Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion.
Lanning, Dennis K; Knight, Katherine L
2015-01-01
Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.
Great majority of recombination events in Arabidopsis are gene conversion events
Yang, Sihai; Yuan, Yang; Wang, Long; Li, Jing; Wang, Wen; Liu, Haoxuan; Chen, Jian-Qun; Hurst, Laurence D.; Tian, Dacheng
2012-01-01
The evolutionary importance of meiosis may not solely be associated with allelic shuffling caused by crossing-over but also have to do with its more immediate effects such as gene conversion. Although estimates of the crossing-over rate are often well resolved, the gene conversion rate is much less clear. In Arabidopsis, for example, next-generation sequencing approaches suggest that the two rates are about the same, which contrasts with indirect measures, these suggesting an excess of gene conversion. Here, we provide analysis of this problem by sequencing 40 F2 Arabidopsis plants and their parents. Small gene conversion tracts, with biased gene conversion content, represent over 90% (probably nearer 99%) of all recombination events. The rate of alteration of protein sequence caused by gene conversion is over 600 times that caused by mutation. Finally, our analysis reveals recombination hot spots and unexpectedly high recombination rates near centromeres. This may be responsible for the previously unexplained pattern of high genetic diversity near Arabidopsis centromeres. PMID:23213238
Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.
Fukuda, Tomoyuki; Ohya, Yoshikazu; Ohta, Kunihiro
2007-10-01
Meiotic recombination plays critical roles in the acquisition of genetic diversity and has been utilized for conventional breeding of livestock and crops. The frequency of meiotic recombination is normally low, and is extremely low in regions called "recombination cold domains". Here, we describe a new and highly efficient method to modulate yeast meiotic gene rearrangements using VDE (PI-SceI), an intein-encoded endonuclease that causes an efficient unidirectional meiotic gene conversion at its recognition sequence (VRS). We designed universal targeting vectors, by use of which the strain that inserts the VRS at a desired site is acquired. Meiotic induction of the strains provided unidirectional gene conversions and frequent genetic rearrangements of flanking genes with little impact on cell viability. This system thus opens the way for the designed modulation of meiotic gene rearrangements, regardless of recombinational activity of chromosomal domains. Finally, the VDE-VRS system enabled us to conduct meiosis-specific conditional knockout of genes where VDE-initiated gene conversion disrupts the target gene during meiosis, serving as a novel approach to examine the functions of genes during germination of resultant spores.
Bayesian Population Genomic Inference of Crossing Over and Gene Conversion
Padhukasahasram, Badri; Rannala, Bruce
2011-01-01
Meiotic recombination is a fundamental cellular mechanism in sexually reproducing organisms and its different forms, crossing over and gene conversion both play an important role in shaping genetic variation in populations. Here, we describe a coalescent-based full-likelihood Markov chain Monte Carlo (MCMC) method for jointly estimating the crossing-over, gene-conversion, and mean tract length parameters from population genomic data under a Bayesian framework. Although computationally more expensive than methods that use approximate likelihoods, the relative efficiency of our method is expected to be optimal in theory. Furthermore, it is also possible to obtain a posterior sample of genealogies for the data using this method. We first check the performance of the new method on simulated data and verify its correctness. We also extend the method for inference under models with variable gene-conversion and crossing-over rates and demonstrate its ability to identify recombination hotspots. Then, we apply the method to two empirical data sets that were sequenced in the telomeric regions of the X chromosome of Drosophila melanogaster. Our results indicate that gene conversion occurs more frequently than crossing over in the su-w and su-s gene sequences while the local rates of crossing over as inferred by our program are not low. The mean tract lengths for gene-conversion events are estimated to be ∼70 bp and 430 bp, respectively, for these data sets. Finally, we discuss ideas and optimizations for reducing the execution time of our algorithm. PMID:21840857
Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok
2012-02-01
The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.
Sexy gene conversions: locating gene conversions on the X-chromosome.
Lawson, Mark J; Zhang, Liqing
2009-08-01
Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.
A method for accelerated trait conversion in plant breeding.
Lewis, Ramsey S; Kernodle, S P
2009-05-01
Backcrossing is often used in cultivar development to transfer one or a few genes to desired genetic backgrounds. The duration necessary to complete such 'trait conversions' is largely dependent upon generation times. Constitutive overexpression of the Arabidopsis thaliana gene FT (FLOWERING LOCUS T) induces early-flowering in many plants. Here, we used tobacco (Nicotiana tabacum L.) as a model system to propose and examine aspects of a modified backcross procedure where transgenic FT overexpression is used to reduce generation time and accelerate gene transfer. In this method, the breeder would select for an FT transgene insertion and the trait(s) of interest at each backcross generation except the last. In the final generation, selection would be conducted for the trait(s) of interest, but against FT, to generate the backcross-derived trait conversion. We demonstrate here that constitutive FT overexpression functions to dramatically reduce days-to-flower similarly in diverse tobacco genetic backgrounds. FT-containing plants flowered in an average of 39 days, in comparison with 87-138 days for non-FT plants. Two FT transgene insertions were found to segregate independently of several disease resistance genes often the focus of backcrossing in tobacco. In addition, no undesirable epigenetic effects on flowering time were observed once FT was segregated away. The proposed system would reduce the time required to complete a trait conversion in tobacco by nearly one-half. These features suggest the possible value of this modified backcrossing system for tobacco or other crop species where long generation times or photoperiod sensitivity may impede timely trait conversion.
Piscopo, Sara-Pier; Drouin, Guy
2014-05-01
Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.
The processive kinetics of gene conversion in bacteria
Paulsson, Johan; El Karoui, Meriem; Lindell, Monica
2017-01-01
Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. PMID:28256783
A double-strand break can trigger immunoglobulin gene conversion
Bastianello, Giulia; Arakawa, Hiroshi
2017-01-01
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075
A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion
Sommer, Morten OA; Church, George M; Dantas, Gautam
2010-01-01
Sustainable biofuel alternatives to fossil fuel energy are hampered by recalcitrance and toxicity of biomass substrates to microbial biocatalysts. To address this issue, we present a culture-independent functional metagenomic platform for mining Nature's vast enzymatic reservoir and show its relevance to biomass conversion. We performed functional selections on 4.7 Gb of metagenomic fosmid libraries and show that genetic elements conferring tolerance toward seven important biomass inhibitors can be identified. We select two metagenomic fosmids that improve the growth of Escherichia coli by 5.7- and 6.9-fold in the presence of inhibitory concentrations of syringaldehyde and 2-furoic acid, respectively, and identify the individual genes responsible for these tolerance phenotypes. Finally, we combine the individual genes to create a three-gene construct that confers tolerance to mixtures of these important biomass inhibitors. This platform presents a route for expanding the repertoire of genetic elements available to synthetic biology and provides a starting point for efforts to engineer robust strains for biofuel generation. PMID:20393580
Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.
2012-01-01
Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates, followed by the loss of an ADH1 paralog in the human lineage. PMID:22859968
Letsou, Anthea; Liskay, R. Michael
1987-01-01
With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159
Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony
2015-05-03
Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed enabled a 1.8-fold increase in conversion yields. The strain produced lactic acid from plant biomass. Our findings make A. brasiliensis a strong contender microorganism for low-pH acid production from various complex substrates, especially hemicellulose.
The rate of meiotic gene conversion varies by sex and age
Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari
2016-01-01
Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539
Multiple conversion between the genes encoding bacterial class-I release factors
Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji
2015-01-01
Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102
Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.
2012-01-01
Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079
2010-01-01
Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago. See Commentary: http://www.biomedcentral.com/1741-7007/8/147. PMID:21176201
Zeeberg, Barry R; Riss, Joseph; Kane, David W; Bussey, Kimberly J; Uchio, Edward; Linehan, W Marston; Barrett, J Carl; Weinstein, John N
2004-01-01
Background When processing microarray data sets, we recently noticed that some gene names were being changed inadvertently to non-gene names. Results A little detective work traced the problem to default date format conversions and floating-point format conversions in the very useful Excel program package. The date conversions affect at least 30 gene names; the floating-point conversions affect at least 2,000 if Riken identifiers are included. These conversions are irreversible; the original gene names cannot be recovered. Conclusions Users of Excel for analyses involving gene names should be aware of this problem, which can cause genes, including medically important ones, to be lost from view and which has contaminated even carefully curated public databases. We provide work-arounds and scripts for circumventing the problem. PMID:15214961
AID Mediates Hypermutation by Deaminating Single Stranded DNA
Dickerson, Sarah K.; Market, Eleonora; Besmer, Eva; Papavasiliou, F. Nina
2003-01-01
Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors. PMID:12756266
Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.
2014-01-01
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991
Raynard, Steven J; Baker, Mark D
2004-01-01
In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.
Evolution of Siglec-11 and Siglec-16 Genes in Hominins
Wang, Xiaoxia; Mitra, Nivedita; Cruz, Pedro; Deng, Liwen; Varki, Nissi; Angata, Takashi; Green, Eric D.; Mullikin, Jim; Hayakawa, Toshiyuki; Varki, Ajit
2012-01-01
We previously reported a human-specific gene conversion of SIGLEC11 by an adjacent paralogous pseudogene (SIGLEC16P), generating a uniquely human form of the Siglec-11 protein, which is expressed in the human brain. Here, we show that Siglec-11 is expressed exclusively in microglia in all human brains studied—a finding of potential relevance to brain evolution, as microglia modulate neuronal survival, and Siglec-11 recruits SHP-1, a tyrosine phosphatase that modulates microglial biology. Following the recent finding of a functional SIGLEC16 allele in human populations, further analysis of the human SIGLEC11 and SIGLEC16/P sequences revealed an unusual series of gene conversion events between two loci. Two tandem and likely simultaneous gene conversions occurred from SIGLEC16P to SIGLEC11 with a potentially deleterious intervening short segment happening to be excluded. One of the conversion events also changed the 5′ untranslated sequence, altering predicted transcription factor binding sites. Both of the gene conversions have been dated to ∼1–1.2 Ma, after the emergence of the genus Homo, but prior to the emergence of the common ancestor of Denisovans and modern humans about 800,000 years ago, thus suggesting involvement in later stages of hominin brain evolution. In keeping with this, recombinant soluble Siglec-11 binds ligands in the human brain. We also address a second-round more recent gene conversion from SIGLEC11 to SIGLEC16, with the latter showing an allele frequency of ∼0.1–0.3 in a worldwide population study. Initial pseudogenization of SIGLEC16 was estimated to occur at least 3 Ma, which thus preceded the gene conversion of SIGLEC11 by SIGLEC16P. As gene conversion usually disrupts the converted gene, the fact that ORFs of hSIGLEC11 and hSIGLEC16 have been maintained after an unusual series of very complex gene conversion events suggests that these events may have been subject to hominin-specific selection forces. PMID:22383531
Duroc, Yann; Kumar, Rajeev; Ranjha, Lepakshi; Adam, Céline; Guérois, Raphaël; Md Muntaz, Khan; Marsolier-Kergoat, Marie-Claude; Dingli, Florent; Laureau, Raphaëlle; Loew, Damarys; Llorente, Bertrand; Charbonnier, Jean-Baptiste; Cejka, Petr; Borde, Valérie
2017-01-01
Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI: http://dx.doi.org/10.7554/eLife.21900.001 PMID:28051769
Meiotic gene-conversion rate and tract length variation in the human genome.
Padhukasahasram, Badri; Rannala, Bruce
2013-02-27
Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.
Liu, Qingpo
2009-03-01
In C. elegans, four C2H2 zinc-finger proteins (ZIM-1, ZIM-2, ZIM-3, and HIM-8), which are arranged in tandem, mediate chromosome-specific pairing and synapsis during meiosis. The zim/him-8 genes from three Caenorhabditis species were contrasted in an effort to investigate the mechanisms driving their evolution. Here it is shown that the preservation of higher degree of sequence similarity in the N-terminal portion, particularly in several regions within the second exon between paralogous zim genes (especially between zim-1 and zim-3), is due to independent interparalogue gene conversions. However, the evolutionary force is not uniformly strong across species. The present data reveal that more frequent gene conversion events have occurred in C. elegans, whereas only gene conversions between zim-1 and zim-3 are detected in C. remanei. Although gene conversions are predicted to be present among zim-1, zim-2, and zim-3 in C. briggsae, the conversion tracts between zim-1/zim-2 and zim-2/zim-3 are very short. Moreover, positive selection analysis was performed on the basis of the significantly discordant phylogenies reconstructed using the N- and C-terminal sequences, respectively. Several codon sites located in the regions that are supposed not to have experienced gene conversions are predicted to be under the influence of positive selection. In comparison, stronger positive selection has acted on the C-terminal region relative to the N-terminal region. Thus, the zim/him-8 genes that evolve concertedly have also been shown to undergo adaptive diversifying selection.
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
2011-01-01
Background During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. Methods A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Results Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. Conclusions The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study. Please see Commentary: http://www.biomedcentral.com/1741-7015/9/13/abstract. PMID:21291537
Ross, Kenneth Andrew
2011-02-03
During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Gene network biological validity based on gene-gene interaction relevance.
Gómez-Vela, Francisco; Díaz-Díaz, Norberto
2014-01-01
In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.
Chen, H T; Alexander, C B; Mage, R G
1995-06-15
Normal rabbits preferentially rearrange the 3'-most VH gene, VH1, to encode Igs with VHa allotypes, which constitute the majority of rabbit serum Igs. A gene conversion-like mechanism is employed to diversify the primary Ab repertoire. In mutant Alicia rabbits that derived from a rabbit with VHa2 allotype, the VH1 gene was deleted. Our previous studies showed that the first functional gene (VH4) or VH4-like genes were rearranged in 2- to 8-wk-old homozygous Alicia. The VH1a2-like sequences that were found in splenic mRNA from 6-wk and older Alicia rabbits still had some residues that were typical of VH4. The appearances of sequences resembling that of VH1a2 may have been caused by gene conversions that altered the sequences of the rearranged VH or there may have been rearrangement of upstream VH1a2-like genes later in development. To investigate this further, we constructed a cosmid library and isolated a VH1a2-like gene, VH12-1-6, with a sequence almost identical to VH1a2. This gene had a deleted base in the heptamer of its recombination signal sequence. However, even if this defect diminished or eliminated its ability to rearrange, the a2-like gene could have acted as a donor for gene-conversion-like alteration of rearranged VH genes. Sequence comparisons suggested that this gene or a gene like it could have acted as a donor for gene conversion in mutant Alicia and in normal rabbits.
Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB
Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén
2014-01-01
Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin-or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207
Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia
2016-03-30
Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.
Hao, Weilong; Palmer, Jeffrey D
2009-09-29
The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.
Wang, Chun-Chi; Jong, Yuh-Jyh; Chang, Jan-Gowth; Chen, Yen-Ling; Wu, Shou-Mei
2010-07-01
We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.
Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S
2017-01-01
3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.
Extensive concerted evolution of rice paralogs and the road to regaining independence.
Wang, Xiyin; Tang, Haibao; Bowers, John E; Feltus, Frank A; Paterson, Andrew H
2007-11-01
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the approximately 0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, approximately 8% of japonica paralogs produced 5-7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while approximately 70-MY-old "paleologs" resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice-sorghum divergence approximately 41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity--that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5-7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization.
Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.
2016-01-01
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.
Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O
2016-01-01
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199
Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan
2016-01-01
A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.
Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates.
Hayakawa, Toshiyuki; Khedri, Zahra; Schwarz, Flavio; Landig, Corinna; Liang, Suh-Yuen; Yu, Hai; Chen, Xi; Fujito, Naoko T; Satta, Yoko; Varki, Ajit; Angata, Takashi
2017-11-23
Siglecs-11 and -16 are members of the sialic acid recognizing Ig-like lectin family, and expressed in same cells. Siglec-11 functions as an inhibitory receptor, whereas Siglec-16 exhibits activating properties. In humans, SIGLEC11 and SIGLEC16 gene sequences are extremely similar in the region encoding the extracellular domain due to gene conversions. Human SIGLEC11 was converted by the nonfunctional SIGLEC16P allele, and the converted SIGLEC11 allele became fixed in humans, possibly because it provides novel neuroprotective functions in brain microglia. However, the detailed evolutionary history of SIGLEC11 and SIGLEC16 in other primates remains unclear. We analyzed SIGLEC11 and SIGLEC16 gene sequences of multiple primate species, and examined glycan binding profiles of these Siglecs. The phylogenetic tree demonstrated that gene conversions between SIGLEC11 and SIGLEC16 occurred in the region including the exon encoding the sialic acid binding domain in every primate examined. Functional assays showed that glycan binding preference is similar between Siglec-11 and Siglec-16 in all analyzed hominid species. Taken together with the fact that Siglec-11 and Siglec-16 are expressed in the same cells, Siglec-11 and Siglec-16 are regarded as paired receptors that have maintained similar ligand binding preferences via gene conversions. Relaxed functional constraints were detected on the SIGLEC11 and SIGLEC16 exons that underwent gene conversions, possibly contributing to the evolutionary acceptance of repeated gene conversions. The frequency of nonfunctional SIGLEC16P alleles is much higher than that of SIGLEC16 alleles in every human population. Our findings indicate that Siglec-11 and Siglec-16 have been maintained as paired receptors by repeated gene conversions under relaxed functional constraints in the primate lineage. The high prevalence of the nonfunctional SIGLEC16P allele and the fixation of the converted SIGLEC11 imply that the loss of Siglec-16 and the gain of Siglec-11 in microglia might have been favored during the evolution of human lineage.
Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants
Schmieder, Sandra; Colinet, Dominique; Poirié, Marylène
2012-01-01
In several Hymenoptera, sexual fate is determined by the allelic composition at the complementary sex-determiner locus, a sex-determination mechanism that can strongly affect population dynamics. To date, the molecular identification of complementary sex determiner has only been achieved in the honeybee, where the complementary sex-determiner gene was reported to have arisen from duplication of the feminizer gene. Strikingly, the complementary sex-determiner gene was also proposed to be unique to the honeybee lineage. Here we identify feminizer and complementary sex-determiner orthologues in bumble bees and ants. We further demonstrate that the duplication of feminizer that produced complementary sex determiner occurred before the divergence of Aculeata species (~120 Myr ago). Finally, we provide evidence that the two genes evolved concertedly through gene conversion, complementary sex-determiner evolution being additionally shaped by mosaic patterns of selection. Thus, the complementary sex-determiner gene likely represents the molecular basis for single locus-complementary sex determination in the Aculeata infra-order, and possibly, in the entire Hymenoptera order. PMID:22692538
Dron, M; Hartmann, C; Rode, A; Sevignac, M
1985-01-01
We have characterized a 1.7 kb sequence, containing a tRNA Leu2 gene shared by the ct and mt genomes of Brassica oleracea. The two sequences are completely homologous except in two short regions where two distinct gene conversion events have occurred between two sets of direct repeats leading to the insertion of 5 bp in the T loop of the mt copy of the ct gene. This is the first evidence that gene conversion represents the initial evolutionary step in inactivation of transferred ct genes in the mt genome. We also indicate that organelle DNA transfer by organelle fusion is an ongoing process which could be useful in genetic engineering. PMID:4080548
Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.
Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P
2009-12-01
Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.
Conversion events in gene clusters
2011-01-01
Background Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments. Results To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at http://www.bx.psu.edu/miller_lab. Conclusions These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes. PMID:21798034
Kitani, Y.
1978-01-01
From the analysis of large samples of gene conversion asci in the g locus of Sordaria fimicola, it was found that neither the conversion event itself nor conversion-associated recombination of flanking markers cause either chiasma or chromatid interference with crossing over in a neighboring interval. The presence of more than one kind of crossover event, one causing interference the other not, is considered. The existence of two kinds of gene loci, one of single-cistron composition and the other of multiple-cistron composition, is discussed in relation to reciprocal recombination within a locus. PMID:17176535
Kitani, Y
1978-07-01
From the analysis of large samples of gene conversion asci in the g locus of Sordaria fimicola, it was found that neither the conversion event itself nor conversion-associated recombination of flanking markers cause either chiasma or chromatid interference with crossing over in a neighboring interval. The presence of more than one kind of crossover event, one causing interference the other not, is considered. The existence of two kinds of gene loci, one of single-cistron composition and the other of multiple-cistron composition, is discussed in relation to reciprocal recombination within a locus.
Ivanov, E. L.; Sugawara, N.; Fishman-Lobell, J.; Haber, J. E.
1996-01-01
HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching. PMID:8849880
Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence
Wang, Xiyin; Tang, Haibao; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.
2007-01-01
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the ∼0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, ∼8% of japonica paralogs produced 5–7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while ∼70-MY-old “paleologs” resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice–sorghum divergence ∼41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity—that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5–7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization. PMID:18039882
Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A
2014-01-21
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.
Microchemical Systems for Fuel Processing and Conversion to Electrical Power
2007-03-15
Processing and Conversion to Electrical Power - Final Report 2 Table of Contents Table of Contents... Processing and Conversion to Electrical Power - Final Report 3 8.7 Development of Large Free-Standing Electrolyte-supported Micro Fuel Cell Membranes...84 MURI Microchemical Systems for Fuel Processing and
Curson, Andrew R. J.; Burns, Oliver J.; Voget, Sonja; Daniel, Rolf; Todd, Jonathan D.; McInnis, Kathryn; Wexler, Margaret; Johnston, Andrew W. B.
2014-01-01
Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again, through the removal of the toxic product acrylyl-CoA. PMID:24848004
Daas, Martinus J A; Nijsse, Bart; van de Weijer, Antonius H P; Groenendaal, Bart W A J; Janssen, Fons; van der Oost, John; van Kranenburg, Richard
2018-06-27
Consolidated bioprocessing (CBP) is a cost-effective approach for the conversion of lignocellulosic biomass to biofuels and biochemicals. The enzymatic conversion of cellulose to glucose requires the synergistic action of three types of enzymes: exoglucanases, endoglucanases and β-glucosidases. The thermophilic, hemicellulolytic Geobacillus thermodenitrificans T12 was shown to harbor desired features for CBP, although it lacks the desired endo and exoglucanases required for the conversion of cellulose. Here, we report the expression of both endoglucanase and exoglucanase encoding genes by G. thermodenitrificans T12, in an initial attempt to express cellulolytic enzymes that complement the enzymatic machinery of this strain. A metagenome screen was performed on 73 G. thermodenitrificans strains using HMM profiles of all known CAZy families that contain endo and/or exoglucanases. Two putative endoglucanases, GE39 and GE40, belonging to glucoside hydrolase family 5 (GH5) were isolated and expressed in both E. coli and G. thermodenitrificans T12. Structure modeling of GE39 revealed a folding similar to a GH5 exo-1,3-β-glucanase from S. cerevisiae. However, we determined GE39 to be a β-xylosidase having pronounced activity towards p-nitrophenyl-β-D-xylopyranoside. Structure modelling of GE40 revealed its protein architecture to be similar to a GH5 endoglucanase from B. halodurans, and its endoglucanase activity was confirmed by enzymatic activity against 2-hydroxyethylcellulose, carboxymethylcellulose and barley β-glucan. Additionally, we introduced expression constructs into T12 containing Geobacillus sp. 70PC53 endoglucanase gene celA and both endoglucanase genes (M1 and M2) from Geobacillus sp. WSUCF1. Finally, we introduced expression constructs into T12 containing the C. thermocellum exoglucanases celK and celS genes and the endoglucanase celC gene. We identified a novel G. thermodenitrificans β-xylosidase (GE39) and a novel endoglucanase (GE40) using a metagenome screen based on multiple HMM profiles. We successfully expressed both genes in E. coli and functionally expressed the GE40 endoglucanase in G. thermodenitrificans T12. Additionally, the heterologous production of active CelK, a C. thermocellum derived exoglucanase, and CelA, a Geobacillus derived endoglucanase, was demonstrated with strain T12. The native hemicellulolytic activity and the heterologous cellulolytic activity described in this research provide a good basis for the further development of G. thermodenitrificans T12 as a host for consolidated bioprocessing.
Nath, Sarmi; Somyajit, Kumar; Mishra, Anup; Scully, Ralph
2017-01-01
Abstract The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression. PMID:28911102
Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates
Ercan, Onur; Wels, Michiel; Smid, Eddy J.
2014-01-01
This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239
Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion
Fawcett, Jeffrey A.; Innan, Hideki
2011-01-01
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples. PMID:24710144
Ribas, Vinicius T.; Costa, Marcos R.
2017-01-01
Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS. PMID:28824380
Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J
2014-08-20
Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.
Leontiou, Chrysanthia A.; Hadjidaniel, Michael D.; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C.
2015-01-01
Introduction Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Methods Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. Results The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Conclusion Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions. PMID:26247357
Leontiou, Chrysanthia A; Hadjidaniel, Michael D; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C
2015-01-01
Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions.
De Luca, Belén M; Nudel, Clara B; Gonzalez, Rodrigo H; Nusblat, Alejandro D
2017-03-04
Biocatalysis is a fundamental concept in biotechnology. The topic integrates knowledge of several disciplines; therefore, it was included in the course "design and optimization of biological systems" which is offered in the biochemistry curricula. We selected the ciliate tetrahymena as an example of a eukaryotic system with potential for the biotransformation of sterol metabolites of industrial interest; in particular, we focused on the conversion of cholesterol to provitamin D 3. The students work with wild type and recombinant strains and learn how sterol pathways could be modified to obtain diverse sterol moieties. During the course the students identify and measure the concentration of sterols. They also search for related genes by bioinformatic analysis. Additionally, the students compare biotransformation rates, growing the ciliate in plate and in a bioreactor. Finally, they use fluorescence microscopy to localize an enzyme involved in biotransformation. The last day each team makes an oral presentation, explaining the results obtained and responds to a series of key questions posed by the teachers, which determine the final mark. In our experience, this course enables undergraduate students to become acquainted with the principles of biocatalysis as well as with standard and modern techniques, through a simple and robust laboratory exercise, using a biological system for the conversion of valuable pharmaceutical moieties. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):105-114, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-01-01
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. PMID:26116919
Buena-Atienza, Elena; Rüther, Klaus; Baumann, Britta; Bergholz, Richard; Birch, David; De Baere, Elfride; Dollfus, Helene; Greally, Marie T.; Gustavsson, Peter; Hamel, Christian P.; Heckenlively, John R.; Leroy, Bart P.; Plomp, Astrid S.; Pott, Jan Willem R.; Rose, Katherine; Rosenberg, Thomas; Stark, Zornitza; Verheij, Joke B. G. M.; Weleber, Richard; Zobor, Ditta; Weisschuh, Nicole; Kohl, Susanne; Wissinger, Bernd
2016-01-01
X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree. PMID:27339364
Weber, Kristina L; Welly, Bryan T; Van Eenennaam, Alison L; Young, Amy E; Porto-Neto, Laercio R; Reverter, Antonio; Rincon, Gonzalo
2016-01-01
Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other traits and gene co-expression networks.
Balaresque, Patricia; King, Turi E; Parkin, Emma J; Heyer, Evelyne; Carvalho-Silva, Denise; Kraaijenbrink, Thirsa; de Knijff, Peter; Tyler-Smith, Chris; Jobling, Mark A
2014-01-01
The male-specific region of the human Y chromosome (MSY) contains eight large inverted repeats (palindromes), in which high-sequence similarity between repeat arms is maintained by gene conversion. These palindromes also harbor microsatellites, considered to evolve via a stepwise mutation model (SMM). Here, we ask whether gene conversion between palindrome microsatellites contributes to their mutational dynamics. First, we study the duplicated tetranucleotide microsatellite DYS385a,b lying in palindrome P4. We show, by comparing observed data with simulated data under a SMM within haplogroups, that observed heteroallelic combinations in which the modal repeat number difference between copies was large, can give rise to homoallelic combinations with zero-repeats difference, equivalent to many single-step mutations. These are unlikely to be generated under a strict SMM, suggesting the action of gene conversion. Second, we show that the intercopy repeat number difference for a large set of duplicated microsatellites in all palindromes in the MSY reference sequence is significantly reduced compared with that for nonpalindrome-duplicated microsatellites, suggesting that the former are characterized by unusual evolutionary dynamics. These observations indicate that gene conversion violates the SMM for microsatellites in palindromes, homogenizing copies within individual Y chromosomes, but increasing overall haplotype diversity among chromosomes within related groups. PMID:24610746
Kantzow, Christina; Weuster-Botz, Dirk
2016-08-01
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.
Generous, Mark Alan; Keeley, Maureen P
2014-01-01
Final conversations (FCs) are defined as the communicative interactions, both verbal and nonverbal, that occur between terminally ill patients and relational partners. In this study, the "Final Conversations Scale" was developed and tested. A total of 152 participants that had engaged in final conversations with individuals that were terminally ill completed the newly developed instrument. Factor analysis produced a five-factor structure, including: messages of spirituality/religion; expressions of love; proactive difficult relationship talk; everyday communication; and talk about illness/death. Participants' perceptions of the relational closeness and difficulty with the deceased significantly influenced the individuals' recalled frequency of FCs messages. Practical and scholarly implications focus on the needs of the family members regarding their communication with terminally ill individuals, as well as directions for future research with the FCs Scale.
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion.
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-06-27
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Widespread Gene Conversion in Centromere Cores
Shi, Jinghua; Wolf, Sarah E.; Burke, John M.; Presting, Gernot G.; Ross-Ibarra, Jeffrey; Dawe, R. Kelly
2010-01-01
Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. PMID:20231874
Baranello, Giovanni; Alfei, Enrico; Martinelli, Diego; Rizzetto, Manuela; Cazzaniga, Fabiana; Dionisi-Vici, Carlo; Gellera, Cinzia; Castellotti, Barbara
2014-09-01
Hyperargininemia due to mutations in ARG1 gene is an autosomal recessive inborn error of metabolism caused by a defect in the final step of the urea cycle. Common clinical presentation is a variable association of progressive spastic paraparesis, epilepsy, and cognitive deficits. We describe the clinical history of an Italian child presenting progressive spastic paraparesis, carrying a new homozygous missense mutation in the ARG1 gene. A detailed clinical, biochemical, and neurophysiological follow-up after 7 months of sodium benzoate therapy is reported. Laboratory findings, gait abnormalities, spastic paraparesis, and electroencephalographic and neurophysiological abnormalities remained quite stable over the follow-up. Conversely, a mild cognitive deterioration has been detected by means of the neuropsychologic assessment. Further longitudinal studies by means of longer follow-up and using clinical, biochemical, radiological, and neurophysiological assessments are needed in such patients to describe natural history and monitor the effects of treatments. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Furfural and 5-hydroxymethylfurfural (HMF) are inhibitory compounds commonly encountered during lignocellulose-to-ethanol conversion for cleaner transportation fuels. It is possible to in situ detoxify the aldehyde inhibitors by tolerant ethanologenic yeast strains. Multiple gene-mediated reductio...
Somatic diversification of chicken immunoglobulin light chains by point mutations.
Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I
1990-04-01
The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J-C lambda intron (where C = constant).
Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio
2014-01-01
It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought. PMID:24817545
Evidence for a high mutation rate at rapidly evolving yeast centromeres.
Bensasson, Douda
2011-07-18
Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.
Evidence for a high mutation rate at rapidly evolving yeast centromeres
2011-01-01
Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380
Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire
Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A.
2013-01-01
Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens. PMID:24278246
Yasukochi, Yoshiki; Satta, Yoko
2015-03-25
The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Yasukochi, Yoshiki; Satta, Yoko
2015-01-01
The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902
Melis, Anastasios; Mitra, Mautusi
2010-06-29
The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.
Ponsuksili, Siriluck; Du, Yang; Hadlich, Frieder; Siengdee, Puntita; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus
2013-08-05
Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.
Regulation of contractile protein gene expression in unloaded mouse skeletal muscle
NASA Technical Reports Server (NTRS)
Criswell, D. S.; Carson, J. A.; Booth, F. W.
1996-01-01
Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.
Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing
2007-11-01
Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Final Supplement to the Final Environmental Impact Statement (Final Supplement) evaluates the economic, engineering, and environmental aspects of newly developed alternatives to an abandonment/conversion project proposed by Florida Gas Transmission Company (Florida Gas). It also updates the staff's previous FEIS and studies revisions to the original proposal. Wherever possible, the staff has adopted portions of its previous FEIS in lieu of reprinting portions of that analysis which require no change. 60 references, 8 figures, 35 tables.
van der Ley, P
1988-11-01
Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.
Wu, Baojun; Hao, Weilong
2014-04-16
Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.
The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types
Lamb, Bernard C.; Ghikas, Aglaia
1979-01-01
In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926
76 FR 13504 - Conversions of Insured Credit Unions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Conversions of Insured Credit Unions AGENCY: National Credit Union Administration (NCUA). ACTION: Final rule... phrase ``Regional Director'' in NCUA's rule on credit union to mutual savings bank conversions. For... for the review and approval of certain types of credit union conversions from the Regional Directors...
Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D
2017-01-04
The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaojun; Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000; Zhong, Xiaomin
2013-02-15
Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasingmore » evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.« less
Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong
2002-01-01
This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780
Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A
1992-11-01
Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.
ALTERATION OF GENE CONVERSION PATTERNS IN Sordaria fimicola BY SUPPLEMENTATION WITH DNA BASES*
Kitani, Y.; Olive, Lindsay S.
1970-01-01
Supplementation with DNA bases in crosses of Sordaria fimicola heterozygous for spore color markers (g1, h2) within the gray-spore (g) locus has been found to cause significant alterations in patterns of gene conversion at the two mutant sites. Each base had its own characteristic effect in altering the conversion pattern, and responses of the two mutant sites to the four bases were different in several ways. Also, the responses of the two involved chromatids of the meiotic bivalent were different. PMID:5273454
Alteration of gene conversion patterns in Sordaria fimicola by supplementation with DNA bases.
Kitani, Y; Olive, L S
1970-08-01
Supplementation with DNA bases in crosses of Sordaria fimicola heterozygous for spore color markers (g(1), h(2)) within the gray-spore (g) locus has been found to cause significant alterations in patterns of gene conversion at the two mutant sites. Each base had its own characteristic effect in altering the conversion pattern, and responses of the two mutant sites to the four bases were different in several ways. Also, the responses of the two involved chromatids of the meiotic bivalent were different.
Skills Conversion Project: Chapter 2, Executive Summary. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
This final report describes the Skills Conversion Project conducted by The National Society of Professional Engineers under contract to the Department of Labor to study methods of utilizing the large pool of highly skilled unemployed technicians and professional personnel who were formerly employed in the aerospace and defense industries. If…
Saleem, M; Lamb, B C; Nevo, E
2001-01-01
Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II. PMID:11779798
Saleem, M; Lamb, B C; Nevo, E
2001-12-01
Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.
Liu, Lina; Chen, Sheng; Wu, Jing
2017-10-01
Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.
Gudhka, Reema K; Neilan, Brett A; Burns, Brendan P
2015-01-01
Halococcus hamelinensis was the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome of H. hamelinensis consisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of the H. hamelinensis genome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome of H. hamelinensis also revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes of H. hamelinensis against various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizoshiri, N.; Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto; Kishida, T.
Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genesmore » and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.« less
USDA-ARS?s Scientific Manuscript database
Lignocellulosic biomass conversion inhibitors furfural and HMF inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor ...
Selva, E M; Maderazo, A B; Lahue, R S
1997-12-01
The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (< 10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.
Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*
Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji
2009-01-01
Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064
George A. Olah, Carbocation and Hydrocarbon Chemistry
. Final Technical Report. [HF:BF{sub 2}/H{sub 2}] , DOE Technical Report, 1980 Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984 , DOE Technical Report, 1984 Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report
Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F
2017-08-01
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.; ...
2017-09-07
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, James K.; Smith, Sarah R.; McCrow, John P.
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO 3 -). To investigate the cellular and genetic basis of diatom NO 3 - assimilation, in this paper we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO 3 - transport remained intact. Unassimilated NO 3 - accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO 3 - chloride channel transportersmore » plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO 3 -. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO 3 -, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO 3 - addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. Finally, N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO 3 - replete and deplete conditions.« less
Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino
2014-01-01
Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805
Caffeine inhibits gene conversion by displacing Rad51 from ssDNA
Tsabar, Michael; Mason, Jennifer M.; Chan, Yuen-Ling; Bishop, Douglas K.; Haber, James E.
2015-01-01
Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine's inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments. PMID:26019181
Vandenbrink, Joshua P; Goff, Valorie; Jin, Huizhe; Kong, Wenqian; Paterson, Andrew H; Feltus, F Alex
2013-09-01
For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates
Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.
2015-01-01
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902
Mei, Yan-Zhen; Wan, Yong-Min; He, Bing-Fang; Ying, Han-Jie; Ouyang, Ping-Kai
2009-12-01
The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-alpha-amino acids. Since the reaction at higher temperature, the advantageous for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile was firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2 kb DNA fragment by Restriction Site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein hyuP, hyperprotein hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-alpha-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 comparing respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.
Dam, Phuongan; Kataeva, Irina; Yang, Sung-Jae; Zhou, Fengfeng; Yin, Yanbin; Chou, Wenchi; Poole, Farris L.; Westpheling, Janet; Hettich, Robert; Giannone, Richard; Lewis, Derrick L.; Kelly, Robert; Gilbert, Harry J.; Henrissat, Bernard; Xu, Ying; Adams, Michael W. W.
2011-01-01
Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments. PMID:21227922
Martín, Juan F.; Liras, Paloma
2017-01-01
The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi
2013-12-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.
Zhou, Miaojin; Hu, Zhiqing; Qiu, Liyan; Zhou, Tao; Feng, Mai; Hu, Qian; Zeng, Baitao; Li, Zhuo; Sun, Qianru; Wu, Yong; Liu, Xionghao; Wu, Lingqian; Liang, Desheng
2018-05-09
Spinal muscular atrophy (SMA) is a kind of neuromuscular disease characterized by progressive motor neuron loss in the spinal cord. It is caused by mutations in the survival motor neuron 1 (SMN1) gene. SMN1 has a paralogous gene, survival motor neuron 2 (SMN2), in humans that is present in almost all SMA patients. The generation and genetic correction of SMA patient-specific induced pluripotent stem cells (iPSCs) is a viable, autologous therapeutic strategy for the disease. Here, c-Myc-free and non-integrating iPSCs were generated from the urine cells of an SMA patient using an episomal iPSC reprogramming vector, and a unique crRNA was designed that does not have similar sequences (≤3 mismatches) anywhere in the human reference genome. In situ gene conversion of the SMN2 gene to an SMN1-like gene in SMA-iPSCs was achieved using CRISPR/Cpf1 and single-stranded oligodeoxynucleotide with a high efficiency of 4/36. Seamlessly gene-converted iPSC lines contained no exogenous sequences and retained a normal karyotype. Significantly, the SMN expression and gems localization were rescued in the gene-converted iPSCs and their derived motor neurons. This is the first report of an efficient gene conversion mediated by Cpf1 homology-directed repair in human cells and may provide a universal gene therapeutic approach for most SMA patients.
Campos, José Luis; Charlesworth, Brian
2017-01-01
We used whole-genome resequencing data from a population of Drosophila melanogaster to investigate the causes of the negative correlation between the within-population synonymous nucleotide site diversity (πS) of a gene and its degree of divergence from related species at nonsynonymous nucleotide sites (KA). By using the estimated distributions of mutational effects on fitness at nonsynonymous and UTR sites, we predicted the effects of background selection at sites within a gene on πS and found that these could account for only part of the observed correlation between πS and KA. We developed a model of the effects of selective sweeps that included gene conversion as well as crossing over. We used this model to estimate the average strength of selection on positively selected mutations in coding sequences and in UTRs, as well as the proportions of new mutations that are selectively advantageous. Genes with high levels of selective constraint on nonsynonymous sites were found to have lower strengths of positive selection and lower proportions of advantageous mutations than genes with low levels of constraint. Overall, background selection and selective sweeps within a typical gene reduce its synonymous diversity to ∼75% of its value in the absence of selection, with larger reductions for genes with high KA. Gene conversion has a major effect on the estimates of the parameters of positive selection, such that the estimated strength of selection on favorable mutations is greatly reduced if it is ignored. PMID:28559322
Vanhaeren, Hannes; Nam, Youn-Jeong; De Milde, Liesbeth; Chae, Eunyoung; Storme, Veronique; Weigel, Detlef; Gonzalez, Nathalie; Inzé, Dirk
2017-02-01
The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant's life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.
Vanhaeren, Hannes; De Milde, Liesbeth
2017-01-01
The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant’s life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. PMID:28003326
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Matsubara, Takeo; Hamada, Shohei; Wakabayashi, Ayaka; Kishida, Masao
2016-11-01
The GAR1 gene, encoding d-galacturonate reductase in Cryptococcus diffluens, was isolated, and the GAR1-expression plasmid was constructed by insertion of GAR1 downstream of the yeast constitutive promoter in the yeast-integrating vector. Recombinant Saccharomyces cerevisiae expressing C. diffluensd-galacturonate reductase from a genome integrated copy of the gene was cultured for use the conversion of d-galacturonic acid to l-galactonic acid. The optimum conditions for l-galactonic acid production were determined in terms of the initial concentration of d-galacturonic acid, fermentation pH, and mixed sugars. The following conditions yielded high efficiency in the conversion of d-galacturonic acid to l-galactonic acid in large-scale cultures: 0.1% initial d-galacturonic acid concentration, pH 3.5, and glucose as additional sugar. The aerobic condition was necessary for the conversion of d-galacturonic acid. Subculture of that recombinant was not showing to decrease of the d-galacturonic acid conversion rate even though it was repeated in ten generations. Culturing in scale-up, the conversion rate of d-galacturonic acid to l-galactonic acid was increased. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar
1998-01-01
The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768
Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S
1998-07-21
The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.
Porter, G.; Westmoreland, J.; Priebe, S.; Resnick, M. A.
1996-01-01
Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad(+) vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. PMID:8725224
Karn, Robert C; Laukaitis, Christina M
2012-01-01
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.
Khan, Imran; Maldonado, Emanuel; Vasconcelos, Vítor; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho
2014-09-10
Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation. We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the "hairless" dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair. We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.
Hong, Hui; Samborskyy, Markiyan; Lindner, Frederick; Leadlay, Peter F
2016-01-18
Desertomycin A is an aminopolyol polyketide containing a macrolactone ring. We have proposed that desertomycin A and similar compounds (marginolactones) are formed by polyketide synthases primed not with γ-aminobutanoyl-CoA but with 4-guanidinylbutanoyl-CoA, to avoid facile cyclization of the starter unit. This hypothesis requires that there be a final-stage de-amidination of the corresponding guanidino-substituted natural product, but no enzyme for such a process has been described. We have now identified candidate amidinohydrolase genes within the desertomycin and primycin clusters. Deletion of the putative desertomycin amidinohydrolase gene dstH in Streptomyces macronensis led to the accumulation of desertomycin B, the guanidino form of the antibiotic. Also, purified DstH efficiently catalyzed the in vitro conversion of desertomycin B into the A form. Hence this amidinohydrolase furnishes the missing link in this proposed naturally evolved example of protective-group chemistry. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan; ...
2014-11-03
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation
Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard
2011-01-01
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552
Vecchione, A; Fassan, M; Anesti, V; Morrione, A; Goldoni, S; Baldassarre, G; Byrne, D; D'Arca, D; Palazzo, J P; Lloyd, J; Scorrano, L; Gomella, L G; Iozzo, R V; Baffa, R
2009-01-15
Allelic deletions on human chromosome 12q24 are frequently reported in a variety of malignant neoplasms, indicating the presence of a tumor suppressor gene(s) in this chromosomal region. However, no reasonable candidate has been identified so far. In this study, we report the cloning and functional characterization of a novel mitochondrial protein with tumor suppressor activity, henceforth designated MITOSTATIN. Human MITOSTATIN was found within a 3.2-kb transcript, which encoded a approximately 62 kDa, ubiquitously expressed protein with little homology to any known protein. We found homozygous deletions and mutations of MITOSTATIN gene in approximately 5 and approximately 11% of various cancer-derived cells and solid tumors, respectively. When transiently overexpressed, MITOSTATIN inhibited colony formation, tumor cell growth and was proapoptotic, all features shared by established tumor suppressor genes. We discovered a specific link between MITOSTATIN overexpression and downregulation of Hsp27. Conversely, MITOSTATIN knockdown cells showed an increase in cell growth and cell survival rates. Finally, MITOSTATIN expression was significantly reduced in primary bladder and breast tumors, and its reduction was associated with advanced tumor stages. Our findings support the hypothesis that MITOSTATIN has many hallmarks of a classical tumor suppressor in solid tumors and may play an important role in cancer development and progression.
Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630
DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.; ...
2018-01-24
Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less
Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLorenzo, Drew M.; Rottinghaus, Austin G.; Henson, William R.
Rhodococcus opacus PD630 is a non-model, gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic, lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized due to a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ~45-fold in output was constructed. To improvemore » the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.« less
Guide to Software Conversion Management. [Final Report.
ERIC Educational Resources Information Center
Skall, M., Ed.
Based mainly on interviews conducted at 14 federal agencies that had completed or were involved in software conversion projects, this publication provides guidelines for the entire process of software conversion. This is defined as the transformation, without functional change, of computer programs or data elements to permit their use on a…
Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.
Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun
2015-01-01
As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.
Genetics of solvent-producing clostridia. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Specific Aims 1 and 2 of the original project proposal were specifically addressed during this project period. This involved the development of the pCAK1 phagemid delivery vector, refinement of the C. acetobutylicum electroporation protocol, selection and characterization of the engB cellulase gene from C. cellulovorans and the introduction and successful expression of this heterologous engB gene from C. cellulovorans in C. acetobutylicum. The successful expression of a heterologous engB gene from C. cellulovorans in C. acetobutylicum ATCC 824 has important industrial significance for the utilization of cellulose by this ABE fermentation microorganism. Conversion efficiency testing of the developed recombinant strainsmore » in batch and continuous culture (Specific Aim 3) will be carried out once suitable strains have been developed which can utilize cellulose as sole carbon source. The functionality of pCAK1 in the E. coli host system, especially in generating ssDNA, in the absence of impairing E. coli cell viability, together with successful introduction of pCAK1 into C. acetobutylicum and C. perfringens is the basis for the construction of a M13-like genetic system for the genus Clostridium and is expected to allow for more sophisticated molecular genetic analysis of this genus.« less
Yu, Jiujiang; Chang, Perng-Kuang; Ehrlich, Kenneth C.; Cary, Jeffrey W.; Montalbano, Beverly; Dyer, John M.; Bhatnagar, Deepak; Cleveland, Thomas E.
1998-01-01
The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee. PMID:9835571
NASA Technical Reports Server (NTRS)
Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)
2002-01-01
Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.
Dobson, Deborah E; Scholtes, Luella D; Myler, Peter J; Turco, Salvatore J; Beverley, Stephen M
2006-04-01
Stage-specific modifications to the abundant surface lipophosphoglycan (LPG) adhesin of Leishmania play critical roles in binding and release of the parasite during its infectious cycle in the sand fly, and control the ability of different fly species to transmit different parasite strains and species. In Leishmania major Friedlin V1, binding to a sand fly midgut lectin is mediated by side chain galactosyl (scGal) modifications of the LPG phosphoglycan (PG) repeats, while release occurs following arabinose-capping of scGals. Previously we identified a family of six SCG genes encoding PG scbeta-galactosyltransferases, and here we show that the extended SCG gene family (now termed SCG/L/R) encompasses 14 members in three subfamilies (SCG, SCGL and SCGR). Northern blot and RT-PCR analyses suggest that most of the SCG/L/R genes are expressed, with distinct patterns during the infectious cycle. The six SCGR subfamily genes are clustered and interspersed with the two SCA genes responsible for developmentally regulated arabinosylation of PG scGals; relationships amongst the SCGR revealed clear evidence of extensive gene conversion. In contrast, the seven SCG 'core' family members are localized adjacent to telomeres. These telomeres share varying amounts of sequence upstream and/or downstream of the SCG ORFs, again providing evidence of past gene conversions. Multiple SCG1-7 RNAs were expressed simultaneously within parasite populations. Potentially, telomeric localization of SCG genes may function primarily to facilitate gene conversion and the elaboration of functional evolutionary diversity in the degree of PG sc-galactosylation observed in other strains of L. major.
Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio
2014-01-01
Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338
Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9
USDA-ARS?s Scientific Manuscript database
The CRISPR/Cas9 system is known for its precise and efficient gene-editing of a targeted region in a variety of organisms including plants. We targeted FAD2 gene region to perform CRISPR/Cas9 gene-editing in peanut. The FAD2 gene encodes fatty acid desaturase which catalyzes the conversion of oleic ...
Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.
Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie
2018-06-07
Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
... Alternative Fuels Conversions AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The... Emissions: Revisions to Certification of Alternative Fuels Conversions'' (EPA ICR No. 0783.64, OMB Control... Vehicle and Engine Conversions Final Rule which was issued on April 8, 2011 (76 FR 19830). This includes a...
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung
2013-01-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261
Yassin, Atteyet F; Langenberg, Stefan; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Mukherjee, Supratim; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C
2017-01-01
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
Study of the Effectiveness of OCR for Decentralized Data Capture and Conversion. Final Report.
ERIC Educational Resources Information Center
Liston, David M.; And Others
The ERIC network conversion to an OCR (Optical Character Recognition) mode of data entry was studied to analyze the potential effectiveness of OCR data entry for future EPC/s (Editorial Processing Centers). Study results are also applicable to any other system involving decentralized bibliographic data capture and conversion functions. The report…
Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion
Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko
2011-01-01
Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143
Non-invasive prenatal testing for single gene disorders: exploring the ethics.
Deans, Zuzana; Hill, Melissa; Chitty, Lyn S; Lewis, Celine
2013-07-01
Non-invasive prenatal testing for single gene disorders is now clearly on the horizon. This new technology offers obvious clinical benefits such as safe testing early in pregnancy. Before widespread implementation, it is important to consider the possible ethical implications. Four hypothetical scenarios are presented that highlight how ethical ideals of respect for autonomy, privacy and fairness may come into play when offering non-invasive prenatal testing for single gene disorders. The first scenario illustrates the moral case for using these tests for 'information only', identifying a potential conflict between larger numbers of women seeking the benefits of the test and the wider social impact of funding tests that do not offer immediate clinical benefit. The second scenario shows how the simplicity and safety of non-invasive prenatal testing could lead to more autonomous decision-making and, conversely, how this could also lead to increased pressure on women to take up testing. In the third scenario we show how, unless strong safeguards are put in place, offering non-invasive prenatal testing could be subject to routinisation with informed consent undermined and that woman who are newly diagnosed as carriers may be particularly vulnerable. The final scenario introduces the possibility of a conflict of the moral rights of a woman and her partner through testing for single gene disorders. This analysis informs our understanding of the potential impacts of non-invasive prenatal testing for single gene disorders on clinical practice and has implications for future policy and guidelines for prenatal care.
Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H
2011-10-04
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...
2014-08-05
In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less
Isolation and characterization of two chlorophyll-deficient genes in soybean
USDA-ARS?s Scientific Manuscript database
We have identified a viable-yellow and a lethal-yellow mutant in soybean. The three phenotypes green, lethal- and viable-yellow were easily distinguished based on their light reflectance indices, chlorophyll abundance and photochemical conversion efficiency. Photochemical conversion efficiency was r...
Evolution of tuf genes: ancient duplication, differential loss and gene conversion.
Lathe, W C; Bork, P
2001-08-03
The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowe, N.
2014-05-01
This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scalemore » the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.« less
Gene silencing-based disease resistance.
Wassenegger, Michael
2002-12-01
The definition of a disease is fundamentally difficult, even if one considers only genetically based diseases. In its broadest sense, disease can be defined as any deviation from the norm that results in a physiological disadvantage. Natural selection ensures that the norm for any given species is constantly changing. In addition, some disadvantages are latent and might only manifest under certain environmental conditions. Conversely, an apparent disadvantage can carry a benefit, for example, the disease sickle-cell anemia that is an advantage in malarial areas. Because of the difficulties in giving disease a precise definition, in this review, gene silencing-based disease resistance will be restricted to the description of gene inactivation processes that contribute to maintain the physical fitness of an organism. In this sense, we are concerned with the elimination of invasive nucleic acid expressing. In numerous organisms, a variety of severe diseases are caused by the attack of invasive nucleic acids such as viruses and retroviral or transposable elements. Organisms have developed diverse mechanisms to defend themselves against such attack that include immune responses and apoptosis. Fungi, plants, invertebrates and vertebrates also enlist gene silencing systems to counteract the harmful effects of invasive nucleic acids. In particular, plants that lack interferon and immune responses have established efficient transcriptional and post-transcriptional gene silencing systems. In this review, we describe how plants defend against invasive nucleic acids and focus on the continual evolutionary battle between plants and viruses. In addition, the importance of controlling transposon activity is outlined. Finally, gene silencing-related mechanisms of genomic imprinting and X-chromosome inactivation are discussed in the context of disease resistance.
Conversion of KEGG metabolic pathways to SBGN maps including automatic layout
2013-01-01
Background Biologists make frequent use of databases containing large and complex biological networks. One popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical representation and manual layout for pathways. While some general drawing conventions exist for biological networks, arbitrary graphical representations are very common. Recently, a new standard has been established for displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations including SBGN. Unfortunately, this is non‐trivial, since converting between notations may add, remove or otherwise alter map elements so that the existing layout cannot be simply reused. Results Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained during the conversion to SBGN maps. Conclusions This allows for the drawing and layout conventions of SBGN to be followed while creating maps that are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of the final result. PMID:23953132
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... DEPARTMENT OF DEFENSE Department of the Air Force Record of Decision for the F-15 Aircraft Conversion, 144th Fighter Wing, California Air National Guard, Fresno-Yosemite International Airport Final... May 31, 2013, the United States Air Force signed the ROD for the F-15 Aircraft Conversion for the...
Huang, Tian; Wang, Xifeng; Si, Run; Chi, Hao; Han, Binyue; Han, Haitang; Cao, Gengsheng; Zhao, Yaofeng
2018-06-01
Compared with mammals, the bird Ig genetic system relies on gene conversion to create an Ab repertoire, with inversion of the IgA-encoding gene and very few cases of Ig subclass diversification. Although gene conversion has been studied intensively, class-switch recombination, a mechanism by which the IgH C region is exchanged, has rarely been investigated in birds. In this study, based on the published genome of pigeon ( Columba livia ) and high-throughput transcriptome sequencing of immune-related tissues, we identified a transcriptionally forward α gene and found that the pigeon IgH gene locus is arranged as μ-α-υ1-υ2. In this article, we show that both DNA deletion and inversion may result from IgA and IgY class switching, and similar junction patterns were observed for both types of class-switch recombination. We also identified two subclasses of υ genes in pigeon, which share low sequence identity. Phylogenetic analysis suggests that divergence of the two pigeon υ genes occurred during the early stage of bird evolution. The data obtained in this study provide new insight into class-switch recombination and Ig gene evolution in birds. Copyright © 2018 by The American Association of Immunologists, Inc.
The communicative functions of final rises in Finnish intonation.
Ogden, Richard; Routarinne, Sara
2005-01-01
This paper considers the communicative function of final rises in Finnish conversational talk between pairs of teenage girls. Final rises are fairly common, occurring approximately twice a minute, predominantly on declaratives and in narrative sequences. We briefly consider the interplay between voice quality (known to be a marker of transition relevance) and rising intonation in Finnish. We argue that in narrative sequences, rising terminals manage two main interactional tasks: they provide a place for a coparticipant to mark recipiency, and they project more talk by the current speaker. Using a methodology which combines phonetic observation with conversation analysis, we demonstrate participants' orientation to these functions.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
PGC-1 Coactivators Regulate MITF and the Tanning Response
Shoag, Jonathan; Haq, Rizwan; Zhang, Mingfeng; Liu, Laura; Rowe, Glenn C.; Jiang, Aihua; Koulisis, Nicole; Farrel, Caitlin; Amos, Christopher I.; Wei, Qingyi; Lee, Jeffrey E.; Zhang, Jiangwen; Kupper, Thomas S.; Qureshi, Abrar A.; Cui, Rutao; Han, Jiali; Fisher, David E.; Arany, Zoltan
2013-01-01
SUMMARY The production of pigment by melanocytes tans the skin and protects against skin cancers. UV-exposed keratinocytes secrete α-MSH, which then activates melanin formation in melanocytes by inducing the microphthalmia-associated transcription factor (MITF). We show that PPAR-γ coactivator (PGC)-1α and PGC-1β are critical components of this melanogenic system in melanocytes. α-MSH signaling strongly induces PGC-1α expression and stabilizes both PGC-1α and PGC-1β proteins. The PGC-1s in turn activate the MITF promoter, and their expression correlates strongly with that of MITF in human melanoma cell lines and biopsy specimens. Inhibition of PGC-1α and PGC-1β blocks the α-MSH-mediated induction of MITF and melanogenic genes. Conversely, overexpression of PGC-1α induces pigment formation in cell culture and transgenic animals. Finally, polymorphism studies reveal expression quantitative trait loci in the PGC-1β gene that correlate with tanning ability and protection from melanoma in humans. These data identify PGC-1 coactivators as regulators of human tanning. PMID:23201126
Kim, Hye-Jung; Hyun, Eun-Kyung; Kim, Yeong-Su; Lee, Yong-Joo; Oh, Deok-Kun
2006-01-01
The noncharacterized gene previously proposed as the d-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from d-fructose to d-psicose. The enzyme exhibited maximal activity at 50°C and pH 8.0 with Mn2+. The turnover number (kcat) and catalytic efficiency (kcat/Km) of the enzyme for d-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not d-tagatose 3-epimerase but d-psicose 3-epimerase. The equilibrium ratio between d-psicose and d-fructose was 32:68 at 30°C. d-Psicose was produced at 230 g/liter from 700-g/liter d-fructose at 50°C after 100 min, corresponding to a conversion yield of 32.9%. PMID:16461638
Conversing as Metaphor of Human Thinking: Is Mind like a Conversation?
Sorsana, Christine; Trognon, Alain
2018-06-01
How can researchers shape their ideas so that they understand the mind better? This theoretical paper discusses the merits of the conversation metaphor as a means of analyzing the human mind. We will develop arguments concerning conversation as i) a situated and distributed activity, ii) a "product" in perpetual construction, and iii) the amount of credence and belief we afford it. Finally, we will advocate for metaphorical tools that promote a more dynamic conceptualization of human thinking.
Zheng, Fei; Zuo, Jian
2017-01-01
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss. PMID:28034617
Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.
2011-01-01
Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439
Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A
Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López
2008-01-01
Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733
Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes
Kuo, Taiyi; Liu, Patty H.; Chen, Tzu-Chieh; Lee, Rebecca A.; New, Jenny; Zhang, Danyun; Lei, Cassandra; Chau, Andy; Tang, Yicheng; Cheung, Edna
2016-01-01
Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, −17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the −17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the −17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping. PMID:26758684
Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.
2008-01-01
Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732
Williams-Rhaesa, Amanda M; Awuku, Nanaakua K; Lipscomb, Gina L; Poole, Farris L; Rubinstein, Gabriel M; Conway, Jonathan M; Kelly, Robert M; Adams, Michael W W
2018-07-01
Regulated control of both homologous and heterologous gene expression is essential for precise genetic manipulation and metabolic engineering of target microorganisms. However, there are often no options available for inducible promoters when working with non-model microorganisms. These include extremely thermophilic, cellulolytic bacteria that are of interest for renewable lignocellulosic conversion to biofuels and chemicals. In fact, improvements to the genetic systems in these organisms often cease once transformation is achieved. This present study expands the tools available for genetically engineering Caldicellulosiruptor bescii, the most thermophilic cellulose-degrader known growing up to 90 °C on unpretreated plant biomass. A native xylose-inducible (P xi ) promoter was utilized to control the expression of the reporter gene (ldh) encoding lactate dehydrogenase. The P xi -ldh construct resulted in a both increased ldh expression (20-fold higher) and lactate dehydrogenase activity (32-fold higher) in the presence of xylose compared to when glucose was used as a substrate. Finally, lactate production during growth of the recombinant C. bescii strain was proportional to the initial xylose concentration, showing that tunable expression of genes is now possible using this xylose-inducible system. This study represents a major step in the use of C. bescii as a potential platform microorganism for biotechnological applications using renewable biomass.
Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.
Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana
2006-06-02
The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.
Huang, Jinjin; Xia, Ji; Yang, Zhen; Guan, Feifei; Cui, Di; Guan, Guohua; Jiang, Wei; Li, Ying
2014-01-01
We previously cloned a 1,3-specific lipase gene from the fungus Rhizomucor miehei and expressed it in methylotrophic yeast Pichia pastoris strain GS115. The enzyme produced (termed RML) was able to catalyze methanolysis of soybean oil and showed strong position specificity. However, the enzyme activity and amount of enzyme produced were not adequate for industrial application. Our goal in the present study was to improve the enzyme properties of RML in order to apply it for the conversion of microalgae oil to biofuel. Several new expression plasmids were constructed by adding the propeptide of the target gene, optimizing the signal peptide, and varying the number of target gene copies. Each plasmid was transformed separately into P. pastoris strain X-33. Screening by flask culture showed maximal (21.4-fold increased) enzyme activity for the recombinant strain with two copies of the target gene; the enzyme was termed Lipase GH2. The expressed protein with the propeptide (pRML) was a stable glycosylated protein, because of glycosylation sites in the propeptide. Quantitative real-time RT-PCR analysis revealed two major reasons for the increase in enzyme activity: (1) the modified recombinant expression system gave an increased transcription level of the target gene (rml), and (2) the enzyme was suitable for expression in host cells without causing endoplasmic reticulum (ER) stress. The modified enzyme had improved thermostability and methanol or ethanol tolerance, and was applicable directly as free lipase (fermentation supernatant) in the catalytic esterification and transesterification reaction. After reaction for 24 hours at 30°C, the conversion rate of microalgae oil to biofuel was above 90%. Our experimental results show that signal peptide optimization in the expression plasmid, addition of the gene propeptide, and proper gene dosage significantly increased RML expression level and enhanced the enzymatic properties. The target enzyme was the major component of fermentation supernatant and was stable for over six months at 4°C. The modified free lipase is potentially applicable for industrial-scale conversion of microalgae oil to biodiesel.
Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueki, T; Nevin, KP; Woodard, TL
2014-08-26
Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahliimore » chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors for C. ljungdahlii include carbon monoxide, which can be derived from industrial waste gases or the conversion of recalcitrant biomass to syngas, as well as hydrogen, another syngas component. The finding that carbon and electron flow in C. ljungdahlii can be diverted from the production of acetate to butyrate synthesis is an important step toward the goal of renewable commodity production from carbon dioxide with this organism.« less
Thermophotovoltaic Energy Conversion for Personal Power Sources
2012-02-01
FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) November 2010 to September...accepted power source to date . 3 2. Thermophotovoltaic Energy Conversion 2.1 Thermophotovoltaic Overview Figure 1 describes the primary...photovoltaic material systems for thermophotovoltaic conversion to date are gallium antimonide (GaSb)-related materials (homogeneous: 0.72 eV
Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K
2017-04-01
There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.
Cutter, Asher D
2008-03-01
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Telomere interactions may condition the programming of antigen expression in Trypanosoma brucei.
Van der Werf, A; Van Assel, S; Aerts, D; Steinert, M; Pays, E
1990-01-01
The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:2323332
Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths
Barbe, Valérie; Baeriswyl, Simon; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane; Bouchier, Christiane; Bouvet, Odile; Calteau, Alexandra; Chiapello, Hélène; Clermont, Olivier; Cruveiller, Stéphane; Danchin, Antoine; Diard, Médéric; Dossat, Carole; Karoui, Meriem El; Frapy, Eric; Garry, Louis; Ghigo, Jean Marc; Gilles, Anne Marie; Johnson, James; Le Bouguénec, Chantal; Lescat, Mathilde; Mangenot, Sophie; Martinez-Jéhanne, Vanessa; Matic, Ivan; Nassif, Xavier; Oztas, Sophie; Petit, Marie Agnès; Pichon, Christophe; Rouy, Zoé; Ruf, Claude Saint; Schneider, Dominique; Tourret, Jérôme; Vacherie, Benoit; Vallenet, David; Médigue, Claudine; Rocha, Eduardo P. C.; Denamur, Erick
2009-01-01
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome. PMID:19165319
Hartfield, Matthew; Wright, Stephen I.; Agrawal, Aneil F.
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902
Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. Copyright © 2016 by the Genetics Society of America.
USDA-ARS?s Scientific Manuscript database
Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...
Workshop on Self-Determination in Developing and Evolving Systems
1994-02-18
processes of duplication (e.g. gene duplication, cell duplication, structural enlargement), responses to selfish DNA (e.g. suppression of outlaw...direct their development, then the genes would need some form of environmental feedback. Are there any plausible mechanisms for such feedback? 3. What is...evolutionary innovation, what is the contribution of random mutations, directed mutation, gene conversion, symbiogenesis, fusion, jumping genes or other
Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.
2016-01-01
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome. PMID:26891056
Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John
2016-02-01
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.
Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes
Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise
2009-01-01
Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885
Nikolaidis, Nikolas; Nei, Masatoshi
2004-03-01
We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.
Zakharov, I A; Kasinova, G V; Koval'tsova, S V
1983-01-01
The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.; Tao, L.; Tan, E. C. D.
2013-10-01
This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elander, Richard
This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.
Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin
2017-07-25
An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.
Mavrodi, Dmitri V.; Bonsall, Robert F.; Delaney, Shannon M.; Soule, Marilyn J.; Phillips, Greg; Thomashow, Linda S.
2001-01-01
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide. PMID:11591691
Zhang, Xiaojie; Lu, Chenyang; Bai, Linquan
2017-09-01
An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization, fast growth, abundant precursors and energy supply, and a pronounced gene expression. Streptomyces albus BK3-25 is a high-yield industrial strain producing type-I polyketide salinomycin, with a unique ability of bean oil utilization. Its potential of being a surrogate host for heterologous production of PKS was engineered and evaluated herein. Firstly, introduction of a three-gene cassette for the biosynthesis of ethylmalonyl-CoA resulted in accumulation of ethylmalonyl-CoA precursor and salinomycin, and subsequent deletion of the salinomycin biosynthetic gene cluster resulted in a host with rich supplies of common polyketide precursors, including malonyl-CoA, methylmalonyl-CoA, and ethylmalonyl-CoA. Secondly, the energy and reducing force were measured, and the improved accumulation of ATP and NADPH was observed in the mutant. Furthermore, the strength of a series of selected endogenous promoters based on microarray data was assessed at different growth phases, and a strong constitutive promoter was identified, providing a useful tool for further engineered gene expression. Finally, the potential of the BK3-25 derived host ZXJ-6 was evaluated with the introduction of the actinorhodin biosynthetic gene cluster from Streptomyces coelicolor, and the heterologous production of actinorhodin was obtained. This work clearly indicated the potential of the high-yield salinomycin producer as a surrogate host for heterologous production of polyketides, although more genetic manipulation should be conducted to streamline its performance.
Metheetrairut, Chanatip; Ahuja, Yuri; Slack, Frank J
2017-10-02
The heterochronic pathway in C. elegans controls the relative timing of cell fate decisions during post-embryonic development. It includes a network of microRNAs (miRNAs), such as let-7, and protein-coding genes, such as the stemness factors, LIN-28 and LIN-41. Here we identified the acn-1 gene, a homologue of mammalian angiotensin-converting enzyme (ACE), as a new suppressor of the stem cell developmental defects of let-7 mutants. Since acn-1 null mutants die during early larval development, we used RNAi to characterize the role of acn-1 in C. elegans seam cell development, and determined its interaction with heterochronic factors, including let-7 and its downstream interactors - lin-41, hbl-1, and apl-1. We demonstrate that although RNAi knockdown of acn-1 is insufficient to cause heterochronic defects on its own, loss of acn-1 suppresses the retarded phenotypes of let-7 mutants and enhances the precocious phenotypes of hbl-1, though not lin-41, mutants. Conversely, the pattern of acn-1 expression, which oscillates during larval development, is disrupted by lin-41 mutants but not by hbl-1 mutants. Finally, we show that acn-1(RNAi) enhances the let-7-suppressing phenotypes caused by loss of apl-1, a homologue of the Alzheimer's disease-causing amyloid precursor protein (APP), while significantly disrupting the expression of apl-1 during the L4 larval stage. In conclusion, acn-1 interacts with heterochronic genes and appears to function downstream of let-7 and its target genes, including lin-41 and apl-1.
Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping
2008-08-23
Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.
He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing
2016-12-01
RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Lamin A/C Is Required for ChAT-Dependent Neuroblastoma Differentiation.
Guglielmi, Loredana; Nardella, Marta; Musa, Carla; Iannetti, Ilaria; Arisi, Ivan; D'Onofrio, Mara; Storti, Andrea; Valentini, Alessandra; Cacci, Emanuele; Biagioni, Stefano; Augusti-Tocco, Gabriella; D'Agnano, Igea; Felsani, Armando
2017-07-01
The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.
Genetics Home Reference: Niemann-Pick disease
... is responsible for the conversion of a fat (lipid) called sphingomyelin into another type of lipid called ceramide. Mutations in SMPD1 lead to a ... these genes are involved in the movement of lipids within cells. Mutations in these genes lead to ...
Mohanty, Sujit Kumar; Yu, Chi-Li; Das, Shuvendu; Louie, Tai Man; Gakhar, Lokesh
2012-01-01
The molecular basis of the ability of bacteria to live on caffeine via the C-8 oxidation pathway is unknown. The first step of this pathway, caffeine to trimethyluric acid (TMU), has been attributed to poorly characterized caffeine oxidases and a novel quinone-dependent caffeine dehydrogenase. Here, we report the detailed characterization of the second enzyme, a novel NADH-dependent trimethyluric acid monooxygenase (TmuM), a flavoprotein that catalyzes the conversion of TMU to 1,3,7-trimethyl-5-hydroxyisourate (TM-HIU). This product spontaneously decomposes to racemic 3,6,8-trimethylallantoin (TMA). TmuM prefers trimethyluric acids and, to a lesser extent, dimethyluric acids as substrates, but it exhibits no activity on uric acid. Homology models of TmuM against uric acid oxidase HpxO (which catalyzes uric acid to 5-hydroxyisourate) reveal a much bigger and hydrophobic cavity to accommodate the larger substrates. Genes involved in the caffeine C-8 oxidation pathway are located in a 25.2-kb genomic DNA fragment of CBB1, including cdhABC (coding for caffeine dehydrogenase) and tmuM (coding for TmuM). Comparison of this gene cluster to the uric acid-metabolizing gene cluster and pathway of Klebsiella pneumoniae revealed two major open reading frames coding for the conversion of TM-HIU to S-(+)-trimethylallantoin [S-(+)-TMA]. The first one, designated tmuH, codes for a putative TM-HIU hydrolase, which catalyzes the conversion of TM-HIU to 3,6,8-trimethyl-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (TM-OHCU). The second one, designated tmuD, codes for a putative TM-OHCU decarboxylase which catalyzes the conversion of TM-OHCU to S-(+)-TMA. Based on a combination of enzymology and gene-analysis, a new degradative pathway for caffeine has been proposed via TMU, TM-HIU, TM-OHCU to S-(+)-TMA. PMID:22609920
Identification of bottlenecks in Escherichia coli engineered for the production of CoQ(10).
Cluis, Corinne P; Ekins, Andrew; Narcross, Lauren; Jiang, Heng; Gold, Nicholas D; Burja, Adam M; Martin, Vincent J J
2011-11-01
In this work, Escherichia coli was engineered to produce a medically valuable cofactor, coenzyme Q(10) (CoQ(10)), by removing the endogenous octaprenyl diphosphate synthase gene and functionally replacing it with a decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. In addition, by over-expressing genes coding for rate-limiting enzymes of the aromatic pathway, biosynthesis of the CoQ(10) precursor para-hydroxybenzoate (PHB) was increased. The production of isoprenoid precursors of CoQ(10) was also improved by the heterologous expression of a synthetic mevalonate operon, which permits the conversion of exogenously supplied mevalonate to farnesyl diphosphate. The over-expression of these precursors in the CoQ(10)-producing E. coli strain resulted in an increase in CoQ(10) content, as well as in the accumulation of an intermediate of the ubiquinone pathway, decaprenylphenol (10P-Ph). In addition, the over-expression of a PHB decaprenyl transferase (UbiA) encoded by a gene from Erythrobacter sp. NAP1 was introduced to direct the flux of DPP and PHB towards the ubiquinone pathway. This further increased CoQ(10) content in engineered E. coli, but decreased the accumulation of 10P-Ph. Finally, we report that the combined over-production of isoprenoid precursors and over-expression of UbiA results in the decaprenylation of para-aminobenzoate, a biosynthetic precursor of folate, which is structurally similar to PHB. Copyright © 2011 Elsevier Inc. All rights reserved.
Córdova-Fletes, C; Domínguez, M G; Vázquez-Cárdenas, A; Figuera, L E; Neira, V A; Rojas-Martínez, A; Ortiz-López, R
2012-09-01
Cat-eye syndrome (CES) results from trisomy or tetrasomy of proximal 22q originated by a small supernumerary marker chromosome (sSMC). Two critical regions for the major clinical features of CES (CESCRs) have been suggested; however, CES clinical presentation often does not correlate with the sSMC genetic content. We report here a CES girl without coloboma and carrier of a de novo type I sSMC(22) as determined by G- and C-banding, NOR staining and microarrays. This sSMC included 6 distal genes outside the original CESCR and led to a tetrasomy for 22q11.1-22q11.21. The patient's final karyotype was 47,XX,+psu dic(22)(q11.21).arr 22q11.1q11.21(15,250,000-17,035,860)×4 dn. The amplified region outside of CESCR included some genes that may be related to neurologic, heart and renal abnormalities. Conversely, even though the amplification included the CECR2 gene, a major candidate for eye features, there was no coloboma in the patient. The genetic delineation of the present sSMC further strengthens that the CES clinical presentation does not fit completely with the duplicated genetic content and that CES is actually a genomic disorder. Furthermore, since we observed no mosaicism, we believe that other mechanisms might be behind the variability of CES phenotypes as well, mainly those related with functional interactions among amplified genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlich, H.; Zangenberg, G.; Bugawan, T.
The rate at which allelic diversity at the HLA class I and class II loci evolves has been the subject of considerable controversy as have the mechanisms which generate new alleles. The patchwork pattern of polymorphism, particularly within the second exon of the HLA-DPB1 locus where the polymorphic sequence motifs are localized to 6 discrete regions, is consistent with the hypothesis that much of the allelic sequence variation may have been generated by segmental exchange (gene conversion). To measure the rate of new DPB1 variant generation, we have developed a strategy in which DPB1 second exon sequences are amplified frommore » pools of FACS-sorted sperm (n=50) from a heterozygous sperm donor. Pools of sperm from these heterozygous individuals are amplified with an allele-specific primer for one allele and analyzed with sequence-specific oligonucleotide probes (SSOP) complementary to the other allele. This screening procedure, which is capable of detecting a single variant molecule in a pool of parental alleles, allows the identification of new variants that have been generated by recombination and/or gene conversion between the two parental alleles. To control for potential PCR artifacts, the same screening procedure was carried out with mixtures of sperm from DPB1 *0301/*0301 and DPB1 *0401/ 0401 individuals. Pools containing putative new variants DPB1 alleles were analyzed further by cloning into M13 and sequencing the M13 clones. Our current estimate is that about 1/10,000 sperm from these heterozygous individuals represents a new DPB1 allele generated by micro-gene conversion within the second exon.« less
Cossu, Rosa Maria; Casola, Claudio; Giacomello, Stefania; Vidalis, Amaryllis
2017-01-01
Abstract The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content. PMID:29228262
Parmar, Chetan D; Mahawar, Kamal K; Boyle, Maureen; Schroeder, Norbert; Balupuri, Shlok; Small, Peter K
2017-07-01
Inadequate weight loss (IWL)/weight regain (WR) and gastro-esophageal reflux disease (GERD), unresponsive to medical management, are two most common indications for conversion of sleeve gastrectomy (SG) to Roux-en-Y gastric bypass (RYGB). This study reports detailed outcomes of conversion of SG to RYGB for these two indications separately. We interrogated our prospectively maintained database to identify patients who underwent a conversion of their SG to RYGB in our unit. Outcomes in patients converted for IWL/WR and those converted for GERD were evaluated separately. We carried out 22 SG to RYGB in our unit between Aug 2012 and April 2015 with a mean follow-up of 16 months. Indication for conversion was GERD in 10/22 (45.5%) patients and IWL/WR in 11/22 (50.0%) patients. Patients undergoing conversion for GERD were significantly lighter (BMI 30.5) than those converted for IWL/WR (BMI 43.3) at the time of conversion. The conversion was very effective for GERD with 100% patients reporting improvement in symptoms, and 80% patients were able to stop their antacid medications. IWL/WR group achieved a further BMI drop of 2.5 points 2 years after surgery (final BMI 40.8) in comparison with 2.0 points BMI drop achieved by the GERD group (final BMI 28.5). This study demonstrates that conversion of SG to RYGB is effective for GERD symptoms but not for further weight loss, which was modest in both groups. Future studies need to examine the best revisional procedure for IWL/WR after SG.
Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš
2017-01-01
Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates with the direction of expression dominance indicating that gene activity may be needed for interlocus gene conversion. PMID:27707747
Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo
2017-06-02
Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.
Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco
2016-10-01
Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).
Ma, Menggen; Song, Mingzhou
2010-01-01
Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)+ for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress. PMID:19517136
Skills Conversion Project, Chapter 8, Pollution Control. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…
ERIC Educational Resources Information Center
Kim, Minjung; Kim, Soo-Jin; Stoel-Gammon, Carol
2017-01-01
This study investigates the phonological acquisition of Korean consonants using conversational speech samples collected from sixty monolingual typically developing Korean children aged two, three, and four years. Phonemic acquisition was examined for syllable-initial and syllable-final consonants. Results showed that Korean children acquired stops…
Cooperative Catalog Conversion Study. Final Report.
ERIC Educational Resources Information Center
Peat, Marwick, Mitchell and Co., Washington, DC.
Cost estimates provided by cataloging vendors during January 1981 are analyzed to identify the costs of catalog conversion options and alternatives to the card catalog for six Minnesota regional library systems. Following an executive summary of the study is a discussion of its background, scope, objectives, data gathering methodology, and…
Cunneen, Monica M.; Liu, Bin; Wang, Lei; Reeves, Peter R.
2013-01-01
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation. PMID:23799153
Kobayashi, H; Ngernprasirtsiri, J; Akazawa, T
1990-01-01
During transitional conversion of chloroplasts to chromoplasts in ripening tomato (Lycopersicon esculentum) fruits, transcripts for several plastid genes for photosynthesis decreased to undetectable levels. Run-on transcription of plastids indicated that transcriptional regulation operated as a predominant factor. We found that most of the genes in chloroplasts were actively transcribed in vitro by Escherichia coli and soluble plastid RNA polymerases, but some genes in chromoplasts seemed to be silent when assayed by the in vitro systems. The regulatory step, therefore, was ascribed to DNA templates. The analysis of modified base composition revealed the presence of methylated bases in chromoplast DNA, in which 5-methylcytosine was most abundant. The presence of 5-methylcytosine detected by isoschizomeric endonucleases and Southern hybridization was correlated with the undetectable transcription activity of each gene in the run-on assay and in vitro transcription experiments. It is thus concluded that the suppression of transcription mediated by DNA methylation is one of the mechanisms governing gene expression in plastids converting from chloroplasts to chromoplasts. Images Fig. 1 Fig. 2 Fig. 3. Fig. 4. Fig. 5. PMID:2303026
CDK5RAP2 gene and tau pathophysiology in late-onset sporadic Alzheimer's disease.
Miron, Justin; Picard, Cynthia; Nilsson, Nathalie; Frappier, Josée; Dea, Doris; Théroux, Louise; Poirier, Judes
2018-06-01
Because currently known Alzheimer's disease (AD) single-nucleotide polymorphisms only account for a small fraction of the genetic variance in this disease, there is a need to identify new variants associated with AD. Our team performed a genome-wide association study in the Quebec Founder Population isolate to identify novel protective or risk genetic factors for late-onset sporadic AD and examined the impact of these variants on gene expression and AD pathology. The rs10984186 variant is associated with an increased risk of developing AD and with a higher CDK5RAP2 mRNA prevalence in the hippocampus. On the other hand, the rs4837766 variant, which is among the best cis-expression quantitative trait loci in the CDK5RAP2 gene, is associated with lower mild cognitive impairment/AD risk and conversion rate. The rs10984186 risk and rs4837766 protective polymorphic variants of the CDK5RAP2 gene might act as potent genetic modifiers for AD risk and/or conversion by modulating the expression of this gene. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p.
Martín-Montalvo, Alejandro; González-Mariscal, Isabel; Padilla, Sergio; Ballesteros, Manuel; Brautigan, David L; Navas, Plácido; Santos-Ocaña, Carlos
2011-11-15
CoQ(6) (coenzyme Q(6)) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ(6) (demethoxy-CoQ(6)) into CoQ(6) in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ(6) conversion into CoQ(6). In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser(20), Ser(28) and Thr(32). The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ(6) levels (256%). Conversely, substitution with negatively charged residues decreases CoQ(6) content (57%). These modifications produced in Coq7p also alter the ratio between DMQ(6) and CoQ(6) itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ(6) synthesis.
The 9-1-1 DNA Clamp Is Required for Immunoglobulin Gene Conversion▿
Saberi, Alihossein; Nakahara, Makoto; Sale, Julian E.; Kikuchi, Koji; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamamoto, Kenichi; Takeda, Shunichi; Sonoda, Eiichiro
2008-01-01
Chicken DT40 cells deficient in the 9-1-1 checkpoint clamp exhibit hypersensitivity to a variety of DNA-damaging agents. Although recent work suggests that, in addition to its role in checkpoint activation, this complex may play a role in homologous recombination and translesion synthesis, the cause of this hypersensitivity has not been studied thoroughly. The immunoglobulin locus of DT40 cells allows monitoring of homologous recombination and translesion synthesis initiated by activation-induced deaminase (AID)-dependent abasic sites. We show that both the RAD9−/− and RAD17−/− mutants exhibit substantially reduced immunoglobulin gene conversion. However, the level of nontemplated immunoglobulin point mutation increased in these mutants, a finding that is reminiscent of the phenotype resulting from the loss of RAD51 paralogs or Brca2. This suggests that the 9-1-1 complex does not play a central role in translesion synthesis in this context. Despite reduced immunoglobulin gene conversion, the RAD9−/− and RAD17−/− cells do not exhibit a prominent defect in double-strand break-induced gene conversion or a sensitivity to camptothecin. This suggests that the roles of Rad9 and Rad17 may be confined to a subset of homologous recombination reactions initiated by replication-stalling lesions rather than those associated with double-strand break repair. PMID:18662998
Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, D.H.; Batzer, M.A.; Deininger, P.L.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome.more » However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.« less
Andrews, T Daniel; Gojobori, Takashi
2004-01-01
The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.
Dolezal, Tomas; Gazi, Michal; Zurovec, Michal; Bryant, Peter J
2003-10-01
Many Drosophila genes exist as members of multigene families and within each family the members can be functionally redundant, making it difficult to identify them by classical mutagenesis techniques based on phenotypic screening. We have addressed this problem in a genetic analysis of a novel family of six adenosine deaminase-related growth factors (ADGFs). We used ends-in targeting to introduce mutations into five of the six ADGF genes, taking advantage of the fact that five of the family members are encoded by a three-gene cluster and a two-gene cluster. We used two targeting constructs to introduce loss-of-function mutations into all five genes, as well as to isolate different combinations of multiple mutations, independent of phenotypic consequences. The results show that (1) it is possible to use ends-in targeting to disrupt gene clusters; (2) gene conversion, which is usually considered a complication in gene targeting, can be used to help recover different mutant combinations in a single screening procedure; (3) the reduction of duplication to a single copy by induction of a double-strand break is better explained by the single-strand annealing mechanism than by simple crossing over between repeats; and (4) loss of function of the most abundantly expressed family member (ADGF-A) leads to disintegration of the fat body and the development of melanotic tumors in mutant larvae.
High-throughput selection for cellulase catalysts using chemical complementation.
Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W
2008-12-24
Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.
A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation
Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.
2010-01-01
Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460
Humor and the Emeritus Professor: An Interview with Gene Roth
ERIC Educational Resources Information Center
Vivona, Brian
2015-01-01
This essay is a compilation of several conversations with Dr. Gene Roth, Distinguished Teaching Professor Emeritus at Northern Illinois University. Dr. Roth is past President of the Academy of Human Resource Development, and although he is well known for his efforts in bringing humor into the field of HRD, he is not the same Gene Roth that played…
Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; ...
2015-06-02
Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less
Petit, Elsa; Coppi, Maddalena V; Hayes, James C; Tolonen, Andrew C; Warnick, Thomas; Latouf, William G; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J; Church, George M; Leschine, Susan B; Blanchard, Jeffrey L
2015-01-01
Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.
Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo
2012-01-01
Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.
Interview with Jill Freedman: A Conversation about Having Conversations
ERIC Educational Resources Information Center
Schwarzbaum, Sara
2009-01-01
Jill Freedman is director of Evanston Family Therapy Center and a faculty member of the Chicago Center for Family Health. She has coauthored (with Gene Combs) more than 25 articles on narrative therapy and three books. The first two books are "Symbol, Story, and Ceremony: Using Metaphor in Individual and Family Therapy and Narrative Therapy:…
Conversion coefficients for H'(3;Ω) for photons.
Behrens, Rolf
2017-06-26
In this work, conversion coefficients for the operational quantity H'(3;Ω) have been calculated for both mono-energetic photons from 2 keV to 50 MeV for angles of incidence from 0° up to 180° in steps of 15° (to complement ICRU 57) as well as for photon reference radiation qualities (to complement ISO 4037). Finally, parameters necessary to determine the influence of the air density on the conversion coefficients have been determined.
Genetics Home Reference: diastrophic dysplasia
... Changes Diastrophic dysplasia is one of several skeletal disorders caused by mutations in the SLC26A2 gene. This gene provides instructions for making a protein that is essential for the normal development of cartilage and for its conversion to bone. Cartilage is a tough, flexible tissue ...
MusTRD can regulate postnatal fiber-specific expression.
Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C
2006-05-01
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.
Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo
2005-08-01
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.
Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus)
Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng
2012-01-01
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 VH segments (94 potentially functional genes and 413 pseudogenes), 41 DH segments, six JH segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many VH pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 Vκ (111 potentially functional genes and 238 pseudogenes), three Jκ and one Cκ genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 Vλ (58 potentially functional genes and 84 pseudogenes) and 11 Jλ -Cλ clusters. Phylogenetic analysis suggested the guinea pig’s large germline VH gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves. PMID:22761756
Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.
Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G
2014-05-09
The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zhu, Feng; Yuan, Jian-Ming; Zhang, Zhen-He; Hao, Jin-Ping; Yang, Yu-Ze; Hu, Shen-Qiang; Yang, Fang-Xi; Qu, Lu-Jiang; Hou, Zhuo-Cheng
2015-12-01
Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome. © 2015 Stichting International Foundation for Animal Genetics.
Ali, Amjad; Naz, Anam; Soares, Siomar C; Bakhtiar, Marriam; Tiwari, Sandeep; Hassan, Syed S; Hanan, Fazal; Ramos, Rommel; Pereira, Ulisses; Barh, Debmalya; Figueiredo, Henrique César Pereira; Ussery, David W; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2015-01-01
Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.
Dufour, Yann S.; Donohue, Timothy J.
2015-01-01
Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950
Choi, Seon-kang; Nishida, Yasuhiro; Matsuda, Satoru; Adachi, Kyoko; Kasai, Hiroaki; Peng, Xue; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko
2005-01-01
A complementation analysis was performed in Escherichia coli to evaluate the efficiency of beta-carotene ketolases (CrtW) from the marine bacteria Brevundimonas sp. SD212, Paracoccus sp. PC1 (Alcaligenes PC-1), and Paracoccus sp. N81106 (Agrobacterium aurantiacum), for astaxanthin production. Each crtW gene was expressed in Escherichia coli synthesizing zeaxanthin due to the presence of plasmid pACCAR25DeltacrtX. Carotenoids that accumulated in the resulting E. coli transformants were examined by chromatographic and spectroscopic analyses. The transformant carrying the Paracoccus sp. PC1 or N81106 crtW gene accumulated high levels of adonixanthin, which is the final astaxanthin precursor for CrtW, and astaxanthin, while the E. coli transformant with crtW from Brevundimonas sp. SD212 did not accumulate any adonixanthin and produced a high level of astaxanthin. These results show efficient conversion by CrtW of Brevundimonas sp. SD212 from adonixanthin to astaxanthin, which is a new-found characteristic of a bacterial CrtW enzyme. The phylogenetic positions between CrtW of the two genera, Brevundimonas and Paracoccus, are distant, although they fall into alpha-Proteobacteria.
Semantic similarity analysis of protein data: assessment with biological features and issues.
Guzzi, Pietro H; Mina, Marco; Guerra, Concettina; Cannataro, Mario
2012-09-01
The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological information is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology). Annotating existing protein data with biological information may enable the use (and the development) of algorithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein data is a relatively novel research area that is currently becoming more and more central in research. Existing approaches span from the definition of the similarity among genes and proteins on the basis of the annotating terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide scale. This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.
Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium
Cavalier-Smith, Thomas
2006-01-01
Mitochondria originated by permanent enslavement of purple non-sulphur bacteria. These endosymbionts became organelles through the origin of complex protein-import machinery and insertion into their inner membranes of protein carriers for extracting energy for the host. A chicken-and-egg problem exists: selective advantages for evolving import machinery were absent until inner membrane carriers were present, but this very machinery is now required for carrier insertion. I argue here that this problem was probably circumvented by conversion of the symbiont protein-export machinery into protein-import machinery, in three phases. I suggest that the first carrier entered the periplasmic space via pre-existing β-barrel proteins in the bacterial outer membrane that later became Tom40, and inserted into the inner membrane probably helped by a pre-existing inner membrane protein, thereby immediately providing the protoeukaryote host with photosynthesate. This would have created a powerful selective advantage for evolving more efficient carrier import by inserting Tom70 receptors. Massive gene transfer to the nucleus inevitably occurred by mutation pressure. Finally, pressure from harmful, non-selected gene transfer to the nucleus probably caused evolution of the presequence mechanism, and photosynthesis was lost. PMID:16822756
Skills Conversion Project: Chapter 3, Food Products and Food Services Industry. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
The National Society of Professional Engineers, under contract to the Department of Labor, conducted a study to investigate the conversion of technical skills of displaced aerospace and defense professionals to other industries. The Seattle and Wichita study teams, focusing on the food industry, projected that about 200 employment opportunities…
Geometric and Algebraic Approaches in the Concept of Complex Numbers
ERIC Educational Resources Information Center
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Skills Conversion Project: Chapter 11, Banking, Finance and Insurance. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
The National Society of Professional Engineers, under contract to the U.S. Department of Labor, conducted a study to investigate the conversion of skills of displaced aerospace defense technical professional to other industries. The Long Island team of the study project investigated the banking, finance, and insurance industries. Approximately 250…
Alternative Architecture for Commercial Space Solar Power
NASA Technical Reports Server (NTRS)
Potter, Seth
2000-01-01
This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.
Skills Conversion Project: Chapter 7, Power Resources. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
The opportunity for employment of displaced aerospace and defense professionals within the electric power utility industry was investigated by the Seattle Skills Conversion Project Team of the National Society of Professional Engineers, as part of a study conducted for the U.S. Department of Labor. The study concluded that a possibility for…
Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.
2015-01-01
Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665
P53 Suppression of Homologous Recombination and Tumorigenesis
2012-01-01
mutation acted on both rad51 dependent gene conversion events and deletion events (6). Willers et al. also showed an increase in recombination...suffer from sarcomas. MEFs from these mice show aneuploidy, allelic loss and gene amplification. Most of these germline mutations are missense...the absence of tumor suppressor gene activity, such as p53, results in increased genomic instability and increased cancer predisposition
Review of betavoltaic energy conversion
NASA Astrophysics Data System (ADS)
Olsen, Larry C.
1993-05-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Review of betavoltaic energy conversion
NASA Technical Reports Server (NTRS)
Olsen, Larry C.
1993-01-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
NASA Technical Reports Server (NTRS)
Grossman, G. R.; Roberts, A. S., Jr.
1975-01-01
An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.
How to read and write mechanical information in DNA molecules
NASA Astrophysics Data System (ADS)
Schiessel, Helmut
In this talk I will show that DNA molecules contain another layer of information on top of the classical genetic information. This different type of information is of mechanical nature and guides the folding of DNA molecules inside cells. With the help of a new Monte Carlo technique, the Mutation Monte Carlo method, we demonstrate that the two layers of information can be multiplexed (as one can have two phone conversations on the same wire). For instance, we can guide on top of genes with single base-pair precision the packaging of DNA into nucleosomes. Finally, we study the mechanical properties of DNA molecules belonging to organisms all across the tree of life. From this we learn that in multicellular organisms the stiffness of DNA around transcription start sites differs dramatically from that of unicellular life. The reason for this difference is surprising.
Dissecting engineered cell types and enhancing cell fate conversion via CellNet
Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.
2014-01-01
SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792
76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
...EPA is streamlining the process by which manufacturers of clean alternative fuel conversion systems may demonstrate compliance with vehicle and engine emissions requirements. Specifically, EPA is revising the regulatory criteria for gaining an exemption from the Clean Air Act prohibition against tampering for the conversion of vehicles and engines to operate on a clean alternative fuel. This final rule creates additional compliance options beyond certification that protect manufacturers of clean alternative fuel conversion systems against a tampering violation, depending on the age of the vehicle or engine to be converted. The new options alleviate some economic and procedural impediments to clean alternative fuel conversions while maintaining environmental safeguards to ensure that acceptable emission levels from converted vehicles are sustained.
ERIC Educational Resources Information Center
Nakamura, Kanae
2009-01-01
While the predicate-final structure of the Japanese language has been considered one of the main causes of its late projectability (Tanaka, 1999), this study demonstrates that the final predicate component of a "turn constructional unit" (TCU) furnishes a useful resource for conversational participants to negotiate various aspects of interaction.…
Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood
Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro
2012-01-01
Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351
Lu, Xiao Cheng; Tao, Yi; Wu, Chen; Zhao, Peng Lai; Li, Kai; Zheng, Jin Yu; Li, Li Xin
2013-01-01
Background Polymorphisms in immunity-related GTPase family M (IRGM) gene may be associated with inflammatory bowel disease (IBD) by affecting autophagy. However, the genetic association studies on three common variants in IRGM gene (rs13361189, rs4958847 and rs10065172) have shown inconsistent results. Methodology/ Principal Findings The PubMed and Embase were searched up to June 5, 2013 for studies on the association between three IRGM polymorphisms and IBD risk. Data were extracted and the odd ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Finally, we performed a meta-analysis of 25 eligible studies in 3 SNPs located at IRGM gene by using a total of 20590 IBD cases and 27670 controls. The analysis showed modest significant association for the rs13361189, rs4958847 and rs10065172 variants in Crohn’s disease (CD): the risk estimates for the allele contrast were OR=1.306 (1.200-1.420), p=5.2×10-10, OR=1.182 (1.082-1.290), p=0.0002, and OR=1.248 (1.057-1.473), p=0.009 respectively (still significant when the p value was Bonferroni adjusted to 0.017). When stratified by ethnicity, significantly increased CD risk was observed in Europeans, but not in Asians. Conversely, there was no association of rs13361189 or rs4958847 variant with risk of ulcerative colitis (UC). Conclusions/ Significance These results indicated that autophagy gene-IRGM polymorphisms appear to confer susceptibility to CD but not UC, especially in Europeans. Our data may provide further understanding of the role of autophagy in the pathogenesis of CD. PMID:24232856
Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle.
Gu, Quan; Nagaraj, Shivashankar H; Hudson, Nicholas J; Dalrymple, Brian P; Reverter, Antonio
2011-01-12
Gene regulation by transcription factors (TF) is species, tissue and time specific. To better understand how the genetic code controls gene expression in bovine muscle we associated gene expression data from developing Longissimus thoracis et lumborum skeletal muscle with bovine promoter sequence information. We created a highly conserved genome-wide promoter landscape comprising 87,408 interactions relating 333 TFs with their 9,242 predicted target genes (TGs). We discovered that the complete set of predicted TGs share an average of 2.75 predicted TF binding sites (TFBSs) and that the average co-expression between a TF and its predicted TGs is higher than the average co-expression between the same TF and all genes. Conversely, pairs of TFs sharing predicted TGs showed a co-expression correlation higher that pairs of TFs not sharing TGs. Finally, we exploited the co-occurrence of predicted TFBS in the context of muscle-derived functionally-coherent modules including cell cycle, mitochondria, immune system, fat metabolism, muscle/glycolysis, and ribosome. Our findings enabled us to reverse engineer a regulatory network of core processes, and correctly identified the involvement of E2F1, GATA2 and NFKB1 in the regulation of cell cycle, fat, and muscle/glycolysis, respectively. The pivotal implication of our research is two-fold: (1) there exists a robust genome-wide expression signal between TFs and their predicted TGs in cattle muscle consistent with the extent of promoter sharing; and (2) this signal can be exploited to recover the cellular mechanisms underpinning transcription regulation of muscle structure and development in bovine. Our study represents the first genome-wide report linking tissue specific co-expression to co-regulation in a non-model vertebrate.
Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility
Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru; ...
2017-04-24
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less
Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less
Zhang, J R; Norris, S J
1998-08-01
The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.
The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation
2013-01-01
Background Several eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion. Results We report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains. Conclusions Our analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens. PMID:23889909
Sehgal, D; Mage, R G; Schiaffella, E
1998-02-01
We investigated the molecular basis for the appearance of V(H)a2 allotype-bearing B cells in mutant Alicia rabbits. The mutation arose in an a2 rabbit; mutants exhibit altered expression of V(H) genes because of a small deletion encompassing V(H)1a2, the 3'-most gene in the V(H) locus. The V(H)1 gene is the major source of V(H)a allotype because this gene is preferentially rearranged in normal rabbits. In young homozygous ali/ali animals, the levels of a2 molecules found in the serum increase with age. In adult ali/ali rabbits, 20 to 50% of serum Igs and B cells bear a2 allotypic determinants. Previous studies suggested that positive selection results in expansion of a2 allotype-bearing B cells in the appendix of young mutant ali/ali rabbits. We separated appendix cells from a 6-wk-old Alicia rabbit by FACS based on the expression of surface IgM and a2 allotype. The VDJ portion of the expressed Ig mRNA was amplified from the IgM+ a2+ and IgM+ a2- populations by reverse transcriptase-PCR. The cDNAs from both populations were cloned and sequenced. Analysis of these sequences suggested that, in a2+ B cells, the first D proximal functional gene in Alicia rabbits, V(H)4a2, rearranged and was altered further by a gene conversion-like mechanism. Upstream V(H) genes were identified as potential gene sequence donors; V(H)9 was found to be the most frequently used gene donor. Among the a2- B cells, y33 was the most frequently rearranged gene.
Immunoglobulin genomics in the guinea pig (Cavia porcellus).
Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng
2012-01-01
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.
Seddon, Johanna M; Reynolds, Robyn; Yu, Yi; Rosner, Bernard
2014-01-01
To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. THREE NEW GENETIC VARIANTS WERE SIGNIFICANTLY RELATED TO PROGRESSION: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2-5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1-3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60-0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC's for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes.
Seddon, Johanna M.; Reynolds, Robyn; Yu, Yi; Rosner, Bernard
2014-01-01
Objectives To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models. Methods In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models. Results Three new genetic variants were significantly related to progression: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2–5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1–3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60–0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC’s for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA. Conclusions Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes. PMID:24498017
Garcia-Seco, Daniel; Zhang, Yang; Gutierrez-Mañero, Francisco J.; Martin, Cathie; Ramos-Solano, Beatriz
2015-01-01
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria. PMID:26559418
Garcia-Seco, Daniel; Zhang, Yang; Gutierrez-Mañero, Francisco J; Martin, Cathie; Ramos-Solano, Beatriz
2015-01-01
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria.
Roles of heat shock factors in gametogenesis and development.
Abane, Ryma; Mezger, Valérie
2010-10-01
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Skills Conversion Project: Chapter 9, Security Systems and Criminal Justice. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
This report provides the findings of two skills conversion research teams on the placement of displaced aerospace and defense engineers, scientists, and technicians in the fields of security systems and criminal justice. The teams, located in Philadelphia and San Jose, concluded independently that a minimum of 2,000 positions could be created in…
Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)
2012-07-10
load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies
1985-01-01
We have determined the DNA sequence of a gene encoding a thymus leukemia (TL) antigen in the BALB/c mouse, and have more definitively mapped the cloned BALB/c Tla-region class I gene clusters. Analysis of the sequence shows that the Tla gene is less closely related to the H-2 genes than H-2 genes are to one another or to a Qa-2,3-region genes. The Tla gene, 17.3A, contains an apparent gene conversion. Comparison of the BALB/c Tla genes with those from C57BL shows that BALB/c has more Tla-region class I genes, and that one of the genes absent in C57BL is gene 17.3A. PMID:3894562
Floková, Kristýna; Miersch, Otto; Strnad, Miroslav; Novák, Ondřej; Wasternack, Claus; Hause, Bettina
2016-01-01
Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile. PMID:27611078
Dmc1 of Schizosaccharomyces pombe plays a role in meiotic recombination.
Fukushima, K; Tanaka, Y; Nabeshima, K; Yoneki, T; Tougan, T; Tanaka, S; Nojima, H
2000-07-15
We report here a Schizosaccharomyces pombe gene (dmc1(+)) that resembles budding yeast DMC1 in the region immediately upstream of the rad24(+) gene. We showed by northern and Southern blot analysis that dmc1(+) and rad24(+) are co-transcribed as a bicistronic mRNA of 2.8 kb with meiotic specificity, whereas rad24(+) itself is constitutively transcribed as a 1.0-kb mRNA species during meiosis. Induction of the bicistronic transcript is under the control of a meiosis-specific transcription factor, Ste11. Disruption of both dmc1(+) and rad24(+) had no effect on mitosis or spore formation, and dmc1Delta cells displayed no change in sensitivity to UV or gamma irradiation relative to the wild type. Tetrad analysis indicated that Dmc1 is involved in meiotic recombination. Analysis of gene conversion frequencies using single and double mutants of dmc1 and rhp51 indicated that both Dmc1 and Rhp51 function in meiotic gene conversion. These observations, together with a high level of sequence identity, indicate that the dmc1(+) gene of S. POMBE: is a structural homolog of budding yeast DMC1, sharing both similar and distinct functions in meiosis.
Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike
2016-01-01
Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135
2015-01-01
Background The third edition of the BioNLP Shared Task was held with the grand theme "knowledge base construction (KB)". The Genia Event (GE) task was re-designed and implemented in light of this theme. For its final report, the participating systems were evaluated from a perspective of annotation. To further explore the grand theme, we extended the evaluation from a perspective of KB construction. Also, the Gene Regulation Ontology (GRO) task was newly introduced in the third edition. The final evaluation of the participating systems resulted in relatively low performance. The reason was attributed to the large size and complex semantic representation of the ontology. To investigate potential benefits of resource exchange between the presumably similar tasks, we measured the overlap between the datasets of the two tasks, and tested whether the dataset for one task can be used to enhance performance on the other. Results We report an extended evaluation on all the participating systems in the GE task, incoporating a KB perspective. For the evaluation, the final submission of each participant was converted to RDF statements, and evaluated using 8 queries that were formulated in SPARQL. The results suggest that the evaluation may be concluded differently between the two different perspectives, annotation vs. KB. We also provide a comparison of the GE and GRO tasks by converting their datasets into each other's format. More than 90% of the GE data could be converted into the GRO task format, while only half of the GRO data could be mapped to the GE task format. The imbalance in conversion indicates that the GRO is a comprehensive extension of the GE task ontology. We further used the converted GRO data as additional training data for the GE task, which helped improve GE task participant system performance. However, the converted GE data did not help GRO task participants, due to overfitting and the ontology gap. PMID:26202680
ERIC Educational Resources Information Center
Tucker-Drob, Elliot M.; Harden, K. Paige
2012-01-01
Recent studies have demonstrated that genetic influences on cognitive ability and academic achievement are larger for children raised in higher socioeconomic status (SES) homes. However, little work has been done to document the psychosocial processes that underlie this Gene x Environment interaction. One process may involve the conversion of…
Claiming Uncertainty in Recollection: A Study of "Kke"-Marked Utterances in Japanese Conversation
ERIC Educational Resources Information Center
Hayashi, Makoto
2012-01-01
As part of a growing body of conversation analytic research on epistemics in social interaction, this study explores various uses of the Japanese sentence-final particle "kke", which conveys the speaker's claim that she or he has some degree of uncertainty in recalling something from the past. The study aims to demonstrate how "mental" concepts…
ERIC Educational Resources Information Center
Chalupsky, Albert B.; And Others
This study was undertaken in order to gather information concerning conversion to the metric system by other countries which might be useful in planning for conversion by the United States. Representatives of organizations in five countries (United Kingdom, Australia, South Africa, New Zealand, and Canada) which had recently converted to the…
ERIC Educational Resources Information Center
Welsh, Rachard L.
2005-01-01
This is the final part of the adaptation from my on-stage conversation with Russell Williams at the 1998 International Mobility conference in Atlanta, GA, which attempted to highlight Williams's contributions to the progression of orientation and mobility from the Army's immediate response to the service men and women who lost their sight during…
Barnes, Deborah E; Cenzer, Irena S; Yaffe, Kristine; Ritchie, Christine S; Lee, Sei J
2014-11-01
Our objective in this study was to develop a point-based tool to predict conversion from amnestic mild cognitive impairment (MCI) to probable Alzheimer's disease (AD). Subjects were participants in the first part of the Alzheimer's Disease Neuroimaging Initiative. Cox proportional hazards models were used to identify factors associated with development of AD, and a point score was created from predictors in the final model. The final point score could range from 0 to 9 (mean 4.8) and included: the Functional Assessment Questionnaire (2‒3 points); magnetic resonance imaging (MRI) middle temporal cortical thinning (1 point); MRI hippocampal subcortical volume (1 point); Alzheimer's Disease Cognitive Scale-cognitive subscale (2‒3 points); and the Clock Test (1 point). Prognostic accuracy was good (Harrell's c = 0.78; 95% CI 0.75, 0.81); 3-year conversion rates were 6% (0‒3 points), 53% (4‒6 points), and 91% (7‒9 points). A point-based risk score combining functional dependence, cerebral MRI measures, and neuropsychological test scores provided good accuracy for prediction of conversion from amnestic MCI to AD. Copyright © 2014 The Alzheimer's Association. All rights reserved.
Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David
2009-01-01
The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.
Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses.
Wu, Zhiqiang; Sloan, Daniel B; Brown, Colin W; Rosenblueth, Mónica; Palmer, Jeffrey D; Ong, Han Chuan
2017-09-01
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J
2016-11-01
Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics
Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.
2012-01-01
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552
Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.
Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis
2013-01-01
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.
Yeo, In-Seok; Shim, Woo-Yong; Kim, Jung Hoe
2018-05-20
For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min
2017-02-01
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.
Baker, C S; Vant, M D; Dalebout, M L; Lento, G M; O'Brien, S J; Yuhki, N
2006-05-01
The molecular diversity and phylogenetic relationships of two class II genes of the baleen whale major histocompatibility complex were investigated and compared to toothed whales and out-groups. Amplification of the DQB exon 2 provided sequences showing high within-species and between-species nucleotide diversity and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g., ruminants). Cloning of amplified products indicated gene duplication in the humpback whale and triplication in the southern right whale, with average nucleotide diversity of 5.9 and 6.3%, respectively, for alleles of each species. Significantly higher nonsynonymous divergence at sites coding for peptide binding (32% for humpback and 40% for southern right) suggested that these loci were subject to positive (overdominant) selection. A population survey of humpback whales detected 23 alleles, differing by up to 21% of their inferred amino acid sequences. Amplification of the DRB exon 2 resulted in two groups of sequences. One was most similar to the DRB3 of the cow and present in all whales screened to date, including toothed whales. The second was most similar to the DRB2 of the cow and was found only in the bowhead and right whales. Both loci showed low diversity among species and apparent loss of function or altered function including interruption of reading frames. Finally, comparison of inferred protein sequence of the DRB3-like locus suggested convergence with the DQB, perhaps resulting from intergenic conversion or recombination.
ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.
Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina
2017-03-28
The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy
2011-01-01
A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.
Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang
2015-03-01
Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440
Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.; ...
2017-02-08
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarnieri, Michael T.; Franden, Mary Ann; Johnson, Christopher W.
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural andmore » HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans. The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. Furthermore, this approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.« less
Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440.
Guarnieri, Michael T; Ann Franden, Mary; Johnson, Christopher W; Beckham, Gregg T
2017-06-01
The sugar dehydration products, furfural and 5-(hydroxymethyl)furfural (HMF), are commonly formed during high-temperature processing of lignocellulose, most often in thermochemical pretreatment, liquefaction, or pyrolysis. Typically, these two aldehydes are considered major inhibitors in microbial conversion processes. Many microbes can convert these compounds to their less toxic, dead-end alcohol counterparts, furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol. Recently, the genes responsible for aerobic catabolism of furfural and HMF were discovered in Cupriavidus basilensis HMF14 to enable complete conversion of these compounds to the TCA cycle intermediate, 2-oxo-glutarate. In this work, we engineer the robust soil microbe, Pseudomonas putida KT2440, to utilize furfural and HMF as sole carbon and energy sources via complete genomic integration of the 12 kB hmf gene cluster previously reported from Burkholderia phytofirmans . The common intermediate, 2-furoic acid, is shown to be a bottleneck for both furfural and HMF metabolism. When cultured on biomass hydrolysate containing representative amounts of furfural and HMF from dilute-acid pretreatment, the engineered strain outperforms the wild type microbe in terms of reduced lag time and enhanced growth rates due to catabolism of furfural and HMF. Overall, this study demonstrates that an approach for biological conversion of furfural and HMF, relative to the typical production of dead-end alcohols, enables both enhanced carbon conversion and substantially improves tolerance to hydrolysate inhibitors. This approach should find general utility both in emerging aerobic processes for the production of fuels and chemicals from biomass-derived sugars and in the biological conversion of high-temperature biomass streams from liquefaction or pyrolysis where furfural and HMF are much more abundant than in biomass hydrolysates from pretreatment.
USDA-ARS?s Scientific Manuscript database
Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...
Noradrenergic Genotype Predicts Lapses in Sustained Attention
ERIC Educational Resources Information Center
Greene, Ciara M.; Bellgrove, Mark A.; Gill, Michael; Robertson, Ian H.
2009-01-01
Sustained attention is modulated by the neurotransmitter noradrenaline. The balance of dopamine and noradrenaline in the cortex is controlled by the DBH gene. The principal variant in this gene is a C/T change at position-1021, and the T allele at this locus is hypothesised to result in a slower rate of dopamine to noradrenaline conversion than…
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Conversion of Deletions during Recombination in Pneumococcal Transformation
Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.
1989-01-01
Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365
Genes involved in androgen biosynthesis and the male phenotype.
Waterman, M R; Keeney, D S
1992-01-01
A series of enzymatic steps in the testis lead to the conversion of cholesterol to the male sex steroid hormones, testosterone and 5 alpha-dihydrotestosterone. Mutations in any one of these steps are presumed to alter or block the development of the male phenotype. Most of the genes encoding the enzymes involved in this pathway have now been cloned, and mutations within the coding regions of these genes do, in fact, block development of the male phenotype.
Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle.
Ying, Fei; Zhang, Liang; Bu, Guowei; Xiong, Yuanzhu; Zuo, Bo
2016-11-25
The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-type conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Fei; Zhang, Liang; Bu, Guowei
The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-typemore » conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs.« less
ERIC Educational Resources Information Center
Innovative Systems Research, Inc., Pennsauken, NJ.
Twelve different conversion plans were delineated and evaluated in the performance of this study effort. An indepth technical, financial, and cost/benefit analysis was included. One plan was determined to be distinctively more cost-effective than any of the other plans because it provided a technically feasible system that assured the maximum…
SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism
Ozair, Mohammad Zeeshan; Noggle, Scott; Warmflash, Aryeh; Krzyspiak, Joanna Ela; Brivanlou, Ali H.
2013-01-01
Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here we show that SMAD7, a cell-intrinsic inhibitor of TGFβ signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time-course gene expression revealed down-regulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. FGF-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence the “primed” state of hESCs requires inhibition of the “default” state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism. PMID:23034881
Arkas: Rapid reproducible RNAseq analysis
Colombo, Anthony R.; J. Triche Jr, Timothy; Ramsingh, Giridharan
2017-01-01
The recently introduced Kallisto pseudoaligner has radically simplified the quantification of transcripts in RNA-sequencing experiments. We offer cloud-scale RNAseq pipelines Arkas-Quantification, and Arkas-Analysis available within Illumina’s BaseSpace cloud application platform which expedites Kallisto preparatory routines, reliably calculates differential expression, and performs gene-set enrichment of REACTOME pathways . Due to inherit inefficiencies of scale, Illumina's BaseSpace computing platform offers a massively parallel distributive environment improving data management services and data importing. Arkas-Quantification deploys Kallisto for parallel cloud computations and is conveniently integrated downstream from the BaseSpace Sequence Read Archive (SRA) import/conversion application titled SRA Import. Arkas-Analysis annotates the Kallisto results by extracting structured information directly from source FASTA files with per-contig metadata, calculates the differential expression and gene-set enrichment analysis on both coding genes and transcripts. The Arkas cloud pipeline supports ENSEMBL transcriptomes and can be used downstream from the SRA Import facilitating raw sequencing importing, SRA FASTQ conversion, RNA quantification and analysis steps. PMID:28868134
Pang, Meixia; Luo, Weiwei; Yu, Xiaomu; Zhou, Ying; Tong, Jingou
2018-01-01
Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1, Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp. PMID:29538345
Green, Benjamin B; Houseman, E Andres; Johnson, Kevin C; Guerin, Dylan J; Armstrong, David A; Christensen, Brock C; Marsit, Carmen J
2016-08-01
The conversion of cytosine to 5-methylcystosine (5mC) is an important regulator of gene expression. 5mC may be enzymatically converted to 5-hydroxymethylcytosine (5hmC), with a potentially distinct regulatory function. We sought to investigate these cytosine modifications and their effect on gene expression by parallel processing of genomic DNA using bisulfite and oxidative bisulfite conversion in conjunction with RNA sequencing. Although values of 5hmC across the placental genome were generally low, we identified ∼21,000 loci with consistently elevated levels of 5-hydroxymethycytosine. Absence of 5hmC was observed in CpG islands and, to a greater extent, in non-CpG island-associated regions. 5hmC was enriched within poised enhancers, and depleted within active enhancers, as defined by H3K27ac and H3K4me1 measurements. 5hmC and 5mC were significantly elevated in transcriptionally silent genes when compared with actively transcribed genes. 5hmC was positively associated with transcription in actively transcribed genes only. Our data suggest that dynamic cytosine regulation, associated with transcription, provides the most complete epigenomic landscape of the human placenta, and will be useful for future studies of the placental epigenome.-Green, B. B., Houseman, E. A., Johnson, K. C., Guerin, D. J., Armstrong, D. A., Christensen, B. C., Marsit, C. J. Hydroxymethylation is uniquely distributed within term placenta, and is associated with gene expression. © FASEB.
Green, Benjamin B.; Houseman, E. Andres; Johnson, Kevin C.; Guerin, Dylan J.; Armstrong, David A.; Christensen, Brock C.; Marsit, Carmen J.
2016-01-01
The conversion of cytosine to 5-methylcystosine (5mC) is an important regulator of gene expression. 5mC may be enzymatically converted to 5-hydroxymethylcytosine (5hmC), with a potentially distinct regulatory function. We sought to investigate these cytosine modifications and their effect on gene expression by parallel processing of genomic DNA using bisulfite and oxidative bisulfite conversion in conjunction with RNA sequencing. Although values of 5hmC across the placental genome were generally low, we identified ∼21,000 loci with consistently elevated levels of 5-hydroxymethycytosine. Absence of 5hmC was observed in CpG islands and, to a greater extent, in non-CpG island–associated regions. 5hmC was enriched within poised enhancers, and depleted within active enhancers, as defined by H3K27ac and H3K4me1 measurements. 5hmC and 5mC were significantly elevated in transcriptionally silent genes when compared with actively transcribed genes. 5hmC was positively associated with transcription in actively transcribed genes only. Our data suggest that dynamic cytosine regulation, associated with transcription, provides the most complete epigenomic landscape of the human placenta, and will be useful for future studies of the placental epigenome.—Green, B. B., Houseman, E. A., Johnson, K. C., Guerin, D. J., Armstrong, D. A., Christensen, B. C., Marsit, C. J. Hydroxymethylation is uniquely distributed within term placenta, and is associated with gene expression. PMID:27118675
Li, Yanjie; Lu, Yue; Lin, Kevin; Hauser, Lauren A.; Lynch, David R.
2017-01-01
ABSTRACT Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron–sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers. PMID:29125828
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
A New Seamless Transfer Control Strategy of the Microgrid
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described. PMID:24967431
A new seamless transfer control strategy of the microgrid.
Zhang, Zhaoyun; Chen, Wei; Zhang, Zhe
2014-01-01
A microgrid may operate under two typical modes; the seamless transfer control of the microgrid is very important. The mode conversion controller is installed in microgrid and the control logic of master power is optimized for microgrid mode conversion. In the proposed scheme, master power is very important. The master-power is under the PQ control when microgrid is under grid-connected. And it is under V/F control when the microgrid is under islanding. The microgrid mode controller is used to solve the planned conversion. Three types of conversion are simulated in this paper. The simulation results show the correctness and validity of the mode control scheme. Finally, the implementation and application of the operation and control device are described.
Active media for up-conversion diode-pumped lasers
NASA Astrophysics Data System (ADS)
Tkachuk, Alexandra M.
1996-03-01
In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G
2014-07-01
Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Association of aromatase (TTTA)n repeat polymorphisms with central precocious puberty in girls.
Lee, Hae Sang; Kim, Kyung Hee; Hwang, Jin Soon
2014-09-01
Precocious puberty is characterized by early activation of the pituitary-gonadal axis. Oestrogen is the final key factor to start the onset of puberty. The cytochrome P450 19A1 (CYP19A1) gene encodes an aromatase that is responsible for the conversion of androgens to oestrogen, which is a key step in oestrogen biosynthesis. The aim of this study was to identify CYP19A1 gene mutations or polymorphisms in girls with central precocious puberty (CPP). We evaluated the frequency of allelic variants of the CYP19A1 exons and the tetranucleotide tandem repeat (TTTA)n in intron 4 in 203 idiopathic central precocious puberty (CPP) girls and 101 normal healthy women. The genotype analysis of the CYP19A1 (TTTA)n polymorphism revealed six different alleles ranging from seven to 13 repeats. Among the six different repeat alleles detected in this study, the (TTTA)₁₃ repeat allele was only detected in the patient group and carriers of the (TTTA)₁₃ allele were significantly associated with an increased risk of CPP (OR = 1·509, 95% CI = 1·425-1·598, P = 0·033). Carriers of the (TTTA)₁₃ repeat allele were significantly younger at pubertal onset and had higher levels of oestrogen than noncarriers of the (TTTA)₁₃ repeat allele. Although nine polymorphisms were detected in exons of the CYP19A1 gene, no clinical significance was observed. In this study, carriers of a higher repeat (TTTA)₁₃ polymorphism in intron 4 of the CYP19A1 gene had higher levels of oestrogen. Those carrying the (TTTA)₁₃ repeat allele may have a higher risk of developing CPP. © 2014 John Wiley & Sons Ltd.
Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar
2004-01-01
Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position −16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds. PMID:15262943
Arias-Barrau, Elsa; Olivera, Elías R; Luengo, José M; Fernández, Cristina; Galán, Beatriz; García, José L; Díaz, Eduardo; Miñambres, Baltasar
2004-08-01
Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.
Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M
2014-09-30
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.
Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.
2014-01-01
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559
From the Cover: A polymer library approach to suicide gene therapy for cancer
NASA Astrophysics Data System (ADS)
Anderson, Daniel G.; Peng, Weidan; Akinc, Akin; Hossain, Naushad; Kohn, Anat; Padera, Robert; Langer, Robert; Sawicki, Janet A.
2004-11-01
Optimal gene therapy for cancer must (i) deliver DNA to tumor cells with high efficiency, (ii) induce minimal toxicity, and (iii) avoid gene expression in healthy tissues. To this end, we generated a library of >500 degradable, poly(-amino esters) for potential use as nonviral DNA vectors. Using high-throughput methods, we screened this library in vitro for transfection efficiency and cytotoxicity. We tested the best performing polymer, C32, in mice for toxicity and DNA delivery after intratumor and i.m. injection. C32 delivered DNA intratumorally 4-fold better than one of the best commercially available reagents, jetPEI (polyethyleneimine), and 26-fold better than naked DNA. Conversely, the highest transfection levels after i.m. administration were achieved with naked DNA, followed by polyethyleneimine; transfection was rarely observed with C32. Additionally, polyethyleneimine induced significant local toxicity after i.m. injection, whereas C32 demonstrated no toxicity. Finally, we used C32 to deliver a DNA construct encoding the A chain of diphtheria toxin (DT-A) to xenografts derived from LNCaP human prostate cancer cells. This construct regulates toxin expression both at the transcriptional level by the use of a chimeric-modified enhancer/promoter sequence of the human prostate-specific antigen gene and by DNA recombination mediated by Flp recombinase. C32 delivery of the A chain of diphtheria toxin DNA to LNCaP xenografts suppressed tumor growth and even caused 40% of tumors to regress in size. Because C32 transfects tumors locally at high levels, transfects healthy muscle poorly, and displays no toxicity, it may provide a vehicle for the local treatment of cancer. prostate | cationic polymers
Di Vittorio, A. V.; Mao, J.; Shi, X.; ...
2018-01-03
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Vittorio, A. V.; Mao, J.; Shi, X.
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less
Exploring the Airways for Adult Education. Section 310, Final Report.
ERIC Educational Resources Information Center
Morris, Betty
Intended to enable an individual to converse with satellite antenna dealers and to select a dealer and acquire an antenna to suit his/her needs at the lowest cost, this edited version of a final project report provides detailed guidelines for purchasing of communications satellites distance education delivery systems and specific technical…
Guo, Xiaoge; Jinks-Robertson, Sue
2013-12-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Xiaoge; Jinks-Robertson, Sue
2013-01-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148
Amber Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Sandra Splinter BonDurant; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Igor Grigoriev; Philip J. Kersten; Daniel Cullen
2011-01-01
Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and...
Jang, Soo-Kyeong; Jeong, Hanseob; Kim, Ho-Yong; Choi, June-Ho; Kim, Jong-Hwa; Koo, Bon-Wook; Choi, In-Gyu
2017-07-01
The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sayegh, Camil E.; Demaries, Sandra L.; Iacampo, Sandra; Ratcliffe, Michael J. H.
1999-01-01
Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor. PMID:10485907
The genetics of feed conversion efficiency traits in a commercial broiler line
Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus
2015-01-01
Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583
Tian, Sicong; Jiang, Jianguo
2012-12-18
Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.
Impact of novel energy sources: OTEC, wind, goethermal, biomass
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1978-01-01
Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.
NASA Astrophysics Data System (ADS)
Chen, Hui; Cai, Li-Xun
2018-04-01
Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.
Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky
2018-05-09
Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.
Raes, Bart; Brocatus, Hannelore; T'Syen, Jeroen; Rombouts, Caroline; Vanhaecke, Lynn; Hofkens, Johan; Springael, Dirk
2017-01-01
ABSTRACT Aminobacter sp. strain MSH1 grows on and mineralizes the groundwater micropollutant 2,6-dichlorobenzamide (BAM) and is of interest for BAM removal in drinking water treatment plants (DWTPs). The BAM-catabolic genes in MSH1 are located on plasmid pBAM1, carrying bbdA, which encodes the conversion of BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) (BbdA+ phenotype), and plasmid pBAM2, carrying gene clusters encoding the conversion of 2,6-DCBA to tricarboxylic acid (TCA) cycle intermediates (Dcba+ phenotype). There are indications that MSH1 easily loses its BAM-catabolic phenotype. We obtained evidence that MSH1 rapidly develops a population that lacks the ability to mineralize BAM when grown on nonselective (R2B medium) and semiselective (R2B medium with BAM) media. Lack of mineralization was explained by loss of the Dcba+ phenotype and corresponding genes. The ecological significance of this instability for the use of MSH1 for BAM removal in the oligotrophic environment of DWTPs was explored in lab and pilot systems. A higher incidence of BbdA+ Dcba− MSH1 cells was also observed when MSH1 was grown as a biofilm in flow chambers under C and N starvation conditions due to growth on nonselective residual assimilable organic carbon. Similar observations were made in experiments with a pilot sand filter reactor bioaugmented with MSH1. BAM conversion to 2,6-DCBA was not affected by loss of the DCBA-catabolic genes. Our results show that MSH1 is prone to BAM-catabolic instability under the conditions occurring in a DWTP. While conversion of BAM to 2,6-DCBA remains unaffected, BAM mineralization activity is at risk, and monitoring of metabolites is warranted. IMPORTANCE Bioaugmentation of dedicated biofiltration units with bacterial strains that grow on and mineralize micropollutants was suggested as an alternative for treating micropollutant-contaminated water in drinking water treatment plants (DWTPs). Organic-pollutant-catabolic genes in bacteria are often easily lost, especially under nonselective conditions, which affects the bioaugmentation success. In this study, we provide evidence that Aminobacter sp. strain MSH1, which uses the common groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C source, shows a high frequency of loss of its BAM-mineralizing phenotype due to the loss of genes that convert 2,6-DCBA to Krebs cycle intermediates when nonselective conditions occur. Moreover, we show that catabolic-gene loss also occurs in the oligotrophic environment of DWTPs, where growth of MSH1 depends mainly on the high fluxes of low concentrations of assimilable organic carbon, and hence show the ecological relevance of catabolic instability for using strain MSH1 for BAM removal in DWTPs. PMID:28363960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp; Matsuzaki, Masahiro; Kanazawa, Shiho
Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that themore » production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with any of the typical substrates of B′-MTs. It was concluded that CTgSs have strict substrate specificity. The K{sub m} values of CTgS1 and CTgS2 were 121 and 184 μM with nicotinic acid as a substrate, and 68 and 120 μM with S-adenosyl-L-methionine as a substrate, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drocco, Jeffery A.
The paramutate software package Is a tool to calculate the genotyplc and phenotyplc propagation of a gene drive that can be silenced with a homologuus trans-Inactivating panmutatlon, ln dlptera or other species with a slmUar-acttng pl RNA system/Plwi pathway. Method of SolaUon: paramutate uses rults of Mendelian, gene drive (I.e.. stimulated conversion), and maternal Inheritance to compute the propaptlon of a notional gene drive construct and Its trans-lnactlvat1n1 paramutatlon, throu1b a panmlctlc, fixed-size population reproducing In synchronous generations.
Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.
Skelly, P J; Clark-Walker, G D
1990-04-01
Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms.
Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.
Skelly, P J; Clark-Walker, G D
1990-01-01
Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms. Images PMID:2181277
Property evolution during vitrification of dimethacrylate photopolymer networks
Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.
2013-01-01
Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378
Control of glioblastoma tumorigenesis by feed-forward cytokine signaling
Jahani-Asl, Arezu; Yin, Hang; Soleimani, Vahab D; Haque, Takrima; Luchman, H Artee; Chang, Natasha C; Sincennes, Marie-Claude; Puram, Sidharth V; Scott, Andrew M; Lorimer, Ian A J; Perkins, Theodore J; Ligon, Keith L; Weiss, Samuel; Rudnicki, Michael A; Bonni, Azad
2016-01-01
EGFRvIII-STAT3 signaling is important in glioblastoma pathogenesis. Here, we identified the cytokine receptor OSMR as a direct target gene of the transcription factor STAT3 in mouse astrocytes and human brain tumor stem cells (BTSCs). We found that OSMR functioned as an essential co-receptor for EGFRvIII. OSMR formed a physical complex with EGFRvIII, and depletion of OSMR impaired EGFRvIII-STAT3 signaling. Conversely, pharmacological inhibition of EGFRvIII phosphorylation inhibited the EGFRvIII-OSMR interaction and activation of STAT3. EGFRvIII-OSMR signaling in tumors operated constitutively, whereas EGFR-OSMR signaling in nontumor cells was synergistically activated by the ligands EGF and OSM. Finally, knockdown of OSMR strongly suppressed cell proliferation and tumor growth of mouse glioblastoma cells and human BTSC xenografts in mice, and prolonged the lifespan of those mice. Our findings identify OSMR as a critical regulator of glioblastoma tumor growth that orchestrates a feed-forward signaling mechanism with EGFRvIII and STAT3 to drive tumorigenesis. PMID:27110918
NF-κB activation impairs somatic cell reprogramming in ageing.
Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos
2015-08-01
Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.
Zhang, Hai-Lin; Cui, Shao-Hua; Zha, Xue-Qiang; Bansal, Vibha; Xue, Lei; Li, Xiao-Long; Hao, Ran; Pan, Li-Hua; Luo, Jian-Ping
2014-06-15
In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from jellyfish skin (JSP). The optimum parameters were found to be raw material to water ratio 1:7.5 (w/v), extraction temperature 100°C and extraction time 4h. Under these conditions, the JSP yield reached 1.007 mg/g. Papain (15 U/mL) in combination with Sevag reagent was beneficial in removing proteins from JSP. After precipitation with ethanol at final concentration of 40%, 60% and 80% in turn, three polysaccharide fractions of JSP1, JSP2 and JSP3 were obtained from JSP, respectively. The three fractions exhibited different physicochemical properties with respect to molecular weight distribution, monosaccharide composition, infrared absorption spectra, and glycosyl bond composition. In addition, JSP3 showed strong inhibitory effects on oxidized low-density lipoprotein (oxLDL) induced conversion of macrophages into foam cells, which possibly attributed to the down-regulation of some atherogenesis-related gene expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons
Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.
2014-01-01
Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523
Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
Huang, Chi-Fa; Yu, Chun-Ping; Wu, Yeh-Hua; Lu, Mei-Yeh Jade; Tu, Shih-Long; Wu, Shu-Hsing; Shiu, Shin-Han; Ku, Maurice S B; Li, Wen-Hsiung
2017-08-15
High vein density, a distinctive trait of C 4 leaves, is central to both C 3 -to-C 4 evolution and conversion of C 3 to C 4 -like crops. We tested the hypothesis that high vein density in C 4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C 4 leaves compared with developing C 3 leaves. The same observation held for maize foliar (C 4 ) and husk (C 3 ) leaf primordia. Moreover, auxin content and vein density were increased in loss-of-function mutants of Arabidopsis MYC2 , a suppressor of auxin biosynthesis. Treatment with an auxin biosynthesis inhibitor or an auxin transport inhibitor led to much fewer veins in new leaves. Finally, both Arabidopsis thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. Thus, development of high leaf vein density requires elevated auxin biosynthesis and transport.
Owa, Chie; Poulin, Matthew; Yan, Liying; Shioda, Toshi
2018-01-01
The existence of cytosine methylation in mammalian mitochondrial DNA (mtDNA) is a controversial subject. Because detection of DNA methylation depends on resistance of 5'-modified cytosines to bisulfite-catalyzed conversion to uracil, examined parameters that affect technical adequacy of mtDNA methylation analysis. Negative control amplicons (NCAs) devoid of cytosine methylation were amplified to cover the entire human or mouse mtDNA by long-range PCR. When the pyrosequencing template amplicons were gel-purified after bisulfite conversion, bisulfite pyrosequencing of NCAs did not detect significant levels of bisulfite-resistant cytosines (brCs) at ND1 (7 CpG sites) or CYTB (8 CpG sites) genes (CI95 = 0%-0.94%); without gel-purification, significant false-positive brCs were detected from NCAs (CI95 = 4.2%-6.8%). Bisulfite pyrosequencing of highly purified, linearized mtDNA isolated from human iPS cells or mouse liver detected significant brCs (~30%) in human ND1 gene when the sequencing primer was not selective in bisulfite-converted and unconverted templates. However, repeated experiments using a sequencing primer selective in bisulfite-converted templates almost completely (< 0.8%) suppressed brC detection, supporting the false-positive nature of brCs detected using the non-selective primer. Bisulfite-seq deep sequencing of linearized, gel-purified human mtDNA detected 9.4%-14.8% brCs for 9 CpG sites in ND1 gene. However, because all these brCs were associated with adjacent non-CpG brCs showing the same degrees of bisulfite resistance, DNA methylation in this mtDNA-encoded gene was not confirmed. Without linearization, data generated by bisulfite pyrosequencing or deep sequencing of purified mtDNA templates did not pass the quality control criteria. Shotgun bisulfite sequencing of human mtDNA detected extremely low levels of CpG methylation (<0.65%) over non-CpG methylation (<0.55%). Taken together, our study demonstrates that adequacy of mtDNA methylation analysis using methods dependent on bisulfite conversion needs to be established for each experiment, taking effects of incomplete bisulfite conversion and template impurity or topology into consideration.
Surface Plasmon-Assisted Solar Energy Conversion.
Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun
2016-01-01
The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.
A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik
2013-09-09
We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.
Prieto, R; Yousibova, G L; Woloshuk, C P
1996-01-01
Aspergillus flavus mutant strain 649, which has a genomic DNA deletion of at least 120 kb covering the aflatoxin biosynthesis cluster, was transformed with a series of overlapping cosmids that contained DNA harboring the cluster of genes. The mutant phenotype of strain 649 was rescued by transformation with a combination of cosmid clones 5E6, 8B9, and 13B9, indicating that the cluster of genes involved in aflatoxin biosynthesis resides in the 90 kb of A. flavus genomic DNA carried by these clones. Transformants 5E6 and 20B11 and transformants 5E6 and 8B9 accumulated intermediate metabolites of the aflatoxin pathway, which were identified as averufanin and/or averufin, respectively.These data suggest that avf1, which is involved in the conversion of averufin to versiconal hemiacetal acetate, was present in the cosmid 13B9. Deletion analysis of 13B9 located the gene on a 7-kb DNA fragment of the cosmid. Transformants containing cosmid 8B9 converted exogenously supplied O-methylsterigmatocystin to aflatoxin, indicating that the oxidoreductase gene (ord1), which mediates the conversion of O-methylsterigmatocystin to aflatoxin, is carried by this cosmid. The analysis of transformants containing deletions of 8B9 led to the localization of ord1 on a 3.3-kb A. flavus genomic DNA fragment of the cosmid. PMID:8967772
Bhatt, Jay M.; Challa, Anil Kumar
2018-01-01
Genetic analysis in model systems can provide a rich context for conceptual understanding of gene structure, regulation, and function. With an intent to create a rich learning experience in molecular genetics, we developed a semester-long course-based undergraduate research experience (CURE) using the CRISPR-Cas9 gene editing system to disrupt specific genes in the zebrafish. The course was offered to freshman students; nine students worked in four groups (two to three members per group) to design, synthesize, and test the nuclease activity of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/sgRNAs for targeted disruption of specific genes in the zebrafish. Each group worked with a gene with an already known mutant phenotype that can be visually scored and a gene that had not been studied in zebrafish previously. Embedded in the course were a series of workshop-styled units or tutorials, including tours to core facilities. The focus was on introducing and developing skills that could be accommodated within the span of a semester. Each group successfully cloned at least one plasmid-encoding CRISPR/sgRNA template, visually analyzed injected embryos, and performed genotyping assays to detect CRISPR-Cas9 activity. In-class discussions, a final end-of-semester written test, and group oral presentations were assessed for an understanding of the CRISPR-Cas9 system, application of the CRISPR-Cas9 system as a gene manipulation tool, and experimental methods used to create plasmid vectors and synthesize sgRNA. In addition, poster presentations were evaluated by faculty, graduate students, and senior undergraduate students at a University research exposition. Self-reflections in the form of group conversations were video recorded. All students (9/9) distinctly showed learning gains after completing the activity, but the extent of the gains was variable, as seen from results of a written test and poster presentation assessment. Qualitative analysis of evaluations and self-reporting data indicated several gains, suggesting that all students found many aspects of the CURE valuable and gained project-specific (conceptual) and transferrable skills (science process and science identity). PMID:29904527
Kondo, Toru; Raff, Martin
2004-01-01
We showed previously that purified rat oligodendrocyte precursor cells (OPCs) can be induced by extracellular signals to convert to multipotent neural stem-like cells (NSLCs), which can then generate both neurons and glial cells. Because the conversion of precursor cells to stem-like cells is of both intellectual and practical interest, it is important to understand its molecular basis. We show here that the conversion of OPCs to NSLCs depends on the reactivation of the sox2 gene, which in turn depends on the recruitment of the tumor suppressor protein Brca1 and the chromatin-remodeling protein Brahma (Brm) to an enhancer in the sox2 promoter. Moreover, we show that the conversion is associated with the modification of Lys 4 and Lys 9 of histone H3 at the same enhancer. Our findings suggest that the conversion of OPCs to NSLCs depends on progressive chromatin remodeling, mediated in part by Brca1 and Brm. PMID:15574597
(Non)Verbal Behavior of Young Stutterers and Their Mothers. Final Report.
ERIC Educational Resources Information Center
Conture, Edward G.
This final report describes activities and accomplishments of a 3-year project which analyzed the speech and related behaviors of 28 young children (mean age 52.5 months) who stuttered, their mothers, and similar non-stuttering children and mothers. A loosely structured conversation between each mother and child was recorded and analyzed. In…
High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.G.; Bland, J.J.
1997-05-23
This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.
Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis
USDA-ARS?s Scientific Manuscript database
Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...
Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M
2012-11-19
We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.
Reformulation of the relativistic conversion between coordinate time and atomic time
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1975-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring 'earth-bound' proper time or atomic time). After an interpretation in terms of relatively well-known concepts, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th, is used to explain the conventions required in the synchronization of a worldwide clock network and to analyze two synchronization techniques - portable clocks and radio interferometry. Finally, pertinent experimental tests of relativity are briefly discussed in terms of the reformulated time conversion.
Storz, Jay F.; Natarajan, Chandrasekhar; Cheviron, Zachary A.; Hoffmann, Federico G.; Kelly, John K.
2012-01-01
Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood–oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5′ paralog and downstream of the 3′ paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness. PMID:22042573
Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar
2013-07-01
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.
Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana
Kunz, Sabine; Pesquet, Edouard; Kleczkowski, Leszek A.
2014-01-01
Background Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. Conclusions Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism. PMID:24950222
Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui
2011-05-01
The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.
Escape Excel: A tool for preventing gene symbol and accession conversion errors.
Welsh, Eric A; Stewart, Paul A; Kuenzi, Brent M; Eschrich, James A
2017-01-01
Microsoft Excel automatically converts certain gene symbols, database accessions, and other alphanumeric text into dates, scientific notation, and other numerical representations. These conversions lead to subsequent, irreversible, corruption of the imported text. A recent survey of popular genomic literature estimates that one-fifth of all papers with supplementary gene lists suffer from this issue. Here, we present an open-source tool, Escape Excel, which prevents these erroneous conversions by generating an escaped text file that can be safely imported into Excel. Escape Excel is implemented in a variety of formats (http://www.github.com/pstew/escape_excel), including a command line based Perl script, a Windows-only Excel Add-In, an OS X drag-and-drop application, a simple web-server, and as a Galaxy web environment interface. Test server implementations are accessible as a Galaxy interface (http://apostl.moffitt.org) and simple non-Galaxy web server (http://apostl.moffitt.org:8000/). Escape Excel detects and escapes a wide variety of problematic text strings so that they are not erroneously converted into other representations upon importation into Excel. Examples of problematic strings include date-like strings, time-like strings, leading zeroes in front of numbers, and long numeric and alphanumeric identifiers that should not be automatically converted into scientific notation. It is hoped that greater awareness of these potential data corruption issues, together with diligent escaping of text files prior to importation into Excel, will help to reduce the amount of Excel-corrupted data in scientific analyses and publications.
Genetic Effects of Uv Irradiation on Excision-Proficient and -Deficient Yeast during Meiosis
Resnick, Michael A.; Game, John C.; Stasiewicz, Stanley
1983-01-01
The lethal and recombinational responses to ultraviolet light irradiation (UV) by excision-proficient (RAD+) and deficient strains (rad1) of Saccharomyces cerevisiae has been examined in cells undergoing meiosis. Cells that exhibit high levels of meiotic synchrony were irradiated either at the beginning or at various times during meiosis and allowed to proceed through meiosis. Based on survival responses, the only excision repair mechanism for UV damage available during meiosis is that controlled by the RAD1 pathway. The presence of pyrimidine dimers at the beginning of meiosis does not prevent cells from undergoing meiosis; however, the spore products exhibit much lower survival than cells from earlier stages of meiosis. The reduced survival is probably due to effects of UV on recombination. Meiotic levels of gene conversion are reduced only two to three times in these experiments; however, intergenic recombination is nearly abolished after a dose of 4 J/m 2 to the rad1 strain. Exposure to 25 J/m2 had little effect on the wild-type strain. Since normal meiotic reciprocal recombination is generally considered to involve gene conversion-type intermediates, it appears that unrepaired UV damage dissociates the two processes. These results complement those obtained with the mei-9 mutants of Drosophila which also demonstrate a dissociation between gene conversion and reciprocal recombination. These results are consistent with molecular observations on the UV-irradiated rad1 strain in that there is no excision of pyrimidine dimers or exchange of dimers during meiosis. PMID:6352405
Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buyck, N.; Thomas, S.
Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) atmore » the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.« less
The Red Queen model of recombination hot-spot evolution: a theoretical investigation.
Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas
2017-12-19
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.
The Red Queen model of recombination hot-spot evolution: a theoretical investigation
Latrille, Thibault; Duret, Laurent
2017-01-01
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109226
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
The Use of rLH, HMG and hCG in Controlled Ovarian Stimulation for Assisted Reproductive Technologies
2012-11-21
express CYP17, the gene encoding for the critical enzyme in the conversion of progesterone and pregnenalone to androgens (3). Conversely, granulosa...2. Potential mechanisms of exogenous LH benefit in ART There are theoretical benefits of the use of exogenous LH for the oocyte and the endometrium...folliculogenesis when administered with FSH (85). rLH has potential advantages over the LH activity in hMG in that there is less risk of protein contamination and
Ultra-low background DNA cloning system.
Goto, Kenta; Nagano, Yukio
2013-01-01
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.
Matthews, Allysia J.; Zheng, Simin; DiMenna, Lauren J.; Chaudhuri, Jayanta
2014-01-01
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as “Ch genes”, e.g., Cγ, Cε, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming. PMID:24507154
Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses
Vaccaro, Brian J.; Thorgersen, Michael P.; Lancaster, W. Andrew; ...
2015-10-09
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library fromPseudomonas stutzeristrain RCH2 was grown under denitrifying conditions, using nitrate or nitrite asmore » an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. Finally, the dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.« less
Palazzese, Luca; Czernik, Marta; Iuso, Domenico; Toschi, Paola
2018-01-01
Recently we have demonstrated the possibility to replace histones with protamine, through the heterologous expression of human protamine 1 (hPrm1) gene in sheep fibroblasts. Here we have optimized protaminization of somatic nucleus by adjusting the best concentration and exposure time to trichostatin A (TSA) in serum-starved fibroblasts (nuclear quiescence), before expressing Prm1 gene. To stop cell proliferation, we starved cells in 0.5% FBS in MEM (“starved”—ST group), whereas in the Control group (CTR) the cells were cultured in 10% FBS in MEM. To find the most effective TSA concentration, we treated the cells with increasing concentrations of TSA in MEM + 10% FBS. Our results show that combination of cell culture conditions in 50 nM TSA, is more effective in terminating cell proliferation than ST and CTR groups (respectively 8%, 17.8% and 90.2% p<0.0001). Moreover, nuclear quiescence marker genes expression (Dicer1, Smarca 2, Ezh1 and Ddx39) confirmed that our culture conditions kept the cells in a nuclear quiescent state. Finally, ST and 50 nM TSA jointly increased the number of spermatid-like cell (39.4%) at higher rate compared to 25 nM TSA (20.4%, p<0.05) and 100 nM TSA (13.7%, p<0.05). To conclude, we have demonstrated that nuclear quiescence in ST cells and the open nuclear structure conferred by TSA resulted in an improved Prm1-mediated conversion of somatic nuclei into spermatid-like structures. This finding might improve nuclear reprogramming of somatic cells following nuclear transfer. PMID:29543876
Kang, Seounghun; Kang, Kyunglee; Huh, Hyun; Kim, Hyungjun; Chang, Sung-Jin; Park, Tae Jung; Chang, Ki Soo; Min, Dal-Hee; Jang, Hongje
2017-10-11
Porous Au nanoplates (pAuNPs) were manufactured by a reducing agent-assisted galvanic replacement reaction on Ag nanoplates using a seed-mediated synthetic approach. Two core additives, poly(vinylpyrrolidone) and l-ascorbic acid, prevented fragmentation and proceeded secondary growth. By controlling the concentration of the additives and the amount of replacing ion AuCl 4 - , various nanostructures including nanoplates with holes, nanoframes, porous nanoplates, and bumpy nanoparticles with unity and homogeneity were synthesized. The present synthetic method is advantageous, because it can be used to manufacture pAuNPs with ease, robustness, and convenience. The prepared pAuNPs exhibited a highly efficient photothermal conversion effect and cargo loading capacity on exposed surfaces by Au-thiol linkage. By using dual cargo mixed loading of the hepatitis C virus (HCV) targeting gene drug DNAzyme and cell-penetrating peptide TAT onto the surface of the pAuNPs and photothermal conversion-mediated hyperthermic treatment, successful gene-thermo therapy against HCV genomic human hepatocarcinoma cells were demonstrated.
2014-01-01
Background Neisseria meningitidis expresses type four pili (Tfp) which are important for colonisation and virulence. Tfp have been considered as one of the most variable structures on the bacterial surface due to high frequency gene conversion, resulting in amino acid sequence variation of the major pilin subunit (PilE). Meningococci express either a class I or a class II pilE gene and recent work has indicated that class II pilins do not undergo antigenic variation, as class II pilE genes encode conserved pilin subunits. The purpose of this work was to use whole genome sequences to further investigate the frequency and variability of the class II pilE genes in meningococcal isolate collections. Results We analysed over 600 publically available whole genome sequences of N. meningitidis isolates to determine the sequence and genomic organization of pilE. We confirmed that meningococcal strains belonging to a limited number of clonal complexes (ccs, namely cc1, cc5, cc8, cc11 and cc174) harbour a class II pilE gene which is conserved in terms of sequence and chromosomal context. We also identified pilS cassettes in all isolates with class II pilE, however, our analysis indicates that these do not serve as donor sequences for pilE/pilS recombination. Furthermore, our work reveals that the class II pilE locus lacks the DNA sequence motifs that enable (G4) or enhance (Sma/Cla repeat) pilin antigenic variation. Finally, through analysis of pilin genes in commensal Neisseria species we found that meningococcal class II pilE genes are closely related to pilE from Neisseria lactamica and Neisseria polysaccharea, suggesting horizontal transfer among these species. Conclusions Class II pilins can be defined by their amino acid sequence and genomic context and are present in meningococcal isolates which have persisted and spread globally. The absence of G4 and Sma/Cla sequences adjacent to the class II pilE genes is consistent with the lack of pilin subunit variation in these isolates, although horizontal transfer may generate class II pilin diversity. This study supports the suggestion that high frequency antigenic variation of pilin is not universal in pathogenic Neisseria. PMID:24690385
Property evolution during vitrification of dimethacrylate photopolymer networks.
Abu-elenain, Dalia A; Lewis, Steven H; Stansbury, Jeffrey W
2013-11-01
This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7-600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. The varied irradiation conditions produced final conversion ranging from 6% to more than 60%. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40% conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45-50% conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Alterations of thorium oxalate morphology by changing elementary precipitation conditions
NASA Astrophysics Data System (ADS)
Tyrpekl, V.; Beliš, M.; Wangle, T.; Vleugels, J.; Verwerft, M.
2017-09-01
Oxalates of actinide elements are widely used in research and industry mainly due to their low solubility in aqueous solution and easy conversion to oxide. Although thorium oxide is worldwide mostly produced by the oxalate precipitation and conversion route, the powder morphology obtained through this process is known to inhibit the packing and sintering step of the pellet production. The presented work investigates the effects of oxalate precipitation conditions on the final powder morphology. Among the precipitation conditions considered are: pH of the thorium feed solution, concentration, temperature and the order of addition (thorium solution in oxalic acid solution and vice versa) known as reverse/direct strike. Herein, we show that the morphology of the final oxalate depends significantly on the above mentioned precipitation parameters.
Queer Genes: Realism, Sexuality and Science.
Griffiths, David Andrew
2016-10-19
What are 'gay genes' and are they real? This article looks at key research into these hypothesized gay genes, made possible, in part, by the Human Genome Project. I argue that the complexity of both genetics and human sexuality demands a truly critical approach: one that takes into account feminist epistemologies of science and queer approaches to the body, while putting into conversation resources from agential realism and critical realism. This approach is able to maintain the agential complexity of genetic materiality, while also critically challenging the seemingly stable relationships between sex, gender and sexuality.
Dynamic integration of splicing within gene regulatory pathways
Braunschweig, Ulrich; Gueroussov, Serge; Plocik, Alex; Graveley, Brenton R.; Blencowe, Benjamin J.
2013-01-01
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive cross-talk between gene regulatory layers takes advantage of dynamic spatial, physical and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control. PMID:23498935
Blanden, R V; Rothenfluh, H S; Zylstra, P; Weiller, G F; Steele, E J
1998-04-01
We present here a unifying hypothesis for the molecular mechanism of somatic hypermutation and somatic gene conversion in IgV genes involving reverse transcription using RNA templates from the V-gene loci to produce cDNA which undergoes homologous recombination with chromosomal V(D)J DNA. Experimental evidence produced over the last 20 years is essentially consistent with this hypothesis. We also review evidence suggesting that somatically generated IgV sequences from B lymphocytes have been fed back to germline DNA over evolutionary time.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1.
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao
2014-12-22
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.
Thyroid hormone regulates muscle fiber type conversion via miR-133a1
Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua
2014-01-01
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392
Petrov, Kaloyan; Popova, Luiza; Petrova, Penka
2017-06-01
Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.
Dynamic full-scalability conversion in scalable video coding
NASA Astrophysics Data System (ADS)
Lee, Dong Su; Bae, Tae Meon; Thang, Truong Cong; Ro, Yong Man
2007-02-01
For outstanding coding efficiency with scalability functions, SVC (Scalable Video Coding) is being standardized. SVC can support spatial, temporal and SNR scalability and these scalabilities are useful to provide a smooth video streaming service even in a time varying network such as a mobile environment. But current SVC is insufficient to support dynamic video conversion with scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion methods for QoS adaptive video streaming in SVC. To accomplish full scalability dynamic conversion, we develop corresponding bitstream extraction, encoding and decoding schemes. At the encoder, we insert the IDR NAL periodically to solve the problems of spatial scalability conversion. At the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. Real time extraction is achieved by using this information. Finally, we develop the decoder so that it can manage the changing scalability. Experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.
Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.
Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu
2015-01-01
Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor
NASA Astrophysics Data System (ADS)
Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG
2017-11-01
This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor. Alumina oxide (Al2O3), glass (SiO2) and zirconium oxide (ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnO x ) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of MnO x /Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.
Truke, a web tool to check for and handle excel misidentified gene symbols.
Mallona, Izaskun; Peinado, Miguel A
2017-03-21
Genomic datasets accompanying scientific publications show a surprisingly high rate of gene name corruption. This error is generated when files and tables are imported into Microsoft Excel and certain gene symbols are automatically converted into dates. We have developed Truke, a fexible Web tool to detect, tag and fix, if possible, such misconversions. Aside, Truke is language and regional locale-aware, providing file format customization (decimal symbol, field sepator, etc.) following user's preferences. Truke is a data format conversion tool with a unique corrupted gene symbol detection utility. Truke is freely available without registration at http://maplab.cat/truke .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcupile, J.C.
The purpose of this study is to apply the methodologies developed in the Energy Conservation in Coal Conversion August, 1977 Progress Report - Contract No. EY77S024196 - to an energy efficient, near-term coal conversion process design, and to develop additional, general techniques for studying energy conservation and utilization in coal conversion processes. The process selected for study was the Ralph M. Parsons Company of Pasadena, California ''Oil/Gas Complex, Conceptual Design/Economic Analysis'' as described in R and D Report No. 114 - Interim Report No. 4, published March, 1977, ERDA Contract No. E(49-18)-1975. Thirteen papers representing possible alternative methods of energymore » conservation or waste heat utilization have been entered individually into EDB and ERA. (LTN)« less
Research in Information Processing and Computer Science. Final Technical Report.
ERIC Educational Resources Information Center
Carnegie-Mellon Univ., Pittsburgh, PA. Social Studies Curriculum Center.
This is the final scientific research report for the research in programing at Carnegie-Mellon University during 1968-1970. Three team programing efforts during the past two years have been the development of (1) BLISS--a system building language on the PDP-10 computer, (2) LC2--a conversational system on the IBM/360, and L*--a system building…
An Investigation of Spoken Brazilian Portuguese: Part I, Technical Report. Final Report.
ERIC Educational Resources Information Center
Hutchins, John A.
This final report of a study which developed a working corpus of spoken and written Portuguese from which syntactical studies could be conducted includes computer-processed data on which the findings and analysis are based. A data base, obtained by taping some 487 conversations between Brazil and the United States, serves as the corpus from which…
Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitochondria Oxidants
2010-04-01
acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of estrogen-induced growth of malignant breast...have completed proposed research in the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes...bioassay to test whether estrogen-induced conversion of normal cells to transformed cells is inhibited by treatment with N- acetylcysteine and
2017-04-19
AFRL-AFOSR-VA-TR-2017-0090 Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and...Nanocomposites Zhiqun Lin GEORGIA TECH RESEARCH CORPORATION 505 10TH ST NW ATLANTA, GA 30318-5775 04/19/2017 Final Report DISTRIBUTION A: Distribution approved...for public release. Air Force Research Laboratory AF Office Of Scientific Research (AFOSR)/RTB2 4/21/2017https://livelink.ebs.afrl.af.mil/livelink
Research status of wave energy conversion (WEC) device of raft structure
NASA Astrophysics Data System (ADS)
Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng
2017-10-01
This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.
Advanced Flight Simulator: Utilization in A-10 Conversion and Air-to-Surface Attack Training.
1981-01-01
ASPT to the A-I0. Finally. the objectivity of the criteria ( parameters of aircraft control. bomb-drop circular error. and percentage of rounds through a...low angle strafe task. Table 4 presents a listing of these tasks and their related release parameters . 12 __ __ _ __ Tab/e .1. A/S Weapons I)eliven...Scoring. Two dependent variables, specific to the phase of student training, were used. In the conversion training phase. specific parameters for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J
This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agencymore » s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.« less
Methylation of miRNA genes and oncogenesis.
Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A
2015-02-01
Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.
Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.
Chan, Wen Ning; Holtzapple, Mark T
2003-11-01
The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.
acr-23 Encodes a Monepantel-Sensitive Channel in Caenorhabditis elegans
Rufener, Lucien; Bedoni, Nicola; Baur, Roland; Rey, Samantha; Glauser, Dominique A.; Bouvier, Jacques; Beech, Robin; Sigel, Erwin; Puoti, Alessandro
2013-01-01
Monepantel is a member of the recently identified class of anthelmintics known as the amino-acetonitrile derivatives (AADs). Monepantel controls all major gastro-intestinal nematodes in sheep including those that are resistant to the classical anthelmintics. Previous studies have shown that the Caenorhabditis elegans acr-23 and the Haemonchus contortus Hco-mptl-1 genes may be prominent targets of monepantel. With this discovery it became possible to investigate the mode of action of monepantel in nematodes at the molecular level. In the present study, we show that a C. elegans mutant acr-23 strain is fully rescued by expressing the wild-type acr-23 gene. Moreover, we present a new mutant allele, and characterize acr-23 alleles genetically. We also show that acr-23 is expressed in body wall muscle cells, and provide therefore a possible explanation for the paralysis caused by monepantel. Furthermore, genetic evidence suggests that the chaperone RIC-3 is required for expression of full monepantel resistance. Finally, we present reconstitution of the C. elegans ACR-23 receptor in Xenopus laevis oocytes and provide direct evidence of its modulation by monepantel. Conversely, co-injection of the chaperone RIC-3 had no impact for channel reconstitution in X. laevis oocytes. These results reinforce the involvement of the ACR-23 family in the mode of action of monepantel and advance our understanding of this new class of anthelmintics. PMID:23950710
Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou
2015-01-01
Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol.
Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou
2015-01-01
Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol. PMID:26091008
Recombination in diverse maize is stable, predictable, and associated with genetic load.
Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S
2015-03-24
Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.
Photocatalytic CO2 conversion by polymeric carbon nitrides.
Fang, Yuanxing; Wang, Xinchen
2018-05-10
CO2 is a vital compond for life, and its concentration significantly affects the living environment of the Earth. Extensive effort has been devoted to balance its concentration. Among the developed approaches, photocatalytic CO2 conversion is considered as an ideal option. Previous reports suggest polymeric carbon nitride (PCN) can be effectively used as a metal-free photocatalyst to convert CO2. Herein, the recent developments of PCN and the related photocatalysts for CO2 conversion are summarized from the fundamental of using PCN, and their extended applications through molecular modification and physical/chemical coupling with other substances. The concluding remarks finally indicate the future challenges of using PCN materials for relevant solar-driven applications.
Biomass conversion determined via fluorescent cellulose decay assay.
Wischmann, Bente; Toft, Marianne; Malten, Marco; McFarland, K C
2012-01-01
An example of a rapid microtiter plate assay (fluorescence cellulose decay, FCD) that determines the conversion of cellulose in a washed biomass substrate is reported. The conversion, as verified by HPLC, is shown to correlate to the monitored FCD in the assay. The FCD assay activity correlates to the performance of multicomponent enzyme mixtures and is thus useful for the biomass industry. The development of an optimized setup of the 96-well microtiter plate is described, and is used to test a model that shortens the assay incubation time from 72 to 24h. A step-by-step procedure of the final assay is described. Copyright © 2012 Elsevier Inc. All rights reserved.
Sequence divergence of the red and green visual pigments in great apes and humans.
Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G
1994-01-01
We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777
The Sequence and Analysis of Duplication Rich Human Chromosome 16
DOE R&D Accomplishments Database
Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.
2004-01-01
We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.
Dadras, Soheil S.; Cai, Xiaoyan; Abasolo, Ibane; Wang, Zhou
2001-01-01
The growth and development of some of the male sex accessory organs such as the prostate requires the conversion of testosterone to dihydrotestosterone (DHT) by 5α-reductase. To provide insights into the role of testosterone versus DHT in the prostate, we studied the impact of finasteride, a potent and specific inhibitor of 5α-reductase, on the expression of prostatic androgen-response genes in testis-intact rats and in 7-day castrated rats. Finasteride inhibition of the conversion of testosterone to DHT was confirmed by measuring serum and intraprostatic androgens. As expected, finasteride treatment caused a reduction in the wet weight of the prostate in the testis-intact rats and inhibited the testosterone-stimulated prostatic regrowth in the 7-day castrated rats. Although finasteride treatment had little or no effect on the expression of the surveyed androgen-response genes in testis-intact rats, its administration enhanced the expression of many androgen-response genes during the testosterone-stimulated regrowth of the regressed prostate in castrated rats. These observations suggest that testosterone is more potent than DHT in stimulating the expression of many androgen-response genes in the regressed prostate. The expression of androgen-response genes is mainly prostate specific and thus is likely to be associated with androgen-dependent prostatic differentiation. Therefore, testosterone is more potent than DHT in inducing differentiation and weaker in stimulating proliferation during prostate regrowth. The fact that testosterone is a strong inducer of prostatic differentiation has potential clinical implications. PMID:11444528
Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi
2018-05-01
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetics Home Reference: Bart-Pumphrey syndrome
... 26 in cells, and may interfere with the function of other connexin proteins. This disruption could affect skin growth and also impair hearing by disturbing the conversion of sound waves to nerve impulses. Learn more about the gene ...
Consequences of Asexuality in Natural Populations: Insights from Stick Insects.
Bast, Jens; Parker, Darren J; Dumas, Zoé; Jalvingh, Kirsten M; Tran Van, Patrick; Jaron, Kamil S; Figuet, Emeric; Brandt, Alexander; Galtier, Nicolas; Schwander, Tanja
2018-07-01
Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations.
Katime, Issa; Arellano, Jesús; Schulz, Pablo
2006-04-15
The polymerization of n-hexyl methacrylate (n-HMA) in three-component microemulsion stabilized with dodecyltrimethylammonium bromide (DTAB) is reported as a function of monomer and initiator concentrations and temperature. The obtained latices were bluish, transparent, and translucent. Particle sizes and molar masses were on the order of 20 nm and 3 x 10(6) g/mol, respectively. In all cases, high reaction rates and final conversions of 98% were obtained. Polymerization temperature has a strong effect on reaction rate and conversion.
2005-03-15
German (includes romance languages, etc.) CAT III/IV Language More difficult languages to acquire for native English speakers. Examples: Cantonese ...conversations on practical, social , and professional topics in my required AOR language. 52.9 62.1 51.9 51.9 52.0 SOF Language Transformation...67.6 85.7 77.2 67.5 71.9 73.1 63.6 67.6 63.0 I feel confident in my ability to participate in informal conversations on practical, social , and
Materials Science Clean Room Facility at Tulane University (Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altiero, Nicholas
2010-09-30
The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.
Allegrucci, M; Young-Cooper, G O; Alexander, C B; Newman, B A; Mage, R G
1991-02-01
The rabbit is unique in having well-defined allotypes in the variable region of the heavy chain. Products of the VHa locus, (with alleles a1, a2, and a3), account for the majority of the serum immunoglobulins. A small percentage of the serum immunoglobulins are a-negative. In 1986, Kelus and Weiss described a mutation that depressed the expression of the Ig VH a2 genes in an a1/a2 rabbit. From this animal the Alicia rabbit strain was developed and the mutation was termed ali. We previously showed, using Southern analysis and the transverse alternating field electrophoresis technique, that the difference between the ali rabbit and normal is a relatively small deletion including some of the most 3' VH genes. The most JH proximal 3' VH1 genes in DNA from normal rabbits of a1, a2 and a3 haplotypes encode a1, a2 and a3 molecules respectively, and it has been suggested that these genes are responsible for allelic inheritance of VHa allotypes. The present study suggests that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression in rabbits because VH gene(s) in this region are the target(s) of preferential VDJ rearrangements. This raises the possibility that mechanisms such as somatic gene conversion and hypermutation are at work to generate the antibody repertoire in this species. Our data support the view that the 3' VH1 gene may be the preferred target for rearrangement in normal rabbits, and for the normal chromosome in heterozygous ali animals. However, homozygous ali rabbits with a deletion that removed the a2-encoding VH1 on both chromosomes do survive, rearrange other VH genes and produce normal levels of immunoglobulins as well as a significant percentage of B cells which bear the a2 allotype. This challenges the view that one VH gene, VH1, is solely responsible for the inheritance pattern of VHa allotypes.
Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J
2014-07-16
Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis.
2014-01-01
Background Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. Results The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Conclusions Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis. PMID:25030026
Liu, Yajing; Zhu, Pan; Huang, Zhiwei; Zhou, Li; Shi, Ping
2018-02-15
A well-known suicide gene therapy approach, cytosine deaminase (CD) in combination with prodrug 5-flurocytosine (5-FC), has become an effective strategy of tumor treatment. However, there are short of simple and convenient detection methods to evaluate the efficiency of 5-FC conversion to 5-fluorouracil (5-FU) in human cells carrying various CD/5-FC systems. In this study, we developed an effective capillary zone electrophoresis (CZE) method to simultaneously measure 5-FC and 5-FU in cells carrying CD/5-FC suicide gene system. Under the condition of 60 mM borate buffer (pH 9.5) and 25 kV separation voltage with 0.5 psi × 15 s injection in 210 nm, the separation of 5-FC and 5-FU could be completely achieved within 15 min. The linearity of the calibration curve of standard 5-FC and 5-FU was in the range from 1 to 1000 μM (r 2 > 0.999) and their recoveries were 98.4% and 96.0%, respectively. Due to the simple sample preparation and easy detection, this method is suitable for the study of the conversion efficiency of CD/5-FC suicide gene system. It aims to intuitively evaluate CD/5-FC systems and helps to guide the improvement of more effective CD/5-FC suicide gene systems. Copyright © 2018. Published by Elsevier B.V.
Hierarchical charge distribution controls self-assembly process of silk in vitro
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-12-01
Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.
Groenewold, Rimke; Armstrong, Elizabeth
2018-05-14
Previous research has shown that speakers with aphasia rely on enactment more often than non-brain-damaged language users. Several studies have been conducted to explain this observed increase, demonstrating that spoken language containing enactment is easier to produce and is more engaging to the conversation partner. This paper describes the effects of the occurrence of enactment in casual conversation involving individuals with aphasia on its level of conversational assertiveness. To evaluate whether and to what extent the occurrence of enactment in speech of individuals with aphasia contributes to its conversational assertiveness. Conversations between a speaker with aphasia and his wife (drawn from AphasiaBank) were analysed in several steps. First, the transcripts were divided into moves, and all moves were coded according to the systemic functional linguistics (SFL) framework. Next, all moves were labelled in terms of their level of conversational assertiveness, as defined in the previous literature. Finally, all enactments were identified and their level of conversational assertiveness was compared with that of non-enactments. Throughout their conversations, the non-brain-damaged speaker was more assertive than the speaker with aphasia. However, the speaker with aphasia produced more enactments than the non-brain-damaged speaker. The moves of the speaker with aphasia containing enactment were more assertive than those without enactment. The use of enactment in the conversations under study positively affected the level of conversational assertiveness of the speaker with aphasia, a competence that is important for speakers with aphasia because it contributes to their floor time, chances to be heard seriously and degree of control over the conversation topic. © 2018 The Authors International Journal of Language & Communication Disorders published by John Wiley & Sons Ltd on behalf of Royal College of Speech and Language Therapists.
The relationship between cell phone use and management of driver fatigue: It's complicated.
Saxby, Dyani Juanita; Matthews, Gerald; Neubauer, Catherine
2017-06-01
Voice communication may enhance performance during monotonous, potentially fatiguing driving conditions (Atchley & Chan, 2011); however, it is unclear whether safety benefits of conversation are outweighed by costs. The present study tested whether personalized conversations intended to simulate hands-free cell phone conversation may counter objective and subjective fatigue effects elicited by vehicle automation. A passive fatigue state (Desmond & Hancock, 2001), characterized by disengagement from the task, was induced using full vehicle automation prior to drivers resuming full control over the driving simulator. A conversation was initiated shortly after reversion to manual control. During the conversation an emergency event occurred. The fatigue manipulation produced greater task disengagement and slower response to the emergency event, relative to a control condition. Conversation did not mitigate passive fatigue effects; rather, it added worry about matters unrelated to the driving task. Conversation moderately improved vehicle control, as measured by SDLP, but it failed to counter fatigue-induced slowing of braking in response to an emergency event. Finally, conversation appeared to have a hidden danger in that it reduced drivers' insights into performance impairments when in a state of passive fatigue. Automation induced passive fatigue, indicated by loss of task engagement; yet, simulated cell phone conversation did not counter the subjective automation-induced fatigue. Conversation also failed to counter objective loss of performance (slower braking speed) resulting from automation. Cell phone conversation in passive fatigue states may impair drivers' awareness of their performance deficits. Practical applications: Results suggest that conversation, even using a hands-free device, may not be a safe way to reduce fatigue and increase alertness during transitions from automated to manual vehicle control. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.
Escape Excel: A tool for preventing gene symbol and accession conversion errors
Stewart, Paul A.; Kuenzi, Brent M.; Eschrich, James A.
2017-01-01
Background Microsoft Excel automatically converts certain gene symbols, database accessions, and other alphanumeric text into dates, scientific notation, and other numerical representations. These conversions lead to subsequent, irreversible, corruption of the imported text. A recent survey of popular genomic literature estimates that one-fifth of all papers with supplementary gene lists suffer from this issue. Results Here, we present an open-source tool, Escape Excel, which prevents these erroneous conversions by generating an escaped text file that can be safely imported into Excel. Escape Excel is implemented in a variety of formats (http://www.github.com/pstew/escape_excel), including a command line based Perl script, a Windows-only Excel Add-In, an OS X drag-and-drop application, a simple web-server, and as a Galaxy web environment interface. Test server implementations are accessible as a Galaxy interface (http://apostl.moffitt.org) and simple non-Galaxy web server (http://apostl.moffitt.org:8000/). Conclusions Escape Excel detects and escapes a wide variety of problematic text strings so that they are not erroneously converted into other representations upon importation into Excel. Examples of problematic strings include date-like strings, time-like strings, leading zeroes in front of numbers, and long numeric and alphanumeric identifiers that should not be automatically converted into scientific notation. It is hoped that greater awareness of these potential data corruption issues, together with diligent escaping of text files prior to importation into Excel, will help to reduce the amount of Excel-corrupted data in scientific analyses and publications. PMID:28953918
Jet-conversion photons from an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Bhattacharya, Lusaka; Roy, Pradip
2010-10-01
We calculate the pT distributions of jet-conversion photons from a quark-gluon plasma with pre-equilibrium momentum-space anisotropy. A phenomenological model has been used for the time evolution of the hard momentum scale phard(τ) and anisotropy parameter ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of the jet-conversion photon pT distribution. For example, with fixed initial condition pre-equilibrium anisotropy, we predict a significant enhancement of the jet-photon pT distribution in the entire region, whereas for pre-equilibrium anisotropy with fixed final multiplicity (FFM), suppression of the jet-conversion photon pT distribution is observed. The results with FFM (as it is the most realistic situation) have been compared with high pT PHENIX photon data. It is found that the data are reproduced well if the isotropization time lies within 1.5 fm/c.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ables, L.D.
This paper establishes economic breakeven points for the conversion to various fossil fuels as a function of time and pollution constraints for the main boiler plant at Red River Army Depot in Texarkana, Texas. In carrying out the objectives of this paper, the author develops what he considers to be the basic conversion costs and operating costs for each fossil fuel under investigation. These costs are analyzed by the use of the present worth comparison method, and the minimum cost difference between the present fuel and the proposed fuel which would justify the conversion to the proposed fuel is calculated.more » These calculated breakeven points allow a fast and easy method of determining the feasibility of a fuel by merely knowing the relative price difference between the fuels under consideration. (GRA)« less
Probing the photon polarization in B → K*γ with conversion
Bishara, Fady; Robinson, Dean J.
2015-09-02
We re-examine the possibility to measure the photon polarization in B → K*γ decays, via decays in which the photon subsequently undergoes nuclear conversion to a lepton pair. We obtain compact expressions for the full decay-plus-conversion amplitude. With these results we show that interference between the B → (K* → Kπ)γ decay and the γN → ℓ + ℓ – N conversion permits both the ratio and relative weak phase between the left- and right-handed photon amplitudes to be probed by an angular observable, constructed from the final state dilepton, kaon and pion kinematic configuration. Exploiting this technique will bemore » experimentally challenging. However, we present special kinematic cuts that enhance the statistical power of this technique by an O(1) factor. Furthermore, we verify this effect and extract pertinent angular kinematic distributions with dedicated numerical simulations.« less
Restricted VH gene usage and generation of antibody diversity in rabbit.
Knight, K L
1992-01-01
The presence of VHa allotypic specificities on nearly all rabbit Ig molecules has perplexed immunologists for many years. How could these allotypic specificities be inherited as if controlled by alleles if the germline has hundreds of VHa allotype-encoding genes and if most of these genes are used in VDJ gene rearrangements. I review recent data indicating that the allelic inheritance of the VHa allotypes can be explained by preferential utilization of the D-proximal VH gene VH1 in VDJ gene rearrangements. The preferential usage of one VH gene, however, limits the contribution of combinatorial joining of multiple VH, D and JH gene segments to the generation of antibody diversity. The roles of somatic gene conversion and somatic mutation in generating antibody diversity are discussed. Further, the limited usage of germline VH genes in normal, allotype-suppressed and the mutant Alicia rabbit as well as the molecular basis of latent allotypes and VH/CH recombinants is reviewed.
Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli.
Algharrawi, Khalid H R; Summers, Ryan M; Gopishetty, Sridhar; Subramanian, Mani
2015-12-21
Methylxanthines are natural and synthetic compounds found in many foods, drinks, pharmaceuticals, and cosmetics. Aside from caffeine, production of many methylxanthines is currently performed by chemical synthesis. This process utilizes many chemicals, multiple reactions, and different reaction conditions, making it complicated, environmentally dissatisfactory, and expensive, especially for monomethylxanthines and paraxanthine. A microbial platform could provide an economical, environmentally friendly approach to produce these chemicals in large quantities. The recently discovered genes in our laboratory from Pseudomonas putida, ndmA, ndmB, and ndmD, provide an excellent starting point for precisely engineering Escherichia coli with various gene combinations to produce specific high-value paraxanthine and 1-, 3-, and 7-methylxanthines from any of the economical feedstocks including caffeine, theobromine or theophylline. Here, we show the first example of direct conversion of theophylline to 3-methylxanthine by a metabolically engineered strain of E. coli. Here we report the construction of E. coli strains with ndmA and ndmD, capable of producing 3-methylxanthine from exogenously fed theophylline. The strains were engineered with various dosages of the ndmA and ndmD genes, screened, and the best strain was selected for large-scale conversion of theophylline to 3-methylxanthine. Strain pDdA grown in super broth was the most efficient strain; 15 mg/mL cells produced 135 mg/L (0.81 mM) 3-methylxanthine from 1 mM theophylline. An additional 21.6 mg/L (0.13 mM) 1-methylxanthine were also produced, attributed to slight activity of NdmA at the N 3 -position of theophylline. The 1- and 3-methylxanthine products were separated by preparative chromatography with less than 5% loss during purification and were identical to commercially available standards. Purity of the isolated 3-methylxanthine was comparable to a commercially available standard, with no contaminant peaks as observed by liquid chromatography-mass spectrophotometry or nuclear magnetic resonance. We were able to biologically produce and separate 100 mg of highly pure 3-methylxanthine from theophylline (1,3-dimethylxanthine). The N-demethylation reaction was catalyzed by E. coli engineered with N-demethylase genes, ndmA and ndmD. This microbial conversion represents a first step to develop a new biological platform for the production of methylxanthines from economical feedstocks such as caffeine, theobromine, and theophylline.
Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu
2018-05-22
In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Chander, S.; Gutterman, C.
Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less
Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Gu, Meng; Xiao, Haiyan
2016-04-13
Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes duringmore » lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.« less
All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang
2006-01-01
A novel all-optical 40Gbit/s NRZ-to-RZ data format conversion scheme based on sum-frequency generation (SFG) interaction in a periodically poled LiNbO 3 (PPLN) waveguide is presented for the first time, using a Mach-Zehnder interferometer (MZI). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift Φ NL induced on the signal field. The performance of the conversion is numerically evaluated, with the result showing that it is more effective to yield Φ NL when appropriately phase mismatched for SFG process but Φ NL~0 when quasi-phase-matching (QPM). Compared with the cascaded second-order nonlinear interactions (SHG+DFG) with the influence of walk-off effect, a high conversion efficiency and good performance are achieved with peak power 500mw and width 2ps of the pump, which can be used in super high-speed situation (40Gbit/s and above). Finally, the inverse process of SFG and corresponding walk-off effect are analyzed and the optimum arrangement of power is proposed, showing that proper power, pump width, and waveguide length are necessary for achieving a satisfied conversion effect.
Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R
2015-02-01
Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Walther, Stefanie; Tietze, Manfred; Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11-47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism.
Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S.
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11–47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism. PMID:27828971
Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster
Lin, Chun-Chieh; Potter, Christopher J.
2016-01-01
Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster. The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the homology assisted CRISPR knock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available. PMID:27334272
Food odors trigger an endocrine response that affects food ingestion and metabolism.
Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R
2015-08-01
Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.
NASA Astrophysics Data System (ADS)
Quick, A. M.; Farrell, T. B.; Reeder, W. J.; Feris, K. P.; Tonina, D.; Benner, S. G.
2014-12-01
The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measured dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Denitrifying genes (nosZ, nirS, and nirK), determined using qPCR, were spatially associated with abundances of nitrogen species. Using residence times along a flow path, clear trends in oxygen conditions, genes encoding for microbial catalysis, and nitrogen species were observed. Hotspots of targeted genes correlated with hotspots for conversion of nitrogen species, including nitrous oxide production and conversion to dinitrogen. Trends were apparent regardless of dune size, allowing for the possibility to apply observed relationships to multiple streambed morphologies. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone.
A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.
Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I
2016-01-01
We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Pu, Yunqiao; Yoo, Chang Geun
The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less
NASA Astrophysics Data System (ADS)
Gros, P.; Bernard, D.
2017-02-01
We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.
Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm
2016-01-01
This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.
NASA Astrophysics Data System (ADS)
Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li
2018-07-01
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.
Mold heating and cooling microprocessor conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D.P.
Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessormore » board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.« less
Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm
2016-01-01
Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904
Gorsche, Christian; Harikrishna, Reghunathan; Baudis, Stefan; Knaack, Patrick; Husar, Branislav; Laeuger, Joerg; Hoffmann, Helmuth; Liska, Robert
2017-05-02
In photopolymerization reactions, mostly multifunctional monomers are employed, as they ensure fast reaction times and good final mechanical properties of the cured materials. Drawing conclusions about the influence of the components and curing conditions on the mechanical properties of the subsequently formed insoluble networks is challenging. Therefore, an in situ observation of chemical and mechanical characteristics during the photopolymerization reaction is desired. By coupling of an infrared spectrometer with a photorheometer, a broad spectrum of different photopolymerizable formulations can be analyzed during the curing reaction. The rheological information (i.e., time to gelation, final modulus, shrinkage force) can be derived from a parallel plate rheometer equipped with a UV- and IR-translucent window (glass for NIR and CaF 2 window for MIR). Chemical information (i.e., conversion at the gel point and final conversion) is gained by monitoring the decrease of the corresponding IR-peak for the reactive monomer unit (e.g., C═C double bond peak for (meth)acrylates, H-S thiol and C═C double bond peak in thiol-ene systems, C-O epoxy peak for epoxy resins). Depending on the relative concentration of reactive functional groups in the sample volume and the intensity of the IR signal, the conversion can be monitored in the near-infrared region (e.g., acrylate double bonds, epoxy groups) or the MIR region (e.g., thiol signal). Moreover, an integrated Peltier element and external heating hood enable the characterization of photopolymerization reactions at elevated temperatures, which also widens the window of application to resins that are waxy or solid at ambient conditions. By switching from water to heavy water, the chemical conversion during photopolymerization of hydrogel precursor formulations can also be examined. Moreover, this device could also represent an analytical tool for a variety of thermally and redox initiated systems.
Courtney, Monica; Gjernes, Elisabet; Druelle, Noémie; Ravaud, Christophe; Vieira, Andhira; Ben-Othman, Nouha; Pfeifer, Anja; Avolio, Fabio; Leuckx, Gunter; Lacas-Gervais, Sandra; Burel-Vandenbos, Fanny; Ambrosetti, Damien; Hecksher-Sorensen, Jacob; Ravassard, Philippe; Heimberg, Harry; Mansouri, Ahmed; Collombat, Patrick
2013-01-01
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes. PMID:24204325
Diversity of human copy number variation and multicopy genes.
Sudmant, Peter H; Kitzman, Jacob O; Antonacci, Francesca; Alkan, Can; Malig, Maika; Tsalenko, Anya; Sampas, Nick; Bruhn, Laurakay; Shendure, Jay; Eichler, Evan E
2010-10-29
Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million "singly unique nucleotide" positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association.
Jiang, P; Stone, S; Wagner, R; Wang, S; Dayananth, P; Kozak, C A; Wold, B; Kamb, A
1995-12-01
Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.
Gibson, Tracey; Blok, Vivian C; Phillips, Mark S; Hong, Gary; Kumarasinghe, Duminda; Riley, Ian T; Dowton, Mark
2007-04-01
We sequenced four mitochondrial subgenomes from the potato cyst nematode Globodera pallida, previously characterized as one of the few animals to have a multipartite mitochondrial genome. The sequence data indicate that three of these subgenomic mitochondrial circles are mosaics, comprising long, multigenic fragments derived from fragments of the other circles. This pattern is consistent with the operation of intermitochondrial recombination, a process generally considered absent in animal mitochondria. We also report that many of the duplicated genes contain deleterious mutations, ones likely to render the gene nonfunctional; gene conversion does not appear to be homogenizing the different gene copies. The proposed nonfunctional copies are clustered on particular circles, whereas copies that are likely to code functional gene products are clustered on others.
Singh, Prashant; Singh, Satya Shila; Elster, Josef; Mishra, Arun Kumar
2013-06-01
In order to assess phylogeny, population genetics, and approximation of future course of cyanobacterial evolution based on nifH gene sequences, 41 heterocystous cyanobacterial strains collected from all over India have been used in the present study. NifH gene sequence analysis data confirm that the heterocystous cyanobacteria are monophyletic while the stigonematales show polyphyletic origin with grave intermixing. Further, analysis of nifH gene sequence data using intricate mathematical extrapolations revealed that the nucleotide diversity and recombination frequency is much greater in Nostocales than the Stigonematales. Similarly, DNA divergence studies showed significant values of divergence with greater gene conversion tracts in the unbranched (Nostocales) than the branched (Stigonematales) strains. Our data strongly support the origin of true branching cyanobacterial strains from the unbranched strains.
NASA Technical Reports Server (NTRS)
Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.
2001-01-01
Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.
Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro.
Lammel Lindemann, Jan A; Angajala, Anusha; Engler, David A; Webb, Paul; Ayers, Stephen D
2014-05-05
Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q
2015-12-21
The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.
Induction of homologous recombination in Saccharomyces cerevisiae.
Simon, J R; Moore, P D
1988-09-01
We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2016-06-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of several test questions that had some problems in their original design, (ii) standardization of the number of options for each question to five, (iii) conversion of the two-tier questions to multiple-choice questions, and (iv) modification of some questions to make them independent of others. To obtain a final version of the test, we administered both the original and modified versions several times to students at a large private university in Mexico. These students were completing a course that covers the topics tested by the survey. The final modified version of the test was administered to 234 students. In this study we present the modifications for each question, and discuss the reasons behind them. We also analyze the results obtained by the final modified version and offer a comparison between the original and modified versions. In the Supplemental Material we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of, and learning about, mechanical waves.
Inaguma, Shingo; Riku, Miho; Hashimoto, Mitsuyoshi; Murakami, Hideki; Saga, Shinsuke; Ikeda, Hiroshi; Kasai, Kenji
2013-12-15
The mismatch repair (MMR) system is indispensable for the fidelity of DNA replication, the impairment of which predisposes to the development and progression of many types of cancers. To date, GLI1 transcription factor, a key molecule of the Hedgehog signaling pathway, has been shown to regulate the expression of several genes crucial for a variety of cancer cell properties in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), but whether GLI1 could control the MMR system was not known. Here, we showed that GLI1 and GLI2 indirectly suppressed the expression of MLH1 in PDAC cells. Through GLI1 target gene screening, we found that GLI1 and GLI2 activated the expression of a basic helix-loop-helix type suppressor BHLHE41/DEC2/SHARP1 through a GLI-binding site in the promoter. Consistent with a previous report that BHLHE41 suppresses the MLH1 promoter activity, we found that the activation of GLI1 led to the BHLHE41-dependent suppression of MLH1, and a double knockdown of GLI1 and GLI2 conversely increased the MLH1 protein in PDAC cells. Using TALEN-based modification of the MLH1 gene, we further showed that GLI1 expression was indeed associated with an increased tolerance to a methylating agent, methylnitrosourea cooperatively with a lower copy number status of MLH1. Finally, GLI1 expression was immunohistochemically related positively with BHLHE41 and inversely with MLH1 in PDAC cells and precancerous lesions of the pancreas. On the basis of these results, we propose that GLI1 depresses the MMR activity and might contribute to the development and progression of PDAC. ©2013 AACR.
Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis
2009-01-01
Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266
L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model.
Donsante, Anthony; Sullivan, Patricia; Goldstein, David S; Brinster, Lauren R; Kaler, Stephen G
2013-02-01
Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. Copyright © 2012 American Neurological Association.
L-DOPS corrects neurochemical abnormalities in a Menkes disease mouse model
Donsante, Anthony; Sullivan, Patricia; Goldstein, David S.; Brinster, Lauren R.; Kaler, Stephen G.
2012-01-01
Objective Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting ATPase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine-beta-hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled, we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. Methods At 8, 10, and 12 days of age, wild type and mo-br mice received intraperi-toneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized and brains removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Results Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (P<0.001) and its deaminated metabolite, dihydroxyphenylglycol (DHPG, P<0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (P<0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. Interpretation We conclude that 1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, 2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and 3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. PMID:23224983
Figueiredo, Luiza Almeida; Rebouças, Thais Fuscaldi; Ferreira, Sebastião Rodrigo; Rodrigues-Luiz, Gabriela Flavia; Miranda, Rodrigo Cambraia; Araujo, Ricardo Nascimento
2018-01-01
While diseases caused by nematodes remains a considerable drawback for the livestock, agriculture and public health, anthelmintics drug resistance has been observed over the past years and is a major concern for parasite control. Ivermectin, initially considered as a highly potent drug, currently presents a reduced anti-helminthic efficacy, which is influenced by expression of several ATP-binding cassette transporters (ABC), among them the P-glycoproteins (Pgps). Here we present some evidences of Pgps dominance during Ivermectin resistance/susceptibility using Pgps double silencing in C. elegans and the phylogenetic relationship of Pgps among nematodes, which strengthen the use of this model for study of drug resistance in nematodes. Firstly, we evaluated the quantitative gene expression of 12 out the 15 known Pgps from resistant and WT strains of C. elegans, we demonstrated the upregulation of Pgps 12 and 13 and downregulation of all remaining Pgps in ivermectin resistant strain. By using an RNAi loss-of-function approach we observed that Pgp 12 gene silencing reverts the resistance phenotype to ivermectin, while Pgp 4 gene silencing does not alter the resistance phenotype but induces a resistance in wild type strain. Interestingly, the dual silencing of Pgp 12 and Pgp 4 expression demonstrates the dominance of phenotype promoted by Pgp 12 silencing. Finally, in silico analysis reveals a close relationship between Pgps from C. elegans and several nematodes parasites. Taken together, our results indicate that Pgp 12 is crucial for the resistance to ivermectin and thus a good candidate for further studies aiming to develop specific inhibitors to this transporter, allowing the continuous use of ivermectin to control the burden on animal and human health inflicted by nematode parasites globally. PMID:29474375
Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei
2015-07-01
Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.
Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J
2016-05-01
Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
Fukumori, F; Saint, C P
1997-01-01
A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol. PMID:8990291
Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D
1995-11-01
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.
Kim, Hyosuk; Kim, Dongkyu; Ku, Sook Hee; Kim, Kwangmeyung; Kim, Sun Hwa; Kwon, Ick Chan
Technological advances opened up new ways of directing cell fate conversion from one cell lineage to another. The direct cell conversion technique has recently attracted much attention in regenerative medicine to treat devastated organs and tissues, particularly having limited regenerative capacity such as the heart and brain. Unfortunately, its clinical application is severely limited due to a safety concern and immunogenicity of viral vectors, as human gene therapy did in the beginning stages. In this study, we examined the possibility of adopting non-viral vectors to direct cell conversion from mouse embryonic fibroblasts to induced cardiomyocytes (iCM) by transient transfection of four types of chemically synthesized micro-RNA mimics (miRNA-1, 133, 208, and 499). Herein, we tested several commercial and synthetic non-viral gene delivery carriers, which could be divided into three different categories: polymers [branched PEI (bPEI), bioreducible PEI (PEI-SS), deoxycholic acid-conjugated PEI (DA-PEI), jetPEI™, SuperFect™], lipids (Lipofectamine 2000™), and peptides (PepMute™). According to the analyses of physicochemical properties, cellular uptake, and cytotoxicity of the carrier/miRNA complexes, DA-PEI exhibited excellent miRNA delivery efficiency to mouse embryonic fibroblasts. One week after a single treatment of DA-PEI/miRNA without other adjuvants, the cells started to express cardiomyocyte-specific markers, such as α-actinin and α-MHC, indicating the formation of cardiomyocyte-like cells. Although the overall frequency of non-viral vector induced cardiomyogenic transdifferentiation was quite low (ca. 0.2%), this study can provide compelling support to develop clinically applicable transdifferentiation techniques.
[Screening and optimization of cholesterol conversion strain].
Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong
2014-10-04
Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.
Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus.
Ramos-Vera, W Hugo; Labonté, Valérie; Weiss, Michael; Pauly, Julia; Fuchs, Georg
2010-10-01
Thermoproteus neutrophilus, a hyperthermophilic, chemolithoautotrophic, anaerobic crenarchaeon, uses a novel autotrophic CO(2) fixation pathway, the dicarboxylate/hydroxybutyrate cycle. The regulation of the central carbon metabolism was studied on the level of whole cells, enzyme activity, the proteome, transcription, and gene organization. The organism proved to be a facultative autotroph, which prefers organic acids as carbon sources that can easily feed into the metabolite pools of this cycle. Addition of the preferred carbon sources acetate, pyruvate, succinate, and 4-hydroxybutyrate to cultures resulted in stimulation of the growth rate and a diauxic growth response. The characteristic enzyme activities of the carbon fixation cycle, fumarate hydratase, fumarate reductase, succinyl coenzyme A (CoA) synthetase, and enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA, were differentially downregulated in the presence of acetate and, to a lesser extent, in the presence of other organic substrates. This regulation pattern correlated well with the differential expression profile of the proteome as well as with the transcription of the encoding genes. The genes encoding phosphoenolpyruvate (PEP) carboxylase, fumarate reductase, and four enzymes catalyzing the conversion of succinyl-CoA to crotonyl-CoA are clustered. Two putative operons, one comprising succinyl-CoA reductase plus 4-hydroxybutyrate-CoA ligase genes and the other comprising 4-hydroxybutyryl-CoA dehydratase plus fumarate reductase genes, were divergently transcribed into leaderless mRNAs. The promoter regions were characterized and used for isolating DNA binding proteins. Besides an Alba protein, a 18-kDa protein characteristic for autotrophic Thermoproteales that bound specifically to the promoter region was identified. This system may be suitable for molecular analysis of the transcriptional regulation of autotrophy-related genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi
Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell linemore » DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.« less
Development of Support Service for Prevention and Recovery from Dementia and Science of Lethe
NASA Astrophysics Data System (ADS)
Otake, Mihoko
Purpose of this study is to explore service design method through the development of support service for prevention and recovery from dementia towards science of lethe. We designed and implemented conversation support service via coimagination method based on multiscale service design method, both were proposed by the author. Multiscale service model consists of tool, event, human, network, style and rule. Service elements at different scales are developed according to the model. Interactive conversation supported by coimagination method activates cognitive functions so as to prevent progress of dementia. This paper proposes theoretical bases for science of lethe. Firstly, relationship among coimagination method and three cognitive functions including division of attention, planning, episodic memory which decline at mild cognitive imparement. Secondly, thought state transition model during conversation which describes cognitive enhancement via interactive communication. Thirdly, Set Theoretical Measure of Interaction is proposed for evaluating effectiveness of conversation to cognitive enhancement. Simulation result suggests that the ideas which cannot be explored by each speaker are explored during interactive conversation. Finally, coimagination method compared with reminiscence therapy and its possibility for collaboration is discussed.
SPS energy conversion and power management workshop. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers.more » This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)« less
A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft
NASA Technical Reports Server (NTRS)
Tapscott, Robert J.; Kelley, Henry L.
1960-01-01
Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.
Aerts, Robby; Somers, Wesley; Bogaerts, Annemie
2015-02-01
Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.
Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo
2015-11-01
Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.
Khandakar, Jebunnahar; Haraguchi, Izumi; Yamaguchi, Kenichi; Kitamura, Yoshie
2013-01-01
Hyoscyamus albus is a well-known source of the tropane alkaloids, hyoscyamine and scopolamine, which are biosynthesized in the roots. To assess the major biochemical adaptations that occur in the roots of this plant in response to iron deficiency, we used a small-scale proteomic approach in which 100 mg of root tips were treated with and without Fe, respectively, for 5 days. Two-dimensional mini gels showed that 48 spots were differentially accumulated between the two conditions of Fe availability and a further 36 proteins were identified from these spots using MALDI-QIT-TOF mass spectrometry. The proteins that showed elevated levels in the roots lacking Fe were found to be associated variously with carbohydrate metabolism, cell differentiation, secondary metabolism, and oxidative defense. Most of the proteins involved in carbohydrate metabolism were increased in abundance, but mitochondrial NAD-dependent malate dehydrogenase was decreased, possibly resulting in malate secretion. Otherwise, all the proteins showing diminished levels in the roots were identified as either Fe-containing or ATP-requiring. For example, a significant decrease was observed in the levels of hyoscyamine 6β-hydroxylase (H6H), which requires Fe and is involved in the conversion of hyoscyamine to scopolamine. To investigate the effects of Fe deficiency on alkaloid biosynthesis, gene expression studies were undertaken both for H6H and for another Fe-dependent protein, Cyp80F1, which is involved in the final stage of hyoscyamine biosynthesis. In addition, tropane alkaloid contents were determined. Reduced gene expression was observed in the case of both of these proteins and was accompanied by a decrease in the content of both hyoscyamine and scopolamine. Finally, we have discussed energetic and Fe-conservation strategies that might be adopted by the roots of H. albus to maintain iron homeostasis under Fe-limiting conditions. PMID:24009619
NASA Astrophysics Data System (ADS)
Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang
2017-07-01
The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.
Verhey, Theodore B; Castellanos, Mildred; Chaconas, George
2018-05-29
The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Type I Interferon Controls Propagation of Long Interspersed Element-1*
Yu, Qiujing; Carbone, Christopher J.; Katlinskaya, Yuliya V.; Zheng, Hui; Zheng, Ke; Luo, Mengcheng; Wang, P. Jeremy; Greenberg, Roger A.; Fuchs, Serge Y.
2015-01-01
Type I interferons (IFN) including IFNα and IFNβ are critical for the cellular defense against viruses. Here we report that increased levels of IFNβ were found in testes from mice deficient in MOV10L1, a germ cell-specific RNA helicase that plays a key role in limiting the propagation of retrotransposons including Long Interspersed Element-1 (LINE-1). Additional experiments revealed that activation of LINE-1 retrotransposons increases the expression of IFNβ and of IFN-stimulated genes. Conversely, pretreatment of cells with IFN suppressed the replication of LINE-1. Furthermore, the efficacy of LINE-1 replication was increased in isogenic cell lines harboring inactivating mutations in diverse elements of the IFN signaling pathway. Knockdown of the IFN receptor chain IFNAR1 also stimulated LINE-1 propagation in vitro. Finally, a greater accumulation of LINE-1 was found in mice that lack IFNAR1 compared with wild type mice. We propose that LINE-1-induced IFN plays an important role in restricting LINE-1 propagation and discuss the putative role of IFN in preserving the genome stability. PMID:25716322
van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K
2018-03-05
The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.
Effects and mechanism of acid rain on plant chloroplast ATP synthase.
Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2016-09-01
Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
1991-01-01
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Charles, J. P.; Chihara, C.; Nejad, S.; Riddiford, L. M.
1997-01-01
A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes. PMID:9383064
Terabayashi, Yasunobu; Sano, Motoaki; Yamane, Noriko; Marui, Junichiro; Tamano, Koichi; Sagara, Junichi; Dohmoto, Mitsuko; Oda, Ken; Ohshima, Eiji; Tachibana, Kuniharu; Higa, Yoshitaka; Ohashi, Shinichi; Koike, Hideaki; Machida, Masayuki
2010-12-01
Kojic acid is produced in large amounts by Aspergillus oryzae as a secondary metabolite and is widely used in the cosmetic industry. Glucose can be converted to kojic acid, perhaps by only a few steps, but no genes for the conversion have thus far been revealed. Using a DNA microarray, gene expression profiles under three pairs of conditions significantly affecting kojic acid production were compared. All genes were ranked using an index parameter reflecting both high amounts of transcription and a high induction ratio under producing conditions. After disruption of nine candidate genes selected from the top of the list, two genes of unknown function were found to be responsible for kojic acid biosynthesis, one having an oxidoreductase motif and the other a transporter motif. These two genes are closely associated in the genome, showing typical characteristics of genes involved in secondary metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Morfey, C. L.; Tester, B. J.
1976-01-01
The conversion of free-jet facility into equivalent flyover results is discussed. The essential problem is to 'calibrate out' the acoustic influence of the outer free-jet shear layer on the measurement, since this is absent in the flight case. Results are presented which illustrate the differences between current simplified models (vortex-sheet and geometric acoustics), and a more complete model based on the Lilley equation. Finally, the use of geometric acoustics for facility-to-flight data conversion is discussed.
Crabtree, George
2018-01-12
The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.  The continued use of fossil fuels raises concerns about supply, security, environment and climate. New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.
NASA Astrophysics Data System (ADS)
Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.
Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie
2014-07-01
The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.
Sarin, Hemant
2017-03-01
To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients ( prpT Q s) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient ( esebssiwaagoT Q ). The final 5' -> 3' esebssiwaagoT Q classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene ( esebssiwaagoT Q ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene ( esebssiwaagoT Q < 0.25) (100% sensitivity; 100% specificity). Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
Zahn-Zabal, M.; Lehmann, E.; Kohli, J.
1995-01-01
The M26 mutation in the ade6 gene of Schizosaccharomyces pombe creates a hot spot of meiotic recombination. A single base substitution, the M26 mutation is situated within the open reading frame, near the 5' end. It has previously been shown that the heptanucleotide sequence 5' ATGACGT 3', which includes the M26 mutation, is required for hot spot activity. The 510-bp ade6-delXB deletion encompasses the promoter and the first 23 bp of the open reading frame, ending 112 bp upstream of M26. Deletion of the promoter in cis to M26 abolishes hot spot activity, while deletion in trans to M26 has no effect. Homozygous deletion of the promoter also eliminates M26 hot spot activity, indicating that the heterology created through deletion of the promoter per se is not responsible for the loss of hot spot activity. Thus, DNA sequences other than the heptanucleotide 5' ATGACGT 3', which must be located at the 5' end of the ade6 gene, appear to be required for hot spot activity. While the M26 hotspot stimulates crossovers associated with M26 conversion, it does not affect the crossover frequency in the intervals adjacent to ade6. The flanking marker ura4-aim, a heterology created by insertion of the ura4(+) gene upstream of ade6, turned out to be a hot spot itself. It shows disparity of conversion with preferential loss of the insertion. The frequency of conversion at ura4-aim is reduced when the M26 hot spot is active 15 kb away, indicating competition for recombination factors by hot spots in close proximity. PMID:7498729
The influence of antibody fragment format on phage display based affinity maturation of IgG
Steinwand, Miriam; Droste, Patrick; Frenzel, Andrè; Hust, Michael; Dübel, Stefan; Schirrmann, Thomas
2014-01-01
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG. In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab. PMID:24262918
Mining disease state converters for medical intervention of diseases.
Dong, Guozhu; Duan, Lei; Tang, Changjie
2010-02-01
In applications such as gene therapy and drug design, a key goal is to convert the disease state of diseased objects from an undesirable state into a desirable one. Such conversions may be achieved by changing the values of some attributes of the objects. For example, in gene therapy one may convert cancerous cells to normal ones by changing some genes' expression level from low to high or from high to low. In this paper, we define the disease state conversion problem as the discovery of disease state converters; a disease state converter is a small set of attribute value changes that may change an object's disease state from undesirable into desirable. We consider two variants of this problem: personalized disease state converter mining mines disease state converters for a given individual patient with a given disease, and universal disease state converter mining mines disease state converters for all samples with a given disease. We propose a DSCMiner algorithm to discover small and highly effective disease state converters. Since real-life medical experiments on living diseased instances are expensive and time consuming, we use classifiers trained from the datasets of given diseases to evaluate the quality of discovered converter sets. The effectiveness of a disease state converter is measured by the percentage of objects that are successfully converted from undesirable state into desirable state as deemed by state-of-the-art classifiers. We use experiments to evaluate the effectiveness of our algorithm and to show its effectiveness. We also discuss possible research directions for extensions and improvements. We note that the disease state conversion problem also has applications in customer retention, criminal rehabilitation, and company turn-around, where the goal is to convert class membership of objects whose class is an undesirable class.
Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko
2017-12-01
Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.
Wirtz, John G; Wang, Zongyuan; Kulpavarapos, Supathida
2017-03-01
This article presents the results of a study testing the direct and indirect effects of identity, media use, cognitions and conversations on physical activity (PA). The study was guided by the O-S-O-R model (Markus & Zajonc, 1985), and it used data collected from a sample of Hispanic adults (N = 268) living in the U.S. Southwest. Exercise identity and ethnic identity were defined as pre-orientations (O 1 ); use of PA-related media content was defined as the stimulus (S); reflective integration and conversations about PA-related media were post-orientations (O 2 ); and self-reported physical activity was the behavioral response (R). Structural equation modeling was used to analyze the data, and several compelling results emerged. Exercise identity had a significant positive direct effect on PA and PA-related media use, as well as a significant positive indirect effect on conversations about PA-related media. PA-related media use exerted a strong and significant positive effect on conversations about PA-related media, as well as a significant positive indirect effect on PA. Finally, conversations about PA-related media content had a significant positive direct effect on PA. The results indicate that identity acts as a filter influencing what media content are selected and that cognitions and conversations about media content can serve as a link between media use and health behavior. Key words: O-S-O-R model, physical activity, Hispanic adults, identity, media use, conversation.
Kalogeropoulos, A; Thuriaux, P
1985-03-01
A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele. Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth
2017-01-01
The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Meat processing facilities. 311411 Frozen fruit, juice, and vegetable manufacturing facilities. 311421... volume conversion factor. Y 98.256(m)(3) Only total quantity of crude oil plus the quantity of...
Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris
Storchova, Helena; Müller, Karel; Lau, Steffen; Olson, Matthew S.
2012-01-01
Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species. PMID:22383961
Moraes, Eduardo C; Alvarez, Thabata M; Persinoti, Gabriela F; Tomazetto, Geizecler; Brenelli, Livia B; Paixão, Douglas A A; Ematsu, Gabriela C; Aricetti, Juliana A; Caldana, Camila; Dixon, Neil; Bugg, Timothy D H; Squina, Fabio M
2018-01-01
Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria , Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
REPRODUCTIVE EFFECTS ASSESSMENT GROUP'S REVIEW OF THE MUTAGENICITY OF VINYLIDENE CHLORIDE
A large number of studies indicate that vinylidene chloride is mutagenic to bacteria and that this activity is largely dependent on microsomal activation. Vinylidene chloride was reported to produce positive results for gene reversion and conversion in yeast, which was also depen...
P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE
The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...
Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André
2003-08-01
Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.
de Calais, Flávia Leme; Soardi, Fernanda Caroline; Petroli, Reginaldo José; Lusa, Ana Letícia Gori; de Paiva e Silva, Roberto Benedito; Maciel-Guerra, Andréa Trevas; Guerra-Júnior, Gil; de Mello, Maricilda Palandi
2011-01-01
The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T) to dihydrotestosterone (DHT), and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2) was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD) for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency. PMID:22272144
Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori
2010-01-01
In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.
2013-01-01
Background Renal podocytes form the main filtration barrier possessing a unique phenotype maintained by proteins including podocalyxin and nephrin, the expression of which is suppressed in pathological conditions. We used an in vitro model of human glomerular epithelial cells (HGEC) to investigate the role of high glucose in dysregulating the podocytic epithelial phenotype and determined the time needed for this change to occur. Results In our in vitro podocyte system changes indicating podocyte dedifferentiation in the prolonged presence of high glucose included loss of podocalyxin, nephrin and CD10/CALLA concomitant with upregulation of mesenchymal vimentin. Our study demonstrates for the first time that podocyte-specific markers undergo changes of expression at different time intervals, since glucose-mediated podocalyxin downregulation is a progressive process that precedes downregulation of nephrin expression. Finally we demonstrate that high glucose permanently impaired WT1 binding to the podocalyxin gene promoter region but did not affect WT1 binding on the nephrin gene promoter region. Conclusion The presence of high glucose induced a phenotypic conversion of podocytes resembling partial dedifferentiation. Our study demonstrates that dysregulation of the normal podocytic phenotype is an event differentially affecting the expression of function-specific podocytic markers, exhibiting downregulation of the epithelial marker CD10/CALLA and PC first, followed by stably downregulated nephrin. Furthermore, it is herein suggested that WT1 may not be directly involved with upregulation of previously reduced PC and nephrin expression. PMID:23768159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, Brian J.; Thorgersen, Michael P.; Lancaster, W. Andrew
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library fromPseudomonas stutzeristrain RCH2 was grown under denitrifying conditions, using nitrate or nitrite asmore » an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. Finally, the dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.« less
Tejerizo, Gonzalo Torres; Kim, Yong Sung; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Off, Sandra; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas
2017-04-10
Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xiaozhen; Jin, Gan; Qian, Jiacheng; Yang, Hongjian; Tang, Hongchao; Meng, Xuli; Li, Yongfeng
2018-04-23
This study aimed to screen sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer. In this study, Illumina digital gene expression sequencing technology was applied and differentially expressed genes (DEGs) between patients presenting pathological complete response (pCR) and non-pathological complete response (NpCR) were identified. Further, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed. The genes in significant enriched pathways were finally quantified by quantitative real-time PCR (qRT-PCR) to confirm that they were differentially expressed. Additionally, GSE23988 from Gene Expression Omnibus database was used as the validation dataset to confirm the DEGs. After removing the low-quality reads, 715 DEGs were finally detected. After mapping to KEGG pathways, 10 DEGs belonging to the ubiquitin proteasome pathway (HECTD3, PSMB10, UBD, UBE2C, and UBE2S) and cytokine-cytokine receptor interactions (CCL2, CCR1, CXCL10, CXCL11, and IL2RG) were selected for further analysis. These 10 genes were finally quantified by qRT-PCR to confirm that they were differentially expressed (the log 2 fold changes of selected genes were - 5.34, 7.81, 6.88, 5.74, 3.11, 19.58, 8.73, 8.88, 7.42, and 34.61 for HECTD3, PSMB10, UBD, UBE2C, UBE2S, CCL2, CCR1, CXCL10, CXCL11, and IL2RG, respectively). Moreover, 53 common genes were confirmed by the validation dataset, including downregulated UBE2C and UBE2S. Our results suggested that these 10 genes belonging to these two pathways might be useful as sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
Zhang, Congyang; Wang, Bo; Li, Wanbin; Huang, Shouqiang; Kong, Long; Li, Zhichun; Li, Liang
2017-10-31
Traditional smart fluorescent materials, which have been attracting increasing interest for security protection, are usually visible under either ambient or UV light, making them adverse to the potential application of confidential information protection. Herein, we report an approach to realize confidential information protection and storage based on the conversion of lead-based metal-organic frameworks (MOFs) to luminescent perovskite nanocrystals (NCs). Owing to the invisible and controlled printable characteristics of lead-based MOFs, confidential information can be recorded and encrypted by MOF patterns, which cannot be read through common decryption methods. Through our conversion strategy, highly luminescent perovskite NCs can be formed quickly and simply by using a halide salt trigger that reacts with the MOF, thus promoting effective information decryption. Finally, through polar solvents impregnation and halide salt conversion, the luminescence of the perovskite NCs can be quenched and recovered, leading to reversible on/off switching of the luminescence signal for multiple information encryption and decryption processes.