Sample records for gene expression demonstrating

  1. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  2. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  3. The effects of laughter on post-prandial glucose levels and gene expression in type 2 diabetic patients.

    PubMed

    Hayashi, Takashi; Murakami, Kazuo

    2009-07-31

    This report mainly summarizes the results of our study in which the physiological effects of laughter--as a positive emotional expression--were analyzed with respect to gene expression changes to demonstrate the hypothesis that the mind and genes mutually influence each other. We observed that laughter suppressed 2-h postprandial blood glucose level increase in patients with type 2 diabetes and analyzed gene expression changes. Some genes showed specific changes in their expression. In addition, we revealed that laughter decreased the levels of prorenin in blood; prorenin is involved in the onset of diabetic complications. Further, laughter normalized the expression of the prorenin receptor gene on peripheral blood leukocytes, which had been reduced in diabetic patients; this demonstrated that the inhibitory effects of laughter on the onset/deterioration of diabetic complications at the gene-expression level. In a subsequent study, we demonstrated the effects of laughter by discriminating 14 genes, related to natural killer (NK) cell activity, to exhibit continuous increases in expression as a result of laughter. Our results supported NK cell-mediated improvement in glucose tolerance at the gene-expression level. In this report, we also review other previous studies on laughter.

  4. Microarray profiling of gene expression in human adipocytes in response to anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko

    2006-04-14

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.

  5. Validating internal controls for quantitative plant gene expression studies.

    PubMed

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-08-18

    Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  6. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain.

    PubMed

    Rulten, Stuart L; Ripley, Tamzin L; Manerakis, Ektor; Stephens, David N; Mayne, Lynne V

    2006-08-02

    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.

  7. Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints

    PubMed Central

    Duan, Dongmei; Yang, Xiuyan; Ya, Tu; Chen, Liping

    2014-01-01

    Preliminary basic research and clinical findings have demonstrated that electroacupuncture therapy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level; there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we profiled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depression-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vgf, Igf2, Tmp32, Loc500373, Hif1a, Folr1, Nmb, and Rtn were upregulated or downregulated in depression and that their expression tended to normalize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes. PMID:25206746

  8. EFFECT OF HYPOXIA ON THE EXPRESSION OF GENES THAT ENCODE SOME IGFBP AND CCN PROTEINS IN U87 GLIOMA CELLS DEPENDS ON IRE1 SIGNALING.

    PubMed

    Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L

    2015-01-01

    We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.

  9. Validating internal controls for quantitative plant gene expression studies

    PubMed Central

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-01-01

    Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655

  10. Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock

    PubMed Central

    Shanley, Thomas P; Cvijanovich, Natalie; Lin, Richard; Allen, Geoffrey L; Thomas, Neal J; Doctor, Allan; Kalyanaraman, Meena; Tofil, Nancy M; Penfil, Scott; Monaco, Marie; Odoms, Kelli; Barnes, Michael; Sakthivel, Bhuvaneswari; Aronow, Bruce J; Wong, Hector R

    2007-01-01

    We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses. PMID:17932561

  11. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  12. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    EPA Science Inventory

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  13. Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates

    PubMed Central

    Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko

    2009-01-01

    Background Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes. PMID:19138430

  14. Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates.

    PubMed

    Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko

    2009-01-12

    Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.

  15. How-To-Do-It: Demonstrating the Anatomical Expression of Two Genes in the Garden Pea.

    ERIC Educational Resources Information Center

    Hawk, James A.

    1980-01-01

    Describes a rapid staining technique for investigating the anatomical expression of two recessive genes. The demonstration is intended to stimulate students who are interested in the practical applications of genetics. (Author/SA)

  16. Identification of Homeotic Target Genes in Drosophila Melanogaster Including Nervy, a Proto-Oncogene Homologue

    PubMed Central

    Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.

    1995-01-01

    In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738

  17. Direct multiplexed measurement of gene expression with color-coded probe pairs.

    PubMed

    Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen

    2008-03-01

    We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.

  18. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  19. HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.

    PubMed

    Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F

    2001-03-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.

  20. SHOX gene is expressed in vertebral body growth plates in idiopathic and congenital scoliosis: implications for the etiology of scoliosis in Turner syndrome.

    PubMed

    Day, Gregory; Szvetko, Attila; Griffiths, Lyn; McPhee, I Bruce; Tuffley, John; LaBrom, Robert; Askin, Geoffrey; Woodland, Peter; McClosky, Eamonn; Torode, Ian; Tomlinson, Francis

    2009-06-01

    Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis. Copyright 2008 Orthopaedic Research Society

  1. Candidate qRT-PCR reference genes for barley that demonstrate better stability than traditional housekeeping genes

    USDA-ARS?s Scientific Manuscript database

    Gene transcript expression analysis is a useful tool for correlating gene activity with plant phenotype. For these studies, an appropriate reference gene is necessary to quantify the expression of target genes. Classic housekeeping genes have often been used for this purpose, but may not be consis...

  2. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  3. The Epstein–Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression

    PubMed Central

    Ruvolo, Vivian; Wang, Eryu; Boyle, Sarah; Swaminathan, Sankar

    1998-01-01

    The Epstein–Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3′-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport. PMID:9671768

  4. The Epstein-Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression.

    PubMed

    Ruvolo, V; Wang, E; Boyle, S; Swaminathan, S

    1998-07-21

    The Epstein-Barr virus (EBV) nuclear protein BS-MLF1 (SM) is expressed early after entry of EBV into the lytic cycle. SM transactivates reporter gene constructs driven by a wide variety of promoters, but the mechanism of SM action is poorly understood. In this study, we demonstrate that the SM protein inhibits expression of intron-containing genes and activates expression of intron-less genes. We demonstrate that SM has the predicted inhibitory effect on expression of a spliced EBV gene but activates an unspliced early EBV gene. SM inhibited gene expression at the post-transcriptional level by preventing the accumulation of nuclear and cytoplasmic RNA transcripts. Conversely, SM led to increased accumulation of nuclear mRNA from intron-less genes without affecting the rate of transcription, indicating that SM enhances nuclear RNA stability. The ratio of cytoplasmic to nuclear polyadenylated mRNA was increased in the presence of SM, suggesting that SM also enhances nucleo-cytoplasmic mRNA transport. The degree of transactivation by SM was dependent on the sequence of the 3'-untranslated region of the target mRNA. Finally, we demonstrate that the amino-terminal portion of SM fused to glutathione-S-transferase binds radioactively labeled RNA in vitro, indicating that SM is a single-stranded RNA binding protein. Importantly, the latent and immediate-early genes of EBV contain introns whereas many early and late genes do not. Thus, SM may down-regulate synthesis of host cell proteins and latent EBV proteins while simultaneously enhancing expression of specific lytic EBV genes by binding to mRNA and modulating its stability and transport.

  5. At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana

    PubMed Central

    Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef

    2008-01-01

    Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972

  6. Genetic element from human surfactant protein SP-C gene confers bronchiolar-alveolar cell specificity in transgenic mice.

    PubMed

    Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A

    1991-10-01

    Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.

  7. HOX Genes in Human Lung

    PubMed Central

    Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.

    2001-01-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043

  8. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2004-08-15

    A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.

  9. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  10. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  11. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes

    PubMed Central

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006

  12. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

    PubMed

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.

  13. Fibromodulin modulates myoblast differentiation by controlling calcium channel.

    PubMed

    Lee, Eun Ju; Nam, Joo Hyun; Choi, Inho

    2018-06-16

    Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells. In addition, gene knock-down studies demonstrated the COL1α1 and Itm2a genes both regulate the expressions of calcium channel genes. Studies using a cardiotoxin-induced mouse muscle injury model demonstrated calcium channels play important roles in the regeneration of muscle tissue, possibly by promoting the differentiation of muscle stem cells (MSCs). Summarizing, the study demonstrates ECM components secreted by myoblasts during differentiation provide an essential environment for muscle differentiation and regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    PubMed

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  15. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta signaling by curcumin induces gene expression of PPAR-gamma in activated HSC in vitro. Our studies provide novel insights into the molecular mechanisms of curcumin in the induction of PPAR-gamma gene expression and in the inhibition of HSC activation.

  16. DeSigN: connecting gene expression with therapeutics for drug repurposing and development.

    PubMed

    Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching

    2017-01-25

    The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  17. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    PubMed

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu; Kuo, Elaine; Stanford University, 450 Serra Mall, Stanford, CA 94305

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNAmore » methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt3b genes are expressed early whereas dnmt3a are abundant later in development.« less

  19. CHARACTERIZATION OF INFLAMMATORY GENE EXPRESSION AND GALECTIN-3 FUNCTION AFTER SPINAL CORD INJURY IN MICE

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Knoblach, Susan M.; Faden, Alan I.; Byrnes, Kimberly R.

    2012-01-01

    Inflammation has long been implicated in secondary tissue damage after spinal cord injury (SCI). Our previous studies of inflammatory gene expression in rats after SCI revealed two temporally correlated clusters: the first was expressed early after injury and the second was up-regulated later, with peak expression at 1–2 weeks and persistent up-regulation through 6 months. To further address the role of inflammation after SCI, we examined inflammatory genes in a second species, mice, through 28 days after SCI. Using anchor gene clustering analysis, we found similar expression patterns for both the acute and chronic gene clusters previously identified after rat SCI. The acute group returned to normal expression levels by 7 days post-injury. The chronic group, which included C1qB, p22phox and galectin-3, showed peak expression at 7 days and remained up-regulated through 28 days. Immunohistochemistry and western blot analysis showed that the protein expression of these genes was consistent with the mRNA expression. Further exploration of the role of one of these genes, galectin-3, suggests that galectin-3 may contribute to secondary injury. In summary, our findings extend our prior gene profiling data by demonstrating the chronic expression of a cluster of microglial associated inflammatory genes after SCI in mice. Moreover, by demonstrating that inhibition of one such factor improves recovery, the findings suggest that such chronic up-regulation of inflammatory processes may contribute to secondary tissue damage after SCI, and that there may be a broader therapeutic window for neuroprotection than generally accepted. PMID:22884909

  20. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines

    PubMed Central

    Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.

    2018-01-01

    Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555

  1. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    PubMed

    Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M

    2018-01-01

    Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  2. Modification of Schwann Cell Gene Expression by Electroporation in vivo

    PubMed Central

    Aspalter, Manuela; Vyas, Alka; Feiner, Jeffrey; Griffin, John; Brushart, Thomas; Redett, Richard

    2009-01-01

    Clinical outcomes of nerve grafting are often inferior to those of end-to-end nerve repair. This may be due, in part, to the routine use of cutaneous nerve to support motor axon regeneration. In previous work, we have demonstrated that Schwann cells express distinct sensory and motor phenotypes, and that these promote regeneration in a modality-specific fashion. Intra-operative modification of graft Schwann cell phenotype might therefore improve clinical outcomes. This paper demonstrates the feasibility of electroporating genes into intact nerve to modify Schwann cell gene expression. Initial trials established 70 V, 5 ms as optimum electroporation parameters. Intact, denervated, and reinnervated rat tibial nerves were electroporated with the YFP gene and evaluated serially by counting S-100 positive cells that expressed YFP. In intact nerve, a mean of 28% of Schwann cells expressed the gene at 3 days, falling to 20% at 7 days with little expression at later times. There were no significant differences among the three groups at each time period. Electronmicroscopic evaluation of treated, intact nerve revealed only occasional demyelination and axon degeneration. Intraoperative electroporation of nerve graft is thus a practical means of altering Schwann cell gene expression without the risks inherent in viral transfection. PMID:18834904

  3. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.

    PubMed

    Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui

    2016-09-01

    Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.

  4. RNA Expression Analysis of Passive Transfer Myasthenia Supports Extraocular Muscle as a Unique Immunological Environment

    PubMed Central

    Zhou, Yuefang; Kaminski, Henry J.; Gong, Bendi; Cheng, Georgiana; Feuerman, Jason M.; Kusner, Linda

    2014-01-01

    Purpose. Myasthenia gravis demonstrates a distinct predilection for involvement of the extraocular muscles (EOM), and we have hypothesized that this may be due to a unique immunological environment. To assess this hypothesis, we took an unbiased approach to analyze RNA expression profiles in EOM, diaphragm, and extensor digitorum longus (EDL) in rats with experimentally acquired myasthenia gravis (EAMG). Methods. Experimentally acquired myasthenia gravis was induced in rats by intraperitoneal injection of antibody directed against the acetylcholine receptor (AChR), whereas control rats received antibody known to bind the AChR but not induce disease. After 48 hours, animals were killed and muscles analyzed by RNA expression profiling. Profiling results were validated using qPCR and immunohistochemical analysis. Results. Sixty-two genes common among all muscle groups were increased in expression. These fell into four major categories: 12.8% stress response, 10.5% immune response, 10.5% metabolism, and 9.0% transcription factors. EOM expressed 212 genes at higher levels, not shared by the other two muscles, and a preponderance of EOM gene changes fell into the immune response category. EOM had the most uniquely reduced genes (126) compared with diaphragm (26) and EDL (50). Only 18 downregulated genes were shared by the three muscles. Histological evaluation and disease load index (sum of fold changes for all genes) demonstrated that EOM had the greatest degree of pathology. Conclusions. Our studies demonstrated that consistent with human myasthenia gravis, EOM demonstrates a distinct RNA expression signature from EDL and diaphragm, which is based on differences in the degree of muscle injury and inflammatory response. PMID:24917137

  5. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.

  6. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  7. Molecular definition of the identity and activation of natural killer cells.

    PubMed

    Bezman, Natalie A; Kim, Charles C; Sun, Joseph C; Min-Oo, Gundula; Hendricks, Deborah W; Kamimura, Yosuke; Best, J Adam; Goldrath, Ananda W; Lanier, Lewis L

    2012-10-01

    Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.

  8. Alternative Sigma Factor Over-Expression Enables Heterologous Expression of a Type II Polyketide Biosynthetic Pathway in Escherichia coli

    PubMed Central

    Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.

    2013-01-01

    Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102

  9. Loss of neurofibromatosis type 1 (NF1) gene expression in pheochromocytomas from patients without NF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, R.T.; Gutmann, D.H.; Moley, J.F.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, termed neurofibromin. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 as well as malignant and neuroblastomas from patients without NF1. Previously, we demonstrated the lack of neurofibromin expression in six pheochromocytomas from patients with NF1, suggesting that neurofibromin loss is associated with the progression to neoplasia in pheochromocytomas in these patients. The lack of NF1 gene expression in NF1 patient pheochromocytomas supports the notion that neurofibromin might be an essential regulator of cell growth in these cells. To determine whethermore » NF1 gene expression is similarly altered in pheochromocytomas from patients without NF1, twenty pheochromocytomas were examined for the presence of NF1 RNA by reverse-transcribed PCR (RT-PCR). Lack of NF1 gene expression was documented in four of these twenty tumors (20%) which corresponds to previously reported numbers for malignant melanomas and neuroblastomas in non-NF1 patients. Of these twenty pheochromocytomas, one of four sporadic tumors, one of ten tumors from patients with MEN2A, one of four tumors from patients with MEN2B, and one of two tumors from patients with von Hippel-Lindau syndrome demonstrated loss of NF1 gene expression. In all cases, the quality and quantity of tumor RNA was determined by RT-PCR amplification using primers which amplify cyclophilin RNA. We previously demonstrated that these tumors do not harbor activating mutations of the N-ras, K-ras or H-ras proto-oncogenes. These results suggest that loss of NF1 gene expression is frequently associated with the progression to neoplasia in tumors derived from adrenal medullary tissue in patients without clinical manifestations of neurofibromatosis and supports the notion that neurofibromin is a tumor suppressor gene product involved in the pathogenesis of a wide variety of tumor types.« less

  10. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Transcriptional profiles of bovine in vivo pre-implantation development.

    PubMed

    Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy

    2014-09-04

    During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.

  12. A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance.

    PubMed

    Yan, Xiaoyan; Zhang, Chuanbao; Liang, Tingyu; Yang, Fan; Wang, Haoyuan; Wu, Fan; Wang, Wen; Wang, Zheng; Cheng, Wen; Xu, Jiangnan; Jiang, Tao; Chen, Jing; Ding, Yaozhong

    2017-10-17

    Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.

  13. [Application of dhfr gene negative Chinese hamster ovary cell line to express hepatitis B virus surface antigen].

    PubMed

    Yi, Y; Zhang, M; Liu, C

    2001-06-01

    To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.

  14. Chicken ovalbumin upstream promoter-transcription factor II regulates nuclear receptor, myogenic, and metabolic gene expression in skeletal muscle cells.

    PubMed

    Crowther, Lisa M; Wang, Shu-Ching Mary; Eriksson, Natalie A; Myers, Stephen A; Murray, Lauren A; Muscat, George E O

    2011-02-24

    We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.

  15. Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity.

    PubMed

    Dweep, Harsh; Kubikova, Nada; Gretz, Norbert; Voskarides, Konstantinos; Felekkis, Kyriacos

    2015-07-16

    Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3' UTR that abolish the "canonical" miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases.

  16. Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity

    PubMed Central

    Dweep, Harsh; Kubikova, Nada; Gretz, Norbert; Voskarides, Konstantinos; Felekkis, Kyriacos

    2015-01-01

    Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3′ UTR that abolish the “canonical” miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases. PMID:26178010

  17. Evolution under monogamy feminizes gene expression in Drosophila melanogaster.

    PubMed

    Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent

    2014-03-18

    Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.

  18. HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells.

    PubMed

    Banda, María M; López, Carolina; Manzo, Rubiceli; Rico-Pérez, Gadea; García, Pablo; Rosales-Reyes, Roberto; De la Cruz, Miguel A; Soncini, Fernando C; García-Del Portillo, Francisco; Bustamante, Víctor H

    2018-03-19

    When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.

  19. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

    PubMed Central

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis

    2012-01-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606

  20. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors

    PubMed Central

    Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736

  1. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  2. Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging.

    PubMed

    Mangold, Colleen A; Wronowski, Benjamin; Du, Mei; Masser, Dustin R; Hadad, Niran; Bixler, Georgina V; Brucklacher, Robert M; Ford, Matthew M; Sonntag, William E; Freeman, Willard M

    2017-07-21

    The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females. Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related changes and sex differences in hippocampal gene and protein expression were performed. Males and females demonstrate both common expression changes with aging and marked sex differences in the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components. Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry. Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal gene expression variability increased with aging in males, but not females. These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system. The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further, in depth, investigations.

  3. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods.

    PubMed

    Chang, Dan; Duda, Thomas F

    2014-06-05

    Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.

  4. Sexual selection drives evolution and rapid turnover of male gene expression.

    PubMed

    Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Dean, Rebecca; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-04-07

    The profound and pervasive differences in gene expression observed between males and females, and the unique evolutionary properties of these genes in many species, have led to the widespread assumption that they are the product of sexual selection and sexual conflict. However, we still lack a clear understanding of the connection between sexual selection and transcriptional dimorphism, often termed sex-biased gene expression. Moreover, the relative contribution of sexual selection vs. drift in shaping broad patterns of expression, divergence, and polymorphism remains unknown. To assess the role of sexual selection in shaping these patterns, we assembled transcriptomes from an avian clade representing the full range of sexual dimorphism and sexual selection. We use these species to test the links between sexual selection and sex-biased gene expression evolution in a comparative framework. Through ancestral reconstruction of sex bias, we demonstrate a rapid turnover of sex bias across this clade driven by sexual selection and show it to be primarily the result of expression changes in males. We use phylogenetically controlled comparative methods to demonstrate that phenotypic measures of sexual selection predict the proportion of male-biased but not female-biased gene expression. Although male-biased genes show elevated rates of coding sequence evolution, consistent with previous reports in a range of taxa, there is no association between sexual selection and rates of coding sequence evolution, suggesting that expression changes may be more important than coding sequence in sexual selection. Taken together, our results highlight the power of sexual selection to act on gene expression differences and shape genome evolution.

  5. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    PubMed

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  6. Validation of the Lung Subtyping Panel in Multiple Fresh-Frozen and Formalin-Fixed, Paraffin-Embedded Lung Tumor Gene Expression Data Sets.

    PubMed

    Faruki, Hawazin; Mayhew, Gregory M; Fan, Cheng; Wilkerson, Matthew D; Parker, Scott; Kam-Morgan, Lauren; Eisenberg, Marcia; Horten, Bruce; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2016-06-01

    Context .- A histologic classification of lung cancer subtypes is essential in guiding therapeutic management. Objective .- To complement morphology-based classification of lung tumors, a previously developed lung subtyping panel (LSP) of 57 genes was tested using multiple public fresh-frozen gene-expression data sets and a prospectively collected set of formalin-fixed, paraffin-embedded lung tumor samples. Design .- The LSP gene-expression signature was evaluated in multiple lung cancer gene-expression data sets totaling 2177 patients collected from 4 platforms: Illumina RNAseq (San Diego, California), Agilent (Santa Clara, California) and Affymetrix (Santa Clara) microarrays, and quantitative reverse transcription-polymerase chain reaction. Gene centroids were calculated for each of 3 genomic-defined subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine, the latter of which encompassed both small cell carcinoma and carcinoid. Classification by LSP into 3 subtypes was evaluated in both fresh-frozen and formalin-fixed, paraffin-embedded tumor samples, and agreement with the original morphology-based diagnosis was determined. Results .- The LSP-based classifications demonstrated overall agreement with the original clinical diagnosis ranging from 78% (251 of 322) to 91% (492 of 538 and 869 of 951) in the fresh-frozen public data sets and 84% (65 of 77) in the formalin-fixed, paraffin-embedded data set. The LSP performance was independent of tissue-preservation method and gene-expression platform. Secondary, blinded pathology review of formalin-fixed, paraffin-embedded samples demonstrated concordance of 82% (63 of 77) with the original morphology diagnosis. Conclusions .- The LSP gene-expression signature is a reproducible and objective method for classifying lung tumors and demonstrates good concordance with morphology-based classification across multiple data sets. The LSP panel can supplement morphologic assessment of lung cancers, particularly when classification by standard methods is challenging.

  7. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.

    PubMed

    Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew

    2012-08-08

    Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  8. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    PubMed

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the evaluation of radiolabeled hypoxia tracers.

  9. Gene expression profile of isolated rat adipocytes treated with anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Kojo, Hitoshi; Yoshikawa, Toshikazu; Osawa, Toshihiko

    2005-04-15

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.

  10. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR.

    PubMed

    Theis, Torsten; Skurray, Ronald A; Brown, Melissa H

    2007-08-01

    Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.

  11. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  12. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  13. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens

    PubMed Central

    Chauhan, Bharesh K.; Reed, Nathan A.; Yang, Ying; Čermák, Lukáš; Reneker, Lixing; Duncan, Melinda K.; Cvekl, Aleš

    2007-01-01

    Background Pax6 is a transcription factor that is required for induction, growth, and maintenance of the lens; however, few direct target genes of Pax6 are known. Results In this report, we describe the results of a cDNA microarray analysis of lens transcripts from transgenic mice over-expressing Pax6 in lens fibre cells in order to narrow the field of potential direct Pax6 target genes. This study revealed that the transcript levels were significantly altered for 508 of the 9700 genes analysed, including five genes encoding the cell adhesion molecules β1-integrin, JAM1, L1 CAM, NCAM-140 and neogenin. Notably, comparisons between the genes differentially expressed in Pax6 heterozygous and Pax6 over-expressing lenses identified 13 common genes, including paralemmin, GDIβ, ATF1, Hrp12 and Brg1. Immunohistochemistry and Western blotting demonstrated that Brg1 is expressed in the embryonic and neonatal (2-week-old) but not in 14-week adult lenses, and confirmed altered expression in transgenic lenses over-expressing Pax6. Furthermore, EMSA demonstrated that the BRG1 promoter contains Pax6 binding sites, further supporting the proposition that it is directly regulated by Pax6. Conclusions These results provide a list of genes with possible roles in lens biology and cataracts that are directly or indirectly regulated by Pax6. PMID:12485166

  14. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.

  15. An Unexpected Function of the Prader-Willi Syndrome Imprinting Center in Maternal Imprinting in Mice

    PubMed Central

    Wu, Mei-Yi; Jiang, Ming; Zhai, Xiaodong; Beaudet, Arthur L.; Wu, Ray-Chang

    2012-01-01

    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11–q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS. PMID:22496793

  16. An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice.

    PubMed

    Wu, Mei-Yi; Jiang, Ming; Zhai, Xiaodong; Beaudet, Arthur L; Wu, Ray-Chang

    2012-01-01

    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.

  17. Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis

    PubMed Central

    Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.

    2013-01-01

    Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882

  18. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.

    PubMed

    Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K

    2013-01-01

    In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.

  19. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.

  20. The mazEF toxin–antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang

    2015-01-01

    The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332

  1. Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque

    USGS Publications Warehouse

    Klaper, R.; Carter, Barbara J.; Richter, C.A.; Drevnick, P.E.; Sandheinrich, M.B.; Tillitt, D.E.

    2008-01-01

    This study describes the use of a 15 000 gene microarray developed for the toxicological model species, Pimephales promelas, in investigating the impact of acute and chronic methylmercury exposures in male gonad and liver tissues. The results show significant differences in the individual genes that were differentially expressed in response to each treatment. In liver, a total of 650 genes exhibited significantly (P < 0.05) altered expression with greater than two-fold differences from the controls in response to acute exposure and a total of 267 genes were differentially expressed in response to chronic exposure. A majority of these genes were downregulated rather than upregulated. Fewer genes were altered in gonad than in liver at both timepoints. A total of 212 genes were differentially expressed in response to acute exposure and 155 genes were altered in response to chronic exposure. Despite the differences in individual genes expressed across treatments, the functional categories that altered genes were associated with showed some similarities. Of interest in light of other studies involving the effects of methylmercury on fish, several genes associated with apoptosis were upregulated in response to both acute and chronic exposures. Induction of apoptosis has been associated with effects on reproduction seen in the previous studies. This study demonstrates the utility of microarray analysis for investigations of the physiological effects of toxicants as well as the time-course of effects that may take place. In addition, it is the first publication to demonstrate the use of this new 15 000 gene microarray for fish biology and toxicology. ?? 2008 The Authors.

  2. The UT-A Urea Transporter Promoter, UT-Aα, Targets Principal Cells of the Renal Inner Medullary Collecting Duct

    PubMed Central

    Fenton, Robert A.; Shodeinde, Adetola; Knepper, Mark A.

    2006-01-01

    The urea transporters, UT-A1 and UT-A3, two members of the UT-A gene family, are localized to the terminal portion of the inner medullary collecting duct (IMCD). In this manuscript, we demonstrate that 4.2-kb of the 5′-flanking region of the UT-A gene (UT-Aα promoter) is sufficient to drive the IMCD-specific expression of a heterologous reporter gene, β-galactosidase (β-Gal), in transgenic mice. RT-PCR, immunoblotting and immunohistochemistry demonstrate that within the kidney, transgene expression is confined to the terminal portion of the IMCD. Co-localization studies with aquaporin 2 show that expression is localized to the principal cells of the IMCD2 and IMCD3 regions. Utilizing β-Gal activity assays, we further show that within the kidney, the β-Gal transgene can be regulated by both water restriction and glucocorticoids, similar to the regulation of the endogenous UT-A gene. These results demonstrate that 4.2-kb of the UT-Aα promoter is sufficient to drive expression of a heterologous reporter gene in a tissue-specific and cell-specific fashion in transgenic mice PMID:16091580

  3. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    PubMed Central

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  4. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    PubMed

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into expression of these genes in RA pregnancy and their potential role in modulation of disease activity. These results are nevertheless preliminary and should be interpreted with caution until replicated in a larger sample.

  5. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage.

    PubMed

    Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng

    2017-09-01

    Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  7. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis.

    PubMed

    Fujita, André; Sato, João Ricardo; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide; Ferreira, Carlos Eduardo; Miyano, Satoru

    2009-08-01

    DNA microarrays have become a powerful tool to describe gene expression profiles associated with different cellular states, various phenotypes and responses to drugs and other extra- or intra-cellular perturbations. In order to cluster co-expressed genes and/or to construct regulatory networks, definition of distance or similarity between measured gene expression data is usually required, the most common choices being Pearson's and Spearman's correlations. Here, we evaluate these two methods and also compare them with a third one, namely Hoeffding's D measure, which is used to infer nonlinear and non-monotonic associations, i.e. independence in a general sense. By comparing three different variable association approaches, namely Pearson's correlation, Spearman's correlation and Hoeffding's D measure, we aimed at assessing the most appropriate one for each purpose. Using simulations, we demonstrate that the Hoeffding's D measure outperforms Pearson's and Spearman's approaches in identifying nonlinear associations. Our results demonstrate that Hoeffding's D measure is less sensitive to outliers and is a more powerful tool to identify nonlinear and non-monotonic associations. We have also applied Hoeffding's D measure in order to identify new putative genes associated with tp53. Therefore, we propose the Hoeffding's D measure to identify nonlinear associations between gene expression profiles.

  8. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  9. Selection of suitable reference genes from bone cells in large gradient high magnetic field based on GeNorm algorithm.

    PubMed

    Di, Shengmeng; Tian, Zongcheng; Qian, Airong; Gao, Xiang; Yu, Dan; Brandi, Maria Luisa; Shang, Peng

    2011-12-01

    Studies of animals and humans subjected to spaceflight demonstrate that weightlessness negatively affects the mass and mechanical properties of bone tissue. Bone cells could sense and respond to the gravity unloading, and genes sensitive to gravity change were considered to play a critical role in the mechanotransduction of bone cells. To evaluate the fold-change of gene expression, appropriate reference genes should be identified because there is no housekeeping gene having stable expression in all experimental conditions. Consequently, expression stability of ten candidate housekeeping genes were examined in osteoblast-like MC3T3-E1, osteocyte-like MLO-Y4, and preosteoclast-like FLG29.1 cells under different apparent gravities (μg, 1 g, and 2 g) in the high-intensity gradient magnetic field produced by a superconducting magnet. The results showed that the relative expression of these ten candidate housekeeping genes was different in different bone cells; Moreover, the most suitable reference genes of the same cells in altered gravity conditions were also different from that in strong magnetic field. It demonstrated the importance of selecting suitable reference genes in experimental set-ups. Furthermore, it provides an alternative choice to the traditionally accepted housekeeping genes used so far about studies of gravitational biology and magneto biology.

  10. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins.

    PubMed

    Nichols, Charles D; Sanders-Bush, Elaine

    2004-08-01

    We recently demonstrated that the potent hallucinogenic drug lysergic acid diethylamide (LSD) dynamically influences the expression of a small collection of genes within the mammalian prefrontal cortex. Towards generating a greater understanding of the molecular genetic effects of hallucinogens and how they may relate to alterations in behavior, we have identified and characterized expression patterns of a new collection of three genes increased in expression by acute LSD administration. These genes were identified through additional screens of Affymetrix DNA microarrays and examined in experiments to assess dose-response, time course and the receptor mediating the expression changes. The first induced gene, C/EBP-beta, is a transcription factor. The second gene, MKP-1, suggests that LSD activates the MAP (mitogen activated protein) kinase pathway. The third gene, ILAD-1, demonstrates sequence similarity to the arrestins. The increase in expression of each gene was partially mediated through LSD interactions at 5-HT2A (serotonin) receptors. There is evidence of alternative splicing at the ILAD-1 locus. Furthermore, data suggests that various splice isoforms of ILAD-1 respond differently at the transcriptional level to LSD. The genes thus far found to be responsive to LSD are beginning to give a more complete picture of the complex intracellular events initiated by hallucinogens.

  11. Constitutive androstane receptor activation evokes the expression of glycolytic genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarushkin, Andrei A.; Kazantseva, Yuliya A.; Prokopyeva, Elena A.

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in amore » mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation. - Highlights: • CAR-mediated liver growth is correlated with increased expression of cMyc. • CAR activation increased the expression of glycolytic genes in mouse livers. • CAR activation increased the level of Pkm2 in mouse livers.« less

  12. Co-expression network analysis identified six hub genes in association with metastasis risk and prognosis in hepatocellular carcinoma

    PubMed Central

    Feng, Juerong; Zhou, Rui; Chang, Ying; Liu, Jing; Zhao, Qiu

    2017-01-01

    Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, and its carcinogenesis and progression are influenced by a complex network of gene interactions. A weighted gene co-expression network was constructed to identify gene modules associated with the clinical traits in HCC (n = 214). Among the 13 modules, high correlation was only found between the red module and metastasis risk (classified by the HCC metastasis gene signature) (R2 = −0.74). Moreover, in the red module, 34 network hub genes for metastasis risk were identified, six of which (ABAT, AGXT, ALDH6A1, CYP4A11, DAO and EHHADH) were also hub nodes in the protein-protein interaction network of the module genes. Thus, a total of six hub genes were identified. In validation, all hub genes showed a negative correlation with the four-stage HCC progression (P for trend < 0.05) in the test set. Furthermore, in the training set, HCC samples with any hub gene lowly expressed demonstrated a higher recurrence rate and poorer survival rate (hazard ratios with 95% confidence intervals > 1). RNA-sequencing data of 142 HCC samples showed consistent results in the prognosis. Gene set enrichment analysis (GSEA) demonstrated that in the samples with any hub gene highly expressed, a total of 24 functional gene sets were enriched, most of which focused on amino acid metabolism and oxidation. In conclusion, co-expression network analysis identified six hub genes in association with HCC metastasis risk and prognosis, which might improve the prognosis by influencing amino acid metabolism and oxidation. PMID:28430663

  13. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    PubMed

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  14. Microarray gene expression profiling using core biopsies of renal neoplasia.

    PubMed

    Rogers, Craig G; Ditlev, Jonathon A; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A; Kahnoski, Richard J; Kort, Eric J; Teh, Bin T

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors-comprised of four histological subtypes-following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology.

  15. Microarray gene expression profiling using core biopsies of renal neoplasia

    PubMed Central

    Rogers, Craig G.; Ditlev, Jonathon A.; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A.; Kahnoski, Richard J.; Kort, Eric J.; Teh, Bin T.

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors—comprised of four histological subtypes—following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology. PMID:19966938

  16. Public data mining plus domestic experimental study defined involvement of the old-yet-uncharacterized gene matrix-remodeling associated 7 (MXRA7) in physiopathology of the eye.

    PubMed

    Jia, Changkai; Zhang, Feng; Zhu, Ying; Qi, Xia; Wang, Yiqiang

    2017-10-20

    Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  18. Biallelic expression of the H19 gene during spontaneous hepatocarcinogenesis in the albumin SV40 T antigen transgenic rat.

    PubMed

    Manoharan, Herbert; Babcock, Karlee; Willi, Jonathan; Pitot, Henry C

    2003-09-01

    Previous studies in this laboratory have demonstrated that the earliest cytogenetic alteration in the development of hepatic neoplasms in a transgenic strain of rats bearing the albumin Simian virus 40 T antigen (Alb SV40 T Ag) construct was a duplication of the chromosome 1q4.1-1q4.2 band. In this region, in the rat genome a cluster of linked imprinted genes occurs. One of these imprinted genes, H19, which is expressed in fetal liver but not in adult liver, was found to be expressed in virtually all neoplasms investigated. A single-nucleotide polymorphic marker in the H19 coding sequence was identified in two rat strains and utilized for the investigation of H19 imprinting. Our results reveal monoallelic expression of the maternal gene in fetal liver, but biallelic expression of the H19 gene in liver neoplasms, thus demonstrating the basis for the deregulation of the imprinted gene expression during hepatocarcinogenesis. These results suggest that the loss of genomic imprinting of the H19 gene found in the liver neoplasms of the Alb SV40 T Ag rat may result not from allelic loss, but from adverse changes in the epigenetic imprints present in the 5'-upstream region of the H19 promoter of the parental alleles. Copyright 2003 Wiley-Liss, Inc.

  19. The Metastasis Efficiency Modifier Ribosomal RNA Processing 1 Homolog B (RRP1B) Is a Chromatin-associated Factor*

    PubMed Central

    Crawford, Nigel P. S.; Yang, Hailiu; Mattaini, Katherine R.; Hunter, Kent W.

    2009-01-01

    There is accumulating evidence for a role of germ line variation in breast cancer metastasis. We have recently identified a novel metastasis susceptibility gene, Rrp1b (ribosomal RNA processing 1 homolog B). Overexpression of Rrp1b in a mouse mammary tumor cell line induces a gene expression signature that predicts survival in breast cancer. Here we extend the analysis of RRP1B function by demonstrating that the Rrp1b activation gene expression signature accurately predicted the outcome in three of four publicly available breast carcinoma gene expression data sets. In addition, we provide insights into the mechanism of RRP1B. Tandem affinity purification demonstrated that RRP1B physically interacts with many nucleosome binding factors, including histone H1X, poly(ADP-ribose) polymerase 1, TRIM28 (tripartite motif-containing 28), and CSDA (cold shock domain protein A). Co-immunofluorescence and co-immunoprecipitation confirmed these interactions and also interactions with heterochromatin protein-1α and acetyl-histone H4 lysine 5. Finally, we investigated the effects of ectopic expression of an RRP1B allelic variant previously associated with improved survival in breast cancer. Gene expression analyses demonstrate that, compared with ectopic expression of wild type RRP1B in HeLa cells, the variant RRP1B differentially modulates various transcription factors controlled by TRIM28 and CSDA. These data suggest that RRP1B, a tumor progression and metastasis susceptibility candidate gene, is potentially a dynamic modulator of transcription and chromatin structure. PMID:19710015

  20. Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.

    PubMed

    Gross, Joshua B; Kerney, Ryan; Hanken, James; Tabin, Clifford J

    2011-01-01

    The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules appears to be absolutely essential in all other model systems so far examined. Although this analysis substantiates the existence of a core set of ancient limb-patterning molecules, which likely mediate identical functions across highly diverse vertebrate forms, it also reveals remarkable evolutionary flexibility in the genetic control of a conserved morphological pattern across evolutionary time. © 2011 Wiley Periodicals, Inc.

  1. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    PubMed

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  2. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.

  3. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells.

    PubMed

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group and blank group (P<0.05), demonstrating that after the down-regulation of Tiam1 gene expression, the speed of cell proliferation was inhibited. MTT assay results showed that the total growth speed in experimental group was significantly lower than that in control group and blank group (P<0.05), indicating that the proliferation activity of cholangiocarcinoma cells was inhibited after targeted inhibition of Tiam1 gene expression. Transwell detection results showed that the metastasis rate in experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that targeted inhibition of Tiam1 gene expression could significantly inhibit migration ability of RBE cells. Tiam1 expression significantly increased in cholangiocarcinoma tissues, and increased along with the degree of malignancy of cholangiocarcinoma. Targeted silencing Tiam1 expression could inhibit proliferation and migration activity of cholangiocarcinoma cells.

  4. Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells

    PubMed Central

    Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui

    2015-01-01

    Objective: To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Methods: Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. Results: The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group and blank group (P<0.05), demonstrating that after the down-regulation of Tiam1 gene expression, the speed of cell proliferation was inhibited. MTT assay results showed that the total growth speed in experimental group was significantly lower than that in control group and blank group (P<0.05), indicating that the proliferation activity of cholangiocarcinoma cells was inhibited after targeted inhibition of Tiam1 gene expression. Transwell detection results showed that the metastasis rate in experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that targeted inhibition of Tiam1 gene expression could significantly inhibit migration ability of RBE cells. Conclusion: Tiam1 expression significantly increased in cholangiocarcinoma tissues, and increased along with the degree of malignancy of cholangiocarcinoma. Targeted silencing Tiam1 expression could inhibit proliferation and migration activity of cholangiocarcinoma cells. PMID:26884821

  5. Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    PubMed Central

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Background Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Methodology/Principal Findings Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Conclusions/Significance Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation. PMID:21829552

  6. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Gene expression changes with age in skin, adipose tissue, blood and brain.

    PubMed

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  8. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  9. Chromosome position effects on gene expression in Escherichia coli K-12

    PubMed Central

    Bryant, Jack A.; Sellars, Laura E.; Busby, Stephen J. W.; Lee, David J.

    2014-01-01

    In eukaryotes, the location of a gene on the chromosome is known to affect its expression, but such position effects are poorly understood in bacteria. Here, using Escherichia coli K-12, we demonstrate that expression of a reporter gene cassette, comprised of the model E. coli lac promoter driving expression of gfp, varies by ∼300-fold depending on its precise position on the chromosome. At some positions, expression was more than 3-fold higher than at the natural lac promoter locus, whereas at several other locations, the reporter cassette was completely silenced: effectively overriding local lac promoter control. These effects were not due to differences in gene copy number, caused by partially replicated genomes. Rather, the differences in gene expression occur predominantly at the level of transcription and are mediated by several different features that are involved in chromosome organization. Taken together, our findings identify a tier of gene regulation above local promoter control and highlight the importance of chromosome position effects on gene expression profiles in bacteria. PMID:25209233

  10. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer.

    PubMed Central

    Bandara, G; Mueller, G M; Galea-Lauri, J; Tindal, M H; Georgescu, H I; Suchanek, M K; Hung, G L; Glorioso, J C; Robbins, P D; Evans, C H

    1993-01-01

    Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniques, to the synovial lining of joints; intraarticular expression of IRAP inhibited intraarticular responses to interleukin 1. To achieve this, lapine synoviocytes were first transduced in culture by retroviral infection. The genetically modified synovial cells were then transplanted by intraarticular injection into the knee joints of rabbits, where they efficiently colonized the synovium. Assay of joint lavages confirmed the in vivo expression of biologically active human IRAP. With allografted cells, IRAP expression was lost by 12 days after transfer. In contrast, autografted synoviocytes continued to express IRAP for approximately 5 weeks. Knee joints expressing human IRAP were protected from the leukocytosis that otherwise follows the intraarticular injection of recombinant human interleukin 1 beta. Thus, we report the intraarticular expression and activity of a potentially therapeutic protein by gene-transfer technology; these experiments demonstrate the feasibility of treating arthritis and other joint disorders with gene therapy. Images Fig. 1 Fig. 2 PMID:8248169

  11. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon.

    PubMed

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  12. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  13. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE PAGES

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  14. Growth factor independence-1 (Gfi-1) plays a role in mediating specific granule deficiency (SGD) in a patient lacking a gene-inactivating mutation in the C/EBPϵ gene

    PubMed Central

    Khanna-Gupta, Arati; Sun, Hong; Zibello, Theresa; Lee, Han Myung; Dahl, Richard; Boxer, Laurence A.

    2007-01-01

    Neutrophil-specific granule deficiency (SGD) is a rare congenital disorder marked by recurrent bacterial infections. Neutrophils from SGD patients lack secondary and tertiary granules and their content proteins and lack normal neutrophil functions. Gene-inactivating mutations in the C/EBPϵ gene have been identified in 2 SGD patients. Our studies on a third SGD patient revealed a heterozygous mutation in the C/EBPϵ gene. However, we demonstrate elevated levels of C/EBPϵ and PU.1 proteins in the patient's peripheral blood neutrophils. The expression of the transcription factor growth factor independence-1 (Gfi-1), however, was found to be markedly reduced in our SGD patient despite the absence of an obvious mutation in this gene. This may explain the elevated levels of both C/EBPϵ and PU.1, which are targets of Gfi-1 transcriptional repression. We have generated a growth factor–dependent EML cell line from the bone marrow of Gfi-1+/− and Gfi-1+/+ mice as a model for Gfi-1–deficient SGD, and demonstrate that lower levels of Gfi-1 expression in the Gfi-1+/− EML cells is associated with reduced levels of secondary granule protein (SGP) gene expression. Furthermore, we demonstrate a positive role for Gfi-1 in SGP expression, in that Gfi-1 binds to and up-regulates the promoter of neutrophil collagenase (an SGP gene), in cooperation with wild-type but not with mutant C/EBPϵ. We hypothesize that decreased Gfi-1 levels in our SGD patient, together with the mutant C/EBPϵ, block SGP expression, thereby contributing to the underlying etiology of the disease in our patient. PMID:17244686

  15. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yongyan; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi; Ai, Zhiying

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway bymore » stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.« less

  16. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  17. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  18. Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction

    PubMed Central

    Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.

    2014-01-01

    The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483

  19. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  20. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    PubMed

    Cusick, Kathleen D; Fitzgerald, Lisa A; Pirlo, Russell K; Cockrell, Allison L; Petersen, Emily R; Biffinger, Justin C

    2014-01-01

    Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene expression changes during growth in bioreactors.

  1. Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers

    PubMed Central

    Paul, Sunirmal; Amundson, Sally A

    2015-01-01

    Smoking is the second leading cause of preventable death in the United States. Cohort epidemiological studies have demonstrated that women are more vulnerable to cigarette-smoking induced diseases than their male counterparts, however, the molecular basis of these differences has remained unknown. In this study, we explored if there were differences in the gene expression patterns between male and female smokers, and how these patterns might reflect different sex-specific responses to the stress of smoking. Using whole genome microarray gene expression profiling, we found that a substantial number of oxidant related genes were expressed in both male and female smokers, however, smoking-responsive genes did indeed differ greatly between male and female smokers. Gene set enrichment analysis (GSEA) against reference oncogenic signature gene sets identified a large number of oncogenic pathway gene-sets that were significantly altered in female smokers compared to male smokers. In addition, functional annotation with Ingenuity Pathway Analysis (IPA) identified smoking-correlated genes associated with biological functions in male and female smokers that are directly relevant to well-known smoking related pathologies. However, these relevant biological functions were strikingly overrepresented in female smokers compared to male smokers. IPA network analysis with the functional categories of immune and inflammatory response gene products suggested potential interactions between smoking response and female hormones. Our results demonstrate a striking dichotomy between male and female gene expression responses to smoking. This is the first genome-wide expression study to compare the sex-specific impacts of smoking at a molecular level and suggests a novel potential connection between sex hormone signaling and smoking-induced diseases in female smokers. PMID:25621181

  2. Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice.

    PubMed

    Bhaumik, S; Lewis, X Z; Gambhir, S S

    2004-01-01

    We have recently demonstrated that Renilla luciferase (Rluc) is a promising bioluminescence reporter gene that can be used for noninvasive optical imaging of reporter gene expression in living mice, with the aid of a cooled charged couple device (CCD) camera. In the current study, we explore the expression of a novel synthetic Renilla luciferase reporter gene (hRluc) in living mice, which has previously been reported to be a more sensitive reporter than native Rluc in mammalian cells. We explore the strategies of simultaneous imaging of both Renilla luciferase enzyme (RL) and synthetic Renilla luciferase enzyme (hRL):coelenterazine (substrate for RL/hRL) in the same living mouse. We also demonstrate that hRL:coelenterazine can yield a higher signal when compared to Firefly luciferase enzyme (FL): D-Luciferin, both in cell culture studies and when imaged from cells at the surface and from lungs of living mice. These studies demonstrate that hRluc should be a useful primary reporter gene with high sensitivity when used alone or in conjunction with other bioluminescence reporter genes for imaging in living rodents. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  3. Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency

    PubMed Central

    Blanchard, Raymond K.; Moore, J. Bernadette; Green, Calvert L.; Cousins, Robert J.

    2001-01-01

    Mammalian nutritional status affects the homeostatic balance of multiple physiological processes and their associated gene expression. Although DNA array analysis can monitor large numbers of genes, there are no reports of expression profiling of a micronutrient deficiency in an intact animal system. In this report, we have tested the feasibility of using cDNA arrays to compare the global changes in expression of genes of known function that occur in the early stages of rodent zinc deficiency. The gene-modulating effects of this deficiency were demonstrated by real-time quantitative PCR measurements of altered mRNA levels for metallothionein 1, zinc transporter 2, and uroguanylin, all of which have been previously documented as zinc-regulated genes. As a result of the low level of inherent noise within this model system and application of a recently reported statistical tool for statistical analysis of microarrays [Tusher, V.G., Tibshirani, R. & Chu, G. (2001) Proc. Natl. Acad. Sci. USA 98, 5116–5121], we demonstrate the ability to reproducibly identify the modest changes in mRNA abundance produced by this single micronutrient deficiency. Among the genes identified by this array profile are intestinal genes that influence signaling pathways, growth, transcription, redox, and energy utilization. Additionally, the influence of dietary zinc supply on the expression of some of these genes was confirmed by real-time quantitative PCR. Overall, these data support the effectiveness of cDNA array expression profiling to investigate the pleiotropic effects of specific nutrients and may provide an approach to establishing markers for assessment of nutritional status. PMID:11717422

  4. AmpA protein functions by different mechanisms to influence early cell type specification and to modulate cell adhesion and actin polymerization in Dictyostelium discoideum

    PubMed Central

    Cost, Hoa N.; Noratel, Elizabeth F.; Blumberg, Daphne D.

    2013-01-01

    The Dictyostelium discoideum ampA gene encodes a multifunctional regulator protein that modulates cell–cell and cell–substrate adhesions and actin polymerization during growth and is necessary for correct cell type specification and patterning during development. Insertional inactivation of the ampA gene results in defects that define two distinct roles for the ampA gene during development. AmpA is necessary in a non-cell autonomous manner to prevent premature expression of a prespore gene marker. It is also necessary in a cell autonomous manner for the anterior like cells, which express the ampA gene, to migrate to the upper cup during culmination. It is also necessary to prevent excessive cell–cell agglutination when cells are developed in a submerged suspension culture. Here, we demonstrate that a supernatant source of AmpA protein, added extracellularly, can prevent the premature mis-expression of the prespore marker. Synthetic oligopeptides are used to identify the domain of the AmpA protein that is important for preventing cells from mis-expressing the prespore gene. We further demonstrate that a factor capable of inducing additional cells to express the prespore gene marker accumulates extracellularly in the absence of AmpA protein. While the secreted AmpA acts extracellularly to suppress prespore gene expression, the effects of AmpA on cell agglutination and on actin polymerization in growing cells are not due to an extracellular role of secreted AmpA protein. Rather, these effects appear to reflect a distinct cell autonomous role of the ampA gene. Finally, we show that secretion of AmpA protein is brought about by elevating the levels of expression of ampA so that the protein accumulates to an excessive level. PMID:23911723

  5. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000

  6. In silico selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Reference genes are selected based on the assumption of temporal and spatial expression stability and on their widespread use in model species. They are often used in new target species without validation, presumed as stable. For barley, reference gene validation is lacking, bu...

  7. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information

    PubMed Central

    Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling

    2013-01-01

    The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995

  8. Endocrine gland-derived vascular endothelial growth factor in rat pancreas: genetic expression and testosterone regulation.

    PubMed

    Morales, Angélica; Morimoto, Sumiko; Díaz, Lorenza; Robles, Guillermo; Díaz-Sánchez, Vicente

    2008-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an endothelial cell mitogen, expressed essentially in steroidogenic cells. Recently, the expression of EG-VEGF in normal human pancreas and pancreatic adenocarcinoma has been demonstrated. Epidemiologically, pancreatic carcinogenesis is more frequent in males than females, and given that androgen receptors and testosterone biotransformation have been described in pancreas, we hypothesized that testosterone could participate in the regulation of EG-VEGF expression. In this study, we investigated the regulation of EG-VEGF gene expression by testosterone in normal rat pancreatic tissue and rat insulinoma cells (RINm5F). Total RNA was extracted from rat pancreas and cultured cells. Gene expression was studied by real-time PCR and protein detection by immunohistochemistry. Serum testosterone was quantified by RIA. Results showed that EG-VEGF is expressed predominantly in pancreatic islets and vascular endothelium, as well as in RINm5F cells. EG-VEGF gene expression was lower in the pancreas of rats with higher testosterone serum levels. A similar effect that was reverted by flutamide was observed in testosterone-treated RINm5F cells. In summary, testosterone down-regulated EG-VEGF gene expression in rat pancreatic tissue and RINm5F cells. This effect could be mediated by the androgen receptor. To our knowledge, this is the first time that a direct effect of testosterone on EG-VEGF gene expression in rat pancreas and RINm5F cells is demonstrated.

  9. A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep

    PubMed Central

    2014-01-01

    Background The expression of genes encoding proteins involved in triacyglyceride and fatty acid synthesis and storage in cattle muscle are correlated with intramuscular fat (IMF)%. Are the same genes also correlated with IMF% in sheep muscle, and can the same set of genes be used to estimate IMF% in both species? Results The correlation between gene expression (microarray) and IMF% in the longissimus muscle (LM) of twenty sheep was calculated. An integrated analysis of this dataset with an equivalent cattle correlation dataset and a cattle differential expression dataset was undertaken. A total of 30 genes were identified to be strongly correlated with IMF% in both cattle and sheep. The overlap of genes was highly significant, 8 of the 13 genes in the TAG gene set and 8 of the 13 genes in the FA gene set were in the top 100 and 500 genes respectively most correlated with IMF% in sheep, P-value = 0. Of the 30 genes, CIDEA, THRSP, ACSM1, DGAT2 and FABP4 had the highest average rank in both species. Using the data from two small groups of Brahman cattle (control and Hormone growth promotant-treated [known to decrease IMF% in muscle]) and 22 animals in total, the utility of a direct measure and different estimators of IMF% (ultrasound and gene expression) to differentiate between the two groups were examined. Directly measured IMF% and IMF% estimated from ultrasound scanning could not discriminate between the two groups. However, using gene expression to estimate IMF% discriminated between the two groups. Increasing the number of genes used to estimate IMF% from one to five significantly increased the discrimination power; but increasing the number of genes to 15 resulted in little further improvement. Conclusion We have demonstrated the utility of a comparative approach to identify robust estimators of IMF% in the LM in cattle and sheep. We have also demonstrated a number of approaches (potentially applicable to much smaller groups of animals than conventional methods) to using gene expression to rank animals for IMF% within a single farm/treatment, or to estimate differences in IMF% between two farms/treatments. PMID:25028604

  10. Intracellular high cholesterol content disorders the clock genes, apoptosis-related genes and fibrinolytic-related genes rhythmic expressions in human plaque-derived vascular smooth muscle cells.

    PubMed

    Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao

    2017-07-10

    The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.

  11. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  12. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    PubMed

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biological and Clinical Significance of MAD2L1 and BUB1, Genes Frequently Appearing in Expression Signatures for Breast Cancer Prognosis

    PubMed Central

    Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert

    2015-01-01

    To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798

  14. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345

  15. Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfer-mediated cancer immunotherapy.

    PubMed

    Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja

    2017-01-01

    Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies.

    PubMed

    Puttini, Stefania; Panaite, Petrica-Adrian; Mermod, Nicolas; Renaud, Susanne; Steck, Andreas J; Kuntzer, Thierry

    2014-05-15

    Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  18. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  19. Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    PubMed Central

    Frost, Jennifer M.; Monk, Dave; Stojilkovic-Mikic, Taita; Woodfine, Kathryn; Chitty, Lyn S.; Murrell, Adele; Stanier, Philip; Moore, Gudrun E.

    2010-01-01

    Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression. PMID:21042416

  20. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  1. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    PubMed

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  2. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    PubMed

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling growth stages, while mybs2 showed reduced responses. The ABA biosynthesis inhibitor fluridone rescued the mybs1 glucose-hypersensitive phenotype. Moreover, the mRNA levels of three ABA biosynthesis genes, ABA1, NCED9, and AAO3, and three ABA signaling genes, ABI3, ABI4, and ABI5, were increased upon glucose treatment of mybs1 seedlings, but were decreased in mybs2 seedlings. These results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development.

  3. Origins of extrinsic variability in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff

    2006-02-01

    Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

  4. Origins of extrinsic variability in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff

    2006-03-01

    Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes in concert, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modeling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous noise floor in expression variability. A second source which is modeled as originating from a common upstream transcription factor exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

  5. An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.

    PubMed

    Ray, Surjyendu; Tzeng, Ruei-Ying; DiCarlo, Lisa M; Bundy, Joseph L; Vied, Cynthia; Tyson, Gary; Nowakowski, Richard; Arbeitman, Michelle N

    2015-11-23

    The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions. Copyright © 2016 Ray et al.

  6. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector.

    PubMed

    Tian, J; Andreadis, S T

    2009-07-01

    Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.

  7. Differential network entropy reveals cancer system hallmarks

    PubMed Central

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  8. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  9. Tunable riboregulator switches for post-transcriptional control of gene expression

    DOE PAGES

    Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.; ...

    2015-07-13

    The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less

  10. Molecular analysis of the differential hepatic expression of rat kininogen family genes.

    PubMed Central

    Chen, H M; Liao, W S

    1993-01-01

    Serum concentration of rat T1 kininogen increases 20- to 30-fold in response to acute inflammation, an induced hepatic synthesis regulated primarily at the transcriptional level. We have demonstrated by transient transfection analyses that rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs are highly responsive to interleukin-6 and dexamethasone. In these studies we examined the regulation of a highly homologous K kininogen gene promoter and showed that it is minimally induced under identical conditions. The basal expression of the KK/CAT construct was, however, five- to sevenfold higher than that of the analogous T1K/CAT construct. Promoter-swapping experiments to examine the molecular basis of this differentially regulated basal expression showed that at least two K kininogen promoter regions are important for conferring its high basal expression: a distal 19-bp region (C box) constituted a binding site for C/EBP family proteins, and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor 3 (HNF-3). While the C box in the K kininogen promoter was able to interact with C/EBP transcription factors, the T1 kininogen promoter C box could not. In addition, HNF-3 binding sites of the K kininogen promoter demonstrated stronger affinities than those of the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and are known to enhance transcription of liver-specific genes, these differences in their binding activities thus accounted for the K kininogen gene's higher basal expression. Our studies demonstrated that evolutionary divergence of a few critical nucleotides may lead to subtle changes in the binding affinities of a transcription factor to its recognition site, profoundly altering expression of the downstream gene. Images PMID:8413271

  11. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  12. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme.

    PubMed

    Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing; Xie, Xiao Qiang; Yu, Shang Bin; Chen, Xiao Qian

    2017-06-17

    Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the gene expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. Copyright © 2017. Published by Elsevier Inc.

  13. Molecular Signatures in Skin Associated with Clinical Improvement During Mycophenolate Treatment in Systemic Sclerosis

    PubMed Central

    Hinchcliff, Monique; Huang, Chiang-Ching; Wood, Tammara A.; Mahoney, J. Matthew; Martyanov, Viktor; Bhattacharyya, Swati; Tamaki, Zenshiro; Lee, Jungwha; Carns, Mary; Podlusky, Sofia; Sirajuddin, Arlene; Shah, Sanjiv J; Chang, Rowland W.; Lafyatis, Robert; Varga, John; Whitfield, Michael L.

    2013-01-01

    Heterogeneity in systemic sclerosis/SSc confounds clinical trials. We previously identified ‘intrinsic’ gene expression subsets by analysis of SSc skin. Here we test the hypotheses that skin gene expression signatures including intrinsic subset are associated with skin score/MRSS improvement during mycophenolate mofetil (MMF) treatment. Gene expression and intrinsic subset assignment were measured in 12 SSc patients’ biopsies and ten controls at baseline, and from serial biopsies of one cyclophosphamide-treated patient, and nine MMF-treated patients. Gene expression changes during treatment were determined using paired t-tests corrected for multiple hypothesis testing. MRSS improved in four of seven MMF-treated patients classified as the inflammatory intrinsic subset. Three patients without MRSS improvement were classified as normal-like or fibroproliferative intrinsic subsets. 321 genes (FDR <5%) were differentially expressed at baseline between patients with and without MRSS improvement during treatment. Expression of 571 genes (FDR <10%) changed between pre- and post-MMF treatment biopsies for patients demonstrating MRSS improvement. Gene expression changes in skin are only seen in patients with MRSS improvement. Baseline gene expression in skin, including intrinsic subset assignment, may identify SSc patients whose MRSS will improve during MMF treatment, suggesting that gene expression in skin may allow targeted treatment in SSc. PMID:23677167

  14. Sex-specific gene expression during asexual development of Neurospora crassa.

    PubMed

    Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P

    2012-07-01

    The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Rrp1b, a New Candidate Susceptibility Gene for Breast Cancer Progression and Metastasis

    PubMed Central

    Crawford, Nigel P. S; Qian, Xiaolan; Ziogas, Argyrios; Papageorge, Alex G; Boersma, Brenda J; Walker, Renard C; Lukes, Luanne; Rowe, William L; Zhang, Jinghui; Ambs, Stefan; Lowy, Douglas R; Anton-Culver, Hoda; Hunter, Kent W

    2007-01-01

    A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. PMID:18081427

  16. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction

    PubMed Central

    Guarnieri, Douglas J.; Brayton, Catherine E.; Richards, Sarah M.; Maldonado-Aviles, Jaime; Trinko, Joseph R.; Nelson, Jessica; Taylor, Jane R.; Gourley, Shannon L.; DiLeone, Ralph J.

    2011-01-01

    Background Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Methods Analysis of gene expression profiles in male C57BL6/J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a five day food restriction. Quantitative PCR was used to validate these findings and determine the time-course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by ELISA. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Results Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to non-restricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. Conclusions These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. PMID:21855858

  17. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes.

    PubMed

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2006-12-21

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.

  18. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes

    PubMed Central

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2007-01-01

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498

  19. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses.

    PubMed

    Li, Donghua; Liu, Pan; Yu, Jingyin; Wang, Linhai; Dossa, Komivi; Zhang, Yanxin; Zhou, Rong; Wei, Xin; Zhang, Xiurong

    2017-09-11

    Sesame (Sesamum indicum L.) is one of the world's most important oil crops. However, it is susceptible to abiotic stresses in general, and to waterlogging and drought stresses in particular. The molecular mechanisms of abiotic stress tolerance in sesame have not yet been elucidated. The WRKY domain transcription factors play significant roles in plant growth, development, and responses to stresses. However, little is known about the number, location, structure, molecular phylogenetics, and expression of the WRKY genes in sesame. We performed a comprehensive study of the WRKY gene family in sesame and identified 71 SiWRKYs. In total, 65 of these genes were mapped to 15 linkage groups within the sesame genome. A phylogenetic analysis was performed using a related species (Arabidopsis thaliana) to investigate the evolution of the sesame WRKY genes. Tissue expression profiles of the WRKY genes demonstrated that six SiWRKY genes were highly expressed in all organs, suggesting that these genes may be important for plant growth and organ development in sesame. Analysis of the SiWRKY gene expression patterns revealed that 33 and 26 SiWRKYs respond strongly to waterlogging and drought stresses, respectively. Changes in the expression of 12 SiWRKY genes were observed at different times after the waterlogging and drought treatments had begun, demonstrating that sesame gene expression patterns vary in response to abiotic stresses. In this study, we analyzed the WRKY family of transcription factors encoded by the sesame genome. Insight was gained into the classification, evolution, and function of the SiWRKY genes, revealing their putative roles in a variety of tissues. Responses to abiotic stresses in different sesame cultivars were also investigated. The results of our study provide a better understanding of the structures and functions of sesame WRKY genes and suggest that manipulating these WRKYs could enhance resistance to waterlogging and drought.

  20. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants.

    PubMed Central

    Tsai, F Y; Coruzzi, G

    1991-01-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants. Images PMID:1681424

  1. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients.

    PubMed

    Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun

    2016-11-01

    Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.

  2. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  3. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts

    PubMed Central

    Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.

    2015-01-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  4. Children Exposed to Metals Mixtures Demonstrate Dysregulation of Infectious Disease Response

    EPA Science Inventory

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression p...

  5. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder.

    PubMed

    Chandley, Michelle J; Szebeni, Katalin; Szebeni, Attila; Crawford, Jessica; Stockmeier, Craig A; Turecki, Gustavo; Miguel-Hidalgo, Jose Javier; Ordway, Gregory A

    2013-07-01

    Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.

  6. MusTRD can regulate postnatal fiber-specific expression.

    PubMed

    Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C

    2006-05-01

    Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.

  7. Thermal Assisted In Vivo Gene Electrotransfer

    PubMed Central

    Donate, Amy; Bulysheva, Anna; Edelblute, Chelsea; Jung, Derrick; Malik, Mohammad A.; Guo, Siqi; Burcus, Niculina; Schoenbach, Karl; Heller, Richard

    2016-01-01

    Gene electrotransfer is an effective approach for delivering plasmid DNA to a variety of tissues. Delivery of molecules with electric pulses requires control of the electrical parameters to achieve effective delivery. Since discomfort or tissue damage may occur with high applied voltage, the reduction of the applied voltage while achieving the desired expression may be an important improvement. One possible approach is to combine electrotransfer with exogenously applied heat. Previous work performed in vitro demonstrated that increasing temperature before pulsing can enhance gene expres sion and made it possible to reduce electric fields while maintaining expression levels. In the study reported here, this combination was evaluated in vivo using a novel electrode device designed with an inserted laser for application of heat. The results obtained in this study demonstrated that increased temperature during electrotransfer increased expression or maintained expression with a reduction in applied voltage. With further optimization this approach may provide the basis for both a novel method and a novel instrument that may greatly enhance translation of gene electrotransfer. PMID:27029944

  8. Identification, Classification and Differential Expression of Oleosin Genes in Tung Tree (Vernicia fordii)

    PubMed Central

    Cao, Heping; Zhang, Lin; Tan, Xiaofeng; Long, Hongxu; Shockey, Jay M.

    2014-01-01

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the “proline knot” motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1–3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants. PMID:24516650

  9. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii).

    PubMed

    Cao, Heping; Zhang, Lin; Tan, Xiaofeng; Long, Hongxu; Shockey, Jay M

    2014-01-01

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.

  10. DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed.

    PubMed

    Hitchins, Megan P; Bentley, Louise; Monk, David; Beechey, Colin; Peters, Jo; Kelsey, Gavin; Ishino, Fumitoshi; Preece, Michael A; Stanier, Philip; Moore, Gudrun E

    2002-12-01

    Maternal duplication of human 7p11.2-p13 has been associated with Silver-Russell syndrome (SRS) in two familial cases. GRB10 is the only imprinted gene identified within this region to date. GRB10 demonstrates an intricate tissue- and isoform-specific imprinting profile in humans, with paternal expression in fetal brain and maternal expression of one isoform in skeletal muscle. The mouse homolog is maternally transcribed. The GRB10 protein is a potent growth inhibitor and represents a candidate for SRS, which is characterized by pre- and postnatal growth retardation and a spectrum of additional dysmorphic features. Since imprinted genes tend to be grouped in clusters, we investigated the imprinting status of the dopa-decarboxylase gene (DDC) and the Cordon-bleu gene (COBL) which flank GRB10 within the 7p11.2-p13 SRS duplicated region. Although both genes were found to replicate asynchronously, suggestive of imprinting, SNP expression analyses showed that neither gene was imprinted in multiple human fetal tissues. The mouse homologues, Ddc and Cobl, which map to the homologous imprinted region on proximal Chr 11, were also biallelically expressed in mice with uniparental maternal or paternal inheritance of this region. With the intent of using mouse Grb10 as an imprinted control, biallelic expression was consistently observed in fetal, postnatal, and adult brain of these mice, in contrast to the maternal-specific transcription previously demonstrated in brain in inter-specific F1 progeny. This may be a further example of over-expression of maternally derived transcripts in inter-specific mouse crosses. GRB10 remains the only imprinted gene identified within 7p11.2-p13.

  11. TCF-1 participates in the occurrence of dedifferentiated chondrosarcoma.

    PubMed

    Xu, Xiaolong; Tang, Xiaodong; Guo, Wei; Yang, Kang; Ren, Tingting

    2016-10-01

    The present study demonstrated that T cell factor 1 (TCF-1) protein, a component of the canonical Wnt/β-catenin signaling pathway, can regulate the expression of runt-related transcription factor 2 (runx2) gene and Sry-related HMG box 9 (sox9) gene, which may participate in the differentiation of chondrosarcoma. Dedifferentiated chondrosarcoma (DDCS) is a special variant of conventional chondrosarcoma (CCS), associated with poor survival and high metastasis rate. However, little is known about the mechanism of its occurrence; thus, no effective treatment is available except surgery. Earlier, high expression of runx2 and low expression of sox9 were found in DDCS compared with CCS. Using Western blot to detect clinical tissue samples (including 8 CCS samples and 8 DDCS samples) and immunohistochemistry to detect 85 different-grade chondrosarcoma specimens, a high expression of TCF-1 in DDCS tissues was found compared with CCS tissues. This difference in expression was related to patients' prognosis. Results of luciferase, chromatin immunoprecipitation, and gel electrophoresis mobility shift assays demonstrated that TCF-1 protein could bind to the promoter of runx2 gene directly and sox9 gene indirectly. Hence, it could regulate expression of runx2 gene positively and sox9 gene negatively. Furthermore, in vitro and in vivo experiments showed that TCF-1 protein was closely related to the phenotype and aggressiveness of chondrosarcoma. In conclusion, this study proved that TCF-1 participates in the dedifferentiation of DDCS, which may be mediated by runx2 gene and sox9 gene. Also, TCF-1 can be of important prognostic value and a promising therapeutic target for DDCS patients.

  12. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  13. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  14. Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR

    PubMed Central

    Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.

    2011-01-01

    Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969

  15. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter

    PubMed Central

    Darbani, Behrooz; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam H.; Møller, Birger Lindberg; Rook, Fred

    2016-01-01

    Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters. PMID:27841372

  16. Tightly Regulated Expression of Autographa californica Multicapsid Nucleopolyhedrovirus Immediate Early Genes Emerges from Their Interactions and Possible Collective Behaviors

    PubMed Central

    Taka, Hitomi; Asano, Shin-ichiro; Matsuura, Yoshiharu; Bando, Hisanori

    2015-01-01

    To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network. PMID:25816136

  17. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  18. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases.

    PubMed

    Widiez, Thomas; Hartman, Thomas G; Dudai, Nativ; Yan, Qing; Lawton, Michael; Havkin-Frenkel, Daphna; Belanger, Faith C

    2011-08-01

    Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids.

  19. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  20. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    PubMed

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  1. Differential Expression of Hox and Notch Genes in Larval and Adult Stages of Echinococcus granulosus.

    PubMed

    Dezaki, Ebrahim Saedi; Yaghoobi, Mohammad Mehdi; Taheri, Elham; Almani, Pooya Ghaseminejad; Tohidi, Farideh; Gottstein, Bruno; Harandi, Majid Fasihi

    2016-10-01

    This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus ; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus .

  2. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.

    PubMed Central

    Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W

    1996-01-01

    Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227

  3. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  4. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    PubMed

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  5. Sustainability of keratinocyte gene transfer and cell survival in vivo.

    PubMed

    Choate, K A; Khavari, P A

    1997-05-20

    The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.

  6. Molecular identification of a pancreatic lipase-like gene involved in sex pheromone biosynthesis of Bombyx mori.

    PubMed

    Zhang, Song-Dou; Li, Xun; Bin, Zhu; Du, Meng-Fang; Yin, Xin-Ming; An, Shi-Heng

    2014-08-01

    Cytoplasmic lipid droplet (LD) lipolysis is regulated by pheromone biosynthesis activating neuropeptide (PBAN) in Bombyx mori. To elucidate the molecular mechanism of cytoplasm LD lipolysis, the pancreatic lipase-like gene in B. mori pheromone glands (PGs), designated as B. mori pancreatic lipase-like gene (BmPLLG), was identified in this study. Spatial expression analysis revealed that BmPLLG is a ubiquitous gene present in all studied tissues, such as PGs, brain, epidermis, egg, midgut, flight muscle and fat body. Temporal expression analysis showed that the BmPLLG transcript begins to express 96 h before eclosion (-96 h), continues to increase, peaks in newly emerged females and steadily decreases after eclosion. Translational expression analysis of BmPLLG using a prepared antiserum demonstrated that BmPLLG was expressed in an age-dependent pattern at different development stages in B. mori. This finding was similar to the transcript expression pattern. Further RNA interference-mediated knockdown of BmPLLG significantly inhibited bombykol production. Overall, these results demonstrated that BmPLLG is involved in PBAN-induced sex pheromone biosynthesis and release. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  7. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin.

    PubMed

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-09-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR. Their abnormal expression was significantly correlated with left ventricular remodelling, thereby indicating an internal association (influences of two indexes in the experimental group and control group) between them.

  8. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).

    PubMed

    Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping

    2013-09-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    PubMed

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three selected reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. Further, the work reported here forms a highly useful platform for future gene expression quantification in S. viridis and can also be potentially directly translatable to other closely related and agronomically important C 4 crop species.

  10. Hox11 paralogous genes are essential for metanephric kidney induction

    PubMed Central

    Wellik, Deneen M.; Hawkes, Patrick J.; Capecchi, Mario R.

    2002-01-01

    The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis. PMID:12050119

  11. Long-range transcriptional interference in E. coli used to construct a dual positive selection system for genetic switches

    PubMed Central

    Hoffmann, Stefan A.; Kruse, Sabrina M.; Arndt, Katja M.

    2016-01-01

    Abstract We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection. PMID:26932362

  12. Hox11 paralogous genes are essential for metanephric kidney induction.

    PubMed

    Wellik, Deneen M; Hawkes, Patrick J; Capecchi, Mario R

    2002-06-01

    The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis.

  13. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter.more » We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.« less

  14. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.

    PubMed

    Otoupal, Peter B; Erickson, Keesha E; Escalas-Bordoy, Antoni; Chatterjee, Anushree

    2017-01-20

    The evolution of antibiotic resistance has engendered an impending global health crisis that necessitates a greater understanding of how resistance emerges. The impact of nongenetic factors and how they influence the evolution of resistance is a largely unexplored area of research. Here we present a novel application of CRISPR-Cas9 technology for investigating how gene expression governs the adaptive pathways available to bacteria during the evolution of resistance. We examine the impact of gene expression changes on bacterial adaptation by constructing a library of deactivated CRISPR-Cas9 synthetic devices to tune the expression of a set of stress-response genes in Escherichia coli. We show that artificially inducing perturbations in gene expression imparts significant synthetic control over fitness and growth during stress exposure. We present evidence that these impacts are reversible; strains with synthetically perturbed gene expression regained wild-type growth phenotypes upon stress removal, while maintaining divergent growth characteristics under stress. Furthermore, we demonstrate a prevailing trend toward negative epistatic interactions when multiple gene perturbations are combined simultaneously, thereby posing an intrinsic constraint on gene expression underlying adaptive trajectories. Together, these results emphasize how CRISPR-Cas9 can be employed to engineer gene expression changes that shape bacterial adaptation, and present a novel approach to synthetically control the evolution of antimicrobial resistance.

  15. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells.

    PubMed

    Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin

    2013-10-22

    Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  16. Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of ire1 signaling enzyme

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Riabovol, O O; Ratushna, O O; Karbovskyi, L L

    2016-01-01

    We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.

  17. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    PubMed Central

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  18. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.

    PubMed

    Deguchi, Tomonori; Itoh, Mariko; Urawa, Hiroko; Matsumoto, Tomohiro; Nakayama, Sohei; Kawasaki, Takashi; Kitano, Takeshi; Oda, Shoji; Mitani, Hiroshi; Takahashi, Taku; Todo, Takeshi; Sato, Junichi; Okada, Kiyotaka; Hatta, Kohei; Yuba, Shunsuke; Kamei, Yasuhiro

    2009-12-01

    Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.

  19. Biologic consequences of Stat1-independent IFN signaling

    PubMed Central

    Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.

    2001-01-01

    Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995

  20. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.

    PubMed

    Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie

    2017-05-15

    When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the absence of ectopic gene expression, the gene products of both endogenous genes were expressed, irrespective of whether they were partially mutant proteins or not. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion

    PubMed Central

    Dang, Tuyen T.; Westcott, Jill M.; Maine, Erin A.; Kanchwala, Mohammed; Xing, Chao; Pearson, Gray W.

    2016-01-01

    Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome. PMID:27081041

  2. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach

    PubMed Central

    Beger, Carmela; Pierce, Leigh N.; Krüger, Martin; Marcusson, Eric G.; Robbins, Joan M.; Welcsh, Piri; Welch, Peter J.; Welte, Karl; King, Mary-Claire; Barber, Jack R.; Wong-Staal, Flossie

    2001-01-01

    Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an “inverse genomics” approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer. PMID:11136250

  3. Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis

    PubMed Central

    Wang, Fusheng; Wang, Mei; Liu, Xiaona; Xu, Yuanyuan; Zhu, Shiping; Shen, Wanxia; Zhao, Xiaochun

    2017-01-01

    Limonoids produced by citrus are a group of highly bioactive secondary metabolites which provide health benefits for humans. Currently there is a lack of information derived from research on the genetic mechanisms controlling the biosynthesis of limonoids, which has limited the improvement of citrus for high production of limonoids. In this study, the transcriptome sequences of leaves, phloems and seeds of pummelo (Citrus grandis (L.) Osbeck) at different development stages with variances in limonoids contents were used for digital gene expression profiling analysis in order to identify the genes corresponding to the biosynthesis of limonoids. Pair-wise comparison of transcriptional profiles between different tissues identified 924 differentially expressed genes commonly shared between them. Expression pattern analysis suggested that 382 genes from three conjunctive groups of K-means clustering could be possibly related to the biosynthesis of limonoids. Correlation analysis with the samples from different genotypes, and different developing tissues of the citrus revealed that the expression of 15 candidate genes were highly correlated with the contents of limonoids. Among them, the cytochrome P450s (CYP450s) and transcriptional factor MYB demonstrated significantly high correlation coefficients, which indicated the importance of those genes on the biosynthesis of limonoids. CiOSC gene encoding the critical enzyme oxidosqualene cyclase (OSC) for biosynthesis of the precursor of triterpene scaffolds was found positively corresponding to the accumulation of limonoids during the development of seeds. Suppressing the expression of CiOSC with VIGS (Virus-induced gene silencing) demonstrated that the level of gene silencing was significantly correlated to the reduction of limonoids contents. The results indicated that the CiOSC gene plays a pivotal role in biosynthesis of limonoids. PMID:28553308

  4. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    PubMed

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  5. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.

    PubMed

    Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C

    2016-05-01

    Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.

  7. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  8. Positive regulation of Leptospira interrogans kdp expression by KdpE as Demonstrated with a novel β-galactosidase reporter in Leptospira biflexa.

    PubMed

    Matsunaga, James; Coutinho, Mariana L

    2012-08-01

    Leptospirosis is a potentially deadly zoonotic disease that afflicts humans and animals. Leptospira interrogans, the predominant agent of leptospirosis, encounters diverse conditions as it proceeds through its life cycle, which includes stages inside and outside the host. Unfortunately, the number of genetic tools available for examining the regulation of gene expression in L. interrogans is limited. Consequently, little is known about the genetic circuits that control gene expression in Leptospira. To better understand the regulation of leptospiral gene expression, the L. interrogans kdp locus, encoding homologs of the P-type ATPase KdpABC potassium transporter with their KdpD sensors and KdpE response regulators, was selected for analysis. We showed that a kdpE mutation in L. interrogans prevented the increase in kdpABC mRNA levels observed in the wild-type L. interrogans strain when external potassium levels were low. To confirm that KdpE was a positive regulator of kdpABC transcription, we developed a novel approach for constructing chromosomal genetic fusions to the endogenous bgaL (β-galactosidase) gene of the nonpathogen Leptospira biflexa. We demonstrated positive regulation of a kdpA'-bgaL fusion in L. biflexa by the L. interrogans KdpE response regulator. A control lipL32'-bgaL fusion was not regulated by KdpE. These results demonstrate the utility of genetic fusions to the bgaL gene of L. biflexa for examining leptospiral gene regulation.

  9. Integrated Analysis of Genome-wide Copy Number Alterations and Gene Expression in MSS, CIMP-negative Colon Cancer

    PubMed Central

    Loo, Lenora WM; Tiirikainen, Maarit; Cheng, Iona; Lum-Jones, Annette; Seifried, Ann; Church, James M; Gryfe, Robert; Weisenberger, Daniel J; Lindor, Noralane M; Gallinger, Steven; Haile, Robert W; Duggan, David J; Thibodeau, Stephen N; Casey, Graham; Le Marchand, Loïc

    2014-01-01

    Microsatellite stable (MSS), CpG island methylator phenotype (CIMP)-negative colorectal tumors, the most prevalent molecular subtype of colorectal cancer, are associated with extensive copy number alteration (CNA) events and aneuploidy. We report on the identification of characteristic recurrent CNA (with frequency >25%) events and associated gene expression profiles for a total of 40 paired tumor and adjacent normal colon tissues using genome-wide microarrays. We observed recurrent CNAs, namely gains at 1q, 7p, 7q, 8p12-11, 8q, 12p13, 13q, 20p, 20q, Xp, and Xq and losses at 1p36, 1p31, 1p21, 4p15-12, 4q12-35, 5q21-22, 6q26, 8p, 14q, 15q11-12, 17p, 18p, 18q, 21q21-22, and 22q. Within these genomic regions we identified 356 genes with significant differential expression (P<0.0001 and ±1.5 fold change) in the tumor compared to adjacent normal tissue. Gene ontology and pathway analyses indicated that many of these genes were involved in functional mechanisms that regulate cell cycle, cell death, and metabolism. An amplicon present in >70% of the tumor samples at 20q11-20q13 contained several cancer-related genes (AHCY, POFUT1, RPN2, TH1L and PRPF6) that were up-regulated and demonstrated a significant linear correlation (P<0.05) for gene dosage and gene expression. Copy number loss at 8p, a CNA associated with adenocarcinoma and poor prognosis, was observed in >50% of the tumor samples and demonstrated a significant linear correlation for gene dosage and gene expression for two potential tumor suppressor genes, MTUS1 (8p22) and PPP2CB (8p12). The results from our integration analysis illustrate the complex relationship between genomic alterations and gene expression in colon cancer. PMID:23341073

  10. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Cancer.gov

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  11. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  12. Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica.

    PubMed

    Liang, Dong; Xia, Hui; Wu, Shan; Ma, Fengwang

    2012-12-01

    The family of dehydrin genes has important roles in protecting higher plants against abiotic stress, such as drought, salinity and cold. However, knowledge about apple dehydrin gene family is limited. In the present study, we used a bioinformatics approach to identify members of that family in apple (Malus domestica). A total of 12 apple dehydrin genes (MdDHNs) were identified and located on various chromosomes. All putative proteins from those genes contained a typical K domain. Among 12 MdDHNs, nine were cloned and their expression patterns were investigated. Expression profiling indicated that the these nine dehydrin genes display differential expression patterns in various tissues. Moreover, transcript levels of some MdDHNs were up-regulated significantly under drought, low temperature, or ABA treatment, which indicated their important roles during stress adaptation. These results demonstrate that the apple dehydrin gene family may function in tissue development and plant stress responses.

  13. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

    PubMed

    Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael

    2018-03-21

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.

  14. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

    PubMed Central

    Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline

    2018-01-01

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261

  15. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less

  16. MICROARRAY QUALITY CONTROL PROJECT: A COMPREHENSIVE GENE EXPRESSION TECHNOLOGY SURVEY DEMONSTRATES MEASURABLE CONSISTENCY AND CONCORDANT RESULTS BETWEEN PLATFORMS

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, h...

  17. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.

    PubMed

    Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F

    2007-09-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.

  18. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    PubMed Central

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2008-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including GLUT4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including GLUT4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by shRNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple innervation-dependent genes in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression. PMID:17550977

  19. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  20. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host

    PubMed Central

    Salem, Hassan; Bauer, Eugen; Strauss, Anja S.; Vogel, Heiko; Marz, Manja; Kaltenpoth, Martin

    2014-01-01

    Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists. PMID:25339726

  1. Possible roles of the transcription factor Nrf1 (NFE2L1) in neural homeostasis by regulating the gene expression of deubiquitinating enzymes.

    PubMed

    Taniguchi, Hiroaki; Okamuro, Shota; Koji, Misaki; Waku, Tsuyoshi; Kubo, Kaori; Hatanaka, Atsushi; Sun, Yimeng; Chowdhury, A M Masudul Azad; Fukamizu, Akiyoshi; Kobayashi, Akira

    2017-02-26

    The transcription factor Nrf1 (NFE2L1) maintains protein homeostasis (proteostasis) by regulating the gene expression of proteasome subunits in response to proteasome inhibition. The deletion of the Nrf1 gene in neural stem/progenitor cells causes severe neurodegeneration due to the accumulation of ubiquitinated proteins in Purkinje cells and motor neurons (Nrf1 NKO mice). However, the molecular mechanisms governing this neurodegenerative process remain unclear. We demonstrate herein that the loss of Nrf1 leads to the reduced gene expression of the deubiquitinating enzymes (DUBs) but not proteasome subunits in Nrf1 NKO mice between P7 and P18. First, we show that K48-linked polyubiquitinated proteins accumulate in Nrf1-deficient Purkinje cells and cerebral cortex neurons. Nevertheless, loss of Nrf1 does not alter the expression and proteolytic activity of proteasome. A significantly reduced expression of deubiquitinating enzymes was also demonstrated in Nrf1-deficient cerebellar tissue using microarray analysis. The genome database further reveals species-conserved ARE, a Nrf1 recognition element, in the regulatory region of certain DUB genes. Furthermore, we show that Nrf1 can activate Usp9x gene expression related to neurodegeneration. Altogether these findings suggest that neurodegeneration in Nrf1 NKO mice may stem from the dysfunction of the ubiquitin-mediated regulation of neuronal proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    PubMed

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  3. Signaling pathways regulating the expression of Prx1 and Prx2 in the Chick Mandibular Mesenchyme

    PubMed Central

    Doufexi, Aikaterini-El; Mina, Mina

    2009-01-01

    Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. PMID:18942149

  4. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development

    PubMed Central

    Laffaire, Julien; Rivals, Isabelle; Dauphinot, Luce; Pasteau, Fabien; Wehrle, Rosine; Larrat, Benoit; Vitalis, Tania; Moldrich, Randal X; Rossier, Jean; Sinkus, Ralph; Herault, Yann; Dusart, Isabelle; Potier, Marie-Claude

    2009-01-01

    Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes. PMID:19331679

  5. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    PubMed Central

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. PMID:27040269

  6. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing.

    PubMed

    Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo

    2014-10-01

    Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.

  7. Transcriptional deregulation of homeobox gene ZHX2 in Hodgkin lymphoma.

    PubMed

    Nagel, Stefan; Schneider, Björn; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; Macleod, Roderick A F

    2012-05-01

    Recently, we identified a novel chromosomal rearrangement in Hodgkin lymphoma (HL), t(4;8)(q27;q24), which targets homeobox gene ZHX2 at the recurrent breakpoint 8q24. This aberration deletes the far upstream region of ZHX2 and results in silenced transcription pinpointing loss of activatory elements. Here, we have looked for potential binding sites within this deleted region to analyze the transcriptional deregulation of this tumor suppressor gene in B-cell malignancies. SiRNA-mediated knockdown and reporter gene analyses identified two transcription factors, homeodomain protein MSX1 and bZIP protein XBP1, directly regulating ZHX2 expression. Furthermore, MSX1-cofactor histone H1C mediated repression of ZHX2 and showed enhanced expression levels in cell line L-1236. As demonstrated by fluorescence in situ hybridization and genomic array analysis, the gene loci of MSX1 at 4p16 and H1C at 6p22 were rearranged in several HL cell lines, correlating with their altered expression activity. The expression of XBP1 was reduced in 6/7 HL cell lines as compared to primary hematopoietic cells. Taken together, our results demonstrate multiple mechanisms decreasing expression of tumor suppressor gene ZHX2 in HL cell lines: loss of enhancing binding sites, reduced expression of activators MSX1 and XBP1, and overexpression of MSX1-corepressor H1C. Moreover, chromosomal deregulations of genes involved in this regulative network highlight their role in development and malignancy of B-cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale

    PubMed Central

    Cox, Laura A; Schlabritz-Loutsevitch, Natalia; Hubbard, Gene B; Nijland, Mark J; McDonald, Thomas J; Nathanielsz, Peter W

    2006-01-01

    Interpretation of gene array data presents many potential pitfalls in adult tissues. Gene array techniques applied to fetal tissues present additional confounding pitfalls. The left lobe of the fetal liver is supplied with blood containing more oxygen than the right lobe. Since synthetic activity and cell function are oxygen dependent, we hypothesized major differences in mRNA expression between the fetal right and left liver lobes. Our aim was to demonstrate the need to evaluate RNA samples from both lobes. We performed whole genome expression profiling on left and right liver lobe RNA from six 90-day gestation baboon fetuses (term 180 days). Comparing right with left, we found 875 differentially expressed genes – 312 genes were up-regulated and 563 down-regulated. Pathways for damaged DNA binding, endonuclease activity, interleukin binding and receptor activity were up-regulated in right lobe; ontological pathways related to cell signalling, cell organization, cell biogenesis, development, intracellular transport, phospholipid metabolism, protein biosynthesis, protein localization, protein metabolism, translational regulation and vesicle mediated transport were down-regulated in right lobe. Molecular pathway analysis showed down-regulation of pathways related to heat shock protein binding, ion channel and transporter activities, oxygen binding and transporter activities, translation initiation and translation regulator activities. Genes involved in amino acid biosynthesis, lipid biosynthesis and oxygen transport were also differentially expressed. This is the first demonstration of RNA differences between the two lobes of the fetal liver. The data support the argument that a complete interpretation of gene expression in the developing liver requires data from both lobes. PMID:16484296

  9. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus.

    PubMed

    Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong

    2015-07-22

    Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.

  10. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction.

    PubMed

    Guarnieri, Douglas J; Brayton, Catherine E; Richards, Sarah M; Maldonado-Aviles, Jaime; Trinko, Joseph R; Nelson, Jessica; Taylor, Jane R; Gourley, Shannon L; DiLeone, Ralph J

    2012-02-15

    Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Preliminary characterization of IL32 in basal-like/triple negative compared to other types of breast cell lines and tissues

    PubMed Central

    2014-01-01

    Background Triple negative breast cancer (TNBC) and often basal-like cancers are defined as negative for estrogen receptor, progesterone receptor and Her2 gene expression. Over the past few years an incredible amount of data has been generated defining the molecular characteristics of both cancers. The aim of these studies is to better understand the cancers and identify genes and molecular pathways that might be useful as targeted therapies. In an attempt to contribute to the understanding of basal-like/TNBC, we examined the Gene Expression Omnibus (GEO) public datasets in search of genes that might define basal-like/TNBC. The Il32 gene was identified as a candidate. Findings Analysis of several GEO datasets showed differential expression of IL32 in patient samples previously designated as basal and/or TNBC compared to normal and luminal breast samples. As validation of the GEO results, RNA and protein expression levels were examined using MCF7 and MDA MB231 cell lines and tissue microarrays (TMAs). IL32 gene expression levels were higher in MDA MB231 compared to MCF7. Analysis of TMAs showed 42% of TNBC tissues and 25% of the non-TNBC were positive for IL32, while non-malignant patient samples and all but one hyperplastic tissue sample demonstrated lower levels of IL32 protein expression. Conclusion Data obtained from several publically available GEO datasets showed overexpression of IL32 gene in basal-like/TNBC samples compared to normal and luminal samples. In support of these data, analysis of TMA clinical samples demonstrated a particular pattern of IL32 differential expression. Considered together, these data suggest IL32 is a candidate suitable for further study. PMID:25100201

  12. The PI3K p110delta is required for down-regulation of RAG expression in immature B cells.

    PubMed

    Llorian, Miriam; Stamataki, Zania; Hill, Susan; Turner, Martin; Mårtensson, Inga-Lill

    2007-02-15

    At the immature B cell stage the BCR signals the down-regulation of the RAG genes and Ig L chain (LC) allelic and isotype exclusion. The signaling pathway that regulates these events is poorly characterized. We demonstrate that immature B cells from mice deficient in the PI3K catalytic subunit p110delta fail to suppress RAG expression and inappropriately recombine kappa and lambda LC loci. In addition, in the presence of the autoantigen, clonal deletion and receptor editing still takes place, demonstrating that these processes are independent of p110delta. These results demonstrate a role for p110delta in the regulation of RAG gene expression and thereby LC allelic/isotype exclusion.

  13. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  14. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  15. Gastrin-releasing peptide-induced down-regulation of tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) in neuroblastomas.

    PubMed

    Qiao, Jingbo; Kang, Junghee; Cree, Jeremy; Evers, B Mark; Chung, Dai H

    2005-05-01

    To evaluate whether aggressive, undifferentiated neuroblastomas express tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) and to examine the effects of gastrin-releasing peptide (GRP) on PTEN gene and protein expression. We have previously shown that neuroblastomas secrete GRP, which binds to its cell surface receptor (GRP-R) to stimulate cell growth in an autocrine fashion. However, the effects of GRP on expression of the tumor suppressor gene PTEN have not been elucidated in neuroblastomas. Paraffin-embedded sections from human neuroblastomas were analyzed for PTEN and phospho-Akt protein expression by immunohistochemistry. Human neuroblastoma cell lines (SK-N-SH and SH-SY5Y) were stably transfected with the plasmid pEGFP-GRP-R to establish GRP-R overexpression cell lines, and the effects of GRP on PTEN gene and protein expression were determined. A decrease in the ratio of PTEN to phospho-Akt protein expression was identified in poorly differentiated neuroblastomas. An increase in GRP binding capacity was confirmed in GRP-R overexpressing cells, which demonstrated an accelerated constitutive cell growth rate. PTEN gene and protein expression was significantly decreased in GRP-R overexpressing cells when compared with controls. Our findings demonstrate decreased expression of the tumor suppressor protein PTEN in more aggressive undifferentiated neuroblastomas. An increase in GRP binding capacity, as a result of GRP-R overexpression, down-regulates PTEN expression. These findings suggest that an inhibition of the tumor suppressor gene PTEN may be an important regulatory mechanism involved in GRP-induced cell proliferation in neuroblastomas.

  16. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    PubMed

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  17. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.

    PubMed Central

    Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M

    1998-01-01

    Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619

  18. Upregulation of the ESR1 Gene and ESR Ratio (ESR1/ESR2) is Associated with a Worse Prognosis in Papillary Thyroid Carcinoma: The Impact of the Estrogen Receptor α/β Expression on Clinical Outcomes in Papillary Thyroid Carcinoma Patients.

    PubMed

    Yi, Jin Wook; Kim, Su-Jin; Kim, Jong Kyu; Seong, Chan Yong; Yu, Hyeong Won; Chai, Young Jun; Choi, June Young; Lee, Kyu Eun

    2017-11-01

    A gender disparity exists with respect to the incidence of papillary thyroid cancer (PTC), suggesting that sex hormones such as estrogen play a role in PTC development and progression. In this study, we compared estrogen receptor gene expression patterns in PTCs to determine the clinical significance of estrogen gene expression in PTC. We analyzed ESR1 and ESR2 messenger RNA expression counts using data from The Cancer Genome Atlas (TCGA). To validate the results of TCGA analysis, we analyzed microarray data (GSE 54958) from the Gene Expression Omnibus. ESR1 gene expression and ESR ratio (ESR1/ESR2) were significantly higher in PTC tissues than in paired normal thyroid tissues (mean 659.427 vs. 264.045 for ESR1, 92.017 vs. 19.064 for ESR ratio). Among female patients, ESR1 expression and ESR ratio were negatively correlated with increased age. ESR1 expression and ESR ratio were higher in patients with classic PTC, lymphovascular invasion, BRAF V600E mutation, and radioiodine therapy. Classification analysis demonstrated that higher ESR1 expression and a higher ESR ratio faced a worse overall survival (hazard ratio 6.348 for ESR1, 4.031 for ESR ratio). Validation microarray analysis demonstrated that ESR1 expression and ESR ratio were higher in tumor tissues, classic PTC, and BRAF V600E . Higher ESR1 expression and a higher ESR ratio were associated with aggressive prognostic factors and worse overall survival in female PTC patients. Our results suggest that ESR1 and ESR ratio can be used as prognostic markers to predict female patient survival and have potential as a therapeutic target.

  19. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease

    PubMed Central

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.

    2014-01-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557

  20. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development.

    PubMed

    Auden, Alana; Caddy, Jacinta; Wilanowski, Tomasz; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2006-10-01

    The Drosophila transcription factor Grainyhead (grh) is expressed in ectoderm-derived tissues where it regulates several key developmental events including cuticle formation, tracheal elongation and dorsal closure. Our laboratory has recently identified three novel mammalian homologues of the grh gene, Grainyhead-like 1, -2 and -3 (Grhl1-3) that rewrite the phylogeny of this family. Using gene targeting in mice, we have shown that Grhl3 is essential for neural tube closure, skin barrier formation and wound healing. Despite their extensive sequence homology, Grhl1 and Grhl2 are unable to compensate for loss of Grhl3 in these developmental processes. To explore this lack of redundancy, and to gain further insights into the functions of this gene family in mammalian development we have performed an extensive in situ hybridisation analysis. We demonstrate that, although all three Grhl genes are highly expressed in the developing epidermis, they display subtle differences in the timing and level of expression. Surprisingly, we also demonstrate differential expression patterns in non-ectoderm-derived tissues, including the heart, the lung, and the metanephric kidney. These findings expand our understanding of the unique role of Grhl3 in neurulation and epidermal morphogenesis, and provide a focus for further functional analysis of the Grhl genes during mouse embryogenesis.

  1. Exposure to metals mixtures: Genomic alterations of infectious ...

    EPA Pesticide Factsheets

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  2. Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states

    PubMed Central

    Silver, Nicholas; Cotroneo, Emanuele; Proctor, Gordon; Osailan, Samira; Paterson, Katherine L; Carpenter, Guy H

    2008-01-01

    Background Real-time PCR is a reliable tool with which to measure mRNA transcripts, and provides valuable information on gene expression profiles. Endogenous controls such as housekeeping genes are used to normalise mRNA levels between samples for sensitive comparisons of mRNA transcription. Selection of the most stable control gene(s) is therefore critical for the reliable interpretation of gene expression data. For the purpose of this study, 7 commonly used housekeeping genes were investigated in salivary submandibular glands under normal, inflamed, atrophic and regenerative states. Results The program NormFinder identified the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative states, and GAPDH in the atrophic state. For normalisation to multiple housekeeping genes, for each individual state, the optimal number of housekeeping genes as given by geNorm was: ACTB/UBC in the normal, ACTB/YWHAZ in the inflamed, ACTB/HPRT in the atrophic and ACTB/GAPDH in the regenerative state. The most stable housekeeping gene identified between states (compared to normal) was UBC. However, ACTB, identified as one of the most stably expressed genes within states, was found to be one of the most variable between states. Furthermore we demonstrated that normalising between states to ACTB, rather than UBC, introduced an approximately 3 fold magnitude of error. Conclusion Using NormFinder, our studies demonstrated the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative groups and GAPDH in the atrophic group. However, if normalising to multiple housekeeping genes, we recommend normalising to those identified by geNorm. For normalisation across the physiological states, we recommend the use of UBC. PMID:18637167

  3. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    PubMed Central

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  4. Aging and Gene Expression in the Primate Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes inmore » the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.« less

  5. Bayesian approach to transforming public gene expression repositories into disease diagnosis databases.

    PubMed

    Huang, Haiyan; Liu, Chun-Chi; Zhou, Xianghong Jasmine

    2010-04-13

    The rapid accumulation of gene expression data has offered unprecedented opportunities to study human diseases. The National Center for Biotechnology Information Gene Expression Omnibus is currently the largest database that systematically documents the genome-wide molecular basis of diseases. However, thus far, this resource has been far from fully utilized. This paper describes the first study to transform public gene expression repositories into an automated disease diagnosis database. Particularly, we have developed a systematic framework, including a two-stage Bayesian learning approach, to achieve the diagnosis of one or multiple diseases for a query expression profile along a hierarchical disease taxonomy. Our approach, including standardizing cross-platform gene expression data and heterogeneous disease annotations, allows analyzing both sources of information in a unified probabilistic system. A high level of overall diagnostic accuracy was shown by cross validation. It was also demonstrated that the power of our method can increase significantly with the continued growth of public gene expression repositories. Finally, we showed how our disease diagnosis system can be used to characterize complex phenotypes and to construct a disease-drug connectivity map.

  6. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    PubMed

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Reduced Autophagy by a microRNA-mediated Signaling Cascade in Diabetes-induced Renal Glomerular Hypertrophy.

    PubMed

    Deshpande, Supriya; Abdollahi, Maryam; Wang, Mei; Lanting, Linda; Kato, Mitsuo; Natarajan, Rama

    2018-05-03

    Autophagy plays a key role in the pathogenesis of kidney diseases, however its role in diabetic nephropathy (DN), and particularly in kidney glomerular mesangial cells (MCs) is not very clear. Transforming Growth Factor- β1 (TGF-β), a key player in the pathogenesis of DN, regulates expression of various microRNAs (miRNAs), some of which are known to regulate the expression of autophagy genes. Here we demonstrate that miR-192, induced by TGF-β signaling, plays an important role in regulating autophagy in DN. The expression of key autophagy genes was decreased in kidneys of streptozotocin-injected type-1 and type-2 (db/db) diabetic mice and this was reversed by treatment with Locked Nucleic Acid (LNA) modified miR-192 inhibitors. Changes in autophagy gene expression were also attenuated in kidneys of diabetic miR-192-KO mice. In vitro studies using mouse glomerular mesangial cells (MMCs) also showed a decrease in autophagy gene expression with TGF-β treatment. miR-192 mimic oligonucleotides also decreased the expression of certain autophagy genes. These results demonstrate that TGF-β and miR-192 decrease autophagy in MMCs under diabetic conditions and this can be reversed by inhibition or deletion of miR-192, further supporting miR-192 as a useful therapeutic target for DN.

  8. Effect of various classes of pesticides on expression of stress genes in transgenic C. elegans model of Parkinson's disease.

    PubMed

    Jadiya, Pooja; Mir, Snober S; Nazir, Aamir

    2012-12-01

    Neurodegenerative diseases are known to be associated with genetic and environmental factors. The multifactorial Parkinson's disease (PD) is triggered and/or further worsened by exposure to certain pesticides. Existing literature suggests a link between pesticide exposure and increased incidence of PD. We carried out the present study to look into the stress gene expression pattern of transgenic Caenorhabditis elegans (C. elegans) model of PD after exposure to pesticides from different classes. Expression level of sod-1, sod-2, sod-3, hsp-70, hsp-60, and hsp-16.2 stress responsive genes was determined using qPCR. Our findings demonstrate that the expression of stress related genes does not follow a generalized pattern to different toxicants; rather each pesticide class has a specific expression signature.

  9. Long-term in vitro correction of alpha-L-iduronidase deficiency (Hurler syndrome) in human bone marrow.

    PubMed Central

    Fairbairn, L J; Lashford, L S; Spooncer, E; McDermott, R H; Lebens, G; Arrand, J E; Arrand, J R; Bellantuono, I; Holt, R; Hatton, C E; Cooper, A; Besley, G T; Wraith, J E; Anson, D S; Hopwood, J J; Dexter, T M

    1996-01-01

    Allogeneic bone marrow transplantation is the most effective treatment for Hurler syndrome but, since this therapy is not available to all patients, we have considered an alternative approach based on transfer and expression of the normal gene in autologous bone marrow. A retroviral vector carrying the full-length cDNA for alpha-L-iduronidase has been constructed and used to transduce bone marrow from patients with this disorder. Various gene-transfer protocols have been assessed including the effect of intensive schedules of exposure of bone marrow to viral supernatant and the influence of growth factors. With these protocols, we have demonstrated successful gene transfer into primitive CD34+ cells and subsequent enzyme expression in their maturing progeny. Also, by using long-term bone marrow cultures, we have demonstrated high levels of enzyme expression sustained for several months. The efficiency of gene transfer has been assessed by PCR analysis of hemopoietic colonies as 25-56%. No advantage has been demonstrated for the addition of growth factors or intensive viral exposure schedules. The enzyme is secreted into the medium and functional localization has been demonstrated by reversal of the phenotypic effects of lysosomal storage in macrophages. This work suggests that retroviral gene transfer into human bone marrow may offer the prospect for gene therapy of Hurler syndrome in young patients without a matched sibling donor. Images Fig. 2 Fig. 4 Fig. 7 Fig. 8 PMID:8700879

  10. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans.

    PubMed

    Gottlieb, Assaf; Daneshjou, Roxana; DeGorter, Marianne; Bourgeois, Stephane; Svensson, Peter J; Wadelius, Mia; Deloukas, Panos; Montgomery, Stephen B; Altman, Russ B

    2017-11-24

    Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.

  11. Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    PubMed Central

    Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco

    2008-01-01

    Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936

  12. DNA methylation of amino acid transporter genes in the human placenta.

    PubMed

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  13. Spot 42 Small RNA Regulates Arabinose-Inducible araBAD Promoter Activity by Repressing Synthesis of the High-Affinity Low-Capacity Arabinose Transporter

    PubMed Central

    Chen, Jiandong

    2016-01-01

    ABSTRACT The l-arabinose-inducible araBAD promoter (PBAD) enables tightly controlled and tunable expression of genes of interest in a broad range of bacterial species. It has been used successfully to study bacterial sRNA regulation, where PBAD drives expression of target mRNA translational fusions. Here we report that in Escherichia coli, Spot 42 sRNA regulates PBAD promoter activity by affecting arabinose uptake. We demonstrate that Spot 42 sRNA represses araF, a gene encoding the AraF subunit of the high-affinity low-capacity arabinose transporter AraFGH, through direct base-pairing interactions. We further show that endogenous Spot 42 sRNA is sufficient to repress araF expression under various growth conditions. Finally, we demonstrate this posttranscriptional repression has a biological consequence, decreasing the induction of PBAD at low levels of arabinose. This problem can be circumvented using strategies reported previously for avoiding all-or-none induction behavior, such as through constitutive expression of the low-affinity high-capacity arabinose transporter AraE or induction with a higher concentration of inducers. This work adds araF to the set of Spot 42-regulated genes, in agreement with previous studies suggesting that Spot 42, itself negatively regulated by the cyclic AMP (cAMP) receptor protein-cAMP complex, reinforces the catabolite repression network. IMPORTANCE The bacterial arabinose-inducible system is widely used for titratable control of gene expression. We demonstrate here that a posttranscriptional mechanism mediated by Spot 42 sRNA contributes to the functionality of the PBAD system at subsaturating inducer concentrations by affecting inducer uptake. Our finding extends the inputs into the known transcriptional control for the PBAD system and has implications for improving its usage for tunable gene expression. PMID:27849174

  14. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    PubMed

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  15. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly

    PubMed Central

    de Juan Romero, Camino; Bruder, Carl; Tomasello, Ugo; Sanz-Anquela, José Miguel; Borrell, Víctor

    2015-01-01

    Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. PMID:25916825

  16. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing

    Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the genemore » expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. - Highlights: • Gene expression signarue in long-term survived GBM patients are identified from Gene Expression Omnibus database. • Repaglinide is identified as a survival-related drug for GBM via drug repositioning in CMap. • Repaglinide effectively kills GBM cells, inhibits GBM cell migration and increases survival of mice bearing orthotopic glioma. • Repaglinide reduces Bcl-2, Beclin-1 and PD-L1 in GBM tissues.« less

  17. CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2.

    PubMed

    Pfisterer, P; König, H; Hess, J; Lipowsky, G; Haendler, B; Schleuning, W D; Wirth, T

    1996-11-01

    The Oct2 transcription factor is expressed throughout the B-lymphoid lineage and plays an essential role during the terminal phase of B-cell differentiation. Several genes specifically expressed in B lymphocytes have been identified that contain a functional octamer motif in their regulatory elements. However, expression of only a single gene, the murine CD36 gene, has been shown to date to be dependent on Oct2. Here, we present the identification and characterization of a further gene, coding for cysteine-rich secreted protein 3 (CRISP-3), whose expression in B cells is regulated by Oct2. We show that CRISP-3 is expressed in the B-lymphoid lineage specifically at the pre-B-cell stage. By using different experimental strategies, including nuclear run-on experiments, we demonstrate that this gene is transcriptionally activated by Oct2. Furthermore, analysis of CRISP-3 expression in primary B cells derived from either wild-type or Oct2-deficient mice demonstrates the dependence on Oct2. Two variant octamer motifs were identified in the upstream promoter region of the crisp-3 gene, and Oct2 interacts with both of them in vitro. Cotransfection experiments with expression vectors for Oct1 and Oct2 together with a reporter driven by the crisp-3 promoter showed that transcriptional activation of this promoter can only be achieved with Oct2. The C-terminal transactivation domain of Oct2 is required for this activation. Finally, introducing specific mutations in the two variant octamer motifs revealed that both of them are important for full transcriptional activation by Oct2.

  18. Purification of cardiac myocytes from human heart biopsies for gene expression analysis.

    PubMed

    Kosloski, L M; Bales, I K; Allen, K B; Walker, B L; Borkon, A M; Stuart, R S; Pak, A F; Wacker, M J

    2009-09-01

    The collection of gene expression data from human heart biopsies is important for understanding the cellular mechanisms of arrhythmias and diseases such as cardiac hypertrophy and heart failure. Many clinical and basic research laboratories conduct gene expression analysis using RNA from whole cardiac biopsies. This allows for the analysis of global changes in gene expression in areas of the heart, while eliminating the need for more complex and technically difficult single-cell isolation procedures (such as flow cytometry, laser capture microdissection, etc.) that require expensive equipment and specialized training. The abundance of fibroblasts and other cell types in whole biopsies, however, can complicate gene expression analysis and the interpretation of results. Therefore, we have designed a technique to quickly and easily purify cardiac myocytes from whole cardiac biopsies for RNA extraction. Human heart tissue samples were collected, and our purification method was compared with the standard nonpurification method. Cell imaging using acridine orange staining of the purified sample demonstrated that >98% of total RNA was contained within identifiable cardiac myocytes. Real-time RT-PCR was performed comparing nonpurified and purified samples for the expression of troponin T (myocyte marker), vimentin (fibroblast marker), and alpha-smooth muscle actin (smooth muscle marker). Troponin T expression was significantly increased, and vimentin and alpha-smooth muscle actin were significantly decreased in the purified sample (n = 8; P < 0.05). Extracted RNA was analyzed during each step of the purification, and no significant degradation occurred. These results demonstrate that this isolation method yields a more purified cardiac myocyte RNA sample suitable for downstream applications, such as real-time RT-PCR, and allows for more accurate gene expression changes in cardiac myocytes from heart biopsies.

  19. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.

    PubMed

    Jiang, Xue; Zhang, Han; Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.

  20. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    PubMed Central

    Huan, Tianxiao; Joehanes, Roby; Schurmann, Claudia; Schramm, Katharina; Pilling, Luke C.; Peters, Marjolein J.; Mägi, Reedik; DeMeo, Dawn; O'Connor, George T.; Ferrucci, Luigi; Teumer, Alexander; Homuth, Georg; Biffar, Reiner; Völker, Uwe; Herder, Christian; Waldenberger, Melanie; Peters, Annette; Zeilinger, Sonja; Metspalu, Andres; Hofman, Albert; Uitterlinden, André G.; Hernandez, Dena G.; Singleton, Andrew B.; Bandinelli, Stefania; Munson, Peter J.; Lin, Honghuang; Benjamin, Emelia J.; Esko, Tõnu; Grabe, Hans J.; Prokisch, Holger; van Meurs, Joyce B.J.; Melzer, David; Levy, Daniel

    2016-01-01

    Abstract Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a meta-analysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) <0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-reactive protein levels). Our transcriptomic study provides potential insights into the effects of cigarette smoking on gene expression in whole blood and their relations to smoking-related diseases. The results of such analyses may highlight attractive targets for treating or preventing smoking-related health effects. PMID:28158590

  1. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    NASA Technical Reports Server (NTRS)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  2. Regulatory network involving miRNAs and genes in serous ovarian carcinoma

    PubMed Central

    Zhao, Haiyan; Xu, Hao; Xue, Luchen

    2017-01-01

    Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276

  3. Identifying Novel Helix–Loop–Helix Genes in Caenorhabditis elegans through a Classroom Demonstration of Functional Genomics

    PubMed Central

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036

  4. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori*

    PubMed Central

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-01-01

    Hox genes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hox genes can also function in terminally differentiated tissue of the lepidopteran Bombyx mori. In this species, Antennapedia (Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antp can regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antp in the posterior silk gland induced ectopic expression of major silk protein genes such as sericin-3, fhxh4, and fhxh5. These genes are normally expressed specifically in the middle silk gland as is Antp. Therefore, the evidence strongly suggests that Antp activates these silk protein genes in the middle silk gland. The putative sericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antp directly activates their expression. We also found that the pattern of gene expression was well conserved between B. mori and the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori. We suggest that Hox genes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  5. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy

    PubMed Central

    Hwang-Verslues, Wendy W.; Chang, Po-Hao; Jeng, Yung-Ming; Kuo, Wen-Hung; Chiang, Pei-Hsun; Chang, Yi-Cheng; Hsieh, Tsung-Han; Su, Fang-Yi; Lin, Liu-Chen; Abbondante, Serena; Yang, Cheng-Yuan; Hsu, Huan-Ming; Yu, Jyh-Cherng; Chang, King-Jen; Shew, Jin-Yuh; Lee, Eva Y.-H. P.; Lee, Wen-Hwa

    2013-01-01

    The circadian clock gene Period2 (PER2) has been suggested to be a tumor suppressor. However, detailed mechanistic evidence has not been provided to support this hypothesis. We found that loss of PER2 enhanced invasion and activated expression of epithelial-mesenchymal transition (EMT) genes including TWIST1, SLUG, and SNAIL. This finding was corroborated by clinical observation that PER2 down-regulation was associated with poor prognosis in breast cancer patients. We further demonstrated that PER2 served as a transcriptional corepressor, which recruited polycomb proteins EZH2 and SUZ12 as well as HDAC2 to octamer transcription factor 1 (OCT1) (POU2F1) binding sites of the TWIST1 and SLUG promoters to repress expression of these EMT genes. Hypoxia, a condition commonly observed in tumors, caused PER2 degradation and disrupted the PER2 repressor complex, leading to activation of EMT gene expression. This result was further supported by clinical data showing a significant negative correlation between hypoxia and PER2. Thus, our findings clearly demonstrate the tumor suppression function of PER2 and elucidate a pathway by which hypoxia promotes EMT via degradation of PER2. PMID:23836662

  6. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    PubMed Central

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological insight. The demonstration of the efficacy of this approach in endo16 is a promising step for further application of the proposed method. PMID:17712424

  7. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    NASA Astrophysics Data System (ADS)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives. Electronic supplementary information (ESI) available: ESI containing 1H NMR spectra and additional fibroblast characterization data. See DOI: 10.1039/c3nr04794f

  8. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    PubMed

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor,more » and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.« less

  10. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    PubMed

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  11. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin

    PubMed Central

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G.; Corydon, Thomas J.; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-01-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  12. The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk.

    PubMed

    Sauer, Elisa; Gauer, Bruna; Nascimento, Sabrina; Nardi, Jessica; Göethel, Gabriela; Costa, Bárbara; Correia, Douglas; Matte, Ursula; Charão, Mariele; Arbo, Marcelo; Duschl, Albert; Moro, Angela; Garcia, Solange Cristina

    2018-06-05

    Benzene is a recognized human carcinogen; however, there are still some gaps in the knowledge regarding the mechanism of toxicity of this organic solvent and potential early biomarkers for the damage caused by it. In a previous study, our research group demonstrated that the adhesion molecules of the immune system (B7.1 and B7.2) could be potential biomarkers in the early detection of immunotoxicity caused by benzene exposure. Therefore, this study was developed to deepen the understanding regarding this important topic, aiming to contribute to the comprehension of the benzene toxicity mechanism mediated by B7.1 and B7.2 and its potential association with the risk of carcinogenicity. B7.1 and B7.2 protein expression in blood monocytes and B7.1 and B7.2 gene expression in PBMCs were evaluated. Additionally, complement C3 and C4 levels in serum were measured, as well as p53 gene expression in PBMCs. Seventy-four gas station workers (GSW group) and 71 non-occupationally exposed subjects (NEG) were evaluated. Our results demonstrated decreased levels of B7.1 and B7.2 protein and gene expression in the GSW group compared to the NEG (n = 71) (p < 0.01). Along the same lines, decreased levels of the complement system were observed in the GSW group (p < 0.01), demonstrating the impairment of this immune system pathway as well. Additionally, a reduction was observed in p53 gene expression in the GSA group (p < 0.01). These alterations were associated with both the benzene exposure biomarker evaluated, urinary trans, trans-muconic acid, and with exposure time (p < 0.05). Moreover, strong correlations were observed between the gene expression of p53 vs. B7.1 (r = 0.830; p < 0.001), p53 vs. B7.2 (r = 0.685; p < 0.001), and B7.1 vs. B7.2 (r = 0.702; p < 0.001). Taken together, these results demonstrate that the immune system co-stimulatory molecule pathway is affected by benzene exposure. Also, the decrease in p53 gene expression, even at low exposure levels, reinforces the carcinogenicity effect of benzene in this pathway. Therefore, our results suggest that the promotion of immune evasion together with a decrease in p53 gene expression may play an important role in the benzene toxicity mechanism. However, further and targeted studies are needed to confirm this proposition. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes.

    PubMed

    Grayson, B L; Wang, L; Aune, T M

    2011-07-01

    To determine if individuals with metabolic disorders possess unique gene expression profiles, we compared transcript levels in peripheral blood from patients with coronary artery disease (CAD), type 2 diabetes (T2D) and their precursor state, metabolic syndrome to those of control (CTRL) subjects and subjects with rheumatoid arthritis (RA). The gene expression profile of each metabolic state was distinguishable from CTRLs and correlated with other metabolic states more than with RA. Of note, subjects in the metabolic cohorts overexpressed gene sets that participate in the innate immune response. Genes involved in activation of the pro-inflammatory transcription factor, NF-κB, were overexpressed in CAD whereas genes differentially expressed in T2D have key roles in T-cell activation and signaling. Reverse transcriptase PCR validation confirmed microarray results. Furthermore, several genes differentially expressed in human metabolic disorders have been previously shown to participate in inflammatory responses in murine models of obesity and T2D. Taken together, these data demonstrate that peripheral blood from individuals with metabolic disorders display overlapping and non-overlapping patterns of gene expression indicative of unique, underlying immune processes.

  14. [Expression of OPN gene during different lactation stages in mammary gland of dairy goat and its effect on growth of MCF-7 cell line].

    PubMed

    Sun, Jie; Luo, Jun; Liu, Jun-Xia; Li, Da-Quan

    2009-08-01

    To investigate the expression pattern and preliminary function of OPN gene in mammary gland of dairy goat during different lactation stages, using b-actin gene as the internal control, the SYBR Green quantitative real-time PCR (QPCR) analysis was conducted to determine the mRNA expression of OPN gene in mammary gland at the 28th, 60th, 100th, 190th, 270th and 330th day after kidding. Recombinant plasmid of pcDNA3.1-OPN was constructed by inserting the fragment of OPN gene into eukaryotic expression vector pcDNA3.1 and used to transfect the MCF-7 cell line following the restrictive endonuclease cleavage and sequence identification of the target gene segment, the effect of OPN gene on MCF-7 cell proliferation was assessed by MTT analysis. The results indicated that OPN gene exhibited the higher expression level in early (28 d) and late (190 d) lactation stages and the lowest level at dry stage (330 d), which demonstrated a high-low-high-low pattern. There was a significant difference (P < 0. 05) in the proliferation between OPN gene transfected and non-transfected MCF-7 cells, which suggested that the expression of OPN gene could stimulate the proliferation of MCF-7 cells.

  15. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  16. A chronological expression profile of gene activity during embryonic mouse brain development.

    PubMed

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  17. Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks

    USDA-ARS?s Scientific Manuscript database

    Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...

  18. 3'-UTR-located inverted Alu repeats facilitate mRNA translational repression and stress granule accumulation

    PubMed Central

    Fitzpatrick, Terry; Huang, Sui

    2012-01-01

    Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648

  19. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  20. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparisons of Robustness and Sensitivity between Cancer and Normal Cells by Microarray Data

    PubMed Central

    Chu, Liang-Hui; Chen, Bor-Sen

    2008-01-01

    Robustness is defined as the ability to uphold performance in face of perturbations and uncertainties, and sensitivity is a measure of the system deviations generated by perturbations to the system. While cancer appears as a robust but fragile system, few computational and quantitative evidences demonstrate robustness tradeoffs in cancer. Microarrays have been widely applied to decipher gene expression signatures in human cancer research, and quantification of global gene expression profiles facilitates precise prediction and modeling of cancer in systems biology. We provide several efficient computational methods based on system and control theory to compare robustness and sensitivity between cancer and normal cells by microarray data. Measurement of robustness and sensitivity by linear stochastic model is introduced in this study, which shows oscillations in feedback loops of p53 and demonstrates robustness tradeoffs that cancer is a robust system with some extreme fragilities. In addition, we measure sensitivity of gene expression to perturbations in other gene expression and kinetic parameters, discuss nonlinear effects in feedback loops of p53 and extend our method to robustness-based cancer drug design. PMID:19259409

  2. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  3. Kindness in the blood: A randomized controlled trial of the gene regulatory impact of prosocial behavior.

    PubMed

    Nelson-Coffey, S Katherine; Fritz, Megan M; Lyubomirsky, Sonja; Cole, Steve W

    2017-07-01

    Prosocial behavior is linked to longevity, but few studies have experimentally manipulated prosocial behavior to identify the causal mechanisms underlying this association. One possible mediating pathway involves changes in gene expression that may subsequently influence disease development or resistance. In the current study, we examined changes in a leukocyte gene expression profile known as the Conserved Transcriptional Response to Adversity (CTRA) in 159 adults who were randomly assigned for 4 weeks to engage in prosocial behavior directed towards specific others, prosocial behavior directed towards the world in general, self-focused kindness, or a neutral control task. Those randomized to prosocial behavior towards specific others demonstrated improvements (i.e., reductions) in leukocyte expression of CTRA indicator genes. No significant changes in CTRA gene expression were observed in the other 3 conditions. These findings suggest that prosocial behavior can causally impact leukocyte gene expression profiles in ways that might potentially help explain the previously observed health advantages associated with social ties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    NASA Technical Reports Server (NTRS)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  5. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    PubMed

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  6. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  7. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depto, A.S.; Stenberg, R.M.

    1989-03-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection ofmore » the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene.« less

  8. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods

    PubMed Central

    Ali, Shahin S.; Shao, Jonathan; Lary, David J.; Strem, Mary D.; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2017-01-01

    Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a Phytophthora species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds. PMID:28261234

  9. Analysis of the Nicotiana tabacum Stigma/Style Transcriptome Reveals Gene Expression Differences between Wet and Dry Stigma Species1[W][OA

    PubMed Central

    Quiapim, Andréa C.; Brito, Michael S.; Bernardes, Luciano A.S.; daSilva, Idalete; Malavazi, Iran; DePaoli, Henrique C.; Molfetta-Machado, Jeanne B.; Giuliatti, Silvana; Goldman, Gustavo H.; Goldman, Maria Helena S.

    2009-01-01

    The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process. PMID:19052150

  10. Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra

    PubMed Central

    Hwang, Jung Shan; Takaku, Yasuharu; Momose, Tsuyoshi; Adamczyk, Patrizia; Özbek, Suat; Ikeo, Kazuho; Khalturin, Konstantin; Hemmrich, Georg; Bosch, Thomas C. G.; Holstein, Thomas W.; David, Charles N.; Gojobori, Takashi

    2010-01-01

    Taxonomically restricted genes or lineage-specific genes contribute to morphological diversification in metazoans and provide unique functions for particular taxa in adapting to specific environments. To understand how such genes arise and participate in morphological evolution, we have investigated a gene called nematogalectin in Hydra, which has a structural role in the formation of nematocysts, stinging organelles that are unique to the phylum Cnidaria. Nematogalectin is a 28-kDa protein with an N-terminal GlyXY domain (glycine followed by two hydrophobic amino acids), which can form a collagen triple helix, followed by a galactose-binding lectin domain. Alternative splicing of the nematogalectin transcript allows the gene to encode two proteins, nematogalectin A and nematogalectin B. We demonstrate that expression of nematogalectin A and B is mutually exclusive in different nematocyst types: Desmonemes express nematogalectin B, whereas stenoteles and isorhizas express nematogalectin B early in differentiation, followed by nematogalectin A. Like Hydra, the marine hydrozoan Clytia also has two nematogalectin transcripts, which are expressed in different nematocyte types. By comparison, anthozoans have only one nematogalectin gene. Gene phylogeny indicates that tandem duplication of nematogalectin B exons gave rise to nematogalectin A before the divergence of Anthozoa and Medusozoa and that nematogalectin A was subsequently lost in Anthozoa. The emergence of nematogalectin A may have played a role in the morphological diversification of nematocysts in the medusozoan lineage. PMID:20937891

  11. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  12. Gene expression of H+-pumps in plasma and vacuolar membranes of corn root cells under the effect of sodium ions and bioactive preparations.

    PubMed

    Kovalenko, N O; Palladina, T A

    2016-01-01

    Four isoforms of H+-ATPase of plasma membrane: MHA1, MHA2, MHA3, MHA4 are expressed in the corn seedling roots with prevalence of genes MHA3 і MHA4. The exposure of seedlings in the presence of 0.1 M NaCl activated the expression of MHA4 gene isoform, that demonstrates its important role in the processes of adaptation to salinization conditions. In vacuolar membrane, where potential is created by two Н+-pumps, sodium ions activated gene expression of only Н+-АТРase of V-type, taking no effect on the expression of Н+-pyrophosphatase. The seeds pretreatment by synthetic preparations Methyure and Ivine did not affect gene expression of Н+-pumps. Thus we can suppose that the ability of the above preparations to activate functioning of Н+-pumps in the presence of sodium ions is realized at the post-tranlation level.

  13. CMV induces HERV-K and HERV-W expression in kidney transplant recipients.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Gambarino, Stefano; Mareschi, Katia; Ferro, Francesca; Fagioli, Franca; Tovo, Pier-Angelo; Ravanini, Paolo

    2015-07-01

    Human endogenous retrovirus (HERVs) constitute approximately 8% of the human genome. Induction of HERV transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. The aim of this study was to evaluate HERV-K and -W pol gene expression in kidney transplant recipients and to investigate the possible relationship between HERVs gene expression and CMV infection in these patients. Thirty-three samples of kidney transplant patients and twenty healthy blood donors were used to analyze, HERV-K and -W pol gene RNA expression by relative quantitative relative Real-Time PCR. We demonstrated that HERVs pol gene expression levels were higher in kidney transplant recipients than in healthy subjects. Moreover, HERV-K and -W pol gene expression was significantly higher in the group of kidney transplant recipients with high CMV viral load than in the groups with no or moderate CMV viral load. Our data suggest that CMV may facilitate in vivo HERV activation. Published by Elsevier B.V.

  14. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.

    PubMed

    Sham, M H; Vesque, C; Nonchev, S; Marshall, H; Frain, M; Gupta, R D; Whiting, J; Wilkinson, D; Charnay, P; Krumlauf, R

    1993-01-29

    The zinc finger gene Krox20 and many Hox homeobox genes are expressed in segment-restricted domains in the hindbrain. The restricted expression patterns appear before morphological segmentation, suggesting that these transcription factors may play an early role in the establishment and identity of rhombomeric segments. In this paper, we show that the HoxB2 (Hox2.8) gene is normally upregulated in rhombomeres (r) 3, 4, and 5, and we identify an enhancer region upstream of the gene that imposes r3/r5 expression in transgenic mice. This enhancer contains three Krox20-binding sites required in vitro for complex formation with Krox20 protein and in vivo for rhombomere-restricted expression. In transgenic mice, Krox20 expressed in ectopic domains can transactivate a reporter construct containing the HoxB2 r3/r5 enhancer. These data demonstrate that Krox20 is a part of the upstream transcriptional cascade that directly regulates HoxB2 expression during hindbrain segmentation.

  15. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Gillette-Ferguson, I.; Ferguson, D. G.; Poss, K. D.; Moorman, S. J.

    2003-10-01

    Little is known about the effect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart. Zebrafish embryos, at the 18-20 somite-stage, were exposed to simulated-microgravity for 24 hours. The intensity of GFP fluorescence associated with the heart was then determined using fluorescence microscopy. Our measurements indicated that simulated-microgravity induced a 23.9% increase in GFP-associated fluorescence in the heart. In contrast, the caudal notochord showed a 17.5% increase and the embryo as a whole showed only an 8.5% increase in GFP-associated fluorescence. This suggests that there are specific effects on the heart causing the more dramatic increase. These studies indicate that microgravity can influence gene expression and demonstrate the usefulness of this in vivo model of "reporter-gene" expression for studying the effects of microgravity.

  16. Expression of the core antigen gene of hepatitis B virus (HBV) in Acetobacter methanolicus using broad-host-range vectors.

    PubMed

    Schröder, R; Maassen, A; Lippoldt, A; Börner, T; von Baehr, R; Dobrowolski, P

    1991-08-01

    Using the broad-host-range promoter probe vector pRS201 for cloning of phage Acm1 promoters, we established a convenient vector system for expression of heterologous genes in different Gram-negative bacteria. The usefulness of this system was demonstrated by expression of the HBV core gene in Acetobacter methanolicus. Plasmids carrying the HBV core gene downstream of different Acm1-phage promoters were transferred to A. methanolicus, a new potential host for recombinant DNA expression. Using enzyme immunoassay and immunoblot techniques, the amount and composition of core antigen produced in A. methanolicus were compared with that derived from Escherichia coli. The expression of immunoreactive core antigen in A. methanolicus exceeds by sevenfold that in E. coli using an expression system with tandemly arranged promoters. Morphological observations by electron microscopy show that the HBV core gene products isolated from both hosts are assembled into regular spherical particles with a diameter of about 28 nm that are comparable to original viral nucleocapsids.

  17. Alteration of gene expression by alcohol exposure at early neurulation.

    PubMed

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube defects during early neurulation.

  18. Missing data and technical variability in single-cell RNA-sequencing experiments.

    PubMed

    Hicks, Stephanie C; Townes, F William; Teng, Mingxiang; Irizarry, Rafael A

    2017-11-06

    Until recently, high-throughput gene expression technology, such as RNA-Sequencing (RNA-seq) required hundreds of thousands of cells to produce reliable measurements. Recent technical advances permit genome-wide gene expression measurement at the single-cell level. Single-cell RNA-Seq (scRNA-seq) is the most widely used and numerous publications are based on data produced with this technology. However, RNA-seq and scRNA-seq data are markedly different. In particular, unlike RNA-seq, the majority of reported expression levels in scRNA-seq are zeros, which could be either biologically-driven, genes not expressing RNA at the time of measurement, or technically-driven, genes expressing RNA, but not at a sufficient level to be detected by sequencing technology. Another difference is that the proportion of genes reporting the expression level to be zero varies substantially across single cells compared to RNA-seq samples. However, it remains unclear to what extent this cell-to-cell variation is being driven by technical rather than biological variation. Furthermore, while systematic errors, including batch effects, have been widely reported as a major challenge in high-throughput technologies, these issues have received minimal attention in published studies based on scRNA-seq technology. Here, we use an assessment experiment to examine data from published studies and demonstrate that systematic errors can explain a substantial percentage of observed cell-to-cell expression variability. Specifically, we present evidence that some of these reported zeros are driven by technical variation by demonstrating that scRNA-seq produces more zeros than expected and that this bias is greater for lower expressed genes. In addition, this missing data problem is exacerbated by the fact that this technical variation varies cell-to-cell. Then, we show how this technical cell-to-cell variability can be confused with novel biological results. Finally, we demonstrate and discuss how batch-effects and confounded experiments can intensify the problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Comparative analysis of cis-regulation following stroke and seizures in subspaces of conserved eigensystems

    PubMed Central

    2010-01-01

    Background It is often desirable to separate effects of different regulators on gene expression, or to identify effects of the same regulator across several systems. Here, we focus on the rat brain following stroke or seizures, and demonstrate how the two tasks can be approached simultaneously. Results We applied SVD to time-series gene expression datasets from the rat experimental models of stroke and seizures. We demonstrate conservation of two eigensystems, reflecting inflammation and/or apoptosis (eigensystem 2) and neuronal synaptic activity (eigensystem 3), between the stroke and seizures. We analyzed cis-regulation of gene expression in the subspaces of the conserved eigensystems. Bayesian networks analysis was performed separately for either experimental model, with cross-system validation of the highest-ranking features. In this way, we correctly re-discovered the role of AP1 in the regulation of apoptosis, and the involvement of Creb and Egr in the regulation of synaptic activity-related genes. We identified a novel antagonistic effect of the motif recognized by the nuclear matrix attachment region-binding protein Satb1 on AP1-driven transcriptional activation, suggesting a link between chromatin loop structure and gene activation by AP1. The effects of motifs binding Satb1 and Creb on gene expression in brain conform to the assumption of the linear response model of gene regulation. Our data also suggest that numerous enhancers of neuronal-specific genes are important for their responsiveness to the synaptic activity. Conclusion Eigensystems conserved between stroke and seizures separate effects of inflammation/apoptosis and neuronal synaptic activity, exerted by different transcription factors, on gene expression in rat brain. PMID:20565733

  20. Electrotransformation and expression of bacterial genes encoding hygromycin phosphotransferase and beta-galactosidase in the pathogenic fungus Histoplasma capsulatum.

    PubMed

    Woods, J P; Heinecke, E L; Goldman, W E

    1998-04-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.

  1. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  2. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatmentmore » with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.« less

  3. Generation of murine induced pluripotent stem cells by using high-density distributed electrodes network.

    PubMed

    Lu, Ming-Yu; Li, Zhihong; Hwang, Shiaw-Min; Linju Yen, B; Lee, Gwo-Bin

    2015-09-01

    This study reports a robust method of gene transfection in a murine primary cell model by using a high-density electrodes network (HDEN). By demonstrating high cell viability after gene transfection and successful expression of transgenes including fluorescent proteins, the HDEN device shows great promise as a solution in which reprogramming efficiency using non-viral induction for generation of murine induced pluripotent stem cells (iPSCs) is optimized. High and steady transgene expression levels in host cells of iPSCs can be demonstrated using this method. Moreover, the HDEN device achieved successful gene transfection with a low voltage of less than 180 V while requiring relatively low cell numbers (less than 1.5 × 10(4) cells). The results are comparable to current conventional methods, demonstrating a reasonable fluorescent-plasmid transfection rate (42.4% in single transfection and 24.5% in triple transfection) and high cell viability of over 95%. The gene expression levels of each iPSC factor was measured to be over 10-fold higher than that reported in previous studies using a single mouse embryonic fibroblast cell. Our results demonstrate that the generation of iPSCs using HDEN transfection of plasmid DNA may be a feasible and safe alternative to using viral transfection methods in the near future.

  4. Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Baumohl, Jason K.; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W.; Arkin, Adam P.

    2011-01-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  5. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene.

    PubMed

    Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia; Strain, Anna K; Goldman, Oksana; Rice, Stephen A

    2010-03-01

    During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.

  6. Salinity-related variation in gene expression in wild populations of the black-chinned tilapia from various West African coastal marine, estuarine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Tine, Mbaye; McKenzie, David J.; Bonhomme, François; Durand, Jean-Dominique

    2011-01-01

    This study measured the relative expression of the genes coding for Na +, K +-ATPase 1α(NAKA), voltage-dependent anion channel (VDAC), cytochrome c oxidase-1 (COX), and NADH dehydrogenase (NDH), in gills of six wild populations of a West African tilapia species, acclimatised to a range of seasonal (rainy or dry) salinities in coastal, estuarine and freshwater sites. Previous laboratory experiments have demonstrated that these genes, involved in active ion transport, oxidative phosphorylation, and intra-cellular ATP transport, are relatively over-expressed in gill tissues of this species acclimated to high salinity. Positive correlations between relative expression and ambient salinity were found for all genes in the wild populations (Spearman rank correlation, p < 0.05), although for some genes these were only significant in either the rainy season or dry season. Most significantly, however, relative expression was positively correlated amongst the four genes, indicating that they are functionally interrelated in adaptation of Sarotherodon melanotheron to salinity variations in its natural environment. In the rainy season, when salinity was unstable and ranged between zero and 37 psu across the sites, overall mean expression of the genes was higher than in the dry season, which may have reflected more variable particularly sudden fluctuations in salinity and poorer overall water quality. In the dry season, when the salinity is more stable but ranged between zero and 100 psu across the sites, NAKA, NDH and VDAC expression revealed U-shaped relationships with lowest relative expression at salinities approaching seawater, between 25 and 45 psu. Although it is not simple to establish direct relationship between gene expression levels and energy requirement for osmoregulation, these results may indicate that costs of adaptation to salinity are lowest in seawater, the natural environment of this species. While S. melanotheron can colonise environments with extremely high salinities, up to 100 psu, this was related to high relative expression for all genes studied, indicating that this imposes increased energy demand for osmotic homeostasis in gill tissues. This study is the first to demonstrate, in fish and in wild populations, that expression of NAKA, VDAC, NDH and COX are interrelated in gill tissues, and are involved in long-term acclimatisation to a salinity range between 0 and 100 psu.

  7. Striking Similarity in the Gene Expression Levels of Individual Myc Module Members among ESCs, EpiSCs, and Partial iPSCs

    PubMed Central

    Hirasaki, Masataka; Hiraki-Kamon, Keiko; Kamon, Masayoshi; Suzuki, Ayumu; Katano, Miyuki; Nishimoto, Masazumi; Okuda, Akihiko

    2013-01-01

    Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties. PMID:24386274

  8. o-p′-DDT-mediated uterotrophy and gene expression in immature C57BL/6 mice and Sprague–Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwekel, Joshua C.; Forgacs, Agnes L.; Center for Integrative Toxicology, Michigan State University, East Lansing, MI

    1,1,1-Trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p′-DDT) is an organochlorine pesticide and endocrine disruptor known to activate the estrogen receptor. Comprehensive ligand- and species-comparative dose- and time-dependent studies were conducted to systematically assess the uterine physiological, morphological and gene expression responses elicited by o,p′-DDT and ethynyl estradiol (EE) in immature ovariectomized C57BL/6 mice and Sprague–Dawley rats. Custom cDNA microarrays were used to identify conserved and divergent differential gene expression responses. A total of 1256 genes were differentially expressed by both ligands in both species, 559 of which exhibited similar temporal expression profiles suggesting that o,p′-DDT elicits estrogenic effects at high doses when compared to EE.more » However, 51 genes exhibited species-specific uterine expression elicited by o,p′-DDT. For example, carbonic anhydrase 2 exhibited species- and ligand-divergent expression as confirmed by quantitative real-time PCR. The identification of comparable temporal phenotypic responses linked to gene expression demonstrates that systematic comparative gene expression assessments are valuable for elucidating conserved and divergent estrogen signaling mechanisms in rodent uterotrophy. - Highlights: • o,p′-DDT and enthynyl estradiol (EE) both elicit uterotrophy in mice and rats. • o,p′-DDT and EE have different kinetics in uterine wet weight induction. • o,p′-DDT elicited stromal hypertrophy in rats but myometrial hypertrophy in mice. • 1256 genes were differentially expressed by both ligands in both species. • Only 51 genes had species-specific uterine expression.« less

  9. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns

    PubMed Central

    Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo

    2017-01-01

    Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455

  10. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses.

    PubMed

    Proost, Sebastian; Mutwil, Marek

    2018-05-01

    The recent accumulation of gene expression data in the form of RNA sequencing creates unprecedented opportunities to study gene regulation and function. Furthermore, comparative analysis of the expression data from multiple species can elucidate which functional gene modules are conserved across species, allowing the study of the evolution of these modules. However, performing such comparative analyses on raw data is not feasible for many biologists. Here, we present CoNekT (Co-expression Network Toolkit), an open source web server, that contains user-friendly tools and interactive visualizations for comparative analyses of gene expression data and co-expression networks. These tools allow analysis and cross-species comparison of (i) gene expression profiles; (ii) co-expression networks; (iii) co-expressed clusters involved in specific biological processes; (iv) tissue-specific gene expression; and (v) expression profiles of gene families. To demonstrate these features, we constructed CoNekT-Plants for green alga, seed plants and flowering plants (Picea abies, Chlamydomonas reinhardtii, Vitis vinifera, Arabidopsis thaliana, Oryza sativa, Zea mays and Solanum lycopersicum) and thus provide a web-tool with the broadest available collection of plant phyla. CoNekT-Plants is freely available from http://conekt.plant.tools, while the CoNekT source code and documentation can be found at https://github.molgen.mpg.de/proost/CoNekT/.

  11. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.

    PubMed

    Fisher, Andrew G; Seaborne, Robert A; Hughes, Thomas M; Gutteridge, Alex; Stewart, Claire; Coulson, Judy M; Sharples, Adam P; Jarvis, Jonathan C

    2017-12-01

    Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)-administered to the common peroneal nerve-resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-surgery controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity.-Fisher, A. G., Seaborne, R. A., Hughes, T. M., Gutteridge, A., Stewart, C., Coulson, J. M., Sharples, A. P., Jarvis, J. C. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. © FASEB.

  12. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  13. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications.

    PubMed

    Muhammad, Izhar; Jing, Xiu-Qing; Shalmani, Abdullah; Ali, Muhammad; Yi, Shi; Gan, Peng-Fei; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming

    2018-05-12

    The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.

  14. Tobacco use induces anti-apoptotic, proliferative patterns of gene expression in circulating leukocytes of Caucasian males

    PubMed Central

    Charles, Peter C; Alder, Brian D; Hilliard, Eleanor G; Schisler, Jonathan C; Lineberger, Robert E; Parker, Joel S; Mapara, Sabeen; Wu, Samuel S; Portbury, Andrea; Patterson, Cam; Stouffer, George A

    2008-01-01

    Background Strong epidemiologic evidence correlates tobacco use with a variety of serious adverse health effects, but the biological mechanisms that produce these effects remain elusive. Results We analyzed gene transcription data to identify expression spectra related to tobacco use in circulating leukocytes of 67 Caucasian male subjects. Levels of cotinine, a nicotine metabolite, were used as a surrogate marker for tobacco exposure. Significance Analysis of Microarray and Gene Set Analysis identified 109 genes in 16 gene sets whose transcription levels were differentially regulated by nicotine exposure. We subsequently analyzed this gene set by hyperclustering, a technique that allows the data to be clustered by both expression ratio and gene annotation (e.g. Gene Ontologies). Conclusion Our results demonstrate that tobacco use affects transcription of groups of genes that are involved in proliferation and apoptosis in circulating leukocytes. These transcriptional effects include a repertoire of transcriptional changes likely to increase the incidence of neoplasia through an altered expression of genes associated with transcription and signaling, interferon responses and repression of apoptotic pathways. PMID:18710571

  15. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  16. Different gene expressions between cattle and yak provide insights into high-altitude adaptation.

    PubMed

    Wang, K; Yang, Y; Wang, L; Ma, T; Shang, H; Ding, L; Han, J; Qiu, Q

    2016-02-01

    DNA sequence variation has been widely reported as the genetic basis for adaptation, in both humans and other animals, to the hypoxic environment experienced at high altitudes. However, little is known about the patterns of gene expression underlying such hypoxic adaptations. In this study, we examined the differences in the transcriptomes of four organs (heart, kidney, liver and lung) between yak and cattle, a pair of closely related species distributed at high and low altitudes respectively. Of the four organs examined, heart shows the greatest differentiation between the two species in terms of gene expression profiles. Detailed analyses demonstrated that some genes associated with the oxygen supply system and the defense systems that respond to threats of hypoxia are differentially expressed. In addition, genes with significantly differentiated patterns of expression in all organs exhibited an unexpected uniformity of regulation along with an elevated frequency of nonsynonymous substitutions. This co-evolution of protein sequences and gene expression patterns is likely to be correlated with the optimization of the yak metabolic system to resist hypoxia. © 2015 Stichting International Foundation for Animal Genetics.

  17. Dose-response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-07-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.

  18. Expression profiles of adult T-cell leukemia–lymphoma and associations with clinical responses to zidovudine and interferon α

    PubMed Central

    ALIZADEH, ASH A.; BOHEN, SEAN P.; LOSSOS, CHEN; MARTINEZ-CLIMENT, JOSE A.; RAMOS, JUAN CARLOS; CUBEDO-GIL, ELENA; HARRINGTON, WILLIAM J.; LOSSOS, IZIDORE S.

    2014-01-01

    Adult T-cell leukemia–lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon α (IFNα). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT–IFNα therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT–IFNα differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT–IFNα therapy may provide novel insights into the mechanisms of action in ATLL. PMID:20370541

  19. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders

    PubMed Central

    Haney, Robert A.; Clarke, Thomas H.; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y.; Ayoub, Nadia A.; Garb, Jessica E.

    2016-01-01

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576

  20. Molecular Profile of Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis

    PubMed Central

    Edwards, Christopher J; Feldman, Jeffrey L; Beech, Jonathan; Shields, Kathleen M; Stover, Jennifer A; Trepicchio, William L; Larsen, Glenn; Foxwell, Brian MJ; Brennan, Fionula M; Feldmann, Marc; Pittman, Debra D

    2007-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory arthritis. Currently, diagnosis of RA may take several weeks, and factors used to predict a poor prognosis are not always reliable. Gene expression in RA may consist of a unique signature. Gene expression analysis has been applied to synovial tissue to define molecularly distinct forms of RA; however, expression analysis of tissue taken from a synovial joint is invasive and clinically impractical. Recent studies have demonstrated that unique gene expression changes can be identified in peripheral blood mononuclear cells (PBMCs) from patients with cancer, multiple sclerosis, and lupus. To identify RA disease-related genes, we performed a global gene expression analysis. RNA from PBMCs of 9 RA patients and 13 normal volunteers was analyzed on an oligonucleotide array. Compared with normal PBMCs, 330 transcripts were differentially expressed in RA. The differentially regulated genes belong to diverse functional classes and include genes involved in calcium binding, chaperones, cytokines, transcription, translation, signal transduction, extracellular matrix, integral to plasma membrane, integral to intracellular membrane, mitochondrial, ribosomal, structural, enzymes, and proteases. A k-nearest neighbor analysis identified 29 transcripts that were preferentially expressed in RA. Ten genes with increased expression in RA PBMCs compared with controls mapped to a RA susceptibility locus, 6p21.3. These results suggest that analysis of RA PBMCs at the molecular level may provide a set of candidate genes that could yield an easily accessible gene signature to aid in early diagnosis and treatment. PMID:17515956

  1. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  2. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Zaheed; Department of Pathology, Harvard Medical School, Boston, MA; Almeciga, Ingrid

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60more » cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.« less

  3. Glioma IL13Rα2 Is Associated with Mesenchymal Signature Gene Expression and Poor Patient Prognosis

    PubMed Central

    Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J.; Barish, Michael E.

    2013-01-01

    A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials. PMID:24204956

  4. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis.

    PubMed

    Brown, Christine E; Warden, Charles D; Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J; Barish, Michael E

    2013-01-01

    A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.

  5. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.

    PubMed

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-20

    The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits' hearts after SXSM treatment. Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain.

  6. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain. PMID:28091410

  7. Delayed inflammatory mRNA and protein expression after spinal cord injury

    PubMed Central

    2011-01-01

    Background Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. Methods Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. Results Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. Conclusions These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss. PMID:21975064

  8. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    PubMed

    Reddy, Anupama; Growney, Joseph D; Wilson, Nick S; Emery, Caroline M; Johnson, Jennifer A; Ward, Rebecca; Monaco, Kelli A; Korn, Joshua; Monahan, John E; Stump, Mark D; Mapa, Felipa A; Wilson, Christopher J; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J; Myer, Vic E; Ettenberg, Seth A; Schlegel, Robert; Sellers, William R; Huet, Heather A; Lehár, Joseph

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  9. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages

    PubMed Central

    Reddy, Anupama; Growney, Joseph D.; Wilson, Nick S.; Emery, Caroline M.; Johnson, Jennifer A.; Ward, Rebecca; Monaco, Kelli A.; Korn, Joshua; Monahan, John E.; Stump, Mark D.; Mapa, Felipa A.; Wilson, Christopher J.; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J.; Myer, Vic E.; Ettenberg, Seth A.; Schlegel, Robert; Sellers, William R.

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response. PMID:26378449

  10. A riboswitch-regulated antisense RNA in Listeria monocytogenes.

    PubMed

    Mellin, J R; Tiensuu, Teresa; Bécavin, Christophe; Gouin, Edith; Johansson, Jörgen; Cossart, Pascale

    2013-08-06

    Riboswitches are ligand-binding elements located in 5' untranslated regions of messenger RNAs, which regulate expression of downstream genes. In Listeria monocytogenes, a vitamin B12-binding (B12) riboswitch was identified, not upstream of a gene but downstream, and antisense to the adjacent gene, pocR, suggesting it might regulate pocR in a nonclassical manner. In Salmonella enterica, PocR is a transcription factor that is activated by 1,2-propanediol, and subsequently activates expression of the pdu genes. The pdu genes mediate propanediol catabolism and are implicated in pathogenesis. As enzymes involved in propanediol catabolism require B12 as a cofactor, we hypothesized that the Listeria B12 riboswitch might be involved in pocR regulation. Here we demonstrate that the B12 riboswitch is transcribed as part of a noncoding antisense RNA, herein named AspocR. In the presence of B12, the riboswitch induces transcriptional termination, causing aspocR to be transcribed as a short transcript. In contrast, in the absence of B12, aspocR is transcribed as a long antisense RNA, which inhibits pocR expression. Regulation by AspocR ensures that pocR, and consequently the pdu genes, are maximally expressed only when both propanediol and B12 are present. Strikingly, AspocR can inhibit pocR expression in trans, suggesting it acts through a direct interaction with pocR mRNA. Together, this study demonstrates how pocR and the pdu genes can be regulated by B12 in bacteria and extends the classical definition of riboswitches from elements governing solely the expression of mRNAs to a wider role in controlling transcription of noncoding RNAs.

  11. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugino, Noriko; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507; Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansionmore » of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment favors hematopoietic recovery after BMT in mice.« less

  12. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    PubMed Central

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of the transcriptomic response of this pathway to variations in nutrient availability. PMID:25050624

  13. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing.

    PubMed

    Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A

    2018-01-01

    Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.

  14. Genome-wide characterization of mammalian promoters with distal enhancer functions.

    PubMed

    Dao, Lan T M; Galindo-Albarrán, Ariel O; Castro-Mondragon, Jaime A; Andrieu-Soler, Charlotte; Medina-Rivera, Alejandra; Souaid, Charbel; Charbonnier, Guillaume; Griffon, Aurélien; Vanhille, Laurent; Stephen, Tharshana; Alomairi, Jaafar; Martin, David; Torres, Magali; Fernandez, Nicolas; Soler, Eric; van Helden, Jacques; Puthier, Denis; Spicuglia, Salvatore

    2017-07-01

    Gene expression in mammals is precisely regulated by the combination of promoters and gene-distal regulatory regions, known as enhancers. Several studies have suggested that some promoters might have enhancer functions. However, the extent of this type of promoters and whether they actually function to regulate the expression of distal genes have remained elusive. Here, by exploiting a high-throughput enhancer reporter assay, we unravel a set of mammalian promoters displaying enhancer activity. These promoters have distinct genomic and epigenomic features and frequently interact with other gene promoters. Extensive CRISPR-Cas9 genomic manipulation demonstrated the involvement of these promoters in the cis regulation of expression of distal genes in their natural loci. Our results have important implications for the understanding of complex gene regulation in normal development and disease.

  15. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1). Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    PubMed

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  17. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    PubMed Central

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  18. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    PubMed Central

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  19. Mapping the expression of the sex determining factor Doublesex1 in Daphnia magna using a knock-in reporter.

    PubMed

    Nong, Quang Dang; Mohamad Ishak, Nur Syafiqah; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-11-02

    Sexually dimorphic traits are common and widespread among animals. The expression of the Doublesex-/Mab-3-domain (DM-domain) gene family has been widely studied in model organisms and has been proven to be essential for the development and maintenance of sex-specific traits. However, little is known about the detailed expression patterns in non-model organisms. In the present study, we demonstrated the spatiotemporal expression of the DM-domain gene, doublesex1 (dsx1), in the crustacean Daphnia magna, which parthenogenetically produces males in response to environmental cues. We developed a dsx1 reporter strain to track dsx1 activity in vivo by inserting the mCherry gene into the dsx1 locus using the TALEN-mediated knock-in approach. After confirming dsx1 expression in male-specific traits in juveniles and adults, we performed time-lapse imaging of embryogenesis. Shortly after gastrulation stage, a presumptive primary organiser, named cumulus, first showed male-specific dsx1 expression. This cell mass moved to the posterior growth zone that distributes dsx1-expressing progenitor cells across the body during axial elongation, before embryos start male-specific dsx1 expression in sexually dimorphic structures. The present study demonstrated the sex-specific dsx1 expression in cell populations involved in basal body formation.

  20. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  1. Large-scale identification of differentially expressed genes during pupa development reveals solute carrier gene is essential for pupal pigmentation in Chilo suppressalis.

    PubMed

    Sun, Yang; Huang, Shuijin; Wang, Shuping; Guo, Dianhao; Ge, Chang; Xiao, Huamei; Jie, Wencai; Yang, Qiupu; Teng, Xiaolu; Li, Fei

    2017-04-01

    Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters.

    PubMed

    Miyata, Luzia Yuriko; Harakava, Ricardo; Stipp, Liliane Cristina Libório; Mendes, Beatriz Madalena Januzzi; Appezzato-da-Glória, Beatriz; de Assis Alves Mourão Filho, Francisco

    2012-11-01

    Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the β-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.

  3. Variation of gene expression in Bacillus subtilis samples of fermentation replicates.

    PubMed

    Zhou, Ying; Yu, Wen-Bang; Ye, Bang-Ce

    2011-06-01

    The application of comprehensive gene expression profiling technologies to compare wild and mutated microorganism samples or to assess molecular differences between various treatments has been widely used. However, little is known about the normal variation of gene expression in microorganisms. In this study, an Agilent customized microarray representing 4,106 genes was used to quantify transcript levels of five-repeated flasks to assess normal variation in Bacillus subtilis gene expression. CV analysis and analysis of variance were employed to investigate the normal variance of genes and the components of variance, respectively. The results showed that above 80% of the total variation was caused by biological variance. For the 12 replicates, 451 of 4,106 genes exhibited variance with CV values over 10%. The functional category enrichment analysis demonstrated that these variable genes were mainly involved in cell type differentiation, cell type localization, cell cycle and DNA processing, and spore or cyst coat. Using power analysis, the minimal biological replicate number for a B. subtilis microarray experiment was determined to be six. The results contribute to the definition of the baseline level of variability in B. subtilis gene expression and emphasize the importance of replicate microarray experiments.

  4. A big data pipeline: Identifying dynamic gene regulatory networks from time-course Gene Expression Omnibus data with applications to influenza infection.

    PubMed

    Carey, Michelle; Ramírez, Juan Camilo; Wu, Shuang; Wu, Hulin

    2018-07-01

    A biological host response to an external stimulus or intervention such as a disease or infection is a dynamic process, which is regulated by an intricate network of many genes and their products. Understanding the dynamics of this gene regulatory network allows us to infer the mechanisms involved in a host response to an external stimulus, and hence aids the discovery of biomarkers of phenotype and biological function. In this article, we propose a modeling/analysis pipeline for dynamic gene expression data, called Pipeline4DGEData, which consists of a series of statistical modeling techniques to construct dynamic gene regulatory networks from the large volumes of high-dimensional time-course gene expression data that are freely available in the Gene Expression Omnibus repository. This pipeline has a consistent and scalable structure that allows it to simultaneously analyze a large number of time-course gene expression data sets, and then integrate the results across different studies. We apply the proposed pipeline to influenza infection data from nine studies and demonstrate that interesting biological findings can be discovered with its implementation.

  5. Homoeolog-specific transcriptional bias in allopolyploid wheat

    PubMed Central

    2010-01-01

    Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species. PMID:20849627

  6. Gene Selection and Cancer Classification: A Rough Sets Based Approach

    NASA Astrophysics Data System (ADS)

    Sun, Lijun; Miao, Duoqian; Zhang, Hongyun

    Indentification of informative gene subsets responsible for discerning between available samples of gene expression data is an important task in bioinformatics. Reducts, from rough sets theory, corresponding to a minimal set of essential genes for discerning samples, is an efficient tool for gene selection. Due to the compuational complexty of the existing reduct algoritms, feature ranking is usually used to narrow down gene space as the first step and top ranked genes are selected . In this paper,we define a novel certierion based on the expression level difference btween classes and contribution to classification of the gene for scoring genes and present a algorithm for generating all possible reduct from informative genes.The algorithm takes the whole attribute sets into account and find short reduct with a significant reduction in computational complexity. An exploration of this approach on benchmark gene expression data sets demonstrates that this approach is successful for selecting high discriminative genes and the classification accuracy is impressive.

  7. Identification of Actinobacillus pleuropneumoniae Genes Preferentially Expressed During Infection Using In Vivo-Induced Antigen Technology (IVIAT).

    PubMed

    Zhang, Fei; Zhang, Yangyi; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Wu, Rui; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Zhao, Qin; Cao, Sanjie

    2015-10-01

    Porcine pleuropneumonia is an infectious disease caused by Actinobacillus pleuropneumoniae. The identification of A. pleuropneumoniae genes, specially expressed in vivo, is a useful tool to reveal the mechanism of infection. IVIAT was used in this work to identify antigens expressed in vivo during A. pleuropneumoniae infection, using sera from individuals with chronic porcine pleuropneumonia. Sequencing of DNA inserts from positive clones showed 11 open reading frames with high homology to A. pleuropneumoniae genes. Based on sequence analysis, proteins encoded by these genes were involved in metabolism, replication, transcription regulation, and signal transduction. Moreover, three function-unknown proteins were also indentified in this work. Expression analysis using quantitative real-time PCR showed that most of the genes tested were up-regulated in vivo relative to their expression levels in vitro. IVI (in vivoinduced) genes that were amplified by PCR in different A. pleuropneumoniae strains showed that these genes could be detected in almost all of the strains. It is demonstrated that the identified IVI antigen may have important roles in the infection of A. pleuropneumoniae.

  8. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence

    PubMed Central

    Pappas, Christopher J.

    2015-01-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. PMID:26341206

  9. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence.

    PubMed

    Pappas, Christopher J; Picardeau, Mathieu

    2015-11-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    PubMed

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  11. Francisella tularensis alters human neutrophil gene expression: insights into the molecular basis of delayed neutrophil apoptosis

    PubMed Central

    Schwartz, Justin T.; Bandyopadhyay, Sarmistha; Kobayashi, Scott D.; McCracken, Jenna; Whitney, Adeline R.; DeLeo, Frank R.; Allen, Lee-Ann H.

    2013-01-01

    We demonstrated recently that Francisella tularensis profoundly impairs human neutrophil apoptosis, but how this is achieved is largely unknown. Herein we used human oligonucleotide microarrays to test the hypothesis that changes in neutrophil gene expression contribute to this phenotype, and now demonstrate that F. tularensis live vaccine strain (LVS) caused significant changes in neutrophil gene expression over a 24 h time period relative to the uninfected controls. Of ~47,000 genes analyzed, 3,435 were significantly up- or down-regulated by LVS, including 365 unique genes associated with apoptosis and cell survival. Specific targets in this category included genes associated with the intrinsic and extrinsic apoptotic pathways (CFLAR, TNFAIP3, TNFRSF10D, SOD2, BCL2A1, BIRC4, PIM2, TNFSF10, TNFRSF10C, CASP2, and CASP8) and genes that act via the NF B pathway and other mechanisms to prolong cell viability (NFKB1, NFKB2, and RELA, IL1B, CAST, CDK2, GADD45B, BCL3, BIRC3, CDK2, IL1A, PBEF1, IL6, CXCL1, CCL4 and VEGF). The microarray data were confirmed by qPCR and pathway analysis. Moreover, we demonstrate that X-linked inhibitor of apoptosis (XIAP) protein remained abundant in PMNs over 48 h of LVS infection, whereas BAX mRNA and protein were progressively down-regulated. These data strongly suggest that antiapoptotic and pro-survival mechanisms collaborate to sustain the viability of F. tularensis infected neutrophils. PMID:22986450

  12. Genes Responsive to Low-Intensity Pulsed Ultrasound in MC3T3-E1 Preosteoblast Cells

    PubMed Central

    Tabuchi, Yoshiaki; Sugahara, Yuuki; Ikegame, Mika; Suzuki, Nobuo; Kitamura, Kei-ichiro; Kondo, Takashi

    2013-01-01

    Although low-intensity pulsed ultrasound (LIPUS) has been shown to enhance bone fracture healing, the underlying mechanism of LIPUS remains to be fully elucidated. Here, to better understand the molecular mechanism underlying cellular responses to LIPUS, we investigated gene expression profiles in mouse MC3T3-E1 preosteoblast cells exposed to LIPUS using high-density oligonucleotide microarrays and computational gene expression analysis tools. Although treatment of the cells with a single 20-min LIPUS (1.5 MHz, 30 mW/cm2) did not affect the cell growth or alkaline phosphatase activity, the treatment significantly increased the mRNA level of Bglap. Microarray analysis demonstrated that 38 genes were upregulated and 37 genes were downregulated by 1.5-fold or more in the cells at 24-h post-treatment. Ingenuity pathway analysis demonstrated that the gene network U (up) contained many upregulated genes that were mainly associated with bone morphology in the category of biological functions of skeletal and muscular system development and function. Moreover, the biological function of the gene network D (down), which contained downregulated genes, was associated with gene expression, the cell cycle and connective tissue development and function. These results should help to further clarify the molecular basis of the mechanisms of the LIPUS response in osteoblast cells. PMID:24252911

  13. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  14. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362

  15. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana.

    PubMed

    Hebelstrup, Kim H; van Zanten, Martijn; Mandon, Julien; Voesenek, Laurentius A C J; Harren, Frans J M; Cristescu, Simona M; Møller, Ian M; Mur, Luis A J

    2012-09-01

    Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.

  16. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.

  17. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    PubMed

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  18. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.

    PubMed

    Chen, Shuonan; Mar, Jessica C

    2018-06-19

    A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.

  19. Establishment of a New Quality Control and Vaccine Safety Test for Influenza Vaccines and Adjuvants Using Gene Expression Profiling

    PubMed Central

    Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao

    2015-01-01

    We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814

  20. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    PubMed

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  1. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    PubMed

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Occurrence and expression of gene transfer agent genes in marine bacterioplankton.

    PubMed

    Biers, Erin J; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann

    2008-05-01

    Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles ( approximately 50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear.

  3. Occurrence and Expression of Gene Transfer Agent Genes in Marine Bacterioplankton▿

    PubMed Central

    Biers, Erin J.; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann

    2008-01-01

    Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles (∼50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear. PMID:18359833

  4. Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis

    PubMed Central

    Ko, Jae-Hong; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Eun A.; Zhou, Tong

    2014-01-01

    Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts. PMID:24466154

  5. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    PubMed

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  6. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    PubMed

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  7. Characterization of TALE genes expression during the first lineage segregation in mammalian embryos.

    PubMed

    Sonnet, Wendy; Rezsöhazy, Rene; Donnay, Isabelle

    2012-11-01

    Three amino acid loop extension (TALE) homeodomain-containing transcription factors are generally recognized for their role in organogenesis and differentiation during embryogenesis. However, very little is known about the expression and function of Meis, Pbx, and Prep genes during early development. In order to determine whether TALE proteins could contribute to the early cell fate decisions in mammalian development, this study aimed to characterize in a systematic manner the pattern of expression of all Meis, Pbx, and Prep genes from the precompaction to blastocyst stage corresponding to the first step of cell differentiation in mammals. To reveal to what extent TALE genes expression at these early stages is a conserved feature among mammals, this study was performed in parallel in the bovine and mouse models. We demonstrated the transcription and translation of TALE genes, before gastrulation in the two species. At least one member of Meis, Pbx, and Prep subfamilies was found expressed at the RNA and protein levels but different patterns of expression were observed between genes and between species, suggesting specific gene regulations. Taken together, these results suggest a previously unexpected involvement of these factors during the early development in mammals. Copyright © 2012 Wiley Periodicals, Inc.

  8. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  9. Use of High Capacity Terminators in Saccharomyces cerevisiae to Increase mRNA half-life and Improve Gene Expression Control for Metabolic Engineering Applications

    PubMed Central

    Curran, Kathleen A.; Karim, Ashty S.; Gupta, Akash; Alper, Hal S.

    2013-01-01

    Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between a high-capacity terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing a high-capacity terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with a high-capacity terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future. PMID:23856240

  10. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail.

    PubMed

    Gupta, Kartik; Pilli, Vijaya Satish Sekhar; Aradhyam, Gopala Krishna

    2016-10-28

    Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.

  11. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera).

    PubMed

    Schmehl, Daniel R; Teal, Peter E A; Frazier, James L; Grozinger, Christina M

    2014-12-01

    Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediating sensitivity and resistance to pesticides are not well characterized. We explored the impact of coumaphos and fluvalinate, the two most abundant and frequently detected pesticides in the hive, on genome-wide gene expression patterns of honey bee workers. We found significant changes in 1118 transcripts, including genes involved in detoxification, behavioral maturation, immunity, and nutrition. Since behavioral maturation is regulated by juvenile hormone III (JH), we examined effects of these miticides on hormone titers; while JH titers were unaffected, titers of methyl farnesoate (MF), the precursor to JH, were decreased. We further explored the association between nutrition- and pesticide-regulated gene expression patterns and demonstrated that bees fed a pollen-based diet exhibit reduced sensitivity to a third pesticide, chlorpyrifos. Finally, we demonstrated that expression levels of several of the putative pesticide detoxification genes identified in our study and previous studies are also upregulated in response to pollen feeding, suggesting that these pesticides and components in pollen modulate similar molecular response pathways. Our results demonstrate that pesticide exposure can substantially impact expression of genes involved in several core physiological pathways in honey bee workers. Additionally, there is substantial overlap in responses to pesticides and pollen-containing diets at the transcriptional level, and subsequent analyses demonstrated that pollen-based diets reduce workers' pesticide sensitivity. Thus, providing honey bees and other pollinators with high quality nutrition may improve resistance to pesticides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism.

    PubMed

    Gao, Heqi; Zhai, Mingming; Wang, Pan; Zhang, Xuhui; Cai, Jing; Chen, Xiaofei; Shen, Guanghao; Luo, Erping; Jing, Da

    2017-07-01

    Osteoporosis is a skeletal metabolic disease characterized by reduced bone mass and a high susceptibility to fractures, in which osteoblasts and osteoclasts are highly involved in the abnormal bone remodeling processes. Recently, low‑magnitude, high‑frequency whole‑body vibration has been demonstrated to significantly reduce osteopenia experimentally and clinically. However, the underlying mechanism regarding how osteoblastic activity is altered when bone tissues adapt to mechanical vibration remains elusive. The current study systematically investigated the effect and potential molecular signaling mechanisms in mediating the effects of mechanical vibration (0.5 gn, 45 Hz) on primary osteoblasts in vitro. The results of the present study demonstrated that low‑level mechanical stimulation promoted osteoblastic proliferation and extracellular matrix mineralization. In addition, it was also revealed that mechanical vibration induced improved cytoskeleton arrangement in primary osteoblasts. Furthermore, mechanical vibration resulted in significantly increased gene expression of alkaline phosphatase, bone morphogenetic protein 2 and osteoprotegerin, and suppressed sclerostin gene expression, as determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses. Mechanical vibration was observed to upregulate gene and protein expression levels of osteogenesis‑associated biomarkers, including osteocalcin and Runt‑related transcription factor 2. In addition, RT‑qPCR and western blotting analysis demonstrated that mechanical vibration promoted gene and protein expression of canonical Wnt signaling genes, including Wnt3a, low‑density lipoprotein receptor‑related protein 6 and β‑catenin. In conclusion, the present study demonstrated that mechanical vibration stimulates osteoblastic activities and may function through a potential canonical Wnt signaling‑associated mechanism. These findings provided novel information that improves the understanding of the molecular mechanisms involved in osteoblastic activities in response to mechanical vibration, which may facilitate the scientific application of mechanical vibration for the treatment of osteoporosis in the clinic.

  13. In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase

    PubMed Central

    Gori, Jennifer L.; Tian, Xinghui; Swanson, Debra; Gunther, Roland; Shultz, Leonard D.; McIvor, R. Scott; Kaufman, Dan S.

    2009-01-01

    SUMMARY Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene therapy. PMID:19829316

  14. Effects of fescue toxicosis induced by endophyte-infected tall fescue seed on forestomach epithelial gene expression in Angus steers

    USDA-ARS?s Scientific Manuscript database

    A previous report demonstrated that steers exposed to an endophyte-infected tall fescue seed extract had altered rumen epithelial blood flow and decreased ruminal flux of VFA. Thus, this study was conducted to determine whether there are differences in gene expression related to VFA absorption betwe...

  15. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  16. The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana

    PubMed Central

    Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea

    2012-01-01

    The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738

  17. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less

  18. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    PubMed

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  19. [Research on the expression of hemolysin genes of Leptospira in vivo by genechip].

    PubMed

    Zhao, Hui; Bao, Lang

    2012-07-01

    To explore the expression of hemolysin genes of Leptospira in infected host. Amplified the gene segment of hemolysin genes from the genome of Leptospira by PCR for gene probe. Manufacture genechip by the VersArray Chipwriter systerm. The total RNAs of Leptospira before and after infection host were extracted, reversely transcribed to cDNA, after the random PCR, the products were marked with HEX and CY5 respectively, and hybridized to genechip to demonstrate the expression of hemolysin genes of Leptospira. The hemolysin genes LA1029 (Ratio = 0.65), LA1027 (Ratio = 0.53) were up-regulated after infection of host; LA3540 (Ratio = 1.88), LA3937 (Ratio = 5.58), LA1029 (Ratio = 3.00) were up-regulated and LA4004 (Ratio = 0.67) was down-regulated in live than in blood; LA3937 (Ratio = 2.28), LA1029 (Ratio = 2.20) were up-regulated in kidney than in blood. The expression level of hemolysin genes exist observable differences with inducement in vivo and in different organs. These suggested that these genes are probably involved in the pathogenesis and and disease progression.

  20. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    USDA-ARS?s Scientific Manuscript database

    We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...

  1. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    PubMed

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P  < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes

    PubMed Central

    Liu, Weiyi; Shan, Tizhong; Yang, Xin; Liang, Sandra; Zhang, Pengpeng; Liu, Yaqin; Liu, Xiaoqi; Kuang, Shihuan

    2013-01-01

    Summary A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes express higher levels of BAT and beige adipocyte signature genes compared with the Pax3 lineage adipocytes within the same depots. Although both Pax3 and non-Pax3 lineage preadipocytes can give rise to beige adipocytes, the latter contributes more significantly. Consistently, genetic ablation of Pax3 lineage cells in SAT leads to increased expression of beige cell markers. Finally, non-Pax3 lineage beige adipocytes are more responsive to cAMP-agonist-induced Ucp1 expression. Taken together, these results demonstrate widespread heterogeneity in Pax3 lineage origin, and its inverse association with BAT gene expression within and among subcutaneous adipose depots. PMID:23781029

  3. Optimal Scaling of Digital Transcriptomes

    PubMed Central

    Glusman, Gustavo; Caballero, Juan; Robinson, Max; Kutlu, Burak; Hood, Leroy

    2013-01-01

    Deep sequencing of transcriptomes has become an indispensable tool for biology, enabling expression levels for thousands of genes to be compared across multiple samples. Since transcript counts scale with sequencing depth, counts from different samples must be normalized to a common scale prior to comparison. We analyzed fifteen existing and novel algorithms for normalizing transcript counts, and evaluated the effectiveness of the resulting normalizations. For this purpose we defined two novel and mutually independent metrics: (1) the number of “uniform” genes (genes whose normalized expression levels have a sufficiently low coefficient of variation), and (2) low Spearman correlation between normalized expression profiles of gene pairs. We also define four novel algorithms, one of which explicitly maximizes the number of uniform genes, and compared the performance of all fifteen algorithms. The two most commonly used methods (scaling to a fixed total value, or equalizing the expression of certain ‘housekeeping’ genes) yielded particularly poor results, surpassed even by normalization based on randomly selected gene sets. Conversely, seven of the algorithms approached what appears to be optimal normalization. Three of these algorithms rely on the identification of “ubiquitous” genes: genes expressed in all the samples studied, but never at very high or very low levels. We demonstrate that these include a “core” of genes expressed in many tissues in a mutually consistent pattern, which is suitable for use as an internal normalization guide. The new methods yield robustly normalized expression values, which is a prerequisite for the identification of differentially expressed and tissue-specific genes as potential biomarkers. PMID:24223126

  4. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Differential in vivo gene expression of major Leptospira proteins in resistant or susceptible animal models.

    PubMed

    Matsui, Mariko; Soupé, Marie-Estelle; Becam, Jérôme; Goarant, Cyrille

    2012-09-01

    Transcripts of Leptospira 16S rRNA, FlaB, LigB, LipL21, LipL32, LipL36, LipL41, and OmpL37 were quantified in the blood of susceptible (hamsters) and resistant (mice) animal models of leptospirosis. We first validated adequate reference genes and then evaluated expression patterns in vivo compared to in vitro cultures. LipL32 expression was downregulated in vivo and differentially regulated in resistant and susceptible animals. FlaB expression was also repressed in mice but not in hamsters. In contrast, LigB and OmpL37 were upregulated in vivo. Thus, we demonstrated that a virulent strain of Leptospira differentially adapts its gene expression in the blood of infected animals.

  6. ICI 182,780-regulated gene expression in DU145 prostate cancer cells is mediated by estrogen receptor-beta/NFkappaB crosstalk.

    PubMed

    Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei

    2006-04-01

    Estrogen receptor (ER)-beta is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-beta-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 microM ICI. Semiquantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12alpha chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-beta antisense oligonucleotide reduced cellular ER-beta mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFkappaB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-beta and the NFkappaB signaling pathway, denoting a novel mechanism of ER-beta-mediated ICI action. Therefore, combined therapies targeting ER-beta and NFkappaB signaling may be synergistic as treatment for PCa.

  7. ICI 182,780-Regulated Gene Expression in DU145 Prostate Cancer Cells Is Mediated by Estrogen Receptor-β/NFκB Crosstalk1

    PubMed Central

    Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei

    2006-01-01

    Abstract Estrogen receptor (ER)-β is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-β-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 µM ICI. Semi-quantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12α chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-β antisense oligonucleotide reduced cellular ER-β mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFκB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-α and the NFκB signaling pathway, denoting a novel mechanism of ER-β-mediated ICI action. Therefore, combined therapies targeting ER-β and NFκB signaling may be synergistic as treatment for PCa. PMID:16756716

  8. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    PubMed

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  9. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    PubMed Central

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  10. Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Amandine, E-mail: amandine.vargas@voila.fr; Thiery, Maxime, E-mail: thiery.maxime@courrier.uqam.ca; Lafond, Julie, E-mail: lafond.julie@uqam.ca

    2012-03-30

    HERV (Human Endogenous Retrovirus)-encoded envelope proteins are implicated in the development of the placenta. Indeed, Syncytin-1 and -2 play a crucial role in the fusion of human trophoblasts, a key step in placentation. Other studies have identified two other HERV env proteins, namely EnvP(b) and EnvV, both expressed in the placenta. In this study, we have fully characterized both env transcripts and their expression pattern and have assessed their implication in trophoblast fusion. Through RACE analyses, standard spliced transcripts were detected, while EnvV transcripts demonstrated alternative splicing at its 3 Prime end. Promoter activity and expression of both genes weremore » induced in forskolin-stimulated BeWo cells and in primary trophoblasts. Although we have confirmed the fusogenic activity of EnvP(b), overexpression or silencing experiments revealed no impact of this protein on trophoblast fusion. Our results demonstrate that both env genes are expressed in human trophoblasts but are not required for syncytialization.« less

  11. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer

    PubMed Central

    2010-01-01

    Background Gene expression profiling may improve prognostic accuracy in patients with early breast cancer. Our objective was to demonstrate that it is possible to develop a simple molecular signature to predict distant relapse. Methods We included 153 patients with stage I-II hormonal receptor-positive breast cancer. RNA was isolated from formalin-fixed paraffin-embedded samples and qRT-PCR amplification of 83 genes was performed with gene expression assays. The genes we analyzed were those included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Index. The association among gene expression, clinical variables and distant metastasis-free survival was analyzed using Cox regression models. Results An 8-gene prognostic score was defined. Distant metastasis-free survival at 5 years was 97% for patients defined as low-risk by the prognostic score versus 60% for patients defined as high-risk. The 8-gene score remained a significant factor in multivariate analysis and its performance was similar to that of two validated gene profiles: the 70-Gene Signature and the Recurrence Score. The validity of the signature was verified in independent cohorts obtained from the GEO database. Conclusions This study identifies a simple gene expression score that complements histopathological prognostic factors in breast cancer, and can be determined in paraffin-embedded samples. PMID:20584321

  12. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Cancer.gov

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  13. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    PubMed Central

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny

    2012-01-01

    Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624

  14. Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction.

    PubMed

    Piras, B A; Tian, Y; Xu, Y; Thomas, N A; O'Connor, D M; French, B A

    2016-05-01

    Adeno-associated virus (AAV) has been used to direct gene transfer to a variety of tissues, including heart, liver, skeletal muscle, brain, kidney and lung, but it has not previously been shown to effectively target fibroblasts in vivo, including cardiac fibroblasts. We constructed expression cassettes using a modified periostin promoter to drive gene expression in a cardiac myofibroblast-like lineage, with only occasional spillover into cardiomyocyte-like cells. We compared AAV serotypes 6 and 9 and found robust gene expression when the vectors were delivered by systemic injection after myocardial infarction (MI), with little expression in healthy, non-infarcted mice. AAV9 provided expression in a greater number of cells than AAV6, with reporter gene expression visible in the cardiac infarct and border zones from 5 to 62 days post MI, as assessed by luciferase and Cre-activated green fluorescent protein expression. Although common myofibroblast markers were expressed in low abundance, most of the targeted cells expressed myosin IIb, an embryonic form of smooth muscle myosin heavy chain that has previously been associated with myofibroblasts after reperfused MI. This study is the first to demonstrate AAV-mediated expression in a potentially novel myofibroblast-like lineage in mouse hearts post MI and may open new avenues of gene therapy to treat patients surviving MI.

  15. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary.

    PubMed

    Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan

    2016-09-10

    Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.

  16. Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers.

    PubMed

    de Greeff, Astrid; Zadoks, Ruth; Ruuls, Lisette; Toussaint, Mathilda; Nguyen, Thi Kim Anh; Downing, Alison; Rebel, Johanna; Stockhofe-Zurwieden, Norbert; Smith, Hilde

    2013-06-01

    Streptococcus uberis is a highly prevalent causative agent of bovine mastitis, which leads to large economic losses in the dairy industry. The aim of this study was to examine the host response during acute inflammation after experimental challenge with capsulated Strep. uberis. Gene expression in response to Strep. uberis was compared between infected and control quarters in 3 animals. All quarters (n=16) were sampled at 16 different locations. Microarray data showed that 239 genes were differentially expressed between infected and control quarters. No differences in gene expression were observed between the different locations. Microarray data were confirmed for several genes using quantitative PCR analysis. Genes differentially expressed due to early Strep. uberis mastitis represented several stages of the process of infection: (1) pathogen recognition; (2) chemoattraction of neutrophils; (3) tissue repair mechanisms; and (4) bactericidal activity. Three different pathogen recognition genes were induced: ficolins, lipopolysaccharide binding protein, and toll-like receptor 2. Calgranulins were found to be the most strongly upregulated genes during early inflammation. By histology and immunohistochemistry, we demonstrated that changes in gene expression in response to Strep. uberis were induced both in infiltrating somatic milk cells and in mammary epithelial cells, demonstrating that the latter cell type plays a role in milk production as well as immune responsiveness. Given the rapid development of inflammation or mastitis after infection, early diagnosis of (Strep. uberis) mastitis is required for prevention of disease and spread of the pathogen. Insight into host responses could help to design immunomodulatory therapies to dampen inflammation after (early) diagnosis of Strep. uberis mastitis. Future research should focus on development of these early diagnostics and immunomodulatory components for mastitis treatment. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis

    PubMed Central

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological mechanisms and suggested network analysis as an additional criterion for selecting candidates. PMID:26870956

  18. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells.

    PubMed

    Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo

    2018-05-22

    Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.

  19. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species

    PubMed Central

    Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses. PMID:26863232

  20. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species.

    PubMed

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.

  1. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia.

    PubMed Central

    Epstein, L M; Forney, J D

    1984-01-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei. Images PMID:6092921

  2. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  3. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.

    PubMed

    Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling

    2015-03-01

    Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important formore » further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.« less

  5. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  6. Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab.

    PubMed

    Hoffman, Robert W; Merrill, Joan T; Alarcón-Riquelme, Marta M E; Petri, Michelle; Dow, Ernst R; Nantz, Eric; Nisenbaum, Laura K; Schroeder, Krista M; Komocsar, Wendy J; Perumal, Narayanan B; Linnik, Matthew D; Airey, David C; Liu, Yushi; Rocha, Guilherme V; Higgs, Richard E

    2017-03-01

    To characterize baseline gene expression and pharmacodynamically induced changes in whole blood gene expression in 1,760 systemic lupus erythematosus (SLE) patients from 2 phase III, 52-week, randomized, placebo-controlled, double-blind studies in which patients were treated with the BAFF-blocking IgG4 monoclonal antibody tabalumab. Patient samples were obtained from SLE patients from the ILLUMINATE-1 and ILLUMINATE-2 studies, and control samples were obtained from healthy donors. Blood was collected in Tempus tubes at baseline, week 16, and week 52. RNA was analyzed using Affymetrix Human Transcriptome Array 2.0 and NanoString. At baseline, expression of the interferon (IFN) response gene was elevated in patients compared with controls, with 75% of patients being positive for this IFN response gene signature. There was, however, substantial heterogeneity of IFN response gene expression and complex relationships among gene networks. The IFN response gene signature was a predictor of time to disease flare, independent of anti-double-stranded DNA (anti-dsDNA) antibody and C3 and C4 levels, and overall disease activity. Pharmacodynamically induced changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin genes, and were consistent with other pharmacodynamic changes including anti-dsDNA antibody, C3, and immunoglobulin levels. SLE patients demonstrated increased expression of an IFN response gene signature (75% of patients had an elevated IFN response gene signature) at baseline in ILLUMINATE-1 and ILLUMINATE-2. Substantial heterogeneity of gene expression was detected among individual patients and in gene networks. The IFN response gene signature was an independent risk factor for future disease flares. Pharmacodynamic changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab. © 2016, American College of Rheumatology.

  7. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  8. Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice.

    PubMed

    van der Lugt, Benthe; Rusli, Fenni; Lute, Carolien; Lamprakis, Andreas; Salazar, Ethel; Boekschoten, Mark V; Hooiveld, Guido J; Müller, Michael; Vervoort, Jacques; Kersten, Sander; Belzer, Clara; Kok, Dieuwertje E G; Steegenga, Wilma T

    2018-05-16

    The aging process is associated with diminished colonic health. In this study, we applied an integrative approach to reveal potential interactions between determinants of colonic health in aging C57BL/6J mice. Analysis of gut microbiota composition revealed an enrichment of various potential pathobionts, including Desulfovibrio spp . , and a decline of the health-promoting Akkermansia spp . and Lactobacillus spp. during aging. Intraluminal concentrations of various metabolites varied between ages and we found evidence for an increased gut permeability at higher age. Colonic gene expression analysis suggested that during the early phase of aging (between 6 and 12 months), expression of genes involved in epithelial-to-mesenchymal transition and (re)organization of the extracellular matrix were increased. Differential expression of these genes was strongly correlated with Bifidobacterium spp. During the later phase of aging (between 12 and 28 months), gene expression profiles pointed towards a diminished antimicrobial defense and were correlated with an uncultured Gastranaerophilales spp. This study demonstrates that aging is associated with pronounced changes in gut microbiota composition and colonic gene expression. Furthermore, the strong correlations between specific bacterial genera and host gene expression may imply that orchestrated interactions take place in the vicinity of the colonic wall and potentially mediate colonic health during aging.

  9. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    PubMed Central

    Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  10. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  11. Prostate cancer antigen 3 gene expression in peripheral blood and urine sediments from prostate cancer and benign prostatic hyperplasia patients versus healthy individuals.

    PubMed

    Moradi Sardareh, Hemen; Goodarzi, Mohammad Taghi; Yadegar-Azari, Reza; Poorolajal, Jalal; Mousavi-Bahar, Seyed Habibollah; Saidijam, Massoud

    2014-11-30

    To determine the expression of prostate cancer antigen 3 (PCA3) gene in peripheral blood and urine sediments from patients with prostate cancer (PCa) and benign prostatic hyperplasia (BPH) and normal subjects. A total number of 48 patients [24 with biopsy proven prostate cancer (PCa) and 24 with benign prostate hyperplasia (BPH)] were studied. Twenty-four healthy individuals were also recruited as control group. After blood and urine sampling, total RNA was extracted and cDNA was synthesized. Expression of PCA3 gene was assessed by quantitative reverse transcription polymerase chain reaction. Comparison of PCA3 gene expression between control and BPH groups indicated no statistically significant differences in both urine and blood samples. Patients with PCa demonstrated an increased PCA3 gene expression rate compared to control and BPH groups (10.64 and 7.17 folds, respectively). The rate of fold increased PCA3 gene expression in urine was 20.90, 20.90, and 20.35 in patients with PCa, BPH and normal subjects, respectively. Evaluation of PCA3 gene expression can be considered as a reliable marker for detection of PCa. Increased level of this marker in urine sediments is more sensitive than blood for distinguishing between cancerous and non-cancerous groups. 

  12. Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids

    PubMed Central

    Wang, Jianlin; Lee, Jinsuk J.; Tian, Lu; Lee, Hyeon-Se; Chen, Meng; Rao, Sheetal; Wei, Edward N.; Doerge, R. W.; Comai, Luca; Jeffrey Chen, Z.

    2007-01-01

    Polyploidy is an evolutionary innovation, providing extra sets of genetic material for phenotypic variation and adaptation. It is predicted that changes of gene expression by genetic and epigenetic mechanisms are responsible for novel variation in nascent and established polyploids (Liu and Wendel, 2002; Osborn et al., 2003; Pikaard, 2001). Studying gene expression changes in allopolyploids is more complicated than in autopolyploids, because allopolyploids contain more than two sets of genomes originating from divergent, but related, species. Here we describe two methods that are applicable to the genome-wide analysis of gene expression differences resulting from genome duplication in autopolyploids or interactions between homoeologous genomes in allopolyploids. First, we describe an amplified fragment length polymorphism (AFLP)–complementary DNA (cDNA) display method that allows the discrimination of homoeologous loci based on restriction polymorphisms between the progenitors. Second, we describe microarray analyses that can be used to compare gene expression differences between the allopolyploids and respective progenitors using appropriate experimental design and statistical analysis. We demonstrate the utility of these two complementary methods and discuss the pros and cons of using the methods to analyze gene expression changes in autopolyploids and allopolyploids. Furthermore, we describe these methods in general terms to be of wider applicability for comparative gene expression in a variety of evolutionary, genetic, biological, and physiological contexts. PMID:15865985

  13. Molecular screening of xerophilic Aspergillus strains producing mycophenolic acid.

    PubMed

    Mouhamadou, Bello; Sage, Lucile; Périgon, Sophie; Séguin, Virginie; Bouchart, Valérie; Legendre, Patrick; Caillat, Mathilde; Yamouni, Hayet; Garon, David

    2017-02-01

    Mycophenolic acid (MPA) is the fungal secondary metabolite displaying several biological properties. Up to now, screening of fungal strains producing MPA has mainly been the result of the search of this molecule in their culture medium by chemical methods. Here we developed a molecular approach by targeting the expression level of the MpaC gene encoding the polyketide synthase, one of the key enzymes involved in the MPA synthesis. Thirty xerophilic Aspergillus strains were identified using the RNA polymerase II subunit and the β-tubulin genes. Seven Aspergillus species were evidenced. The expression level of the MpaC gene was quantified and compared to the MPA production rate. Only Aspergillus pseudoglaucus and all the eight strains of this species produced MPA. While the MpaC gene was not expressed or weakly expressed in the MPA non-producing strains, all the A. pseudoglaucus strains presented a high level of expression of this gene. The highest expression level of the MpaC gene among the MPA non-producing strains was significantly lower than the lowest expression level of this gene in the MPA producing strains. To our knowledge, this is the first study that demonstrates the effectiveness of molecular approach for the screening of MPA-producing species. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Construction of Expression Vector for Anti-Alpha-Fetoprotein Gene and Its Inhibition Effects on Alpha-Fetoprotein Positive Hepg2 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Zhang, Hui

    As research previously demonstrated, suppression of AFP expression or its biological activities might inhibit the proliferation of AFP positive human hepatocellular carcinoma cells. In this study, we constructed an anti-AFP gene vector and transfected it to HepG2 cells. RT-PCR showed AFP gene expression in the transfected cells was reduced. MTT assay suggested the proliferation of the transfected cells was also inhibited comparing with the untransfected cells. This result provides a new insight into AFP as the target for preventing and treating hepatocellular carcinoma.

  15. [Gene expression analyses of kidney biopsies: the European renal cDNA bank--Kröner-Fresenius biopsy bank].

    PubMed

    Cohen, C D; Kretzler, M

    2009-03-01

    Histological analysis of kidney biopsies is an essential part of our current diagnostic workup of patients with renal disease. Besides the already established diagnostic tools, new methods allow extensive analysis of the sample tissue's gene expression. Using results from a European multicenter study on gene expression analysis of renal biopsies, in this review we demonstrate that this novel approach not only expands the scope of so-called basic research but also might supplement future biopsy diagnostics. The goals are improved diagnosis and more specific therapy choice and prognosis estimates.

  16. Regulation of Plasmodium yoelii oocyst development by strain- and stage-specific small-subunit rRNA.

    PubMed

    Qi, Yanwei; Zhu, Feng; Eastman, Richard T; Fu, Young; Zilversmit, Martine; Pattaradilokrat, Sittiporn; Hong, Lingxian; Liu, Shengfa; McCutchan, Thomas F; Pan, Weiqing; Xu, Wenyue; Li, Jian; Huang, Fusheng; Su, Xin-zhuan

    2015-03-10

    One unique feature of malaria parasites is the differential transcription of structurally distinct rRNA (rRNA) genes at different developmental stages: the A-type genes are transcribed mainly in asexual stages, whereas the S-type genes are expressed mostly in sexual or mosquito stages. Conclusive functional evidence of different rRNAs in regulating stage-specific parasite development, however, is still absent. Here we performed genetic crosses of Plasmodium yoelii parasites with one parent having an oocyst development defect (ODD) phenotype and another producing normal oocysts to identify the gene(s) contributing to the ODD. The parent with ODD--characterized as having small oocysts and lacking infective sporozoites--was obtained after introduction of a plasmid with a green fluorescent protein gene into the parasite genome and subsequent passages in mice. Quantitative trait locus analysis of genome-wide microsatellite genotypes of 48 progeny from the crosses linked an ~200-kb segment on chromosome 6 containing one of the S-type genes (D-type small subunit rRNA gene [D-ssu]) to the ODD. Fine mapping of the plasmid integration site, gene expression pattern, and gene knockout experiments demonstrated that disruption of the D-ssu gene caused the ODD phenotype. Interestingly, introduction of the D-ssu gene into the same parasite strain (self), but not into a different subspecies, significantly affected or completely ablated oocyst development, suggesting a stage- and subspecies (strain)-specific regulation of oocyst development by D-ssu. This study demonstrates that P. yoelii D-ssu is essential for normal oocyst and sporozoite development and that variation in the D-ssu sequence can have dramatic effects on parasite development. Malaria parasites are the only known organisms that express structurally distinct rRNA genes at different developmental stages. The differential expression of these genes suggests that they play unique roles during the complex life cycle of the parasites. Conclusive functional proof of different rRNAs in regulating parasite development, however, is still absent or controversial. Here we functionally demonstrate for the first time that a stage-specifically expressed D-type small-subunit rRNA gene (D-ssu) is essential for oocyst development of the malaria parasite Plasmodium yoelii in the mosquito. This study also shows that variations in D-ssu sequence and/or the timing of transcription may have profound effects on parasite oocyst development. The results show that in addition to protein translation, rRNAs of malaria parasites also regulate parasite development and differentiation in a strain-specific manner, which can be explored for controlling parasite transmission. Copyright © 2015 Qi et al.

  17. VH gene family expression in mice with the xid defect

    PubMed Central

    1991-01-01

    Preferential use of particular VH gene families in the response to specific antigens has been demonstrated in several systems. The lack of responses to certain types of antigens, therefore, could be the result of deletion of or failure to express some VH genes. Because CBA/N mice, which carry the X-linked immunodeficiency (xid) gene defect, have been shown to be unresponsive to thymus-independent polysaccharide antigens, it was of interest to examine if this unresponsiveness could be accounted for by abnormal expression of particular VH gene families. Using in situ hybridization on B cell colonies, we determined the expression of nine VH gene families in CBA/CaHN females (genotypically normal), CBA/N males (xid) and females (xid), and (CBA/N x CBA/CaHN)F1 males (xid) and females (phenotypically normal). Our results indicate that VH gene family expression, including the S107 family, in CBA/N males and F1 males, is similar to that of CBA/CaHN and F1 females with predominant expression of J558, the largest gene family, in all individuals. Interestingly, CBA/N female mice, which carry two defective X chromosomes, as a group expressed significantly reduced levels of the J558 gene family, and as individuals showed variation in which family was predominantly expressed. We conclude that the unresponsiveness of mice with the xid defect to polysaccharide antigens can not attributed to a failure to express the nine VH gene families that we examined. Our findings do not support previous studies (Primi, D., and P.-A. Cazenave 1986. J. Exp. Med. 165:357), which found an absence of expression of the S107 family in xid mice. PMID:1711566

  18. Impact of Solar Radiation on Gene Expression in Bacteria

    PubMed Central

    Matallana-Surget, Sabine; Wattiez, Ruddy

    2013-01-01

    Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another. PMID:28250399

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.

    The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less

  20. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients. © 2014 AlphaMed Press.

  1. Gene Transfer to Chicks Using Lentiviral Vectors Administered via the Embryonic Chorioallantoic Membrane

    PubMed Central

    Hen, Gideon; Yosefi, Sara; Shinder, Dmitry; Or, Adi; Mygdal, Sivan; Condiotti, Reba; Galun, Eithan; Bor, Amir; Sela-Donenfeld, Dalit; Friedman-Einat, Miriam

    2012-01-01

    The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides. PMID:22606269

  2. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Cancer.gov

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  3. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

    PubMed

    Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping

    2016-08-26

    Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.

  4. Superior Cross-Species Reference Genes: A Blueberry Case Study

    PubMed Central

    Die, Jose V.; Rowland, Lisa J.

    2013-01-01

    The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the application of high throughput gene expression approaches that should relatively quickly increase our understanding of blueberry physiology. These studies, however, require a highly accurate and robust workflow and make necessary the identification of reference genes with high expression stability for correct target gene normalization. To create a set of superior reference genes for blueberry expression analyses, we mined a publicly available transcriptome data set from blueberry for orthologs to a set of Arabidopsis genes that showed the most stable expression in a developmental series. In total, the expression stability of 13 putative reference genes was evaluated by qPCR and a set of new references with high stability values across a developmental series in fruits and floral buds of blueberry were identified. We also demonstrated the need to use at least two, preferably three, reference genes to avoid inconsistencies in results, even when superior reference genes are used. The new references identified here provide a valuable resource for accurate normalization of gene expression in Vaccinium spp. and may be useful for other members of the Ericaceae family as well. PMID:24058469

  5. Analysis of differentially expressed genes between fluoride-sensitive and fluoride-endurable individuals in midgut of silkworm, Bombyx mori.

    PubMed

    Qian, Heying; Li, Gang; He, Qingling; Zhang, Huaguang; Xu, Anying

    2016-08-15

    Fluoride tolerance is an economically important trait of silkworm. Near-isogenic lines (NILs) of the dominant endurance to fluoride (Def) gene in Bombyx mori has been constructed before. Here, we analyzed the gene expression profiles of midgut of fluoride-sensitive and fluoride-endurable individuals of Def NILs by using high-throughput Illumina sequencing technology and bioinformatics tools, and identified differentially expressed genes between these individuals. A total of 3,612,399 and 3,567,631 clean tags for the libraries of fluoride-endurable and fluoride-sensitive individuals were obtained, which corresponded to 32,933 and 43,976 distinct clean tags, respectively. Analysis of differentially expressed genes indicates that 241 genes are differentially expressed between the two libraries. Among the 241 genes, 30 are up-regulated and 211 are down-regulated in fluoride-endurable individuals. Pathway enrichment analysis demonstrates that genes related to ribosomes, pancreatic secretion, steroid biosynthesis, glutathione metabolism, steroid biosynthesis, and glycerolipid metabolism are down-regulated in fluoride-endurable individuals. qRT-PCR was conducted to confirm the results of the DGE. The present study analyzed differential expression of related genes and tried to find out whether the crucial genes were related to fluoride detoxification which might elucidate fluoride effect and provide a new way in the fluorosis research. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics

    PubMed Central

    Gildor, Tsvia; Ben-Tabou de-Leon, Smadar

    2015-01-01

    Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions. PMID:26230518

  7. William's syndrome: gene expression is related to parental origin and regional coordinate control

    PubMed Central

    Collette, Jeremy C; Chen, Xiao-Ning; Mills, Debra L; Galaburda, Albert M; Reiss, Allan L; Bellugi, Ursula; Korenberg, Julie R

    2013-01-01

    William's syndrome (WS) features a spectrum of neurocognitive and behavioral abnormalities due to a rare 1.5MB deletion that includes about 24–28 genes on chromosome band 7q11.23. Study of the expression of these genes from the single normal copy provides an opportunity to elucidate the genetic and epigenetic controls on these genes as well as their roles in both WS and normal brain development and function. We used quantitative RT-PCR to determine the transcriptional level of 14 WS gene markers in a cohort of 77 persons with WS and 48 normal controls. Results reported here: (1) show that the expression of the genes deleted in WS is decreased in some but not all cases, (2) demonstrate that the parental origin of the deletion contributes to the level of expression of GTF2I independently of age and gender and (3) indicate that the correlation of expression between GTF2I and some other genes in the WS region differs in WS subjects and normal controls, which in turn points toward a regulatory role for this gene. Interspecies comparisons suggest GTF2I may play a key role in normal brain development. PMID:19282872

  8. Triazole induced concentration-related gene signatures in rat whole embryo culture.

    PubMed

    Robinson, Joshua F; Tonk, Elisa C M; Verhoef, Aart; Piersma, Aldert H

    2012-09-01

    Commonly used as antifungal agents in agriculture and medicine, triazoles have been shown to cause teratogenicity in a diverse set of animal models. Here, we evaluated the dose-dependent impacts of flusilazole, cyproconazole and triadimefon, on global gene expression in relation to effects on embryonic development using the rat whole embryo culture (WEC) model. After 4 h exposure, we identified changes in gene expression due to triazole exposure which preceded morphological alterations observed at 48 h. In general, across the three triazoles, we observed similar directionality of regulation in gene expression and the magnitude of effects on gene expression correlated with the degree of induced developmental toxicity. Significantly regulated genes included key members of steroid/cholesterol and retinoic acid metabolism and hindbrain developmental pathways. Direct comparisons with previous studies suggest that triazole-gene signatures identified in the WEC overlap with zebrafish and mouse, and furthermore, triazoles impact gene expression in a similar manner as retinoic acid exposures in rat embryos. In summary, we further differentiate pathways underlying triazole-developmental toxicity using WEC and demonstrate the conservation of these response-pathways across model systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

    PubMed

    Sander, Jil; Schultze, Joachim L; Yosef, Nir

    2017-03-01

    Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). niryosef@berkeley.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Rose Scent

    PubMed Central

    Guterman, Inna; Shalit, Moshe; Menda, Naama; Piestun, Dan; Dafny-Yelin, Mery; Shalev, Gil; Bar, Einat; Davydov, Olga; Ovadis, Mariana; Emanuel, Michal; Wang, Jihong; Adam, Zach; Pichersky, Eran; Lewinsohn, Efraim; Zamir, Dani; Vainstein, Alexander; Weiss, David

    2002-01-01

    For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of ∼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism–related genes whose expression coincides with scent production, led to the discovery of several novel flower scent–related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants. PMID:12368489

  11. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  12. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  13. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  14. Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction.

    PubMed

    Kamenšek, Simona; Browning, Douglas F; Podlesek, Zdravko; Busby, Stephen J W; Žgur-Bertok, Darja; Butala, Matej

    2015-06-01

    Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.

  15. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

    PubMed

    Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I

    2003-12-16

    Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.

  16. A Modular Plasmid Assembly Kit for Multigene Expression, Gene Silencing and Silencing Rescue in Plants

    PubMed Central

    Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin

    2014-01-01

    The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083

  17. Evaluation of the reversal of multidrug resistance by MDR1 ribonucleic acid interference in a human colon cancer model using a Renilla luciferase reporter gene and coelenterazine.

    PubMed

    Jeon, Yong Hyun; Bae, Seon-ae; Lee, Yong Jin; Lee, You La; Lee, Sang-Woo; Yoon, Ghil-Suk; Ahn, Byeong-Cheol; Ha, Jeoung-Hee; Lee, Jaetae

    2010-12-01

    The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.

  18. Comparative transcriptional profiling identifies takeout as a gene that regulates life span

    PubMed Central

    Bauer, Johannes; Antosh, Michael; Chang, Chengyi; Schorl, Christoph; Kolli, Santharam; Neretti, Nicola; Helfand, Stephen L.

    2010-01-01

    A major challenge in translating the positive effects of dietary restriction (DR) for the improvement of human health is the development of therapeutic mimics. One approach to finding DR mimics is based upon identification of the proximal effectors of DR life span extension. Whole genome profiling of DR in Drosophila shows a large number of changes in gene expression, making it difficult to establish which changes are involved in life span determination as opposed to other unrelated physiological changes. We used comparative whole genome expression profiling to discover genes whose change in expression is shared between DR and two molecular genetic life span extending interventions related to DR, increased dSir2 and decreased Dmp53 activity. We find twenty-one genes shared among the three related life span extending interventions. One of these genes, takeout, thought to be involved in circadian rhythms, feeding behavior and juvenile hormone binding is also increased in four other life span extending conditions: Rpd3, Indy, chico and methuselah. We demonstrate takeout is involved in longevity determination by specifically increasing adult takeout expression and extending life span. These studies demonstrate the power of comparative whole genome transcriptional profiling for identifying specific downstream elements of the DR life span extending pathway. PMID:20519778

  19. Too much data, but little inter-changeability: a lesson learned from mining public data on tissue specificity of gene expression.

    PubMed

    Li, Shuyu; Li, Yiqun Helen; Wei, Tao; Su, Eric Wen; Duffin, Kevin; Liao, Birong

    2006-10-25

    The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. There are 42-54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30-40% of genes whose expression patterns are positively correlated and 10-15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes.

  20. Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data.

    PubMed

    Lepre, Jorge; Rice, J Jeremy; Tu, Yuhai; Stolovitzky, Gustavo

    2004-05-01

    Despite the growing literature devoted to finding differentially expressed genes in assays probing different tissues types, little attention has been paid to the combinatorial nature of feature selection inherent to large, high-dimensional gene expression datasets. New flexible data analysis approaches capable of searching relevant subgroups of genes and experiments are needed to understand multivariate associations of gene expression patterns with observed phenotypes. We present in detail a deterministic algorithm to discover patterns of multivariate gene associations in gene expression data. The patterns discovered are differential with respect to a control dataset. The algorithm is exhaustive and efficient, reporting all existent patterns that fit a given input parameter set while avoiding enumeration of the entire pattern space. The value of the pattern discovery approach is demonstrated by finding a set of genes that differentiate between two types of lymphoma. Moreover, these genes are found to behave consistently in an independent dataset produced in a different laboratory using different arrays, thus validating the genes selected using our algorithm. We show that the genes deemed significant in terms of their multivariate statistics will be missed using other methods. Our set of pattern discovery algorithms including a user interface is distributed as a package called Genes@Work. This package is freely available to non-commercial users and can be downloaded from our website (http://www.research.ibm.com/FunGen).

  1. Meta-analysis of cancer gene expression signatures reveals new cancer genes, SAGE tags and tumor associated regions of co-regulation

    PubMed Central

    Kavak, Erşen; Ünlü, Mustafa; Nistér, Monica; Koman, Ahmet

    2010-01-01

    Cancer is among the major causes of human death and its mechanism(s) are not fully understood. We applied a novel meta-analysis approach to multiple sets of merged serial analysis of gene expression and microarray cancer data in order to analyze transcriptome alterations in human cancer. Our methodology, which we denote ‘COgnate Gene Expression patterNing in tumours’ (COGENT), unmasked numerous genes that were differentially expressed in multiple cancers. COGENT detected well-known tumor-associated (TA) genes such as TP53, EGFR and VEGF, as well as many multi-cancer, but not-yet-tumor-associated genes. In addition, we identified 81 co-regulated regions on the human genome (RIDGEs) by using expression data from all cancers. Some RIDGEs (28%) consist of paralog genes while another subset (30%) are specifically dysregulated in tumors but not in normal tissues. Furthermore, a significant number of RIDGEs are associated with GC-rich regions on the genome. All assembled data is freely available online (www.oncoreveal.org) as a tool implementing COGENT analysis of multi-cancer genes and RIDGEs. These findings engender a deeper understanding of cancer biology by demonstrating the existence of a pool of under-studied multi-cancer genes and by highlighting the cancer-specificity of some TA-RIDGEs. PMID:20621981

  2. Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

    PubMed

    Oh, Sunghee; Song, Seongho

    2017-01-01

    In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

  3. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras.

    PubMed

    Fenton, R G; Hixon, J A; Wright, P W; Brooks, A D; Sayers, T J

    1998-08-01

    The ras oncogene plays an important role in the multistep progression to cancer by activation of signal transduction pathways that contribute to aberrant growth regulation. Although many of these effects are cell autonomous, the ras oncogene also regulates the expression of genes that alter host/tumor interactions. We now extend the mechanisms through which ras promotes tumor survival by demonstrating that oncogenic Ras inhibits expression of the fas gene and renders Ras-transformed cells resistant to Fas-induced apoptosis. A panel of Ras-transformed clones exhibited a marked inhibition in fas mRNA and Fas cell surface expression as compared with untransformed parental cell lines. Fas expression was induced by culture in the presence of IFN-gamma + tumor necrosis factor alpha; however, the maximal level attained in Ras transformants was approximately 10-fold below the level of untransformed cells. Whereas untransformed cells were sensitive to apoptotic death induced by cross-linking surface Fas (especially after cytokine treatment), Ras-transformed cells were very resistant to Fas-induced death even under the most stringent assay conditions. To demonstrate that this resistance was mediated by oncogenic Ras and not secondary genetic events, pools of Ras-transformed cells were generated using a highly efficient retroviral transduction technique. Transformed pools were assayed 6 days after infection and demonstrated a marked decrease in fas gene expression and Fas-mediated apoptosis. Oncogenic Ras did not promote general resistance to apoptosis, because ectopic expression of a fas cDNA in Ras-transformed cells restored sensitivity to Fas-induced apoptosis. These data indicate that oncogenic Ras inhibits basal levels of expression of the fas gene, and although cytokine signal transduction pathways are functional in these cells, the level of surface Fas expression remains below the threshold required for induction of apoptosis. These data identify a mechanism by which Ras-transformed cells may escape from host-mediated immune destruction.

  4. Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study.

    PubMed

    Liu, Hsi-Che; Shih, Lee-Yung; May Chen, Mei-Ju; Wang, Chien-Chih; Yeh, Ting-Chi; Lin, Tung-Huei; Chen, Chien-Yu; Lin, Chih-Jen; Liang, Der-Cherng

    2011-05-01

    In acute myeloid leukemia (AML), the mixed lineage leukemia (MLL) gene may be rearranged to generate a partial tandem duplication (PTD), or fused to partner genes through a chromosomal translocation (tMLL). In this study, we first explored the differentially expressed genes between MLL-PTD and tMLL using gene expression profiling of our cohort (15 MLL-PTD and 10 tMLL) and one published data set. The top 250 probes were chosen from each set, resulting in 29 common probes (21 unique genes) to both sets. The selected genes include four HOXB genes, HOXB2, B3, B5, and B6. The expression values of these HOXB genes significantly differ between MLL-PTD and tMLL cases. Clustering and classification analyses were thoroughly conducted to support our gene selection results. Second, as MLL-PTD, FLT3-ITD, and NPM1 mutations are identified in AML with normal karyotypes, we briefly studied their impact on the HOXB genes. Another contribution of this study is to demonstrate that using public data from other studies enriches samples for analysis and yields more conclusive results. 2011 Elsevier Inc. All rights reserved.

  5. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  6. A short treatise concerning a musical approach for the interpretation of gene expression data

    PubMed Central

    Staege, Martin S.

    2015-01-01

    Recent technical developments allow the genome-wide and near-complete analysis of gene expression in a given sample, e.g. by usage of high-density DNA microarrays or next generation sequencing. The generated data structure is usually multi-dimensional and requires extensive processing not only for analysis but also for presentation of the results. Today, such data are usually presented graphically, e.g. in the form of heat maps. In the present paper, we propose an alternative form of analysis and presentation which is based on the transformation of gene expression data into sounds that are characterized by their frequency (pitch) and tone duration. Using DNA microarray data from a panel of neuroblastoma and Ewing sarcoma cell lines as well as from Hodgkin’s lymphoma cell lines and normal B cells, we demonstrate that this Gene Expression Music Algorithm (GEMusicA) can be used for discrimination between samples with different biology and for the characterization of differentially expressed genes. PMID:26472273

  7. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    PubMed

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  8. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  9. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis.

    PubMed

    Gasse, Barbara; Sire, Jean-Yves

    2015-01-01

    In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. We provide the full-length cDNA sequence of A. carolinensis AMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.

  10. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages.

    PubMed

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H; Hinton, David E; Stapleton, Heather M

    2013-05-15

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Using Whole mount In Situ Hybridization to Examine Thyroid Hormone Deiodinase Expression in Embryonic and Larval Zebrafish: a Tool for examining OH-BDE toxicity to early life stages

    PubMed Central

    Dong, Wu; Macaulay, Laura; Kwok, Kevin WH; Hinton, David E; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100 nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages. PMID:23531416

  12. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model.

    PubMed

    Lin, Chung-Yin; Hsieh, Han-Yi; Chen, Chiung-Mei; Wu, Shang-Rung; Tsai, Chih-Hung; Huang, Chiung-Yin; Hua, Mu-Yi; Wei, Kuo-Chen; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-08-10

    Focused ultrasound (FUS)-induced with microbubbles (MBs) is a promising technique for noninvasive opening of the blood-brain barrier (BBB) to allow targeted delivery of therapeutic substances into the brain and thus the noninvasive delivery of gene vectors for CNS treatment. We have previously demonstrated that a separated gene-carrying liposome and MBs administration plus FUS exposure can deliver genes into the brain, with the successful expression of the reporter gene and glial cell line-derived neurotrophic factor (GDNF) gene. In this study, we further modify the delivery system by conjugating gene-carrying liposomes with MBs to improve the GDNF gene-delivery efficiency, and to verify the possibility of using this system to perform treatment in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal disease model. FUS-BBB opening was verified by contrast-enhanced MRI, and GFP gene expression was verified via in vivo imaging system (IVIS). Western blots as well as enzyme-linked immunosorbent assay (ELISA) were conducted to measure protein expression, and immunohistochemistry (IHC) was conducted to test the Tyrosine hydroxylase (TH)-neuron distribution. Dopamine (DA) and its metabolites as well as dopamine active transporter (DAT) were quantitatively analyzed to show dopaminergic neuronal dopamine secretion/activity/metabolism. Motor performance was evaluated by rotarod test weekly. Results demonstrated that the LpDNA-MBs (gene-liposome-MBs) complexes successfully serve as gene carrier and BBB-opening catalyst, and outperformed the separated LpDNA/MBs administration both in terms of gene delivery and expression. TH-positive IHC and measurement of DA and its metabolites DOPAC and HVA confirmed improved neuronal function, and the proposed system also provided the best neuroprotective effect to retard the progression of motor-related behavioral abnormalities. Immunoblotting and histological staining further confirmed the expression of reporter genes in neuronal cells. This study suggests that FUS exposures with the administration of LpDNA-MBs complexes synergistically can serve as an effective gene therapy strategy for MPTP-animal treatment, and may have potential for further application to perform gene therapy for neurodegenerative disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Suppression of prolactin gene expression in GH cells correlates with site-specific DNA methylation.

    PubMed

    Zhang, Z X; Kumar, V; Rivera, R T; Pasion, S G; Chisholm, J; Biswas, D K

    1989-10-01

    Prolactin- (PRL) producing and nonproducing subclones of the GH line of (rat) pituitary tumor cells have been compared to elucidate the regulatory mechanisms of PRL gene expression. Particular emphasis was placed on delineating the molecular basis of the suppressed state of the PRL gene in the prolactin-nonproducing (PRL-) GH subclone (GH(1)2C1). We examined six methylatable cytosine residues (5, -CCGG- and 1, -GCGC-) within the 30-kb region of the PRL gene in these subclones. This analysis revealed that -CCGG-sequences of the transcribed region, and specifically, one in the fourth exon of the PRL gene, were heavily methylated in the PRL-, GH(1)2C1 cells. Furthermore, the inhibition of PRL gene expression in GH(1)2C1 was reversed by short-term treatment of the cells with a sublethal concentration of azacytidine (AzaC), an inhibitor of DNA methylation. The reversion of PRL gene expression by AzaC was correlated with the concurrent demethylation of the same -CCGG- sequences in the transcribed region of PRL gene. An inverse correlation between PRL gene expression and the level of methylation of the internal -C- residues in the specific -CCGG-sequence of the transcribed region of the PRL gene was demonstrated. The DNase I sensitivity of these regions of the PRL gene in PRL+, PRL-, and AzaC-treated cells was also consistent with an inverse relationship between methylation state, a higher order of structural modification, and gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    PubMed

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  15. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    PubMed

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  16. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice.

    PubMed

    Iyer, Meera; Berenji, Manijeh; Templeton, Nancy S; Gambhir, Sanjiv S

    2002-10-01

    Gene therapy involves the safe and effective delivery of one or more genes of interest to target cells in vivo. The advantages of using nonviral delivery systems include ease of preparation, low toxicity, and weak immunogenicity. Nonviral delivery methods, when combined with a noninvasive, clinically applicable imaging assay, will greatly aid in the optimization of gene therapy approaches for cancer. We demonstrate cationic lipid-mediated noninvasive monitoring of reporter gene expression of firefly (Photinus pyralis) luciferase (fl) and a mutant herpes simplex virus type I thymidine kinase (HSV1-sr39tk, tk) in living mice using a cooled charge coupled device (CCD) camera and positron emission tomography (PET), respectively. We observe a high level of fl and tk reporter gene expression predominantly in the lungs after a single injection of the extruded DOTAP:cholesterol DNA liposome complexes by way of the tail vein, seen to be time- and dose-dependent. We observe a good correlation between the in vivo bioluminescent signal and the ex vivo firefly luciferase enzyme (FL) activity in different organs. We further demonstrate the feasibility of noninvasively imaging both optical and PET reporter gene expression in the same animal using the CCD camera and microPET, respectively.

  17. A Modular Lentiviral and Retroviral Construction System to Rapidly Generate Vectors for Gene Expression and Gene Knockdown In Vitro and In Vivo

    PubMed Central

    Geiling, Benjamin; Vandal, Guillaume; Posner, Ada R.; de Bruyns, Angeline; Dutchak, Kendall L.; Garnett, Samantha; Dankort, David

    2013-01-01

    The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems. PMID:24146852

  18. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  19. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    PubMed Central

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  20. Low heat-shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna).

    PubMed

    Clark, Melody S; Geissler, Paul; Waller, Catherine; Fraser, Keiron P P; Barnes, David K A; Peck, Lloyd S

    2008-01-01

    Heat shock proteins (HSPs) are a family of genes classically used to measure levels of organism stress. We have previously identified two HSP70 genes (HSP70A and HSP70B) in sub-tidal populations of the Antarctic limpet (Nacella concinna). These genes are up-regulated in response to increased seawater temperatures of 15 degrees C or more during acute heat shock experiments, temperatures that have very little basis when considering the current Antarctic ecology of these animals. Therefore, the question was posed as to whether these animals could express HSP70 genes when subjected to more complex environmental conditions, such as those that occur in the inter-tidal. Inter-tidal limpets were collected on three occasions in different weather conditions at South Cove, Rothera Point, over a complete tidal cycle, and the expression levels of the HSP70 genes were measured. Both genes showed relative up-regulation of gene expression over the period of the tidal cycle. The average foot temperature of these animals was 3.3 degrees C, far below that of the acute heat shock experiments. These experiments demonstrate that the temperature and expression levels of HSP production in wild animals cannot be accurately extrapolated from experimentally induced treatments, especially when considering the complexity of stressors in the natural environment. However, experimental manipulation can provide molecular markers for identifying stress in Antarctic molluscs, provided it is accompanied by environmental validation, as demonstrated here.

  1. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde.

    PubMed

    Liu, Z Lewis; Wang, Xu; Weber, Scott A

    2018-06-20

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We examined gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challenges of furfural and HMF through comparative quantitative gene expression analysis using pathway-based qRT-PCR array assays. All tested genes from Y-50049, except for MLP2, demonstrated more resistant and significantly increased gene expression than that from a laboratory strain BY4741. While all five sensor encoding genes WSC1, WSC2, WSC3, MID2 and MTL1 from both strains were activated in response to the furfural-HMF treatment, WSC3 from Y-50049 demonstrated the most increased expression over time compared with any other sensor genes. These results suggested the industrial yeast poses more robust cell wall integrity pathway, and gene WSC3 could have the special capability for signal transmission against furfural and HMF. Among five single nucleotide variations discovered in WSC3 from Y-50049, three were found to be non-synonymous mutations resulting in amino acid alterations of Ser 158  → Tyr 158 , Val 186  → Ile 186 , and Glu 430  → Asp 430 . Our results suggest the industrial yeast as a more desirable delivery vehicle for the next-generation biocatalyst development. Published by Elsevier B.V.

  2. Molecular and Functional Characterization of Wheat ARGOS Genes Influencing Plant Growth and Stress Tolerance

    PubMed Central

    Zhao, Yue; Tian, Xuejun; Li, Yuanyuan; Zhang, Liyuan; Guan, Panfeng; Kou, Xiaoxia; Wang, Xiaobo; Xin, Mingming; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Peng, Huiru

    2017-01-01

    Auxin Regulated Gene involved in Organ Size (ARGOS) is significantly and positively associated with organ size and is involved in abiotic stress responses in plants. However, no studies on wheat ARGOS genes have been reported to date. In the present study, three TaARGOS homoeologous genes were isolated and located on chromosomes 4A, 4B, and 4D of bread wheat, all of which are highly conserved in wheat and its wild relatives. Comparisons of gene expression in different tissues demonstrated that the TaARGOSs were mainly expressed in the stem. Furthermore, the TaARGOS transcripts were significantly induced by drought, salinity, and various phytohormones. Transient expression of the TaARGOS-D protein in wheat protoplasts showed that TaARGOS-D localized to the endoplasmic reticulum. Moreover, overexpression of TaARGOS-D in Arabidopsis resulted in an enhanced germination rate, larger rosette diameter, increased rosette leaf area, and higher silique number than in wild-type (WT) plants. The roles of TaARGOS-D in the control of plant growth were further studied via RNA-seq, and it was found that 105 genes were differentially expressed; most of these genes were involved in ‘developmental processes.’ Interestingly, we also found that overexpression of TaARGOS-D in Arabidopsis improved drought and salinity tolerance and insensitivity to ABA relative to that in WT plants. Taken together, these results demonstrate that the TaARGOSs are involved in seed germination, seedling growth, and abiotic stress tolerance. PMID:28228774

  3. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    PubMed

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. A new microcolumn-type microchip for examining the expression of chimeric fusion genes using a nucleic acid sandwich hybridization technique.

    PubMed

    Ohnishi, Michihiro; Sasaki, Naoyuki; Kishimoto, Takuya; Watanabe, Hidetoshi; Takagi, Masatoshi; Mizutani, Shuki; Kishii, Noriyuki; Yasuda, Akio

    2014-11-01

    We report a new type of microcolumn installed in a microchip. The architecture allows use of a nucleic acid sandwich hybridization technique to detect a messenger RNA (mRNA) chain as a target. Data are presented that demonstrate that the expression of a chimeric fusion gene can be detected. The microcolumn was filled with semi-transparent microbeads made of agarose gel that acted as carriers, allowing increased efficiency of the optical detection of fluorescence from the microcolumn. The hybrid between the target trapped on the microbeads and a probe DNA labeled with a fluorescent dye was detected by measuring the intensity of the fluorescence from the microcolumn directly. These results demonstrate an easy and simple method for determining the expression of chimeric fusion genes with no preamplification. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance

    PubMed Central

    Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang

    2002-01-01

    Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572

  6. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    NASA Astrophysics Data System (ADS)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  7. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses. Images PMID:2830625

  8. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, S.; Kamine, J.; Markovitz, D.

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBVmore » gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.« less

  9. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    PubMed Central

    Whittle, C. A.; Sun, Y.; Johannesson, H.

    2011-01-01

    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862

  10. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

    PubMed

    Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A

    2014-08-01

    The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression.

    PubMed

    Lintas, C; Sacco, R; Garbett, K; Mirnics, K; Militerni, R; Bravaccio, C; Curatolo, P; Manzi, B; Schneider, C; Melmed, R; Elia, M; Pascucci, T; Puglisi-Allegra, S; Reichelt, K-L; Persico, A M

    2009-07-01

    Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.

  12. lpxC and yafS are the most suitable internal controls to normalize real time RT-qPCR expression in the phytopathogenic bacteria Dickeya dadantii.

    PubMed

    Hommais, Florence; Zghidi-Abouzid, Ouafa; Oger-Desfeux, Christine; Pineau-Chapelle, Emilie; Van Gijsegem, Frederique; Nasser, William; Reverchon, Sylvie

    2011-01-01

    Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria.

  13. Transcriptional response of Pasteurella multocida to defined iron sources.

    PubMed

    Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek

    2002-12-01

    Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.

  14. From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis.

    PubMed

    Rodríguez-Llorente, Ignacio D; Pérez-Hormaeche, Javier; El Mounadi, Kaoutar; Dary, Mohammed; Caviedes, Miguel A; Cosson, Viviane; Kondorosi, Adam; Ratet, Pascal; Palomares, Antonio J

    2004-08-01

    While the biology of nitrogen-fixing root nodules has been extensively studied, little is known about the evolutionary events that predisposed legume plants to form symbiosis with rhizobia. We have studied the presence and the expression of two pectic gene families in Medicago, polygalacturonases (PGs) and pectin methyl esterases (PMEs) during the early steps of the Sinorhizobium meliloti-Medicago interaction and compared them with related pollen-specific genes. First, we have compared the expression of MsPG3, a PG gene specifically expressed during the symbiotic interaction, with the expression of MsPG11, a highly homologous pollen-specific gene, using promoter-gus fusions in transgenic M. truncatula and tobacco plants. These results demonstrated that the symbiotic promoter functions as a pollen-specific promoter in the non-legume host. Second, we have identified the presence of a gene family of at least eight differentially expressed PMEs in Medicago. One subfamily is represented by one symbiotic gene (MtPER) and two pollen-expressed genes (MtPEF1 and MtPEF2) that are clustered in the M. truncatula genome. The promoter-gus studies presented in this work and the homology between plant PGs, together with the analysis of the PME locus structure and MtPER expression studies, suggest that the symbiotic MsPG3 and MtPER could have as ancestors pollen-expressed genes involved in polar tip growth processes during pollen tube elongation. Moreover, they could have been recruited after gene duplication in the symbiotic interaction to facilitate polar tip growth during infection thread formation.

  15. Similarities in temperature-dependent gene expression plasticity across timescales in threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Schulte, Patricia M

    2018-04-14

    Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.

  16. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics inmore » their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.« less

  17. Dental Enamel: Genes Define Biomechanics

    PubMed Central

    Rauth, Rick J.; Potter, Karen S.; Ngan, Amanda Y.-W.; Saad, Deema M.; Mehr, Rana; Luong, Vivian Q.; Schuetter, Verna L.; Miklus, Vetea G.; Chang, PeiPei; Paine, Michael L.; Lacruz, Rodrigo S.; Snead, Malcolm L.; White, Shane N.

    2010-01-01

    Regulated gene expression assembles an extracellular proteinaceous matrix to control biomineralization and the resultant biomechanical function of tooth enamel. The importance of the dominant enamel matrix protein, amelogenin (Amel); a minor transiently expressed protein, dentin sialoprotein (Dsp); an electrogenic sodium bicarbonate cotransporter (NBCe1); the timely removal of the proteinaceous matrix by a serine protease, Kallikrein-4 (Klk4); and the late-stage expression of Amelotin (Amtn) on enamel biomechanical function were demonstrated and measured using mouse models. PMID:20066874

  18. Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones.

    PubMed

    de Moura, Stéfanie Menezes; Artico, Sinara; Lima, Cássio; Nardeli, Sarah Muniz; Berbel, Ana; Oliveira-Neto, Osmundo Brilhante; Grossi-de-Sá, Maria Fátima; Ferrándiz, Cristina; Madueño, Francisco; Alves-Ferreira, Márcio

    2017-03-01

    Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones.

  19. Gene expression distribution deconvolution in single-cell RNA sequencing.

    PubMed

    Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R

    2018-06-26

    Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.

  20. Co-option of the polarity gene network shapes filament morphology in angiosperms

    PubMed Central

    de Almeida, Ana Maria Rocha; Yockteng, Roxana; Schnable, James; Alvarez-Buylla, Elena R.; Freeling, Michael; Specht, Chelsea D.

    2014-01-01

    The molecular genetic mechanisms underlying abaxial-adaxial polarity in plants have been studied as a property of lateral and flattened organs, such as leaves. In leaves, laminar expansion occurs as a result of balanced abaxial-adaxial gene expression. Over- or under- expression of either abaxializing or adaxializing genes inhibits laminar growth, resulting in a mutant radialized phenotype. Here, we show that co-option of the abaxial-adaxial polarity gene network plays a role in the evolution of stamen filament morphology in angiosperms. RNA-Seq data from species bearing laminar (flattened) or radial (cylindrical) filaments demonstrates that species with laminar filaments exhibit balanced expression of abaxial-adaxial (ab-ad) genes, while overexpression of a YABBY gene is found in species with radial filaments. This result suggests that unbalanced expression of ab-ad genes results in inhibition of laminar outgrowth, leading to a radially symmetric structure as found in many angiosperm filaments. We anticipate that co-option of the polarity gene network is a fundamental mechanism shaping many aspects of plant morphology during angiosperm evolution. PMID:25168962

  1. Co-option of the polarity gene network shapes filament morphology in angiosperms.

    PubMed

    de Almeida, Ana Maria Rocha; Yockteng, Roxana; Schnable, James; Alvarez-Buylla, Elena R; Freeling, Michael; Specht, Chelsea D

    2014-08-29

    The molecular genetic mechanisms underlying abaxial-adaxial polarity in plants have been studied as a property of lateral and flattened organs, such as leaves. In leaves, laminar expansion occurs as a result of balanced abaxial-adaxial gene expression. Over- or under- expression of either abaxializing or adaxializing genes inhibits laminar growth, resulting in a mutant radialized phenotype. Here, we show that co-option of the abaxial-adaxial polarity gene network plays a role in the evolution of stamen filament morphology in angiosperms. RNA-Seq data from species bearing laminar (flattened) or radial (cylindrical) filaments demonstrates that species with laminar filaments exhibit balanced expression of abaxial-adaxial (ab-ad) genes, while overexpression of a YABBY gene is found in species with radial filaments. This result suggests that unbalanced expression of ab-ad genes results in inhibition of laminar outgrowth, leading to a radially symmetric structure as found in many angiosperm filaments. We anticipate that co-option of the polarity gene network is a fundamental mechanism shaping many aspects of plant morphology during angiosperm evolution.

  2. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes

    PubMed Central

    Heussler, Gary E.; Cady, Kyle C.; Koeppen, Katja; Bhuju, Sabin; Stanton, Bruce A.

    2015-01-01

    ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting. PMID:25968642

  3. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    PubMed

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Prognostic Value of FBXO39 and ETS-1 but not BMI-1 in Iranian Colorectal Cancer Patients

    PubMed

    Motalebzadeh, Jamshid; Shabani, Samira; Rezayati, Saeedeh; Shakournia, Narges; Mirzaei, Rezvan; Mahjoubi, Bahar; Hoseini, Kamal; Mahjoubi, Frouzandeh

    2018-05-26

    Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite recent progress in diagnosis and treatment, it remains a major health problem and further studies are needed. We here investigated expression profiles of the FBXO39, ETS-1 and BMI-1 genes in CRCs to validate any possible diagnostic/prognostic significance. Material and Methods: Thirty six patients with locally advanced CRC admitted to Hazrate-Rasoul Hospital-Tehran were enrolled. Initially the expression pattern of FBXO39, ETS-1 and BMI-1 genes were determined using RT-PCR in CRC tumor and adjacent normal tissues then real-time RT-PCR was employed to quantify BMI-1 gene expression. Results: FBXO39 expression was restricted to tumor tissues. Interestingly, expression of this gene was detected in all stage-0 tumor samples. There was a significant relation between FBXO39 gene expression and lymph node involvement. The ETS-1 gene was expressed in 66% of all tumor tissues with p-value=0.03 for increase as compared to the adjacent normal samples. In addition, there was a significant relation between ETS-1 gene expression and tumor size and lymph node involvement. RT-PCR demonstrated BMI-1 gene expression in both tumor and normal tissues and quantification by real-time RT-PCR showed no association between BMI-1 levels and CRC clinicopathological features. Conclusion: Expression of FBXO39 and ETS-1 with lymph node involvement may be considered as an alarm for the occurrence of CRC metastasis, and therfore have prognostic value while BMI-1 appears without importance. Creative Commons Attribution License

  5. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia

    PubMed Central

    Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato

    2015-01-01

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104

  6. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.

    PubMed

    Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato

    2015-08-04

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.

  7. Evaluation and Validation of Reference Genes for qRT-PCR Normalization in Frankliniella occidentalis (Thysanoptera:Thripidae)

    PubMed Central

    Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou

    2014-01-01

    Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects. PMID:25356721

  8. Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Zheng, Yu-Tao; Li, Hong-Bo; Lu, Ming-Xing; Du, Yu-Zhou

    2014-01-01

    Quantitative real time PCR (qRT-PCR) has emerged as a reliable and reproducible technique for studying gene expression analysis. For accurate results, the normalization of data with reference genes is particularly essential. Once the transcriptome sequencing of Frankliniella occidentalis was completed, numerous unigenes were identified and annotated. Unfortunately, there are no studies on the stability of reference genes used in F. occidentalis. In this work, seven candidate reference genes, including actin, 18S rRNA, H3, tubulin, GAPDH, EF-1 and RPL32, were evaluated for their suitability as normalization genes under different experimental conditions using the statistical software programs BestKeeper, geNorm, Normfinder and the comparative ΔCt method. Because the rankings of the reference genes provided by each of the four programs were different, we chose a user-friendly web-based comprehensive tool RefFinder to get the final ranking. The result demonstrated that EF-1 and RPL32 displayed the most stable expression in different developmental stages; RPL32 and GAPDH showed the most stable expression at high temperatures, while 18S and EF-1 exhibited the most stable expression at low temperatures. In this study, we validated the suitable reference genes in F. occidentalis for gene expression profiling under different experimental conditions. The choice of internal standard is very important in the normalization of the target gene expression levels, thus validating and selecting the best genes will help improve the quality of gene expression data of F. occidentalis. What is more, these validated reference genes could serve as the basis for the selection of candidate reference genes in other insects.

  9. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    PubMed

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  10. Approximate geodesic distances reveal biologically relevant structures in microarray data.

    PubMed

    Nilsson, Jens; Fioretos, Thoas; Höglund, Mattias; Fontes, Magnus

    2004-04-12

    Genome-wide gene expression measurements, as currently determined by the microarray technology, can be represented mathematically as points in a high-dimensional gene expression space. Genes interact with each other in regulatory networks, restricting the cellular gene expression profiles to a certain manifold, or surface, in gene expression space. To obtain knowledge about this manifold, various dimensionality reduction methods and distance metrics are used. For data points distributed on curved manifolds, a sensible distance measure would be the geodesic distance along the manifold. In this work, we examine whether an approximate geodesic distance measure captures biological similarities better than the traditionally used Euclidean distance. We computed approximate geodesic distances, determined by the Isomap algorithm, for one set of lymphoma and one set of lung cancer microarray samples. Compared with the ordinary Euclidean distance metric, this distance measure produced more instructive, biologically relevant, visualizations when applying multidimensional scaling. This suggests the Isomap algorithm as a promising tool for the interpretation of microarray data. Furthermore, the results demonstrate the benefit and importance of taking nonlinearities in gene expression data into account.

  11. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears.

    PubMed

    Chaudhury, Salma; Xia, Zhidao; Thakkar, Dipti; Hakimi, Osnat; Carr, Andrew J

    2016-10-01

    Progressive cellular and extracellular matrix (ECM) changes related to age and disease severity have been demonstrated in rotator cuff tendon tears. Larger rotator cuff tears demonstrate structural abnormalities that potentially adversely influence healing potential. This study aimed to gain greater insight into the relationship of pathologic changes to tear size by analyzing gene expression profiles from normal rotator cuff tendons, small rotator cuff tears, and large rotator cuff tears. We analyzed gene expression profiles of 28 human rotator cuff tendons using microarrays representing the entire genome; 11 large and 5 small torn rotator cuff tendon specimens were obtained intraoperatively from tear edges, which we compared with 12 age-matched normal controls. We performed real-time polymerase chain reaction and immunohistochemistry for validation. Torn rotator cuff tendons demonstrated upregulation of a number of key genes, such as matrix metalloproteinase 3, 10, 12, 13, 15, 21, and 25; a disintegrin and metalloproteinase (ADAM) 12, 15, and 22; and aggrecan. Amyloid was downregulated in all tears. Small tears displayed upregulation of bone morphogenetic protein 5. Chemokines and cytokines that may play a role in chemotaxis were altered; interleukins 3, 10, 13, and 15 were upregulated in tears, whereas interleukins 1, 8, 11, 18, and 27 were downregulated. The gene expression profiles of normal controls and small and large rotator cuff tear groups differ significantly. Extracellular matrix remodeling genes were found to contribute to rotator cuff tear pathogenesis. Rotator cuff tears displayed upregulation of a number of matrix metalloproteinase (3, 10, 12, 13, 15, 21, and 25), a disintegrin and metalloproteinase (ADAM 12, 15, and 22) genes, and downregulation of some interleukins (1, 8, and 27), which play important roles in chemotaxis. These gene products may potentially have a role as biomarkers of failure of healing or therapeutic targets to improve tendon healing. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    USDA-ARS?s Scientific Manuscript database

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  13. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing

    PubMed Central

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2017-01-01

    Abstract Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only. PMID:27899656

  14. Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons

    PubMed Central

    Zhang, Guangfan; Titlow, William B.; Biecker, Stephanie M.; Stromberg, Arnold J.

    2016-01-01

    Abstract A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression. PMID:27822500

  15. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.

  16. Expression of SLCO transport genes in castration resistant prostate cancer and impact of genetic variation in SCLO1B3 and SLCO2B1 on prostate cancer outcomes

    PubMed Central

    Wright, Jonathan L; Kwon, Erika M; Ostrander, Elaine A; Montgomery, R Bruce; Lin, Daniel W; Vessella, Robert; Stanford, Janet L; Mostaghel, Elahe A

    2011-01-01

    Background Metastases from men with castration resistant prostate cancer (CRPC) harbor increased tumoral androgens vs. untreated prostate cancers (PCa). This may reflect steroid uptake by OATP/SLCO transporters. We evaluated SLCO gene expression in CRPC metastases and determined whether PCa outcomes are associated with single nucleotide polymorphisms (SNPs) in SLCO2B1 and SLCO1B3, transporters previously demonstrated to mediate androgen uptake. Methods Transcripts encoding 11 SLCO genes were analyzed in untreated PCa, and in metastatic CRPC tumors obtained by rapid autopsy. SNPs in SLCO2B1 and SLCO1B3 were genotyped in a population-based cohort of 1,309 Caucasian PCa patients. Median survival follow-up was 7.0 years (0.77–16.4). The risk of PCa recurrence/progression and PCa-specific mortality (PCSM) was estimated with Cox proportional hazards analysis. Results Six SLCO genes were highly expressed in CRPC metastases vs. untreated PCa, including SLCO1B3 (3.6 fold, p=0.0517) and SLCO2B1 (5.5 fold, p=0.0034). Carriers of the variant alleles SLCO2B1 SNP rs12422149 (HR 1.99, 95% CI 1.11 – 3.55) or SLCO1B3 SNP rs4149117 (HR 1.76, 95% CI 1.00 – 3.08) had an increased risk of PCSM. Conclusions CRPC metastases demonstrate increased expression of SLCO genes vs. primary PCa. Genetic variants of SLCO1B3 and SLCO2B1 are associated with PCSM. Expression and genetic variation of SLCO genes which alter androgen uptake may be important in PCa outcomes. Impact OATP/SLCO genes may be potential biomarkers for assessing risk of prostate cancer-specific mortality. Expression and genetic variation in these genes may allow stratification of patients to more aggressive hormonal therapy or earlier incorporation of non-hormonal based treatment strategies. PMID:21266523

  17. Comparison of gene expression levels of appA, ppsR, and EL368 in Erythrobacter litoralis spheroplasts under aerobic and anaerobic conditions, and under blue light, red light, and dark conditions.

    PubMed

    Nishino, Koki; Takahashi, Sawako; Nishida, Hiromi

    2018-03-31

    We compared the gene expression levels of the blue-light-responsive genes, appA (encoding photosynthesis promoting protein AppA), ppsR (encoding photosynthesis suppressing protein PpsR), and EL368 (encoding a blue-light-activated histidine kinase with a light, oxygen, or voltage domain) between aerobic and anaerobic conditions in spheroplasts of the aerobic photosynthetic bacterium Erythrobacter litoralis. The spheroplasts conducted photosynthesis under red light but not under blue light. All three blue-light-responsive genes showed higher expression under aerobic conditions than under anaerobic conditions under blue light. In contrast, under red light, although the expression level of appA was higher in the presence of oxygen than in the absence of oxygen, the expression levels of ppsR and EL368 were similar in the presence and absence of oxygen. Our findings demonstrate that the expression of blue-light-responsive genes is strongly affected by oxygen in E. litoralis spheroplasts.

  18. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    PubMed

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  19. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  20. Using mummichog (Fundulus heteroclitus) arrays to monitor the effectiveness of remediation at a superfund site in Charleston, South Carolina, U.S.A.

    PubMed

    Roling, Jonathan A; Bain, Lisa J; Gardea-Torresdey, Jorge; Key, Peter B; Baldwin, William S

    2007-06-01

    We previously developed a cDNA array for mummichogs (Fundulus heteroclitus), an estuarine minnow, that is targeted for identifying differentially expressed genes from exposure to polycyclic aromatic hydrocarbons and several metals, including chromium. A chromium-contaminated Superfund site at Shipyard Creek in Charleston, South Carolina, USA, is undergoing remediation, providing us a unique opportunity to study the utility of arrays for monitoring the effectiveness of site remediation. Mummichogs were captured in Shipyard Creek in Charleston prior to remediation (2000) and after remediation began (2003 and 2005). Simultaneously, mummichogs were collected from a reference site at the Winyah Bay National Estuarine Research Reserve (NERR) in Georgetown, South Carolina, USA. The hepatic gene expression pattern of fish captured at Shipyard Creek in 2000 showed wide differences from the fish captured at NERR in 2000. Interestingly, as remediation progressed the gene expression pattern of mummichogs captured at Shipyard Creek became increasingly similar to those captured at NERR. The arrays acted as multidimensional biomarkers as the number of differentially expressed genes dropped from 22 in 2000 to four in 2003, and the magnitude of differential expression dropped from 3.2-fold in 2000 to no gene demonstrating a difference over 1.5-fold in 2003. Furthermore, the arrays indicated changes in the bioavailability of chromium caused by hydraulic dredging in the summer of 2005. This research is, to our knowledge, the first report using arrays as biomarkers for a weight-of-evidence hazard assessment and demonstrates that arrays can be used as multidimensional biomarkers to monitor site mitigation because the gene expression profile is associated with chromium bioavailability and body burden.

Top