can be repressed by DEX treatment, showing that the repression of transcription of the Aux/IAAs by the iaa1 mutant protein is primary. Wild-type IAA1-GR could not suppress auxin induction of IAA1 and IAA2. These results indicate that inhibition of auxin-activated transcription of Aux/IAA genes by the iaa1 mutant protein might be responsible for alteration of various auxin responses.

  20. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    PubMed

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  1. Eighteen Years of the Great Lakes Regional Counseling Psychology Conference: Revisiting the Need for Regional Conferences

    ERIC Educational Resources Information Center

    Delgado-Romero, Edward A.; Bowman, Sharon L.; Gerstein, Lawrence H.

    2006-01-01

    The Great Lakes Regional Conference on Counseling Psychology is the only conference to continuously fulfill the 1987 mandate issued by Division 17 for regional counseling conferences. The rationale for regional conferences is reviewed, and the 18-year history of the Great Lakes Regional Conference is examined. The authors conclude by noting the…

  2. PREFACE: XXI Fluid Mechanics Conference

    NASA Astrophysics Data System (ADS)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  3. 2012 MITOCHONDRIA AND CHLOROPLASTS GORDON RESEARCH CONFERENCE & GORDON RESEARCH SEMINAR, JULY 29 - AUGUST 3, 2012

    SciTech Connect

    Barkan, Alice

    2012-08-03

    The 2012 Gordon Research Conference on Mitochondria and Chloroplasts will assemble an international group of scientists investigating fundamental properties of these organelles, and their integration into broader physiological processes. The conference will emphasize the many commonalities between mitochondria and chloroplasts: their evolution from bacterial endosymbionts, their genomes and gene expression systems, their energy transducing membranes whose proteins derive from both nuclear and organellar genes, the challenge of maintaining organelle integrity in the presence of the reactive oxygen species that are generated during energy transduction, their incorporation into organismal signaling pathways, and more. The conference will bring together investigators working in animal, plant, fungal and protozoan systems who specialize in cell biology, genetics, biochemistry, physiology, proteomics, genomics, and structural biology. As such, this conference will provide a unique forum that engenders cross-disciplinary discussions concerning the biogenesis, dynamics, and regulation of these key cellular structures. By fostering interactions among mammalian, fungal and plant organellar biologists, this conference also provides a conduit for the transmission of mechanistic insights obtained in model organisms to applications in medicine and agriculture. The 2012 conference will highlight areas that are moving rapidly and emerging themes. These include new insights into the ultrastructure and organization of the energy transducing membranes, the coupling of organellar gene expression with the assembly of photosynthetic and respiratory complexes, the regulatory networks that couple organelle biogenesis with developmental and physiological signals, the signaling events through which organellar physiology influences nuclear gene expression, and the roles of organelles in disease and development.

  4. Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants.

    PubMed

    Matsumoto, Katsutoshi; Johnishi, Kousuke; Hamada, Hiroyuki; Sawada, Hiromasa; Takeuchi, Shigeharu; Kobayashi, Kappei; Suzuki, Kazumi; Kiba, Akinori; Hikichi, Yasufumi

    2009-03-01

    Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle virus (PaMMV) at 32 degrees C but not 24 degrees C. To identify the viral elicitor that activates the Hk-mediated resistance, several chimeric viral genomes were constructed between PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino acid change from threonine to serine at the 241st residue in the methyltransferase domain. Introduction of the A721U mutation into the replicase genes of parental PaMMV overcame the Hk resistance at 32 degrees C. The results indicate that Hk-mediated resistance is induced by PaMMV replicase proteins and that methyltransferase domain has a role in this elicitation.

  5. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

    PubMed

    Zhai, Yao; He, Zilong; Kang, Yu; Yu, Haiying; Wang, Jianfeng; Du, Pengcheng; Zhang, Zhao; Hu, Songnian; Gao, Zhancheng

    2016-07-01

    The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT)