Science.gov

Sample records for gene expression hormone

  1. Mitochondrial gene expression: influence of nutrients and hormones.

    PubMed

    Berdanier, Carolyn D

    2006-11-01

    Mitochondrial gene transcription research has exploded over the last decade. Nuclear-encoded proteins, nutrients, and hormones all work to regulate the transcription of this genome. To date, very few of the transcription factors have been shown to have negative effects on mitochondrial gene expression, although there are likely conditions where such downregulation may occur.

  2. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.

  3. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    SciTech Connect

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V.

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  4. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  5. Toward gene therapy for growth hormone deficiency via salivary gland expression of growth hormone.

    PubMed

    Racz, G Z; Zheng, C; Goldsmith, C M; Baum, B J; Cawley, N X

    2015-03-01

    Salivary glands are useful targets for gene therapeutics. After gene transfer into salivary glands, regulated secretory pathway proteins, such as human growth hormone, are secreted into saliva, whereas constitutive secretory pathway proteins, such as erythropoietin, are secreted into the bloodstream. Secretion of human growth hormone (hGH) into the saliva is not therapeutically useful. In this study, we attempted to redirect the secretion of transgenic hGH from the saliva to the serum by site-directed mutagenesis. We tested hGH mutants first in vitro with AtT20 cells, a model endocrine cell line that exhibits polarized secretion of regulated secretory pathway proteins. Selected mutants were further studied in vivo using adenoviral-mediated gene transfer to rat submandibular glands. We identified two mutants with differences in secretion behavior compared to wild-type hGH. One mutant, ΔN1-6 , was detected in the serum of transduced rats, demonstrating that expression of this mutant in the salivary gland resulted in its secretion through the constitutive secretory pathway. This study demonstrates that mutagenesis of therapeutic proteins normally destined for the regulated secretory pathway may result in their secretion via the constitutive secretory pathway into the circulation for potential therapeutic benefit. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Glucose metabolic gene expression in growth hormone transgenic coho salmon.

    PubMed

    Panserat, Stéphane; Kamalam, Biju Sam; Fournier, Jeanne; Plagnes-Juan, Elisabeth; Woodward, Krista; Devlin, Robert H

    2014-04-01

    Salmonids are generally known to be glucose intolerant. However, previous studies have shown that growth hormone (GH) transgenic coho salmon display modified nutritional regulation of glycolysis and lipogenesis compared to non-transgenic fish, suggesting the potential for better use of glucose in GH transgenic fish. To examine this in detail, GH transgenic and non-transgenic coho salmon were subjected to glucose tolerance test and subsequent metabolic assessments. After intra-peritoneal injection of 250mg/kg glucose, we analysed post-injection kinetics of glycaemia and expression of several key target genes highly involved in glucose homeostasis in muscle and liver tissues. Our data show no significant differences in plasma glucose levels during peak hyperglycaemia (3-6h after injection), demonstrating a similar glucose tolerance between transgenic and non transgenic. However, and unrelated to the hyperglycaemic episode, GH transgenic fish return to a slightly lower basal glycaemia values 24h after injection. Correspondingly, GH transgenic fish exhibited higher mRNA levels of glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6PDH) in liver, and glucose transporter (GLUT4) in muscle. These data suggest that these metabolic actors may be involved in different glucose use in GH transgenic fish, which would be expected to influence the glucose challenge response. Overall, our data demonstrate that GH transgenic coho salmon may be a pertinent animal model for further study of glucose metabolism in carnivorous fish.

  7. Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus pyrifolia).

    PubMed

    Xi, Li; Xu, Kuanyong; Qiao, Yushan; Qu, Shenchun; Zhang, Zhen; Dai, Wenhao

    2011-10-01

    In this study, the expression patterns of four ferritin genes (PpFer1, PpFer2, PpFer3, and PpFer4) in pear were investigated using quantitative real-time PCR. Analysis of tissue-specific expression revealed higher expression level of these genes in leaves than in other tested tissues. These ferritin genes were differentially expressed in response to various abiotic stresses and hormones treatments. The expression of ferritin wasn't affected by Fe(III)-citrate treatment. Abscisic acid significantly enhanced the expression of all four ferritin genes, especially PpFer2, followed by N-benzylyminopurine, gibberellic acid, and indole-3-acetic acid. The expression peaks of PpFer1 and PpFer3 in leaves appeared at 6, 6, and 12 h, respectively, after pear plant was exposed to oxidative stress (5 mM H(2)O(2)), salt stress (200 mM NaCl), and heat stress (40°C). A significant increase in PpFer4 expression was detected at 6 h after salt stress or heat stress. The expression of ferritin genes was not altered by cold stress. These results suggested that ferritin genes might be functionally important in acclimation of pear to salt and oxidative stresses. Hormone treatments had no significant effect on expression of ferritin genes compared to abiotic stresses. This showed accumulation of ferritin genes could be operated by different transduction pathways under abiotic stresses and hormones treatments.

  8. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    PubMed

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Exploring hepatic hormone actions using a compilation of gene expression profiles

    PubMed Central

    Ståhlberg, Nina; Merino, Roxana; Hernández, Luis Henríquez; Fernández-Pérez, Leandro; Sandelin, Albin; Engström, Pär; Tollet-Egnell, Petra; Lenhard, Boris; Flores-Morales, Amilcar

    2005-01-01

    Background Microarray analysis is attractive within the field of endocrine research because regulation of gene expression is a key mechanism whereby hormones exert their actions. Knowledge discovery and testing of hypothesis based on information-rich expression profiles promise to accelerate discovery of physiologically relevant hormonal mechanisms of action. However, most studies so-far concentrate on the analysis of actions of single hormones and few examples exist that attempt to use compilation of different hormone-regulated expression profiles to gain insight into how hormone act to regulate tissue physiology. This report illustrates how a meta-analysis of multiple transcript profiles obtained from a single tissue, the liver, can be used to evaluate relevant hypothesis and discover novel mechanisms of hormonal action. We have evaluated the differential effects of Growth Hormone (GH) and estrogen in the regulation of hepatic gender differentiated gene expression as well as the involvement of sterol regulatory element-binding proteins (SREBPs) in the hepatic actions of GH and thyroid hormone. Results Little similarity exists between liver transcript profiles regulated by 17-α-ethinylestradiol and those induced by the continuos infusion of bGH. On the other hand, strong correlations were found between both profiles and the female enriched transcript profile. Therefore, estrogens have feminizing effects in male rat liver which are different from those induced by GH. The similarity between bGH and T3 were limited to a small group of genes, most of which are involved in lipogenesis. An in silico promoter analysis of genes rapidly regulated by thyroid hormone predicted the activation of SREBPs by short-term treatment in vivo. It was further demonstrated that proteolytic processing of SREBP1 in the endoplasmic reticulum might contribute to the rapid actions of T3 on these genes. Conclusion This report illustrates how a meta-analysis of multiple transcript profiles

  10. Hormonal regulation of H19 gene expression in prostate epithelial cells.

    PubMed

    Berteaux, N; Lottin, S; Adriaenssens, E; Van Coppenolle, F; Van Coppennolle, F; Leroy, X; Coll, J; Dugimont, T; Curgy, J-J

    2004-10-01

    The H19 gene is transcribed in an mRNA-like noncoding RNA. When tumors of various organs or cell types are considered, H19 oncogene or tumor-suppressor status remains controversial. To address the potential regulation of H19 gene expression by an androgen steroid hormone (DHT: dihydrotestosterone) or by a peptidic hormone (PRL: prolactin), we performed experiments in rats systemically treated with chemical mediators. This range of in vivo experiments demonstrated that chronic hyperprolactinemia upregulated the H19 expression in epithelial and stromal cells whereas DHT downregulated the gene. PRL and DHT appeared to be opposite mediators in the H19 RNA synthesis. We investigated these hormonal effects in three human prostate epithelial cell lines. In LNCaP cancer cells, the opposite effect of PRL and DHT was corroborated. However, in normal cells (PNT1A), H19 remained insensitive to the hormones in fetal calf serum (FCS) medium but became responsive in a serum-stripped medium. In the DU-145 cancer cell line, tested for its androgen-independence and aggressiveness, the hormones had no effect on H19 expression whatever the culture conditions. Finally, we demonstrated that PRL upregulated the H19 expression in LNCaP cells by the JAK2-STAT5 transduction pathway. We conclude that H19 expression is regulated by both a peptidic and a male steroid hormone.

  11. Hormone Receptor and ERBB2 Status in Gene Expression Profiles of Human Breast Tumor Samples

    PubMed Central

    Dvorkin-Gheva, Anna; Hassell, John A.

    2011-01-01

    The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR), and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression. We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for particular subtypes of

  12. Early thyroid hormone-induced gene expression changes in N2a-β neuroblastoma cells.

    PubMed

    Bedó, Gabriela; Pascual, Angel; Aranda, Ana

    2011-10-01

    Thyroid hormone has long been known to regulate neural development. Hypothyroidism during pregnancy and early postnatal period has severe neurological consequences including even mental retardation. The purpose of this study was to characterize gene expression pattern during thyroid hormone-induced differentiation of neuro-2a β cells in order to select "direct response genes" for further analysis. In this neuroblastoma cell line, thyroid hormone blocks proliferation and induces differentiation. Changes in gene expression level were examined after a T3 treatment of 3 and 24 h using cDNA arrays. Sixteen genes were significantly up-regulated and 79 down-regulated by T3 treatment. Five up-regulated genes not previously described as regulated by thyroid hormone and selected for their putative significance to understand T3 action on cell differentiation, were verified by RT-PCR analysis. The transcription factors Phox2a and basic helix-loop-helix domain containing, class B2 mRNAs exhibited a clear increase after 3- and 24-h treatment. The guanine-nucleotide exchange factor RalGDS was greatly up-regulated after 3-h treatment but not 24 h after. The results suggest an early involvement of these genes in T3 action during neuroblastoma cell differentiation probably mediating later changes in gene expression pattern.

  13. Effect of ovarian hormones on the healthy equine uterus: a global gene expression analysis.

    PubMed

    Marth, Christina D; Young, Neil D; Glenton, Lisa Y; Noden, Drew M; Browning, Glenn F; Krekeler, Natali

    2015-05-20

    The physiological changes associated with the varying hormonal environment throughout the oestrous cycle are linked to the different functions the uterus needs to fulfil. The aim of the present study was to generate global gene expression profiles for the equine uterus during oestrus and Day 5 of dioestrus. To achieve this, samples were collected from five horses during oestrus (follicle >35 mm in diameter) and dioestrus (5 days after ovulation) and analysed using high-throughput RNA sequencing techniques (RNA-Seq). Differentially expressed genes between the two cycle stages were further investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The expression of 1577 genes was found to be significantly upregulated during oestrus, whereas 1864 genes were expressed at significantly higher levels in dioestrus. Most genes upregulated during oestrus were associated with the extracellular matrix, signal interaction and transduction, cell communication or immune function, whereas genes expressed at higher levels in early dioestrus were most commonly associated with metabolic or transport functions, correlating well with the physiological functions of the uterus. These results allow for a more complete understanding of the hormonal influence on gene expression in the equine uterus by functional analysis of up- and downregulated genes in oestrus and dioestrus, respectively. In addition, a valuable baseline is provided for further research, including analyses of changes associated with uterine inflammation.

  14. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  15. Gene Expression Analysis Of Circulating Hormone Refractory Prostate Cancer Micrometastases

    DTIC Science & Technology

    2011-02-01

    trial, and secondary hormonal manoeuvres with agents such as antiandrogens, oestrogens and ketoconazole . The number of peripheral blood collections...patients received therapy after docetaxel but before beginning this study, including ketoconazole (n ¼ 5), sunitinib (n ¼ 3), bicalutamide (n ¼ 2

  16. Gene Expression Analysis of Circulating Hormone Refractory Prostate Cancer Micrometastases

    DTIC Science & Technology

    2008-01-01

    immunotherapy on a clinical trial, and secondary hormonal manoeuvres with agents such as antiandrogens, oestrogens and ketoconazole . The number of...EJ. Phase II Study of Ketoconazole Plus Granulocyte Macrophage Colony Stimulating Factor in Prostate Cancer: Effect of Extent of Disease on

  17. Growth hormone regulation of rat liver gene expression assessed by SSH and microarray.

    PubMed

    Gardmo, Cissi; Swerdlow, Harold; Mode, Agneta

    2002-04-25

    The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.

  18. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon

    PubMed Central

    Kakei, Yusuke; Mochida, Keiichi; Sakurai, Tetsuya; Yoshida, Takuhiro; Shinozaki, Kazuo; Shimada, Yukihisa

    2015-01-01

    Brachypodium distachyon is a new model plant closely related to wheat and other cereals. In this study, we performed a comprehensive analysis of hormone-regulated genes in Brachypodium distachyon using RNA sequencing technology. Brachypodium distachyon seedlings were treated with eight phytohormones (auxin, cytokinine, brassinosteroid, gibberelline, abscisic acid, ethylene, jasmonate and salicylic acid) and two inhibitors, Brz220 (brassinosteroid biosynthesis inhibitor) and prohexadione (gibberelline biosynthesis inhibitor). The expressions of 1807 genes were regulated in a phytohormone-dependent manner. We compared the data with the phytohormone responses that have reported in rice. Transcriptional responses to hormones are conserved between Bracypodium and rice. Transcriptional regulation by brassinosteroid, gibberellin and ethylene was relatively weaker than those by other hormones. This is consistent with the data obtained from comprehensive analysis of hormone responses reported in Arabidopsis. Brachypodium and Arabidopsis also shared some common transcriptional responses to phytohormones. Alternatively, unique transcriptional responses to phytohormones were observed in Brachypodium. For example, the expressions of ACC synthase genes were up-regulated by auxin treatment in rice and Arabidopsis, but no orthologous ACC synthase gene was up-regulated in Brachypodium. Our results provide information useful to understand the diversity and similarity of hormone-regulated transcriptional responses between eudicots and monocots. PMID:26419335

  19. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon.

    PubMed

    Kakei, Yusuke; Mochida, Keiichi; Sakurai, Tetsuya; Yoshida, Takuhiro; Shinozaki, Kazuo; Shimada, Yukihisa

    2015-09-30

    Brachypodium distachyon is a new model plant closely related to wheat and other cereals. In this study, we performed a comprehensive analysis of hormone-regulated genes in Brachypodium distachyon using RNA sequencing technology. Brachypodium distachyon seedlings were treated with eight phytohormones (auxin, cytokinine, brassinosteroid, gibberelline, abscisic acid, ethylene, jasmonate and salicylic acid) and two inhibitors, Brz220 (brassinosteroid biosynthesis inhibitor) and prohexadione (gibberelline biosynthesis inhibitor). The expressions of 1807 genes were regulated in a phytohormone-dependent manner. We compared the data with the phytohormone responses that have reported in rice. Transcriptional responses to hormones are conserved between Bracypodium and rice. Transcriptional regulation by brassinosteroid, gibberellin and ethylene was relatively weaker than those by other hormones. This is consistent with the data obtained from comprehensive analysis of hormone responses reported in Arabidopsis. Brachypodium and Arabidopsis also shared some common transcriptional responses to phytohormones. Alternatively, unique transcriptional responses to phytohormones were observed in Brachypodium. For example, the expressions of ACC synthase genes were up-regulated by auxin treatment in rice and Arabidopsis, but no orthologous ACC synthase gene was up-regulated in Brachypodium. Our results provide information useful to understand the diversity and similarity of hormone-regulated transcriptional responses between eudicots and monocots.

  20. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta.

    PubMed Central

    Robinson, B G; Emanuel, R L; Frim, D M; Majzoub, J A

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. We report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery. Images PMID:2839838

  1. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    SciTech Connect

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A. )

    1988-07-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery.

  2. Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules.

    PubMed

    Santos Ornellas, D; Grozovsky, R; Goldenberg, R C; Carvalho, D P; Fong, P; Guggino, W B; Morales, M

    2003-09-01

    Thyroid hormones has its main role in controlling metabolism, but it can also modulate extracellular fluid Volume (ECFV) through its action on the expression and activity of Na(+) transporters. Otherwise, chloride is the main anion in the ECFV and the influence of thyroid hormones in the regulation of chloride transporters is not yet understood. In this work, we studied the effect of thyroid hormones in the expression of ClC-2, a cell Volume-, pH- and voltage-sensitive Cl(-) channel, in rat kidney. To analyze the modulation of ClC-2 gene expression by thyroid hormones, we used hypothyroid (Hypo) rats with or without thyroxine (T(4)) replacement and hyperthyroid (Hyper) rats as our experimental models. Total RNA was isolated and the expression of ClC-2 mRNA was evaluated by a ribonuclease protection assay, and/or semi-quantitative RT-PCR. Renal ClC-2 expression decreased in Hypo rats and increased in Hyper rats. In addition, semi-quantitative RT-PCR of different nephron segments showed that these changes were due exclusively to the modulation of ClC-2 mRNA expression by thyroid hormone in convoluted and straight proximal tubules. To investigate whether thyroid hormones action was direct or indirect, renal proximal tubule primary culture cells were prepared and subjected to different T(4) concentrations. ClC-2 mRNA expression was increased by T(4) in a dose-dependent fashion, as analyzed by RT-PCR. Western blotting demonstrated that ClC-2 protein expression followed the same profile of mRNA expression.

  3. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli

    PubMed Central

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803

  4. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    PubMed

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  5. FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression

    PubMed Central

    Zhao, Jonathan C.; Fong, Ka-Wing; Jin, Hong-Jian; Yang, Yeqing A; Kim, Jung; Yu, Jindan

    2016-01-01

    Hormonal regulation of gene expression by androgen receptor (AR) is tightly controlled by many transcriptional cofactors, including pioneer factors FOXA1 and GATA2, which, however, exhibit distinct expression patterns and functional roles in prostate cancer. Here, we examined how FOXA1, GATA2, and AR crosstalk and regulate hormone-dependent gene expression in prostate cancer cells. ChIP-seq analysis revealed that FOXA1 reprograms both AR and GATA2 cistrome by preferably recruiting them to FKHD-containing genomic sites. By contrast, GATA2 is unable to shift AR or FOXA1 to GATA motifs. Rather, GATA2 co-occupancy enhances AR and FOXA1 binding to nearby ARE and FKHD sites, respectively. Similarly, AR increases, but not re-programs, GATA2 and FOXA1 cistromes. Concordantly, GATA2 and AR strongly enhance the transcriptional program of each other, whereas FOXA1 regulates GATA2- and AR-mediated gene expression in a context-dependent manner due to its reprogramming effects. Taken together, our data delineated for the first time the distinct mechanisms by which GATA2 and FOXA1 regulate AR cistrome and suggest that FOXA1 acts upstream of GATA2 and AR in determining hormone-dependent gene expression in prostate cancer. PMID:26751772

  6. FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression.

    PubMed

    Zhao, J C; Fong, K-W; Jin, H-J; Yang, Y A; Kim, J; Yu, J

    2016-08-18

    Hormonal regulation of gene expression by androgen receptor (AR) is tightly controlled by many transcriptional cofactors, including pioneer factors FOXA1 and GATA2, which, however, exhibit distinct expression patterns and functional roles in prostate cancer. Here, we examined how FOXA1, GATA2 and AR crosstalk and regulate hormone-dependent gene expression in prostate cancer cells. Chromatin immunoprecipitation sequencing analysis revealed that FOXA1 reprograms both AR and GATA2 cistrome by preferably recruiting them to FKHD-containing genomic sites. By contrast, GATA2 is unable to shift AR or FOXA1 to GATA motifs. Rather, GATA2 co-occupancy enhances AR and FOXA1 binding to nearby ARE and FKHD sites, respectively. Similarly, AR increases, but not reprograms, GATA2 and FOXA1 cistromes. Concordantly, GATA2 and AR strongly enhance the transcriptional program of each other, whereas FOXA1 regulates GATA2- and AR-mediated gene expression in a context-dependent manner due to its reprogramming effects. Taken together, our data delineated for the first time the distinct mechanisms by which GATA2 and FOXA1 regulate AR cistrome and suggest that FOXA1 acts upstream of GATA2 and AR in determining hormone-dependent gene expression in prostate cancer.

  7. Tissue Specific and Hormonal Regulation of Gene Expression

    DTIC Science & Technology

    1997-08-01

    labor . In choriocarcinoma cell lines, which are models for placental trophoblasts, activation of cAMP dependent pathways increases human (h)CRH...placenta (7,8). Recent studies indicate that placental CRH may serve as a key component in timing the onset of human labor (9). Placental CRH is...consistent with a role for CRH in fetal gestation and labor , especially in humans (28). The expression of CRH in human placenta begins around the seventh week

  8. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  9. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  10. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    PubMed Central

    Aggarwal, Sipla; Shukla, Vishnu; Bhati, Kaushal Kumar; Kaur, Mandeep; Sharma, Shivani; Singh, Anuradha; Mantri, Shrikant; Pandey, Ajay Kumar

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements. Multiple cis-elements of those known to be involved for ABA, GA3, salicylic acid (SA), and cAMP sensing were identified in the promoters of PA pathway genes. Eight genes (TaIMP, TaITPK1-4, TaPLC1, TaIPK2 and TaIPK1) involved in the wheat PA biosynthesis pathway were selected for the expression studies. The temporal expression response was studied in seeds treated with ABA and GA3 using quantitative real time PCR. Our results suggested that exogenous application of ABA induces few PA pathway genes in wheat grains. Comparison of expression profiles for PA pathway for GA3 and ABA suggested the antagonistic regulation of certain genes. Additionally, to reveal stress responses of wheat PA pathway genes, expression was also studied in the presence of SA and cAMP. Results suggested SA specific differential expression of few genes, whereas, overall repression of genes was observed in cAMP treated samples. This study is an effort to understand the regulation of PA biosynthesis genes in wheat. PMID:27135330

  11. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway.

    PubMed

    Aggarwal, Sipla; Shukla, Vishnu; Bhati, Kaushal Kumar; Kaur, Mandeep; Sharma, Shivani; Singh, Anuradha; Mantri, Shrikant; Pandey, Ajay Kumar

    2015-06-11

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA₃) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements. Multiple cis-elements of those known to be involved for ABA, GA₃, salicylic acid (SA), and cAMP sensing were identified in the promoters of PA pathway genes. Eight genes (TaIMP, TaITPK1-4, TaPLC1, TaIPK2 and TaIPK1) involved in the wheat PA biosynthesis pathway were selected for the expression studies. The temporal expression response was studied in seeds treated with ABA and GA₃ using quantitative real time PCR. Our results suggested that exogenous application of ABA induces few PA pathway genes in wheat grains. Comparison of expression profiles for PA pathway for GA₃ and ABA suggested the antagonistic regulation of certain genes. Additionally, to reveal stress responses of wheat PA pathway genes, expression was also studied in the presence of SA and cAMP. Results suggested SA specific differential expression of few genes, whereas, overall repression of genes was observed in cAMP treated samples. This study is an effort to understand the regulation of PA biosynthesis genes in wheat.

  12. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  13. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  14. Composite response elements mediate hormonal and developmental regulation of milk protein gene expression.

    PubMed

    Rosen, J M; Zahnow, C; Kazansky, A; Raught, B

    1998-01-01

    Our laboratory has been studying the mechanisms by which hormones regulate the expression of differentiated function in the normal mammary gland and how these regulatory mechanisms have deviated in breast cancer. Two rat milk protein genes, encoding beta-casein and whey acidic protein, have been employed as molecular markers of mammary epithelial cell differentiation. Composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. In the whey protein gene promoters, these include binding sites for nuclear factor (NF)-I, as well as the glucocorticoid receptor (GR) and signal transducers and activators of transcription (Stat5). In the casein promoters, these include binding sites for Stat5, Yin Yang 1 (YY1), GR and the CCAAT/enhancer binding protein (C/EBP). The C/EBP family of DNA binding proteins may play a pivotal role in maintaining the balance between cell proliferation and terminal differentiation in mammary epithelial cells. During normal mammary gland development, expression of LIP (liver-enriched inhibitory protein, a dominant-negative isoform of C/EBP beta) is hormonally regulated and correlates with cell proliferation during pregnancy. LIP can form heterodimers with other C/EBP family members and suppress their transcriptional activity. In contrast, C/EBP alpha is predominantly expressed during lactation following terminal differentiation. Elevated LIP levels have been detected in mouse, rat and human breast tumours of different aetiologies. This provides a mechanism, therefore, to block terminal differentiation and facilitate continued proliferation.

  15. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    SciTech Connect

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  16. Regulation of adiponectin gene expression in adipose tissue by thyroid hormones.

    PubMed

    Seifi, Samira; Tabandeh, Mohammad Reza; Nazifi, Saed; Saeb, Mehdi; Shirian, Sadegh; Sarkoohi, Parisa

    2012-06-01

    Available experimental data suggest that adiponectin and thyroid hormones have biological interaction in vivo. However, the effects of thyroid hormones on adipose adiponectin gene expression in thyroid dysfunction are unclear. We induced hyper- (HYPER) and hypothyroidism (HYPO) by daily administration of a 12 mg/l of levothyroxine and 250 mg/l of methimazole in drinking water of rats, respectively, for 42 days. The white adipose tissues and serum sample were taken on days 15, 28, 42 and also 2 weeks after treatment cessation. Analysis of adiponectin gene expression was performed by real-time PCR and 2(-ΔΔct) method. The levels of adipose tissue adiponectin mRNA in the HYPO rats were decreased during the 6-week treatment when compared to control rats (<0.05) and were increased significantly 2 weeks after HYPO cessation (P < 0.05). This decline in adiponectin gene expression occurred in parallel with a decrease in T3, T4, fT3 and fT4 concentrations (P < 0.05). In opposite to HYPO rats, adipose adiponectin gene expression was increased in HYPER rats during the 6-week treatment in parallel with an increase the thyroid hormones concentrations (P < 0.05), and its expression was decreased 2 weeks after HYPER cessation (P < 0.05). Adiponectin gene expression levels showed significant negative correlations with concentrations of LDL (HYPO; r = -0.806, P = 0.001 and HYPER; r = -0.749, P = 0.002), triglyceride (HYPO; r = -0.825, P = 0.001 and HYPER; r = -0.824, P = 0.001) and significant positive correlations with concentrations of glucose (HYPO; r = 0.674, P = 0.004 and HYPER; r = 0.866, P = 0.001) and HDL (HYPO; r = 0.755, P = 0.001 and HYPER; r = 0.839, P = 0.001). The current study provides evidence that adiponectin gene expression in adipose tissue is regulated by thyroid hormones at the translation level and that lipid and carbohydrate disturbances in a patient with thyroid dysfunction may

  17. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain.

    PubMed

    Hamada, Mayuko; Shimozono, Naoki; Ohta, Naoyuki; Satou, Yutaka; Horie, Takeo; Kawada, Tsuyoshi; Satake, Honoo; Sasakura, Yasunori; Satoh, Nori

    2011-04-15

    Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.

  18. Hormonal Modulation of Breast Cancer Gene Expression: Implications for Intrinsic Subtyping in Premenopausal Women

    PubMed Central

    Bernhardt, Sarah M.; Dasari, Pallave; Walsh, David; Townsend, Amanda R.; Price, Timothy J.; Ingman, Wendy V.

    2016-01-01

    Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-based Prosigna test quantifies expression of 50 key genes to classify breast cancer subtype, and this method of classification has been demonstrated to be superior over traditional immunohistochemical methods that detect proteins, to predict risk of disease recurrence. However, these tests were largely developed and validated using breast cancer samples from postmenopausal women. Thus, the accuracy of such tests has not been explored in the context of the hormonal fluctuations in estrogen and progesterone that occur during the menstrual cycle in premenopausal women. Concordance between traditional methods of subtyping and the new tests in premenopausal women is likely to depend on the stage of the menstrual cycle at which the tissue sample is taken and the relative effect of hormones on expression of genes versus proteins. The lack of knowledge around the effect of fluctuating estrogen and progesterone on gene expression in breast cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, which comprise about 25% of breast cancer diagnoses. Further research on the impact of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal women are to benefit from the new technology of intrinsic subtyping. PMID:27896218

  19. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  20. Thyroid hormone induces constitutive keratin gene expression during Xenopus laevis development.

    PubMed Central

    Mathisen, P M; Miller, L

    1989-01-01

    We have used in vitro explant cultures of Xenopus laevis skin to investigate the role that the thyroid hormone triiodothyronine (T3) plays in activating the 63-kilodalton (kDa) keratin genes. The activation of these genes in vivo requires two distinct steps, one independent of T3 and one dependent on T3. In this report we have shown that the same two steps are required to fully activate the 63-kDa keratin genes in skin explant cultures, and we have characterized the T3-mediated step in greater detail. Unlike the induction of transcription by T3 or steroid hormones in adult tissues, there was a long latent period of approximately 2 days between the addition of T3 to skin cultures and an increase in concentration of keratin mRNA. While the T3 induction of 63-kDa keratin gene transcription cannot occur until age 48, a short transient exposure of stage 40 skin cultures to T3 resulted in high-level expression of these genes 5 days later, when normal siblings had reached stage 48. This result indicates that T3 induces a stable change in epidermal cells which can be expressed much later, after extensive cell proliferation has occurred in the absence of T3. Once the 63-kDa keratin genes were induced, they were stably expressed, and by the end of metamorphosis T3 had no further effect on their expression. The results suggest that T3 induces constitutive expression of the 63-kDa keratin genes during metamorphosis. Images PMID:2473388

  1. Growth hormone inhibits rat liver alpha-1-acid glycoprotein gene expression in vivo and in vitro.

    PubMed

    Mejdoubi, N; Henriques, C; Bui, E; Durand, G; Lardeux, B; Porquet, D

    1999-01-01

    The gene encoding alpha-1-acid glycoprotein (AGP), one of the major acute-phase proteins, is positively controlled at the transcriptional level by cytokines (interleukin-1 [IL-1], IL-6, and tumor necrosis factor alpha) and glucocorticoids. Here, we show that growth hormone (GH) treatment of isolated rat hepatocytes in vitro reduces AGP messenger RNA (mRNA) expression. AGP gene expression remained inducible by IL-1, IL-6, and phenobarbital (PB) in GH-treated hepatocytes. Interestingly, the repressive effect of GH on AGP gene expression was also observed in vivo: liver AGP mRNA content was strongly increased in hypophysectomized rats, and GH treatment of these animals led to a decrease in mRNA to levels lower than those in untreated control animals. Moreover, the inhibitory effect of GH mainly occurs at the transcriptional level and can be observed as little as 0.5 hours after GH adding in vitro to isolated hepatocytes. These results show negative regulation of AGP gene expression and strongly suggest that GH is a major endogenous regulator of constitutive AGP gene expression. Moreover, transfection assays showed that the region of the AGP promoter located at position -147 to -123 is involved in AGP gene regulation by GH. Furthermore, GH deeply modifies the pattern of nuclear protein binding to this region. GH treatment of hypophysectomized rats led to the release of proteins of 42 to 45 and 80 kd and to the binding of proteins of 48 to 50 and 90 kd.

  2. FOXO1 Transcription Factor Inhibits Luteinizing Hormone β Gene Expression in Pituitary Gonadotrope Cells*

    PubMed Central

    Arriola, David J.; Mayo, Susan L.; Skarra, Danalea V.; Benson, Courtney A.; Thackray, Varykina G.

    2012-01-01

    Synthesis of luteinizing hormone (LH) is tightly controlled by a complex network of hormonal signaling pathways that can be modulated by metabolic cues, such as insulin. One group of candidate genes that may be regulated by insulin signaling in pituitary gonadotrope cells is the FOXO subfamily of forkhead transcription factors. In this study we investigated whether FOXO1 is expressed in gonadotropes and if it can modulate LH β-subunit (Lhb) gene expression. We demonstrated that FOXO1 is expressed in murine gonadotrope cells and that insulin signaling increased FOXO1 phosphorylation and cytoplasmic localization in a PI3K-dependent manner. We also showed that FOXO1 repressed basal transcription and gonadotropin-releasing hormone (GnRH) induction of both the murine and human LHB genes in LβT2 cells, suggesting that FOXO1 regulation of LHB transcription may be conserved between rodents and humans. Although we did not detect FOXO1 binding to the proximal Lhb promoter, the FOXO1 DNA binding domain was necessary for the suppression, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors/cofactors required for Lhb gene expression. FOXO1 repression mapped to the proximal Lhb promoter containing steroidogenic factor 1 (SF1), pituitary homeobox 1 (PTX1), and early growth response protein 1 (EGR1) binding elements. Additionally, FOXO1 blocked induction of the Lhb promoter with overexpressed SF1, PTX1, and EGR1, indicating that FOXO1 repression occurs via these transcription factors but not through regulation of their promoters. In summary, we demonstrate that FOXO1 phosphorylation and cellular localization is regulated by insulin signaling in gonadotropes and that FOXO1 inhibits Lhb transcription. Our study also suggests that FOXO1 may play an important role in controlling LH levels in response to metabolic cues. PMID:22865884

  3. FOXO1 transcription factor inhibits luteinizing hormone β gene expression in pituitary gonadotrope cells.

    PubMed

    Arriola, David J; Mayo, Susan L; Skarra, Danalea V; Benson, Courtney A; Thackray, Varykina G

    2012-09-28

    Synthesis of luteinizing hormone (LH) is tightly controlled by a complex network of hormonal signaling pathways that can be modulated by metabolic cues, such as insulin. One group of candidate genes that may be regulated by insulin signaling in pituitary gonadotrope cells is the FOXO subfamily of forkhead transcription factors. In this study we investigated whether FOXO1 is expressed in gonadotropes and if it can modulate LH β-subunit (Lhb) gene expression. We demonstrated that FOXO1 is expressed in murine gonadotrope cells and that insulin signaling increased FOXO1 phosphorylation and cytoplasmic localization in a PI3K-dependent manner. We also showed that FOXO1 repressed basal transcription and gonadotropin-releasing hormone (GnRH) induction of both the murine and human LHB genes in LβT2 cells, suggesting that FOXO1 regulation of LHB transcription may be conserved between rodents and humans. Although we did not detect FOXO1 binding to the proximal Lhb promoter, the FOXO1 DNA binding domain was necessary for the suppression, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors/cofactors required for Lhb gene expression. FOXO1 repression mapped to the proximal Lhb promoter containing steroidogenic factor 1 (SF1), pituitary homeobox 1 (PTX1), and early growth response protein 1 (EGR1) binding elements. Additionally, FOXO1 blocked induction of the Lhb promoter with overexpressed SF1, PTX1, and EGR1, indicating that FOXO1 repression occurs via these transcription factors but not through regulation of their promoters. In summary, we demonstrate that FOXO1 phosphorylation and cellular localization is regulated by insulin signaling in gonadotropes and that FOXO1 inhibits Lhb transcription. Our study also suggests that FOXO1 may play an important role in controlling LH levels in response to metabolic cues.

  4. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues.

    PubMed

    Matsubara, S; Sato, M; Mizobuchi, M; Niimi, M; Takahara, J

    1995-09-01

    Growth hormone (GH)-releasing hormone (GRH) acts on specific receptors in the anterior pituitary to stimulate the synthesis and release of GH. Recent reports suggest that GRH is also synthesized in extrahypothalamic tissues. To evaluate the potential roles of extrahypothalamic GRH, we studied the gene expression of GRH and GRH receptors in various rat tissues by reverse transcribed (RT)-polymerase chain reaction (PCR). Total RNA was extracted from twenty-three rat organs and RT-PCR was performed with GRH and GRH receptor primers. Highly-sensitive RT-PCR-Southern blotting showed that GRH and GRH receptor mRNA coexist in the widespread tissues (14 of 25 tissues). GRH mRNA was relatively abundant in the cerebral cortex, brain stem, testis, and placenta, while GRH receptor mRNA was abundant in renal medulla and renal pelvis. Northern blot hybridization using poly A+ RNA indicated that the transcript of GRH receptor gene found in the renal medulla was similar to the longer transcript (about 4 Kb) of pituitary GRH receptor in the size. These results suggest that GRH plays a potential role not only in the neuroendocrine axis, but also in the autocrine and paracrine systems in extrahypothalamic tissues.

  5. Expression of hormone genes and osmoregulation in homing chum salmon: a minireview.

    PubMed

    Makino, Keita; Onuma, Takeshi A; Kitahashi, Takashi; Ando, Hironori; Ban, Masatoshi; Urano, Akihisa

    2007-01-01

    Pacific salmon migrate from ocean through the natal river for spawning. Information on expression of genes encoding osmoregulatory hormones and migratory behavior is important for understanding of molecular events that underlie osmoregulation of homing salmon. In the present article, regulation of gene expression for osmoregulatory hormones in pre-spawning salmon was briefly reviewed with special reference to neurohypophysial hormone, vasotocin (VT), and pituitary hormones, growth hormone (GH) and prolactin (PRL). Thereafter, we introduced recent data on migratory behavior from SW to FW environment. In pre-spawning chum salmon, the hypothalamic VT mRNA levels increased in the males, while decreased in the females with loss of salinity tolerance when they were kept in SW. The amounts of GH mRNA in the pituitary decreased during ocean migration prior to entrance into FW. Hypo-osmotic stimulation by SW-to-FW transfer did not significantly affect the amount of PRL mRNA, but it was elevated in both SW and FW environments along with progress in final maturation. Behaviorally, homing chum salmon continued vertical movement between SW and FW layers in the mouth of the natal river for about 12h prior to upstream migration. Pre-spawning chum salmon in an aquarium, which allowed fish free access to SW and FW, showed that individuals with the lower plasma testosterone (T) and higher estradiol-17beta (E2) levels spent longer time in FW when compared with the SW fish. Taken together, neuroendocrine mechanisms that underlie salt and water homeostasis and migratory behavior from SW to FW may be under the control of the hypothalamus-pituitary-gonadal axis in pre-spawning salmon.

  6. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity.

    PubMed

    Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q

    2017-04-10

    An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.

  7. Expression of the gene encoding growth hormone in the human mammary gland

    SciTech Connect

    Mol, J.A.; Misdorp, W.; Rijnberk, A.

    1995-10-01

    Progestins cause a syndrome of growth hormone (GH) excess and enhanced mammary tumorigenesis in the dog. This has been regarded as being specific for the dog. Recently we reported that progestin-induced GH excess originates from foci of hyperplastic ductular epithelium of the mammary gland in the dog. In the present report we demonstrate by reverse-transcriptase PCR and immunohistochemistry that a main factor involved in tissue growth, i.e. GH, is also expressed in normal and neoplastic human mammary glands. The gene expressed in the human mammary gland proved to be identical to the gene encoding GH in the pituitary gland. The role of progesterone in the GH expression of the human mammary gland needs, however, to be proven. It is hypothesized that this locally produced hGH may play a pathogenetic role in breast cancer. 21 refs., 2 figs., 1 tab.

  8. Expression of Thyroid Hormone Responsive SPOT 14 Gene Is Regulated by Estrogen in Chicken (Gallus gallus).

    PubMed

    Ren, Junxiao; Xu, Naiyi; Zheng, Hang; Tian, Weihua; Li, Hong; Li, Zhuanjian; Wang, Yanbin; Tian, Yadong; Kang, Xiangtao; Liu, Xiaojun

    2017-08-31

    Thyroid hormone responsive spot 14 (THRSP) is a small nuclear protein that responds rapidly to thyroid hormone. It has been shown that THRSP is abundant in lipogenic tissues such as liver, fat and the mammary gland in mammals. The THRSP gene acts as a key lipogenic activator and can be activated by thyroid hormone triiodothyronine (T3), glucose, carbohydrate and insulin. Here we report that chicken THRSP is also abundant in lipogenic tissues including the liver and the abdominal fat, and its expression levels increased with sex maturation and reached the highest level at the peak of egg production. Structure analysis of the THRSP gene indicates that there is a conscious estrogen response element (ERE) located in the -2390 - -2402 range of the gene promoter region. Further studies by ChIP-qPCR proved that the ERα interacts with the putative ERE site. In addition, THRSP was significantly upregulated (P < 0.05) when chickens or chicken primary hepatocytes were treated with 17β-estradiol in both the in vivo and in vitro conditions. We therefore conclude that THRSP is directly regulated by estrogen and is involved in the estrogen regulation network in chicken.

  9. Reduced effects of thyroid hormone on gene expression and metamorphosis in a paedomorphic plethodontid salamander.

    PubMed

    Aran, Robert P; Steffen, Michael A; Martin, Samuel D; Lopez, Olivia I; Bonett, Ronald M

    2014-07-01

    It has been over a century since Gudernatsch (1912, Wilhelm Roux Arch Entwickl Mech Org 35:457-483) demonstrated that mammalian thyroid gland extracts can stimulate tadpole metamorphosis. Despite the tremendous developmental diversity of amphibians, mechanisms of metamorphosis have mostly been studied in a few model systems. This limits our understanding of the processes that influence the evolution of developmental aberrations. Here we isolated thyroid hormone receptors alpha (TRα) and beta (TRβ) from Oklahoma salamanders (Eurycea tynerensis), which exhibit permanently aquatic (paedomorphic) or biphasic (metamorphic) developmental modes in different populations. We found that TRα and TRβ were upregulated by thyroid hormone (T3 ) in tail tissues of larvae from metamorphic populations, but basal levels of TR expression and T3 responsiveness were reduced in larvae from paedomorphic populations. Likewise, we found that T3 treatment resulted in complete loss of larval epibranchials in larvae from metamorphic populations, but little to no epibranchial remodeling occurred in larvae from paedomorphic populations over the same duration. This is the first study to directly demonstrate reduced gene expression and metamorphic responses to T3 in a paedomorphic plethodontid compared to metamorphic conspecifics, and the first salamander system to show differential expression of thyroid hormone receptors associated with alternative developmental patterns.

  10. Expression of human placental lactogen and variant growth hormone genes in placentas.

    PubMed

    Martinez-Rodriguez, H G; Guerra-Rodriguez, N E; Iturbe-Cantu, M A; Martinez-Torres, A; Barrera-Saldaña, H A

    1997-01-01

    Previous studies comparing the expression levels of human placental lactogen (hPL) genes have shown varying results, due to, perhaps, the fact that in all of them only one placenta was being analyzed. Here, the expression of hPL and growth hormone variant (hGH-V) genes in fifteen term placentas was comparatively analyzed at the RNA level, using reverse transcription coupled to polymerase chain reaction (RT-PCR). The abundance of the combined RNA transcripts derived from these genes varied from one placenta to another. The authors found that hPL-4 transcripts were more abundant than those of hPL-3 in most samples (ratios from 1:1 to 6:1), transcripts from the putative hPL-1 pseudogene were more abundant at the unprocessed stage while those of the hGH-V gene were mostly processed. Again, the authors of this study observed wide variation from placenta to placenta in the abundance of both of these types of transcripts. The same was observed when a group of six placentas from abortuses and nine from pregnancies complicated by preclampsia, diabetes and hypertension was studied. The authors conclude that the disagreeing results reported in the literature which are not in agreement concerning the expression levels of hPL genes could be explained by normal variations of their expression levels among the different placentas analyzed.

  11. Differential gene expression induced by growth hormone treatment in the uremic rat growth plate.

    PubMed

    Gil, Helena; Lozano, Juan J; Alvarez-García, Oscar; Secades-Vázquez, Pablo; Rodríguez-Suárez, Julián; García-López, Enrique; Carbajo-Pérez, Eduardo; Santos, Fernando

    2008-08-01

    Treatment with growth hormone (GH) improves growth retardation of chronic renal failure. cDNA microarrays were used to investigate GH-induced modifications in gene expression in the tibial growth plate of young rats. RNA was extracted from the tibial growth plate from two groups, untreated and treated with GH, of young rats made uremic by subtotal nephrectomy (n=10). To validate changes shown by the Agilent oligo microarrays, some modulated genes known to play a physiological role in growth plate metabolism were analyzed by real-time quantitative polymerase chain reaction (qPCR). The microarrays showed that GH modified the expression of 224 genes, 195 being upregulated and 29 downregulated. qPCR results confirmed the sense of expression change found in the arrays for insulin-like growth factor I, insulin-like growth factor II, collagen V alpha 1, bone morphogenetic protein 3 and proteoglycan type II. This study shows for the first time the profile of growth plate gene expression modifications caused by GH treatment in experimental uremia and provides a basis to further investigate selected individual genes with potential implication in the stimulating effect on the growth of GH treatment in chronic renal failure.

  12. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  13. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. Copyright © 2012 SETAC.

  14. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.

    PubMed

    Japón, M A; Rubinstein, M; Low, M J

    1994-08-01

    We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer

  15. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats.

    PubMed

    Makatsori, A; Duncko, R; Schwendt, M; Moncek, F; Johansson, B B; Jezova, D

    2003-07-01

    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p<0.05) compared to those in control rats. Principal component analysis revealed the relation between POMC gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior.

  16. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4).

    PubMed

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L; Sugden, David; Rath, Martin F; Møller, Morten; Klein, David C

    2010-01-15

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression. Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems and whether thyroid hormone controls expression of other genes in the pineal gland.

  17. Thyroid Hormone Status Interferes with Estrogen Target Gene Expression in Breast Cancer Samples in Menopausal Women

    PubMed Central

    Conde, Sandro José; Luvizotto, Renata de Azevedo Melo; de Síbio, Maria Teresa; Nogueira, Célia Regina

    2014-01-01

    We investigated thyroid hormone levels in menopausal BrC patients and verified the action of triiodothyronine on genes regulated by estrogen and by triiodothyronine itself in BrC tissues. We selected 15 postmenopausal BrC patients and a control group of 18 postmenopausal women without BrC. We measured serum TPO-AB, TSH, FT4, and estradiol, before and after surgery, and used immunohistochemistry to examine estrogen and progesterone receptors. BrC primary tissue cultures received the following treatments: ethanol, triiodothyronine, triiodothyronine plus 4-hydroxytamoxifen, 4-hydroxytamoxifen, estrogen, or estrogen plus 4-hydroxytamoxifen. Genes regulated by estrogen (TGFA, TGFB1, and PGR) and by triiodothyronine (TNFRSF9, BMP-6, and THRA) in vitro were evaluated. TSH levels in BrC patients did not differ from those of the control group (1.34 ± 0.60 versus 2.41 ± 1.10 μU/mL), but FT4 levels of BrC patients were statistically higher than controls (1.78 ± 0.20 versus 0.95 ± 0.16 ng/dL). TGFA was upregulated and downregulated after estrogen and triiodothyronine treatment, respectively. Triiodothyronine increased PGR expression; however 4-hydroxytamoxifen did not block triiodothyronine action on PGR expression. 4-Hydroxytamoxifen, alone or associated with triiodothyronine, modulated gene expression of TNFRSF9, BMP-6, and THRA, similar to triiodothyronine treatment. Thus, our work highlights the importance of thyroid hormone status evaluation and its ability to interfere with estrogen target gene expression in BrC samples in menopausal women. PMID:24701358

  18. Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes.

    PubMed Central

    Forrest, D; Hallböök, F; Persson, H; Vennström, B

    1991-01-01

    Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement. Images PMID:1991448

  19. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    SciTech Connect

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  20. Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor.

    PubMed Central

    Zuo, F; Kraus, R J; Gulick, T; Moore, D D; Mertz, J E

    1997-01-01

    Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of primate cells by the binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors (S. R. Wiley, R. J. Kraus, F. R. Zuo, E. E. Murray, K. Loritz, and J. E. Mertz, Genes Dev. 7:2206-2219, 1993). Recently, we showed that IBP-s consists of several members of the steroid/thyroid hormone receptor superfamily (F. Zuo and J. E. Mertz, Proc. Natl. Acad. Sci. USA 92:8586-8590, 1995). Here, we show that the thyroid hormone receptor TRalpha1, in combination with retinoid X receptor alpha (RXRalpha), is specifically bound at the transcriptional initiation site of the major late promoter of SV40. This binding repressed transcription from the SV40 late promoter by preventing the formation of pre-initiation complexes. Addition of the thyroid hormone 3,5,3'-L-triiodothyronine (T3) resulted in reversal of this repression in cotransfected CV-1 cells. Interestingly, repression did not occur when this thyroid response element (TRE) was translocated to 50 bp upstream of the major late initiation site. Binding of TRalpha1/RXRalpha heterodimers to this TRE induced bending of the promoter DNA. We conclude that hormones and their receptors can directly affect the expression of SV40, probably by affecting protein-protein and protein-DNA interactions involved in the formation of functional preinitiation complexes. PMID:8985367

  1. Thyroid hormone status affects expression of daily torpor and gene transcription in Djungarian hamsters (Phodopus sungorus).

    PubMed

    Bank, Jonathan H H; Kemmling, Julia; Rijntjes, Eddy; Wirth, Eva K; Herwig, Annika

    2015-09-01

    Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.

  2. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  3. Cloning and characterization of Pangasianodon hypophthalmus growth hormone gene and its heterologous expression.

    PubMed

    Sekar, Megarajan; Singh, Shiva Dhar; Gupta, Subodh

    2014-07-01

    Pangasianodon hypophthalmus is one of the fast-growing catfish of freshwater origin, and its growth is attributed by the action of growth hormone (GH). In this study, the growth hormone gene (PhGH) of 3.0 kb was characterized, and it is composed of five exons and four introns and having characteristics of an upstream region that contains TATA, CAAT boxes, and binding sites of important transcription factors like Pit-1a, CRE, CREB, CREBP, Ap-1, SP1, and TBP. The full-length cDNA sequence of 1,069 bp was isolated using RACE technique, and it is composed of untranslated regions of 60 and 403 bp at 5' and 3', respectively, with an open reading frame of 603 bp that encodes a putative polypeptide of 200 amino acids with an estimated molecular mass of 22.57 kDa. The precursor of PhGH is composed of 22 amino acid signal peptides and 178 amino acid mature peptides. Five conserved Cys residues (Cys(71), Cys(135), Cys(173), Cys(190), and Cys(198)) and two possible sites of N-glycosylation (145th and 197th) were detected on GH polypeptide. The PhGH gene showed more than 90 % sequence similarity with other catfishes, and the phylogeny constructed revealed the close proximity of Siluriformes fishes with Cypriniformes fishes. The PhGH gene was observed to be expressed predominantly in pituitary tissues while weekly expressed in extrapituitary tissues. Further, the recombinant PhGH was expressed in Escherichia coli using His-tag expression vector pET 32(a), and the recombinant protein of ~23 kDa was confirmed by western blotting. Our findings suggest that the identified functional GH gene would provide basic information in transgenic studies aiming for faster growth rate. This recombinant growth hormone (GH) may be produced in large scale to exploit its growth-promoting function in other cultured fishes.

  4. Cortisol stimulates growth hormone gene expression in rainbow trout leucocytes in vitro.

    PubMed

    Yada, Takashi; Muto, Kohji; Azuma, Teruo; Hyodo, Susumu; Schreck, Carl B

    2005-05-15

    Extrapituitary expression of the growth hormone (GH) gene has been reported for the immune system of various vertebrates. In the rainbow trout (Oncorhynchus mykiss), GH mRNA could be detected in several lymphoid organs and leucocytes by reverse transcriptase-polymerase chain reaction (RT-PCR). To understand the control of GH expression in the fish immune system, mRNA levels for two distinct GH genes (GH1 and GH2) in trout leucocytes isolated from peripheral blood were quantified using a real-time PCR method. Both GH mRNAs could be detected in trout leucocytes, although their levels were extremely low compared to those in pituitary cells. The levels of GH2 mRNA in leucocytes were several times higher than those of GH1, while no difference was observed between GH1 and GH2 mRNA levels in the pituitary. Administration of dibutyryl cyclic AMP and cortisol produced a significant elevation of GH mRNA levels in trout leucocytes, although the levels were unchanged by T3. GH1 and GH2 mRNA levels showed similarities in responses to those factors. The effect of cortisol on GH mRNA appears biphasic; a dose-depending elevation of GH gene expression was observed in leucocytes treated with cortisol at below 200 nM, however, cortisol had no effect at 2000 nM. Cortisol-treated leucocytes showed no significant change in the mRNA level of beta-actin or proliferative activity during the experiments. Our results thus show that, at the low levels, GH gene expression in trout leucocytes is regulated by cortisol, which has been known as a regulatory factor of GH gene expression in pituitary cells, and suggest a physiological significance of paracrine GH produced in the fish immune system.

  5. Expression of growth hormone gene during early development of Siberian sturgeon (Acipenser baerii)

    PubMed Central

    Abdolahnejad, Zeinab; Pourkazemi, Mohammad; Khoshkholgh, Majid Reza; Yarmohammadi, Mahtab

    2015-01-01

    The mRNA expression of growth hormone (GH) gene in early development stages of Siberian sturgeon was investigated using RT-PCR method. Samples were collected from unfertilized eggs up to 50 days post hatched (dph) larvae in 11 different times. Ribosomal protein L6 (RPL6) transcripts were used as the internal standard during quantification of GH mRNA expression. The results showed that the GH mRNA could be observed in the eyed eggs and even at unfertilized eggs of Siberian sturgeon. The highest amounts of GH mRNA were found at 25 and 50 dph larvae, while the lowest levels were detected at 1 and 3 dph larvae stage. These findings suggest that, the GH mRNA play a key role during developmental stages of Siberian sturgeon. PMID:27844010

  6. Expression of growth hormone gene during early development of Siberian sturgeon (Acipenserbaerii).

    PubMed

    Abdolahnejad, Zeinab; Pourkazemi, Mohammad; Khoshkholgh, Majid Reza; Yarmohammadi, Mahtab

    2015-12-01

    The mRNA expression of growth hormone (GH) gene in early development stages of Siberian sturgeon was investigated using RT-PCR method. Samples were collected from unfertilized eggs up to 50 days post hatched (dph) larvae in 11 different times. Ribosomal protein L6 (RPL6) transcripts were used as the internal standard during quantification of GH mRNA expression. The results showed that the GH mRNA could be observed in the eyed eggs and even at unfertilized eggs of Siberian sturgeon. The highest amounts of GH mRNA were found at 25 and 50 dph larvae, while the lowest levels were detected at 1 and 3 dph larvae stage. These findings suggest that, the GH mRNA play a key role during developmental stages of Siberian sturgeon.

  7. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum.

    PubMed

    Sheng, Zhentao; Xu, Jingjing; Bai, Hua; Zhu, Fang; Palli, Subba R

    2011-12-09

    Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted to determine the mechanism of action of these two signals in regulation of Vg gene expression. Injection of bovine insulin or FOXO double-stranded RNA into the previtellogenic, starved, or JH-deficient female adults increased Vg mRNA and protein levels, thereby implicating the pivotal role for insulin-like peptide signaling in the regulation of Vg gene expression and possible cross-talk between JH and insulin-like peptide signaling pathways. Reduction in JH synthesis or its action by RNAi-mediated silencing of genes coding for acid methyltransferase or methoprene-tolerant decreased expression of genes coding for insulin-like peptides (ILPs) and influenced FOXO subcellular localization, resulting in the down-regulation of Vg gene expression. Furthermore, JH application to previtellogenic female beetles induced the expression of genes coding for ILP2 and ILP3, and induced Vg gene expression. FOXO protein expressed in baculovirus system binds to FOXO response element present in the Vg gene promoter. These data suggest that JH functions through insulin-like peptide signaling pathway to regulate Vg gene expression.

  8. Juvenile Hormone Regulates Vitellogenin Gene Expression through Insulin-like Peptide Signaling Pathway in the Red Flour Beetle, Tribolium castaneum*

    PubMed Central

    Sheng, Zhentao; Xu, Jingjing; Bai, Hua; Zhu, Fang; Palli, Subba R.

    2011-01-01

    Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted to determine the mechanism of action of these two signals in regulation of Vg gene expression. Injection of bovine insulin or FOXO double-stranded RNA into the previtellogenic, starved, or JH-deficient female adults increased Vg mRNA and protein levels, thereby implicating the pivotal role for insulin-like peptide signaling in the regulation of Vg gene expression and possible cross-talk between JH and insulin-like peptide signaling pathways. Reduction in JH synthesis or its action by RNAi-mediated silencing of genes coding for acid methyltransferase or methoprene-tolerant decreased expression of genes coding for insulin-like peptides (ILPs) and influenced FOXO subcellular localization, resulting in the down-regulation of Vg gene expression. Furthermore, JH application to previtellogenic female beetles induced the expression of genes coding for ILP2 and ILP3, and induced Vg gene expression. FOXO protein expressed in baculovirus system binds to FOXO response element present in the Vg gene promoter. These data suggest that JH functions through insulin-like peptide signaling pathway to regulate Vg gene expression. PMID:22002054

  9. Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo.

    PubMed

    Liu, Hong Yan; Zheng, Guolu; Zhu, Hongfa; Woldegiorgis, Gebre

    2007-09-15

    Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.

  10. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  11. Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level.

    PubMed

    Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G

    2016-05-01

    Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself.

  12. Thyroid hormone and androgen regulation of nerve growth factor gene expression in the mouse submandibular gland.

    PubMed

    Black, M A; Lefebvre, F A; Pope, L; Lefebvre, Y A; Walker, P

    1992-03-01

    The nerve growth factor (NGF) content of the mouse submandibular gland (SMG) is under hormonal control and is modulated by both thyroid hormones (TH) and androgens. The sexual dimorphism of the gland is well documented. In the adult male mouse, the SMG contains 10 times more NGF compared to the female. Conversely, castration of male mice reduces the SMG NGF levels to those found in control females. In order to determine the locus at which androgens and TH exert their effect on NGF gene expression in the SMG, steady-state NGF mRNA levels were determined. Daily treatment of adult female mice with TH for 1 week increased NGF mRNA levels 6-fold. Androgen treatment produced a 20-fold increase in SMG NGF mRNA, which was comparable to levels detected in the control adult male SMG. The effect of TH on NGF mRNA levels was time-dependent and coincided with the increase in NGF protein concentrations. At 48 h after a single TH injection, NGF mRNA levels (measured in SMG total RNA) increased 2-4-fold, while heteronuclear (hn) RNA levels were increased 1.5-2-fold. The NGF gene transcription rate was determined by run-on assay following TH treatment. A small but significant 2-fold induction by TH of NGF gene transcription was found at 24-48 h. Cytoplasmic RNA prepared from the same SMGs used in the run-on experiments was tested by S1 nuclease protection; NGF cytoplasmic RNA was increased 7-fold in the SMGs of females treated with TH 48 h previously. These results demonstrate that the effect of TH on NGF gene expression is due in part to an induction of NGF gene transcription. The discrepancies observed between transcription rate and mRNA levels suggest that the major effect of TH is at the post-transcriptional level, possibly mRNA stabilization. The time required to observe an induction of TH on NGF gene transcription is suggestive of an indirect effect, possibly through the induction by TH of another protein which in turn activates the NGF gene.

  13. Global Loss of Bmal1 Expression Alters Adipose Tissue Hormones, Gene Expression and Glucose Metabolism

    PubMed Central

    Kennaway, David John; Varcoe, Tamara Jayne; Voultsios, Athena; Boden, Michael James

    2013-01-01

    The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight). Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively) on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism. PMID:23750248

  14. Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes.

    PubMed

    Li, Xinna; Bartke, Andrzej; Berryman, Darlene E; Funk, Kevin; Kopchick, John J; List, Edward O; Sun, Liou; Miller, Richard A

    2013-10-15

    Detoxification of ingested xenobiotic chemicals, and of potentially toxic endogenous metabolites, is carried out largely through a series of enzymes synthesized in the liver, sometimes called "xenobiotic metabolizing enzymes" (XME). Expression of these XME is sexually dimorphic in rodents and humans, with many of the XME expressed at higher levels in females. This expression pattern is thought to be regulated, in part, by the sex differences in circadian growth hormone (GH) pulsatility. We have evaluated mRNA, in the liver, for 52 XME genes in male and female mice of four mutant stocks, with diminished levels of GH receptor (GHR) either globally (GKO), or in liver (LKO), fat (FKO), or muscle (MKO) tissue specifically. The data show complex, sex-specific changes. For some XME, the expression pattern is consistent with direct control of hepatic mRNA by GHR in the liver. In contrast, other XME show evidence for indirect pathways in which hepatic XME expression is altered by GH signals in fat or skeletal muscle. The effects of GHR-null mutations on glucose control, responses to dietary interventions, steroid metabolism, detoxification pathways, and lifespan may depend on a mixture of direct hepatic effects and cross talk between different GH-responsive tissues.

  15. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression

    PubMed Central

    Antonini, Dario; Sibilio, Annarita; Dentice, Monica; Missero, Caterina

    2013-01-01

    Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders. PMID:23986743

  16. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    SciTech Connect

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  17. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation.

    PubMed

    Li, Changyan; Luo, Chao; Zhou, Zaihui; Wang, Rui; Ling, Fei; Xiao, Langtao; Lin, Yongjun; Chen, Hao

    2017-02-28

    The brown planthopper (BPH; Nilaparvata lugens Stål) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation

  18. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots

    PubMed Central

    Moore, Simon; Zhang, Xiaoxian; Mudge, Anna; Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2015-01-01

    • Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. • Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. • The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. • Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants. PMID:25906686

  20. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots.

    PubMed

    Moore, Simon; Zhang, Xiaoxian; Mudge, Anna; Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2015-09-01

    Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants.

  1. Corticotropin-releasing hormone links pituitary adrenocorticotropin gene expression and release during adrenal insufficiency.

    PubMed

    Muglia, L J; Jacobson, L; Luedke, C; Vogt, S K; Schaefer, M L; Dikkes, P; Fukuda, S; Sakai, Y; Suda, T; Majzoub, J A

    2000-05-01

    Corticotropin-releasing hormone (CRH)-deficient (KO) mice provide a unique system to define the role of CRH in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Despite several manifestations of chronic glucocorticoid insufficiency, basal pituitary proopiomelanocortin (POMC) mRNA, adrenocorticotrophic hormone (ACTH) peptide content within the pituitary, and plasma ACTH concentrations are not elevated in CRH KO mice. The normal POMC mRNA content in KO mice is dependent upon residual glucocorticoid secretion, as it increases in both KO and WT mice after adrenalectomy; this increase is reversed by glucocorticoid, but not aldosterone, replacement. However, the normal plasma levels of ACTH in CRH KO mice are not dependent upon residual glucocorticoid secretion, because, after adrenalectomy, these levels do not undergo the normal increase seen in KO mice despite the increase in POMC mRNA content. Administration of CRH restores ACTH secretion to its expected high level in adrenalectomized CRH KO mice. Thus, in adrenal insufficiency, loss of glucocorticoid feedback by itself can increase POMC gene expression in the pituitary; but CRH action is essential for this to result in increased secretion of ACTH. This may explain why, after withdrawal of chronic glucocorticoid treatment, reactivation of CRH secretion is a necessary prerequisite for recovery from suppression of the HPA axis.

  2. Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level.

    PubMed Central

    Seelig, S; Liaw, C; Towle, H C; Oppenheimer, J H

    1981-01-01

    We have attempted to ascertain the proportion of the rat hepatic genome that is under the selective influence of thyroid hormones and to describe the response patterns of individual mRNA sequences in the transition between hypothyroidism and euthyroidism and between euthyroidism and hyperthyroidism. Poly(A)+RNA was extracted from livers of thyroidectomized, intact, euthyroid rats and of thyroidectomized rats rendered euthyroid and hyperthyroid with daily doses of triiodothyronine. The extracted RNA was translated in a reticulocyte lysate system in the presence of [35S]methionine, and the products were analyzed by two-dimensional gel electrophoresis. Triiodothyronine attenuates as well as augments the expression of certain genes at a pretranslational level. This could represent either a direct or an indirect action of the hormone. Triiodothyronine influences approximately 8% of the 231 mRNA sequences visualized, stimulating activity in 11 and inhibiting activity in 7 sequences. Translational activity of at least one mRNA sequence decreased in both thyroidectomized and hyperthyroid animals, compared to euthyroid levels. The relationship of mRNA response to receptor occupancy varied with examples of linear and amplified responses and responses that were maximal at less than full nuclear occupancy. Images PMID:6946422

  3. Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes

    PubMed Central

    1996-01-01

    The effect of parathyroid hormone (PTH) in vivo after secretion by the parathyroid gland is mediated by bioactive fragments of the molecule. To elucidate their possible role in the regulation of cartilage matrix metabolism, the influence of the amino-terminal (NH2-terminal), the central, and the carboxyl-terminal (COOH-terminal) portion of the PTH on collagen gene expression was studied in a serum free cell culture system of fetal bovine and human chondrocytes. Expression of alpha1 (I), alpha1 (II), alpha1 (III), and alpha1 (X) mRNA was investigated by in situ hybridization and quantified by Northern blot analysis. NH2- terminal and mid-regional fragments containing a core sequence between amino acid residues 28-34 of PTH induced a significant rise in alpha1 (II) mRNA in proliferating chondrocytes. In addition, the COOH-terminal portion (aa 52-84) of the PTH molecule was shown to exert a stimulatory effect on alpha1 (II) and alpha1 (X) mRNA expression in chondrocytes from the hypertrophic zone of bovine epiphyseal cartilage. PTH peptides harboring either the functional domain in the central or COOH-terminal region of PTH can induce cAMP independent Ca2+ signaling in different subsets of chondrocytes as assessed by microfluorometry of Fura-2/AM loaded cells. These results support the hypothesis that different hormonal effects of PTH on cartilage matrix metabolism are exerted by distinct effector domains and depend on the differentiation stage of the target cell. PMID:8922395

  4. Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius.

    PubMed

    Aquilino, Mónica; Sánchez-Argüello, Paloma; Martínez-Guitarte, José-Luis

    2016-05-01

    Vinclozolin is a fungicide used in agriculture that can reach aquatic ecosystems and affect the organisms living there. Its effects have been intensively studied in vertebrates, where it acts as an antiandrogen, but there is a lack of information about its mechanistic effects on invertebrates. In this work, we analyzed the response of genes related to the endocrine system, the stress response, and the detoxification mechanisms of Chironomus riparius fourth instar larvae after 24h and 48h exposures to 20 (69.9nM), 200 (699nM), and 2000μg/L (6.99μM) of Vinclozolin. Survival analysis showed that this compound has low toxicity, as it was not lethal for this organism at the concentrations used. However, this fungicide was shown to modify the transcriptional activity of the ecdysone response pathway genes EcR, E74, and Kr-h1 by increasing their mRNA levels. While no changes were observed in disembodied, a gene related with the ecdysone synthesis metabolic pathway, Cyp18A1, which is involved in the inactivation of the active form of ecdysone, was upregulated. Additionally, the expression of two genes related to other hormones, FOXO and MAPR, did not show any changes when Vinclozolin was present. The analysis of stress response genes showed significant changes in the mRNA levels of Hsp70, Hsp24, and Gp93, indicating that Vinclozolin activates the cellular stress mechanisms. Finally, the expressions of the genes Cyp4G and GstD3, which encode enzymes involved in phase I and phase II detoxification, respectively, were analyzed. It was found that their mRNA levels were altered by Vinclozolin, suggesting their involvement in the degradation of this compound. For the first time, these results show evidence that Vinclozolin can modulate gene expression, leading to possible significant endocrine alterations of the insect endocrine system. These results also offer new clues about the mode of action of this compound in invertebrates.

  5. Time-course analysis of genome-wide gene expression data from hormone-responsive human breast cancer cells

    PubMed Central

    Mutarelli, Margherita; Cicatiello, Luigi; Ferraro, Lorenzo; Grober, Olì MV; Ravo, Maria; Facchiano, Angelo M; Angelini, Claudia; Weisz, Alessandro

    2008-01-01

    Background Microarray experiments enable simultaneous measurement of the expression levels of virtually all transcripts present in cells, thereby providing a ‘molecular picture’ of the cell state. On the other hand, the genomic responses to a pharmacological or hormonal stimulus are dynamic molecular processes, where time influences gene activity and expression. The potential use of the statistical analysis of microarray data in time series has not been fully exploited so far, due to the fact that only few methods are available which take into proper account temporal relationships between samples. Results We compared here four different methods to analyze data derived from a time course mRNA expression profiling experiment which consisted in the study of the effects of estrogen on hormone-responsive human breast cancer cells. Gene expression was monitored with the innovative Illumina BeadArray platform, which includes an average of 30-40 replicates for each probe sequence randomly distributed on the chip surface. We present and discuss the results obtained by applying to these datasets different statistical methods for serial gene expression analysis. The influence of the normalization algorithm applied on data and of different parameter or threshold choices for the selection of differentially expressed transcripts has also been evaluated. In most cases, the selection was found fairly robust with respect to changes in parameters and type of normalization. We then identified which genes showed an expression profile significantly affected by the hormonal treatment over time. The final list of differentially expressed genes underwent cluster analysis of functional type, to identify groups of genes with similar regulation dynamics. Conclusions Several methods for processing time series gene expression data are presented, including evaluation of benefits and drawbacks of the different methods applied. The resulting protocol for data analysis was applied to

  6. Effects of Blocking GABA Degradation on Corticotropin-Releasing Hormone Gene Expression in Selected Brain Regions

    PubMed Central

    Tran, Viet; Hatalski, Carolyn G.; Yan, Xiao-Xin; Baram, Tallie Z.

    2011-01-01

    Summary Purpose The γ-aminobutyric acid (GABA) degradation blocker γ-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. Methods VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. Results In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. Conclusions These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA. PMID:10487181

  7. Marsupial anti-Mullerian hormone gene structure, regulatory elements, and expression.

    PubMed

    Pask, Andrew J; Whitworth, Deanne J; Mao, Chai-An; Wei, Ke-Jun; Sankovic, Natasha; Graves, Jennifer A M; Shaw, Geoffrey; Renfree, Marilyn B; Behringer, Richard R

    2004-01-01

    During male sexual development in reptiles, birds, and mammals, anti-Müllerian hormone (AMH) induces the regression of the Müllerian ducts that normally form the primordia of the female reproductive tract. Whereas Müllerian duct regression occurs during fetal development in eutherian mammals, in marsupial mammals this process occurs after birth. To investigate AMH in a marsupial, we isolated an orthologue from the tammar wallaby (Macropus eugenii) and characterized its expression in the testes and ovaries during development. The wallaby AMH gene is highly conserved with the eutherian orthologues that have been studied, particularly within the encoded C-terminal mature domain. The N-terminus of marsupial AMH is divergent and larger than that of eutherian species. It is located on chromosome 3/4, consistent with its autosomal localization in other species. The wallaby 5' regulatory region, like eutherian AMH genes, contains binding sites for SF1, SOX9, and GATA factors but also contains a putative SRY-binding site. AMH expression in the developing testis begins at the time of seminiferous cord formation at 2 days post partum, and Müllerian duct regression begins shortly afterward. In the developing testis, AMH is localized in the cytoplasm of the Sertoli cells but is lost by adulthood. In the developing ovary, there is no detectable AMH expression, but in adults it is produced by the granulosa cells of primary and secondary follicles. It is not detectable in atretic follicles. Collectively, these studies suggest that AMH expression has been conserved during mammalian evolution and is intimately linked to upstream sex determination mechanisms.

  8. Soy protein diet alters expression of hepatic genes regulating fatty acid and thyroid hormone metabolism in the male rat

    USDA-ARS?s Scientific Manuscript database

    We determined effects of soy protein (SPI) and the isoflavone genistein (GEN) on mRNA expression of key lipid metabolism and thyroid hormone system genes in young adult, male Sprague-Dawley rats. SPI-fed rats had less retroperitoneal fat and less hepato-steatosis than casein (CAS, control protein)-...

  9. Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression.

    PubMed

    Lu, W; Wainwright, G; Webster, S G; Rees, H H; Turner, P C

    2000-08-08

    . Additionally, putative CF1/USP and Broad Complex Z2 transcription factor elements were found in the upstream regions of MIH and MO-IH genes respectively. The implications of the presence of the latter two putative transcription factor binding-elements for control of expression of MIH and MO-IH genes is discussed. Phylogenetic analysis and gene organisation show that MO-IH and MIH genes are closely related. Their relationship suggests that they represent an example of evolutionary divergence of crustacean hormones.

  10. Hormone-sensitive lipase deficiency alters gene expression and cholesterol content of mouse testis

    PubMed Central

    Wang, Feng; Chen, Zheng; Ren, Xiaofang; Tian, Ye; Wang, Fucheng; Liu, Chao; Jin, Pengcheng; Li, Zongyue; Zhang, Feixiong

    2016-01-01

    Hormone-sensitive lipase-knockout (HSL−/−) mice exhibit azoospermia for unclear reasons. To explore the basis of sterility, we performed the following three experiments. First, HSL protein distribution in the testis was determined. Next, transcriptome analyses were performed on the testes of three experimental groups. Finally, the fatty acid and cholesterol levels in the testes with three different genotypes studied were determined. We found that the HSL protein was present from spermatocyte cells to mature sperm acrosomes in wild-type (HSL+/+) testes. Spermiogenesis ceased at the elongation phase of HSL−/− testes. Transcriptome analysis indicated that genes involved in lipid metabolism, cell membrane, reproduction and inflammation-related processes were disordered in HSL−/− testes. The cholesterol content was significantly higher in HSL−/− than that in HSL+/+ testis. Therefore, gene expression and cholesterol ester content differed in HSL−/− testes compared to other testes, which may explain the sterility of male HSL−/− mice. PMID:27920259

  11. In vivo effect of growth hormone on DNA synthesis and expression of milk protein genes in the rabbit mammary gland.

    PubMed

    Zebrowska, T; Siadkowska, E; Zwierzchowski, L; Gajewska, A; Kochman, K

    1997-12-01

    The aim of this work was to show whether growth hormone (GH) is able to directly induce growth and functional differentiation of the mammary gland. We have shown that i.m. injections of prolactin and to lesser extent injections of growth hormone increased DNA synthesis in the mammary gland of pregnant rabbits. Injections of pituitary and recombinant bovine growth hormone (GH), similarly to prolactin, could also induce the expression of milk protein genes--caseins alpha S1 and beta and whey acidic protein (WAP). However, in contrast to prolactin, growth hormone failed to induce the synthesis of casein proteins. Lactogenic hormones act through binding to receptors in target tissues. Prolactin receptors were shown to be abundant in the rabbit mammary glands but no specific binding sites for 125I-labelled GH have been found in membranes isolated from mammary glands of pregnant or lactating rabbits. The specificity of hormone binding was examined using unlabelled hormones as competitive inhibitors of 125I-labelled prolactin. Bovine and recombinant bovine growth hormone did not displace prolactin from its receptors, thus excluding the possibility of action of GH through lactogenic receptors. Our results support the hypothesis that GH may act directly on the mammary gland and independently from prolactin; however, the mechanism of its action is still unknown.

  12. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2017-04-01

    Mutant hypothyroid mouse models have recently shown that thyroid hormone is critical for skeletal development during an important prepubertal growth period. Additionally, thyroid hormone negatively regulates total body fat, consistent with the well-established effects of thyroid hormone on energy and fat metabolism. Since bone marrow mesenchymal stromal cells differentiate into both adipocytes and osteoblasts and a relationship between bone marrow adipogenesis and osteogenesis has been predicted, we hypothesized thyroid hormone deficiency during the postnatal growth period increases marrow adiposity in mice. Marrow adiposity in TH-deficient (Tshr (-/-)) mice treated with T3/T4, TH receptor β-specific agonist GC-1, or vehicle control was evaluated via dual-energy X-ray absorptiometry and osmium micro-computed tomography. To further examine the mechanism for thyroid hormone regulation of marrow adiposity, we used real-time RT-PCR to measure the effects of thyroid hormone on adipocyte differentiation markers in primary mouse bone marrow mesenchymal stromal cells and two mouse cell lines in vitro and in Tshr (-/-) mice in vivo. Marrow adiposity increased >20% (P < 0.01) in Tshr (-/-) mice at 3 weeks of age, and treatment with T3/T4 when serum thyroid hormone normally increases (day 5-14) rescued this phenotype. Furthermore, GC-1 rescued this phenotype equally well, suggesting this thyroid hormone effect is in part mediated via TRβ signaling. Treatment of bone marrow mesenchymal stromal or ST2 cells with T3 or GC-1 significantly increased expression of several brown/beige fat markers. Moreover, injection of T3/T4 increased browning-specific markers in white fat of Tshr (-/-) mice. These data suggest that thyroid hormone regulation of marrow adiposity is mediated at least in part via activation of TRβ signaling.

  13. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus.

    PubMed

    Petri, Ines; Dumbell, Rebecca; Scherbarth, Frank; Steinlechner, Stephan; Barrett, Perry

    2014-01-01

    The Siberian hamster (Phodopus sungorus) is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.

  14. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  15. Neuroendocrine function in adult female transgenic mice expressing the human growth hormone gene.

    PubMed

    Chandrashekar, V; Bartke, A; Wagner, T E

    1992-04-01

    Adult female transgenic mice expressing the human GH (hGH) gene with mouse metallothionein-I promoter are sterile. To evaluate the hypothalamic-pituitary function in these animals, adult female transgenic mice and nontransgenic normal littermates were ovariectomized. On days 7 and 8 after ovariectomy, mice were injected with either oil or primed with 0.5 micrograms estradiol benzoate (EB) in oil, 24 h later treated with 10 micrograms EB/100 g body wt and a day later bled for measurements of FSH, LH, and PRL levels. Plasma gonadotropin and PRL levels were also measured in ovary-intact transgenic and normal siblings at estrus. Additional ovariectomized EB-treated transgenic mice and normal siblings were injected with either saline or GnRH in saline (1 ng/g body wt) and were bled 15 min later for determination of circulating hormone levels. At estrus, in transgenic mice, circulating FSH and PRL levels were significantly lower (FSH:P less than 0.001; PRL:P less than 0.025), but plasma LH concentrations were higher (P less than 0.001) than those in nontransgenic mice. As expected, ovariectomy significantly increased (P less than 0.001) circulating FSH and LH levels in both groups of mice relative to ovary-intact animals, but the increase in plasma LH levels was attenuated in transgenic mice. The suppressive effect of estrogen on circulating FSH and LH levels were similar in transgenic and nontransgenic mice. Treatment with GnRH significantly increased plasma FSH and LH levels in both transgenic and normal mice. However, the plasma FSH and LH responses to GnRH administration were significantly reduced (P less than 0.001) in transgenic mice. The results of these studies indicate that adult female transgenic mice expressing the hGH gene are hypoprolactinemic. Yet due to PRL-like activity of hGH, the gonadotropin secretion is altered. Thus, endogenously secreted hGH modulates the hypothalamic-pituitary function of adult female transgenic mice bearing the hGH gene.

  16. Steroid hormones acutely regulate expression of a Nudix protein-encoding gene in the endometrial epithelium of sheep.

    PubMed

    Ing, Nancy H; Wolfskill, Rebecca L; Clark, Shauna; DeGraauw, Jennifer A; Gill, Clare A

    2006-08-01

    Steroid hormones regulate endometrial gene expression to meet the needs of developing embryos. Our hypothesis is that steroid hormones transiently induce expression of genes in the endometrial epithelium to make the uterine environment different between the earliest days of pregnancy. We identified one such gene product using differential display-polymerase chain reactions. The gene product that was strongly induced in ewes between day 3 and 6 of the estrous cycle was cloned and sequenced to identify it as encoding a member of the Nudix family of hydrolase enzymes. Northern blot analyses indicated that NUDT16 mRNA concentrations were elevated 10-fold in the endometrium of sheep from day 5 to 9 of the estrous cycle and returned to basal levels by day 11. In assays of RNA samples from 15 different tissues from an adult ewe, the concentrations of NUDT16 mRNA were greatest in endometrium. In situ hybridization localized NUDT16 mRNA exclusively to the endometrial epithelial cells of the glands and uterine lumen. In ovariectomized ewes, NUDT16 mRNA was induced by a regimen of alternating estrogen and progesterone therapy designed to mimic the hormonal experiences of a ewe at day 6 of the estrous cycle. The final estrogen treatment in the regimen was critical to the expression of NUDT16 as well as progesterone receptor and estrogen receptor-beta genes. Characterization of the NUDT16 gene identified putative steroid hormone response elements, which can now be investigated to understand its unique pattern of regulation in the earliest days of pregnancy.

  17. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  18. The growth hormone (GH) gene is expressed in the lateral hypothalamus: enhancement by GH-releasing hormone and repression by restraint stress.

    PubMed

    Yoshizato, H; Fujikawa, T; Soya, H; Tanaka, M; Nakashima, K

    1998-05-01

    Recent studies suggest that GH may modulate emotion, behavior, or stress response by its direct actions on the brain, and possible expression of the GH gene in the brain has been predicted. In this study we have investigated whether and where the GH gene is expressed in the brain and how it is regulated. Ribonuclease protection assay and 5'-rapid amplification of complementary DNA ends-PCR analyses indicated that the GH gene was expressed in rat brain, initiating at the identical transcription start point as that for pituitary GH gene expression. The brain GH messenger RNA was predominantly detected in the lateral hypothalamus (lh) by in situ reverse transcription-PCR analysis. GH gene expression in the brain was significantly enhanced by GH-releasing hormone administration and was rapidly repressed by exposure to restraint stress in the water, whereas the changes in pituitary GH messenger RNA contents in these circumstances were relatively smaller. The results of the present study suggest that the brain GH is predominantly expressed in lh under the control of physiological conditions to play a role in the modulation of brain functions.

  19. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon.

    PubMed

    Kim, Jin-Hyoung; Leggatt, Rosalind A; Chan, Michelle; Volkoff, Hélène; Devlin, Robert H

    2015-09-15

    Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which

  20. Roles of Defense Hormones in the Regulation of Ozone-Induced Changes in Gene Expression and Cell Death.

    PubMed

    Xu, Enjun; Vaahtera, Lauri; Brosché, Mikael

    2015-12-07

    Apoplast, the diffusional space between plant cell plasma membranes, is an important medium for signaling within and between the cells. Apoplastic reactive oxygen species (ROS) are crucial signaling molecules in various biological processes. ROS signaling is interconnected with the response to several hormones, including jasmonic acid (JA), salicylic acid (SA) and ethylene. Using ozone (O3) to activate apoplastic ROS signaling, we performed global and targeted analysis of transcriptional changes and cell death assays to dissect the contribution of hormone signaling and various transcription factors (TFs) in the regulation of gene expression and cell death. The contributions of SA, JA, and ethylene were assessed through analysis of single, double, and triple mutants deficient in biosynthesis or signaling for all three hormones. Even in the triple mutant, the global gene expression responses to O3 were mostly similar to the wild-type. Cell death in the JA receptor mutant coi1-16 was suppressed by impairment of the NADPH oxidase RBOHF, suggesting a role for a ROS signal in limiting the spread of cell death. In response to apoplastic ROS, there is not a single signaling pathway that regulates gene expression or cell death. Instead, several pathways regulate the apoplastic ROS response via combinatorial or overlapping mechanisms. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  1. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  2. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis

    PubMed Central

    2011-01-01

    Background Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). Methods Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. Results Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to

  3. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression

    PubMed Central

    Petrenko, Volodymyr; Saini, Camille; Giovannoni, Laurianne; Gobet, Cedric; Sage, Daniel; Unser, Michael; Heddad Masson, Mounia; Gu, Guoqiang; Bosco, Domenico; Gachon, Frédéric; Philippe, Jacques; Dibner, Charna

    2017-01-01

    A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and β-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and β-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and β cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and β-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression. PMID:28275001

  4. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; White, Samantha L; Devlin, Robert H

    2015-02-01

    Clock genes are involved in generating a circadian rhythm that is integrated with the metabolic state of an organism and information from the environment. Growth hormone (GH) transgenic coho salmon, Oncorhynchus kisutch, show a large increase in growth rate, but also attenuated seasonal growth modulations, modified timing of physiological transformations (e.g. smoltification) and disruptions in pituitary gene expression compared with wild-type salmon. In several fishes, circadian rhythm gene expression has been found to oscillate in the suprachiasmatic nucleus of the hypothalamus, as well as in multiple peripheral tissues, but this control system has not been examined in the pituitary gland nor has the effect of transgenic growth modification been examined. Thus, the daily expression of 10 core clock genes has been examined in pituitary glands of GH transgenic (T) and wild-type coho salmon (NT) entrained on a regular photocycle (12L: 12D) and provided either with scheduled feeding or had food withheld for 60 h. Most clock genes in both genotypes showed oscillating patterns of mRNA levels with light and dark cycles. However, T showed different amplitudes and patterns of expression compared with wild salmon, both in fed and starved conditions. The results from this study indicate that constitutive expression of GH is associated with changes in clock gene regulation, which may play a role in the disrupted behavioural and physiological phenotypes observed in growth-modified transgenic strains.

  5. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Giovannoni, Laurianne; Gobet, Cedric; Sage, Daniel; Unser, Michael; Heddad Masson, Mounia; Gu, Guoqiang; Bosco, Domenico; Gachon, Frédéric; Philippe, Jacques; Dibner, Charna

    2017-02-15

    A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and β-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and β-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for β cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and β-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and β-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and β cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and β-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.

  6. DEHP (DI-N-ETHYLHEXYL PHTHALATE), WHEN ADMINISTERED DURING SEXUAL DIFFERENTIATION, INDUCES DOSE DEPENDENT DECREASES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS

    EPA Science Inventory

    DEHP (di-n-ethylhexyl phthalate), when administered during sexual differentiation, induces dose dependent decreases in fetal testis gene expression and steroid hormone synthesis.
    Vickie S. Wilson, Christy Lambright, Johnathan Furr, Kathy Bobseine, Carmen Wood, Gary Held, and ...

  7. DEHP (DI-N-ETHYLHEXYL PHTHALATE), WHEN ADMINISTERED DURING SEXUAL DIFFERENTIATION, INDUCES DOSE DEPENDENT DECREASES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS

    EPA Science Inventory

    DEHP (di-n-ethylhexyl phthalate), when administered during sexual differentiation, induces dose dependent decreases in fetal testis gene expression and steroid hormone synthesis.
    Vickie S. Wilson, Christy Lambright, Johnathan Furr, Kathy Bobseine, Carmen Wood, Gary Held, and ...

  8. Effect of Exercise on Photoperiod-Regulated Hypothalamic Gene Expression and Peripheral Hormones in the Seasonal Dwarf Hamster Phodopus sungorus

    PubMed Central

    Petri, Ines; Dumbell, Rebecca; Scherbarth, Frank; Steinlechner, Stephan; Barrett, Perry

    2014-01-01

    The Siberian hamster (Phodopus sungorus) is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus. PMID:24603871

  9. Plant-Pathogen Interaction, Circadian Rhythm, and Hormone-Related Gene Expression Provide Indicators of Phytoplasma Infection in Paulownia fortunei

    PubMed Central

    Fan, Guoqiang; Dong, Yanpeng; Deng, Minjie; Zhao, Zhenli; Niu, Suyan; Xu, Enkai

    2014-01-01

    Phytoplasmas are mycoplasma-like pathogens of witches’ broom disease, and are responsible for serious yield losses of Paulownia trees worldwide. The molecular mechanisms of disease development in Paulownia are of considerable interest, but still poorly understood. Here, we have applied transcriptome sequencing technology and a de novo assembly approach to analyze gene expression profiles in Paulownia fortunei infected by phytoplasmas. Our previous researches suggested that methyl methane sulfonated (MMS) could reverse the effects of the infection. In this study, leaf samples from healthy, infected, and both infected and methyl methane sulfonate treated plants were analyzed. The results showed that the gene expression profile of P. fortunei underwent dramatic changes after Paulownia witches’ broom (PaWB) phytoplasma infection. Genes that encoded key enzymes in plant-pathogen interaction processes were significantly up-regulated in the PaWB-infected Paulownia. Genes involved in circadian rhythm and hormone-related genes were also altered in Paulownia after PaWB infection. However, after the PaWB-infected plants were treated with MMS, the expression profiles of these genes returned to the levels in the healthy controls. The data will help identify potential PaWB disease-resistance genes that could be targeted to inhibit the growth and reproduction of the pathogen and to increase plant resistance. PMID:25514414

  10. Effects of Ghrelin on Sexual Behavior and Luteinizing Hormone Beta-subunit Gene Expression in Male Rats

    PubMed Central

    Babaei-Balderlou, Farrin; Khazali, Homayoun

    2016-01-01

    Background: The hormones of hypothalamo-pituitary-gonadal (HPG) axis have facilitative effects on reproductive behavior in mammals. Ghrelin as a starvation hormone has an inhibitory effect on HPG axis’ function. Hence, it is postulated that ghrelin may reduce the sexual behavior through inhibiting of HPG axis. The aim of this study was to examine the effects of ghrelin and its antagonist, [D-Lys3 ]-GHRP-6, on sexual behavior and LH beta-subunit gene expression in male rats. Methods: In this experimental study, 128 male Wistar rats were divided into two groups. Each group was further subdivided into eight subgroups (n=8 rats/subgroup) including the animals that received saline, ghrelin (2, 4 or 8 nmol), [D-Lys3 ]-GHRP-6 (5 or 10 nmol) or co-administration of ghrelin (4 nmol) and [D-Lys3 ]-GHRP-6 (5 or 10 nmol) through the stereotaxically implanted cannula into the third cerebral ventricle. The sexual behavior of male rats encountering with females and the hypo-physeal LH beta-subunit gene expression were evaluated at two different groups. Data were analyzed by ANOVA and p<0.05 was considered statistically significant. Results: Ghrelin injection (4 and 8 nmol) significantly (p<0.01) increased the latencies to the first mount, intromission and ejaculation as well as the post-ejaculatory interval. Also, 4 and 8 nmol ghrelin significantly (p<0.05) increased the number of mount and decreased the number of ejaculation. In co-administrated groups, [D-Lys3 ]-GHRP-6 antagonized the effects of ghrelin. Ghrelin injection (4 and 8 nmol) reduced the LH beta-subunit gene expression while pretreatment with [D-Lys3 ]-GHRP-6 improved the gene expression. Conclusion: Ghrelin decreased the sexual behavior and LH beta-subunit gene expression in male rats, whereas [D-Lys3 ]-GHRP-6 antagonizes these effects. PMID:27141463

  11. Cloning of the elk TSH beta-subunit cDNA and seasonal expression of the pituitary glycoprotein hormone genes.

    PubMed

    Clark, Rena J; Furlan, Michael A; Chedrese, P Jorge

    2005-06-01

    We report the elk (Cervus elaphus) thyroid stimulating hormone (TSH) beta-subunit cDNA cloning, nucleotide and deduced amino acid sequences. The TSH beta-subunit cDNA was obtained by RT-PCR of polyadenylated pituitary RNA. The deduced elk TSH beta-subunit peptide chain shares between 93 to 99% sequence similarities with the reported TSH beta-subunit of a sub-set of related species. The TSH beta-subunit gene is expressed in the elk pituitary gland as a mature transcript of approximately 600 bases, which corresponds to the size of the mRNA expressed in the sheep pituitary gland. Seasonal expression of the pituitary gonadotropin genes was investigated by Northern blot analyses. Samples of elk pituitary glands collected during the breeding season showed elevated steady state levels of common alpha-subunit and FSH and LH beta-subunit gene expression, consistent with the seasonal reproductive cycling of this species. Samples collected before the breeding season demonstrated decreased expression of the gonadotropin genes. TSH, which is not directly tied to reproduction, had similar levels of expression, regardless of the animal's reproductive status.

  12. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  13. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  14. Neuropeptide TLQP-21, a VGF internal fragment, modulates hormonal gene expression and secretion in GH3 cell line.

    PubMed

    Petrocchi Passeri, Pamela; Biondini, Laura; Mongiardi, Maria Patrizia; Mordini, Nadia; Quaresima, Stefania; Frank, Claudio; Baratta, Mario; Bartolomucci, Alessandro; Levi, Andrea; Severini, Cinzia; Possenti, Roberta

    2013-01-01

    In the present study we demonstrated that TLQP-21, a biologically active peptide derived from the processing of the larger pro-VGF granin, plays a role in mammotrophic cell differentiation. We used an established in vitro model, the GH3 cell line, which upon treatment with epidermal growth factor develops a mammotrophic phenotype consisting of induction of prolactin expression and secretion, and inhibition of growth hormone. Here we determined for the first time that during mammotrophic differentiation, epidermal growth factor also induces Vgf gene expression and increases VGF protein precursor processing and peptide secretion. After this initial observation we set out to determine the specific role of the VGF encoded TLQP-21 peptide on this model. TLQP-21 induced a trophic effect on GH3 cells and increased prolactin expression and its own gene transcription without affecting growth hormone expression. TLQP-21 was also able to induce a significant rise of cytoplasmic calcium, as measured by Fura2AM, due to the release from a thapsigargin-sensitive store. TLQP-21-dependent rise in cytoplasmic calcium was, at least in part, dependent on the activation of phospholipase followed by phosphorylation of PKC and ERK. Taken together, the present results demonstrate that TLQP-21 contributes to differentiation of the GH3 cell line toward a mammotrophic phenotype and suggest that it may exert a neuroendocrine role in vivo on lactotroph cells in the pituitary gland.

  15. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells.

    PubMed

    Figliozzi, Robert W; Chen, Feng; Balish, Matthew; Ajavon, Amakoe; Hsia, S Victor

    2014-11-15

    A global HSV-1 gene repression occurs during latency in sensory neurons where most viral gene transcriptions are suppressed. The molecular mechanisms of gene silencing and how stress factors trigger the reactivation are not well understood. Thyroid hormones are known to be altered due to stress, and with its nuclear receptor impart transcriptional repression or activation depending upon the hormone level. Therefore we hypothesized that triiodothyronine (T3) treatment of infected differentiated neuron like cells would reduce the ability of HSV-1 to produce viral progeny compared to untreated infected cells. Previously we identified putative thyroid hormone receptor elements (TREs) within the promoter regions of HSV-1 thymidine kinase (TK) and other key genes. Searching for a human cell line that can model neuronal HSV-1 infection, we performed HSV-1 infection experiments on differentiated human neuroendocrine cells, LNCaP. Upon androgen deprivation these cells undergo complete differentiation and exhibit neuronal-like morphology and physiology. These cells were readily infected by our HSV-1 recombinant virus, expressing GFP and maintaining many processes iconic of dendritic morphology. Our results demonstrated that differentiated LNCaP cells produced suppressive effects on HSV-1 gene expression and replication compared to its undifferentiated counterpart and T3 treatment has further decreased the viral plaque counts compared to untreated cells. Upon washout of the T3 viral plaque counts were restored, indicating an increase of viral replication. The qRT-PCR experiments using primers for TK showed reduced expression under T3 treatment. ChIP assays using a panel of antibodies for H3 lysine 9 epigenetic marks showed increased repressive marks on the promoter regions of TK. In conclusion we have demonstrated a T3 mediated quiescent infection in differentiated LNCaP cells that has potential to mimic latent infection. In this HSV-1 infection model thyroid hormone

  16. Modulation of gene expression by nutritional state and hormones in Bombyx larvae in relation to its growth period.

    PubMed

    Thounaojam, Bembem; Keshan, Bela

    2017-08-23

    Insect growth and development are mainly regulated via synchronization of many extrinsic and intrinsic factors such as nutrition and hormones. Previously we have demonstrated that larval growth period influences the effect of insulin on the accumulation of glycogen in the fat body of Bombyx larvae. In the present study we demonstrate that Bombyx larvae at the terminal growth period (TGP, after critical weight) had a significantly greater increase in the expression level of Akt in the fat body than at the active growth period (AGP, before critical weight). The larvae at TGP also showed an increase in the expression level of ecdysone receptors (EcRB1 and USP1) and ecdysone-induced early genes (E75A and broad). The treatment of bovine insulin and methoprene to larvae at AGP induced the transcript levels of Akt, irrespective of the nutritional status of the larvae. However, in larvae at TGP, insulin repressed the transcript level of Akt. On contrary, 20-hydroxyecdysone induced the expression level of Akt in TGP larvae, but at feeding only. Insulin and 20E thus showed an antagonistic action on the Akt expression level in TGP larvae under feeding. The studies thus showed that larval growth period influences the expression level of Akt and ecdysone receptors in Bombyx. Further, the growth period and nutrition modulate the effect of exogenous hormones on Akt expression. Copyright © 2017. Published by Elsevier B.V.

  17. Thyroid and glucocorticoid hormones induce expression of lactase-phlorizin hydrolase gene in CDX-2/HNF-1α co-transfected IEC-6 cells.

    PubMed

    Suzuki, Takuji; Mochizuki, Kazuki; Goda, Toshinao

    2014-01-01

    Thyroid and glucocorticoid hormones and several transcriptional factors such as caudal type homeobox (CDX)-2 and hepatocyte nuclear factor (HNF)-1α are important for the differentiation of small intestinal absorptive cells and the consequent expression of genes related to the digestion/absorption of carbohydrates. In this study, we investigated whether thyroid and glucocorticoid hormones enhanced the expression of lactase-phlorizin hydrolase (LPH) gene, an intestine-specific gene that encodes an enzyme for lactose digestion, in small intestinal stem-like IEC-6 cells co-transfected with CDX-2 and HNF-1α using a retrovirus system. Changes in expression of intestine-specific genes caused by treatment with thyroid and/or glucocorticoid hormones were monitored in empty vector-transfected cells and in CDX-2/HNF-1α co-transfected cells by qRT-PCR. Stable co-transfection with CDX-2 and HNF-1α evoked the expression of the LPH gene in IEC-6 cells. Furthermore, treatment with a thyroid hormone, triiodothyronine, and a glucocorticoid receptor agonist, dexamethasone, significantly enhanced expression of the LPH, CDX-2 and HNF-1α genes in CDX-2/HNF-1α co-transfected IEC-6 cells. These results suggest that thyroid and glucocorticoid hormones synergistically enhance expression of the LPH gene in CDX-2/HNF-1α co-transfected IEC-6 cells.

  18. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells.

    PubMed

    Feng, Yixing; Jiao, Zhihao; Shi, Jiachen; Li, Ming; Guo, Qiaozhen; Shao, Bing

    2016-03-01

    The use of Bisphenol A (BPA) has been regulated in many countries because of its potential adverse effects on human health. As a result of the restriction, structural anologues such as bisphenol S (BPS) and bisphenol F (BPF) have already been used for industrial applications as alternatives to BPA. Bisphenol AF (BPAF) is mainly used as a crosslinker in the synthesis of specialty fluoroelastomers. These compounds have been detected in various environmental matrices and human samples. Previous studies have shown that these compounds have potential endocrine disrupting effects on wildlife and mammals in general. However, the effects on adrenocortical function and the underlying mechanisms are not fully understood. In the present study, the H295R cell line was used as a model to compare the cell toxicity and to investigate the potential endocrine disrupting action of four BPs (including BPA, BPS, BPF, and BPAF). The half lethal concentration (LC50) values at 72 h exposure indicated that the rank order of toxicities of the chemicals was BPAF > BPA > BPS > BPF. The hormone results demonstrated that BPA analogues, such as BPF, BPS and BPAF were capable of altering steroidogenesis in H295R cells. BPA and BPS exhibited inhibition of hormone production, BPF predominantly led to increased progesterone and 17β-estradiol levels and BPAF showed induction of progesterone and reduction of testosterone. Inhibition effects of BPA and BPAF on hormone production were probably mediated by down-regulation of steroidogenic genes in H295R cells. However, the mechanisms of the endocrine interrupting action of BPF and BPS are still unclear, which may have additional mechanisms that have not been detected with BPA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  20. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  1. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  2. Analysis of growth hormone receptor gene expression in tall and short stature children.

    PubMed

    Pagani, Sara; Radetti, Giorgio; Meazza, Cristina; Bozzola, Mauro

    2017-04-01

    The majority of children who present for evaluation of tall stature fall under the diagnosis of constitutional tall stature (CTS). To investigate mechanisms of tall stature, we evaluated serum IGF-I values and the expression of the GHR gene in the peripheral blood cells of 46 subjects with normal height, 38 with tall stature and 30 healthy children with short stature. Our results showed significantly lower IGF-I levels in children with short stature (-0.57±0.18 SDS) compared to control children (0.056±0.19 SDS; p<0.0001) and to subjects with tall stature (0.594±0.17; p=0.00067). Furthermore, we found significantly higher GHR gene expression levels in tall children (321.84±90.04 agGHR/5×105agGAPDH) compared with other groups of subjects (short children: 30.13±7.5 agGHR/5×105agGAPDH, p<0.0001; controls: 86.81ag±19.5 GHR/5×105agGAPDH, p=0.035). The GHR gene expression level in short children was significantly lower compared with control subjects (p=0.0068). Significantly higher GHR gene expression levels in tall subjects suggests a sensitization of the GHR-IGF system leading to overgrowth in CTS.

  3. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones

    PubMed Central

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-01-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as ‘S limitation’ and ‘early S deficiency’. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5′-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at ‘early S deficiency’, expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at ‘early S deficiency’ only. Thus, S depletion affects S and plant hormone metabolism of poplar during ‘S limitation’ and ‘early S deficiency’ in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp. PMID:22162873

  4. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones.

    PubMed

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-03-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as 'S limitation' and 'early S deficiency'. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5'-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at 'early S deficiency', expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at 'early S deficiency' only. Thus, S depletion affects S and plant hormone metabolism of poplar during 'S limitation' and 'early S deficiency' in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp.

  5. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism.

    PubMed

    Xiao, Guiqing; Qin, Hua; Zhou, Jiahao; Quan, Ruidang; Lu, Xiangyang; Huang, Rongfeng; Zhang, Haiwen

    2016-02-01

    Root determines plant distribution, development progresses, stress response, as well as crop qualities and yields, which is under the tight control of genetic programs and environmental stimuli. Ethylene responsive factor proteins (ERFs) play important roles in plant growth and development. Here, the regulatory function of OsERF2 involved in root growth was investigated using the gain-function mutant of OsERF2 (nsf2857) and the artificial microRNA-mediated silenced lines of OsERF2 (Ami-OsERF2). nsf2857 showed short primary roots compared with the wild type (WT), while the primary roots of Ami-OsERF2 lines were longer than those of WT. Consistent with this phenotype, several auxin/cytokinin responsive genes involved in root growth were downregulated in nsf2857, but upregulated in Ami-OsERF2. Then, we found that nsf2857 seedlings exhibited decreased ABA accumulation and sensitivity to ABA and reduced ethylene-mediated root inhibition, while those were the opposite in Ami-ERF2 plants. Moreover, several key genes involved in ABA synthesis were downregulated in nsf2857, but unregulated in Ami-ERF2 lines. In addition, OsERF2 affected the accumulation of sucrose and UDPG by mediating expression of key genes involved in sucrose metabolism. These results indicate that OsERF2 is required for the control of root architecture and ABA- and ethylene-response by tuning expression of series genes involved in sugar metabolism and hormone signaling pathways.

  6. Comparison of mechanisms of action of luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix and LHRH agonist triptorelin on the gene expression of pituitary LHRH receptors in rats

    PubMed Central

    Kovacs, Magdolna; Schally, Andrew V.

    2001-01-01

    The mechanisms through which luteinizing hormone (LH)-releasing hormone (LHRH) antagonists suppress pituitary gonadotroph functions and LHRH-receptor (LHRH-R) expression are incompletely understood. Consequently, we investigated the direct effect of LHRH antagonist cetrorelix in vitro on the expression of the pituitary LHRH-R gene and its ability to counteract the exogenous LHRH and the agonist triptorelin in the regulation of this gene. We also compared the effects of chronic administration of cetrorelix and triptorelin on the LHRH-R mRNA level and gonadotropin secretion in ovariectomized (OVX) and normal female rats. The exposure of pituitary cells in vitro to 3-min pulses of 1 nM LHRH or 0.1 nM triptorelin for 5 h increased the LHRH-R mRNA level by 77–88%. Continuous perfusion of the cells with 50 nM cetrorelix did not cause any significant changes, but prevented the stimulatory effect of LHRH pulses on the receptor mRNA expression. In OVX rats, 10 days after administration of a depot formulation of cetrorelix, releasing 100 μg of peptide daily, the elevated LHRH-R mRNA level was decreased by 73%, whereas daily injection of 100 μg of triptorelin caused a 41% suppression. In normal female rats, cetrorelix treatment suppressed the LHRH-R mRNA level by 33%, but triptorelin increased it by 150%. The highly elevated serum LH levels in OVX rats and the normal LH concentration of cycling rats were rapidly and completely suppressed by cetrorelix. Triptorelin decreased the serum LH in OVX rats to the precastration level, but had no effect on basal LH in normal rats. Our results confirm that LHRH antagonists, such as cetrorelix, inhibit the gene expression of pituitary LHRH-R indirectly, by counteracting the stimulatory effect of LHRH. A rapid suppression of serum LH by LHRH antagonists would be advantageous in the treatment of sex hormone-dependent tumors and other conditions. PMID:11593037

  7. Regulation of Na/K-ATPase gene expression by thyroid hormone and hyperkalemia in the heart.

    PubMed

    Yalcin, Y; Carman, D; Shao, Y; Ismail-Beigi, F; Klein, I; Ojamaa, K

    1999-01-01

    Hypothermic hyperkalemic circulatory arrest has been widely used for myocardial protection during heart surgery. Recent data showed that administration of triiodo-L-thyronine (T3) postoperatively enhanced ventricular function. The effect of hyperkalemic arrest in conjunction with thyroid hormone on the plasma membrane enzyme sodium/potassium-adenosine triphosphatase (Na/K-ATPase), was determined in cultured neonatal rat atrial and ventricular myocytes. Exposure of ventricular myocytes to hyperkalemic medium (50 mM KCl) in the absence of T3 increased expression of the Na/K-ATPase catalytic subunit mRNAs, alpha1 and alpha3 isoforms, by 1.9- and 1.5-fold, respectively (p<0.01), which were accompanied by similar increases (1.4- and 1.8-fold) in protein content. Addition of T3 to the hyperkalemic cultures attenuated these increases in Na/K-ATPase mRNA isoforms to levels of expression observed in cells treated with T3 (10(-8) M) alone. Similarly, expression of the alpha1 mRNA isoform in atrial myocytes was increased (p<0.05) by hyperkalemic conditions, and T3 treatment attenuated this effect. In contrast, although expression of the Na/K-ATPase beta1 mRNA in both atrial and ventricular myocytes was significantly increased by hyperkalemia, addition of T3 did not prevent the hyperkalemic response, and in atrial myocytes T3 significantly increased beta1 mRNA expression 1.8-fold. These results show that expression of cardiac Na/K-ATPase is regulated by T3 and hyperkalemia in an isoform and chamber specific manner, and suggest that use of hyperkalemic cardioplegia during heart surgery may alter plasma membrane ion function.

  8. Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression.

    PubMed

    Garcia-Marin, R; Fernandez-Santos, J M; Morillo-Bernal, J; Gordillo-Martinez, F; Vazquez-Roman, V; Utrilla, J C; Carrillo-Vico, A; Guerrero, J M; Martin-Lacave, I

    2015-10-01

    Melatonin is an indoleamine with multiple functions in both plant and animal species. In addition to data in literature describing many other important roles for melatonin, such as antioxidant, circadian rhythm controlling, anti-aging, antiproliferative or immunomodulatory activities, our group recently reported that thyroid C-cells synthesize melatonin and suggested a paracrine role for this molecule in the regulation of thyroid activity. To discern the role played by melatonin at thyroid level and its involvement in the hypothalamic-pituitary-thyroid axis, in the present study we have analyzed the effect of thyrotropin in the regulation of the enzymatic machinery for melatonin biosynthesis in C cells as well as the effect of melatonin in the regulation of thyroid hormone biosynthesis in thyrocytes. Our results show that the key enzymes for melatonin biosynthesis (AANAT and ASMT) are regulated by thyroid-stimulating hormone. Furthermore, exogenous melatonin increases thyroglobulin expression at mRNA and protein levels on cultured thyrocytes and this effect is not strictly mediated by the upregulation of TTF1 or, noteworthy, PAX8 transcription factors. The present data show that thyroid C-cells synthesize melatonin under thyroid-stimulating hormone control and, consistently with previous data, support the hypothesis of a paracrine role for C-cell-synthesised melatonin within the thyroid gland. Additionally, in the present study we show evidence for the involvement of melatonin in thyroid function by directly-regulating thyroglobulin gene expression in follicular cells.

  9. Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies.

    PubMed

    Krost, Clemens; Petersen, Romina; Lokan, Stefanie; Brauksiepe, Bastienne; Braun, Peter; Schmidt, Erwin R

    2013-02-01

    The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.

  10. Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict

    PubMed Central

    Peterson, Mark P.; Rosvall, Kimberly A.; Choi, Jeong-Hyeon; Ziegenfus, Charles; Tang, Haixu; Colbourne, John K.; Ketterson, Ellen D.

    2013-01-01

    Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes. PMID:23613935

  11. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    PubMed Central

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  12. Effects of growth hormone treatment on the expression of somatotropic axis genes in the skeletal muscle of lactating Holstein cows.

    PubMed

    Castigliego, L; Armani, A; Grifoni, G; Rosati, R; Mazzi, M; Gianfaldoni, D; Guidi, A

    2010-07-01

    This study focused on the expression of somatotropic axis genes in the skeletal muscle of dairy cattle. A slow-release recombinant bovine growth hormone (GH) (rbGH) formulation was administered to 5 cows, and saline solution (control) was administered to another 5 cows every 2 wk for a total of 10 wk, starting from the peak of lactation. Tissue and blood samples were collected on days 2 and 14 after each rbGH injection. As target genes insulin-like growth factor (IGF)-1, IGF-2, IGFBPs (1, 2, 3, 4, 5, 6), acute labile subunit (ALS), IGF-1 receptor (IGF-1R), GH receptor (GHR), and the known GHR 5'-UTR variants were selected as target genes, and their relative expression was measured using real-time polymerase chain reaction. In GH-treated cows, an increase in expression was observed for GHR 5'-UTR variant 1I on day 14 (P < 0.05), whereas a significant down-regulation of GHR (P < 0.05) was found after comparing values of treated cows between day 2 and day 14. However, only IGF binding proteins (BP)-5 was found to be appreciably up-regulated in GH-treated cows (P < 0.001), which may indicate the importance of this gene in the overall molecular response to GH administration. Our study indicated that GH treatment did not affect the expression of most somatotropic axis genes, despite the marked increase in GH and IGF-1 in blood (P < 0.001). Nor did it have a large impact on the proportion of GHR 5'-UTR variants in the skeletal muscle of lactating cows. Finally, although we observed a significant variation in the expression of some genes, it would appear that the differences between GH-treated cows and controls were not great enough to be considered as reliable indirect indicators of GH treatment in dairy cattle.

  13. Sex-dependent changes in cerebellar thyroid hormone-dependent gene expression following perinatal exposure to thimerosal in rats.

    PubMed

    Khan, A; Sulkowski, Z L; Chen, T; Zavacki, A M; Sajdel-Sulkowska, E M

    2012-06-01

    Mammalian brain development is regulated by the action of thyroid hormone (TH) on target genes. We have previously shown that the perinatal exposure to thimerosal (TM, metabolized to ethylmercury) exerts neurotoxic effects on the developing cerebellum and is associated with a decrease in cerebellar D2 activity, which could result in local brain T3 deficiency. We have also begun to examine TM effect on gene expression. The objective of this study was to expand on our initial observation of altered cerebellar gene expression following perinatal TM exposure and to examine additional genes that include both TH-dependent as well as other genes critical for cerebellar development in male and female neonates exposed perinatally (G10-G15 and P5 to P10) to TM. We report here for the first time that expression of suppressor-of-white-apricot-1 (SWAP-1), a gene negatively regulated by T3, was increased in TM-exposed males (61.1% increase), but not in females; (p<0.05). Positively regulated T3-target genes, Purkinje cell protein 2 (Pcp2; p=0.07) and Forkhead box protein P4 (FoxP4; p=0.08), showed a trend towards decreased expression in TM-exposed males. The expression of deiodinase 2 (DIO2) showed a trend towards an increase in TM-exposed females, while deiodinase 3 (DIO3), transthyretin (TTR), brain derived neurotrophic factor (BDNF) and reelin (RELN) was not significantly altered in either sex. Since regulation of gene splicing is vital to neuronal proliferation and differentiation, altered expression of SWAP-1 may exert wide ranging effects on multiple genes involved in the regulation of cerebellar development. We have previously identified activation of another TH-dependent gene, outer dense fiber of sperm tails 4, in the TM exposed male pups. Together, these results also show sex-dependent differences between the toxic impacts of TM in males and females. Interestingly, the genes that were activated by TM are negatively regulated by TH, supporting our hypothesis of local

  14. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver

    PubMed Central

    Zawada, Ilona; Masternak, Michal M.; List, Edward O.; Stout, Michael B.; Berryman, Darlene E.; Lewinski, Andrzej; Kopchick, John J.; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-01-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria. PMID:25855408

  15. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver.

    PubMed

    Zawada, Ilona; Masternak, Michal M; List, Edward O; Stout, Michael B; Berryman, Darlene E; Lewinski, Andrzej; Kopchick, John J; Bartke, Andrzej; Karbownik-Lewinska, Malgorzata; Gesing, Adam

    2015-03-01

    Mitochondrial biogenesis is an essential process for cell viability. Mice with disruption of the growth hormone receptor (GHR) gene (Ghr gene) in the liver (LiGHRKO), in contrast to long-lived mice with global deletion of the Ghr gene (GHRKO), are characterized by lack of improved insulin sensitivity and severe hepatic steatosis. Tissue-specific disruption of the GHR in liver results in a mouse model with dramatically altered GH/IGF1 axis. We have previously shown increased levels of key regulators of mitochondrial biogenesis in insulin-sensitive GHRKO mice. The aim of the present study is to assess, using real-time PCR, the gene expression of key regulators of mitochondrial biogenesis (Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2) and a marker of mitochondrial activity (CoxIV) in brains, kidneys and livers of male and female LiGHRKO and wild-type (WT) mice. There were significant differences between males and females. In the brain, expression of Pgc1α, Ampk, Sirt1, Nrf2 and Mfn2 was lower in pooled females compared to pooled males. In the kidneys, expression of Ampk and Sirt1 was also lower in female mice. In the liver, no differences between males and females were observed. Sexual dimorphism may play an important role in regulating the biogenesis of mitochondria.

  16. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    PubMed

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.

  17. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes

    PubMed Central

    Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  18. Hormonal regulation of phosphoenolpyruvate carboxykinase gene expression is mediated through modulation of an already disrupted chromatin structure

    SciTech Connect

    Ip, Y.T.; Granner, D.K.; Chalkley, R. . School of Medicine)

    1989-03-01

    The authors used indirect end labeling to identify a series of five hypersensitive (HS) sites in the phosphoenolpyruvate carboxykinase (PEPCK) gene in H4IIE rat hepatoma cells. These sites were found at -4800 base pairs (bp) (site A), at -1300 bp (site B), over a broad domain between -400 and -30 bp (site C), at +4650 bp (site D), and at +6200 bp (site E). Sites A to D were detected only in cells capable of expressing the PEPCK gene, whereas site E was present in all of the cells examined thus far. The HS sites were present in H4IIE cells even when transcriptional activity was reduced to a minimum by treatment with insulin. Stimulation of transcription by a cyclic AMP analog to a 40-fold increase over the insulin-repressed level did not affect the main features of the HS sites. Furthermore, increased transcription did not disrupt the nucleosomal arrangement of the coding region of the gene, nor did it affect the immediate 5' region (site C), which is always nucleosome-free. In HTC cells, a rat hepatoma line that is hormonally responsive but unable to synthesize PEPCK mRNA, the four expression-specific HS sites were totally absent. The authors experimental results also showed that, although there is a general correlation between lack of DNA methylation and transcriptional competence of the PEPCK gene, the role, if any, of methylation in the regulation of PEPCK gene activity is likely to be exerted at very specific sites.

  19. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    SciTech Connect

    Gracia, Tannia Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-12-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.

  20. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments.

    PubMed

    Liu, Juanxu; Li, Jingyu; Wang, Huinan; Fu, Zhaodi; Liu, Juan; Yu, Yixun

    2011-01-01

    Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.

  1. Luteinizing Hormone-Induced RUNX1 Regulates the Expression of Genes in Granulosa Cells of Rat Periovulatory Follicles

    PubMed Central

    Jo, Misung; Curry, Thomas E.

    2006-01-01

    The LH surge induces specific transcription factors that regulate the expression of a myriad of genes in periovulatory follicles to bring about ovulation and luteinization. The present study determined 1) the localization of RUNX1, a nuclear transcription factor, 2) regulation of Runx1 mRNA expression, and 3) its potential function in rat ovaries. Up-regulation of mRNA and protein for RUNX1 is detected in preovulatory follicles after human chorionic gonadotropin (hCG) injection in gonadotropin-treated immature rats as well as after the LH surge in cycling animals by in situ hybridization and immunohistochemical and Western blot analyses. The regulation of Runx1 mRNA expression was investigated in vitro using granulosa cells from rat pre-ovulatory ovaries. Treatments with hCG, forskolin, or phorbol 12 myristate 13-acetate stimulated Runx1 mRNA expression. The effects of hCG were reduced by inhibitors of protein kinase A, MAPK kinase, or p38 kinase, indicating that Runx1 expression is regulated by the LH-initiated activation of these signaling mediators. In addition, hCG-induced Runx1 mRNA expression was inhibited by a progesterone receptor antagonist and an epidermal growth factor receptor tyrosine kinase inhibitor, whereas amphiregulin stimulated Runx1 mRNA expression, demonstrating that the expression is mediated by the activation of the progesterone receptor and epidermal growth factor receptor. Finally, knockdown of Runx1 mRNA by small interfering RNA decreased progesterone secretion and reduced levels of mRNA for Cyp11a1, Hapln1, Mt1a, and Rgc32. The hormonally regulated expression of Runx1 in periovulatory follicles, its involvement in progesterone production, and regulation of preovulatory gene expression suggest important roles of RUNX1 in the periovulatory process. PMID:16675540

  2. Ping-pong amplification of a retroviral vector achieves high-level gene expression: human growth hormone production.

    PubMed Central

    Kozak, S L; Kabat, D

    1990-01-01

    Retroviral vectors offer major advantages for gene transfer studies but have not been useful for producing proteins in large quantities. This deficiency has resulted in part from interference to superinfection, which limits the numbers of active proviruses in cells. Recently, we found that these vectors amplify when they are added as calcium phosphate precipitates to cocultures of cells that package retroviruses into ecotropic and amphotropic host range envelopes. Helper-free virions from either cell type can infect the other without interference, resulting in theoretically limitless back-and-forth (ping-pong) vector replication. In initial studies, however, amplifications of a vector that contained the human growth hormone gene ceased when the hormone produced was 0.3% or less of cellular protein synthesis. This limit was caused by two factors. First, recombinant shutoff viruses that are replication defective and encode envelope glycoproteins form at a low probability during any round of the vector replication cycle and these spread in cocultures, thereby establishing interference. Single cells in shutoff cocultures therefore synthesize both ecotropic and amphotropic envelope glycoproteins, and they release promiscuous (presumably hybrid) virions. The probability of forming shutoff viruses before the vector had amplified to a high multiplicity was reduced by using small cocultures. Second, cells with large numbers of proviruses are unhealthy and their proviral expression can be unstable. Stable expresser cell clones were obtained by selection. Thereby, cell lines were readily obtained that stably produce human growth hormone as 4 to 6% of the total protein synthesis. A ping-pong retroviral vector can be used for high-level protein production in vertebrate cells. Images PMID:2352330

  3. Parallel Measurement of Circadian Clock Gene Expression and Hormone Secretion in Human Primary Cell Cultures.

    PubMed

    Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna

    2016-11-11

    Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.

  4. Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues.

    PubMed

    Zhao, Yucheng; Luo, Jun; Xu, Sheng; Wang, Wei; Liu, Tingting; Han, Chao; Chen, Yijun; Kong, Lingyi

    2016-01-01

    Peucedanum praeruptorum Dunn is one of the main traditional Chinese medicines producing coumarins and plenty of literatures are focused on the biosynthesis of coumarins. Quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used method in studying the biosynthesis pathway and the selection of reference genes plays a crucial role in accurate normalization. To facilitate biosynthesis study of coumarins, twelve candidate reference genes were selected from the transcriptome database of P. praeruptorum according to previous studies. Then, BestKeeper, geNoFrm and NormFinder were used for selecting stably expressed reference genes in different tissues and under various stress treatments. The results indicated that, among the twelve candidate reference genes, the SAND family protein (SAND), actin 2 (ACT2), ubiquitin-conjugating enzyme 9 (UBC9), protein phosphatase 2A gene (PP2A) and polypyrimidine tract-binding protein (PTBP1) were the most stable reference genes under different experimental treatments, while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tubulin beta-6 (TUB6) were the least stable genes. In addition, the suitability of SAND, TIP41-like protein (TIP41), UBC9, ACT2, TUB6 and their combination as reference genes were confirmed by normalizing the expression of 1-aminocyclopropane-1-carboxylate oxidase (ACO) in different treatments. This work is the first survey of the stability of reference genes in P. praeruptorum and provides guidelines to obtain more accurate qRT-PCR results in P. praeruptorum and other plant species.

  5. Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues

    PubMed Central

    Zhao, Yucheng; Luo, Jun; Xu, Sheng; Wang, Wei; Liu, Tingting; Han, Chao; Chen, Yijun; Kong, Lingyi

    2016-01-01

    Peucedanum praeruptorum Dunn is one of the main traditional Chinese medicines producing coumarins and plenty of literatures are focused on the biosynthesis of coumarins. Quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used method in studying the biosynthesis pathway and the selection of reference genes plays a crucial role in accurate normalization. To facilitate biosynthesis study of coumarins, twelve candidate reference genes were selected from the transcriptome database of P. praeruptorum according to previous studies. Then, BestKeeper, geNoFrm and NormFinder were used for selecting stably expressed reference genes in different tissues and under various stress treatments. The results indicated that, among the twelve candidate reference genes, the SAND family protein (SAND), actin 2 (ACT2), ubiquitin-conjugating enzyme 9 (UBC9), protein phosphatase 2A gene (PP2A) and polypyrimidine tract-binding protein (PTBP1) were the most stable reference genes under different experimental treatments, while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tubulin beta-6 (TUB6) were the least stable genes. In addition, the suitability of SAND, TIP41-like protein (TIP41), UBC9, ACT2, TUB6 and their combination as reference genes were confirmed by normalizing the expression of 1-aminocyclopropane-1-carboxylate oxidase (ACO) in different treatments. This work is the first survey of the stability of reference genes in P. praeruptorum and provides guidelines to obtain more accurate qRT-PCR results in P. praeruptorum and other plant species. PMID:27022972

  6. Localization and expression of follicle-stimulating hormone receptor gene in buffalo (Bubalus bubalis) pre-antral follicles.

    PubMed

    Sharma, G Taru; Dubey, P K; Kumar, G Sai

    2011-02-01

    Follicle-stimulating hormone (FSH) stimulates antral follicles to grow, but its role in earlier stages (pre-antral) of follicle development, if any, is obscure. Aim of this study was to study the expression of follicle-stimulating hormone receptor (FSHR) gene in different sizes of pre-antral follicles (PFs) (<150, 200, 250, 300, 350, 400 μm) and to find out an optimum dose of FSH for better growth, development and steroidogenesis of PFs in vitro. Buffalo ovaries were collected from a local abattoir, and PFs were isolated by mechanical method. A semi-quantitative RT-PCR amplification strategy was used for mRNA expression, while FSHR protein was localized by immunohistochemistry. Isolated pre-antral follicles (80-85 μm) were cultured in TCM-199 supplemented with 10% foetal bovine serum, 1% ITS and 30 ng/ml EGF served as control medium. Addition of three different doses of FSH (0.5, 1.0, 2.0 μg/ml) in control medium was considered as treatment groups. A single 2.184-kb receptor mRNA transcript was present in all sizes (<150-400 μm) of follicles. Follicle-stimulating hormone receptor was also localized immunohistochemically in granulosa cells of all sizes of follicles. Survival and growth rate of follicles significantly (p<0.05) increased following supplementation of FSH at a concentration of 1.0 μg/ml and the culture medium also showed a significantly (p<0.05) greater accumulation of oestradiol and progesterone. In conclusion, FSHR is expressed in all sizes of PFs and in vitro survival, growth and steroidogenesis of follicles are optimally stimulated by 1.0 μg/ml FSH. These findings demonstrate that FSH has an important role during the recruitment, growth and development of buffalo ovarian PFs.

  7. Hormone-dependent milk protein gene expression in bovine mammary explants from biopsies at different stages of pregnancy.

    PubMed

    Sheehy, Paul A; Della-Vedova, James J; Nicholas, Kevin R; Wynn, Peter C

    2004-05-01

    A method for the collection of mammary biopsies developed previously was refined and used to study the endocrine regulation of bovine milk protein gene expression. Our surgical biopsy method used real-time ultrasound imaging and epidural analgesia to enable recovery of a sufficient quantity of mammary tissue from late-pregnant dairy cows for explant culture in vitro. The time of biopsy was critical for prolactin-dependent induction of milk protein gene expression in mammary explants, as only mammary tissue from cows nearing 30 d prepartum was hormone-responsive. This suggests that during the later stages of pregnancy a change in the responsiveness of milk protein gene expression to endocrine stimuli occurred in preparation for lactation. This may relate to the diminution of a putative population of undifferentiated cells that were still responsive to prolactin. Alternatively, the metabolic activity of the tissue had increased to the level whereby the response of the tissue was no longer assessable using this model in vitro.

  8. Differential expression of three types of gonadotropin-releasing hormone genes during the spawning season in grass puffer, Takifugu niphobles.

    PubMed

    Shahjahan, Md; Hamabata, Tomoko; Motohashi, Eiji; Doi, Hiroyuki; Ando, Hironori

    2010-05-15

    Grass puffer, Takifugu niphobles, has unique spawning behavior; spawning occurs on beach only for several days around new moon and full moon from spring to early summer. To investigate the role of gonadotropin-releasing hormone (GnRH) in the reproductive function, genes encoding three types of GnRHs, namely seabream GnRH (sbGnRH), chicken GnRH-II (cGnRH-II) and salmon GnRH (sGnRH), were cloned and changes in their mRNA amounts were examined over the spawning season. In addition, changes in the pituitary gonadotropin subunit mRNAs and the plasma steroid hormones were examined over the spawning season. Fishes were assessed at four reproductive stages, i.e., in December (early maturation), in April (maturing), in May (spawning), and in July (post-spawning). Moreover, spawning fish just after releasing eggs and sperm were taken at a spawning bed. The amounts of sbGnRH mRNA were substantially elevated in May and the spawning fish in both sexes, concomitant with considerable elevations of follicle-stimulating hormone and luteinizing hormone beta subunit mRNAs and plasma estradiol-17beta (E(2)) and testosterone (T) levels. There were strong positive correlations between the sbGnRH mRNA and the plasma E(2) and T levels over the spawning season in both sexes. The amounts of cGnRH-II mRNA showed no noticeable changes except for an increase in the post-spawning females. The amounts of sGnRH mRNA in the males were significantly increased in May, but they were low in the spawning males. In the females, sGnRH mRNA increased from the maturing stage and reached a maximum in the post-spawning stage, in which a positive correlation with the plasma cortisol levels was observed. These specific changes suggest that the expression of three types of GnRH genes is differentially regulated during the spawning season, and sex steroids may be important for the differential expression of GnRH genes.

  9. PCB-Related Alteration of Thyroid Hormones and Thyroid Hormone Receptor Gene Expression in Free-Ranging Harbor Seals (Phoca vitulina)

    PubMed Central

    Tabuchi, Maki; Veldhoen, Nik; Dangerfield, Neil; Jeffries, Steven; Helbing, Caren C.; Ross, Peter S.

    2006-01-01

    Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR ) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-α gene expression [total polychlorinated biphenyls (∑PCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (∑PCBs; r = −0.711; p < 0.001). Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals. PMID:16835054

  10. PCB-related alteration of thyroid hormones and thyroid hormone receptor gene expression in free-ranging harbor seals (Phoca vitulina).

    PubMed

    Tabuchi, Maki; Veldhoen, Nik; Dangerfield, Neil; Jeffries, Steven; Helbing, Caren C; Ross, Peter S

    2006-07-01

    Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-alpha gene expression [total polychlorinated biphenyls (capital sigmaPCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (capital sigmaPCBs; r = -0.711; p < 0.001) . Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals.

  11. Gene expression of luteinizing hormone receptor and steroidogenic enzymes during Leydig cell development.

    PubMed

    Abney, T O; Zhai, J

    1998-02-01

    Testicular Leydig cells (LC) are rapidly and selectively destroyed by an injection of ethane dimethane sulfonate (EDS). LC regeneration occurs in the testis of the EDS-treated rats from the differentiation of the precursor Leydig cells (PLC). This study was designed to investigate the patterns of change in the mRNAs for the luteinizing hormone receptor (LHR) and the steroidogenic enzymes, cholesterol side chain cleavage (P-450scc) and 17 alpha-hydroxylase (P-450(17 alpha)) during LC regeneration from PLCs. Mature (60 days of age) Sprague-Dawley male rats received a single intraperitoneal injection of EDS and were killed at different times between days 2 and 60 post-treatment. PLC- and LC-enriched fractions were isolated from the testes of the EDS-treated rats and age-matched control rats using a collagenase digestion-Percoll gradient method. Total RNA was extracted from these cell populations and subjected to Northern blot analysis. The LC fraction isolated from testes of control rats expressed four major transcripts of the LHR, sized 1.8, 2.5, 4.2 and 7.0 kb. The undifferentiated PLC fraction from controls expressed only a truncated form, the 1.8 kb transcript. This truncated LHR transcript was also the only LHR mRNA species detected in PLCs at day 2 post-EDS treatment. In contrast, all four transcripts of the LHR were detected in the PLC fraction at day 10 post-EDS treatment. The levels of the full length 7.0 kb transcript increased thereafter and reached a peak between days 24 and 36 post-EDS treatment in the PLC fraction. Concomitant with the increase in the 7.0 kb transcript, the truncated 1.8 kb transcript decreased in amount and reached a nadir between days 16 and 36 post-treatment. The changes observed in this cell fraction reflect the process of differentiation of PLCs into LCs. At day 45 post-EDS treatment, the level of the 7.0 kb transcript decreased while the 1.8 kb form increased in the PLC fraction, reflecting the completion of LC regeneration from

  12. Effect of growth hormones on some antioxidant parameters and gene expression in tomato.

    PubMed

    El-Gaied, Lamiaa F; Abu El-Heba, Ghada A; El-Sherif, Nahla A

    2013-01-01

    Bioregulators have a great effect on vital processes of plant growth and development. Known plant bioregulators include Naphthalene acetic acid (NAA), Indole-3-butyric acid (IBA) and Indole-3-acetic acid (IAA). Natural or synthetic plant bioregulators are organic compounds that affect the physiological processes in the plant, either to control some of these processes or to modify them. For example these bioregulators can affect the nature of the process, either by accelerating or decelerating plant growth, rates of maturation and also by altering the behavior of the plants or their products. Also, enhancement of important nutrients in human diet could be achieved by bioregulators.   This study uses the model crop plant Tomato (Lycopersicon esculentum). Tomato is affected by a group of bioregulators, this group contains compounds which are powerful antioxidants in vitro. The current study aims to find out the effect of some plant bioregulators (IAA, IBA and NAA) on tomato growth, total protein content and enzyme activities of ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT). This study also investigates the effect of the above mentioned bioregulators on the level of RNA expression for SOD, CAT and TPX1 genes. The analytical quantification of target gene expression showed the induced effect of NAA on SOD expression and reducing effect of the other bioregulators (IAA and IBA) on CAT and TPX1 expression. However, at the protein level, we found that IBA and IAA caused a minor effect on total protein content while a significant effect was recorded on the total protein level using NAA. Upon measuring the enzyme activity of ascorbate peroxidase and catalase, we found that both the exogenous NAA and IBA stimulated ascorbate peroxidase activity in tomato while there was no considerable difference detected in IAA treated plants. Also, there was no considerable difference detected in catalase activity of all bioregulator-treated plants compared with

  13. Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression.

    PubMed

    Karavolos, Michail H; Khan, C M Anjam

    2014-01-01

    Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.

  14. Seasonal changes of responses to gonadotropin-releasing hormone analog in expression of growth hormone/prolactin/somatolactin genes in the pituitary of masu salmon.

    PubMed

    Bhandari, Ramji Kumar; Taniyama, Shinya; Kitahashi, Takashi; Ando, Hironori; Yamauchi, Kohei; Zohar, Yonathan; Ueda, Hiroshi; Urano, Akihisa

    2003-01-01

    Gonadotropin-releasing hormone (GnRH) is considered to stimulate secretion of growth hormone (GH), prolactin (PRL), and somatolactin (SL) at particular stages of growth and sexual maturation in teleost fishes. We therefore examined seasonal variation in the pituitary levels of GH/PRL/SL mRNAs, and tried to clarify seasonal changes of responses to GnRH in expression of GH/PRL/SL genes, in the pituitaries of growing and maturing masu salmon (Oncorhynchus masou). Pituitary samples were monthly collected one week after implantation with GnRH analog (GnRHa). The levels of mRNAs encoding GH, PRL, and SL precursors in single pituitaries were determined by a real-time polymerase chain reaction method. The fork lengths and body weights of control and GnRHa-implanted fish of both sexes gradually increased and peaked out in September of 2-year-old (2+) when fish spawned. GnRHa implantation did not stimulate somatic growth, nor elevate gonadosomatic index (GSI) of 1+ and 2+ males, whereas it significantly increased GSI of 2+ females in late August to early September. The GnRHa-implanted 1+ males had higher levels of GH and PRL mRNAs in July, and SL mRNA from June to August than the control males. The levels of GH, PRL, and SL mRNAs in the control and GnRHa-implanted 1+ females, however, did not show any significant changes. Afterward, the PRL mRNA levels elevated in the control 2+ fish of both sexes in spring. GnRHa elevated the GH mRNA levels in both males and females in 2+ winter, and the PRL mRNA levels in females in early spring. Regardless of sex and GnRHa-implantation, the SL mRNA levels increased during sexual maturation. In growing and maturing masu salmon, expression of genes encoding GH, PRL, and SL in the pituitary is thus sensitive to GnRH in particular seasons probably in relation to physiological roles of the hormones.

  15. Micronuclei in Cord Blood Lymphocytes and Associations with Biomarkers of Exposure to Carcinogens and Hormonally Active Factors, Gene Polymorphisms, and Gene Expression: The NewGeneris Cohort

    PubMed Central

    Merlo, Domenico Franco; Agramunt, Silvia; Anna, Lívia; Besselink, Harrie; Botsivali, Maria; Brady, Nigel J.; Ceppi, Marcello; Chatzi, Leda; Chen, Bowang; Decordier, Ilse; Farmer, Peter B.; Fleming, Sarah; Fontana, Vincenzo; Försti, Asta; Fthenou, Eleni; Gallo, Fabio; Georgiadis, Panagiotis; Gmuender, Hans; Godschalk, Roger W.; Granum, Berit; Hardie, Laura J.; Hemminki, Kari; Hochstenbach, Kevin; Knudsen, Lisbeth E.; Kogevinas, Manolis; Kovács, Katalin; Kyrtopoulos, Soterios A.; Løvik, Martinus; Nielsen, Jeanette K; Nygaard, Unni Cecilie; Pedersen, Marie; Rydberg, Per; Schoket, Bernadette; Segerbäck, Dan; Singh, Rajinder; Sunyer, Jordi; Törnqvist, Margareta; van Loveren, Henk; van Schooten, Frederik J.; Vande Loock, Kim; von Stedingk, Hans; Wright, John; Kirsch-Volders, Micheline; van Delft, Joost H.M.

    2013-01-01

    Background: Leukemia incidence has increased in recent decades among European children, suggesting that early-life environmental exposures play an important role in disease development. Objectives: We investigated the hypothesis that childhood susceptibility may increase as a result of in utero exposure to carcinogens and hormonally acting factors. Using cord blood samples from the NewGeneris cohort, we examined associations between a range of biomarkers of carcinogen exposure and hormonally acting factors with micronuclei (MN) frequency as a proxy measure of cancer risk. Associations with gene expression and genotype were also explored. Methods: DNA and protein adducts, gene expression profiles, circulating hormonally acting factors, and GWAS (genome-wide association study) data were investigated in relation to genomic damage measured by MN frequency in lymphocytes from 623 newborns enrolled between 2006 and 2010 across Europe. Results: Malondialdehyde DNA adducts (M1dG) were associated with increased MN frequency in binucleated lymphocytes (MNBN), and exposure to androgenic, estrogenic, and dioxin-like compounds was associated with MN frequency in mononucleated lymphocytes (MNMONO), although no monotonic exposure–outcome relationship was observed. Lower frequencies of MNBN were associated with a 1-unit increase expression of PDCD11, LATS2, TRIM13, CD28, SMC1A, IL7R, and NIPBL genes. Gene expression was significantly higher in association with the highest versus lowest category of bulky and M1dG–DNA adducts for five and six genes, respectively. Gene expression levels were significantly lower for 11 genes in association with the highest versus lowest category of plasma AR CALUX® (chemically activated luciferase expression for androgens) (8 genes), ERα CALUX® (for estrogens) (2 genes), and DR CALUX® (for dioxins). Several SNPs (single-nucleotide polymorphisms) on chromosome 11 near FOLH1 significantly modified associations between androgen activity and MNBN

  16. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants

    PubMed Central

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-01-01

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. PMID:26907500

  17. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants.

  18. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment.

    PubMed

    Li, Xinxin; Zhao, Jing; Walk, Thomas C; Liao, Hong

    2014-03-01

    Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.

  19. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression

    PubMed Central

    Zhang, Xi; Peng, Danni; Xi, Yuanxin; Yuan, Chao; Sagum, Cari A.; Klein, Brianna J.; Tanaka, Kaori; Wen, Hong; Kutateladze, Tatiana G.; Li, Wei; Bedford, Mark T.; Shi, Xiaobing

    2016-01-01

    The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. PMID:26960573

  20. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine.

    PubMed

    Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio

    2011-09-15

    In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Expression and regulation by thyroid hormone (TH) of zebrafish IGF-I gene and amphioxus IGFl gene with implication of the origin of TH/IGF signaling pathway.

    PubMed

    Wang, Yanfeng; Zhang, Shicui

    2011-12-01

    Thyroid hormone (TH)/insulin-like growth factor (IGF) signaling pathway has been identified in all the vertebrates, but its evolutionary origin remains elusive. In this study we examined the expression profiles in vitro as well as in vivo of the IGF-I gene of fish Danio rerio (vertebrate) and the IGF-like gene (IGFl) of amphioxus Branchiostoma japonicum (protochordate) following T(3) treatment. Our results showed that T(3) was able to enhance hepatic IGF-I/IGFl gene expression in vitro in both zebrafish and amphioxus in a dose-dependent manner. This T(3)-induced hepatic expression of IGF-I/IGFl genes in both species was significantly inhibited by the T(3)-specific inhibitor DEA, indicating the specificity of IGF-I/IGFl gene regulation by T(3). At 100nM T(3), in both the long (42h) and short (8h) time course experiments, the IGF-I/IGFl gene expression profiles following T(3) treatment in the tissue cultures of both species exhibited closely similar pattern and trend. Moreover, exposure of zebrafish and amphioxus to T(3)in vivo for 72h induced a significant increase in the expression of IGF-I/IGFl genes in both the liver and the hepatic caecum. These data together suggest that amphioxus and zebrafish both share a similar regulatory mechanism of IGF gene expression in response to T(3), providing an evidence for the presence of a vertebrate-like TH/IGF signaling pathway in the protochordate amphioxus.

  2. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream.

    PubMed

    Jiao, Baowei; Cheng, Christopher H K

    2010-06-01

    Environmental estrogen could mimic natural estrogens thereby disrupting the endocrine systems of human and animals. The actions of such endocrine disruptors have been studied mainly on reproduction and development. However, estrogen could also affect the somatotropic axis via multiple targets such as growth hormone (GH). In the present study, two endocrine disruptors were chosen to investigate their effects on the expression level and signal transduction of growth hormone receptor (GHR) in fish. Using real-time PCR, it was found that exposure to both the estrogenic (bisphenol A) and anti-estrogenic (malachite green) compounds could attenuate the expression levels of GHR1 and GHR2 in black seabream (Acanthopagrus schlegeli) hepatocytes. The expression level of IGF-I, the downstream effector of GHR activation in the liver, was decreased by bisphenol A but not by malachite green. Luciferase reporter assay of the beta-casein promoter was used to monitor GHR signaling in transfected cells. In the fish liver cell line Hepa-T1, both GHR1 and GHR2 signaling were attenuated by bisphenol A and malachite green. This attenuation could only occur in the presence of estrogen receptor, indicating that these agents probably produce their actions via the estrogen receptor. Results of the present study demonstrated that estrogenic or anti-estrogenic compounds could down-regulate the somatotropic axis in fish by affecting both the gene expression and signaling of GHR. In view of the increasing prevalence of these compounds in the environment, the impact on fish growth and development both in the wild and in aquaculture would be considerable.

  3. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat.

    PubMed Central

    Naveh-Many, T; Silver, J

    1990-01-01

    In vivo in the rat 1,25(OH)2D3 decreases and a low calcium increases PTH mRNA levels. We now report the effect of 3 and 8 wk of changes in dietary vitamin D and calcium on PTH mRNA levels. PTH mRNA levels were increased by 3 wk of calcium deficiency (five times), a vitamin D-deficient diet (two times), and combined deficiency (10 times), but not changed by high calcium. Vitamin D-deficient-diet rats' PTH mRNA did not decrease after a single large dose of 1,25(OH)2D3, but did decrease partially after repeated daily doses of 1,25(OH)2D3. Rats after a vitamin D-, calcium-deficient (-D-Ca) diet did not respond to changes in serum calcium at 1 h. Flow cytometry of isolated cells from parathyroid-thyroid tissue separated the smaller parathyroid from the larger thyroid cells and allowed an analysis of parathyroid cell number. In normal vitamin D/normal calcium (NDNCa) rats the parathyroid cells were 24.7 +/- 3.4% (n = 6) of the total cell number, whereas in -D-Ca rats they were 41.8 +/- 6.6% (n = 6) (P less than 0.05). That is, -D-Ca rats had 1.7 times the number of cells, whereas they had 10 times the amount of PTH mRNA, indicating the major contribution (6 times) of increased PTH gene expression per cell. Moreover, a calcium-deficient, more so than a vitamin D-deficient diet, amplifies the expression of the PTH gene, and vitamin D is necessary for an intact response of PTH mRNA to 1,25(OH)2D3 or calcium. Images PMID:2212016

  4. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones.

    PubMed

    Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong

    2016-03-04

    Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C₂H₂-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress-inducible genes responding to both salt and hormones.

  5. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones

    PubMed Central

    Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong

    2016-01-01

    Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C2H2-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress–inducible genes responding to both salt and hormones. PMID:26959011

  6. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens

    PubMed Central

    2012-01-01

    Background A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. Results At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. Conclusions There

  7. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    PubMed

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  8. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  9. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  10. Identification of Differentially Expressed Thyroid Hormone Responsive Genes from the Brain of the Mexican Axolotl (Ambystoma mexicanum) ✧

    PubMed Central

    Huggins, P; Johnson, CK; Schoergendorfer, A; Putta, S; Bathke, AC; Stromberg, AJ; Voss, SR

    2011-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5,884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p < 0.05, fold change > 1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. PMID:21457787

  11. Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R

    2012-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p<0.05, fold change >1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation.

  13. Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro.

    PubMed Central

    Suda, T; Tozawa, F; Dobashi, I; Horiba, N; Ohmori, N; Yamakado, M; Yamada, M; Demura, H

    1993-01-01

    To differentiate between ectopic ACTH syndrome and Cushing's disease, gene expression of corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), and glucocorticoid receptor was examined in 10 pituitary adenomas (Cushing's disease) and in 10 ectopic ACTH-producing tumors. CRH increased plasma ACTH levels in all patients with Cushing's disease and in five patients with ectopic ACTH syndrome whose tumors contained CRH and CRH mRNA. In five CRH nonresponders, CRH was not detected in tumors that contained no CRH mRNA or that contained only long-size CRH mRNA. Dexamethasone (Dex) decreased plasma ACTH levels in all patients with Cushing's disease and in three patients with ectopic ACTH-producing bronchial carcinoid. These tumors contained glucocorticoid receptor mRNA. CRH increased and Dex decreased ACTH release and POMC mRNA levels in pituitary adenoma and bronchial carcinoid cells. PMA increased POMC mRNA levels only in carcinoid cells. These results reveal characteristics of ectopic ACTH-producing tumors: long-size CRH mRNA and PMA-induced POMC gene expression. In addition, there are two ectopic ACTH syndrome subtypes: tumors containing ACTH with CRH (CRH responder) and tumors without CRH. Dex decreases ACTH release and POMC mRNA levels in some bronchial carcinoids. Therefore, CRH and Dex tests have limited usefulness in differentiating between Cushing's disease and ectopic ACTH syndrome. Images PMID:8254033

  14. Identification of cis elements necessary for glucocorticoid induction of growth hormone gene expression in chicken embryonic pituitary cells.

    PubMed

    Heuck-Knubel, Kristina; Proszkowiec-Weglarz, Monika; Narayana, Jyoti; Ellestad, Laura E; Prakobsaeng, Nattiya; Porter, Tom E

    2012-03-01

    Glucocorticoid (GC) treatment of rat or chicken embryonic pituitary (CEP) cells induces premature production of growth hormone (GH). GC induction of the GH gene requires ongoing protein synthesis, and the GH genes lack a canonical GC response element (GRE). To characterize cis-acting elements and identify trans-acting proteins involved in this process, we characterized the regulation of a luciferase reporter containing a fragment of the chicken GH gene (-1727/+48) in embryonic day 11 CEP cells. Corticosterone (Cort) increased luciferase activity and mRNA expression, and mRNA induction was blocked by protein synthesis inhibition. Through deletion analysis, we identified a GC-responsive region (GCRR) at -1045 to -954. The GCRR includes an ETS-1 binding site and a degenerate GRE (dGRE) half site. Nuclear proteins, including ETS-1, bound to a GCRR probe in electrophoretic mobility shift assays, and Cort regulated protein binding. Using chromatin immunoprecipitation, we found that ETS-1 and GC receptor (GR) were associated with the GCRR in CEP cells, and Cort increased GR recruitment to the GCRR. Mutation of the ETS-1 site or dGRE site in the -1045/+48 GH reporter abolished Cort responsiveness. We conclude that GC regulation of the GH gene during development requires cis-acting elements in the GCRR and involves ETS-1 and GR binding to these elements. Similar ETS-1 elements/dGREs are located in the 5'-flanking regions of GH genes in mammals, including rodents and humans. This is the first study to demonstrate involvement of ETS-1 in GC regulation of the GH gene during embryonic development in any species, enhancing our understanding of GH regulation in vertebrates.

  15. Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16.

    PubMed

    Imae, M; Fu, Z; Yoshida, A; Noguchi, T; Kato, H

    2003-04-01

    Transcription factors of the FoxO family in mammals are orthologues of the Caenorhabditis elegans forkhead factor DAF-16, which has been characterized as a target of insulin-like signalling. Three members of this family have been identified in rodents: FoxO1, FoxO3 and FoxO4, originally termed FKHR, FKHRL1 and AFX respectively. A number of in vitro studies have revealed that FoxOs are regulated through phosphorylation in response to insulin and related growth factors, resulting in their nuclear exclusion and inactivation. To clarify the mechanisms involved in the regulation of these factors in vivo, we investigated in the present study whether or not, and if so how, their mRNA levels in rat liver respond to the stimuli of several nutritional and hormonal factors. Imposed fasting for 48 h significantly elevated mRNA levels of FoxO1 (1.5-fold), FoxO3 (1.4-fold), and FoxO4 (1.6-fold). Refeeding for 3 h recovered the induced mRNA levels of FoxO1 and FoxO3 to the control levels, but did not affect that of FoxO4. FoxO1 and FoxO4 mRNA levels were proved to be highly reflective of their protein levels measured by Western immunoblotting. Of the three FoxO genes, FoxO4 only showed altered levels of mRNA (a 1.5-fold increase) in response to a protein-free diet. Streptozotocin-induced diabetes for 28 days decreased hepatic mRNA levels of FoxO1 and FoxO3 and increased the level of FoxO4 mRNA, but short-term (7 days) diabetes had fewer effects on the expression of these genes. Insulin replacement partially restored the FoxO1 and FoxO4 mRNA levels, but had no effect on the FoxO3 mRNA level. Daily administration for 1 week of dexamethasone, a synthetic glucocorticoid, increased the mRNA levels of FoxO1 (1.8-fold) and FoxO3 (2.4-fold). These results show that the FoxO genes respond differently to nutritional and hormonal factors, suggesting a new mechanism for the regulation of FoxO-dependent gene expression by these factors. Moreover, changes of FoxO1 and FoxO4 in the nucleus in

  16. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones.

  17. Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to Doxorubicin in tumor-bearing spontaneously hypertensive rats.

    PubMed

    Gonzalez, Yanira; Pokrzywinski, Kaytee L; Rosen, Elliot T; Mog, Steven; Aryal, Baikuntha; Chehab, Leena M; Vijay, Vikrant; Moland, Carrie L; Desai, Varsha G; Dickey, Jennifer S; Rao, V Ashutosh

    2015-09-01

    Chemotherapy with doxorubicin (Dox) causes dose-limiting cardiotoxicity. We investigated the role that gender has on cardiosensitivity to Dox treatment by evaluating reproductive hormone levels in male, castrated male (c-male), female and ovariectomized female (o-female) adult spontaneously hypertensive rats (SHRs) and expression of mitochondria-related genes in male and female adult SHRs. SST-2 breast tumor-bearing SHRs were treated with saline, Dox, dexrazoxane (Drz) or both Dox and Drz and monitored for 14 days. Tumor size was used to monitor anticancer activity. Heart weight, cardiac lesion score and serum levels of cardiac troponin T (cTnT) were used to determine cardiotoxicity. Serum estradiol (E2) and testosterone were evaluated using electrochemiluminescence immunoassays. Expression of mitochondria-related genes was profiled in heart by MitoChip array analyses. Dox significantly reduced tumor volume (±Drz) and increased heart weight in all genders (13-30% vs. control). Higher heart lesion scores were observed in reproductively normal animals (male 2.9, female 2.2) than in hormone-deficient animals (c-male 1.7, o-female 1.9). Lesion score and cTnT inversely correlated with hormone levels. Reduced levels of both sex hormones were observed after Dox treatment. Gene expression analyses of Dox-treated hearts showed significant differential expression of oxidative stress genes in male hearts and apoptotic genes in both male and female hearts. Our results demonstrate that adult tumor-bearing male SHRs are more cardiosensitive to Dox than female or hormone-deficient animals. We provide evidence to suggest that reproductive hormones negatively regulate or are inhibited by Dox-induced cardiotoxicity and the selective cytotoxic mechanism likely functions through the greater activation of oxidative stress and apoptosis in male SHRs.

  18. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  19. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  20. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line.

    PubMed

    Ma, Jing-E; Lang, Qian-Qian; Qiu, Feng-Fang; Zhang, Li; Li, Xiang-Guang; Luo, Wen; Wang, Juan; Wang, Xing; Lin, Xi-Ran; Liu, Wen-Sheng; Nie, Qing-Hua; Zhang, Xi-Quan

    2016-11-09

    The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.

  1. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line

    PubMed Central

    Ma, Jing-E.; Lang, Qian-Qian; Qiu, Feng-Fang; Zhang, Li; Li, Xiang-Guang; Luo, Wen; Wang, Juan; Wang, Xing; Lin, Xi-Ran; Liu, Wen-Sheng; Nie, Qing-Hua; Zhang, Xi-Quan

    2016-01-01

    The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5′-AGGCTTGACAGTGACCTCC-3′) containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression. PMID:27834851

  2. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms.

    PubMed

    Krugman, Tamar; Peleg, Zvi; Quansah, Lydia; Chagué, Véronique; Korol, Abraham B; Nevo, Eviatar; Saranga, Yehoshua; Fait, Aaron; Chalhoub, Boulos; Fahima, Tzion

    2011-12-01

    Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.

  3. Expression of proglucagon and proglucagon-derived peptide hormone receptor genes in the chicken

    USDA-ARS?s Scientific Manuscript database

    To better understand how the glucagon system functions in birds, we utilized a molecular cloning strategy to sequence and characterize the chicken proglucagon gene. This gene has seven exons and six introns with evidence for an additional (alternate) first exon and two promoter regions. Two classes ...

  4. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats

    PubMed Central

    WANG, LI; LIU, FADONG; LUO, YAN; ZHU, LINGQIN; LI, GUANGHUA

    2015-01-01

    The aim of the present study was to investigate the effect of acute heat stress on the neuroendocrine and immunological function in rats. Male Sprague-Dawley rats were randomly divided into two groups and respectively exposed to heat (32°C) or to room temperature (24°C). After 7 days of heat exposure, the heat-stress rat model was established. The organ coefficients of the pituitary and adrenal glands were determined. The body temperature was measured by telemetry. The average contents of adrenocorticotropic hormone (ACTH), cortisol (Cor), interleukin-2 (IL-2) and IL-12 in serum were detected. The expression of apoptotic genes in the spleen was measured. The results showed that acute heat stress did not evidently affect the body temperature and body weight (P>0.05), but the exposure increased the organ coefficients of the pituitary and adrenal glands (P<0.05). Heat exposure significantly elevated the level of ACTH, Cor, IL-2 and IL-12 (P<0.05). The expression of caspase-3 and Bax were not changed significantly (P>0.05), while Bcl2 was reduced (P<0.05). PMID:26137249

  5. Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments.

    PubMed

    Kim, Jin Sun; Kim, Yeon Ok; Ryu, Hyun Ju; Kwak, Yeon Sig; Lee, Ji Yeon; Kang, Hunseung

    2003-04-01

    Two rubber particle protein genes and one latex gene in fig tree (Ficus carica) have been isolated and their expression following various abiotic stress treatments have been investigated. The two major proteins that are tightly associated with the catalytically active rubber particles have been sequenced to be peroxidase (POX) and trypsin inhibitor (TRI). A cDNA encoding a basic class I chitinase (CHI) has also been isolated from the fig tree latex. Wounding treatment strongly induced the expression of the three stress-related genes. Among the abiotic stresses investigated, drought treatment greatly induced the expression of POX, whereas the expression of CHI and TRI decreased after the same treatment. Cold treatment reduced slightly the transcript levels of the thee genes, and NaCl reduced marginally the expression of CHI. The expression of POX, CHI, and TRI was induced by jasmonic acid and abscisic acid, by jasmonic acid, and by salicylic acid, respectively. Different expression of the stress-related genes following various abiotic stress or plant hormone treatments suggests that a crosstalk exists between the signal transduction pathways elicited by abiotic stresses and hormones in plants. Our present results showing the expression of stress-related proteins on the surface of rubber particles and latex in F. carica also imply the possible role of rubber particles and latex in defense in rubber-producing plant species.

  6. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes.

    PubMed

    Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2011-01-01

    There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit.

  7. Effects of jacalin and follicle-stimulating hormone on in vitro goat primordial follicle activation, survival and gene expression.

    PubMed

    Ribeiro, Regislane P; Portela, Antonia M L R; Silva, Anderson W B; Costa, José J N; Passos, José R S; Cunha, Ellen V; Souza, Glaucinete B; Saraiva, Márcia V A; Donato, Mariana A M; Peixoto, Christina A; van den Hurk, Robert; Silva, José R V

    2015-08-01

    This study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml - Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.

  8. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    SciTech Connect

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  9. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken.

  10. Myocyte enhancer factor 2 (MEF2) is a key modulator of the expression of the prothoracicotropic hormone gene in the silkworm, Bombyx mori.

    PubMed

    Shiomi, Kunihiro; Fujiwara, Yoshihiro; Atsumi, Tsutomu; Kajiura, Zenta; Nakagaki, Masao; Tanaka, Yoshiaki; Mizoguchi, Akira; Yaginuma, Toshinobu; Yamashita, Okitsugu

    2005-08-01

    Prothoracicotropic hormone (PTTH) plays a central role in controlling molting, metamorphosis, and diapause termination in insects by stimulating the prothoracic glands to synthesize and release the molting hormone, ecdysone. Using Autographa californica nucleopolyhedrovirus (AcNPV)-mediated transient gene transfer into the central nervous sytem (CNS) of the silkworm, Bombyx mori, we identified two cis-regulatory elements that participate in the decision and the enhancement of PTTH gene expression in PTTH-producing neurosecretory cells (PTPCs). The cis-element mediating the enhancement of PTTH gene expression binds the transcription factor Bombyx myocyte enhancer factor 2 (BmMEF2). The BmMEF2 gene was expressed in various tissues including the CNS. In brain, the BmMEF2 gene was expressed at elevated levels in two types of lateral neurosecretory cells, namely PTPCs and corazonin-like immunoreactive lateral neurosecretory cells. Overexpression of BmMEF2 cDNA caused an increase in the transcription of PTTH. Therefore, BmMEF2 appears to be particularly important in the brain where it is responsible for the differentiation of lateral neurosecretory cells, including the enhancement of PTTH gene expression. This is the first report to identify a target gene of MEF2 in the invertebrate nervous system.

  11. Four gonadotropin releasing hormone receptor genes in Atlantic cod are differentially expressed in the brain and pituitary during puberty.

    PubMed

    Hildahl, Jon; Sandvik, Guro K; Edvardsen, Rolf B; Norberg, Birgitta; Haug, Trude M; Weltzien, Finn-Arne

    2011-09-01

    Gonadotropin releasing hormones (GnRH) are an important part of the brain-pituitary-gonad axis in vertebrates. GnRH binding to its receptors (GnRH-R) stimulates synthesis and release of gonadotropins in the pituitary. GnRH-Rs also mediate other processes in the central nervous system such as reproductive behavior and neuromodulation. As many as five GnRH-R genes have been identified in two teleost fish species, but the function and phylogenetic relationship of these receptors is not fully understood. To gain a better understanding of the functional relationship between multiple GnRH-Rs in an important aquaculture species, the Atlantic cod (Gadus morhua), we identified four GnRH-Rs (gmGnRH-R) by RT-PCR, followed by full-length cloning and sequencing. The deduced amino acid sequences were used for phylogenetic analysis to identify conserved functional motifs and to clarify the relationship of gmGnRH-Rs with other vertebrate GnRH-Rs. The function of GnRH-R variants was investigated by quantitative PCR gene expression analysis in the brain and pituitary of female cod during a full reproductive cycle and in various peripheral tissues in sexually mature fish. Phylogenetic analysis revealed two types of teleost GnRH-Rs: Type I including gmGnRH-R1b and Type II including gmGnRH-R2a, gmGnRH-R2b and gmGnRH-R2c. All four gmGnRH-Rs are expressed in the brain, and gmGnRH-R1b, gmGnRH-R2a and gmGnRH-R2c are expressed in the pituitary. The only GnRH-R differentially expressed in the pituitary during the reproductive cycle is gmGnRH-R2a such that its expression is significantly increased during spawning. These data suggest that gmGnRH-R2a is the most likely candidate to mediate the hypophysiotropic function of GnRH in Atlantic cod.

  12. Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain.

    PubMed

    Ismail, Amel F M; El-Sonbaty, Sawsan M

    2016-05-01

    Ionizing radiation has attracted a lot of attention due to its beneficial and possible harmful effects to the human population. The brain displays numerous biochemical and functional alterations after exposure to irradiation, which induces oxidative-stress through generation of reactive oxygen species (ROS). The present study evaluated the neuro-protective role of fermented Ginkgo biloba (FGb) leaf extract, compared to non-fermented G. biloba (Gb) leaf extract against γ-irradiation (6Gy) in the rats' brain. The changes of the Gb phytochemical constituents after fermentation, using Aspergillus niger were evaluated by Gas Chromatography-Mass Spectrometry. The results showed a significant decrease in superoxide dismutase (SOD), glutathione peroxidase (GPx) activities and elevation of the calcium level in the brain cytosolic fraction of γ-irradiated rats. Further, significant increases in the malondialdehyde (MDA), the stress hormones (catecholamines); epinephrine (EN), norepinephrine (NE) and dopamine (DA) levels and the interleukin-1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) gene expression relative ratio in parallel with a significant decrease in the glutathione (GSH) content and DNA fragmentation in the brain tissues of the γ-irradiated rats were observed. The pre-treatment with Gb extract significantly amended these biochemical parameters. Meanwhile, the pre-treatment with the FGb showed more improvement, compared to Gb, of these biochemical parameters in the brain of γ-irradiated rats, which could be attributed to the enhancement of its antioxidant activity after fermentation. These findings suggested that fermentation enhances the protective effect of Gb in the brain on the neuroinflammation, release of the stress hormones, apoptosis and oxidative damage induced by γ-irradiation. fermentation improved the bio-activities of Gb leaf extract and thus enhanced the in-vivo antioxidant, anti-apoptotic and anti-inflammatory activities, leading to

  13. CHANGES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS INDUCED IN MALE OFFSPRING AFTER MATERNAL TREATMENT WITH PHTHALATE ESTERS

    EPA Science Inventory

    Targeted inactivation of the insulin-like hormone 3 (insl3) gene in male mice results in altered gubernacular development, disrupted testis decent, and cryptorchidism. Cryptorchidism is a fairly common human malformation, being displayed in 1-3% of males at birth. Since only a s...

  14. CHANGES IN FETAL TESTIS GENE EXPRESSION AND STEROID HORMONE SYNTHESIS INDUCED IN MALE OFFSPRING AFTER MATERNAL TREATMENT WITH PHTHALATE ESTERS

    EPA Science Inventory

    Targeted inactivation of the insulin-like hormone 3 (insl3) gene in male mice results in altered gubernacular development, disrupted testis decent, and cryptorchidism. Cryptorchidism is a fairly common human malformation, being displayed in 1-3% of males at birth. Since only a s...

  15. Hormones in Synergy: Regulation of the Pituitary Gonadotropin Genes

    PubMed Central

    Thackray, Varykina G.; Mellon, Pamela L.; Coss, Djurdjica

    2009-01-01

    The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHβ and FSHβ subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHβ and FSHβ gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH. PMID:19747958

  16. Regulation of gene expression of vasotocin and corticotropin-releasing hormone receptors in the avian anterior pituitary by corticosterone.

    PubMed

    Kang, Seong W; Kuenzel, Wayne J

    2014-08-01

    The effect of chronic stress (CS) on gene expression of the chicken arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH) receptors [VT2R, VT4R, CRH-R1, and CRH-R2] was examined by measuring receptor mRNA levels in the anterior pituitary gland of the chicken after chronic immobilization stress compared to acute stress (AS). Radioimmunoassay results showed that blood circulating corticosterone (CORT) levels in the CS group were significantly decreased compared to that of birds in the AS group (P<0.05). The VT2R and CRH-R2 mRNA in CS birds were significantly decreased to that of controls. The VT4R mRNA was significantly decreased compared to controls in AC birds and was further decreased in the CS group compared to controls (P<0.05). The CRH-R1 mRNA was significantly decreased in the AS birds compared to controls. However, there was no significant difference of CRH-R1 mRNA between acute stress and chronic stress birds. Using primary anterior pituitary cell cultures, the effect of exogenous CORT on VT/CRH receptor gene expression was examined. Receptor mRNA levels were measured after treatment of CORT followed by AVT/CRH administration. The CORT pretreatment resulted in a dose-dependent decrease of proopiomelanocortin heteronuclear RNA, a molecular marker of a stress-induced anterior pituitary. Without CORT pretreatment of anterior pituitary cell cultures, the VT2R, VT4R and CRH-R1mRNA levels were significantly increased within 15 min and then decreased at 1 h and 6 h by AVT/CRH administration (P<0.05). Pretreatment of CORT in anterior pituitary cells induced a dose-dependent increase of VT2R, VT4R and CRH-R2 mRNA levels, and a significant decrease of CRH-R1 mRNA levels at only the high dose (10 ng/ml) of CORT (P<0.05).Taken together, results suggest a modulatory role of CORT on the regulation of VT/CRH receptor gene expression in the avian anterior pituitary gland dependent upon CORT levels.

  17. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles.

    PubMed

    Yost, Alexandra T; Thornton, Leah M; Venables, Barney J; Sellin Jeffries, Marlo K

    2016-12-01

    Few studies have investigated the thyroid-disrupting effects of polybrominated diphenyl ethers (PBDEs) across multiple levels of biological organization in anurans, despite their suitability for the screening of thyroid disruptors. Therefore, the present study evaluated the effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on development, thyroid histology and thyroid hormone-related gene expression in Xenopus laevis exposed to 0 (control), 50 (low), 500 (medium) or 5000μg BDE-47/g food (high) for 21days. Only the high dose of BDE-47 hindered growth and development; however, thyroid hormone-associated gene expression was downregulated in the brains of tadpoles regardless of dose. These results show that BDE-47 disrupts thyroid hormone signaling at the molecular and whole-organism levels and suggest that gene expression in the brain is a more sensitive endpoint than metamorphosis. Furthermore, the altered gene expression patterns among BDE-47-exposed tadpoles provide insight into the mechanisms of PBDE-induced thyroid disruption and highlight the potential for PBDEs to act as neurodevelopmental toxicants.

  18. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.

  19. Identification of the prothoracicotropic hormone (Ptth) coding gene and localization of its site of expression in the pea aphid Acyrthosiphon pisum.

    PubMed

    Barberà, M; Martínez-Torres, D

    2017-10-01

    Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.

  20. Fast induction of vitellogenin gene expression by juvenile hormone III in the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae).

    PubMed

    Comas, D; Piulachs, M D; Bellés, X

    1999-09-01

    The present paper describes the effect of juvenile hormone III (JH III) upon vitellogenin (Vg) gene expression in cardioallatectomized females of Blattella germanica. Northern blot analyses of time course studies showed that Vg mRNA can be detected 2 h after the treatment with 1 microgram of JH III. Western blot analyses revealed that Vg protein is detectable 4 h after the same treatment. The study of the influence of the age showed that 48-h-old females seem more sensitive than 24-h-old females, whereas differences were less apparent between 48- and 72-h-old females. Dose-response studies indicated that 0.01 microgram of JH III is ineffective, whereas the doses of 0.1, 1 and 10 micrograms induced the synthesis of Vg in a dose-dependent fashion. Finally, the administration of three successive doses, of 0.01 microgram of JH III each, did not result in detectable Vg production, whereas two doses of 0.01 microgram followed by one of 1 microgram of JH III induced a greater response than that resulting from a sole dose of 1 microgram of JH III, which suggests that sub-effective doses of JH III elicit a priming effect on Vg production.

  1. Subcellular and molecular mechanisms regulating anti-Müllerian hormone gene expression in mammalian and nonmammalian species.

    PubMed

    Lasala, Celina; Carré-Eusèbe, Danièle; Picard, Jean-Yves; Rey, Rodolfo

    2004-09-01

    Anti-Müllerian hormone (AMH) is best known for its role as an inhibitor of the development of female internal genitalia primordia during fetal life. In the testis, AMH is highly expressed by Sertoli cells of the testis from early fetal life to puberty, when it is downregulated by the action of testosterone, acting through the androgen receptor, and meiotic spermatocytes, probably acting through TNFalpha. Basal expression of AMH is induced by SOX9; GATA4, SF1, and WT1 enhance SOX9-activated expression. When the hypothalamic-pituitary axis is active and the negative effect of androgens and germ cells is absent, for example, in the fetal and neonatal periods or in disorders like androgen insensitivity, FSH upregulates AMH expression through a nonclassical cAMP-PKA pathway involving transcription factors AP2 and NFkappaB. The maintenance and hormonal regulation of AMH expression in late fetal and postnatal life requires distal AMH promoter sequences. In the ovary, granulosa cells express AMH from late fetal life at low levels; DAX1 and FOG2 seem to be responsible for negatively modulating AMH expression. Particular features are observed in AMH expression in nonmammalian species. In birds, AMH is expressed both in the male and female fetal gonads, and, like in reptiles, its expression is not preceded by that of SOX9.

  2. Effect of Soyabean Isoflavones Exposure on Onset of Puberty, Serum Hormone Concentration and Gene Expression in Hypothalamus, Pituitary Gland and Ovary of Female Bama Miniature Pigs

    PubMed Central

    Fan, Juexin; Zhang, Bin; Li, Lili; Xiao, Chaowu; Oladele, Oso Abimbola; Jiang, Guoli; Ding, Hao; Wang, Shengping; Xing, Yueteng; Xiao, Dingfu; Yin, Yulong

    2015-01-01

    This study was to investigate the effect of soyabean isoflavones (SIF) on onset of puberty, serum hormone concentration, and gene expression in hypothalamus, pituitary and ovary of female Bama miniature pigs. Fifty five, 35-days old pigs were randomly assigned into 5 treatment groups consisting of 11 pigs per treatment. Results showed that dietary supplementation of varying dosage (0, 250, 500, and 1,250 mg/kg) of SIF induced puberty delay of the pigs with the age of puberty of pigs fed basal diet supplemented with 1,250 mg/kg SIF was significantly higher (p<0.05) compared to control. Supplementation of SIF or estradiol valerate (EV) reduced (p<0.05) serum gonadotrophin releasing hormone and luteinizing hormone concentration, but increased follicle-stimulating hormone concentration in pigs at 4 months of age. The expression of KiSS-1 metastasis-suppressor (KISS1), steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase (3β-HSD) was reduced (p<0.01) in SIF-supplemented groups. Expression of gonadotropin-releasing hormone receptor in the pituitary of miniature pigs was reduced (p<0.05) compared to the control when exposed to 250, 1,250 mg/kg SIF and EV. Pigs on 250 mg/kg SIF and EV also showed reduced (p<0.05) expression of cytochrome P450 19A1 compared to the control. Our results indicated that dietary supplementation of SIF induced puberty delay, which may be due to down-regulation of key genes that play vital roles in the synthesis of steroid hormones. PMID:26580281

  3. The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland maturation during the early embryonic development of Xenopus laevis.

    PubMed Central

    Banker, D E; Bigler, J; Eisenman, R N

    1991-01-01

    The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development. Images PMID:1656222

  4. Effects of growth hormone, insulin-like growth factor I, triiodothyronine, thyroxine, and cortisol on gene expression of carbohydrate metabolic enzymes in sea bream hepatocytes.

    PubMed

    Leung, L Y; Woo, Norman Y S

    2010-11-01

    The present study investigated the regulatory effects of growth hormone (GH), human insulin-like growth factor I (hIGF-I), thyroxine (T(4)), triiodothyronine (T(3)) and cortisol, on mRNA expression of key enzymes involved in carbohydrate metabolism, including glucokinase (GK), glucose-6-phosphatase (G6Pase), glycogen synthase (GS), glycogen phosphorylase (GP) and glucose-6-phosphate dehydrogenase (G6PDH) in hepatocytes isolated from silver sea bream. Genes encoding GK, G6Pase, GS and GP were partially cloned and characterized from silver sea bream liver and real-time PCR assays were developed for the quantification of the mRNA expression profiles of these genes in order to evaluate the potential of these carbohydrate metabolic pathways. GK mRNA level was elevated by GH and hIGF-I, implying that GH-induced stimulation of GK expression may be mediated via IGF-I. GH was found to elevate GS and G6Pase expression, but reduce G6PDH mRNA expression. However, hIGF-I did not affect mRNA levels of GS, G6Pase and G6PDH, suggesting that GH-induced modulation of GS, G6Pase and G6PDH expression levels is direct, and occurs independently of the action of IGF-I. T(3) and T(4) directly upregulated transcript abundance of GK, G6Pase, GS and GP. Cortisol significantly increased transcript amounts of G6Pase and GS but markedly decreased transcript abundance of GK and G6PDH. These changes in transcript abundance indicate that (1) the potential of glycolysis is stimulated by GH and thyroid hormones, but attenuated by cortisol, (2) gluconeogenic and glycogenic potential are augmented by GH, thyroid hormones and cortisol, (3) glycogenolytic potential is upregulated by thyroid hormones but not affected by GH or cortisol, and (4) the potential of the pentose phosphate pathway is attenuated by GH and cortisol but unaffected by thyroid hormones.

  5. Absence of juvenile hormone signalling regulates the dynamic expression profiles of nutritional metabolism genes during diapause preparation in the cabbage beetle Colaphellus bowringi.

    PubMed

    Liu, W; Tan, Q-Q; Zhu, L; Li, Y; Zhu, F; Lei, C-L; Wang, X-P

    2017-10-01

    Temperate insects have evolved diapause, a period of programmed developmental arrest during specific life stages, to survive unfavourable conditions. During the diapause preparation phase (DPP), diapause-destined individuals generally store large amounts of fat by regulating nutrition distribution for the energy requirement during diapause maintenance and postdiapause development. Although nutritional patterns during the DPP have been investigated at physiological and biochemical levels in many insects, it remains largely unknown how nutritional metabolism is regulated during the DPP at molecular levels. We used RNA sequencing to compare gene expression profiles of adult female cabbage beetles Colaphellus bowringi during the preoviposition phase (POP) and the DPP. Most differentially expressed genes were involved in specific metabolic pathways during the DPP. Genes related to lipid and carbohydrate metabolic pathways were clearly highly expressed during the DPP, whereas genes related to protein metabolic pathways were highly expressed during the POP. Hormone challenge and RNA interference experiments revealed that juvenile hormone via its nuclear receptor methoprene-tolerant mediated the expression of genes associated with nutritional metabolism during the DPP. This work not only sheds light on the mechanisms of diapause preparation, but also provides new insights into the molecular basis of environmental plasticity in insects. © 2017 The Royal Entomological Society.

  6. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin.

    PubMed

    Chai, Lijuan; Li, Yanmei; Chen, Shangwu; Perl, Avihai; Zhao, Fengxia; Ma, Huiqin

    2014-12-01

    Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of 'Centennial Seedless' (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported. Pair-wise comparison of GA3-treated and control samples detected 165, 444, 463 genes with an over two-fold change in expression 1, 3, and 7 days after GA3 treatment, respectively. The number of differentially expressed genes increased with time after GA3 treatment, and the differential expression was dominated by downregulation. Significantly modulated expression included genes encoding synthesis and catabolism to manage plant hormone homeostasis, hormone transporters, receptors and key components in signaling pathways; exogenous GA3 induced multipoint cross talk with auxin, cytokinin, brassinosteroid, ABA and ethylene. The temporal gene-expression patterns of cell-wall-modification enzymes, cytoskeleton and membrane components and transporters revealed a pivotal role for cell-wall-relaxation genes in GA3-induced berry enlargement. Our results provide the first sequential transcriptomic atlas of exogenous GA3-induced berry enlargement and reveal the complexity of GA3's effect on berry sizing.

  7. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  8. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples

    PubMed Central

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method. PMID:27649560

  9. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  10. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    PubMed

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. Copyright © 2014 Elsevier B.V. All

  11. Key KdSOC1 gene expression profiles during plantlet morphogenesis under hormone, photoperiod, and drought treatments.

    PubMed

    Liu, C; Zhu, C; Zeng, H M

    2016-02-11

    Kalanchoe daigremontiana utilizes plantlet formation between its zigzag leaf margins as its method of asexual reproduction. In this study, K. daigremontiana SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (KdSOC1), a key intermediate in the transition from vegetative to asexual growth, was cloned. Furthermore, its expression profiles during plantlet formation under different environmental and hormone induction conditions were analyzed. The full-KdSOC1 cDNA sequence length was 1410 bp with 70% shared homology with Carya cathayensis SOC1. The conserved domain search of KdSOC1 showed the absence of I and C domains, which might indicate novel biological functions in K. daigremontiana. The full-KdSOC1 promoter sequence was 1401 bp long and contained multiple-hormone-responsive cis-acting elements. Hormone induction assays showed that gibberellins and salicylic acid mainly regulated KdSOC1 expression. The swift change from low to high KdSOC1 expression levels during long-day induction was accompanied by the rapid emergence of plantlets. Drought stress stimulated KdSOC1 expression in leaves both with and without plantlet formation. Together, the results suggested that KdSOC1 was closely involved in environmental stimulation signal perception and the transduction of K. daigremontiana plantlet formation. Therefore, future identification of KdSOC1 functions might reveal key information that will help elucidate the transition network between embryogenesis and organogenesis during plantlet formation.

  12. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain.

    PubMed

    Santillo, Alessandra; Falvo, Sara; Di Fiore, Maria Maddalena; Chieffi Baccari, Gabriella

    2016-12-24

    The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.

  13. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes.

  14. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors

    PubMed Central

    Ueno, Takayuki; Takeuchi, Hideaki; Kawasaki, Kiyoshi; Kubo, Takeo

    2015-01-01

    The hypopharyngeal glands (HPGs) of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy) and Apis mellifera matrix metalloproteinase 1 (AmMMP1), with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms), and Hbg3 (a gene encoding α-glucosidase III) expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker’s role, while controlling for age, indicating their regulation associated with the worker’s behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH)-signaling, and the expression profiles of these ‘indicator’ genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1). Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74) and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1) was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed

  15. Characterization of the Ubiquitin-Conjugating Enzyme Gene Family in Rice and Evaluation of Expression Profiles under Abiotic Stresses and Hormone Treatments

    PubMed Central

    E, Zhiguo; Zhang, Yuping; Li, Tingting; Wang, Lei; Zhao, Heming

    2015-01-01

    Ubiquitin-conjugating enzyme E2s (UBCs), which catalyze the transfer of ubiquitin to substrate or E3 ligases, are key enzymes in ubiquitination modifications of target proteins. However, little is known about the knowledge of UBC gene family in rice. In this study, a total of 39 UBC encoding genes, which all contained an UBC domain with a cysteine active site, were identified in the rice genome. These were classified into fifteen distinct subfamilies based upon their sequence similarity and phylogenetic relationships. A subset of 19 OsUBC genes exhibited chromosomal duplication; 4 and 15 OsUBC genes were tandemly and segmentally duplicated, respectively. Comprehensive analyses were performed to investigate the expression profiles of OsUBC genes in various stages of vegetative and reproductive development using data from EST, Microarrays, MPSS, and real-time PCR. Many OsUBC genes exhibited abundant and tissue-specific expression patterns. Moreover, 14 OsUBCs were found to be differentially expressed under treatments with drought, or salt stresses. The expression analysis after treatments with IAA, 6-BA, GA and ABA indicated that almost all OsUBC genes were responsive to at least two of the four hormones. Several genes were significantly down-regulated under all of the hormone treatments, and most of the genes reduced by 6-BA were also reduced by GA. This study will facilitate further studies of the OsUBC gene family and provide useful clues for functional validation of OsUBCs in rice. PMID:25902049

  16. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments.

    PubMed

    Yang, Bo; Jiang, Yuanqing; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat N V

    2009-06-03

    Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only.The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns. We identified a set

  17. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments

    PubMed Central

    Yang, Bo; Jiang, Yuanqing; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat NV

    2009-01-01

    Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns

  18. Changes in gene expression for GH/PRL/SL family hormones in the pituitaries of homing chum salmon during ocean migration through upstream migration.

    PubMed

    Onuma, Takeshi A; Ban, Masatoshi; Makino, Keita; Katsumata, Hiroshi; Hu, WeiWei; Ando, Hironori; Fukuwaka, Masa-aki; Azumaya, Tomonori; Urano, Akihisa

    2010-05-01

    Gene expression for growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family hormones in the pituitaries of homing chum salmon were examined, because gene expression for these hormones during ocean-migrating phases remains unclear. Fish were collected in the winter Gulf of Alaska, the summer Bering Sea and along homing pathway in the Ishikari River-Ishikari Bay water system in Hokkaido, Japan in autumn. The oceanic fish included maturing adults, which had developing gonads and left the Bering Sea for the natal river by the end of summer. The absolute amounts of GH, PRL and SL mRNAs in the pituitaries of the maturing adults in the summer Bering Sea were 5- to 20-fold those in the winter Gulf of Alaska. The amount of GH mRNA in the homing adults at the coastal seawater (SW) areas was smaller than that in the Bering fish, while the amount of PRL mRNA remained at the higher level until fish arrived at the Ishikari River. The gill Na(+),K(+)-ATPase activity in the coastal SW fish and the plasma Na(+) levels in the brackish water fish at the estuary were lowered to the levels that were comparable to those in the fresh water (FW) fish. In conclusion, gene expression for GH, PRL and SL was elevated in the pituitaries of chum salmon before initiation of homing behavior from the summer Bering Sea. Gene expression for GH is thereafter lowered coincidently with malfunction of SW adaptability in the breeding season, while gene expression for PRL is maintained high until forthcoming FW adaptation.

  19. Effect of acute exposure to cadmium on the expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2010-03-01

    Cadmium is a widespread and highly toxic pollutant of particular ecotoxicological relevance for aquatic ecosystems where it accumulates. To identify biomarkers for ecotoxicity monitoring, the effect of cadmium on the expression of different genes related to the stress response as well as to the ecdysone hormone-signalling pathway was studied in the aquatic larvae of Chironomus riparius (Diptera, Chironomidae), a standard test organism in aquatic toxicology testing. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to evaluate the effects of acute and short-term cadmium exposures (10mM CdCl(2), 12h and 24h) on the expression of hsp70, hsc70, hsp90 and hsp40 genes, as well as on that of the ecdysone hormonal-receptor genes (EcR and usp). A significant 3-fold increase in the level of hsp70 gene transcripts was induced by the treatment, whereas neither the other stress genes tested (hsp90 and hsp40) nor the constitutive form of hsp70, hsc70, was affected in the larvae exposed to cadmium. These results show that hsp70 is differentially activated to other environmentally regulated heat-shock genes, and constitutes a biomarker of exposure to this toxic metal. In addition, we also found that cadmium is able to alter the expression of the ecdysone receptor gene (EcR), whose mRNA level is significantly increased whereas usp levels remained unaltered. This finding, evidenced for the first time in invertebrates, supports the view that cadmium has the ability to mimic the effect of the hormone by the activation of the ecdysone nuclear receptor, which may partly explain the endocrine disruption capability that has been previously suggested for this toxic metal. Our research adds to the growing evidence implicating heavy metals, and cadmium in particular, as potential endocrine disruptive agents and may have significant implications for ecological risk assessment of endocrine-disrupting compounds in invertebrates.

  20. Seasonal changes in expression of genes encoding five types of gonadotropin-releasing hormone receptors and responses to GnRH analog in the pituitary of masu salmon.

    PubMed

    Jodo, Aya; Kitahashi, Takashi; Taniyama, Shinya; Ueda, Hiroshi; Urano, Akihisa; Ando, Hironori

    2005-10-01

    Five types of gonadotropin-releasing hormone receptor (GnRH-R) genes, designated as msGnRH-R1, R2, R3, R4, and R5, are expressed in the brain and pituitary of masu salmon (Oncorhynchus masou). In the present study, seasonal changes in the expression of these five genes were examined in the pituitary to elucidate their roles in GnRH action during growth and sexual maturation. In addition, the seasonal variation of these genes in response to GnRH was examined in a GnRH analog (GnRHa) implantation experiment. Pituitary samples were collected 1 week after the implantation every month from immaturity through spawning. The absolute amount of GnRH-R mRNA in single pituitaries was determined by real-time PCR assays. Among the five genes, R4 was predominantly expressed in the pituitaries. In the immature fish, the amount of GnRH-R mRNA varied with seasons and subtypes. In the pre-spawning period, R1 and R4 mRNAs in both sexes and R2 and R3 mRNAs in the females increased 4- to 20-fold and then decreased in the spawning season. The effects of GnRHa treatment were significantly different in both sexes. In the females, GnRHa tended to elevate the expression of all the subtypes of GnRH-R genes in various stages during the experimental period, whereas it had almost no apparent effects in the males. These results indicate that the expression of the five GnRH-R genes is seasonally variable and may be related to the responses of the pituitary hormone genes to GnRH, and the regulation of GnRH-R genes by GnRH is different in both sexes.

  1. MicroRNA-27a Regulates Beta Cardiac Myosin Heavy Chain Gene Expression by Targeting Thyroid Hormone Receptor β1 in Neonatal Rat Ventricular Myocytes▿

    PubMed Central

    Nishi, Hitoo; Ono, Koh; Horie, Takahiro; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Watanabe, Shin; Takaya, Tomohide; Tamaki, Yodo; Takanabe-Mori, Rieko; Wada, Hiromichi; Hasegawa, Koji; Iwanaga, Yoshitaka; Kawamura, Teruhisa; Kita, Toru; Kimura, Takeshi

    2011-01-01

    MicroRNAs (miRNAs), small noncoding RNAs, are negative regulators of gene expression and play important roles in gene regulation in the heart. To examine the role of miRNAs in the expression of the two isoforms of the cardiac myosin heavy chain (MHC) gene, α- and β-MHC, which regulate cardiac contractility, endogenous miRNAs were downregulated in neonatal rat ventricular myocytes (NRVMs) using lentivirus-mediated small interfering RNA (siRNA) against Dicer, an essential enzyme for miRNA biosynthesis, and MHC expression levels were examined. As a result, Dicer siRNA could downregulate endogenous miRNAs simultaneously and the β-MHC gene but not α-MHC, which implied that specific miRNAs could upregulate the β-MHC gene. Among 19 selected miRNAs, miR-27a was found to most strongly upregulate the β-MHC gene but not α-MHC. Moreover, β-MHC protein was downregulated by silencing of endogenous miR-27a. Through a bioinformatics screening using TargetScan, we identified thyroid hormone receptor β1 (TRβ1), which negatively regulates β-MHC transcription, as a target of miR-27a. Moreover, miR-27a was demonstrated to modulate β-MHC gene regulation via thyroid hormone signaling and to be upregulated during the differentiation of mouse embryonic stem (ES) cells or in hypertrophic hearts in association with β-MHC gene upregulation. These findings suggested that miR-27a regulates β-MHC gene expression by targeting TRβ1 in cardiomyocytes. PMID:21149577

  2. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  3. Global hormone profiling of murine placenta reveals Secretin expression

    PubMed Central

    Knox, K.; Leuenberger, D.; Penn, A.A.; Baker, J.C.

    2013-01-01

    Objective To elucidate and categorize the murine placental hormones expressed across gestation, including the expression of hormones with previously undescribed roles. Study design Expression levels of all genes with known or predicted hormone activity expressed in two separate tissues, the placenta and maternal decidua, were assessed across a timecourse spanning the full lifetime of the placenta. Novel expression patterns were confirmed by in situ hybridization and protein level measurements. Results A combination of temporal and spatial information defines five groups that can accurately predict the patterns of uncharacterized hormones. Our analysis identified Secretin, a novel placental hormone that is expressed specifically by the trophoblast at levels many times greater than in any other tissue. Conclusions The characteristics of Secretin fit the paradigm of known placental hormones and suggest that it may play an important role during pregnancy. PMID:21944867

  4. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection.

    PubMed

    Yang, Yanjun; Yue, Runqing; Sun, Tao; Zhang, Lei; Chen, Wei; Zeng, Houqing; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    Auxin plays a pivotal role in the regulation of plant growth and development by controlling the expression of auxin response genes rapidly. As one of the major auxin early response gene families, Gretchen Hagen 3 (GH3) genes are involved in auxin homeostasis by conjugating excess auxins to amino acids. However, how GH3 genes function in environmental stresses and rhizobial infection responses in Medicago truncatula are largely unknown. Here, based on the latest updated M. truncatula genome, a comprehensive identification and expression profiling analysis of MtGH3 genes were performed. Our data showed that most of MtGH3 genes were expressed in tissue-specific manner and were responsive to environmental stress-related hormones. To understand the possible roles of MtGH3 genes involved in symbiosis establishment between M. truncatula and symbiotic bacteria, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of MtGH3 genes during the early phase of Sinorhizobium meliloti infection. The expression levels of most MtGH3 genes were upregulated in shoots and downregulated in roots by S. meliloti infection. The differences in expression responses to S. meliloti infection between roots and shoots were in agreement with the results of free indoleacetic acid (IAA) content measurements. The identification and expression analysis of MtGH3 genes at the early phase of S. meliloti infection may help us to understand the role of GH3-mediated IAA homeostasis in the regulation of nodule formation in model legumes M. truncatula.

  5. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines.

    PubMed

    Liu, Wen-Sheng; Ma, Jing-E; Li, Wei-Xia; Zhang, Jin-Ge; Wang, Juan; Nie, Qing-Hua; Qiu, Feng-Fang; Fang, Mei-Xia; Zeng, Fang; Wang, Xing; Lin, Xi-Ran; Zhang, Li; Chen, Shao-Hao; Zhang, Xi-Quan

    2016-04-12

    Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves' turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle's GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves' turtle might correlate with downregulated gene expression.

  6. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines

    PubMed Central

    Liu, Wen-Sheng; Ma, Jing-E; Li, Wei-Xia; Zhang, Jin-Ge; Wang, Juan; Nie, Qing-Hua; Qiu, Feng-Fang; Fang, Mei-Xia; Zeng, Fang; Wang, Xing; Lin, Xi-Ran; Zhang, Li; Chen, Shao-Hao; Zhang, Xi-Quan

    2016-01-01

    Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression. PMID:27077853

  7. Effects of Perfluoroalkyl Compounds on mRNA Expression Levels of Thyroid Hormone-Responsive Genes in Primary Cultures of Avian Neuronal Cells

    PubMed Central

    Vongphachan, Viengtha; Cassone, Cristina G.; Wu, Dongmei; Chiu, Suzanne; Crump, Doug; Kennedy, Sean W.

    2011-01-01

    There is growing interest in assessing the neurotoxic and endocrine disrupting potential of perfluoroalkyl compounds (PFCs). Several studies have reported in vitro and in vivo effects related to neuronal development, neural cell differentiation, prenatal and postnatal development and behavior. PFC exposure altered hormone levels and the expression of hormone-responsive genes in mammalian and aquatic species. This study is the first to assess the effects of PFCs on messenger RNA (mRNA) expression in primary cultures of neuronal cells in two avian species: the domestic chicken (Gallus domesticus) and herring gull (Larus argentatus). The following thyroid hormone (TH)–responsive genes were examined using real-time reverse transcription-PCR: type II iodothyronine 5′-deiodinase (D2), D3, transthyretin (TTR), neurogranin (RC3), octamer motif–binding factor (Oct-1), and myelin basic protein. Several PFCs altered the mRNA expression levels of genes associated with the TH pathway in avian neuronal cells. Short-chained PFCs (less than eight carbons) altered the expression of TH-responsive genes (D2, D3, TTR, and RC3) in chicken embryonic neuronal cells to a greater extent than long-chained PFCs (more than or equal to eight carbons). Variable transcriptional changes were observed in herring gull embryonic neuronal cells exposed to short-chained PFCs; mRNA levels of Oct-1 and RC3 were upregulated. This is the first study to report that PFC exposure alters mRNA expression in primary cultures of avian neuronal cells and may provide insight into the possible mechanisms of action of PFCs in the avian brain. PMID:21212296

  8. Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass.

    PubMed

    Bahl, Aileen; Pöllänen, Eija; Ismail, Khadeeja; Sipilä, Sarianna; Mikkola, Tuija M; Berglund, Eva; Lindqvist, Carl Mårten; Syvänen, Ann-Christine; Rantanen, Taina; Kaprio, Jaakko; Kovanen, Vuokko; Ollikainen, Miina

    2015-12-01

    The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.

  9. Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice.

    PubMed

    Yu, Ze-Peng; Le, Guo-Wei; Shi, Yong-Hui

    2005-04-01

    1. The current experiment was conducted to investigate the effect of zinc sulphate (ZnSO4) and zinc methionine (Zn-Met) on growth and their effect on plasma growth hormone (GH) concentration, growth hormone receptor (GHR) and insulin-like growth factor I (IGF-I) mRNA expression in mice. 2. Ninety male KunMing (KM) mice were randomly divided into three treatments. The control group was fed on a basal diet containing 11.67 mg/kg of zinc. The ZnSO4 group and Zn-Met group were fed on the diets supplemented with ZnSO4 or Zn-Met at 30 mg/kg (containing zinc of 40.05 and 40.75 mg/kg, respectively). The mice were offered the test diets for 10 days. Weight gains and food intake were measured at the end of the experiment, zinc contents in liver and serum were determined using atomic absorption spectrophotometry; GH was determined by radioimmunoassay, the levels of GHR and IGF-I mRNA were determined with reverse transcript polymerase chain reaction. 3. Both ZnSO4 and Zn-Met enhanced weight gain and food intake in the mice, Zn-Met improved the growth and food intake more effectively than ZnSO4 did (P < 0.05). The both forms of zinc had no effect on GH and the level of GHR mRNA expression (P > 0.05) and they up-regulated the expression of IGF-I mRNA (P < 0.05). As compared to ZnSO4, Zn-Met enhanced the level of IGF-I mRNA significantly (P < 0.05). 4. Both ZnSO4 and Zn-Met had no effect on plasma GH and the expression of GHR mRNA, but they enhanced the expression of IGF-I mRNA. Zinc methionine enhanced the weight gain and up-regulated IGF-I mRNA expression more effectively than ZnSO4.

  10. Expression of interleukins, neuropeptides, and growth hormone receptor and leptin receptor genes in adipose tissue from growing broiler chickens

    USDA-ARS?s Scientific Manuscript database

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for quantitative real-time PCR analysis. Studies of the gene expression of cytokines and associated genes in chicken adipose tissue were initia...

  11. Energy sources and levels influenced on performance parameters, thyroid hormones, and HSP70 gene expression of broiler chickens under heat stress.

    PubMed

    Raghebian, Majid; Sadeghi, Ali Asghar; Aminafshar, Mehdi

    2016-12-01

    The present study was conducted to evaluate the effects of energy sources and levels on body and organs weights, thyroid hormones, and heat shock protein (HSP70) gene expression in broilers under heat stress. In a completely randomized design, 600 1-day-old Cobb chickens were assigned to five dietary treatments and four replicates. The chickens were fed diet based on corn as main energy source and energy level based on Cobb standard considered as control (C), corn-based diet with 3 % lesser energy than the control (T1), corn-based diet with 6 % lesser energy than the control (T2), corn and soybean oil-based diet according to Cobb standard (T3), and corn and soybean oil-based diet with 3 % upper energy than the control (T4). Temperature was increased to 34 °C for 8 h daily from days 12 to 41 of age to induce heat stress. The chickens in T1 and T2 had lower thyroid hormones and corticosterone levels than those in C, T3, and T4. The highest liver weight was for C and the lowest one was for T4. The highest gene expression was found in chickens fed T4 diet, and the lowest gene expression was for those in T2 group. The highest feed intake and worse feed conversion ratio was related to chickens in T2. The chickens in T3 and T4 had higher feed intake and weight gain than those in C. The results showed that the higher energy level supplied from soybean oil could enhance gene expression of HSP70 and decline the level of corticosterone and thyroid hormones and consequently improved performance.

  12. Tissue-specific expression, hormonal regulation and 5'-flanking gene region of the rat Clara cell 10 kDa protein: comparison to rabbit uteroglobin.

    PubMed Central

    Hagen, G; Wolf, M; Katyal, S L; Singh, G; Beato, M; Suske, G

    1990-01-01

    The amino acid sequence of rat Clara Cell 10 kDa secretory protein (CC10) shows 55% identity to rabbit uteroglobin. In order to define the relationship between rat CC10 and rabbit uteroglobin in detail, the tissue-specific expression and hormonal regulation of rat CC10 mRNA was analyzed. We report that like rabbit uteroglobin, rat CC10 mRNA is expressed in lung and esophagus, as well as in uteri of estrogen- and progesterone-treated females. Expression of CC10 mRNA in lung is regulated by glucocorticoids. The similarity in expression pattern of rat CC10 mRNA and rabbit uteroglobin mRNA is reflected by a striking similarity in the 5'-flanking regions of the two genes. Despite this overall similarity, two regions of 0.3 kb and 2.1 kb are absent in the rat CC10 upstream gene region. The larger region includes a cluster of hormone receptor binding sites, believed to be responsible for differential regulation of rabbit uteroglobin by glucocorticoids and progesterone. Thus, while the sequence identities in the coding and 5'-flanking regions point towards a common ancestor for the uteroglobin and CC10 gene, later events (deletions/insertions) might have caused species-specific differences in their regulation. Images PMID:2349092

  13. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    SciTech Connect

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.; Muskhelishvili, L.; Warbritton, A.R.; Thomas, M.; Tareke, E.; McDaniel, L.P.; Doerge, D.R.

    2008-07-15

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that is neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk

  14. Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development.

    PubMed

    Langlois, Valérie S; Duarte-Guterman, Paula; Ing, Sally; Pauli, Bruce D; Cooke, Gerard M; Trudeau, Vance L

    2010-04-01

    Steroidogenic enzymes and their steroid products play critical roles during gonadal differentiation in amphibians; however their roles during embryogenesis remain unclear. The objective of this study was to investigate the expression and activity of aromatase (cyp19; estrogen synthase) and 5 beta-reductase (srd5 beta; 5 beta-dihydrotestosterone synthase) during amphibian embryogenesis. Expression and activity profiles of cyp19 and srd5 beta were first established during Silurana (Xenopus) tropicalis embryogenesis from Nieuwkoop-Faber (NF) stage 2 (2-cell stage; 1h post-fertilization) to NF stage 46 (beginning of feeding; 72 h post-fertilization). Exposures to fadrozole (an aromatase inhibitor; 0.5, 1.0 and 2.0 microM) and finasteride (a putative 5-reductase inhibitor; 25, 50 and 100 microM) were designed to assess the consequences of inhibiting these enzymes on gene expression in early amphibian larval development. Exposed embryos showed changes in both enzyme activities and sex steroid- and thyroid hormone-related gene expression. Fadrozole treatment inhibited cyp19 activity and increased androgen receptor and thyroid hormone receptor (alpha and beta) mRNAs. Finasteride treatment inhibited srd5 beta (activity and mRNA), decreased cyp19 mRNA and activity levels and increased estrogen receptor alpha mRNA. Both treatments altered the expression of deiodinases (thyroid hormone metabolizing enzymes). We conclude that cyp19 and srd5 beta are active in early embryogenesis and larval development in Silurana tropicalis and their inhibition affected transcription of genes associated with the thyroid and reproductive axes. (c) 2009 Elsevier Inc. All rights reserved.

  15. Hypothalamic Expression of KISS1 and Gonadotropin Inhibitory Hormone Genes During the Menstrual Cycle of a Non-Human Primate1

    PubMed Central

    Smith, Jeremy T.; Shahab, Muhammad; Pereira, Alda; Pau, K.-Y. Francis; Clarke, Iain J.

    2010-01-01

    Kisspeptin, the product of the KISS1 gene, stimulates gonadotropin-releasing hormone (GnRH) secretion; gonadotropin inhibitory hormone (GnIH), encoded by the RF-amide-related peptide (RFRP) or NPVF gene, inhibits the reproductive axis. In sheep, kisspeptin neurons are found in the lateral preoptic area (POA) and the arcuate nucleus (ARC) and may be important for initiating the preovulatory GnRH/luteinizing hormone (LH) surge. GnIH cells are located in the ovine dorsomedial hypothalamic nucleus (DMN) and paraventricular nucleus (PVN), with similar distribution in the primate. KISS1 cells are found in the primate POA and ARC, but the function that kisspeptin and GnIH play in primates has not been elucidated. We examined KISS1 and NPVF mRNA throughout the menstrual cycle of a female primate, rhesus macaque (Macaca mulatta), using in situ hybridization. KISS1-expressing cells were found in the POA and ARC, and NPVF-expressing cells were located in the PVN/DMN. KISS1 expression in the caudal ARC and POA was higher in the late follicular phase of the cycle (just before the GnRH/LH surge) than in the luteal phase. NPVF expression was also higher in the late follicular phase. We ascertained whether kisspeptin and/or GnIH cells project to GnRH neurons in the primate. Close appositions of kisspeptin and GnIH fibers were found on GnRH neurons, with no change across the menstrual cycle. These data suggest a role for kisspeptin in the stimulation of GnRH cells before the preovulatory GnRH/LH surge in non-human primates. The role of GnIH is less clear, with paradoxical up-regulation of gene expression in the late follicular phase of the menstrual cycle. PMID:20574054

  16. Ontogeny of growth hormone receptor gene expression in tissue of growth-selected strains of broiler chickens.

    PubMed

    Mao, J N; Burnside, J; Postel-Vinay, M C; Pesek, J D; Chambers, J R; Cogburn, L A

    1998-01-01

    The purpose of this study was to determine the relationship between genetic selection for growth traits and tissue expression of the chicken growth hormone receptor (cGHR) gene. Two different populations of broiler chickens were studied. One population consisted of strain (S) 80, selected for 14 generations for high 9-week body weight (BW), and its progenitor, S90 (a 1950's strain). The second population consisted of S21, selected for 10 generations for high 4-week BW and low abdominal fat, and its progenitor S20 (a 1970's strain). Tissue (liver, fat, breast and leg muscle) and blood samples were collected from six birds/strain at 2-week intervals between 1 and 11 weeks of age. An RNase protection assay was developed to measure mRNA levels of full-length cGHR (3.2 and 4.3 kb) transcripts and chicken glyceraldehyde 3-phosphate dehydrogenase (for normalization) in total RNA prepared from tissue. Analysis of the area-under-curve (AUC) was used for strain comparisons of certain developmental profiles (BW, plasma hormones and tissue cGHR mRNA). The BW AUC showed that the growth rates are different (P < 0.05) among the four strains (S21 > S20 > S80 > S90). Both slow-growing strains (S90 and S80) had a higher (P < 0.05) plasma GH AUC than the two fast-growing strains (S20 and S21). The plasma T3 AUC was highest (P < 0.05) in S90 due to maintenance of higher T3 levels after 3 weeks of age. At 11 weeks of age, hepatic and plasma GH-binding activities were positively related to growth rate (S21 > S20 > S80 > S90). However, the developmental increase in cGHR mRNA in liver and fat was similar among these different populations of growth-selected broiler chickens. Steady-state levels of cGHR mRNA increased in a developmental manner in the liver (5-fold at 9 weeks of age) and abdominal fat (4.5-fold at 11 weeks of age) of all strains. In contrast, there was no developmental increase or strain difference in cGHR mRNA levels in breast and leg muscle. There is a discrepancy between

  17. Disruption of sex-hormone levels and steroidogenic-related gene expression on Mongolia Racerunner (Eremias argus) after exposure to triadimefon and its enantiomers.

    PubMed

    Li, Jitong; Chang, Jing; Li, Wei; Guo, Baoyuan; Li, Jianzhong; Wang, Huili

    2017-03-01

    Triadimefon (TF) is a widely used chiral fungicide with one chiral centre and two enantiomers (TF1 and TF2). However, little is reported about the ecological toxicity of reptiles on an enantioselective level. TF is a potential endocrine disruptor that may interfere with sex steroid hormones, such as testosterone (T) and 17beta-estradiol (E2). In our study, the lizards Mongolia Racerunner (Eremias argus) were orally exposed to TF and its enantiomers for 21 days. Plasma sex steroid hormones and steroidogenic-related genes, including 17-beta-hydroxysteroid (hsd17β), cytochrome P450 enzymes (cyp19 and cyp17), and steroid hormone receptors (erα and Ar) were evaluated. After exposure, the plasma testosterone level in the 100 mg/kg(bw) group was elevated, while the oestradiol level was reduced. This phenomenon may be caused by the transformation of cyp19, which may inhibit the conversion of testosterone to oestradiol and affect sexual behaviour. In addition, the two enantiomers have different effects on hormone levels, which testified to the previously reported biotoxic dissimilarity between TF1 and TF2 in organisms. Furthermore, the cyp19 mRNA level in liver and gonad of the TF2 and TF group (100 mg/kg(bw)) were significantly down-regulated, while the cyp17 and hsd17β mRNA levels were up-regulated. The expression of erα and Ar mRNA levels were up-regulated in males but not in females, which may indicate that TF has sex differences on these two genes. As seen from the above results, TF and its enantiomers may have endocrine-disrupting effects on lizards (E. argus) by acting sensitively on sex steroid hormones and steroidogenic-related genes.

  18. Tissue-specific expression and dietary regulation of chimeric mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase/human growth hormone gene in transgenic mice.

    PubMed

    Serra, D; Fillat, C; Matas, R; Bosch, F; Hegardt, F G

    1996-03-29

    We have studied the role of the mitochondrial 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase gene in regulating ketogenesis. The gene exhibits expression in various tissues and it is regulated in a tissue-specific manner. To investigate the underlying mechanisms of this expression, we linked a 1148-base-pair portion of the mitochondrial HMG-CoA synthase promoter to the human growth hormone (hGH) gene and analyzed the expression of the hGH reporter gene in transgenic mice. mRNA levels of hGH were observed in liver, testis, ovary, stomach, colon, cecum, brown adipose tissue, spleen, adrenal glands, and mammary glands from adult mice, and also in liver and stomach, duodenum, jejunum, brown adipose tissue, and heart of suckling mice. There was no expression either in kidney or in any other nonketogenic tissue. The comparison between these data and those of the endogenous mitochondrial HMG-CoA synthase gene suggests that the 1148 base pairs of the promoter contain the elements necessary for expression in liver and testis, but an enhancer is necessary for full expression in intestine of suckling animals and that a silencer prevents expression in stomach, brown adipose tissue, spleen, adrenal glands, and mammary glands in wild type adult mice. In starvation, transgenic mice showed higher expression in liver than did wild type. Both refeeding and insulin injection reduced the expression. Fat diets, composed in each case of different fatty acids, produced similar expression levels, respectively, to those found in wild type animals, suggesting that long-, medium-, and short-chain fatty acids may exert a positive influence on the transcription rate in this 1148-base-pair portion of the promoter. The ketogenic capacity of liver and the blood ketone body levels were equal in transgenic mice and in nontransgenic mice.

  19. An efficient expression of Human Growth Hormone (hGH) in the milk of transgenic mice using rat {beta}-casein/hGH fusion genes

    SciTech Connect

    Lee, Chul-Sang; Yu, Dae-Yeul; Lee, Kyung-Kwang

    1996-03-01

    In order to produce human growth hormone (hGH) in the milk of transgenic mice, two expression vectors for hGH differing in their 3{prime} flanking sequences were constructed by placing the genomic sequences of hGH gene under the control of the rat {beta}-casein gene promotor. The 3{prime} flanking sequences of the expression constructs were derived from either the hGH gene (pBCN1GH) or the rat {beta}-casein gene (pBCN2GH). Transgenic lines bearing pBCN1GH expressed hGH more efficiently than those bearing pBCN2GH in the milk (19-5500 {mu}g/mL vs 0.7-2 {mu}g/mL). In particular, one of the BCN1GH lines expressed hGH as much as 5500 {plus_minus} 620 {mu}g/mL. Northern blot analysis showed that the transgene expression was specifically confined to the mammary gland and developmentally regulated like the endogeneous mouse {beta}-casein gene in the mammary gland. However, a low level of nonmammary expression was also detected with more sensitive assay methods. In conclusion, the rat {beta}-casein/hGH fusion gene could direct an efficient production of hGH in a highly tissue- and stage-specific manner in the transgenic mice and the 3{prime} flanking sequences of hGH gene had an important role for the efficient expression. 27 refs., 5 figs., 2 tabs.

  20. Modulation of adrenocorticotrophin hormone (ACTH)-induced expression of stress-related genes by PUFA in inter-renal cells from European sea bass (Dicentrarchus labrax).

    PubMed

    Montero, Daniel; Terova, Genciana; Rimoldi, Simona; Tort, Lluis; Negrin, Davinia; Zamorano, María Jesús; Izquierdo, Marisol

    2015-01-01

    Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11β-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.

  1. Cloning and gene expression of a cDNA for the chicken follicle-stimulating hormone (FSH)-beta-subunit.

    PubMed

    Shen, San-Tai; Yu, John Yuh-Lin

    2002-02-15

    Follicle-stimulating hormone (FSH) is a member of pituitary glycoprotein hormones that are composed of two dissimilar subunits, alpha and beta. Very little information is available regarding the nucleotide and amino acid sequence of FSH-beta in avian species. For better understanding of the phylogenic diversity and evolution of FSH molecule, we have isolated and sequenced the complete complementary DNA (cDNA) encoding chicken FSH-beta precursor molecule by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) methods. The cloned chicken FSH-beta cDNA consists of 2457-bp nucleotides, including 44-bp nucleotides of the 5'-untranslated region (UTR), 396 bp of the open reading frame, and an extraordinarily long 3'-UTR of 2001-bp nucleotides followed by a poly(A)((16)) tail. It encodes a 131-amino-acid precursor molecule of FSH-beta-subunit with a signal peptide of 20 amino acids followed by a mature protein of 111 amino acids. Twelve cysteine residues, forming six disulfide bonds within beta-subunit and two putative asparagine-linked glycosylation sites, are also conserved in the chicken FSH-beta-subunit. Four proline residues, presumably responsible for changing the backbone direction of protein structure, are conserved in chicken FSH-beta-subunit as well. The nucleotide sequence of chicken FSH-beta cDNA shows high homology with quail FSH-beta cDNA, 97% homology in the open reading frame, and 85% homology in the 3'-UTR. The deduced amino acid sequence of chicken FSH-beta-subunit shows a remarkable similarity to other avian FSH-beta-subunits, 98% homology with quail, and 93% homology with ostrich, whereas a lower similarity (66 to 70%) is noted when compared with mammalian FSH-beta-subunits. By contrast, when comparing with the beta-subunits of chicken luteinizing hormone and thyroid-stimulating hormone, the homologies are as low as 37 and 40%, respectively. FSH-beta mRNA was only expressed in pituitary gland out of various

  2. Injection of phosphatidylcholine and deoxycholic acid regulates gene expression of lipolysis-related factors, pro-inflammatory cytokines, and hormones on mouse fat tissue.

    PubMed

    Won, Tae Joon; Nam, Yunsung; Lee, Ho Sung; Chung, Sujin; Lee, Jong Hyuk; Chung, Yoon Hee; Park, Eon Sub; Hwang, Kwang Woo; Jeong, Ji Hoon

    2013-10-01

    Injection of phosphatidylcholine (PC) and deoxycholic acid (DA) preparation is widely used as an alternative to liposuction for the reduction of subcutaneous fat. Nevertheless, its physiological effects and mechanism of action are not yet fully understood. In this report, PC and deoxycholic acid (DA) were respectively injected into adipose tissue. PC decreased tissue mass on day 7, but DA did not. On the other hand, a decrement of DNA mass was observed only in DA-injected tissue on day 7. Both PC and DA reduced the mRNA expression of adipose tissue hormones, such as adiponectin, leptin, and resistin. In lipolysis-related gene expression profiles, PC increased hormone-sensitive lipase (HSL) transcription and decreased the expression other lipases, perilipin, and the lipogenic marker peroxisome proliferator-activated receptor-γ (PPARγ); DA treatment diminished them all, including HSL. Meanwhile, the gene expression of pro-inflammatory cytokines and a chemokine was greatly elevated in both PC-injected and DA-injected adipose tissue. Microscopic observation showed that PC induced lipolysis with mild PMN infiltration on day 7. However, DA treatment did not induce lipolysis but induced much amount of PMN infiltration. In conclusion, PC alone might induce lipolysis in adipose tissue, whereas DC alone might induce tissue damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis.

    PubMed

    Hueston, Cara M; Deak, Terrence

    2014-01-30

    Acute stress increases the expression of cytokines and other inflammatory-related factors in the CNS, plasma, and endocrine glands, and activation of inflammatory signaling pathways within the hypothalamic-pituitary-adrenal (HPA) axis may play a key role in later stress sensitization. In addition to providing a summary of stress effects on neuroimmune changes within the CNS, we present a series of experiments that characterize stress effects on members of the interleukin-1β (IL-1) super-family and other inflammatory-related genes in key structures comprising the HPA axis (PVN, pituitary and adrenal glands), followed by a series of experiments examining the impact of exogenous hormone administration (CRH and ACTH) and dexamethasone on the expression of inflammatory-related genes in adult male Sprague-Dawley rats. The results demonstrated robust, time-dependent, and asynchronous expression patterns for IL-1 and IL-1R2 in the PVN, with substantial increases in IL-6 and COX-2 in the adrenal glands emerging as key findings. The effects of exogenous CRH and ACTH were predominantly isolated within the adrenals. Finally, pretreatment with dexamethasone severely blunted neuroimmune changes in the adrenal glands, but not in the PVN. These findings provide novel insight into the relationship between stress, the expression of inflammatory signaling factors within key structures comprising the HPA axis, and their interaction with HPA hormones, and provide a foundation for better understanding the role of cytokines as modulators of hypothalamic, pituitary and adrenal sensitivity.

  4. Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression.

    PubMed

    Kumar, R S; Ijiri, S; Trant, J M

    2001-03-01

    There is little known about the molecular biology of piscine gonadotropin receptors, and information about gene expression during reproductive development is particularly lacking. We have cloned the LH receptor (LHR) in the channel catfish (cc), and examined its gene expression throughout a reproductive cycle. A cDNA encoding the receptor was isolated from the testis using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends procedures. It encoded a 696-amino acid protein that showed the greatest homology (46-50% identity) with the known LHRs and lesser similarity with FSH receptors and thyroid-stimulating hormone receptors (44-47% and 42-44% identity, respectively). In addition, two characteristics unique to the LHRs were conserved in the cloned receptor and the encoding gene: presence of an intron corresponding to intron 10 in mammals and turkey and occurrence of a double cysteine residue in the cytoplasmic tail for potential palmitoylation. The ccLHR gene was well expressed in the gonads and kidney and merely detectable in the gills, muscle, and spleen. The isolated cDNA encoded an active ccLHR protein, as the recombinant receptor expressed in COS7 cells activated a cAMP response element-driven reporter gene (luciferase) upon exposure to hCG in a dose-dependent manner. Seasonal changes in the ovarian expression of the ccLHR gene, as examined by measuring the transcript abundance by quantitative real-time RT-PCR, remained rather low during most of the reproductive cycle but was acutely induced around the time of spawning. This pattern of expression correlates well with the reported expression of its ligand (LH) in fishes and concurs with the notion that LH is a key regulator of the periovulatory maturational events.

  5. Isolation, cloning, and expression mapping of a gene encoding an antidiuretic hormone and other CAPA-related peptides in the disease vector, Rhodnius prolixus.

    PubMed

    Paluzzi, Jean-Paul; Russell, William K; Nachman, Ronald J; Orchard, Ian

    2008-09-01

    After a blood meal, Rhodnius prolixus undergoes a rapid diuresis to eliminate excess water and salts. During the voiding of this primary urine, R. prolixus acts as a vector of Chagas' disease, with the causative agent, Trypanosoma cruzi, infecting the human host via the urine. Diuresis in R. prolixus is under the neurohormonal control of serotonin and peptidergic diuretic hormones, and thus, diuretic hormones play an important role in the transmission of Chagas' disease. Although diuretic hormones may be degraded or excreted, resulting in the termination of diuresis, it would also seem appropriate, given the high rates of secretion, that a potent antidiuretic factor could be present and act to prevent excessive loss of water and salts after the postgorging diuresis. Despite the medical importance of R. prolixus, no genes for any neuropeptides have been cloned, including obviously, those that control diuresis. Here, using molecular biology in combination with matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry, we determined the sequence of the CAPA gene and CAPA-related peptides in R. prolixus, which includes a peptide with anti-diuretic activity. We have characterized the expression of mRNA encoding these peptides in various developmental stage and also examined the tissue-specific distribution in fifth-instars. The expression is localized to numerous bilaterally paired cell bodies within the central nervous system. In addition, our results show that RhoprCAPA gene expression is also associated with the testes, suggesting a novel role for this family of peptides in reproduction.

  6. Cinnamon intake reduces serum T3 level and modulates tissue-specific expression of thyroid hormone receptor and target genes in rats.

    PubMed

    Gaique, Thaiane G; Lopes, Bruna P; Souza, Luana L; Paula, Gabriela S M; Pazos-Moura, Carmen C; Oliveira, Karen J

    2016-06-01

    Cinnamon has several effects on energy metabolism. However, no data exist on the impact of cinnamon intake on thyroid hormone serum concentrations and action, since thyroid hormones (THs) play a major role in metabolism. Male rats were treated with cinnamon water extract (400 mg kg(-1) body weight, 25 days). Cinnamon supplementation resulted in a lower serum total T3 level accompanied by normal serum T4 and TSH levels. The cinnamon-treated rats did not exhibit significant differences in TSHβ subunit, TRβ or deiodinase type 2 mRNA expression in the pituitary. In the liver, cinnamon did not change the TRβ protein expression or the deiodinase type 1 mRNA expression, suggesting that there were no changes in T3 signaling or metabolism in this organ. However, mitochondrial GPDH, a target gene for T3 in the liver, exhibited no changes in mRNA expression, although its activity level was reduced by cinnamon. In the cardiac ventricle, T3 action was markedly reduced by cinnamon, as demonstrated by the lower TRα mRNA and protein levels, reduced SERCA2a and RyR2 and increased phospholamban mRNA expression. This study has revealed that TH action is a novel target of cinnamon, demonstrating impairment of T3 signaling in the cardiac ventricles. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Simultaneous expression of growth hormone releasing hormone (GHRH) and hepatitis B surface antigen/somatostatin (HBsAg/SS) fusion genes in a construct in the skeletal muscle enhances rabbit weight gain.

    PubMed

    Dai, Jian-wei; Liu, Song-cai; Hao, Lin-lin; Zhang, Yong-liang; Zhang, Qianqian; Ren, Xiao-hui; Jiang, Qing-yan

    2008-01-01

    Somatostatin (SS) and growth hormone-releasing hormone (GHRH) are synthesized and secreted by the hypothalamus, which can control the synthesis and secretion of the growth hormone (GH) from the hypophysis as well as regulate the GH concentrations in animals and humans. In this article, we describe the regulation of animal growth using plasmid DNA encoding both the GHRH gene and the SS gene fused with the hepatitis B surface antigen (HBsAg) gene. We constructed a series of expression plasmids to express the GHRH and HBsAg-SS fusion genes individually as well as collectively. The fusion gene and GHRH were successfully expressed in Chinese hamster ovary (CHO) cells, as proven by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting tests. Poly D, L-lactide-co-glycolic acid (PLGA) plasmid-encapsulating microspheres were prepared and injected intramuscularly into the leg skeletal muscles of rabbits. Weight gain/day and the levels of insulinlike growth factor-I (IGF-I), SS, and hepatitis B surface antibody (HBsAb) were monitored. During days 30 postinjection, increase in weight gain/day and IGF- I concentration and decrease in SS were observed in treatment groups. From days 15 to 30 postinjection, the weight gain/day significantly increased (P < 0.05) by 129.13%, 106.8%, and 72.82% relative to the control group in the co-expression GHRH and fusion gene (named P-G-HS), fusion gene (named P-HS), and GHRH (named P-G) groups, respectively. And most importantly, the P-G-HS group showed significant weight gain/day (P < 0.05) relative to the P-G and P-HS groups. A significant increase in the IGF-I concentration and decrease in the SS level relative to the control group were also observed. The results indicated that the combination of plasmid-mediated GHRH supplementation and positive immunization against SS led to more robust weight gain/day in rabbits.

  8. Effect of FSH and LH hormones on oocyte maturation of buffalo and gene expression analysis of their receptors and Cx43 in maturing oocytes.

    PubMed

    Pandey, Alok; Gupta, S C; Gupta, Neelam

    2010-08-01

    Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are commonly added to maturation media to improve cumulus expansion known to be a predictor of oocyte maturation. Therefore, effects of various concentrations of FSH (1000 ng/ml), LH (1000 ng/ml) and FSH + LH (1000 ng/ml each) in comparison with control (without FSH + LH) cultured oocytes were investigated. FSH and LH (1000 ng/ml each) induced significantly more cumulus expansion and polar body numbers, as compared with control and treatments of 1000 ng/ml FSH and 1000 ng/ml LH alone. Expression of FSH receptor (r), LHr and Cx43 mRNAs was determined by real-time PCR in cumulus-oocyte complexes (COCs) and denuded oocytes at different maturation times. Expression of all three genes was higher in COCs compared with denuded oocytes, confirming the importance of cumulus cells in oocyte maturation. FSHr and connexin 43 (Cx43) mRNA abundance in both COCs and denuded oocytes was highest at 0-6 h of maturation and decreased subsequently. However, LHr mRNA abundance increased from 6 h up to 24 h of maturation. The study concluded that FSH, LH receptors and Cx43 gene expression regulation is an index related to oocyte maturation.

  9. Molecular cloning and expression analysis of PDR1-like gene in ginseng subjected to salt and cold stresses or hormonal treatment.

    PubMed

    Zhang, Ru; Zhu, Jie; Cao, Hong-Zhe; An, Yan-Ru; Huang, Jing-Jia; Chen, Xiang-Hui; Mohammed, Nuruzzaman; Afrin, Sadia; Luo, Zhi-Yong

    2013-10-01

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters is potentially involved in diverse biological processes. Currently, little is known about their actual physiological functions. A Panax ginseng PDR transporter gene (PgPDR1) was cloned and the cDNA has an open reading frame of 4344 bp. The deduced amino acid sequence contained the characteristic domains of PDR transporters: Walker A, Walker B, and ABC signature. Genomic DNA hybridization analysis indicated that one copy of PgPDR1 gene was present in P. ginseng. Subcellular localization showed that PgPDR1-GFP fusion protein was specifically localized in the cell membrane. Promoter region analysis revealed the presence of cis-acting elements, some of which are putatively involved in response to hormone, light and stress. To understand the functional roles of PgPDR1, we investigated the expression patterns of PgPDR1 in different tissues and under various conditions. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis showed that PgPDR1 was expressed at a high level in the roots and leaves compared to seeds and stems. The expression of PgPDR1 was up-regulated by salicylic acid (SA) or chilling, down-regulated by ABA, and regulated differently at transcript and protein levels by MeJA. These results suggest that PgPDR1 might be involved in responding to environmental stresses and hormones.

  10. Phylogenetic Footprinting Reveals Evolutionarily Conserved Regions of the Gonadotropin-Releasing Hormone Gene that Enhance Cell-Specific Expression

    PubMed Central

    GIVENS, MARJORY L.; KUROTANI, REIKO; RAVE-HAREL, NAAMA; MILLER, NICHOL L. G.; MELLON, PAMELA L.

    2010-01-01

    Reproductive function is controlled by the hypothalamic neuropeptide, GnRH, which serves as the central regulator of the hypothalamic-pituitary-gonadal axis. GnRH expression is limited to a small population of neurons in the hypothalamus. Targeting this minute population of neurons (as few as 800 in the mouse) requires regulatory elements upstream of the GnRH gene that remain to be fully characterized. Previously, we have identified an evolutionarily conserved promoter region (−173 to −1) and an enhancer (−1863 to −1571) in the rat gene that targets a subset of the GnRH neurons in vivo. In the present study, we used phylogenetic sequence comparison between human and rodents and analysis of the transcription factor clusters within conserved regions in an attempt to identify additional upstream regulatory elements. This approach led to the characterization of a new upstream enhancer that regulates expression of GnRH in a cell-specific manner. Within this upstream enhancer are nine binding sites for Octamer-binding transcription factor 1 (OCT1), known to be an important transcriptional regulator of GnRH gene expression. In addition, we have identified nuclear factor I (NF1) binding to multiple elements in the GnRH-regulatory regions, each in close proximity to OCT1. We show that OCT1 and NF1 physically and functionally interact. Moreover, the OCT1 and NF1 binding sites in the regulatory regions appear to be essential for appropriate GnRH gene expression. These findings indicate a role for this upstream enhancer and novel OCT1/NF1 complexes in neuron-restricted expression of the GnRH gene. PMID:15319450

  11. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xue-Yong; Jiang, Wei-Jie; Yu, Hong-Jun

    2012-01-01

    Lipoxygenases (LOXs) are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids and lipids to initiate the formation of a group of biologically active compounds called oxylipins. Plant oxylipins play important and diverse functions in the cells. In the current study, expression analysis during cucumber development using semi-quantitative RT-PCR revealed that 13 of 23 CsLOX genes were detectable, and were tissue specific or preferential accumulation. In total, 12 genes were found to be differentially expressed during fruit development and have different patterns of expression in exocarp, endocarp and pulp at day 5 after anthesis. The expression analysis of these 12 cucumber LOX genes in response to abiotic stresses and plant growth regulator treatments revealed their differential transcript in response to more than one treatment, indicating their diverse functions in abiotic stress and hormone responses. Results suggest that in cucumber the expanded LOX genes may play more diverse roles in life cycle and comprehensive data generated will be helpful in conducting functional genomic studies to understand their precise roles in cucumber fruit development and stress responses.

  12. The Expression Profiling of the Lipoxygenase (LOX) Family Genes During Fruit Development, Abiotic Stress and Hormonal Treatments in Cucumber (Cucumis sativus L.)

    PubMed Central

    Yang, Xue-Yong; Jiang, Wei-Jie; Yu, Hong-Jun

    2012-01-01

    Lipoxygenases (LOXs) are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids and lipids to initiate the formation of a group of biologically active compounds called oxylipins. Plant oxylipins play important and diverse functions in the cells. In the current study, expression analysis during cucumber development using semi-quantitative RT-PCR revealed that 13 of 23 CsLOX genes were detectable, and were tissue specific or preferential accumulation. In total, 12 genes were found to be differentially expressed during fruit development and have different patterns of expression in exocarp, endocarp and pulp at day 5 after anthesis. The expression analysis of these 12 cucumber LOX genes in response to abiotic stresses and plant growth regulator treatments revealed their differential transcript in response to more than one treatment, indicating their diverse functions in abiotic stress and hormone responses. Results suggest that in cucumber the expanded LOX genes may play more diverse roles in life cycle and comprehensive data generated will be helpful in conducting functional genomic studies to understand their precise roles in cucumber fruit development and stress responses. PMID:22408466

  13. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    SciTech Connect

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  14. The effects of IL-1A and IL-6 genes polymorphisms on gene expressions, hormonal and biochemical parameters in polycystic ovary syndrome.

    PubMed

    Eser, Betul; Islimye Taskin, Mine; Hismiogullari, Adnan Adil; Aksit, Hasan; Bodur, Abdurrahman Said

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a multifactorial disease characterised by chronic inflammation. We aimed to investigate an association between IL-1A and IL-6 gene polymorphisms and both hormonal/biochemical parameters and levels of IL-1A and IL-6. A total of 103 women diagnosed with PCOS according to ESHRE/ASRM criteria were investigated. The patients were divided into two groups as obese and non-obese. IL-1A and IL-6 genes polymorphisms as well as hormonal/biochemical parameters and levels of IL-1A and IL-6 were analysed in the same groups. Serum IL-1A and IL-6 levels were found to increase both in obese and non-obese groups. However, there was no association between IL-1A level and IL-1A polymorphism. A relationship was detected between H score, FSH, LH, total testosterone, HDL-C and TG levels and CG + GG genotypes of IL-6. Furthermore, an association was found between IL-6 levels and CC genotype of IL-6 in the obese PCOS patients. The abnormalities in hormonal/biochemical parameters detected in Turkish PCOS patients may be related with IL-6 gene polymorphism rather than IL-1A.

  15. Effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and expression of genes related to the reproductive axis in laying hens.

    PubMed

    Long, L; Wu, S G; Yuan, F; Zhang, H J; Wang, J; Qi, G H

    2016-09-24

    This experiment was conducted to evaluate the effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and gene expression related to reproductive axis in laying hens to confirm the reproduction-promoting function of octacosanol. In total, 360 Hy-Line Brown (67-wk-old) laying hens were randomly assigned to one of three treatments with 0, 5, and 10 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for 10 weeks. The results showed that the dietary addition of 5 and 10 mg/kg octacosanol improved feed efficiency by 4.9% and 3.4% (P < 0.01), increased the albumen height by 20.5% and 13.3% (P < 0.01), the Haugh unit score by 12.9% and 8.7% (P < 0.01), and the eggshell strength by 39.5% and 24.5% (P < 0.01), respectively, compared with the control diet. Dietary octacosanol addition significantly affected serum triiodothyronine, estradiol, follicle-stimulating hormone levels (P < 0.05), and progesterone and luteinizing hormone level (P < 0.01). Compared with the control, dietary addition of octacosanol at 5 mg/kg promoted the follicle-stimulating hormone receptor (FSHR) mRNA expression in different-sized follicles, and significantly increased the FSHR mRNA expression of granulosa cells from the F2 and F3 follicles (P < 0.05). Dietary supplementation with both 5 and 10 mg/kg octacosanol promoted the mRNA expression of luteinizing hormone receptor and prolactin receptor in different-sized follicles, and significantly up-regulated the expression levels in F1 granulosa cells (P < 0.05). The ovarian weight was significantly increased with the dietary addition of 5 mg/kg octacosanol (P < 0.05). The numbers of small yellow follicles and large white follicles were increased with the addition of dietary 5 and 10 mg/kg octacosanol (P < 0.01). This study provides evidence that octacosanol has the capacity to improve reproductive performance, indicating that it is a potentially effective

  16. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models.

    PubMed

    Trümbach, Dietrich; Graf, Cornelia; Pütz, Benno; Kühne, Claudia; Panhuysen, Marcus; Weber, Peter; Holsboer, Florian; Wurst, Wolfgang; Welzl, Gerhard; Deussing, Jan M

    2010-11-19

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD) discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic algorithm. With two unsupervised algorithms

  17. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery.

    PubMed

    Li, Wei; Zha, Jinmiao; Spear, Philip A; Li, Zhaoli; Yang, Lihua; Wang, Zijian

    2009-04-02

    Thyroid hormones (THs) play an important role in the development and metabolism of fish through their influences on genetic transcription and are targets for endocrine disruptive agents in the aquatic environment. Amitrole is a pesticide potentially interfering with thyroid hormone regulation. In this study, the rare minnow (Gobiocypris rarus) was exposed to different levels of 3-amino-1,2,4-triazole (amitrole) and allowed to recover in clean water. Plasma TH levels and the expression of TH-related genes, including transthyretin (ttr), deiodinases (d1 and d2), and the thyroid hormone receptor (tralpha) from the livers and brains were evaluated. After exposure, the plasma TH levels did not change. Histopathological observations showed that livers were degenerated at 10,000 ng/l and these damages could be recovered by the withdrawal of amitrole. However, the ttr, d1, and d2 mRNA levels in the livers of males were significantly up-regulated in all exposure groups (p<0.05). The ttr and d2 mRNA levels were significantly up-regulated at 10,000 ng/l and 10, 100, and 1000 ng/l in the livers of females, respectively (p<0.05). In the brains of males, a twofold increase of d2 mRNA levels at > or = 100 ng/l and a fivefold decrease of tralpha mRNA levels at > or = 10 ng/l were observed (p<0.05), whereas no significant differences were observed in the expression of d2 and tralpha in the brains of females. After a recovery period, the ttr, d1, and d2 mRNA levels in the livers of males returned to control levels, but the tralpha mRNA levels were irreversibly decreased at all treatments (p<0.05). In addition, the d2 mRNA levels in the livers of females were significantly induced at > or = 100 ng/l. Moreover, the d2 mRNA levels in the brains of males and females were up-regulated at 10,000 ng/l. These results indicated that amitrole exposure could result in alternations of ttr, d1, d2, and tralpha gene expression in different tissues of the rare minnow. The expression of these TH

  18. Diurnal and circadian oscillations in expression of kisspeptin, kisspeptin receptor and gonadotrophin-releasing hormone 2 genes in the grass puffer, a semilunar-synchronised spawner.

    PubMed

    Ando, H; Ogawa, S; Shahjahan, Md; Ikegami, T; Doi, H; Hattori, A; Parhar, I

    2014-07-01

    In seasonally breeding animals, the circadian and photoperiodic regulation of neuroendocrine system is important for precisely-timed reproduction. Kisspeptin, encoded by the Kiss1 gene, acts as a principal positive regulator of the reproductive axis by stimulating gonadotrophin-releasing hormone (GnRH) neurone activity in vertebrates. However, the precise mechanisms underlying the cyclic regulation of the kisspeptin neuroendocrine system remain largely unknown. The grass puffer, Takifugu niphobles, exhibits a unique spawning rhythm: spawning occurs 1.5-2 h before high tide on the day of spring tide every 2 weeks, and the spawning rhythm is connected to circadian and lunar-/tide-related clock mechanisms. The grass puffer has only one kisspeptin gene (kiss2), which is expressed in a single neural population in the preoptic area (POA), and has one kisspeptin receptor gene (kiss2r), which is expressed in the POA and the nucleus dorsomedialis thalami. Both kiss2 and kiss2r show diurnal variations in expression levels, with a peak at Zeitgeber time (ZT) 6 (middle of day time) under the light/dark conditions. They also show circadian expression with a peak at circadian time 15 (beginning of subjective night-time) under constant darkness. The synchronous and diurnal oscillations of kiss2 and kiss2r expression suggest that the action of Kiss2 in the diencephalon is highly dependent on time. Moreover, midbrain GnRH2 gene (gnrh2) but not GnRH1 or GnRH3 genes show a unique semidiurnal oscillation with two peaks at ZT6 and ZT18 within a day. The cyclic expression of kiss2, kiss2r and gnrh2 may be important in the control of the precisely-timed diurnal and semilunar spawning rhythm of the grass puffer, possibly through the circadian clock and melatonin, which may transmit the photoperiodic information of daylight and moonlight to the reproductive neuroendocrine centre in the hypothalamus. © 2014 British Society for Neuroendocrinology.

  19. Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

    PubMed Central

    Kang, H. J.; Trang, N. H.; Baik, M.

    2015-01-01

    This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals. PMID:26104528

  20. LPXRFamide peptide stimulates growth hormone and prolactin gene expression during the spawning period in the grass puffer, a semi-lunar synchronized spawner.

    PubMed

    Shahjahan, Md; Doi, Hiroyuki; Ando, Hironori

    2016-02-01

    Gonadotropin-inhibitory hormone (GnIH) plays as a multifunctional neurohormone that controls reproduction in birds and mammals. LPXRFamide (LPXRFa) peptide, the fish ortholog of GnIH, has been shown to regulate the secretion of not only gonadotropin (GTH) but also growth hormone (GH) and prolactin (PRL), which are potentially important for gonadal function. To investigate the role of LPXRFa peptide on reproduction of the grass puffer, which spawns in semilunar cycles, we examined changes in the levels of gh and prl expression over the several months during the reproductive cycle, and the effects of goldfish LPXRFa peptide-1 (gfLPXRFa-1) on their expression were examined using primary pituitary cultures. The expression levels of both gh and prl showed significant changes during the reproductive cycle in both sexes with one peak in the spawning and pre-spawning periods for gh and prl, respectively. Particularly, gh showed substantial increase in expression in the spawning and post-spawning periods, indicative of its essentiality in the advanced stage of reproduction. gfLPXRFa-1 stimulated the expression of both gh and prl but there was a marked difference in response between them: gfLPXRFa-1 stimulated gh expression at a relatively low dose but little effect was observed on prl. Combined with the previous results of daily and circadian oscillations of lpxrfa expression, the present results suggest that LPXRFa peptide is important in the control of the cyclic reproduction by serving as a multifunctional hypophysiotropic factor that regulates the expression of gh and prl as well as GTH subunit genes.

  1. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice.

    PubMed

    Thépot, D; Devinoy, E; Fontaine, M L; Stinnakre, M G; Massoud, M; Kann, G; Houdebine, L M

    1995-11-01

    Transgenic mice were produced which secreted high levels of bGH into milk. The 6.3-kb upstream region of the rabbit whey acidic protein (rWAP) gene was linked to the structural part of the bovine growth hormone (bGH) gene, and the chimeric gene was radioimmunoassay into mouse oocytes. bGH was detected by radioimmunoassay in the milk of all resulting transgenic mice. bGH concentrations in milk varied from line to line, from 1.0-16 mg/ml. This expression was not correlated to the number of transgene copies. In all lines studied, the mammary gland was the major organ expressing bGH mRNA during lactation. bGH mRNA concentrations were barely detectable in the mammary gland of cyclic females; they increased during pregnancy. These results show that the upstream region of the rWAP gene harbors powerful regulatory elements which target high levels of bGH transgene expression to the mammary gland of lactating transgenic mice.

  2. Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei).

    PubMed

    Luo, Xing; Chen, Ting; Zhong, Ming; Jiang, Xiao; Zhang, Lvping; Ren, Chunhua; Hu, Chaoqun

    2015-06-01

    Molt-inhibiting hormone (MIH), a peptide member of the crustacean hyperglycemic hormone (CHH) family, is commonly considered as a negative regulator during the molt cycle in crustaceans. Phylogenetic analysis of CHH family peptides in penaeidae shrimps suggested that there is no significant differentiation between MIH and vitellogenesis-inhibiting hormone (VIH, another peptide member of CHH family), by far the most potent negative regulator of crustacean vitellogenesis known. Thus, MIH may also play a role in regulating vitellogenesis. In this study, two previously reported putative MIHs (LivMIH1 and LivMIH2) in the Pacific white shrimp (Litopenaeus vannamei) were expressed in Escherichia coli, purified by immobilized metal ion affinity chromatography (IMAC) and further confirmed by western blot. Regulation of vitellogenin (VTG) mRNA expression by recombinant LivMIH1 and LivMIH2 challenge was performed by both in vitro hepatopancreatic primary cells culture and in vivo injection approaches. In in vitro primary culture of shrimp hepatopancreatic cells, only LivMIH2 but not LivMIH1 administration could improve the mRNA expression of VTG. In in vivo injection experiments, similarly, only LivMIH2 but not LivMIH1 could stimulate hepatopancreatic VTG gene expression and induce ovary maturation. Our study may provide evidence for one isoform of MIH (MIH2 in L. vannamei) may serve as one of the mediators of the physiological progress of molting and vitellogenesis. Our study may also give new insight in CHH family peptides regulating reproduction in crustaceans, in particular penaeidae shrimps. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. 11β-hydroxysteroid dehydrogenase types 1 and 2 in postnatal development of rat testis: gene expression, localization and regulation by luteinizing hormone and androgens.

    PubMed

    Zhou, Hong-Yu; Chen, Xin-Xin; Lin, Han; Fei, Ai-Li; Ge, Ren-Shan

    2014-01-01

    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and type 2 (11β-HSD2) are expressed in rat testis, where they regulate the local concentrations of glucocorticoids. Here, we investigated the expression and localization of 11β-HSD in rat testis during postnatal development, and the regulation of these genes by luteinizing hormone (LH) and androgens. mRNA and protein levels were analyzed by quantitative real-time-polymerase chain reaction and western blotting, respectively, in testes collected from rats at postnatal day (PND) 7, 14, 21, 35, and 90, and from rats treated with LH, 7α-methyl-19-nortestosterone (MENT) and testosterone at PND 21 and PND 90. Immunohistochemical staining was used to identify the localization of the 11β-HSD in rat testis at PND 7, 14, and 90. We found that 11β-HSD1 expression was restricted to the interstitial areas, and that its levels increased during rat testis development. In contrast, whereas 11β-HSD2 was expressed in both the interstitial areas and seminiferous tubules at PND 7, it was present only in the interstitial areas at PND 90, and its levels declined during testicular development. Moreover, 11β-HSD1 mRNA was induced by LH in both the PND 21 and 90 testes and by MENT at PND 21, whereas 11β-HSD2 mRNA was induced by testosterone and MENT in the PND 21 testis and by LH in the PND 90 testis. In conclusion, our study indicates that the 11β-HSD1 and 11β-HSD2 genes have distinct patterns of spatiotemporal expression and hormonal regulation during postnatal development of the rat testis.

  4. A single exposure to social isolation in domestic piglets activates behavioural arousal, neuroendocrine stress hormones, and stress-related gene expression in the brain.

    PubMed

    Kanitz, E; Puppe, B; Tuchscherer, M; Heberer, M; Viergutz, T; Tuchscherer, A

    2009-08-04

    Stressful early life events can have short- and long-term effects on neuroendocrine and behavioural mechanisms of adaptation. Here, we investigated the effects of a single social isolation (4 h) of domestic piglets on both behavioural alterations in open-field tests and modifications in the expression of genes regulating glucocorticoid response in stress-related brain regions at 7, 21 or 35 days of age. The mRNAs of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11ss-hydroxysteroid dehydrogenase 1 and 2 (11ss-HSD1 and 11ss-HSD2) and c-fos were analysed by real-time RT-PCR in the hypothalamus, hippocampus and amygdala. The social isolation caused both elevated stress hormone concentrations (e.g. cortisol) and open-field reactivity (e.g. locomotion, vocalisation) compared to control piglets. The enhanced behavioural and neuroendocrine activity was associated with distinct changes in gene expression in the limbic system. The hypothalamic GR, MR and 11ss-HSD1 mRNA expressions and the hippocampal 11ss-HSD1 mRNA was significantly higher in isolated piglets, whereas in the amygdala social isolation caused a significant decrease in MR mRNA expression. Isolated piglets also displayed significantly higher c-fos mRNA expression, an estimate of neuronal activation, in hypothalamus and amygdala. The mRNA alterations as well as the behavioural and hormonal pattern show an effect of social isolation on days 7 and 21, but no effect on day 35. In conclusion, a single social isolation in piglets caused age-dependent neuroendocrine and behavioural changes that indicate increased arousal and experienced distress. The present results also suggest that psychosocial stress effects should be considered for the assessment of livestock handling practices with respect to health and welfare.

  5. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): Differential gene expression and thyroid hormones dependence during metamorphosis

    PubMed Central

    Infante, Carlos; Asensio, Esther; Cañavate, José Pedro; Manchado, Manuel

    2008-01-01

    Background Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. Conclusion We have identified five

  6. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): differential gene expression and thyroid hormones dependence during metamorphosis.

    PubMed

    Infante, Carlos; Asensio, Esther; Cañavate, José Pedro; Manchado, Manuel

    2008-01-30

    Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. We have identified five different eEF1A genes in the

  7. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance

    PubMed Central

    Miller, Todd W.; Balko, Justin M.; Ghazoui, Zara; Dunbier, Anita; Anderson, Helen; Dowsett, Mitch; González-Angulo, Ana M.; Mills, Gordon B.; Miller, William R.; Wu, Huiyun; Shyr, Yu; Arteaga, Carlos L.

    2011-01-01

    Purpose Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. Experimental Design We adapted four ER+ human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor, and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. Results The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. Conclusions A gene expression signature derived from ER+ breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. In some cases, activation of the MYC pathway was associated with this resistance. PMID:21346144

  8. The presence of two distinct prolactin receptors in seabream with different tissue distribution patterns, signal transduction pathways and regulation of gene expression by steroid hormones.

    PubMed

    Huang, Xigui; Jiao, Baowei; Fung, Chun Kit; Zhang, Yong; Ho, Walter K K; Chan, Chi Bun; Lin, Haoran; Wang, Deshou; Cheng, Christopher H K

    2007-08-01

    Two prolactin receptors (PRLRs) encoded by two different genes were identified in the fugu and zebrafish genomes but not in the genomes of other vertebrates. Subsequently, two cDNA sequences corresponding to two PRLRs were identified in black seabream and Nile tilapia. Phylogenetic analysis of PRLR sequences in various vertebrates indicated that the coexistence of two PRLRs in a single species is a unique phenomenon in teleosts. Both PRLRs in teleosts (the classical one named as PRLR1, the newly identified one as PRLR2) resemble the long-form mammalian PRLRs. However, despite their overall structural similarities, the two PRLR subtypes in fish share very low amino acid similarities (about 30%), mainly due to differences in the intracellular domain. In particular, the Box 2 region and some intracellular tyrosine residues are missing in PRLR2. Tissue distribution study by real-time PCR in black seabream (sb) revealed that both receptors (sbPRLR1 and sbPRLR2) are widely expressed in different tissues. In gill, the expression level of sbPRLR2 is much higher than that of sbPRLR1. In the intestine, the expression of sbPRLR1 is higher than that of sbPRLR2. The expression levels of both receptors are relatively low in most other tissues, with sbPRLR1 generally higher than sbPRLR2. The sbPRLR1 and sbPRLR2 were functionally expressed in cultured human embryonic kidney 293 cells. Both receptors can activate the beta-casein and c-fos promoters; however, only sbPRLR1 but not sbPRLR2 can activate the Spi promoter upon receptor stimulation in a ligand-specific manner. These results indicate that both receptors share some common functions but are distinctly different from each other in mobilizing post-receptor events. When challenged with different steroid hormones, the two PRLRs exhibited very different gene expression patterns in the seabream kidney. The sbPRLR1 expression was up-regulated by estradiol and cortisol, whereas testosterone had no significant effect. For sbPRLR2

  9. FNDC5 relates to skeletal muscle IGF-I and mitochondrial function and gene expression in obese men with reduced growth hormone.

    PubMed

    Srinivasa, Suman; Suresh, Caroline; Mottla, Jay; Hamarneh, Sulaiman R; Irazoqui, Javier E; Frontera, Walter; Torriani, Martin; Stanley, Takara; Makimura, Hideo

    2016-02-01

    To investigate the relationship of skeletal muscle FNDC5 mRNA expression and circulating irisin to the GH/IGF-I axis and to skeletal muscle mitochondrial function and mitochondria-related gene expression in obese men. Fifteen abdominally obese men with reduced growth hormone received 12weeks of recombinant human GH (rhGH). Before and after treatment, they underwent (31)P-magnetic resonance spectroscopy to evaluate phosphocreatine (PCr) recovery as a measure of mitochondrial function and skeletal muscle biopsy to assess expression of mitochondrial-related genes. Serum irisin and IGF-I and skeletal muscle FNDC5 and IGF-I mRNA were measured. At baseline, skeletal muscle FNDC5 mRNA was significantly and positively associated with IGF-I mRNA (ρ=0.81, P=0.005) and rate of PCr recovery (ρ=0.79, P=0.006). Similar relationships of circulating irisin to IGF-I mRNA (ρ=0.63, P=0.05) and rate of PCr recovery (ρ=0.48, P=0.08) were demonstrated, but were not as robust as those with muscle FNDC5 expression. Both serum irisin and skeletal muscle FNDC5 mRNA were significantly associated with PPARγ (ρ=0.73, P=0.02 and ρ=0.85, P=0.002), respectively. In addition, FNDC5 mRNA was correlated with skeletal muscle PGC-1α (ρ=0.68, P=0.03), NRF1 (ρ=0.66, P=0.04) and TFAM (ρ=0.79, P=0.007) mRNA. Neither serum irisin nor muscle mRNA expression of FNDC5 changed with rhGH treatment. These novel data in skeletal muscle demonstrate that local expression of FNDC5 is associated with mRNA expression of IGF-I and mitochondrial function and mitochondria-related gene expression in obese subjects with reduced growth hormone and suggest a potential role for FNDC5 acting locally in muscle in a low GH state. Further studies are needed to clarify the relationship between the GH/IGF-I axis and irisin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation.

    PubMed

    Hens, J R; Amstutz, M D; Schanbacher, F L; Mather, I H

    2000-10-18

    We tested the feasibility of transfecting mammary tissue in vivo with an expression plasmid encoding the human growth hormone (hGH) gene, under the control of the cytomegalovirus promoter. Guinea pig mammary glands were transfected with plasmid DNA infused through the nipple canal and expression was monitored in control and transfected glands by radioimmunoassay of milk samples for hGH. Sustained expression of hGH throughout lactation was attained with a polyion transfection complex shown to be optimal for the transfection of bovine mammary cells, in vitro. However, contrary to expectations, hGH expression was consistently 5- to 10-fold higher when DEAE-dextran was used alone for transfection. Thus polyion complexes which are optimal for the transfection of cells in vitro may not be optimal in vivo. The highest concentrations of hGH in milk were obtained when glands were transfected within 3 days before parturition. This method may have application for studying the biological role or physical properties of recombinant proteins expressed in low quantities, or for investigating the regulation of gene promoters without the need to construct viral vectors or produce transgenic animals.

  11. Beta-arrestin2 regulates parathyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts.

    PubMed

    Bianchi, Estelle N; Ferrari, Serge L

    2009-10-01

    Interaction of the cytoplasmic adaptor molecule beta-arrestin2 with the activated parathyroid hormone (PTH)/PTHrP receptor inhibits G protein mediated signaling and triggers MAPKs signaling. In turn, the effects of both intermittent (i.) and continuous (c.) PTH on bone are altered in beta-arrestin2-deficient (Arrb2(-/-)) mice. To elucidate the expression profile of bone genes responsive to PTH and targeted for regulation by beta-arrestin2, we performed microarray analysis using total RNA from primary osteoblastic cells isolated from wild-type (WT) and Arrb2(-/-) mice. By comparing gene expression profiles in cells exposed to i.PTH, c.PTH or vehicle (Veh) for 2 weeks, we found that i.PTH specifically up-regulated 215 sequences (including beta-arrestin2) and down-regulated 200 sequences in WT cells, about two-thirds of them being under the control of beta-arrestin2. In addition, beta-arrestin2 appeared necessary to the down-regulation of a genomic cluster coding for small leucin-rich proteins (SLRPs) including osteoglycin, osteomodulin and asporin. Pathway analyses identified a main gene network centered on p38 MAPK and NFkappaB that requires beta-arrestin2 for up- or down-regulation by i.PTH, and a smaller network of PTH-regulated genes centered on TGFB1, that is normally repressed by beta-arrestin2. In contrast the expression of some known PTH gene targets regulated by the cAMP/PKA pathway was not affected by the presence or absence of beta-arrestin2 in osteoblasts. These results indicate that beta-arrestin2 targets prominently p38 MAPK- and NFkappaB-dependent expression in osteoblasts exposed to i.PTH, and delineates new molecular mechanisms to explain the anabolic and catabolic effects of PTH on bone.

  12. β-ARRESTIN2 REGULATES PARATHYROID HORMONE EFFECTS ON A P38 MAPK AND NFκB GENE EXPRESSION NETWORK IN OSTEOBLASTS

    PubMed Central

    Bianchi, Estelle N; Ferrari, Serge L

    2009-01-01

    Interaction of the cytoplasmic adaptor molecule β-arrestin2 with the activated parathyroid hormone (PTH)/PTHrP receptor inhibits G protein mediated signaling and triggers MAPKs signaling. In turn, the effects of both intermittent (i.) and continuous (c.) PTH on bone are altered in β-arrestin2-deficient (Arrb2−/−) mice. To elucidate the expression profile of bone genes responsive to PTH and targeted for regulation by β-arrestin2, we performed microarray analysis using total RNA from primary osteoblastic cells isolated from wild-type (WT) and Arrb2−/− mice. By comparing gene expression profiles in cells exposed to i.PTH, c.PTH or vehicle (Veh) for 2 weeks, we found that i.PTH specifically up-regulated 215 sequences (including β-arrestin2) and down-regulated 200 sequences in WT cells, about two thirds of them being under the control of β-arrestin2. In addition, β-arrestin2 appeared necessary to the down-regulation of a genomic cluster coding for small leucin-rich proteins (SLRPs) including osteoglycin, osteomodulin and asporin. Pathway analyses identified a main gene network centered on p38 MAPK and NFκB that requires β-arrestin2 for up- or down-regulation by i.PTH, and a smaller network of PTH-regulated genes centered on TGFB1, that is normally repressed by β-arrestin2. In contrast the expression of some known PTH gene targets regulated by the cAMP/PKA pathway was not affected by presence or absence of β-arrestin2 in osteoblasts. These results indicate that β-arrestin2 targets prominently p38 MAPK- and NFκB-dependent expression in osteoblasts exposed to i.PTH, and delineates new molecular mechanisms to explain the anabolic and catabolic effects of PTH on bone. PMID:19560570

  13. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar).

    PubMed

    Xu, Qingheng; Feng, Charles Y; Hori, Tiago S; Plouffe, Debbie A; Buchanan, John T; Rise, Matthew L

    2013-12-01

    Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression

  14. Growth hormone (GH) secretion, GH-dependent gene expression, and sexually dimorphic body growth in young rats with chronic renal failure.

    PubMed

    Krieg, Richard J; Veldhuis, Johannes D; Thornhill, Barbara A; Chevalier, Robert L; Gil, Gregorio

    2008-06-01

    Chronic renal disease results in growth failure in children. This study sought to determine the influences of early renal failure on body growth, growth hormone (GH) secretion, and GH-dependent hepatic gene expression. Neonatal animals were subjected to five-sixth nephrectomy (Nephr) and monitored during growth. Sham-operated male (Sham) and female (Fem) rats served as controls. Whereas Nephr of adult animals causes renal insufficiency, neonatal nephrectomy leads to frank renal failure. In male Nephr compared with Sham animals, GH half-life and GH pulse frequency increased by 1.55- and 1.33-fold, respectively, and GH secretory-burst size decreased by 80%. Approximate entropy analysis quantified more disorderly patterns of GH secretion in Nephr animals, which differed from Sham males, but not from Fem rats. Expression of liver P450 CYP2C11 mRNA, which is dependent upon the male GH pattern, became undetectable, whereas expression of liver P450 CYP2C12 mRNA, which is dependent upon the female GH pattern, increased multifold. Renal failure in young rats abrogates the male pattern of GH pulsatility, abolishes the sexual dimorphism of body weight gain, and induces a female pattern of hepatic gene expression. These data raise the possibility that disruption of pulsatile GH secretion contributes to the growth failure of renal disease.

  15. Variation in Gonadotropin Releasing-Hormone-1 Gene Expression in the Preoptic Area Predicts Transitions in Seasonal Reproductive State

    PubMed Central

    Stevenson, Tyler J; Hahn, Thomas P; Ball, Gregory F

    2011-01-01

    In many seasonally reproducing animals, the experience of prolonged exposure to constant photoperiods results in the induction of a state of photorefractoriness, defined as a lack of responsiveness to a previously stimulatory photoperiod. The physiological and genetic processes that control photorefractoriness are not well understood, however, the hallmark of photorefractoriness is an endogenous change in the physiological response to a constant photoperiod. It is already known that preoptic area gnrh1 gene expression declines during development of refractoriness to long-day stimulation in European starlings. We employed in situ hybridization histochemistry to characterize changes in preoptic area gnrh1 mRNA expression during the reinstatement of photosensitivity in female starlings. Photorefractory starlings moved to short days (8L:16D) increased optical density of gnrh1 expressing cells within ten days. Exposure to 30 short days resulted in greater visible gnrh1 cell numbers with no detectable change in measures of ovarian follicular volume and oviduct mass. We subsequently examined the extent of gnrh1 expression in response to photostimulation after incremental periods on short day lengths. A significant long-day-induced increase in both gnrh1 expression and ovarian and oviduct mass occurred only after at least 30 short days. These findings demonstrate that the recovery of photorefractoriness involves an increase in gnrh1 mRNA expression and expands upon our previous knowledge that the development of photosensitivity is associated with an increase in both the precursor proGnRH1-GAP and GnRH1 peptides in the POA. Importantly, the change in the brain sensitivity occurs well before such changes can be detected via variation in ovarian activity. PMID:22023598

  16. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements

    USDA-ARS?s Scientific Manuscript database

    Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides, an excellent model in which to study the mechanisms by which steroid and peptide hormone signaling control gene expression. Prolactin- and glucocorticoid-mediated induction of beta-casein gene express...

  17. DECREASED EXPRESSION LEVEL OF APOPTOSIS-RELATED GENES AND/OR PROTEINS IN SKELETAL MUSCLES, BUT NOT IN HEARTS, OF GROWTH HORMONE RECEPTOR KNOCKOUT MICE

    PubMed Central

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2013-01-01

    The long-lived growth hormone (GH) receptor knockout (GHRKO; KO) mice are GH resistant due to targeted disruption of the GH receptor (Ghr) gene. Apoptosis is a physiological process in which cells play an active role in their own death and is a normal component of the development and health of multicellular organisms. Aging is associated with the progressive loss of strength of skeletal and heart muscles. Calorie restriction (CR) is a well known experimental model to delay aging and increase lifespan. The aim of the study was to examine the expression of the following apoptosis-related genes: caspase-3, caspase-9, caspase-8, bax, bcl-2, Smac/DIABLO, p53 and cytochrome c1 (cyc1) in the skeletal muscles and hearts of female normal and GHRKO mice, fed ad libitum or subjected to 40% CR for 6 months, starting at 2 months of age. Moreover, skeletal muscle caspase-3, caspase-9, caspase-8, bax, bcl-2, Smac/DIABLO, Apaf-1, bad, phospho-bad (pbad), phospho-p53 (pp53) and cytochrome c (cyc) protein expression levels were assessed. Results Expression of caspase-3, caspase-9, bax and Smac/DIABLO genes and proteins was decreased in GHRKO’s skeletal muscles. The Apaf-1 protein expression also was diminished in this tissue. In contrast, bcl-2 and pbad protein levels were increased in skeletal muscles in knockouts. No changes were demonstrated for the examined genes expression in GHRKO’s hearts except for the increased level of cyc1 mRNA. CR did not alter the expression of the examined genes and proteins in skeletal muscles of knockouts vs. normal (N) mice. In heart homogenates, CR increased caspase-3 mRNA level as compared to ad libitum (AL) mice. Conclusion decreased expression of certain pro-apoptotic genes and/or proteins may constitute the potential mechanism of prolonged longevity in GHRKO mice, protecting these animals from aging; this potential beneficial mechanism is not affected by calorie restriction. PMID:21321312

  18. Identification, molecular characterization, and tissue expression of parathyroid hormone-related protein gene (PTHrP) from water buffalo (Bubalus bubalis).

    PubMed

    Liu, J; Qian, L D; Huo, J L; Bi, B L; Li, D L; Wang, S F; Chen, T; Li, L J; Mao, H M; Miao, Y W

    2015-03-27

    Parathyroid hormone-related protein (PTHrP) is involved in the deposition of milk calcium in mammal lactation, but its role in buffalo is unclear. In this study, the full-length coding sequence of the water buffalo PTHrP gene was first isolated using reverse transcription-polymerase chain reaction. The protein was then subjected to molecular characterization using bioinformatic methods, and the tissue expression pattern was further assayed by semi-quantitative reverse-transcription polymerase chain reaction. The water buffalo PTHrP gene contains an open reading frame of 534 base pairs encoding a polypeptide of 177 amino acid residues, a theoretical molecular weight of 20.32 kDa, and an isoelectric point of 10.00. In addition, water buffalo PTHrP was predicted to contain a signal peptide, a typical hydrophobic region with no hydrophobic transmembrane regions, and to exert its function in the cell nucleus. A conserved domain of parathyroid superfamily from amino acids 34-114 was observed in the polypeptide. Sequence comparison and the phylogenetic analysis showed that the sequence of the water buffalo PTHrP protein shared high homology with that of other mammals, particularly cattle and goat. Among the 16 tissues examined, the PTHrP gene was only expressed in adipose tissue, placenta, uterine wall, hypophysis, and mammary gland tissue, but gene expression levels were higher in the uterus wall and adipose tissue. The results of this study suggest that the PTHrP gene plays an important role in the deposition of milk calcium of water buffalo.

  19. Perinatal exposure to low-dose DE-71 increases serum thyroid hormones and gonadal osteopontin gene expression

    PubMed Central

    Blake, Charles A; McCoy, George L; Hui, Yvonne Y; LaVoie, Holly A

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been widely used in manufacturing. They are major household and environmental contaminants that bioaccumulate. Humans are exposed primarily through dust inhalation and dietary ingestion of animal products. In animal studies, high doses of penta-brominated diphenyl ethers (penta-BDEs) in the mg/kg body weight (BW) range negatively impact brain development, behavior, memory, circulating thyroid hormone concentrations, the reproductive system and bone development. We investigated the effects of ingestion of a relatively low dose of the penta-BDE mixture DE-71 by pregnant and lactating rats on reproductive and thyroid parameters of the F1 offspring. F0 mothers received 60 μg/kg BW of DE-71 or vehicle daily by gavage from Day 1.5 of pregnancy through lactation (except the day of parturition). F1 pups were sacrificed at 21 d of age or outbred at approximately 80 d of age. Bred F1 females were sacrificed at Day 14.5 of pregnancy or at five months of age. Bred F1 males were sacrificed at five months of age. DE-71 treatment of the mothers affected the F1 females as evidenced by lower body weights at 80 d and five months of age, elevated serum T3 and T4 concentrations at Day 14.5 of pregnancy and increased thyroid gland weight and ovarian osteopontin mRNA at five months of age. Perinatal DE-71 exposure also increased testicular osteopontin mRNA in 21-day-old F1 males. Utilizing a granulosa cell in vitro model, we demonstrated that DE-71 activated the rat osteopontin gene promoter. Our results are the first to demonstrate that PBDEs increase rodent circulating T3 and T4 concentrations and gonadal osteopontin mRNA, and activate the osteopontin gene promoter. These changes may have clinical implications as others have shown associations between human exposure to PBDEs and subclinical hyperthyroidism, and overexpression of ovarian osteopontin has been associated with ovarian cancer. PMID:21367881

  20. The Effects of Thyroid Hormones on Gene Expression of Acyl-Coenzyme A Thioesterases in Adipose Tissue and Liver of Mice.

    PubMed

    Krause, Kerstin; Weiner, Juliane; Hönes, Sebastian; Klöting, Nora; Rijntjes, Eddy; Heiker, John T; Gebhardt, Claudia; Köhrle, Josef; Führer, Dagmar; Steinhoff, Karen; Hesse, Swen; Moeller, Lars C; Tönjes, Anke

    2015-09-01

    Thyroid hormones (TH) exert pleiotropic effects on glucose and lipid homeostasis. However, it is as yet unclear how TH regulate lipid storage and utilization in order to adapt to metabolic needs. Acyl-CoA thioesterases (ACOTs) have been proposed to play a regulatory role in the metabolism of fatty acids. We investigated the interaction between thyroid dysfunction and Acot expression in adipose tissues and livers of thyrotoxic and hypothyroid mice. Ten-week-old female C57BL/6NTac mice (n = 10/group) were made hyperthyroid by the application of L-thyroxine (2 µg/ml in drinking water) for 4 weeks. Hypothyroidism was induced in 10-week-old mice by feeding an iodine-free chow supplemented with 0.15% PTU for 4 weeks. We measured mRNA expression levels of Acot8, 11 and 13 in the liver and epididymal and inguinal white and brown adipose tissues (BAT). Furthermore, we investigated hepatic Acot gene expression in TRα- and TRβ-deficient mice. We showed that the expression of Acot8, 11 and 13 is predominantly stimulated by a thyrotoxic state in the epididymal white adipose tissue. In contrast, hypothyroidism predominantly induces the expression of Acot8 in BAT in comparison with BAT of thyrotoxic and euthyroid mice (p < 0.01). However, no significant changes in Acot expression were observed in inguinal white adipose tissue. In liver, Acot gene expression is collectively elicited by a thyrotoxic state. These data suggest that ACOTs are targets of TH and are likely to influence 3,5,3'-triiodo-L-thyronine-orchestrated mechanisms of lipid uptake, storage and utilization to adapt the regulation of metabolic demands.

  1. Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments.

    PubMed

    Zhang, Yan; Li, Zhou; Peng, Yan; Wang, Xiaojuan; Peng, Dandan; Li, Yaping; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-11-24

    Increased transcriptional levels of genes encoding antioxidant enzymes play important protective roles in coping with excessive accumulation of reactive oxygen species (ROS) in plants exposed to various abiotic stresses. To fully elucidate different evolutions and functions of ROS-scavenging enzymatic genes, we isolated iron superoxide dismutase (FeSOD), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) from white clover for the first time and subsequently tested dynamic expression profiles of these genes together with previously identified other antioxidant enzyme genes including copper zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), glutathione reductase (GR), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in response to cold, drought, salinity, cadmium stress and exogenous abscisic acid (ABA) or spermidine (Spd) treatment. The cloned fragments of FeSOD, DHAR and MDHAR genes were 630, 471 and 669 bp nucleotide sequences encoding 210, 157 and 223 amino acids, respectively. Phylogenetic analysis indicated that both amino acid and nucleotide sequences of these three genes are highly conservative. In addition, the analysis of genes expression showed the transcription of GR, POD, MDHAR, DHAR and Cu/ZnSOD were rapidly activated with relatively high abundance during cold stress. Differently, CAT, APX, FeSOD, Cu/ZnSOD and MnSOD exhibited more abundant transcripts compared to others under drought stress. Under salt stress, CAT was induced preferentially (3-12 h) compared to GR which was induced later (12-72 h). Cadmium stress mainly up-regulated Cu/ZnSOD, DHAR and MDHAR. Interestingly, most of genes expression induced by ABA or Spd happened prior to various abiotic stresses. The particular expression patterns and different response time of these genes indicated that white clover differentially activates genes encoding antioxidant enzymes to mitigate the damage of ROS during various environmental

  2. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis.

    PubMed

    Xu, Beibei; Qian, Kun; Zhang, Nan; Miao, Lijun; Cai, Jingxuan; Lu, Mingxing; Du, Yuzhou; Wang, Jianjun

    2017-10-01

    Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4'-diiodobiphenyl (DIB), and nitrofen (NIP).

    PubMed

    Yamada-Okabe, Toshiko; Sakai, Haruya; Kashima, Yuji; Yamada-Okabe, Hisafumi

    2005-01-15

    Previously, we demonstrated that some endocrine disrupting chemicals affected thyroid hormone receptor (TR)-mediated gene expression in HeLaTR cells that stably expressed the human TRalpha1. To examine whether widely used brominated flame retardants and pesticides affect TR-mediated gene expression, those with organohalogen, which is also present in T3, were screened. To monitor the TR-mediated gene expression, HeLaTR cells were transfected with a luciferase gene that was linked to the thyroid hormone responsive element. Thus, transcription of the luciferase gene in HeLaTR cells is driven by TR. By screening 38 chemical agents, it was found that 4,4'-diiodobiphenyl (DIB), markedly, and 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and nitrofen (NIP), to a much lesser extent but significantly, enhanced the expression of the luciferase gene at concentrations that did not affect the growth of HeLaTR cells. DIB also augmented the E2-induced expression of the luciferase gene that was linked to the estrogen responsive element in MCF7 cells, whereas HBCD and NIP did not. These results indicate that DIB augments TR- and ER-mediated gene expression, but HBCD and NIP affect only TR-mediated gene expression. Thus, there is a potential risk that HBCD, DIB, and NIP act as endocrine disrupters in animals and human beings.

  4. Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris.

    PubMed

    Cardoso-Júnior, Carlos Antônio Mendes; Silva, Renato Pereira; Borges, Naiara Araújo; de Carvalho, Washington João; Walter, S Leal; Simões, Zilá Luz Paulino; Bitondi, Marcia Maria Gentile; Ueira Vieira, Carlos; Bonetti, Ana Maria; Hartfelder, Klaus

    2017-08-01

    In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5'-flanking sequence.

    PubMed

    Argaud, D; Zhang, Q; Pan, W; Maitra, S; Pilkis, S J; Lange, A J

    1996-11-01

    The mRNA level of the catalytic subunit of rat liver glucose-6-phosphatase (Glu-6-Pase) was regulated by hormones commensurate with activity changes in vivo. Insulin exerts a dominant negative effect on the mRNA levels of Glu-6-Pase. Both mRNA levels and activities of the enzyme are low in the fed and refed state where insulin levels are elevated. Insulin administration to diabetic rats also decreases levels of mRNA and Glu-6-Pase activity. Insulin at a concentration of 1 nmol/l completely overcomes the stimulatory effect of glucocorticoids on Glu-6-Pase message levels in FAO hepatoma cells. The stimulatory response to glucocorticoid in FAO cells is biphasic, with maxima seen at 3 and 18 h after hormone addition (respectively 1.6- and 3.3-fold). 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) causes a fourfold increase in Glu-6-Pase mRNA at 3 h in FAO cells. The gene of rat liver Glu-6-Pase is 13 kilobases in length and comprised of 5 exons. The exon-intron structure is completely conserved when compared with the mouse and human genes. A 0.5-kb 3'-untranslated region, which is present in rat and mouse liver Glu-6-Pase cDNA, is absent in the Glu-6-Pase gene reported here, indicating the possible duplication of either the terminal fifth exon or the entire gene. The promoter region contains a consensus core CCAAT element at position -207 and a TATAAA at position -31. Several possible response elements have been identified in the 5'-flanking region (from a HindIII site at position -1641). A consensus glucocorticoid response element is located at base pair -1552, a 9/10 match of the insulin response sequence is located at position -1449, and a 7/8 match of the cAMP response element is located at position -164.

  6. The low fertility of Chinese white poplar: dynamic changes in anatomical structure, endogenous hormone concentrations, and key gene expression in the reproduction of a naturally occurring hybrid.

    PubMed

    Ma, Kaifeng; Song, Yuepeng; Huang, Zhen; Lin, Liyuan; Zhang, Zhiyi; Zhang, Deqiang

    2013-03-01

    KEY MESSAGE : We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process. Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa "Pt02" × P. × tomentosa "LM50", and (P. × tomentosa × P. alba cv. bolleana "Ptb") × P. × tomentosa "LM50". The seed set potential in the intraspecific hybridization P. × tomentosa "Pt02" × P. × tomentosa "LM50" was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of

  7. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  8. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  9. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers.

    PubMed

    Zheng, Jing; He, Chun-Tao; Chen, She-Jun; Yan, Xiao; Guo, Mi-Na; Wang, Mei-Huan; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian

    2017-02-25

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T4 and T3) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs.

  10. Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel (Anguilla anguilla); Biomarkers for broodstock selection.

    PubMed

    Burgerhout, Erik; Minegishi, Yuki; Brittijn, Sebastiaan A; de Wijze, Danielle L; Henkel, Christiaan V; Jansen, Hans J; Spaink, Herman P; Dirks, Ron P; van den Thillart, Guido E E J M

    2016-01-01

    Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17β-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.

  11. Modulation of gene expression in small follicle porcine granulosa cells by human follicle stimulating hormone (hFSH)

    SciTech Connect

    Calvo, F.O.; Ryan, R.J.; Woloschak, G.E.

    1986-03-01

    Small follicle (1-3 mm) porcine granulosa cells (SFPGF) were isolated by puncture, aspiration and cultured under standard conditions in DMEM, HEPES, BSA, MIX. At the start of culture, cells were stimulated with 100ng hFSH/ml. At various times afterwards total cellular RNA was prepared using guanidine-hydrochloride solubilization, phenol extraction and precipitation from 3M NaOAc, pH 6.0. RNA was 5'-end labelled with /sup 32/P in a kinase reaction and hybridized to an excess of clone-specific DNA immobilized on nitrocellulose filters using stringent hybridization and wash conditions. After autoradiography the RNA hybridized to the DNA blot filter were quantitated by microdensitometry. Hybridization to parent plasmid was negative. RNA derived from control cultures showed patterns of hybridization similar to those obtained from freshly obtained cells. Results of these experiments demonstrate hFSh induction of RNA specific for transferrin receptor, ..cap alpha..-interferon, H-ras, and K-ras. Increased RNA levels were apparent within 10 min of treatment and had declined by 180 min. Expression of actin, p53 and for RNAs declined by 10 min of hFSH addition but was enhanced by 160 min. Levels of ..beta..-interferon, myc, mos, abl and yb RNAs were not detectable under these conditions. These results demonstrate specific gene modulation in SFPGC cultured with hFSH.

  12. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii

    PubMed Central

    Li, Wenfeng; Chiu, Kuo-Hsun; Tien, Yi-Chun; Tsai, Shih-Fu; Shih, Li-Jane; Lee, Chien-Hsun; Toullec, Jean-Yves

    2017-01-01

    In order to functionally characterize the metabolic roles of crustacean hyperglycemic hormone (CHH), gene expression of CHH in the crayfish (Procambarus clarkii) was knocked down by in vivo injection of CHH double-stranded RNA (dsRNA), followed by metabolomic analysis of 2 CHH target tissues (the muscle and hepatopancreas) using nuclear magnetic resonance spectroscopy. Compared to the levels in untreated and saline-injected (SAI) animals, levels of CHH transcript, but not those of molt-inhibiting hormone (a CHH-family peptide), in the eyestalk ganglia of CHH dsRNA-injected (DSI) animals were significantly decreased at 24, 48, and 72 hour post injection (hpi), with concomitant changes in levels of CHH peptide in the sinus gland (a neurohemal organ) and hemolymph. Green fluorescence protein (GFP) dsRNA failed to affect levels of CHH transcript in the eyestalk ganglia of GFP DSI animals. Number of metabolites whose levels were significantly changed by CHH dsRNA was 149 and 181 in the muscle and 24 and 12 in the hepatopancreas, at 24 and 48 hpi, respectively. Principal component analysis of these metabolites show that metabolic effects of silencing CHH gene expression were more pronounced in the muscle (with the cluster of CHH DSI group clearly being separated from that of SAI group at 24 hpi) than in the hepatopancreas. Moreover, pathway analysis of the metabolites closely related to carbohydrate and energy metabolism indicate that, for CHH DSI animals at 24 hpi, metabolic profile of the muscle was characterized by reduced synthesis of NAD+ and adenine ribonucleotides, diminished levels of ATP, lower rate of utilization of carbohydrates through glycolysis, and a partially rescued TCA cycle, whereas that of the hepatopancreas by unaffected levels of ATP, lower rate of utilization of carbohydrates, and increased levels of ketone bodies. The combined results of metabolic changes in response to silenced CHH gene expression reveal that metabolic functions of CHH on the

  13. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii.

    PubMed

    Li, Wenfeng; Chiu, Kuo-Hsun; Tien, Yi-Chun; Tsai, Shih-Fu; Shih, Li-Jane; Lee, Chien-Hsun; Toullec, Jean-Yves; Lee, Chi-Ying

    2017-01-01

    In order to functionally characterize the metabolic roles of crustacean hyperglycemic hormone (CHH), gene expression of CHH in the crayfish (Procambarus clarkii) was knocked down by in vivo injection of CHH double-stranded RNA (dsRNA), followed by metabolomic analysis of 2 CHH target tissues (the muscle and hepatopancreas) using nuclear magnetic resonance spectroscopy. Compared to the levels in untreated and saline-injected (SAI) animals, levels of CHH transcript, but not those of molt-inhibiting hormone (a CHH-family peptide), in the eyestalk ganglia of CHH dsRNA-injected (DSI) animals were significantly decreased at 24, 48, and 72 hour post injection (hpi), with concomitant changes in levels of CHH peptide in the sinus gland (a neurohemal organ) and hemolymph. Green fluorescence protein (GFP) dsRNA failed to affect levels of CHH transcript in the eyestalk ganglia of GFP DSI animals. Number of metabolites whose levels were significantly changed by CHH dsRNA was 149 and 181 in the muscle and 24 and 12 in the hepatopancreas, at 24 and 48 hpi, respectively. Principal component analysis of these metabolites show that metabolic effects of silencing CHH gene expression were more pronounced in the muscle (with the cluster of CHH DSI group clearly being separated from that of SAI group at 24 hpi) than in the hepatopancreas. Moreover, pathway analysis of the metabolites closely related to carbohydrate and energy metabolism indicate that, for CHH DSI animals at 24 hpi, metabolic profile of the muscle was characterized by reduced synthesis of NAD+ and adenine ribonucleotides, diminished levels of ATP, lower rate of utilization of carbohydrates through glycolysis, and a partially rescued TCA cycle, whereas that of the hepatopancreas by unaffected levels of ATP, lower rate of utilization of carbohydrates, and increased levels of ketone bodies. The combined results of metabolic changes in response to silenced CHH gene expression reveal that metabolic functions of CHH on the

  14. Genomic structure, polymorphism and expression analysis of the growth hormone (GH) gene in female and male Half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Ma, Qian; Liu, ShuFang; Zhuang, ZhiMeng; Lin, Lin; Sun, ZhongZhi; Liu, ChangLin; Ma, Hui; Su, YongQuan; Tang, QiSheng

    2012-02-01

    Growth hormone (GH) is a polypeptide which is an important regulator of development and somatic growth in teleosts, and may be associated with the mechanisms which drive sexual growth dimorphism in the Half-smooth tongue sole (Cynoglossus semilaevis). In this study, the full length gh cDNA was cloned from C. semilaevis by homology cloning and the rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). The full-length gh cDNA is 826 bp and contains an open reading frame (ORF) of 603 bp encoding a protein of 200 amino acids (AA). The precursor of gh consists of a 17 amino-acid signal peptide followed by a 183 amino-acid mature polypeptide. GH gene sequences obtained from female and male adults consist of 3428 bp and 3371 bp, respectively, each of which includes six exons and five introns, and the difference in the GH gene size was mainly caused by the microsatellites. When 14 tissues from females, normal males and extra-large male adults were analyzed for sex-specific tissue expression, the gh mRNA was found to be predominantly expressed in the pituitary, and the expression levels in females were 3.6 times as much as those in normal males, while the mRNA expression in extra-large males was 1.7 times as much as those in normal males. Sex differences in gh mRNA expression during development were also examined by using a full-sib family of C. semilaevis, and the gh mRNA was detected at all of the 12 time points sampled from 10 to 380 days-old. A significant increase in gh mRNA was detected starting in 80 day old fish and was then followed by a drop to very low levels starting at 230 day old fish. Differential expression indicated that the gh expression level in females was significantly higher than males (P<0.01) at all of the stages except for 10 days-old. Two microsatellite loci were identified in the second intron of the GH gene. Using these two polymorphic markers to genotype 224 individuals, there was no significant difference between the females and

  15. Effect of ovarian steroid hormones and the presence of the fetus on oxytocin gene expression in the uterus.

    PubMed

    Higuchi, T; Liu, C X; Saito, H; Negoro, H; Matsukawa, S

    1995-07-01

    Oxytocin (OT) is a neurohypophysial hormone with potent stimulating activity of the pregnant uterus, but its physiological role in parturition is still unclear. Recently, OT was found to be synthesized in the pregnant uterus, indicating that OT originating from the uterus, not from the posterior pituitary gland, may trigger the onset of labour. In order to define the factors responsible for the induction of uterine OT, the effect of ovarian steroid hormones and conceptus on the induction of OT mRNA in the rat uterus was examined by Northern and dot blot hybridization analysis. OT mRNA in the uterus started to increase on day 14 of pregnancy and showed very high levels at the time of parturition. Uterine OT mRNA was not altered by any steroid treatment, oestradiol-17 beta (0.2 microgram), progesterone (4 mg) or both in combination, for 6 days. The gravid horn of the uterus had 3.6-fold as much OT mRNA as the non-gravid horn on day 21 of pregnancy in hemipregnant rats with one ligated oviduct. The ovarian steroid hormones could not induce accumulation of OT mRNA in the uterus of ovariectomized rats, at least under the conditions used, but the presence of a conceptus may be critical for the very high levels of OT mRNA.

  16. Phenobarbital blockade of the preovulatory luteinizing hormone surge: association with phase-advanced circadian clock and altered suprachiasmatic nucleus Period1 gene expression

    PubMed Central

    Legan, Sandra J.; Donoghue, Kathleen M.; Franklin, Kathleen M.; Duncan, Marilyn J.

    2009-01-01

    The suprachiasmatic nucleus (SCN) controls the timing of the preovulatory luteinizing hormone (LH) surge in laboratory rodents. Barbiturate administration during a critical period on proestrus delays the surge and prolongs the estrous cycle 1 day. Because a nonphotic timing signal (zeitgeber) during the critical period that phase advances activity rhythms can also induce the latter effect, we hypothesized that barbiturates delay the LH surge by phase-advancing its circadian timing signal beyond the critical period. In experiment 1, locomotor rhythms and estrous cycles were monitored in hamsters for 2–3 wk preinjection and postinjection of vehicle or phenobarbital and after transfer to darkness at zeitgeber time (ZT) 6 on proestrus. Phenobarbital delayed estrous cycles in five of seven hamsters, which exhibited phase shifts that averaged twofold greater than those exhibited by vehicle controls or phenobarbital-injected hamsters with normal cycles. Experiment 2 used a similar protocol, but injections were at ZT 5, and blood samples for LH determination were collected from 1200 to 1800 on proestrus and the next day via jugular cannulae inserted the day before proestrus. Phenobarbital delayed the LH surge 1 day in all six hamsters, but it occurred at an earlier circadian time, supporting the above hypothesis. Experiment 3 investigated whether phenobarbital, like other nonphotic zeitgebers, suppresses SCN Period1 and Period2 transcription. Two hours postinjection, phenobarbital decreased SCN expression of only Period1 mRNA, as determined by in situ hybridization. These results suggest that phenobarbital advances the SCN pacemaker, governing activity rhythms and hormone release in part by decreasing its Period1 gene expression. PMID:19297538

  17. COMPARISON OF THE EFFECTS OF TWO AR ANTAGONISTS ON ANDROGEN DEPENDENT TISSUES WEIGHTS AND HORMONE LEVELS IN MALE RATS AND ON EXPRESSION OF THREE ANDROGEN DEPENDENT GENES IN THE VENTRAL PROSTATE

    EPA Science Inventory

    Comparison of the effects of two AR antagonists on tissue weights and hormone levels in male rats and on expression of three androgen dependent genes in the ventral prostate
    VS Wilson, CR Wood, GA Held, CS Lambright, JS Ostby, JR Furr, LE Gray Jr. US EPA, ORD, NHEERL, RTD, ...

  18. COMPARISON OF THE EFFECTS OF TWO AR ANTAGONISTS ON ANDROGEN DEPENDENT TISSUES WEIGHTS AND HORMONE LEVELS IN MALE RATS AND ON EXPRESSION OF THREE ANDROGEN DEPENDENT GENES IN THE VENTRAL PROSTATE

    EPA Science Inventory

    Comparison of the effects of two AR antagonists on tissue weights and hormone levels in male rats and on expression of three androgen dependent genes in the ventral prostate
    VS Wilson, CR Wood, GA Held, CS Lambright, JS Ostby, JR Furr, LE Gray Jr. US EPA, ORD, NHEERL, RTD, ...

  19. The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

    PubMed Central

    2014-01-01

    Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and

  20. An insulin-like androgenic gland hormone gene in the mud crab, Scylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction.

    PubMed

    Huang, Xiaoshuai; Ye, Haihui; Huang, Huiyang; Yang, Yanan; Gong, Jie

    2014-08-01

    Insulin-like androgenic gland hormone (IAG) produced by androgenic gland (AG) in male crustaceans is regarded as a key regulator of sex differentiation. As a member of the insulin/insulin-like growth factor family, IAG is also likely involved in regulating somatic growth. In this study, a full-length cDNA of IAG (termed Sp-IAG) was isolated from the mud crab, Scylla paramamosain. Genomic DNA of Sp-IAG was also cloned, analysis of which reveals that Sp-IAG gene is organized in a 4 exon/3 intron manner. RNA in situ hybridization analysis detected positive signals in both type I and type II AG cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that Sp-IAG was expressed not only in AG, but also in many other tissues. Sp-IAG expression levels in ovaries were examined at different stages of ovarian development (stages I to V); it was found that the expression was maintained at low levels during undeveloped stage (stage I) to late vitellogenic stage (stage IV) and then increased significantly at mature stage (stage V), suggesting that Sp-IAG may participate in inhibiting oocyte growth and vitellogenesis. The expression pattern of Sp-IAG during the molting cycle of the first stage crabs (C1) was also determined. Sp-IAG expression level continuously decreased from 0 h C1 (postmolt) crabs to 96 h C1 (premolt) crabs, and then increased significantly in the newly molted second stage crabs (C2, postmolt). The combined results suggested for the first time that IAG is involved in regulating ovarian development and somatic growth in crustaceans.

  1. Influence of low protein diets on gene expression of digestive enzymes and hormone secretion in the gastrointestinal tract of young weaned piglets*

    PubMed Central

    Tian, Zhi-mei; Ma, Xian-yong; Yang, Xue-fen; Fan, Qiu-li; Xiong, Yun-xia; Qiu, Yue-qin; Wang, Li; Wen, Xiao-lu; Jiang, Zong-yong

    2016-01-01

    To investigate dietary protein level effects on digestive mechanisms, weaned piglets were fed for 45 d with diets containing 20%, 17%, or 14% crude protein (CP) supplemented to meet requirements for essential amino acids. This article describes the influence of dietary protein on gastrointestinal hormones and expression of an array of digestive enzymes in the gastrointestinal tract and pancreas. Results indicated that there were no significant differences in expression of enzymes involved in carbohydrate digestion, except for maltase in the duodenum. In the jejunum, amylase expression in pigs fed 20% CP was much higher than that in pigs fed other diets (P<0.05) and maltase expression in those fed 17% CP was higher than that in other treatments (P<0.05). Although there were no remarkable differences in expression of aminopeptidase in the small intestine or carboxypeptidase in the pancreas (P>0.05), there was a trend towards higher expression of various proteases in pigs fed 17% CP. The duodenal expression of enteropeptidase in diets with 14% and 17% CP was significantly higher than that with 20% CP (P<0.05), but treatment differences did not existed in jejunum (P>0.05). The expression of GPR93 as a nutrient-responsive G protein-coupled receptor in 14% and 17% CP diets was significantly higher than that in 20% CP diet in the small intestine (P<0.05). The expressions of genes for pancreatic enzymes, lipase and elastase, were significantly higher in pigs fed diets with low CP, while similar trends occurred for carboxypeptidase, chymotrypsin and amylase. Conversely, the gastric expressions of pepsinogen A and progastricsin were lower with the 17% CP diet. Differences between treatments were found in the gastric antral contents of cholecystokinin and somatostatin: both increased in pigs fed 17% CP, accompanied by decreased content of motilin, which was also seen in plasma concentrations. These patterns were not reflected in duodenal contents. In general, 17% dietary CP

  2. Dynamic expression pattern of corticotropin-releasing hormone, urotensin I and II genes under acute salinity and temperature challenge during early development of zebrafish.

    PubMed

    Luo, Lei; Chen, Aqin; Hu, Chongchong; Lu, Weiqun

    2014-12-01

    Corticotropin-releasing hormone (CRH), urotensin I (UI) and urotensin II (UII) are found throughout vertebrate species from fish to human. To further understand the role of crh, uI and uII in teleosts during development, we investigated the expression pattern of crh, uI, uIIα and uIIβ genes, and their response to acute salinity and temperature challenge during early development of zebrafish, Danio rerio. The results reveal that crh, uI, uIIα and uIIβ mRNA are detected from 0hpf, and the expression levels increase to a maximum at 6 days post fertilization (dpf), with the exception of uIIα that peak at 5dpf. Exposure of zebrafish embryos and larvae to acute osmotic (30ppt) stress for 15 min failed to modify expression levels of crh, uI, uIIα and uIIβ mRNA from levels in control fish except at 6dpf when uIIα and uIIβ were significantly (P < 0.05) modified. Exposure of embryos and larvae to a cold (18 °C) or hot stress (38 °C) generally down-regulated mRNA levels of crh, uI, uIIα and uIIβ apart from at 3dpf. The results indicate that the contribution of crh, uI, uIIα and uIIβ genes to the stress response in zebrafish may be stressor-specific during early development. Overall, the results from this study provide a basis for further research into the developmental and stressor-specific function of crh, uI, uIIα and uIIβ in zebrafish.

  3. Endocrine Disruption in Human Placenta: Expression of the Dioxin-Inducible Enzyme, Cyp1a1, Is Correlated With That of Thyroid Hormone-Regulated Genes

    PubMed Central

    Geromini, Katherine; McKinley Brewer, Judy; Bansal, Ruby; Abdelouahab, Nadia; Langlois, Marie-France; Takser, Larissa

    2014-01-01

    Context: Thyroid hormone (TH) is essential for normal development; therefore, disruption of TH action by a number of industrial chemicals is critical to identify. Several chemicals including polychlorinated biphenyls are metabolized by the dioxin-inducible enzyme CYP1A1; some of their metabolites can interact with the TH receptor. In animals, this mechanism is reflected by a strong correlation between the expression of CYP1A1 mRNA and TH-regulated mRNAs. If this mechanism occurs in humans, we expect that CYP1A1 expression will be positively correlated with the expression of genes regulated by TH. Objective: The objective of the study was to test the hypothesis that CYP1A1 mRNA expression is correlated with TH-regulated mRNAs in human placenta. Methods: One hundred sixty-four placental samples from pregnancies with no thyroid disease were obtained from the GESTE study (Sherbrooke, Québec, Canada). Maternal and cord blood TH levels were measured at birth. The mRNA levels of CYP1A1 and placental TH receptor targets [placental lactogen (PL) and GH-V] were quantitated by quantitative PCR. Results: CYP1A1 mRNA abundance varied 5-fold across 132 placental samples that had detectable CYP1A1 mRNA. CYP1A1 mRNA was positively correlated with PL (r = 0.64; P < .0001) and GH-V (P < .0001, r = 0.62) mRNA. PL and GH-V mRNA were correlated with each other (r = 0.95; P < .0001), suggesting a common activator. The mRNAs not regulated by TH were not correlated with CYP1A1 expression. Conclusions: CYP1A1 mRNA expression is strongly associated with the expression of TH-regulated target gene mRNAs in human placenta, consistent with the endocrine-disrupting action of metabolites produced by CYP1A1. PMID:25299844

  4. Chicken oviduct-the target tissue for growth hormone action: effect on cell proliferation and apoptosis and on the gene expression of some oviduct-specific proteins.

    PubMed

    Hrabia, Anna; Leśniak-Walentyn, Agnieszka; Sechman, Andrzej; Gertler, Arieh

    2014-07-01

    The aim of this study was to examine the in vivo effect of growth hormone (GH) on cell proliferation and apoptosis and on the gene expression of selected proteins in the chicken oviduct before sexual maturity (first oviposition). Ten-week-old Hy-Line Brown chickens were injected three times a week with 200 μg · kg(-1) body weight of recombinant chicken GH (cGH) until 16 weeks of age. Control hens received 0.9 % NaCl with 0.05 % bovine serum albumin as a vehicle. Treatment with cGH increased (P < 0.05) oviduct weight at 16 weeks of age, i.e. 1-2 weeks before onset of egg laying. The highest number of proliferating (determined by proliferating cell nuclear antigen [PCNA] immunocytochemistry) and apoptotic (determined by TUNEL assay) cells in the oviduct was found in the mucosal epithelium, and the lowest in the stroma. Administration of cGH did not increase (P > 0.05) the number of PCNA-positive cells but it decreased (P < 0.01) the number of TUNEL-positive cells, thus increasing the proliferating-to-apoptotic cell ratio in the oviduct. Gene expression (determined by real-time polymerase chain reaction) of apoptosis-related caspase-2 in the magnum and caspase-3 in the magnum and isthmus and their activity (determined by fluorometric assay) in the magnum were attenuated (P < 0.05) in cGH-treated hens. The gene expression of the magnum-specific ovalbumin and the shell-gland-specific ovocalyxins 32 and 36 was increased (P < 0.05) in cGH-treated chickens. In contrast, the expression of Bcl-2 and of caspases 8 and 9 was not affected by cGH in any of the oviductal segments. The results suggest that GH, via the orchestration of apoptosis and expression of some oviduct-specific proteins, participates in the development and activity of the chicken oviduct prior to the onset of egg laying.

  5. Effects of shortened photoperiod on gonadotropin-releasing hormone, gonadotropin, and vitellogenin gene expression associated with ovarian maturation in rainbow trout.

    PubMed

    Choi, Sungchang; Lee, Cheul Ho; Park, Woodong; Kim, Dae-Jung; Sohn, Young Chang

    2010-01-01

    Reproductive activities of salmonids are synchronized by changes in photoperiod, which control the endocrine system via the brain-pituitary-gonadal axis. Gonadotropin-releasing hormone (GnRH) in the brain regulates synthesis and release of the pituitary gonadotropins (GTHs; FSH and LH). FSH and LH in turn stimulate the production of sex steroids for oocyte growth and maturation-Inducing steroid hormones for oocyte maturation and ovulation, respectively, in female salmonids. To clarify effects of long-term photoperiod manipulations on the reproductive activity of salmonids from early recrudescence to ovulation, we Investigated the gene expression profiles of GnRH, GTHs, and vitellogenin (VTG), and plasma sex steroids in female rainbow trout (Oncorhynchus mykiss). In addition, the percentages of eyed embryos and hatched alevins were examined together with the number of ovulated eggs to evaluate the effects of photoperiod regimes on egg quality. During late summer, the mRNA levels of GnRHs, GTHalpha, and LHbeta, and the plasma level of a maturational steroid (17alpha,20beta-dihydroxy-4-pregnen-3-one; 17,20beta-P) were significantly elevated by a gradually shortened photoperiod under constant temperature, in accordance with accelerated sexual maturation. The percentages of eyed embryos and hatched alevins from fish ovulated in August were comparable to those of control fish observed in December. These results clearly indicate that syntheses of GnRHs, LH, VTG, and 17,20beta-P are effectively accelerated by a programmed long-short photoperiod regime in early recrudescent female rainbow trout, without a marked deterioration in egg quality.

  6. Growth hormone stimulates hepatic expression of bovine growth hormone receptor messenger ribonucleic acid through signal transducer and activator of transcription 5 activation of a major growth hormone receptor gene promoter.

    PubMed

    Jiang, Honglin; Wang, Ying; Wu, Miaozong; Gu, Zhiliang; Frank, Stuart J; Torres-Diaz, Roberto

    2007-07-01

    The objective of this study was to determine whether and how GH regulates hepatic expression of GH receptor (GHR) mRNA in cattle. Ribonuclease protection assays revealed that injection of GH in a slow-release formula increased both hepatic GHR and IGF-I mRNAs 1 wk after the injection. The increases in GHR and IGF-I mRNAs were highly correlated. Western blot analysis showed that the injection also increased liver GHR protein level. In cattle and other mammals, hepatic GHR mRNA is expressed as variants that differ in the 5'-untranslated region due to the use of different promoters in transcription and/or alternative splicing. We found that GH increased the expression of the liver-specific GHR mRNA variant GHR1A without affecting the other two major GHR mRNA variants in the bovine liver, GHR1B and GHR1C. In transient transfection analyses, GH could robustly activate reporter gene expression from a 2.7-kb GHR1A promoter, suggesting that GH augmentation of GHR1A mRNA expression in the liver is at least partially mediated at the transcriptional level. Additional transfection analyses of serially 5'-truncated fragments of this promoter narrowed the GH-responsive sequence element down to a 210-bp region that contained a putative signal transducer and activator of transcription 5 (STAT5) binding site. EMSAs demonstrated that this putative STAT5 binding site was able to bind to STAT5b protein. In cotransfection assays, deletion of this putative STAT5 binding site abolished most of the GH response of the GHR1A promoter. Like 1-wk GH action, 6-h (i.e. short-term) GH action also increased liver expression of GHR1A and total GHR mRNAs in cattle. These observations together suggest that GH directly stimulates the expression of one GHR mRNA variant, GHR1A, through binding STAT5 to its promoter, thereby increasing GHR mRNA and protein expression in the bovine liver.

  7. Anti-Müllerian hormone (AMH/AMH) in the European sea bass: its gene structure, regulatory elements, and the expression of alternatively-spliced isoforms.

    PubMed

    Halm, S; Rocha, A; Miura, T; Prat, F; Zanuy, S

    2007-02-15

    In mammals, a multitude of studies have shown that anti-Müllerian hormone (AMH/AMH), apart from inducing Müllerian duct regression during male sexual differentiation, exerts inhibitory effects on male and female gonadal steroidogenesis and differentiation. However, in lower vertebrates like teleost fish, the function of AMH/AMH has been far less explored. As a first step to unravel its potential role in reproduction in teleost fish, we isolated and characterised the AMH gene in the European sea bass (sb), Dicentrachus labrax, determined putative regulatory elements of its 5'-flanking region, and analysed its gene expression and those of alternatively-spliced transcripts. The characterisation of sb-AMH revealed distinct features that distinguishes it from mammalian and bird AMH, suggesting a high rate of diversification of AMH during vertebrate evolution. It contained 7 exons that were divided by 6 introns, of which the last intron (intron vi) was localised only a few nucleotides upstream of the putative peptide cleavage site. The guanine and cytosine content of the open reading frame (ORF) was 52.7% and thus notably lower than that of bird and mammalian AMH. Sb-AMH cDNA was 2045 base pairs (bp) long, containing an ORF of 1599 bp encoding 533 amino acids. Deduced amino acid similarities of the conserved, carboxyterminal domain were highest with AMH in Japanese flounder (84.2%) and lowest with chicken AMH (45.5%). In the proximal promoter sequence of sb-AMH, a steroidogenic factor-1 (SF-1) binding site was present; however other regulatory sequences essential for transcriptional activation of AMH in mammals were absent. Likewise, there was no sequence homology to an SF3A2 sequence within the first 3200 bp upstream of the sb-AMH translation start site. Gene expression of sb-AMH and of alternatively-spliced sb-AMH transcripts were analysed in male and female juvenile and adult gonads as well as in somatic tissues of juvenile males. sb-AMH expression was highest in

  8. Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene.

    PubMed

    Agarwal, Anika; Halvorson, Lisa M; Legradi, Gabor

    2005-07-29

    The physiologic response to stress is highly dependent on the activation of corticotropin-releasing hormone (CRH) neurons by various neurotransmitters. A particularly rich innervation of hypophysiotropic CRH neurons has been detected by nerve fibers containing the neuropeptide PACAP, a potent activator of the cAMP-protein kinase A (PKA) system. Intracerebroventricular (icv) injections of PACAP also elevate steady-state CRH mRNA levels in the paraventricular nucleus (PVN), but it is not known whether PACAP effects can be associated with acute stress responses. Likewise, in cell culture studies, pharmacologic activation of the PKA system has stimulated CRH gene promoter activity through an identified cAMP response element (CRE); however, a direct link between PACAP and CRH promoter activity has not been established. In our present study, icv injection of 150 or 300 pmol PACAP resulted in robust phosphorylation of the transcription factor CREB in the majority of PVN CRH neurons at 15 to 30 min post-injection and induced nuclear Fos labeling at 90 min. Simultaneously, plasma corticosterone concentrations were elevated in PACAP-injected animals, and significant increases were observed in face washing, body grooming, rearing and wet-dog shakes behaviors. We investigated the effect of PACAP on human CRH promoter activity in alphaT3-1 cells, a PACAP-receptor expressing cell line. Cells were transiently transfected with a chloramphenicol acetyltransferase (CAT) reporter vector containing region - 663/+124 of the human CRH gene promoter then treated for with PACAP (100 nM) or with the adenylate cyclase activating agent, forskolin (2.5 muM). Both PACAP and forskolin significantly increased wild-type hCRH promoter activity relative to vehicle controls. The PACAP response was abolished in the CRE-mutant construct. Pretreatment of transfected cells with the PKA blocker, H-89, completely prevented both PACAP- and forskolin-induced increases in CRH promoter activity. Furthermore

  9. Molecular characterization, gene expression and dependence on thyroid hormones of two type I keratin genes (sseKer1 and sseKer2) in the flatfish Senegalese sole (Solea senegalensis Kaup)

    PubMed Central

    Infante, Carlos; Manchado, Manuel; Asensio, Esther; Cañavate, José Pedro

    2007-01-01

    Background Keratins make up the largest subgroup of intermediate filaments, and, in chordates, represent the most abundant proteins in epithelial cells. They have been associated with a wide range of functions in the cell, but little information is still available about their expression profile and regulation during flatfish metamorphosis. Senegalese sole (Solea senegalensis) is a commercially important flatfish in which no keratin gene has been described yet. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of two different type I keratin genes referred to as sseKer1 and sseKer2. Main characteristics and sequence identities with other fish and mammal keratins are described. Phylogenetic analyses grouped sseKer1 and sseKer2 in a significant clade with other teleost epidermal type I keratins, and have allowed for the identification of sseKer2 as a novel keratin. The expression profile of both genes was studied during larval development and in tissues using a real-time approach. sseKer1 and sseKer2 mRNA levels were significantly higher in skin than in other tissues examined. During metamorphosis, sseKer1 transcripts increased significantly at first stages, and reduced thereafter. In contrast, sseKer2 mRNA levels did not change during early metamorphosis although a significant drop at metamorphosis climax and late metamorphosis was also detected. To study the possible regulation of sseKer gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited higher sseKer1 and sseKer2 mRNA levels than untreated control at both 11 and 15 days after treatment. Moreover, addition of exogenous T4 hormone to TU-treated larvae restored or even reduced the steady-state levels with respect to the untreated control, demonstrating that expression of both genes is negatively regulated by THs. Conclusion We have identified two keratin genes, referred to as sseKer1 and sseKer2

  10. Diet-Induced Thermogenesis and Expression Levels of Thyroid Hormone Target Genes and Their Products in Rats Differ between Meat Proteins.

    PubMed

    Ezoe, Misako; Wakamatsu, Jun-Ichi; Takahata, Yoshihisa; Hasegawa, Takanori; Morimatsu, Fumiki; Nishimura, Takanori

    2016-01-01

    We compared the effects of purified meat proteins on postprandial thermogenesis and on the secretion of and responsiveness to thyroid hormones (THs) in rats. Body temperatures at 2 h after feeding were significantly higher in the chicken and mutton protein groups than in the other groups, and these proteins seem to have a strong thermogenic effect. There were no significant differences in plasma TH concentrations among the groups, but levels of TH-responsive Spot 14 protein in the liver and brown adipose tissue were significantly higher in the chicken and mutton protein groups than in the other groups. Levels of malic enzyme 1 protein in the liver and brown adipose tissue were significantly higher in the chicken protein group than in the other groups except for the mutton protein group. Furthermore, levels of uncoupling protein 1 were higher in the chicken and mutton protein groups than in the other groups. The results suggest that the difference in postprandial thermogenesis of meat is strongly dependent on meat proteins; chicken and mutton proteins are strong promoters of postprandial thermogenesis, and THs may contribute to this effect. Since strong postprandial thermogenesis and high expression levels of TH target genes and their products were not observed in the amino acid group, chicken and mutton proteins or their digested peptides might contribute to these effects.

  11. Thyroid hormone status regulates the expression of secretory phospholipases.

    PubMed

    Sharma, Pragya; Levesque, Tania; Boilard, Eric; Park, Edwards A

    2014-01-31

    Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia.

  12. Thyroid hormone status regulates the expression of secretory phospholipases

    PubMed Central

    Sharma, Pragya; Levesque, Tania; Boilard, Eric; Park, Edwards A.

    2014-01-01

    Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia. PMID:24440706

  13. Molecular structure and expression analysis of the prothoracicotropic hormone gene in the northern house mosquito, Culex pipiens, in association with diapause and blood feeding

    PubMed Central

    Zhang, Qirui; Denlinger, David L.

    2010-01-01

    We cloned the gene that encodes prothoracicotropic hormone (PTTH) in the northern house mosquito, Culex pipiens, investigated its expression profile in short-day (diapause-destined) and long-day (nondiapause-destined) individuals from the fourth instar larval stage through two-months of adulthood, as well as after a blood meal. The deduced Cupip-PTTH amino acid sequence contains seven cysteines with a specific spacing pattern. Sequence alignment suggests that Cupip-PTTH is 23% identical to Drosophila melanogaster PTTH, but is ≥ 59% identical to the PTTHs of other mosquitoes. Cupip-PTTH has structural characteristics similar to Bombyx mori PTTH and some vertebrate nerve growth factors with cysteine-knot motifs. PTTH transcripts exhibit a daily cycling profile during the final (fourth) larval instar, with peak abundance occuring late in the scotophase. The fourth larval instar is one day longer in short-day larvae than in long-day larvae, resulting in larger larvae and adults. This additional day of larval development is associated with one extra PTTH cycle. No cycling was observed in pupae, but PTTH transcripts were slightly higher in short-day pupae than in long-day pupae throughout much of the pupal stage. PTTH expression persisted at a nearly constant level in diapausing adult females for the first month but then dropped approximately 50%, while expression decreased at the beginning of adulthood in nondiapausing females and then remained at a low level as long as the females were denied a blood meal. But, when nondiapausing females were offered a blood meal, PTTH transcripts rose approximately 7-fold in 2 h and remained elevated for 24 h. A few diapausing females (~ 10%) will take a blood meal when placed in close proximity of a host, but much of the blood is ejected and such meals do not result in mature eggs. Yet, elevated PTTH mRNA expression was also observed in diapausing females that were force fed. Our results thus point to several distinctions in PTTH

  14. Molecular structure of the prothoracicotropic hormone gene in the northern house mosquito, Culex pipiens, and its expression analysis in association with diapause and blood feeding.

    PubMed

    Zhang, Q; Denlinger, D L

    2011-04-01

    We cloned the gene that encodes prothoracicotropic hormone (PTTH) in the northern house mosquito, Culex pipiens, and investigated its expression profile in short-day (diapause-destined) and long-day (nondiapause-destined) individuals from the fourth-instar larval stage to 2 months of adulthood, as well as after a blood meal. The deduced C. pipiens PTTH (Cupip-PTTH) amino acid sequence contains seven cysteines with a specific spacing pattern. Sequence alignment suggests that Cupip-PTTH is 23% identical to Drosophila melanogaster PTTH, but is ≥59% identical to the PTTHs of other mosquitoes. Cupip-PTTH has structural characteristics similar to those of Bombyx mori PTTH and some vertebrate nerve growth factors with cysteine-knot motifs. PTTH transcripts exhibit a daily cycling profile during the final (fourth) larval instar, with peak abundance occurring late in the scotophase. The fourth-larval instar stage is one day longer in short-day larvae than in long-day larvae, resulting in larger larvae and adults. This additional day of larval development is associated with one extra PTTH cycle. No cycling was observed in pupae, but PTTH transcripts were slightly higher in short-day pupae than in long-day pupae throughout much of the pupal stage. PTTH expression persisted at a nearly constant level in diapausing adult females for the first month but then dropped by ∼50%, while expression decreased at the beginning of adulthood in nondiapausing females and then remained at a low level as long as the females were denied a blood meal. However, when nondiapausing females were offered a blood meal, PTTH transcripts rose approximately 7 fold in 2 h and remained elevated for 24 h. A few diapausing females (∼10%) will take a blood meal when placed in close proximity to a host, but much of the blood is ejected and such meals do not result in mature eggs. Yet, elevated PTTH mRNA expression was also observed in diapausing females that were force fed. Our results thus point to

  15. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    PubMed

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  16. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function.

    PubMed

    St John, Hillary C; Meyer, Mark B; Benkusky, Nancy A; Carlson, Alex H; Prideaux, Mathew; Bonewald, Lynda F; Pike, J Wesley

    2015-03-01

    Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms

  17. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  18. Human renal carcinoma expresses two messages encoding a parathyroid hormone-like peptide: evidence for the alternative splicing of a single-copy gene.

    PubMed Central

    Thiede, M A; Strewler, G J; Nissenson, R A; Rosenblatt, M; Rodan, G A

    1988-01-01

    A peptide secreted by tumors associated with the clinical syndrome of humoral hypercalcemia of malignancy was recently purified from human renal carcinoma cell line 786-0. The N-terminal amino acid sequence of this peptide has considerable similarity with those of parathyroid hormone (PTH) and of peptides isolated from human breast and lung carcinoma (cell line BEN). In this study we obtained the nucleotide sequence of a 1595-base cDNA complementary to mRNA encoding the PTH-like peptide produced by 786-0 cells. The cDNA contains an open reading frame encoding a leader sequence of 36 amino acids and a 139-residue peptide, in which 8 of the first 13 residues are identical to the N terminus of PTH. Through the first 828 bases the sequence of this cDNA is identical with one recently isolated from a BEN cell cDNA library; however, beginning with base 829 the sequences diverge, shortening the open reading frame by 2 amino acids. Differential RNA blot analysis revealed that 786-0 cells express two major PTH-like peptide mRNAs with different 3' untranslated sequences, one of which hybridizes with the presently described sequence and the other one with that reported for the BEN cell PTH-like peptide cDNA. Primer-extension analysis of 786-0 poly(A)+ RNA together with Southern blot analysis of human DNA confirmed the presence of a single-copy gene coding for multiple mRNAs through alternate splicing. In addition, the 3' untranslated sequence of the cDNA described here has significant similarity to the c-myc protooncogene. Images PMID:3290897

  19. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    PubMed

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.

  20. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  1. Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression.

    PubMed

    Chien, Jung-Tsun; Shen, San-Tai; Lin, Yao-Sung; Yu, John Yuh-Lin

    2005-04-01

    Follicle-stimulating hormone (FSH) is a member of the pituitary glycoprotein hormone family. These hormones are composed of two dissimilar subunits, alpha and beta. Very little information is available regarding the nucleotide and amino acid sequence of FSHbeta in reptilian species. For better understanding of the phylogenetic diversity and evolution of FSH molecule, we have isolated and sequenced the complementary DNA (cDNA) encoding the Chinese soft-shell turtle (Pelodiscus sinensis, Family of Trionychidae) FSHbeta precursor molecule by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) methods. The cloned Chinese soft-shell turtle FSHbeta cDNA consists of 602-bp nucleotides, including 34-bp nucleotides of the 5'-untranslated region (UTR), 396-bp of the open reading frame, and 3'-UTR of 206-bp nucleotides. It encodes a 131-amino acid precursor molecule of FSHbeta subunit with a signal peptide of 20 amino acids followed by a mature protein of 111 amino acids. Twelve cysteine residues, forming six disulfide bonds within beta-subunit and two putative asparagine-linked glycosylation sites, are also conserved in the Chinese soft-shell turtle FSHbeta subunit. The deduced amino acid sequence of the Chinese soft-shell turtle FSHbeta shares identities of 97% with Reeves's turtle (Family of Bataguridae), 83-89% with birds, 61-70% with mammals, 63-66% with amphibians and 40-58% with fish. By contrast, when comparing the FSHbeta with the beta-subunits of the Chinese soft-shell turtle luteinizing hormone and thyroid stimulating hormone, the homologies are as low as 38 and 39%, respectively. A phylogenetic tree including reptilian species of FSHbeta subunits, is presented for the first time. Out of various tissues examined, FSHbeta mRNA was only expressed in the pituitary gland and can be up-regulated by gonadotropin-releasing hormone in pituitary tissue culture as estimated by fluorescence real-time PCR analysis.

  2. Differential effects of central and peripheral administration of growth hormone (GH) and insulin-like growth factor on hypothalamic GH-releasing hormone and somatostatin gene expression in GH-deficient dwarf rats.

    PubMed

    Sato, M; Frohman, L A

    1993-08-01

    The roles of GH and insulin-like growth factor-I (IGF-I) in the regulation of hypothalamic GH-releasing hormone (GRH) and somatostatin (SRIH) gene expression were investigated in the GH-deficient dwarf (dw) rat, in which endogenous feedback signals are lacking. Adult male and female dw rats were treated with GH or IGF-I by systemic (sc) administration or intracerebroventricular (icv) infusion, and hypothalamic GRH and SRIH mRNA were determined by Northern blotting and densitometric analysis. Systemic sc injection of rGH (75 micrograms every 12 h for 3 days) decreased GRH mRNA levels in both sexes. However, systemic sc injection of human IGF-I (150 micrograms every 12 h for 3 days) did not affect GRH mRNA levels in either sex despite significant stimulation of body weight gain. The use of a continuous sc infusion, which normalized serum IGF-I levels, and prolongation of the treatment period to 7 days also failed to change GRH mRNA levels. SRIH mRNA was unaffected by systemic administration of either GH or IGF-I. Continuous icv infusion of GH (1 microgram/h for 7 days) decreased GRH mRNA levels in both sexes, but did not alter SRIH mRNA levels. Continuous icv infusion of IGF-I (100 ng/h for 7 days) decreased GRH mRNA in both sexes. In contrast, SRIH mRNA levels were increased in both sexes. IGF-I decreased GRH mRNA levels at icv infusion rates of 100 and 300 ng/h and stimulated SRIH mRNA levels at infusion rates of 30 and 100 ng/h. Food intake was unaffected at these infusion rates. Changes in GRH and SRIH mRNA levels in response to systemic or central GH and IGF-I administration were similar in both sexes, except that the decrease in GRH mRNA levels produced by the icv infusion of IGF-I was greater in female than in male rats. The results provide evidence for a direct inhibitory feedback effect of GH in the central nervous system on the regulation of hypothalamic GRH gene expression that is independent of peripheral IGF-I. IGF-I feedback, in contrast, appears to

  3. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  4. Influence of three lighting regimes during ten weeks growth phase on laying performance, plasma levels- and tissue specific gene expression- of reproductive hormones in Pengxian yellow pullets.

    PubMed

    Han, Shunshun; Wang, Yan; Liu, Lingyan; Li, Diyan; Liu, Zihao; Shen, Xiaoxu; Xu, Hengyong; Zhao, Xiaoling; Zhu, Qing; Yin, Huadong

    2017-01-01

    The study was conducted to optimize lighting schedule for pre-pubertal (12 to 22 weeks) Chinese native breed Pengxian yellow pullet. A total of 414 healthy pullets (10 weeks), with similar body weight were randomly distributed into three groups (n = 138) and housed in individual cages for up to 12 weeks of age in light controlled rooms and provided normal lighting schedule (10L:14D). At 12 to 18 weeks of age, pullets were housed in three rooms, having varying lighting schedule viz. G1 (8L: 16D), G2 (10L:14D), or G3 (12L:12D). From 19th week onwards lighting schedule was gradually increased every week in incremental manner till all groups started receiving 16L:8D lighting schedule. The age at first egg, weight of first egg laid, percent peak hen day egg production, concentration of plasma luteinizing and follicle-stimulating hormones and expression of genes regulating synthesis or/and secretion of hypothalamic gonadotropin-releasing hormone-I (GnRH-I), and pituitary LH-β and FSH-β were studied during experimental period (12 to 43 weeks of age) of this study. The result indicated that pullets of long day length (G3) group had higher plasma levels of FSH and LH and also better mRNA expression that regulates synthesis or/and secretion of GnRH-I, FSH-β, and LH-β before egg laying. The age at first egg (151.3 days) in pullets of G3 group receiving longer lighting hours (12L:12D) was 8.8 days less (P<0.05) compared to pullets of G1 group, while it was 6.9 days less (P>0.05) compared to G2. However, significantly higher (P<0.05) plasma levels of LH and FSH in pullets of G1 as compared to pullets belonging to G3 group corresponded with the higher (P<0.05) cumulative egg production during the experimental period, while these attributes in G2 group didn't differ from either G1 or G3 groups. Pullets of G1 group had significantly higher levels (P<0.05) of GnRH-I, FSH-β, and LH-β mRNA abundances at 43 weeks of age than other two groups and this corresponded with the

  5. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis.

    PubMed

    Wu, Yuanfeng; Beland, Frederick A; Fang, Jia-Long

    2016-04-01

    Triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and bisphenol A (BPA) have been reported to disturb thyroid hormone (TH) homeostasis. We have examined the effects of these chemicals on sodium/iodide symporter (NIS)-mediated iodide uptake and the expression of genes involved in TH synthesis in rat thyroid follicular FRTL-5 cells, and on the activity of thyroid peroxidase (TPO) using rat thyroid microsomes. All four chemicals inhibited NIS-mediated iodide uptake in a concentration-dependent manner. A decrease in the iodide uptake was also observed in the absence of sodium iodide. Kinetic studies showed that all four chemicals were non-competitive inhibitors of NIS, with the order of Ki values being triclosanexpression of three genes involved in TH synthesis, Slc5a5, Tpo, and Tgo, and three thyroid transcription factor genes, Pax8, Foxe1, and Nkx2-1, was examined using quantitative real-time PCR. No significant changes in the expression of any genes were observed with triclosan or triclocarban. BDE-47 decreased the level of Tpo, while BPA altered the expression of all six genes. Triclosan and triclocarban inhibited the activity of TPO at 166 and >300 μM, respectively. Neither BDE-47 nor BPA affected TPO activity. In conclusion, triclosan, triclocarban, BDE-47, and BPA inhibited iodide uptake, but had differential effects on the expression of TH synthesis-related genes and the activity of TPO.

  6. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    PubMed

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  7. Expression of interleukins, neuropeptides, and growth hormone receptor (GHR) and leptin receptor (LPR) genes in adipose tissue from growing broiler chickens

    USDA-ARS?s Scientific Manuscript database

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for real time RT-PCR analysis with custom-designed primers and probes. Studies of the gene expression of cytokines and associated genes in chick...

  8. Adverse effects of BDE-47 on in vivo developmental parameters, thyroid hormones, and expression of hypothalamus-pituitary-thyroid (HPT) axis genes in larvae of the self-fertilizing fish Kryptolebias marmoratus.

    PubMed

    Kang, Hye-Min; Lee, Young Hwan; Kim, Bo-Mi; Kim, Il-Chan; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-02-20

    2,2',4,4'-tetrabromodiphenylether (BDE-47) is known to have the potential to disrupt the thyroid endocrine system in fishes due to its structural similarity to the thyroid hormones triiodothyronine (T3) and thyroxine (T4). However, the effects of BDE-47 on thyroid function in fishes remain unclear. In this study, abnormal development (e.g. deformity, hemorrhaging) and an imbalance in thyroid hormone (TH) homeostasis was shown in the early developmental stages of the mangrove killifish Kryptolebias marmoratus in response to BDE-47 exposure. To examine the thyroid endocrinal effect of BDE-47 exposure in mangrove killifish K. marmoratus larvae, transcript levels of genes involved in TH homeostasis and hypothalamus-pituitary-thyroid (HPT) axis-related genes were measured. The expression of thyroid hormone metabolism-related genes (e.g. deiodinases, UGT1ab) and HPT axis-related genes was up-regulated and there were significant changes in TH levels (P < 0.05) in response to BDE-47 exposure. This study provides insights into the regulation of TH homeostasis at the transcriptional level and provides a better understanding on the potential impacts of BDE-47 on the thyroid endocrine system of fishes.

  9. Thyroid hormone regulated genes in cerebral cortex development.

    PubMed

    Bernal, Juan

    2017-02-01

    The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.

  10. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells.

    PubMed

    Al Menhali, Asma; Keeley, Theresa M; Demitrack, Elise S; Samuelson, Linda C

    2017-06-01

    Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of Pthlh(LacZ/+) knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and

  11. Molecular cloning and developmental expression of the gene encoding juvenile hormone esterase in the yellow-spotted longicorn beetle, Psacothea hilaris.

    PubMed

    Munyiri, Florence N; Ishikawa, Yukio

    2007-05-01

    Juvenile hormone (JH) plays a key role in the regulation of growth, development, diapause and reproduction in insects. The regulation of JH titers in the insect body is therefore crucial throughout postembryonic development. One of the major pathways of JH metabolism is degradation by a highly selective enzyme, juvenile hormone esterase (JHE). We obtained a full-length cDNA encoding JHE in Psacothea hilaris (PhJHE). The complete PhJHE cDNA sequence is comprised of 1989 bp with an open reading frame of 1785 bp encoding 595 amino acid residues. The deduced protein sequence of PhJHE showed high homology with the Tenebrio molitor JHE (50% amino acid identity) and moderate homology with the Drosophila melanogaster JHE (34%). The PhJHE transcript was expressed mainly in the fat body. PhJHE transcript levels were low until day 3 of the 5th (final) larval instar, then steadily increased reaching a peak on day 13 (the prepupa stage), coinciding well with the peak hemolymph enzyme activity level. Sustained starvation of larvae after a period of feeding stimulated the expression of PhJHE mRNA while feeding the larvae with glucose downregulated its expression. These results are discussed with reference to the induction of precocious metamorphosis in this beetle by starvation.

  12. Derivation of a growth hormone gene cassette for goat by mutagenesis of the corresponding bovine construct and its expression in Pichia pastoris.

    PubMed

    Reyes-Ruíz, Jorge M; Ascacio-Martínez, Jorge A; Barrera-Saldaña, Hugo A

    2006-07-01

    Recombinant bovine growth hormone (rbGH), a 191-aa polypeptide that affects animal growth and lactation, has been used for several years to increase milk production in dairy cattle. It has also been used in goats (Capra hircus) instead of their own hormone (chGH), which is still not available in the market. Since both hormones differ in only one amino acid residue, a strategy based on PCR mediated site-directed mutagenesis, was used to convert the bGH expression cassette harbored by an integration plasmid for Pichia pastoris into a chGH. Transformation by homologous recombination of Pichia pastoris GS115 strain with the linearized new plasmid resulted in transformants that, upon fermentation and induction with methanol, secreted a band with the expected size and immunoreactivity for GH. Production of total proteins secreted into culture medium (50 ml) was 20 microg/ml, of which 60% was chGH as judged by densitometry in SDS-PAGE. Its biological activity was confirmed in vitro when 3T3 pre-adipocytes exposed to the induced culture medium differentiated into adipocytes in cell culture.

  13. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes.

    PubMed

    Tungngoen, Kessarin; Viboonjun, Unchera; Kongsawadworakul, Panida; Katsuhara, Maki; Julien, Jean-Louis; Sakr, Soulaiman; Chrestin, Hervé; Narangajavana, Jarunya

    2011-02-15

    Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.

  14. Daily rhythms of the expression of genes from the somatotropic axis: The influence on tilapia (Oreochromis niloticus) of feeding and growth hormone administration at different times.

    PubMed

    Costa, Leandro S; Rosa, Priscila V; Fortes-Silva, Rodrigo; Sánchez-Vázquez, F Javier; López-Olmeda, Jose F

    2016-01-01

    The aim of this research was to investigate the presence of daily rhythms in the somatotropic axis of tilapia fed at two times (mid-light, ML or mid-dark, MD) and the influence of the time of day of growth hormone (GH) administration on the response of this axis. Two different GH injection times were tested: ZT 3 (3h after lights on) and ZT 15 (3h after lights off). In both experiments, the mRNA expression levels of hypothalamic pituitary adenylate cyclase-activating polypeptide (pacap), pituitary growth hormone (gh), liver insulin-like growth factors (igf1 and igf2a), and liver and muscle growth hormone receptors (ghr1 and ghr2) and IGF receptors (igf1ra and igf2r) were evaluated by means of qPCR. Daily rhythms were observed in the liver for ghr1, ghr2 and igf2r but only in fish fed at ML, with the acrophases located in the light phase (ZT 3:30, 3:31 and 7:38 h, respectively). In the muscle, ghr1 displayed a significant rhythm in both groups and ghr2 in ML fed fish (acrophases at ZT 5:29, 7:14 and 9:23h). The time of both GH administration and feeding influenced the response to GH injection: ML fed fish injected with GH at ZT 15 h showed a significant increase in liver igf1, igf2a and ghr2; and muscle ghr2 expression. This is the first report that describes the existence of daily rhythms in the somatotropic axis of tilapia and its time-dependent responses of GH administration. Our results should be considered when investigating the elements of the somatotropic axis in tilapia and GH administration.

  15. Differential placental expression profile of human Growth Hormone/Chorionic Somatomammotropin genes in pregnancies with pre-eclampsia and gestational diabetes mellitus

    PubMed Central

    Männik, Jaana; Vaas, Pille; Rull, Kristiina; Teesalu, Pille; Laan, Maris

    2012-01-01

    The human GH/CSH cluster consisting of one pituitary-expressed (GH1) and four placenta-expressed loci has been implicated in maternal metabolic adaptation to pregnancy, regulation of intrauterine and postnatal growth. We investigated how the mRNA expression profile of placental GH2, CSH1 and CSH2 genes and their alternative transcripts correlates with maternal pre-eclampsia (PE) and/or gestational diabetes mellitus (GD). The expression of studied genes in PE placentas (n = 17) compared to controls (n = 17) exhibited a trend for reduced transcript levels. The alternative transcripts retaining intron 4, GH2-2 and CSH1-2 showed significantly reduced expression in PE cases without growth restriction (P = 0.007, P = 0.008, respectively). In maternal GD (n = 23), a tendency of differential expression was detected only for the GH2 gene and in pregnancies with large-for-gestational-age newborns. Our results, together with those reported by others, are consistent with a pleiotropic effect of placental hGH/CSH genes at the maternal-fetal interface relating to the regulation of fetal growth and the risk of affected maternal metabolism. PMID:22387044

  16. Food Shortage Causes Differential Effects on Body Composition and Tissue-Specific Gene Expression in Salmon Modified for Increased Growth Hormone Production.

    PubMed

    Abernathy, Jason; Panserat, Stéphane; Welker, Thomas; Plagne-Juan, Elisabeth; Sakhrani, Dionne; Higgs, David A; Audouin, Florence; Devlin, Robert H; Overturf, Ken

    2015-12-01

    Growth hormone (GH) transgenic salmon possesses markedly increased metabolic rate, appetite, and feed conversion efficiency, as well as an increased ability to compete for food resources. Thus, the ability of GH-transgenic fish to withstand periods of food deprivation as occurs in nature is potentially different than that of nontransgenic fish. However, the physiological and genetic effects of transgenic GH production over long periods of food deprivation remain largely unknown. Here, GH-transgenic coho salmon (Oncorhynchus kisutch) and nontransgenic, wild-type coho salmon were subjected to a 3-month food deprivation trial, during which time performance characteristics related to growth were measured along with proximate compositions. To examine potential genetic effects of GH-transgenesis on long-term food deprivation, a group of genes related to muscle development and liver metabolism was selected for quantitative PCR analysis. Results showed that GH-transgenic fish lose weight at an increased rate compared to wild-type even though proximate compositions remained relatively similar between the groups. A total of nine genes related to muscle physiology (cathepsin, cee, insulin-like growth factor, myostatin, murf-1, myosin, myogenin, proteasome delta, tumor necrosis factor) and five genes related to liver metabolism (carnitine palmitoyltransferase, fatty acid synthase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, glucokinase) were shown to be differentially regulated between GH-transgenic and wild-type coho salmon over time. These genetic and physiological responses assist in identifying differences between GH-transgenic and wild-type salmon in relation to fitness effects arising from elevated growth hormone during periods of long-term food shortage.

  17. Genome-Wide Analysis of Citrus R2R3MYB Genes and Their Spatiotemporal Expression under Stresses and Hormone Treatments

    PubMed Central

    He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development. PMID:25473954

  18. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments.

    PubMed

    Xie, Rangjin; Li, Yongjie; He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development.

  19. Vitamin D-mediated gene expression.

    PubMed

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  20. Gene Linked to Excess Male Hormones in Female Infertility Disorder

    MedlinePlus

    ... April 15, 2014 Gene linked to excess male hormones in female infertility disorder Discovery by NIH-supported ... may lead to the overproduction of androgens — male hormones similar to testosterone — occurring in women with polycystic ...

  1. Maternal consumption of high-prebiotic fibre or -protein diets during pregnancy and lactation differentially influences satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring in rats.

    PubMed

    Maurer, Alannah D; Reimer, Raylene A

    2011-02-01

    Risk of developing the metabolic syndrome may be influenced by nutritional environment early in life. We examined the effects of high-fibre (HF) and high-protein (HP) diets consumed during pregnancy and lactation on satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring. Wistar dams were fed a control (C), HF or HP diets during pregnancy and lactation. At parturition, litters were culled to ten pups. At 21 d, all pups were weaned onto C diet. At 7, 14, 21, 28 and 35 d after birth, blood was analysed for satiety hormones and tissues for mRNA expression in offspring. No differences were observed in litter size or birth weight. At 21 d, offspring of HF dams had greater adjusted intestinal mass and lower liver weight than those of C but not of HP dams. Plasma glucose at 28 d and amylin at 7, 14 and 28 d were lower in HF v. C and HP offspring. Glucagon-like peptide-1 was higher in HP offspring than in HF offspring at 7 d but was higher in HF v. C offspring at 21 d. Offspring of HF dams had higher glucose transporter (GLUT2 and Na+-dependent glucose/galactose transporter) mRNA expression at 21 d v. C and HP offspring. In brown adipose tissue, HF and HP up-regulated uncoupling protein-1 and PPAR-γ coactivator. HP was associated with increased resistin and IL-6 mRNA expression. The present study demonstrates that maternal diet composition differentially regulates circulating satiety hormones and genes involved in glucose transport and energy metabolism in offspring. These early changes could have long-term consequences for obesity risk.

  2. PHTHALATE ESTER-INDUCED MALFORMATIONS ARE ASSOCIATED WITH CHANGES IN GENE EXPRESSION AND STEROID HORMONE PRODUCTION IN THE FETAL RAT TESTIS DURING SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
    U.S. EPA,...

  3. PHTHALATE ESTER-INDUCED MALFORMATIONS ARE ASSOCIATED WITH CHANGES IN GENE EXPRESSION AND STEROID HORMONE PRODUCTION IN THE FETAL RAT TESTIS DURING SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
    U.S. EPA,...

  4. Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs--involvement of steroid hormones.

    PubMed

    Kiewisz, Jolanta; Kaczmarek, Monika M; Andronowska, Aneta; Blitek, Agnieszka; Ziecik, Adam J

    2011-09-01

    WNTs (wingless-type MMTV integration site family, member) are morphogenes considered as important factors taking part in uterus developmental processes and implantation. β-catenin is a downstream effector of WNTs action within the cell as well as, through E-cadherin, affecting epithelial organization and function. This study was conducted to investigate WNT4, WNT5A, WNT7A, β-catenin (CTNNB1) and E-cadherin (CDH1) gene expression and protein localization in the endometrium during the periimplantation period. Furthermore, the effect of 17β-estradiol (E(2)) and progesterone (P(4)) on WNTs, CTNNB1 and CDH1 gene expression in the porcine endometrium in vitro was examined. WNT4 protein was localized in the luminal and glandular epithelium as well as in the basal lamina of the uterine mucosa. WNT5A protein was detected only in the luminal epithelium. WNT7A, β-catenin and E-cadherin protein were identified both in the luminal and glandular epithelial cells, however, WNT7A protein immunoreactivity varied during respective days of estrous cycle and/or pregnancy. Despite unchanged expression of WNT4 mRNA in the endometrium of cyclic and early pregnant pigs, the negative influence of E(2) on WNT4 gene during in vitro experiment was observed. WNT4 and CDH1 gene expression was negatively correlated with blood plasma E(2) and P(4) level in uterine luminal flushings (ULFs) on Day 12 of pregnancy. Expression of WNT5A gene was up-regulated in the endometrium on Day 9 of pregnancy when compared to the respective day of the estrous cycle. A significant decrease of WNT7A gene expression and increase of CDH1 mRNA amount was detected on Day 12 of pregnancy. Overall, the results show the spatial localization of WNT4, WNT5A, WNT7A, β-catenin and E-cadherin proteins in porcine endometrium during periimplantation period of pregnancy and indicate significant changes of WNT5A, WNT7A and CDH1 gene expression before implantation in the pig.

  5. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  6. Effects of hypoglycaemia on neurotransmitter and hormone receptor gene expression in laser-dissected arcuate neuropeptide Y/agouti-related peptide neurones.

    PubMed

    Briski, K P; Nedungadi, T P; Koshy Cherian, A

    2010-06-01

    Arcuate neuropeptide Y (NPY)/agouti-related pepide (AgRP) neurones regulate energy homeostasis, and express the putative glucosensor, glucokinase (GCK). The present study performed multi-transcriptional profiling of these neurones to characterise NPY, AgRP and GCK gene expression during intermediate insulin-induced hypoglycaemia, and to determine whether these transcriptional responses acclimate to repeated insulin dosing. We also examined whether these neurones express insulin, glucocorticoid and oestrogen receptor gene transcripts, and whether the levels of these receptor mRNAs are modified by insulin-induced hypoglycaemia. Individual NPY-immunoreactive neurones were laser-microdissected from the caudal arcuate nucleus after single or serial dosing with neutral protamine Hagedorn insulin (NPH), and evaluated by quantitative real-time reverse transcriptase-polymerase chain reaction for the assessment of neurotransmitter and receptor gene expression. Mean NPY and AgRP mRNA in harvested NPY neurones was unchanged or augmented, respectively, by one NPH dose, although repeated NPH administration up-regulated NPY, whereas AgRP gene transcripts were down-regulated. NPH elicited divergent modifications in the ERalpha and ERbeta mRNA content of sampled neurones. ERalpha transcripts were amplified by both acute and chronic NPH-induced hypoglycaemia, whereas ERbeta gene expression was unaltered during a single bout, but suppressed during recurring hypoglycaemia. Glucocorticoid receptor (GR) mRNA levels were increased by a single insulin dose, but unaffected by serial NPH dosing. Insulin receptor-beta chain (InsRb) gene transcripts were insensitive to acute NPH-induced hypoglycaemia, but repeated NPH inhibited this gene transcript. Neither acute nor recurring hypoglycaemia modified GCK mRNA levels in caudal hypothalamic arcuate nucleus (ARH) NPY/AgRP neurones, but baseline GCK transcription was suppressed by the latter. This evidence for the habituation of hypoglycaemic

  7. Identification and characterization of the abscisic acid (ABA) receptor gene family and its expression in response to hormones in the rubber tree

    PubMed Central

    Guo, Dong; Zhou, Ying; Li, Hui-Liang; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2017-01-01

    Abscisic acid (ABA) is an essential phytohormone involved in diverse physiological processes. Although genome-wide analyses of the ABA receptor PYR/PYL/RCAR (PYL) protein/gene family have been performed in certain plant species, little is known about the ABA receptor protein/gene family in the rubber tree (Hevea brasiliensis). In this study, we identified 14 ABA receptor PYL proteins/genes (designated HbPYL1 through HbPYL14) in the most recent rubber tree genome. A phylogenetic tree was constructed, which demonstrated that HbPYLs can be divided into three subfamilies that correlate well with the corresponding Arabidopsis subfamilies. Eight HbPYLs are highly expressed in laticifers. Five of the eight genes are simultaneously regulated by ABA, jasmonic acid (JA) and ethylene (ET). The identification and characterization of HbPYLs should enable us to further understand the role of ABA signal in the rubber tree. PMID:28332623

  8. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    PubMed

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  9. Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: origin of the vertebrate neurohypophysial hormone genes

    PubMed Central

    Gwee, Pai-Chung; Tay, Boon-Hui; Brenner, Sydney; Venkatesh, Byrappa

    2009-01-01

    Background Vasopressin and oxytocin are mammalian neurohypophysial hormones with distinct functions. Vasopressin is involved mainly in osmoregulation and oxytocin is involved primarily in parturition and lactation. Jawed vertebrates contain at least one homolog each of vasopressin and oxytocin, whereas only a vasopressin-family hormone, vasotocin, has been identified in jawless vertebrates. The genes encoding vasopressin and oxytocin are closely linked tail-to-tail in eutherian mammals whereas their homologs in chicken, Xenopus and coelacanth (vasotocin and mesotocin) are linked tail-to-head. In contrast, their pufferfish homologs, vasotocin and isotocin, are located on the same strand of DNA with isotocin located upstream of vasotocin and separated by five genes. These differences in the arrangement of the two genes in different bony vertebrate lineages raise questions about their origin and ancestral arrangement. To trace the origin of these genes, we have sequenced BAC clones from the neurohypophysial gene loci in a cartilaginous fish, the elephant shark (Callorhinchus milii), and in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). We have also analyzed the neurohypophysial hormone gene locus in an invertebrate chordate, the amphioxus (Branchiostoma floridae). Results The elephant shark neurohypophysial hormone genes encode vasotocin and oxytocin, and are linked tail-to-head like their homologs in coelacanth and non-eutherian tetrapods. Besides the hypothalamus, the two genes are also expressed in the ovary. In addition, the vasotocin gene is expressed in the kidney, rectal gland and intestine. These expression profiles indicate a paracrine role for the two hormones. The lamprey locus contains a single neurohypophysial hormone gene, the vasotocin. The synteny of genes in the lamprey locus is conserved in elephant shark, coelacanth and tetrapods but disrupted in teleost fishes. The amphioxus locus encodes a single neurohypophysial hormone

  10. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size.

  11. Natural mixtures of persistent organic pollutants (POP) increase weight gain, advance puberty, and induce changes in gene expression associated with steroid hormones and obesity in female zebrafish.

    PubMed

    Lyche, Jan L; Nourizadeh-Lillabadi, Rasoul; Almaas, Camilla; Stavik, Benedicte; Berg, Vidar; Skåre, Janneche Utne; Alestrøm, Peter; Ropstad, Erik

    2010-01-01

    In the present study, developmental and reproductive effects of lifelong exposure to environmental relevant concentrations of two natural mixtures of persistent organic pollutants (POP) were investigated using classical and molecular methods in a controlled zebrafish model. The mixtures used were extracted from burbot (Lota lota) liver originating from freshwater systems in Norway: one mixture with high levels and one mixture with background levels of polybrominated diphenyl ethers (PBDE), polychlorinated biphenyls (PCB), and dichlorodiphenyltrichloroethane metabolites (DDT). The concentration of POP measured in the zebrafish ranged from levels detected in wild fish from Lake Mjøsa to concentrations reported in human and wildlife populations, indicating that the experimental fish were exposed to concentrations comparable with wild fish. Phenotypic effects observed in both exposure groups included earlier onset of puberty, increased male/female sex ratio, and differences in body weight at 5 mo of age. Interestingly, genome-wide transcription profiling showed changes in regulation of genes involved in endocrine signaling and growth. The transcriptomics changes include key regulator genes for steroid hormone functions (ncoa3), and growth (c/ebp, ncoa3). The effects observed in the experimental zebrafish model raise the question whether chemical pollution represents a risk to reproductive health of wild fish inhabitating the freshwater system.

  12. Influence of sugars and hormones on the genes involved in sucrose metabolism in maize endosperms.

    PubMed

    Ren, X D; Liu, H M; Liu, Y H; Hu, Y F; Zhang, J J; Huang, Y B

    2015-03-06

    Starch is the major storage product in the endosperm of cereals. Its synthesis is closely related to sucrose metabolism. In our previous study, we found that the expression of most of the genes involved in starch synthesis might be regulated by sugars and hormones in the maize endosperm. However, little is known regarding the transcriptional regulation of genes involved in sucrose metabolism. Thus, in this study, maize endosperms were treated with different sugars and hormones and the expression of genes involved in sucrose metabolism (including synthesis, degradation, and transport) were evaluated using real-time quantitative reverse transcription-polymerase chain reaction. We found that genes affected by different sugars and hormones were primarily regulated by abscisic acid. Sucrose and abscisic acid showed an additive effect on the expression of some genes. Differences in the transcriptional regulation of genes involved in sucrose metabolism and starch biosynthesis were observed.

  13. Effect of prolonged in vivo administration of progesterone in pregnancy on myometrial gene expression, peripheral blood leukocyte activation, and circulating steroid hormone levels.

    PubMed

    Norman, Jane E; Yuan, Meifang; Anderson, Laurie; Howie, Forbes; Harold, Graham; Young, Anne; Jordan, Fiona; McInnes, Iain; Harnett, Margaret M

    2011-05-01

    We aimed to investigate the effects of progesterone on gene expression and function of both myometrium and circulating leukocytes. We recruited women participating in a randomized clinical trial of progesterone to prevent preterm delivery. These participants had a twin pregnancy and were managed in 1 of 2 tertiary referral centers. Participants were treated with progesterone (90 mg vaginally) or placebo from 24 to 34 weeks of pregnancy. The outcome measures were myometrial and leukocyte gene expression and expression of cell surface markers in circulating leukocytes, all quantified ex vivo. Prolonged in vivo administration of progesterone inhibited myometrial expression of connexins 26 and 43, endothelial nitric acid synthase (eNOS), and the prostaglandin receptor EP2 ex vivo. Administration of progesterone also increased numbers of circulating neutrophils while decreasing lymphocyte proportions and decreasing neutrophil CD11b expression. The observed effects of prolonged in vivo administration of progesterone will minimize the ability of the uterus to contract as a synctium and the ability of peripheral blood leukocytes to migrate into the myometrium during parturition. We suggest that these are putative mechanisms by which progesterone might prevent preterm birth in women at high risk.

  14. Influence of Nitrate and Nitrite on Thyroid Hormone Responsive and Stress-Associated Gene Expression in Cultured Rana catesbeiana Tadpole Tail Fin Tissue

    PubMed Central

    Hinther, Ashley; Edwards, Thea M.; Guillette, Louis J.; Helbing, Caren C.

    2012-01-01

    Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although whether the effect is acceleration or deceleration of this developmental process varies from study to study. One mechanism of action of these nitrogenous compounds is through alteration of TH synthesis. However, direct target tissue effects on TH signaling are hypothesized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50 mg/L nitrate (NO3–N) and 0.5 and 5 mg/L nitrite (NO2–N) in the absence and presence of 10 nM T3. Thyroid hormone receptor β (TRβ) and Rana larval keratin type I (RLKI), both of which are TH-responsive gene transcripts, were measured using quantitative real time polymerase chain reaction. To assess cellular stress which could affect TH signaling and metamorphosis, heat shock protein 30, and catalase (CAT) transcript levels were also measured. We found that nitrate and nitrite did not significantly change the level of any of the four transcripts tested. However, nitrate exposure significantly increased the heteroscedasticity in response of TRβ and RLKI transcripts to T3. Alteration in population variation in such a way could contribute to the previously observed alterations of metamorphosis in frog tadpoles, but may not represent a major mechanism of action. PMID:22493607

  15. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  16. Changes in hypothalamic corticotropin-releasing hormone, neuropeptide Y, and proopiomelanocortin gene expression during chronic rapid eye movement sleep deprivation of rats.

    PubMed

    Koban, Michael; Le, Wei Wei; Hoffman, Gloria E

    2006-01-01

    Chronic rapid eye movement (paradoxical) sleep deprivation (REM-SD) of rats leads to two conspicuous pathologies: hyperphagia coincident with body weight loss, prompted by elevated metabolism. Our goals were to test the hypotheses that 1) as a stressor, REM-SD would increase CRH gene expression in the hypothalamus and that 2) to account for hyperphagia, hypothalamic gene expression of the orexigen neuropeptide Y (NPY) would increase, but expression of the anorexigen proopiomelanocortin (POMC) would decrease. Enforcement of REM-SD of adult male rats for 20 d with the platform (flowerpot) method led to progressive hyperphagia, increasing to approximately 300% of baseline; body weight steadily declined by approximately 25%. Consistent with changes in food intake patterns, NPY expression rapidly increased in the hypothalamic arcuate nucleus by d 5 of REM-SD, peaking at d 20; by contrast, POMC expression decreased progressively during REM-SD. CRH expression was increased by d 5, both in mRNA and ability to detect neuronal perikaryal staining in paraventricular nucleus with immunocytochemistry, and it remained elevated thereafter with modest declines. Taken together, these data indicate that changes in hypothalamic neuropeptides regulating food intake are altered in a manner consistent with the hyperphagia seen with REM-SD. Changes in CRH, although indicative of REM-SD as a stressor, suggest that the anorexigenic actions of CRH are ineffective (or disabled). Furthermore, changes in NPY and POMC agree with current models of food intake behavior, but they are opposite to their acute effects on peripheral energy metabolism and thermogenesis.

  17. Daily rhythms of urotensin I and II gene expression and hormone secretion in the caudal neurosecretory system of the euryhaline flounder (Platichthys flesus).

    PubMed

    Lu, Weiqun; Zhang, Ying; Xiong, Jianghong; Balment, Richard

    2013-07-01

    The caudal neurosecretory system (CNSS) is a unique neuroendocrine structure for environmental adaptation in fish, and is the major site of expression and secretion of urotensin I (UI) and II (UII). This study examined daily changes in mRNA expression and the secretion profile of UI and UII in the CNSS. Daily rhythms were observed in mRNA level of CNSS UI, urophysis UI, plasma UII, glucose, potassium and sodium. No statistically significant (Cosinor, P>0.05) diel rhythmicity in mRNA level of CNSS UII, urophysis UII, cortisol, lactate, osmolality and chloride were detected. The calculated acrophase of sodium, cortisol, plasma UII, urophysis UII, urophysis UI and mRNA level of CNSS UI rhythms were recorded at 13:04 h, 13:39 h, 14:45 h, 15:27 h, 14:41 h and 14:39 h, respectively and a positive relationship was evident among them. The acrophase of glucose and potassium rhythms were recorded at 18:57 h and 22:35 h, respectively. The glucose levels increased progressively at the onset of the UII surge at 15:00 h and reached peak values at dusk. The results support the hypothesis that the CNSS may play a role in the control of co-ordinated daily changes in energy mobilization, nutritional behavior and osmoregulatory systems in euryhaline flounder. Our findings described for the first time the existence of daily rhythms of CNSS hormone expression and secretion in Platichthys flesus. These results reveal the importance of taking into account the time of day when assessing stress responses and evaluating UI and UII as physiological indicators of stress in this species.

  18. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain

    PubMed Central

    Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.

    2011-01-01

    Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111

  19. In vitro evaluation of gene expression changes for gonadotropin-releasing hormone 1, brain-derived neurotrophic factor and neurotrophic tyrosine kinase, receptor, type 2, in response to bisphenol A treatment.

    PubMed

    Warita, Katsuhiko; Mitsuhashi, Tomoko; Ohta, Ken-ichi; Suzuki, Shingo; Hoshi, Nobuhiko; Miki, Takanori; Takeuchi, Yoshiki

    2013-03-01

    We evaluated the effects of bisphenol A (BPA) on embryonic mouse hypothalamic cells. Real-time reverse transcription polymerase chain reaction (RT-PCR) indicated that gonadotropin-releasing hormone 1 (Gnrh1) expression in 0.02-20 μM BPA-treated cells did not differ from that in control cells but decreased significantly in 200 μMBPAtreated cells. The mRNA level for brain-derived neurotrophic factor (Bdnf), which participates in GNRH1 secretory system development, decreased significantly in 200 μM BPA-treated cells, but that for neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2), did not change. This indicates that Gnrh1 gene expression in mice fetuses is not affected by exposure to <20 μM BPA and that the adverse effects of BPA on the BDNF-NTRK2 neurotrophin system are induced by decrease in the mRNA level of the ligand, not of its receptor.

  20. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    PubMed

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression

    PubMed Central

    Donepudi, Ajay C.; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J.

    2016-01-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor– and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. PMID:26847773

  2. Molecular cloning of two structure variants of crustacean hyperglycemic hormone (CHH) from the swimming crab (Portunus trituberculatus), and their gene expression during molting and ovarian development.

    PubMed

    Xie, Xi; Zhu, Dongfa; Yang, Jifen; Qiu, Xier; Cui, Xiaoyu; Tang, Jie

    2014-12-01

    Two full-length cDNA (Pt-CHH1 and Pt-CHH2) sequences encoding crustacean hyperglycemic hormone (CHH) were cloned from tissues of the swimming crab (Portunus trituberculatus) using RACE. Pt-CHH1 was cloned from eyestalk, whereas Pt-CHH2 was cloned from thoracic ganglia. Sequence and structure analyses of Pt-CHH1 and Pt-CHH2 suggest that they may be generated from alternative splicing. Tissue distribution showed that transcript of Pt-CHH1 was only detected in eyestalk, while transcript of Pt-CHH2 was observed in several extra-eyestalk tissues. The transcript levels of Pt-CHH1 and Pt-CHH2 during molting and ovarian development were determined using qPCR. In molting process, level of Pt-CHH1 in eyestalk increased from stage A (postmolt), and to significant higher at stage C (intermolt), then decreased during premolt (D0-D4). In ovarian development, level of Pt-CHH1 in eyestalk decreased from previtellogenic stage (II), and to significant lower at mature stage (IV). The expression patterns of Pt-CHH2 in thoracic ganglia and Y-organ were distinct from that of Pt-CHH1 in eyestalk. The combined results suggest that Pt-CHH1 may be involved in inhibition of molting and ovarian development, whereas Pt-CHH2 may have other physiological functions.

  3. Modulation of Mammary Gland Development and Milk Production by Growth Hormone Expression in GH Transgenic Goats.

    PubMed

    Bao, Zekun; Lin, Jian; Ye, Lulu; Zhang, Qiang; Chen, Jianquan; Yang, Qian; Yu, Qinghua

    2016-01-01

    Mammary gland development during puberty and reconstruction during pregnancy and lactation is under the control of circulating endocrine hormones, such as growth hormone, which are released from the pituitary. In this study, we explored the influence of overexpression of growth hormone in the mammary gland on breast development and milk production in goats. Using transcriptome sequencing, we found that the number of highly expressed genes was greater in GH transgenic goats than non-transgenic goats. Furthermore, KEGG pathway analysis showed that the majority of the genes belonged to the MAPK signaling pathway and the ECM-receptor interaction pathway. The expression of genes related to breast development was further confirmed using qRT-PCR. Interestingly, both milk production and milk quality were increased. The results of these experiments imply that overexpression of growth hormone in the breast may stimulate breast development and enhances milk production by modulating alveolar cell proliferation or branching through the MAPK signaling pathway.

  4. ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage.

    PubMed

    Soto, Alvaro; Ruiz, Karina B; Ravaglia, Daniela; Costa, Guglielmo; Torrigiani, Patrizia

    2013-03-01

    Peach (Prunus persica laevis L. Batsch) was chosen as a model to further clarify the physiological role of ABA during fruit ripening. To this aim, branches bearing one fruit at mid-S3, S3/S4 and S4 stages of fruit development and characterized by a different ripening index (I(AD)), as revealed by a non-destructive device called a DA-meter, were treated with ABA (0.02 mM) for 1 and 5 days. Exogenously applied ABA interfered with the progression of ripening leading to less ripe or riper fruit depending on the physiological stage. To better understand the molecular basis of ABA interference with ripening, the time-course changes in the expression of ethylene-, cell wall-, and auxin-related genes as well as other genes (NCED, PIP, LOX, AOS and SOT) was evaluated in the fruit mesocarp. Real-time PCR analyses revealed that in mid-S3 fruit transcript levels of ethylene biosynthesis and signaling (ACS1, ACO1, ETR2, ERF2), cell wall softening-related (PG, PMEI, EXP1, EXP2) and auxin biosynthesis, conjugation, transport and perception (TRPB, IGPS, Aux/IAA, GH3, PIN1 and TIR1) genes were substantially down-regulated on day 5 indicating a ripening delay. On the contrary, in more advanced stages (S3/S4 and S4) the same genes were early (day 1) up-regulated suggesting an acceleration of ripening. Transcript profiling of other ripening-related genes revealed changes that were in accord with a ripening delay (mid-S3) or acceleration (S3/S4 and S4). Thus, in peach fruit, ABA appears to modulate ripening through interference not only with ethylene and cell wall but also with auxin-related genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. A second corticotropin-releasing hormone gene (CRH2) is conserved across vertebrate classes and expressed in the hindbrain of a basal neopterygian fish, the spotted gar (Lepisosteus oculatus).

    PubMed

    Grone, Brian P; Maruska, Karen P

    2015-05-01

    To investigate the origins of the vertebrate stress-response system, we searched sequenced vertebrate genomes for genes resembling corticotropin-releasing hormone (CRH). We found that vertebrate genomes possess, in addition to CRH, another gene that resembles CRH in sequence and syntenic environment. This paralogous gene was previously identified only in the elephant shark (a holocephalan), but we find it also in marsupials, monotremes, lizards, turtles, birds, and fishes. We examined the relationship of this second vertebrate CRH gene, which we name CRH2, to CRH1 (previously known as CRH) and urocortin1/urotensin1 (UCN1/UTS1) in primitive fishes, teleosts, and tetrapods. The paralogs CRH1 and CRH2 likely evolved via duplication of CRH during a whole-genome duplication early in the vertebrate lineage. CRH2 was subsequently lost in both teleost fishes and eutherian mammals but retained in other lineages. To determine where CRH2 is expressed relative to CRH1 and UTS1, we used in situ hybridization on brain tissue from spotted gar (Lepisosteus oculatus), a neopterygian fish closely related to teleosts. In situ hybridization revealed widespread distribution of both crh1 and uts1 in the brain. Expression of crh2 was restricted to the putative secondary gustatory/secondary visceral nucleus, which also expressed calcitonin-related polypeptide alpha (calca), a marker of parabrachial nucleus in mammals. Thus, the evolutionary history of CRH2 includes restricted expression in the brain, sequence changes, and gene loss, likely reflecting release of selective constraints following whole-genome duplication. The discovery of CRH2 opens many new possibilities for understanding the diverse functions of the CRH family of peptides across vertebrates.

  6. Changes in Menidia beryllina Gene Expression and In Vitro Hormone-Receptor Activation After Exposure to Estuarine Waters Near Treated Wastewater Outfalls.

    PubMed

    Cole, Bryan J; Brander, Susanne M; Jeffries, Ken M; Hasenbein, Simone; He, Guochun; Denison, Michael S; Fangue, Nann A; Connon, Richard E

    2016-08-01

    Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those

  7. Combined gene and protein expression of hormone-sensitive lipase and adipose triglyceride lipase, mitochondrial content, and adipocyte size in subcutaneous and visceral adipose tissue of morbidly obese men.

    PubMed

    De Naeyer, Hélène; Ouwens, D Margriet; Van Nieuwenhove, Yves; Pattyn, Piet; 't Hart, Leen M; Kaufman, Jean-Marc; Sell, Henrike; Eckel, Juergen; Cuvelier, Claude; Taes, Youri E; Ruige, Johannes B

    2011-01-01

    Lipotoxicity in obesity might be a failure of adipocytes to respond sufficiently adequate to persistent energy surplus. To evaluate the role of lipolytic enzymes or mitochondria in lipotoxicity, we studied expression levels of genes and proteins involved in lipolysis and mitochondrial DNA (mtDNA) content. As differences in lipid metabolism between men and women are extremely complex, we recruited only men (lean and morbidly obese) and collected subcutaneous and visceral adipose tissue during abdominal surgery for real-time PCR gene expression, protein expression, and microscopic study. Although mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) were increased in visceral adipose tissue of morbidly obese men, this was not paralleled by alterations in protein expression and phosphorylation of HSL and ATGL. mtDNA content of visceral adipose tissue was increased in morbidly obese men as compared to lean controls (p < 0.013). Positive correlations were observed between visceral adipocyte size and serum triacylglycerol (r = 0.6, p < 0.007) as well as between visceral adipocyte size and CRP (r = 0.6, p < 0.009) in analyses performed separately in obese men. Lipotoxicity of morbidly obese men might be related to the quantitative impact of the visceral fat depot rather than to important dysregulation of involved lipolytic enzymes or adipocyte mitochondria. Copyright © 2011 S. Karger AG, Basel.

  8. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.

    PubMed

    Morte, Beatriz; Ceballos, Ainhoa; Diez, Diego; Grijota-Martínez, Carmen; Dumitrescu, Alexandra M; Di Cosmo, Caterina; Galton, Valerie Anne; Refetoff, Samuel; Bernal, Juan

    2010-05-01

    Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T(3) because Dio2 inactivation selectively affects the expression of negatively regulated genes.

  9. The effects of levonorgestrel on FSH-stimulated primary rat granulosa cell cultures through gene expression profiling are associated to hormone and folliculogenesis processes.

    PubMed

    Lira-Albarrán, Saúl; Larrea-Schiavon, Marco F; González, Leticia; Durand, Marta; Rangel, Claudia; Larrea, Fernando

    2017-01-05

    Levonorgestrel (LNG), a synthetic progestin, is used in emergency contraception (EC). The mechanism is preventing or delaying ovulation at the level of the hypothalamic pituitary unit; however, little knowledge exists on LNG effects at the ovary. The aim of this study was to identify the effects of LNG on FSH-induced 17β-estradiol (E2) production, including LNG-mediated changes on global gene expression in rat granulosa cells (GC). Isolated GC from female Wistar rats were incubated in vitro in the presence or absence of human FSH and progestins. At the end of incubations, culture media and cells were collected for E2 and mRNA quantitation. The results showed the ability of LNG to inhibit both hFSH-induced E2 production and aromatase gene expression. Microarray analysis revealed that LNG treatment affects GC functionality particularly that related to folliculogenesis and steroid metabolism. These results may offer additional evidence for the mechanisms of action of LNG as EC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Influences of incorporating detoxified Jatropha curcas kernel meal in common carp (Cyprinus carpio L.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes.

    PubMed

    Kumar, V; Khalil, W K B; Weiler, U; Becker, K

    2013-02-01

    Jatropha curcas is a drought-resistant shrub or small tree widespread all over the tropics and subtropics. The use of J. curcas (L) kernel meal in fish feed is limited owing to the presence of toxic and antinutritional constituents. In this study, it was detoxified using heat treatment and organic solvent extraction method. The detoxification process was carried out for 60 min to obtain the detoxified meal. Cyprinus carpio L. fingerlings (n = 180; avg. wt. 3.2 ± 0.07 g) were randomly distributed in five treatment groups with four replicates and fed isonitrogenous diets (crude protein 38%) for 8 weeks. The inclusion levels of the detoxified Jatropha kernel meal (DJKM) and soybean meal (SBM) were as follows: control diet was prepared with fish meal (FM) and wheat meal, without any DJKM and SBM; diets S(50) and J(50) : 50% of FM protein replaced by SBM and DJKM respectively; diets S(75) and J(75) : 75% of FM protein replaced by SBM and DJKM respectively. Highest body mass gain and insulin-like growth factor-1 (IGF-1) gene expression in brain, liver and muscle were observed for the control group, which were statistically similar to those for J(50) group and significantly (p < 0.05) higher than for all other groups, whereas growth hormone gene expression in brain, liver and muscle exhibited opposite trend. Insulin-like growth factor-1 concentration in plasma did not differ significantly among the five groups. Conclusively, growth performance was in parallel with IGF-1 gene expression and exhibited negative trend with GH gene expression.

  11. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  12. Third party data gene data set of eutherian growth hormone genes.

    PubMed

    Premzl, Marko

    2015-12-01

    Among 146 potential coding sequences, the most comprehensive eutherian growth hormone gene data set annotated 100 complete coding sequences. The eutherian comparative genomic analysis protocol first described 5 major gene clusters of eutherian growth hormone genes. The present updated gene classification and nomenclature of eutherian growth hormone genes integrated gene annotations, phylogenetic analysis and protein molecular evolution analysis into new framework of future experiments. The curated third party data gene data set of eutherian growth hormone genes was deposited in European Nucleotide Archive under accession numbers LM644135-LM644234.

  13. Developmental Profile and effects of perinatal PBDE exposure in Hepatic Phase I, II, III and deiodinase I gene expression involved in thyroid hormone metabolism in male rat pups

    EPA Science Inventory

    Previous studies demonstrated that perinatal exposure to PBDEs, a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commerc...

  14. Developmental Profile and effects of perinatal PBDE exposure in Hepatic Phase I, II, III and deiodinase I gene expression involved in thyroid hormone metabolism in male rat pups

    EPA Science Inventory

    Previous studies demonstrated that perinatal exposure to PBDEs, a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commerc...

  15. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration

    PubMed Central

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-01-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20–30 years; n= 20) were randomly assigned to daily recombinant human GH (rhGH) (33–50 μg kg−1 day−1) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  16. Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats.

    PubMed

    Ross, Alexander W; Helfer, Gisela; Russell, Laura; Darras, Veerle M; Morgan, Peter J

    2011-01-01

    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be

  17. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  18. Isolated growth hormone deficiency type 2: from gene to therapy.

    PubMed

    Miletta, Maria Consolata; Lochmatter, Didier; Pektovic, Vibor; Mullis, Primus-E

    2012-01-01

    Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.

  19. CREBZF expression and hormonal regulation in the mouse uterus

    PubMed Central

    2013-01-01

    Background CREBZF is a member of the mammalian ATF/CREB family of the basic region-leucine zipper (bZIP) transcription factors. Two isoforms of CREBZF have been identified from the alternative usage of initiation codons, SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF). Until recently, the physiological function of CREBZF in mammalian reproductions has not been reported. Methods Multiple techniques were performed to investigate the spatiotemporal expression and hormonal regulation of the CREBZF gene in the mouse uterus and its role in embryo implantation. Results Zhangfei was not detected in the mouse uterus. SMILE immunostaining was mainly expressed in the uterine luminal and glandular epithelium, and the expression levels of both SMILE mRNA and protein gradually decreased from days 1–3 of pregnancy, peaked on day 4, and then declined again on day 6. On day 5 of pregnancy, SMILE protein expression was detected only in the luminal epithelium at implantation sites compared with the expression at inter-implantation sites. SMILE protein was not detected in decidual cells from days 6–8 of pregnancy or artificial decidualisation. Furthermore, SMILE protein was not detected in the mouse uterus on days 3–6 of pseudopregnancy, and SMILE expression was also induced in the delayed-implantation uterus, indicating that the presence of an active blastocyst was required for SMILE expression at the implantation site. Oestrogen significantly stimulated SMILE expression in the ovariectomised mouse uterus. In addition, in cycling mice, high levels of SMILE protein and mRNA expression were also observed in proestrus and oestrus uteri. Conclusions Taken together, these results suggested that SMILE expression was closely related to mouse implantation and up-regulated by oestrogen. PMID:24325733

  20. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones.

    PubMed

    Herndon, Maria K; Nilson, John H

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.

  1. Maximal Expression of Foxl2 in Pituitary Gonadotropes Requires Ovarian Hormones

    PubMed Central

    Herndon, Maria K.; Nilson, John H.

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness. PMID:25955311

  2. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth.

    PubMed

    Li, Long; Cheng, Zhanchao; Ma, Yanjun; Bai, Qingsong; Li, Xiangyu; Cao, Zhihua; Wu, Zhongneng; Gao, Jian

    2017-05-12

    Moso bamboo is a large, woody bamboo with the highest ecological, economic and cultural value of all the bamboo types and accounts for up to 70% of the total area of bamboo grown. However, the spatiotemporal variation role of moso bamboo shoot during growth period is still unclear. We found that the bamboo shoot growth can be divided into three distinct periods, including winter growth, early growth and late growth based on gene expression and anatomy. In the early growth period, lateral buds germinated from the top of the bamboo joint in the shoot tip. Intercalary meristems grew vigorously during the winter growth period and early growth period, but in the late growth period, mitosis in the intercalary meristems decreased. The expression of cell cycle-associated genes and the quantity of differentially expressed genes were higher in early growth than those in late growth, appearing to be influenced by hormonal concentrations. Gene expression analysis indicates that hormone signalling genes play key roles in shoot growth, while auxin signalling genes play a central role. In situ hybridization analyses illustrate how auxin signalling genes regulate apical dominance, meristem maintenance and lateral bud development. Our study provides a vivid picture of the dynamic changes in anatomy and gene expression during shoot growth in moso bamboo, and how hormone signalling-associated genes participate in moso bamboo shoot growth. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Expression, processing and secretion of a proteolytically-sensitive insect diuretic hormone by Saccharomyces cerevisiae requires the use of a yeast strain lacking genes encoding the Yap3 and Mkc7 endoproteases found in the secretory pathway.

    PubMed Central

    Copley, K S; Alm, S M; Schooley, D A; Courchesne, W E

    1998-01-01

    A system is described for the heterologous expression of peptides in Saccharomyces cerevisiae. A synthetic gene encoding a precursor of the 41 amino acid Manduca sexta diuretic hormone (Mas-DH) was expressed at 0.8 mg/l purified peptide. A precursor of a mutant peptide of Mas-DH, Mas-DH[K22Q] was also expressed. The peptides were purified, then treated with peptidylglycine alpha-amidating enzyme to generate the alpha-amidated, mature, form of Mas-DH or Mas-DH[K22Q], which were biologically active. Successful expression of full-length Mas-DH+Gly depended upon the use of a protease-deficient yeast strain. In wild-type strains, Mas-DH+Gly was recovered only as proteolytic fragments, even in the presence of various protease inhibitors. Expression of Mas-DH+Gly in strains deficient in either the Mkc7 or the Yap3 protease reduced proteolysis, while no proteolysis of Mas-DH+Gly was detectable in a strain lacking both proteases. This protease-deficient strain may prove of general utility for expression of peptides. Analysis of recovered proteolytic fragments revealed a complex pattern of cleavage sites. Both the Yap3 and Mkc7 proteases preferred to cleave at a single Glu-Lys downward arrow-Glu-Arg site. Analysis of secondary cleavage sites showed that Yap3 preferred to cleave after either Lys or Arg and Mkc7 after Lys. This paper is the first report on the in vivo activity and specificity of Yap3 and Mkc7 expressed at physiological levels. PMID:9494104

  4. Diapause hormone in the Helicoverpa/Heliothis complex: a review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor

    USDA-ARS?s Scientific Manuscript database

    This review summarizes recent studies focusing on diapause hormone (DH) in the Helicoverpa/Heliothis complex of agricultural pests. Moths in this complex overwinter in pupal diapause, a form of developmental arrest used to circumvent unfavorable seasons. DH was originally reported in the silkmoth ...

  5. Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens.

    PubMed

    Elfwing, Magnus; Nätt, Daniel; Goerlich-Jansson, Vivian C; Persson, Mia; Hjelm, Jonas; Jensen, Per

    2015-01-01

    Early stress can have long-lasting phenotypic effects. Previous research shows that male and female chickens differ in many behavioural aspects, and respond differently to chronic stress. The present experiment aimed to broadly characterize long-term sex differences in responses to brief events of stress experienced during the first weeks of life. Chicks from a commercial egg-laying hybrid were exposed to stress by inducing periods of social isolation during their first three weeks of life, followed by a broad behavioural, physiological and genomic characterization throughout life. Early stressed males, but not females, where more anxious in an open field-test, stayed shorter in tonic immobility and tended to have delayed sexual maturity, as shown by a tendency for lower levels of testosterone compared to controls. While early stressed females did not differ from non-stressed in fear and sexual maturation, they were more socially dominant than controls. The differential gene expression profile in hypothalamus was significantly correlated from 28 to 213 days of age in males, but not in females. In conclusion, early stress had a more pronounced long-term effect on male than on female chickens, as evidenced by behavioral, endocrine and genomic responses. This may either be attributed to inherent sex differences due to evolutionary causes, or possibly to different stress related selection pressures on the two sexes during commercial chicken breeding.

  6. Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors.

    PubMed

    Spoerri, Michèle; Guscetti, Franco; Hartnack, Sonja; Boos, Alois; Oei, Christine; Balogh, Orsolya; Nowaczyk, Renata M; Michel, Erika; Reichler, Iris M; Kowalewski, Mariusz P

    2015-09-15

    Neoplasms of the mammary gland are among the most common diseases in female domestic dogs (Canis familiaris). It is assumed that reproductive hormones influence tumorigenesis in this species, although the precise role of the endocrine milieu and reproductive state is subject to continuing discussion. In line with this, a recent systematic review of available data on the development of mammary neoplasms revealed weak evidence for risk reduction after neutering and an effect of age at neutering. Investigation of several hormone receptors has revealed decreased expression of estrogen receptor-alpha (ERα, ESR1), progesterone (P4) receptor (PGR), prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) associated with neoplastic differentiation of mammary tissues. In other studies, increased levels of estrogens, progesterone and prolactin were found in serum and/or tissue homogenates of dogs with malignant neoplasms. However, the association between these entities within one animal population was never previously examined. Therefore, this study investigated the association between circulating serum concentrations of estradiol-17β, progesterone and prolactin, and gene expression of ERα (ESR1), ERβ (ESR2), PGR, PRLR, PRL and GHR, with respect to reproductive state (spayed vs. intact) and cycle stage (anestrus vs. diestrus). Additionally, the expression of E-cadherin (CDH-1) was evaluated as a possible indicator of metastatic potential. For all receptors, the lowest gene expression was found in malignant tumors compared to normal tissues of affected dogs. Steroid levels were not influenced by their corresponding receptor expression in mammary neoplasms, but increased PRL levels were negatively associated with low PRLR gene expression in malignant tumors. The expression of CDH-1 was influenced by tumor malignancy and cycle stage, i.e., the highest gene expression was found in benign mammary tumors in diestrous dogs compared to normal and malignant mammary

  7. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2007-03-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well in the pathogenesis of endocrine-related cancers. Previous experiments have shown that many kallikrein genes are under steroid hormone regulation in breast cancer cell lines. We here examine the coordinated expression of multiple kallikrein genes in several breast cancer cell lines after steroid hormone stimulation. Breast cancer cell lines were treated with various steroid hormones and kallikrein (KLK/hK) expression of hK3 (prostate-specific antigen, PSA), hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 was analyzed at the RNA level via RT-PCR and at the protein level by immunofluorometric ELISA assays. We identified several distinct hK hormone-dependent and hormone-independent expression patterns. Hormone-specific modulation of expression was seen for several kallikreins in BT-474, MCF-7, and T-47D cell lines. hK6 was specifically up-regulated upon estradiol treatment in all three cell lines whereas PSA expression was induced by dihydrotestosterone (DHT) and norgestrel stimulation in BT-474 and T-47D. hK10, hK11, hK13, and hK14 were specifically up-regulated by DHT in T-47D and by estradiol in BT-474 cells. Bioinformatic analysis of upstream proximal promoter sequences for these hKs did not identify any recognizable hormone-response elements (HREs), suggesting that the coordinated activation of these four hKs represents a unique expression "cassette", utilizing a common hormone-dependent mechanism. We conclude that groups of human hKs are coordinately expressed in a steroid hormone-dependent manner. Our data supports clinical observations linking expression of multiple hKs with breast cancer prognosis.

  8. Cloning and characterization of a novel CYP3A1 allelic variant: analysis of CYP3A1 and CYP3A2 sex-hormone-dependent expression reveals that the CYP3A2 gene is regulated by testosterone.

    PubMed

    Ribeiro, V; Lechner, M C

    1992-02-14

    A clone was isolated from a cDNA library constructed from phenobarbital-treated Wistar rat liver and proven to correspond to the full-length mRNA of a polymorphic variant of Sprague-Dawley CYP3A1. Eight nucleotide differences were detected in a single 76-nucleotide stretch and confirmed to be present in the genomic clone. They are seated in a region implicated in the definition of a substrate binding domain of the native P450. Three out of the eight nucleotide changes are nonconservative, implicating the replacement of Thr/Ala 207, Phe/Ile 213, and Ile/Val 232. This is the first report of an allelic variant of CYP3A1, a new example of interstrain P450 variability. The CYP3A subfamily is composed of several genes coding for active testosterone 6 beta-hydroxylases which are expressed in the liver. CYP3A genes are under strong and distinct developmental regulation. Conversely to CYP3A1, transiently expressed in immature animals, CYP3A2 is constitutively expressed in the liver early after birth and characterized by an extinction in the adult females. Castration of 90-day-old male rats causes a drastic reduction (80%) of CYP3A2 mRNA relative abundance. Administration of testosterone propionate restores the physiological levels of CYP3A2 mRNA characteristic of the male rat liver. Our results demonstrate the existence of a direct relationship between the male hormonal status and the constitutive expression of rat liver CYP3A2.

  9. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats

    PubMed Central

    Allen, Patricia J.; DeBold, Joseph F.; Rios, Maribel; Kanarek, Robin B.

    2015-01-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublec